WO2012057281A1 - Curable composition - Google Patents

Curable composition Download PDF

Info

Publication number
WO2012057281A1
WO2012057281A1 PCT/JP2011/074849 JP2011074849W WO2012057281A1 WO 2012057281 A1 WO2012057281 A1 WO 2012057281A1 JP 2011074849 W JP2011074849 W JP 2011074849W WO 2012057281 A1 WO2012057281 A1 WO 2012057281A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
curable composition
polymer
manufactured
compound
Prior art date
Application number
PCT/JP2011/074849
Other languages
French (fr)
Japanese (ja)
Inventor
担 渡辺
岡村 直実
齋藤 敦
裕仁 水野
Original Assignee
セメダイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セメダイン株式会社 filed Critical セメダイン株式会社
Priority to JP2012540939A priority Critical patent/JP6161103B2/en
Publication of WO2012057281A1 publication Critical patent/WO2012057281A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D143/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Coating compositions based on derivatives of such polymers
    • C09D143/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane

Definitions

  • the present invention relates to an organic polymer having a silicon-containing group (hereinafter also referred to as “crosslinkable silicon group”) having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond. It relates to the curable composition containing this.
  • crosslinkable silicon group a silicon-containing group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond. It relates to the curable composition containing this.
  • An organic polymer containing at least one crosslinkable silicon group in the molecule is crosslinked at room temperature by the formation of a siloxane bond accompanied by a hydrolysis reaction of a reactive silicon group due to moisture or the like. It is known to have the property of being obtained.
  • organic polymers having a crosslinkable silicon group organic polymers whose main chain skeleton is a polyoxyalkylene polymer or a (meth) acrylate polymer are used for sealing materials, adhesives, paints, etc. Widely used.
  • the curable composition used for sealing materials, adhesives, paints, etc. and the rubber-like cured product obtained by curing have various properties such as curability, adhesiveness, storage stability, mechanical properties such as modulus, strength, and elongation. Properties are required, and many studies have been made on organic polymers containing crosslinkable silicon groups.
  • curable compositions containing an organic polymer having a crosslinkable silicon group are cured using a silanol condensation catalyst.
  • organic tin-based catalysts such as dibutyltin bis (acetylacetonate) are widely used. in use.
  • toxicity of organotin compounds has been pointed out, and development of non-organotin catalysts has been demanded.
  • a dealcohol-free silicone composition using a titanium catalyst is already on the market and is widely used for many applications (for example, Patent Documents 1 to 3).
  • Patent Documents 1 to 3 there are relatively few examples of adding a titanium catalyst to an organic polymer containing a crosslinkable silicon group, which are disclosed in Patent Documents 4 to 21 and the like.
  • the curable compositions using these titanium catalysts have a problem that the curing rate is slow, and the curing rate is lowered and the viscosity is increased after storage.
  • a curable composition containing an organic polymer containing a crosslinkable silicon group is often used as an adhesive or a sealing material, and in that case, adhesion to various types of substrates is required.
  • so-called aminosilane having a primary amino group and an alkoxy group in the molecule is usually used.
  • an organic polymer containing a crosslinkable silicon group and a titanium catalyst are used to produce a one-component curable composition by adding aminosilane, the composition is good after storage for a certain period, although the adhesiveness is good. If the viscosity of the product increases and is severe, it may harden in the container and not be used. Sealing materials and adhesives are not always used immediately after production, but are often stored for several months in warehouses or stores, and it is desired that their curability and viscosity be constant before and after storage. Yes.
  • An object of the present invention is to provide a curable composition excellent in curability, adhesiveness and storage stability, and not requiring an organic tin-based catalyst and excellent in safety, and a method for producing the curable composition. .
  • the present inventors have conducted intensive research and have identified, as a curing catalyst, an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule.
  • an aging curing catalyst obtained by mixing a silane compound obtained by reacting an epoxy silane compound with a specific aminosilane compound and a titanium chelate coordinated with a ⁇ -ketoester at a predetermined mixing ratio and aging.
  • the present inventors have found that a curable composition that is remarkably excellent in curability, adhesiveness, and storage stability and that does not require an organotin catalyst and that is excellent in safety can be obtained.
  • the curable composition of the present invention comprises (A) an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule, and (B) an aging curing catalyst.
  • a silane compound obtained by reacting (C) an epoxysilane compound represented by the following formula (1) with an aminosilane compound represented by the following formula (2): (D) one or more titanium catalysts selected from the group consisting of a titanium chelate represented by the following formula (3) and a titanium chelate represented by the following formula (4),
  • R 1 to R 3 are each a hydrogen atom or an alkyl group
  • R 4 is an alkylene group or an alkyleneoxyalkylene group
  • R 5 is a monovalent hydrocarbon group
  • R 6 is An alkyl group
  • a is 0, 1 or 2.
  • R 7 to R 12 are each a hydrogen atom or an alkyl group, R 13 is a monovalent hydrocarbon group, R 14 is an alkyl group, and b is 0 or 1.
  • n R 21 s are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms
  • 4-n R 22 s are each independently a hydrogen atom.
  • 4-n R 23 and 4-n R 24 are independently substituted or unsubstituted carbon atoms having 1 to 20 carbon atoms.
  • n is 0, 1, 2 or 3.
  • R 25 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms
  • the two R 26 are each independently a hydrogen atom or substituted or unsubstituted.
  • the two R 27 and the two R 28 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • the aging is preferably performed at 40 ° C to 80 ° C.
  • the (C) silane compound is preferably a silane compound obtained by reacting the epoxysilane compound in a range of 1.5 to 10 mol with respect to 1 mol of the aminosilane compound.
  • the (C) silane compound is preferably a silane compound obtained by reacting the epoxysilane compound and the aminosilane compound at a reaction temperature of 40 to 100 ° C.
  • the (A) organic polymer is preferably an organic polymer whose main chain is not polysiloxane.
  • the (A) organic polymer is a polyoxyalkylene polymer containing 0.8 or more crosslinkable silicon groups on average per molecule, and 0.8 or more crosslinks on average per molecule. Selected from the group consisting of a saturated hydrocarbon polymer containing a functional silicon group and a (meth) acrylic acid ester polymer containing an average of 0.8 or more crosslinkable silicon groups in one molecule. One or more are preferable.
  • the crosslinkable silicon group contains a trimethoxysilyl group.
  • the curable composition of the present invention preferably further contains (E) a silane compound having one hydrolyzable silicon group and one primary amino group in one molecule.
  • the (E) silane compound is preferably a compound represented by the following formula (12).
  • R 41 is a methyl group or an ethyl group, and when a plurality of R 41 are present, they may be the same or different, and R 42 is a methyl group or An ethyl group, and when there are a plurality of R 42 , they may be the same or different, R 43 is a hydrocarbon group having 1 to 10 carbon atoms, and m is 2 or 3 and n is 0 or 1.
  • the curable composition of the present invention preferably further contains (F) a filler.
  • the filler (F) is at least one selected from the group consisting of surface-treated calcium carbonate, amorphous silica having a particle size of 0.01 to 300 ⁇ m, and polymer powder having a particle size of 0.01 to 300 ⁇ m. It is preferable.
  • the difference in refractive index between the liquid phase component (A) containing the organic polymer as a main component and the refractive index of the polymer powder is made to be equal to or less than 0.1.
  • a curable composition having excellent transparency can be obtained.
  • the difference between the refractive index of the liquid phase component mainly composed of the (A) organic polymer and the refractive index of the polymer powder is 0.1. The following is preferable.
  • the polymer powder polymerizes a monomer selected from the group consisting of (meth) acrylic acid ester, vinyl acetate, ethylene and vinyl chloride alone, or the monomer and one or more vinyl monomers
  • the polymer powder is preferably a polymer powder obtained from a polymer obtained by copolymerization, and is at least one selected from the group consisting of an acrylic polymer powder and a vinyl polymer powder. More preferred.
  • the curable composition of the present invention preferably further contains (G) a diluent.
  • the curable composition of the present invention preferably further contains a metal hydroxide. It is preferable that the metal hydroxide is aluminum hydroxide.
  • the curable composition of the present invention preferably further contains a titanium chelate compound as a non-aged curing catalyst.
  • the titanium chelate compound is preferably at least one titanium catalyst selected from the group consisting of a titanium chelate represented by the formula (3) and a titanium chelate represented by the formula (4).
  • the method for producing a curable composition of the present invention comprises (A) an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule, and (B) an aging curing catalyst.
  • a method for producing a curable composition for producing a curable composition wherein the (B) aging curing catalyst is represented by (C) an epoxysilane compound represented by the following formula (1) and the following formula (2):
  • One or more types of titanium selected from the group consisting of a silane compound obtained by reacting an aminosilane compound, a titanium chelate represented by the following formula (3) and a titanium chelate represented by the following formula (4):
  • An aging curing catalyst obtained by mixing a catalyst with 0.1 to 30 mol of the (C) silane compound with respect to 1 mol of the (D) titanium catalyst and aging at a reaction temperature of 30 to 100 ° C. It is characterized by being.
  • R 1 to R 3 are each a hydrogen atom or an alkyl group
  • R 4 is an alkylene group or an alkyleneoxyalkylene group
  • R 5 is a monovalent hydrocarbon group
  • R 6 is An alkyl group
  • a is 0, 1 or 2.
  • R 7 to R 12 are each a hydrogen atom or an alkyl group, R 13 is a monovalent hydrocarbon group, R 14 is an alkyl group, and b is 0 or 1.
  • n R 21 s are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms
  • 4-n R 22 s are each independently a hydrogen atom.
  • 4-n R 23 and 4-n R 24 are independently substituted or unsubstituted carbon atoms having 1 to 20 carbon atoms.
  • n is 0, 1, 2 or 3.
  • R 25 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms
  • the two R 26 are each independently a hydrogen atom or substituted or unsubstituted.
  • the two R 27 and the two R 28 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • the manufacturing method of the curable composition of this invention it is preferable to mix
  • the titanium chelate compound is at least one titanium catalyst selected from the group consisting of a titanium chelate represented by the formula (3) and a titanium chelate represented by the formula (4).
  • the present invention it is possible to provide a curable composition excellent in curability, adhesiveness and storage stability, and not requiring an organic tin-based catalyst and excellent in safety, and a method for producing the curable composition. Moreover, according to this invention, the curable composition excellent in standing
  • the curable composition of the present invention comprises (A) an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule, and (B) an aging curing catalyst.
  • (B) an aging curing catalyst (C) a silane compound obtained by reacting an epoxysilane compound represented by the formula (1) and an aminosilane compound represented by the formula (2), D) one or more titanium catalysts selected from the group consisting of a titanium chelate represented by the formula (3) and a titanium chelate represented by the formula (4), with respect to 1 mol of the titanium catalyst (D)
  • a aging curing catalyst obtained by mixing at a mixing ratio of 0.1 to 30 mol of the silane compound and aging at a reaction temperature of 30 to 100 ° C.
  • the organic polymer (A) is not particularly limited as long as it is an organic polymer containing one or more crosslinkable silicon groups in one molecule, but is an organic polymer in which the main chain is not polysiloxane. It is preferable to use those having various main chain skeletons excluding polysiloxane.
  • polyoxyalkylene heavy polymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, polyoxypropylene-polyoxybutylene copolymer, etc.
  • Copolymer ethylene-propylene copolymer, polyisobutylene, copolymer of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene or copolymer of butadiene and acrylonitrile and / or styrene, polybutadiene, isoprene or butadiene Copolymers of acrylonitrile and styrene, etc., hydrocarbon polymers such as hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers; dibasic acids such as adipic acid and glycols A polyester polymer obtained by condensation of lactones or ring-opening polymerization of lactones; a (meth) acrylic acid ester polymer obtained by radical polymerization of monomers such as ethyl (meth) acrylate and butyl (meth) acrylate; (Meth) acrylic acid ester monomer, vinyl polymer obtained by
  • saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene polymers, and (meth) acrylic acid ester polymers can be obtained with a relatively low glass transition temperature.
  • the cured product is preferable because it is excellent in cold resistance.
  • Polyoxyalkylene polymers and (meth) acrylic acid ester polymers are particularly preferred because of their high moisture permeability and excellent deep-part curability when made into one-component compositions.
  • the crosslinkable silicon group of the (A) organic polymer used in the present invention is a group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond.
  • a group represented by the following general formula (5) is preferable.
  • R 31 represents an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or R 31 3 represents a triorganosiloxy group represented by SiO— (R 31 is the same as above), and when two or more R 31 are present, they may be the same or different.
  • X represents a hydroxyl group or a hydrolyzable group, and when two or more X exist, they may be the same or different.
  • d represents 0, 1, 2, or 3
  • e represents 0, 1, or 2, respectively.
  • p in the following general formula (6) need not be the same. p represents an integer of 0 to 19. However, d + (sum of e) ⁇ 1 is satisfied.
  • the hydrolyzable group or hydroxyl group can be bonded to one silicon atom in the range of 1 to 3, and d + (sum of e) is preferably in the range of 1 to 5.
  • d + (sum of e) is preferably in the range of 1 to 5.
  • two or more hydrolyzable groups or hydroxyl groups are bonded to the crosslinkable silicon group, they may be the same or different.
  • the number of silicon atoms forming the crosslinkable silicon group may be one or two or more, but in the case of silicon atoms linked by a siloxane bond or the like, there may be about 20 silicon atoms.
  • crosslinkable silicon group a crosslinkable silicon group represented by the following general formula (7) is preferable because it is easily available.
  • R 31 and X are the same as those described above, and d is an integer of 1, 2 or 3.
  • a in the formula (7) is preferably 2 or more, and more preferably 3.
  • R 31 examples include an alkyl group such as a methyl group and an ethyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, an aralkyl group such as a benzyl group, and R 31 3 SiO—. And triorganosiloxy group. Of these, a methyl group is preferred.
  • the hydrolyzable group represented by X is not particularly limited as long as it is a conventionally known hydrolyzable group.
  • Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group.
  • a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable, and an alkoxy group, an amide group, and an aminooxy group are more preferable.
  • An alkoxy group is particularly preferred from the viewpoint of mild hydrolysis and easy handling.
  • the alkoxy groups those having a smaller number of carbon atoms have higher reactivity, and the reactivity increases as the number of carbon atoms increases in the order of methoxy group> ethoxy group> propoxy group.
  • a methoxy group or an ethoxy group is usually used.
  • crosslinkable silicon group examples include trialkoxysilyl groups [—Si (OR) 3 ] such as trimethoxysilyl group and triethoxysilyl group, dialkoxy such as methyldimethoxysilyl group and methyldiethoxysilyl group.
  • a silyl group [—SiR 1 (OR) 2 ], and a trimethoxysilyl group is more preferable.
  • R is an alkyl group such as a methyl group or an ethyl group.
  • crosslinkable silicon group may be used alone or in combination of two or more.
  • the crosslinkable silicon group can be present in the main chain, the side chain, or both.
  • the number of silicon atoms forming the crosslinkable silicon group is one or more, but in the case of silicon atoms linked by a siloxane bond or the like, it is preferably 20 or less.
  • the organic polymer having a crosslinkable silicon group may be linear or branched, and its number average molecular weight is about 500 to 100,000 in terms of polystyrene in GPC, more preferably 1,000 to 50,000. Particularly preferred is 3,000 to 30,000. If the number average molecular weight is less than 500, the cured product tends to be disadvantageous in terms of elongation characteristics, and if it exceeds 100,000, the viscosity tends to be inconvenient because of high viscosity.
  • the average number of crosslinkable silicon groups contained in the organic polymer is 0.8 or more in one molecule of the polymer. 1.1 to 5 may be present. If the number of crosslinkable silicon groups contained in the molecule is less than 0.8 on average, the curability becomes insufficient and it becomes difficult to develop good rubber elastic behavior.
  • the crosslinkable silicon group may be at the end of the main chain or the side chain of the organic polymer molecular chain, or at both ends.
  • the crosslinkable silicon group is only at the end of the main chain of the molecular chain, so that the effective network length of the organic polymer component contained in the finally formed cured product is increased, so that the strength and elongation are high. It becomes easy to obtain a rubber-like cured product exhibiting a low elastic modulus.
  • the polyoxyalkylene polymer is essentially a polymer having a repeating unit represented by the following general formula (8). -R 32 -O- (8)
  • R 32 is a linear or branched alkylene group having 1 to 14 carbon atoms, preferably a linear or branched alkylene group having 1 to 14 carbon atoms, and more preferably 2 to 4 carbon atoms. .
  • repeating unit represented by the general formula (8) examples include -CH 2 O -, - CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (C 2 H 5) O -, - CH 2 C (CH 3) 2 O-, —CH 2 CH 2 CH 2 CH 2 O— Etc.
  • the main chain skeleton of the polyoxyalkylene polymer may be composed of only one type of repeating unit, or may be composed of two or more types of repeating units.
  • a polymer comprising a propylene oxide polymer as a main component is preferable because it is amorphous or has a relatively low viscosity.
  • a polymerization method using an alkali catalyst such as KOH for example, JP-A Nos. 61-197631, 61-215622, 61-215623, and 61-215623 can be used.
  • Examples of the polymerization method using a catalyst include, but are not limited to, a polymerization method.
  • a polyoxyalkylene system having a high molecular weight with a number average molecular weight of 6,000 or more and Mw / Mn of 1.6 or less and a narrow molecular weight distribution according to a polymerization method using an organic aluminum-porphyrin complex catalyst or a polymerization method using a double metal cyanide complex catalyst A polymer can be obtained.
  • the main chain skeleton of the polyoxyalkylene polymer may contain other components such as a urethane bond component.
  • a urethane bond component examples include aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate; aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate, and polyoxyalkylene heavy compounds having a hydroxyl group.
  • lifted The thing obtained from reaction with coalescence can be mention
  • the introduction of a crosslinkable silicon group into a polyoxyalkylene polymer can be performed on a polyoxyalkylene polymer having a functional group such as an unsaturated group, a hydroxyl group, an epoxy group or an isocyanate group in the molecule.
  • the reaction can be carried out by reacting a compound having a reactive functional group and a crosslinkable silicon group (hereinafter referred to as a polymer reaction method).
  • a hydrosilane or mercapto compound obtained by allowing a hydrosilane having a crosslinkable silicon group or a mercapto compound having a crosslinkable silicon group to act on an unsaturated group-containing polyoxyalkylene polymer to form a crosslinkable silicon group
  • the method of obtaining the polyoxyalkylene type polymer which has this can be mention
  • An unsaturated group-containing polyoxyalkylene polymer is obtained by reacting an organic polymer having a functional group such as a hydroxyl group with an organic compound having an active group and an unsaturated group that are reactive with the functional group, A polyoxyalkylene polymer containing can be obtained.
  • polymer reaction method examples include a method of reacting a polyoxyalkylene polymer having a hydroxyl group at a terminal with a compound having an isocyanate group and a crosslinkable silicon group, or a polyoxyalkylene system having an isocyanate group at a terminal.
  • examples thereof include a method of reacting a polymer with a compound having an active hydrogen group such as a hydroxyl group or an amino group and a crosslinkable silicon group.
  • an isocyanate compound is used, a polyoxyalkylene polymer having a crosslinkable silicon group can be easily obtained.
  • polyoxyalkylene polymer having a crosslinkable silicon group examples include JP-B Nos. 45-36319, 46-12154, JP-A Nos. 50-156599, 54-6096, and 55-13767.
  • No. 57-164123 Japanese Patent Publication No. 3-2450, Japanese Patent Application Laid-Open No. 2005-213446, No. 2005-306891, International Publication No. WO 2007-040143, US Pat. No. 3,632,557, No. 4,345,053,
  • the ones proposed in the publications such as 4,960,844 can be listed.
  • the above polyoxyalkylene polymers having a crosslinkable silicon group may be used alone or in combination of two or more.
  • the saturated hydrocarbon polymer is a polymer that does not substantially contain a carbon-carbon unsaturated bond other than an aromatic ring, and the polymer constituting the skeleton thereof is (1) ethylene, propylene, 1-butene, isobutylene, etc.
  • Diene compounds such as butadiene and isoprene are homopolymerized or copolymerized with the above olefin compounds. After that, it can be obtained by a method such as hydrogenation.
  • isobutylene polymers and hydrogenated polybutadiene polymers are easy to introduce functional groups at the terminals, control the molecular weight, and the number of terminal functional groups. Therefore, an isobutylene polymer is particularly preferable.
  • Those whose main chain skeleton is a saturated hydrocarbon polymer have characteristics of excellent heat resistance, weather resistance, durability, and moisture barrier properties.
  • all of the monomer units may be formed from isobutylene units, or may be a copolymer with other monomers, but the repeating unit derived from isobutylene is 50 from the viewpoint of rubber properties. Those containing at least mass% are preferred, those containing at least 80 mass% are more preferred, and those containing from 90 to 99 mass% are particularly preferred.
  • Examples of the method for producing a saturated hydrocarbon polymer having a crosslinkable silicon group include, for example, JP-B-4-69659, JP-B-7-108928, JP-A-62-254149, JP-A-62-2904, Although described in each specification of Kaihei 1-197509, Japanese Patent Publication No. 2539445, Japanese Patent Publication No. 2873395, and Japanese Patent Application Laid-Open No. 7-53882, it is not particularly limited thereto.
  • the above saturated hydrocarbon polymer having a crosslinkable silicon group may be used alone or in combination of two or more.
  • the (meth) acrylic acid ester monomer constituting the main chain of the (meth) acrylic acid ester polymer is not particularly limited, and various types can be used. Examples include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, Isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-heptyl (meth) acrylate, N-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth)
  • the following vinyl monomers can be copolymerized together with the (meth) acrylic acid ester monomer.
  • the vinyl monomers include styrene monomers such as styrene, vinyl toluene, ⁇ -methyl styrene, chlorostyrene, styrene sulfonic acid, and salts thereof; fluorine-containing vinyl monomers such as perfluoroethylene, perfluoropropylene, and vinylidene fluoride.
  • Silicon-containing vinyl monomers such as vinyltrimethoxysilane and vinyltriethoxysilane; maleic anhydride, maleic acid, monoalkyl and dialkyl esters of maleic acid; fumaric acid, monoalkyl and dialkyl esters of fumaric acid; maleimide, Methyl maleimide, ethyl maleimide, propyl maleimide, butyl maleimide, hexyl maleimide, octyl maleimide, dodecyl maleimide, stearyl maleimide, phenyl maleimide, cyclohexyl Maleimide monomers such as maleimide; Nitrile group-containing vinyl monomers such as acrylonitrile and methacrylonitrile; Amide group-containing vinyl monomers such as acrylamide and methacrylamide; Vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate, cinnamon Examples thereof include vinyl esters such as vinyl acid; alkenes such as ethylene and prop
  • the polymer which consists of a styrene-type monomer and a (meth) acrylic-acid type monomer from the physical property of a product etc. is preferable. More preferred is a (meth) acrylic polymer comprising an acrylate monomer and a methacrylic acid ester monomer, and particularly preferred is an acrylic polymer comprising an acrylate monomer.
  • a butyl acrylate monomer is more preferred from the viewpoint that physical properties such as low viscosity of the blend, low modulus of the cured product, high elongation, weather resistance, and heat resistance are required.
  • copolymers based on ethyl acrylate are more preferred.
  • This polymer mainly composed of ethyl acrylate is excellent in oil resistance but tends to be slightly inferior in low temperature characteristics (cold resistance). Therefore, in order to improve the low temperature characteristics, a part of ethyl acrylate is converted into butyl acrylate. It is also possible to replace it.
  • the ratio of butyl acrylate is increased, its good oil resistance is impaired. Therefore, for applications requiring oil resistance, the ratio is preferably 40% or less, and more preferably 30% or less. More preferably.
  • the ratio is preferably 40% or less. In accordance with various uses and required purposes, it is possible to obtain suitable polymers by changing the ratio in consideration of required physical properties such as oil resistance, heat resistance and low temperature characteristics.
  • examples of excellent balance of physical properties such as oil resistance, heat resistance, and low-temperature characteristics include ethyl acrylate / butyl acrylate / -2-methoxyethyl acrylate (40-50 / 20 by mass ratio). To 30/30 to 20).
  • these preferable monomers may be copolymerized with other monomers, and further block copolymerized, and in this case, it is preferable that these preferable monomers are contained in a mass ratio of 40% or more.
  • (meth) acrylic acid represents acrylic acid and / or methacrylic acid.
  • the method for obtaining the (meth) acrylic acid ester polymer is not particularly limited, and known polymerization methods (for example, JP-A-63-112642, JP-A-2007-230947, JP-A-2001-40037). And a synthesis method described in JP-A-2003-313397), and a radical polymerization method using a radical polymerization reaction is preferable.
  • the radical polymerization method a radical polymerization method (free radical polymerization method) in which a predetermined monomer unit is copolymerized using a polymerization initiator or a reactive silyl group is introduced at a controlled position such as a terminal. Possible controlled radical polymerization methods are mentioned.
  • a polymer obtained by a normal free radical polymerization method using an azo compound or a peroxide as a polymerization initiator has a problem that the molecular weight distribution is generally as large as 2 or more and the viscosity is increased. Yes. Therefore, in order to obtain a (meth) acrylate polymer having a narrow molecular weight distribution and a low viscosity and having a crosslinkable functional group at the molecular chain terminal at a high ratio. It is preferable to use a controlled radical polymerization method.
  • Examples of the controlled radical polymerization method include free radical polymerization method and living radical polymerization method using a chain transfer agent having a specific functional group, such as an addition-cleavage transfer reaction (RAFT) polymerization method, Living radical polymerization methods such as a radical polymerization method using a transition metal complex (Transition-Metal-Mediated Living Radical Polymerization) are more preferable.
  • a reaction using a thiol compound having a reactive silyl group and a reaction using a thiol compound having a reactive silyl group and a metallocene compound Japanese Patent Laid-Open No. 2001-40037 are also suitable.
  • the reaction is preferably carried out at 0 ° C. to 200 ° C. using a chain transfer agent and an initiator. More preferably, it is particularly preferably set within the range of 25 ° C to 150 ° C.
  • the reaction temperature is less than 0 ° C, The activity is low, the time required to achieve a sufficient polymerization rate is lengthened, and the efficiency is poor.
  • the reaction time can be appropriately set in consideration of the polymerization rate, molecular weight, etc.
  • the reaction time is usually 1 to 144 hours under the above conditions, preferably It is preferable to set within the range of 2 to 8 hours.
  • chain transfer agent known chain transfer agents can be widely used and are not particularly limited.
  • a thiol compound is preferable, and a thiol compound having a reactive silyl group is more preferable.
  • the chain transfer agent can be appropriately set in consideration of molecular weight, molecular weight distribution, etc., but can be used in a normal amount, specifically, 100 mol parts of a polymerizable unsaturated compound to be polymerized.
  • the amount is usually 0.001 to 30 mol parts, preferably 0.01 to 20 mol parts.
  • the initiator is not particularly limited, and examples thereof include an azo initiator, a peroxide initiator, an ionic initiator, and a redox initiator. These may be used alone or in combination of two or more.
  • Examples of the azo initiator include 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) (V-70, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis. (2,4-dimethylvaleronitrile) (V-65, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobisisobutyronitrile (V-60, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (2-methylbutyronitrile) (V-59, manufactured by Wako Pure Chemical Industries, Ltd.), 1,1′-azobis (cyclohexane-1-carbonitrile) (V-40, Wako Pure) Yakuhin Kogyo Co., Ltd.), 1-[(1-cyano-1-methylethyl) azo] formamide (V-30, Wako Pure Chemical Industries, Ltd.), 2-phenylazo-4-methoxy-2,4 -Dimethyl-valeronitrile (V-19, manufactured by Wak
  • peroxide initiator examples include methyl ethyl ketone peroxide (Permec H, manufactured by NOF Corporation), cyclohexanone peroxide species (Perhexa H, manufactured by NOF Corporation), methylcyclohexanone peroxide (Perhexa Q).
  • Peroxydicarbonates, ⁇ , ⁇ '-bis (neodecanoylperoxy) diisopropylbenzene (Nyper ND-R, (Manufactured by NOF Corporation), cumyl peroxyneodecanoate (Park Mill ND-R, manufactured by NOF Corporation), 1,1,3,3-tetramethylbutylperoxyneodecanoate (perocta ND- R, manufactured by NOF Corporation), 1-cyclohexyl-1-methylethyl peroxyneodecanoate (percyclo ND-R, manufactured by NOF Corporation), t-hexylperoxyneodecanoate (perhexyl ND) -R, manufactured by NOF Corporation, t-butyl peroxyneodecanoate (perbutyl ND-R, manufactured by NOF Corporation), t-hexyl peroxypivalate (perhexyl PV, NOF Corporation) ), T-butyl
  • Examples of the ionic initiator include 2,2′-azobis [2- (phenylamidino) propane] dihydrochloride (VA-545, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis ⁇ 2 -[N- (4-chlorophenyl) amidino] propane ⁇ dihydrochloride (VA-546, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis ⁇ 2- [N- (4-hydroxyphenyl) amidino] Propane ⁇ dihydrochloride (VA-548, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis [2- (N-benzylamidino) propane] dihydrochloride (VA-552, Wako Pure Chemical Industries, Ltd.) 2,2′-azobis [2- (N-allylamidino) propane] dihydrochloride (VA-553, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (2-amidino) Lopan) dihydrochloride (VA-50,
  • Such redox initiators include, for example, systems based on organic peroxides and tertiary amines, such as systems based on benzoyl peroxide and dimethylaniline; and systems based on organic hydroperoxides and transition metals, such as cumene hydroperoxide. And systems based on cobalt naphthate.
  • the initiator can be appropriately set in consideration of molecular weight, molecular weight distribution, etc., but can be used in a normal amount, specifically, in 100 mol parts of the polymerizable unsaturated compound to be polymerized. On the other hand, it is usually used in an amount of 0.001 to 30 mol parts, preferably 0.01 to 20 mol parts.
  • the reaction is preferably carried out at 0 ° C. to 200 ° C. using a chain transfer agent and an initiator. More preferably, it is particularly preferably set within the range of 25 ° C to 150 ° C. By setting the polymerization reaction temperature within the above range, the reaction can proceed stably without causing runaway.
  • the reaction time can be appropriately set in consideration of the polymerization rate, molecular weight, etc. For example, under the above conditions, the reaction time is usually 30 minutes to 144. The time is preferably set within the range of 1 to 24 hours.
  • chain transfer agent examples include benzoyl-1-pyrrolecarbodithioate, benzoyldithiobenzoate, cyanoisopropyldithiobenzoate, cumyldithiobenzoate, methoxycarbonylphenylmethyldithiobenzoate, cyanobenzyldithiobenzoate, 1-phenylethyldithiobenzoate T-butyldithiobenzoate S- (thiobenzyl) thioglycolyl acid, 1-phenylethylphenyldithiobenzoate, 3-benzylsulfanylthiocarbonylsulfanyl-propionic acid, 2- (benzylsulfanylthiocarbonylsulfanyl) ethanol, 3-benzylsulfanylthio Carbonylsulfanylpropionic acid, S- (1-ethoxycarbonylethyl) O-ethylxanthate,
  • the chain transfer agent can be appropriately set in consideration of molecular weight, molecular weight distribution, etc., but can be used in a normal amount, specifically, 100 mol parts of a polymerizable unsaturated compound to be polymerized.
  • the amount is usually 0.001 to 30 mol parts, preferably 0.01 to 20 mol parts.
  • the initiator is not particularly limited, and examples thereof include an azo initiator, a peroxide initiator, and an ionic initiator. These may be used alone or in combination of two or more.
  • Examples of the azo initiator include 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) (V-70, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis. (2,4-dimethylvaleronitrile) (V-65, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobisisobutyronitrile (V-60, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (2-methylbutyronitrile) (V-59, manufactured by Wako Pure Chemical Industries, Ltd.), 1,1′-azobis (cyclohexane-1-carbonitrile) (V-40, Wako Pure) Yakuhin Kogyo Co., Ltd.), 1-[(1-cyano-1-methylethyl) azo] formamide (V-30, Wako Pure Chemical Industries, Ltd.), 2-phenylazo-4-methoxy-2,4 -Dimethyl-valeronitrile (V-19, manufactured by Wak
  • peroxide initiator examples include methyl ethyl ketone peroxide (Permec H, manufactured by NOF Corporation), cyclohexanone peroxide species (Perhexa H, manufactured by NOF Corporation), methylcyclohexanone peroxide (Perhexa Q).
  • Peroxydicarbonates, ⁇ , ⁇ '-bis (neodecanoylperoxy) diisopropylbenzene (Nyper ND-R, (Manufactured by NOF Corporation), cumyl peroxyneodecanoate (Park Mill ND-R, manufactured by NOF Corporation), 1,1,3,3-tetramethylbutylperoxyneodecanoate (perocta ND- R, manufactured by NOF Corporation), 1-cyclohexyl-1-methylethyl peroxyneodecanoate (percyclo ND-R, manufactured by NOF Corporation), t-hexylperoxyneodecanoate (perhexyl ND) -R, manufactured by NOF Corporation, t-butyl peroxyneodecanoate (perbutyl ND-R, manufactured by NOF Corporation), t-hexyl peroxypivalate (perhexyl PV, NOF Corporation) ), T-butyl
  • Examples of the ionic initiator include 2,2′-azobis [2- (phenylamidino) propane] dihydrochloride (VA-545, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis ⁇ 2 -[N- (4-chlorophenyl) amidino] propane ⁇ dihydrochloride (VA-546, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis ⁇ 2- [N- (4-hydroxyphenyl) amidino] Propane ⁇ dihydrochloride (VA-548, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis [2- (N-benzylamidino) propane] dihydrochloride (VA-552, Wako Pure Chemical Industries, Ltd.) 2,2′-azobis [2- (N-allylamidino) propane] dihydrochloride (VA-553, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (2-amidino) Lopan) dihydrochloride (VA-50,
  • the initiator can be appropriately set in consideration of molecular weight, molecular weight distribution, etc., but can be used in a normal amount, specifically, in 100 mol parts of the polymerizable unsaturated compound to be polymerized. On the other hand, it is usually used in an amount of 0.001 to 30 mol parts, preferably 0.01 to 20 mol parts.
  • ⁇ Polymerization method using a thiol compound having a reactive silyl group and a metallocene compound It is preferable to use a metallocene compound as the metal catalyst, and further to react at 0 ° C. to 150 ° C. using a thiol compound having at least one reactive silyl group in the molecule. More preferably, it is particularly preferably set within the range of 25 ° C to 120 ° C. By setting the polymerization reaction temperature within the above range, the reaction can proceed stably without causing runaway.
  • the reaction time can be appropriately set in consideration of the polymerization rate, molecular weight, etc. For example, under the above conditions, the reaction time is usually 1 to 12 hours, preferably 2 It is preferable to set within a range of up to 8 hours.
  • the metallocene compound is not particularly limited.
  • the metallocene compound can be used in a usual catalytic amount. Specifically, it is usually 0.1 to 0.00001 mol part, preferably 100 to 100 mol part of the polymerizable unsaturated compound to be polymerized, preferably Used in an amount of 0.0001-0.00005 mol parts.
  • the thiol compound having a reactive silyl group is not particularly limited.
  • the amount of the thiol compound having a reactive silyl group can be appropriately set in consideration of the molecular weight of the polymer to be obtained, the polymerization rate, etc., but the reaction proceeds smoothly and does not run away.
  • the metallocene compound and the thiol compound having a reactive silyl group are usually used in a molar ratio in the range of 100: 1 to 1: 50000, preferably in a molar ratio of 10: 1 to 1: 10000.
  • ⁇ Radical polymerization using transition metal complex When a radical polymerization method using a transition metal complex is used, it is preferable to perform the reaction at 0 ° C. to 200 ° C. using a transition metal complex, an organic halide and / or a ligand. More preferably, it is particularly preferably set within the range of 25 ° C to 150 ° C. By setting the polymerization reaction temperature within the above range, the reaction can proceed stably without causing runaway.
  • the reaction time can be appropriately set in consideration of the polymerization rate, molecular weight, etc. For example, under the above conditions, the reaction time is usually 30 minutes to 144. The time is preferably set within the range of 1 to 24 hours.
  • transition metal complex it does not specifically limit as said transition metal complex, For example, what is described in WO97 / 18247 can be utilized. Among these, a complex of zero-valent copper, monovalent copper, divalent ruthenium, divalent iron, or divalent nickel is preferable. Of these, a copper complex is preferable. Specific examples of monovalent copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous perchlorate, etc. is there.
  • cuprous chloride cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous perchlorate, if necessary, zero-valent copper, cuprous chloride Dicopper, cupric bromide, and cupric iodide can also be used.
  • a tristriphenylphosphine complex of divalent ruthenium chloride (RuCl 2 (PPh 3 ) 3 ) is also suitable as a catalyst.
  • ruthenium compound is used as a catalyst, an aluminum alkoxide is added as an activator.
  • a divalent iron bistriphenylphosphine complex FeCl 2 (PPh 3 ) 2
  • a divalent nickel bistriphenylphosphine complex NiCl 2 (PPh 3 ) 2
  • a divalent nickel bistributylphosphine complex NiBr 2 (PBu 3 ) 2
  • the ligand described in WO97 / 18247 can be used as the ligand.
  • amine-based ligands are preferable, and bipyridyl compounds such as 2,2′-bipyridyl and its derivatives, 1,10-phenanthroline and its derivatives, hexamethyltriethylenetetraamine, bispicolylamine , Ligands of aliphatic amines such as trialkylamine, tetramethylethylenediamine, pentamethyldiethylenetriamine, and hexamethyl (2-aminoethyl) amine.
  • polyamine compounds particularly aliphatic polyamines such as pentamethyldiethylenetriamine and hexamethyl (2-aminoethyl) amine are preferred.
  • polyamine compound particularly aliphatic polyamines such as pentamethyldiethylenetriamine and hexamethyl (2-aminoethyl) amine are preferred.
  • these ligands when using a polyamine compound, a pyridine-type compound, or an aliphatic amine compound as a ligand in the case of using a copper compound as a catalyst, these ligands must have three or more amino groups. Is preferred.
  • the amino group in the present invention represents a group having a nitrogen atom-carbon atom bond, and among these, a group in which the nitrogen atom is bonded only to a carbon atom and / or a hydrogen atom is preferable.
  • the metallocene compounds listed above can also be used.
  • the amount of the ligand as described above is determined from the number of coordination sites of the transition metal and the number of groups coordinated by the ligand under the conditions of normal atom transfer radical polymerization, so that they are almost equal. Is set to For example, the amount of 2,2′-bipyridyl and its derivatives added to CuBr is usually twice as much as the molar ratio, and in the case of pentamethyldiethylenetriamine, it is once as large as the molar ratio.
  • the metal atom is excessive with respect to the ligand. Is preferred.
  • the ratio between the coordination position and the coordinating group is preferably 1.2 times or more, more preferably 1.4 times or more, particularly preferably 1.6 times or more, and particularly preferably 2 times or more. It is.
  • an organic halide particularly an organic halide having a highly reactive carbon-halogen bond (for example, a carbonyl compound having a halogen at the ⁇ -position or a compound having a halogen at the benzyl-position) or a sulfonyl halide is used. Used.
  • Aluminum radical chelates such as triethoxyaluminum, tripropoxyaluminum, triisopropoxyaluminum, tri-n-butoxyaluminum, tri-t-butoxyaluminum, trisec-butoxyaluminum and dioctyltin in radical polymerization methods using transition metal complexes
  • divalent tin compounds such as diethylhexyltin and dibutyltin, and organic substances such as glucose and ascorbic acid can be used as additives for activating the polymerization.
  • the polymerization can be carried out without solvent or in various solvents.
  • the solvent include hydrocarbon solvents such as benzene, xylene and toluene, ether solvents such as diethyl ether and tetrahydrofuran, halogenated hydrocarbon solvents such as methylene chloride and chloroform, acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • Ketone solvents such as methanol, ethanol, propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol, nitrile solvents such as acetonitrile, propionitrile, benzonitrile, ethyl acetate, butyl acetate, etc.
  • Polyoxyalkylene polymers such as ester solvents, carbonate solvents such as ethylene carbonate and propylene carbonate, and the like can be mentioned, and these can be used alone or in admixture of two or more.
  • a subsequent degassing step or the like can be made unnecessary.
  • the above (meth) acrylic acid ester-based polymer having a crosslinkable silicon group may be used alone or in combination of two or more.
  • organic polymers having a crosslinkable silicon group may be used alone or in combination of two or more. Specifically, it comprises a polyoxyalkylene polymer having a crosslinkable silicon group, a saturated hydrocarbon polymer having a crosslinkable silicon group, and a (meth) acrylic acid ester polymer having a crosslinkable silicon group.
  • An organic polymer obtained by blending two or more selected from the group can also be used.
  • a method for producing an organic polymer obtained by blending a polyoxyalkylene polymer having a crosslinkable silicon group and a (meth) acrylic acid ester polymer having a crosslinkable silicon group is disclosed in JP-A-59-122541.
  • Japanese Laid-Open Patent Publication No. 63-112642 Japanese Laid-Open Patent Publication No. 6-172631, and Japanese Laid-Open Patent Publication No. 11-116763
  • the invention is not particularly limited thereto.
  • Preferable specific examples include a crosslinkable silicon group and a molecular chain substantially having the following general formula (9): —CH 2 —C (R 35 ) (COOR 36 ) — (9) (Wherein R 35 represents a hydrogen atom or a methyl group, and R 36 represents an alkyl group having 1 to 8 carbon atoms) (meth) acrylic acid ester monomer having an alkyl group having 1 to 8 carbon atoms Unit and the following general formula (10): —CH 2 —C (R 35 ) (COOR 37 ) — (10) (Wherein R 35 is the same as described above, and R 37 represents an alkyl group having 10 or more carbon atoms) and is a copolymer comprising a (meth) acrylic acid ester monomer unit having an alkyl group having 10 or more carbon atoms.
  • a polymer is blended with a polyoxyalkylene polymer having a crosslinkable silicon group.
  • R 36 in the general formula (9) is, for example, a methyl group, an ethyl group, a propyl group, an n-butyl group, a t-butyl group, a 2-ethylhexyl group, etc., having 1 to 8, preferably 1 to 4, More preferred are 1 to 2 alkyl groups.
  • the alkyl group of R 36 may alone, or may be a mixture of two or more.
  • R 37 in the general formula (10) is, for example, a long-chain alkyl having 10 or more carbon atoms such as lauryl group, tridecyl group, cetyl group, stearyl group, behenyl group, etc., usually 10-30, preferably 10-20. Group.
  • the alkyl group for R 37 is the R 36, alone may be, or may be a mixture of two or more.
  • the molecular chain of the (meth) acrylic acid ester copolymer is substantially composed of monomer units of the formula (9) and the formula (10), and the term “substantially” here means the copolymer. It means that the total of the monomer units of the formula (9) and the formula (10) present therein exceeds 50% by mass. The total of the monomer units of the formula (9) and the formula (10) is preferably 70% by mass or more.
  • the abundance ratio of the monomer unit of formula (9) and the monomer unit of formula (10) is preferably 95: 5 to 40:60, more preferably 90:10 to 60:40, in terms of mass ratio.
  • Examples of monomer units other than the formulas (9) and (10) that may be contained in the copolymer include ⁇ such as acrylic acid and methacrylic acid. , ⁇ -unsaturated carboxylic acids; amide groups such as acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, epoxy groups such as glycidyl acrylate, glycidyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, aminoethyl vinyl ether, etc. And other monomer units derived from acrylonitrile, styrene, ⁇ -methylstyrene, alkyl vinyl ether, vinyl chloride, vinyl acetate, vinyl propionate, ethylene and the like.
  • crosslinkable silicon group used in a method for producing an organic polymer obtained by blending a polyoxyalkylene polymer having a crosslinkable silicon group and a (meth) acrylic acid ester polymer having a crosslinkable silicon group (meta )
  • acrylate polymer include, for example, (a1) a methyl (meth) acrylate monomer unit as disclosed in JP-A-2008-44975, and (a2) An acrylic polymer having a crosslinkable silicon group containing a (meth) acrylic acid alkyl ester monomer unit having an alkyl group having 8 carbon atoms.
  • the molecular chain of the acrylic copolymer preferably contains a total of 50% by mass or more of the monomer unit (a1) and the monomer unit (a2). It is more preferable that the total of the monomer units is 70% by mass or more.
  • the acrylic copolymer may contain monomer units other than (a1) and (a2). As the monomer unit other than (a1) and (a2), for example, the other monomer units described above in the description of the (meth) acrylic acid ester-based copolymer can be used in the same manner.
  • the number average molecular weight of the acrylic copolymer is preferably 600 to 5000, more preferably 1000 to 4500. By setting the number average molecular weight within this range, compatibility with the polyoxyalkylene polymer having a crosslinkable silicon group can be improved.
  • the acrylic copolymer is preferably used in an amount of 5 to 900 parts by mass with respect to 100 parts by mass of the polyoxyalkylene polymer having a crosslinkable silicon group. These acrylic copolymers may be used alone or in combination of two or more.
  • a method for producing an organic polymer obtained by blending a (meth) acrylic acid ester-based copolymer having a crosslinkable silicon group, in the presence of an organic polymer having a crosslinkable silicon group (A method of polymerizing a meth) acrylate monomer can be used. This production method is specifically disclosed in JP-A-59-78223, JP-A-59-168014, JP-A-60-228516, JP-A-60-228517, etc. It is not limited to these.
  • a saturated hydrocarbon polymer having a crosslinkable silicon group and / or a crosslink with respect to 100 parts by mass of the polyoxyalkylene polymer having a crosslinkable silicon group is preferably used in an amount of 10 to 200 parts by weight, more preferably 20 to 80 parts by weight.
  • the curable composition of the present invention uses (B) an aging curing catalyst as a curing catalyst, and the (B) aging curing catalyst comprises (C) the epoxysilane compound represented by the formula (1) and the above A silane compound obtained by reacting an aminosilane compound represented by the formula (2), (D) a titanium chelate represented by the formula (3), and a titanium chelate represented by the formula (4).
  • One or more titanium catalysts are mixed at a mixing ratio of 0.1 to 30 moles of the (C) silane compound with respect to 1 mole of the (D) titanium catalyst and aged at a reaction temperature of 30 to 100 ° C. Is an aging curing catalyst.
  • the (C) silane compound used for the (B) aging curing catalyst is a silane compound obtained by reacting an epoxysilane compound represented by the following formula (1) with an aminosilane compound represented by the following formula (2). .
  • R 1 to R 3 are each a hydrogen atom or an alkyl group, preferably a hydrogen atom, a methyl group, an ethyl group, or a propyl group, and more preferably a hydrogen atom.
  • R 4 is an alkylene group or an alkyleneoxyalkylene group, and is a methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, methyleneoxyethylene group, methyleneoxypropylene group, methyleneoxybutylene.
  • R 5 is a monovalent hydrocarbon group, preferably an alkyl group such as a methyl group, an ethyl group or a propyl group; an alkenyl group such as a vinyl group, an allyl group or a butenyl group; an aryl group such as a phenyl group or a tolyl group; Groups are more preferred.
  • R 5 may be the same or different.
  • R 6 is an alkyl group, preferably a methyl group, an ethyl group, or a propyl group, and more preferably a methyl group or an ethyl group. When a plurality of R 6 are present, they may be the same or different. a is 0, 1 or 2, and 0 is preferable.
  • R 7 to R 12 are each a hydrogen atom or an alkyl group, preferably a hydrogen atom, a methyl group, an ethyl group, or a propyl group, and more preferably a hydrogen atom.
  • R 13 is a monovalent hydrocarbon group, preferably an alkyl group or an alkoxy group, more preferably a methyl group, an ethyl group, a propyl group, a methoxy group, an ethoxy group, or a propoxy group, and even more preferably a methoxy group or an ethoxy group.
  • R 14 is an alkyl group, preferably a methyl group, an ethyl group, or a propyl group, and more preferably a methyl group or an ethyl group.
  • b is 0 or 1.
  • (3-b) R 14 may be the same or different.
  • epoxysilane compound examples include 4-oxiranylbutyltrimethoxysilane, 8-oxiranyloctyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Glycidoxypropyltriethoxysilane and the like.
  • aminosilane compound examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, and the like.
  • the reaction condition between the epoxysilane compound and the aminosilane compound is that the primary amino group of the aminosilane compound reacts with the epoxysilane compound, the primary amino group becomes a secondary amino group or a tertiary amino group, What is necessary is just to make it react so that a primary amino group may not remain
  • the aminosilane compound and the epoxysilane compound are mixed in the presence or absence of a solvent, and 25 ° C to 100 ° C, preferably 30 ° C to 90 ° C, more preferably 40 ° C. It is preferable to carry out the reaction at a reaction temperature of from 0 ° C to 80 ° C.
  • reaction temperature By setting the reaction temperature within the above range, the reaction can proceed stably without causing runaway.
  • the reaction temperature is less than 25 ° C., the activity is low, the time required to achieve a sufficient reaction is lengthened, and the efficiency is poor.
  • the reaction time can be appropriately set in consideration of the reaction temperature and the like. For example, under the above conditions, the reaction time is usually set in the range of 1 to 336 hours, preferably 24 to 72 hours. Is preferred.
  • the reaction ratio (molar ratio) between the epoxysilane compound and the aminosilane compound is preferably such that the epoxysilane compound is reacted in an amount of 1.5 to 10 moles with respect to 1 mole of the aminosilane compound. Is more preferable, and 1.7 to 2.4 mol is more preferable.
  • the epoxy silane compound and the amino silane compound are heated and reacted at a reaction temperature of preferably 40 ° C. or higher, more preferably 40 to 100 ° C., and still more preferably 40 to 80 ° C. Is cleaved and cyclized by an alcohol exchange reaction between the hydroxyl group produced by this reaction and the alkoxy group in the aminosilane compound, whereby a carbacyltolane derivative represented by the following formula (11) can be obtained.
  • the carbacyltolane derivative represented by the following formula (11) is a compound having a peak from ⁇ 60 ppm to ⁇ 70 ppm in 29 Si-NMR.
  • R 1 to R 6 and a are the same as in Formula (1)
  • R 7 to R 12 are the same as in Formula (2)
  • b in Formula (2) is When 0, R 15 is the same as OR 14 in the formula (2), and when b in the formula (2) is 1, R 15 is the same as R 13 in the formula (2).
  • the alkoxy group bonded to the silicon atom may be partially substituted by an alcohol exchange reaction.
  • the silicon atom-bonded alkoxy group of the raw material and the silicon atom-bonded alkoxy group in the carbacyltran derivative generated by the reaction May not be the same.
  • the (D) titanium catalyst used in the (B) aging curing catalyst is at least one selected from the group consisting of a titanium chelate represented by the following formula (3) and a titanium chelate represented by the following formula (4). is there.
  • n R 21 s are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms
  • 4-n R 22 s are each independently a hydrogen atom or A substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms
  • 4-n R 23 and 4-n R 24 are each independently substituted or unsubstituted C 1-20 carbon atoms.
  • a hydrocarbon group and n is 0, 1, 2 or 3;
  • R 25 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms
  • the two R 26 are independently a hydrogen atom or a substituted or unsubstituted group. It is a hydrocarbon group having 1 to 20 carbon atoms
  • two R 27 and two R 28 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • titanium chelate represented by the formula (3) or the formula (4) examples include titanium dimethoxide bis (ethyl acetoacetate), titanium diethoxide bis (ethyl acetoacetate), and titanium diisopropoxide bis (ethyl).
  • titanium diisopropoxide bis (methyl acetoacetate), titanium diisopropoxide bis (t-butyl acetoacetate), titanium diisopropoxide bis (methyl-3-oxo-4,4-dimethylhexano) Eth), titanium diisopropoxide bis (ethyl-3-oxo-4,4,4-trifluorobutanoate), titanium di-n-butoxide bis (ethyl acetoacetate), titanium diisobutoxide bis (ethyl acetoacetate) ) Titanium di-t-butoxide bis (ethyl acetoacetate), Titanium di-2-ethylhexoxide bis (ethyl acetoacetate), Titanium bis (1-methoxy-2-propoxide) bis (ethyl acetoacetate), Titanium bis (3-oxo-2-butoxide) bis (ethylacetoacetate), titanium bis (3-diethylaminopropoxide) bis
  • titanium diethoxide bis (ethyl acetoacetate), titanium diisopropoxide bis (ethyl acetoacetate), titanium dibutoxide bis (ethyl acetoacetate) and the like, titanium diisopropoxide bis (ethyl acetoacetate) ) Is more preferable.
  • Examples of the chelating reagent capable of forming the chelate ligand of the titanium chelate include, for example, methyl acetoacetate, ethyl acetoacetate, t-butyl acetoacetate, allyl acetoacetate, acetoacetate (2-methacryloxyethyl), 3-oxo Examples include ⁇ -ketoesters such as methyl -4,4-dimethylhexanoate and ethyl 3-oxo-4,4,4-trifluorobutanoate, preferably methyl acetoacetate and ethyl acetoacetate, more preferably ethyl acetoacetate . When two or more chelate ligands are present, each chelate ligand may be the same or different.
  • the (B) aging curing catalyst is prepared by previously mixing the (C) silane compound in a mixing ratio of 0.1 to 30 mol with respect to 1 mol of the (D) titanium catalyst, and aging at a reaction temperature of 30 to 100 ° C.
  • This is an aging curing catalyst.
  • aging means transesterification of a part of the alkoxy group of the (D) titanium catalyst and a part of the alkoxy group of the (C) silane compound and / or moisture contained in the air ( C) It means that a part of the silane compound is hydrolyzed with the (D) titanium catalyst to be oligomerized. It is preferable to reach the state of chemical equilibrium by the aging, or the state after reaching the state of chemical equilibrium.
  • the mixing ratio of the (D) titanium catalyst and the (C) silane compound is in the range of 0.1 to 30 mol of the (C) silane compound with respect to 1 mol of the (D) titanium catalyst.
  • (D) In the range of 0.5 to 5.0 moles of the (C) silane compound relative to 1 mole of the titanium catalyst, more preferably, the (C) silane compound 0 relative to 1 mole of the (D) titanium catalyst. The range is from 5 to 3.0 mol.
  • the (D) titanium catalyst and the (C) silane compound may be used singly or in combination of two or more.
  • the reaction temperature condition for aging the mixture of the (D) titanium catalyst and the (C) silane compound is such that the (D) titanium catalyst and the (C) silane compound are reacted at 30 to 100 ° C. 30 ° C. to 90 ° C. is preferable, and 40 ° C. to 80 ° C. is more preferable.
  • the reaction temperature can proceed stably without causing runaway.
  • the reaction temperature is less than 30 ° C., the activity is low, the time required to achieve a sufficient reaction is lengthened, and the efficiency is poor.
  • the reaction time can be appropriately set in consideration of the reaction temperature and the like, but it is desirable to carry out the reaction until at least an equilibrium state is reached.
  • the reaction time is usually 1 to 336 hours under the above conditions, preferably Is preferably set within a range of 72 to 168 hours.
  • the blending ratio of the (B) aging curing catalyst is not particularly limited, but it is preferable to blend 0.5 to 30 parts by mass of the (B) aging curing catalyst with respect to 100 parts by mass of the (A) organic polymer. More preferably, 5.0 to 20.0 parts by mass is blended.
  • the (B) aging curing catalyst may be used alone or in combination of two or more.
  • the curable composition of the present invention uses the above-mentioned (B) aging curing catalyst as a curing catalyst, but may be used in combination with a non-aging curing catalyst or other aging curing catalyst that has not been aged.
  • a titanium chelate compound in combination as a non-aging curing catalyst.
  • the rising adhesiveness can be improved by using an aging curing catalyst and a titanium chelate compound which has not been aged.
  • the titanium chelate compound is not particularly limited, and a known titanium chelate compound can be used, and is selected from the group consisting of a titanium chelate represented by the formula (3) and a titanium chelate represented by the formula (4).
  • One or more titanium catalysts are preferred.
  • other titanium chelate compounds such as titanium tetraacetylacetonate may be used.
  • the blending ratio of the titanium chelate compound used as the non-aged curing catalyst is not particularly limited, but 1 to 1 of the titanium chelate compound used as the non-aged curing catalyst with respect to 100 parts by mass of the (B) matured curing catalyst. It is preferable to mix 100 parts by mass, and it is more preferable to add 10 to 20 parts by mass.
  • the titanium chelate compounds may be used alone or in combination of two or more.
  • the curable composition of the present invention can be used in combination with other curing catalysts to the extent that the effects of the present invention are not reduced.
  • other curing catalysts include organometallic compounds and amines, and it is particularly preferable to use a silanol condensation catalyst.
  • the silanol condensation catalyst include stannous octoate, dibutyltin dioctoate, dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, dibutyltin diacetylacetonate, dibutyltin oxide, dibutyltin bistriethoxysilicate, dibutyltin distearate.
  • Titanates such as tetrabutyl titanate and tetrapropyl titanate; aluminum trisacetylacetonate, aluminum trisethylate
  • Organoaluminum compounds such as acetoacetate and diisopropoxyaluminum ethylacetoacetate
  • Chelate compounds such as zirconium tetraacetylacetonate
  • Leaded organic acids such as lead octylate and lead naphthenate
  • Bismuth octylate, bismuth neodecanoate and rosin Examples include organic acid bismuth such as bismuth acid; other acidic catalysts and basic catalysts known as silanol condensation catalysts.
  • the toxicity of the resulting curable composition may increase depending on the amount of the organotin compound added.
  • the curable composition of the present invention further includes (E) a silane compound having one hydrolyzable silicon group and one primary amino group in one molecule. (E) By adding a silane compound, storage stability and tensile physical properties can be further improved.
  • the (E) silane compound known silane compounds having one hydrolyzable silicon group and one primary amino group in one molecule can be widely used.
  • a known hydrolyzable group excluding a primary amino group can be used as the hydrolyzable group bonded to the silicon atom, but an alkoxyl group is preferred.
  • the hydrolyzable silicon group is preferably a trialkoxysilyl group or a dialkoxysilyl group, and more preferably a trialkoxysilyl group.
  • (E) silane compound a compound represented by the following formula (12) is more preferably used.
  • R 41 is a methyl group or an ethyl group, and when a plurality of R 41 are present, they may be the same or different.
  • R 42 is a methyl group or an ethyl group, and when a plurality of R 42 are present, they may be the same or different.
  • R 43 is a hydrocarbon group having 1 to 10 carbon atoms. m is 2 or 3, and 3 is more preferable. n is 0 or 1.
  • (E) silane compound examples include phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, triphenylmethoxysilane, 2-carboxyethylphenylbis (2-methoxyethoxy) silane, and N-phenyl.
  • -3-alkoxysilanes containing a phenyl group such as 3-aminopropyltrimethoxysilane, N-phenylaminomethyltrimethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidyl Alkoxysilanes containing epoxy groups such as sidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane; Socyanate propyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, 3-isocyanatopropylmethyldimethoxysilane, (isocyanatemethyl) trimethoxysilane
  • Examples of the compound represented by the formula (12) include dialkoxysilanes such as dimethyldimethoxysilane and dimethyldiethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and hexyltrimethoxysilane.
  • Alkyl trialkoxysilanes such as decyltrimethoxysilane; alkoxysilanes containing phenyl groups such as phenyltrimethoxysilane and phenyltriethoxysilane; vinyl-type unsaturated groups such as vinyltrimethoxysilane and vinyltriethoxysilane Alkoxysilanes; alkoxysilanes containing epoxy groups such as 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane, etc. Shishiran is more preferable.
  • the blending ratio of the (E) silane compound is not particularly limited, but it is preferable to blend 0.1 to 20 parts by weight of the (E) silane compound with respect to 100 parts by weight of the (A) organic polymer. It is more preferable to add 0.3 to 20 parts by mass, and it is even more preferable to add 0.5 to 10 parts by mass.
  • the (E) silane compound may be used alone or in combination of two or more.
  • the curable composition of the present invention preferably further contains (F) a filler.
  • cured material can be reinforced by mix
  • known fillers can be widely used and are not particularly limited.
  • calcium carbonate, fine powder silica and polymer powder are preferred, surface treated carbonic acid
  • One or more selected from the group consisting of calcium, amorphous silica having a particle size of 0.01 to 300 ⁇ m, and polymer powder having a particle size of 0.01 to 300 ⁇ m are more preferable.
  • glass beads silica beads, alumina beads, carbon beads, styrene beads, phenol beads, acrylic beads, porous silica, shirasu balloons, glass balloons, silica balloons, saran balloons, acrylic balloons, etc.
  • an acrylic balloon is more preferable from the viewpoint that the decrease in elongation after curing of the composition is small.
  • any of heavy calcium carbonate, light calcium carbonate, colloidal calcium carbonate, ground calcium carbonate and the like can be used, but colloidal calcium carbonate is more preferable. These calcium carbonates may be used alone or in combination of two or more.
  • the primary particle diameter of the calcium carbonate is preferably 0.5 ⁇ m or less, more preferably 0.01 to 0.1 ⁇ m. By using such fine powdered calcium carbonate having a small particle diameter, thixotropy can be imparted to the curable composition.
  • surface-treated calcium carbonate is preferable from the viewpoint of imparting thixotropy and reinforcing effect on a cured product (cured film), and surface-treated fine calcium carbonate is more preferable.
  • surface-treated fine powdered calcium carbonate is used in combination with other calcium carbonates such as heavy calcium carbonate that has not been surface-treated and has a large particle size, or surface-treated calcium carbonate with a large particle size. May be.
  • the ratio (mass ratio) between the surface-treated fine calcium carbonate and the other calcium carbonate is preferably 1: 9 to 9: 1. 3: 7 ⁇ 7: 3 is more preferred.
  • the surface treatment agent to be used is not particularly limited, and known surface treatment agents can be widely used.
  • the surface treatment agent include higher fatty acid compounds, resin acid compounds, aromatic carboxylic acid esters, anionic surfactants, cationic surfactants, nonionic surfactants, paraffin, and titanate couplings. And higher fatty acid compounds and paraffin are more preferable. These surface treatment agents may be used alone or in combination of two or more.
  • Examples of the higher fatty acid compounds include higher fatty acid alkali metal salts having 10 or more carbon atoms such as sodium stearate.
  • Examples of the resin acid compound include abietic acid, neoabietic acid, d-pimalic acid, id-pimalic acid, bodocarpic acid, benzoic acid, and cinnamic acid.
  • Examples of the aromatic carboxylic acid ester include phthalic acid octyl alcohol, butyl alcohol, isobutyl alcohol and the like, naphthic acid lower alcohol ester, rosin acid lower alcohol ester, and aromatic dicarboxylic acid or rosin acid malee.
  • Examples thereof include partially esterified products of aromatic polycarboxylic acids such as acid adducts, and different alcohol esterified products.
  • the anionic surfactant include a sulfate ester type such as sodium dodecyl sulfate, or a sulfonic acid type anionic surfactant such as sodium dodecylbenzene sulfonate, sodium lauryl sulfonate, and dodecyl benzene sulfonic acid. Is mentioned.
  • known surface-treated calcium carbonate can be widely used and is not particularly limited.
  • Vigot 15 manufactured by Shiroishi Calcium Co., Ltd., light carbonate surface-treated with fatty acid
  • Surface treatment light calcium carbonate such as calcium, primary particle diameter 0.15 ⁇ m
  • Vigot 10 manufactured by Shiroishi Calcium Co., Ltd., colloidal calcium carbonate surface treated with fatty acid, primary particle diameter 0.10 ⁇ m
  • white sinter flower DD Shiraishi calcium Colloidal calcium carbonate surface-treated with resin acid, primary particle size 0.05 ⁇ m
  • Carlex 300 manufactured by Maruo Calcium Co., Ltd., colloidal calcium carbonate surface-treated with fatty acid, primary particle size 0.
  • Neolite SS manufactured by Takehara Chemical Co., Ltd.
  • Neolite GP-20 manufactured by Takehara Chemical Industry Co., Ltd., colloidal calcium carbonate surface-treated with resin acid, average particle size 0.03 ⁇ m
  • P Korean Chemical Industry
  • Surface-treated colloidal calcium carbonate such as colloidal calcium carbonate surface-treated with fatty acid manufactured by Co., Ltd .
  • MC Coat P1 manufactured by Maruo Calcium Co., Ltd., heavy carbonate surface-treated with paraffin) Calcium, primary particle size 3.3 ⁇ m
  • AFF-95 manufactured by Pfematech Co., Ltd., heavy calcium carbonate surfaced with a cationic polymer, primary particle size 0.9 ⁇ m
  • AFF-Z manufactured by Pmatech
  • Surface treatment heavy such as heavy calcium carbonate surfaced with cationic polymer
  • the surface-treated calcium carbonate is preferably added in an amount of 0 to 500 parts by weight, more preferably 10 to 300 parts by weight, and more preferably 15 to 100 parts by weight with respect to 100 parts by weight of the (A) organic polymer. More preferably.
  • the said surface treatment calcium carbonate may be used by 1 type, and may be used in combination of 2 or more type. Moreover, you may use together the surface treatment calcium carbonate and the calcium carbonate which has not surface-treated.
  • the amorphous silica known amorphous silica can be widely used, and is not particularly limited.
  • the particle size is preferably 0.01 to 300 ⁇ m, more preferably 0.1 to 100 ⁇ m. 1 to 30 ⁇ m is more preferable.
  • the difference between the refractive index of the organic polymer (A) and the refractive index of the amorphous silica is 0.1 or less, the transparency can be further improved.
  • the difference between the refractive index of the organic polymer (A) and the refractive index of the amorphous silica is preferably 0.1 or less, more preferably 0.05 or less, and even more preferably 0.03 or less.
  • the amorphous silica is preferably blended in an amount of 0 to 500 parts by weight, more preferably 1 to 200 parts by weight, and more preferably 5 to 50 parts by weight with respect to 100 parts by weight of the (A) organic polymer. More preferably.
  • the amorphous silica may be used alone or in combination of two or more. In addition to amorphous silica having a particle size of 0.01 to 300 ⁇ m, amorphous silica or crystalline silica having a particle size different from the above may be used in combination.
  • the polymer powder known polymer powders can be widely used, and are not particularly limited.
  • the particle size is preferably 0.01 to 300 ⁇ m, more preferably 0.1 to 100 ⁇ m. 1 to 30 ⁇ m is more preferable.
  • the polymer powder for example, a monomer selected from the group consisting of (meth) acrylic acid ester, vinyl acetate, ethylene and vinyl chloride is polymerized alone, or the monomer and one or more vinyl monomers are used.
  • a polymer powder made from a polymer obtained by copolymerization of a polymer is preferably used, an acrylic polymer powder or a vinyl polymer powder is more preferred, and an acrylic polymer powder is further preferable.
  • the difference between the refractive index of the liquid phase component containing (A) the organic polymer as the main component and the refractive index of the polymer powder is 0.1.
  • it is preferably 0.05 or less, more preferably 0.03 or less.
  • the method for setting the difference between the refractive index of the liquid phase component containing (A) the organic polymer as the main component and the refractive index of the polymer powder to 0.1 or less is not particularly limited, but (1) high (A) a method of matching the refractive index of the liquid phase component containing an organic polymer as a main component with the refractive index of the molecular powder, and (2) (A) the refractive index of the polymer powder with the refractive index of the organic polymer. And the like.
  • (A) a method of adjusting a refractive index of a liquid phase component by blending a necessary amount of a compatible refractive index adjusting agent with a liquid phase component mainly composed of an organic polymer.
  • the refractive index of the organic polymer is about 1.46 to 1.48 and the refractive index of the polymer powder is higher, it is higher than (A) the organic polymer.
  • Refractive index adjusting agent having a refractive index ⁇ for example, epoxy resin [Example: Epicoat 828 (Bisphenol A, manufactured by Yuka Shell Epoxy Co., Ltd., refractive index 1.57)], petroleum resin [Example: FTR6100 (of C5 and C9 Copolymer, Mitsui Petrochemical Co., Ltd., refractive index 1.56)], terpene phenol resin [Example: Polystar T145 (Yasuhara Chemical Co., Ltd., refractive index 1.59)] ⁇
  • epoxy resin Example: Epicoat 828 (Bisphenol A, manufactured by Yuka Shell Epoxy Co., Ltd., refractive index 1.57)
  • petroleum resin Example: FTR6100 (of C5 and C9 Copolymer, Mitsui Petrochemical Co., Ltd., refractive index 1.56)
  • terpene phenol resin Example: Polystar T145 (Yasuhara Chemical Co., Ltd., refractive index 1.59)
  • Examples of the method (2) include a method of appropriately changing the monomer composition of the polymer powder.
  • the refractive index of the organic polymer (A) is about 1.46 to 1.48 and acrylic polymer powder is used as the polymer powder
  • the refractive index of the polymer powder is As a method for increasing the viscosity, for example, a monomer such as vinyl chloride [refractive index 1.53 (polymer)] and allylonitrile [refractive index 1.52 (polymer)] is used as a single monomer of (meth) acrylate.
  • the method of copolymerizing to a body is mentioned.
  • the method (E4) for reducing the refractive index of the polymer powder includes, for example, lauryl methacrylate [refractive index 1.44 (monomer)], allyl methacrylate [refractive index 1.44 (single Monomer)], and a monomer such as 2 (2-ethoxyethoxy) ethyl acrylate [refractive index of 1.43 (monomer)] is copolymerized with a meth) acrylate monomer.
  • the polymer powder is preferably blended in an amount of 0 to 500 parts by weight, more preferably 0.5 to 100 parts by weight, based on 100 parts by weight of the organic polymer (A). It is more preferable to blend.
  • the polymer powder may be used alone or in combination of two or more.
  • the blending ratio of the filler (F) is not particularly limited, but the filler (F) is added in an amount of 0 to 500 masses per 100 mass parts of the organic polymer (A). It is preferably blended in an amount of 2 to 250 parts by weight, more preferably 5 to 125 parts by weight.
  • the said (F) filler may be used by 1 type, and may be used in combination of 2 or more type.
  • the curable composition of the present invention preferably further contains (G) a diluent.
  • a diluent By blending a diluent, physical properties such as viscosity can be adjusted.
  • a diluent a well-known diluent can be widely used, and there is no restriction
  • ⁇ -olefin derivatives represented by the following formula (I), aromatic hydrocarbon solvents such as toluene and xylene, alcohols such as ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, and diacetone alcohol Solvents, ester solvents such as ethyl acetate, butyl acetate, amyl acetate and cellosolve, citrate solvents such as acetyl triethyl citrate, acetyl tributyl citrate and triethyl citrate, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone
  • aromatic hydrocarbon solvents such as toluene and xylene
  • alcohols such as ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, and
  • R 53 represents a hydrogen atom or a linear or branched alkyl group having 1 to 40 carbon atoms.
  • the flash point of the diluent (G) is not particularly limited, but considering the safety of the resulting curable composition, it is desirable that the flash point of the curable composition is high. Volatile substances from the curable composition Is preferably less. Therefore, the flash point of the (G) diluent is preferably 60 ° C. or higher, and more preferably 70 ° C. or higher. When two or more (G) diluents are mixed and used, the flash point of the mixed diluent is preferably 70 ° C. or higher. However, generally, a diluent having a high flash point tends to have a low dilution effect on the curable composition, and therefore, the flash point is preferably 250 ° C. or lower.
  • a saturated hydrocarbon solvent is preferable as the diluent, and normal paraffin and isoparaffin are more preferable.
  • Normal paraffin and isoparaffin preferably have 10 to 16 carbon atoms. Specifically, N-11 (normal paraffin, manufactured by JX Nippon Oil & Energy Corporation, carbon number 11, flash point 68 ° C.), N-12 (normal paraffin, manufactured by JX Nippon Oil & Energy Corporation, carbon number) 12, flash point 85 ° C.), IP solvent 2028 (isoparaffin, manufactured by Idemitsu Kosan Co., Ltd., carbon number 10 to 16, flash point 86 ° C.) and the like.
  • the blending ratio of the (G) diluent is not particularly limited, but it is preferable to blend 0 to 50 parts by mass of the (G) diluent with respect to 100 parts by mass of the (A) organic polymer. 1 to 30 parts by mass is more preferable, and 0.1 to 15 parts by mass is even more preferable.
  • the said (G) diluent may be used by 1 type, and may be used in combination of 2 or more type.
  • the curable composition of the present invention preferably further contains a metal hydroxide.
  • a flame retardance can be provided, workability
  • the metal hydroxide also has an effect of higher safety than other flame retardants such as halogen flame retardants.
  • a metal hydroxide and surface-treated calcium carbonate in combination, workability (thixotropic properties) can be further improved and flame retardancy can be imparted.
  • the metal hydroxide may be a metal hydroxide surface-treated with a surface treatment agent. Examples of the metal hydroxide include aluminum hydroxide and magnesium hydroxide, and aluminum hydroxide is more preferable.
  • the blending ratio of the metal hydroxide is not particularly limited, but 0 to 500 parts by weight of the metal hydroxide is preferably blended with respect to 100 parts by weight of the (A) organic polymer. More preferably, 5 to 125 parts by mass is added.
  • the said metal hydroxide may be used independently and may be used together 2 or more types. Moreover, you may use together another well-known flame retardant.
  • the curable composition of the present invention includes an ultraviolet absorber, an antioxidant, an anti-aging agent, an adhesiveness imparting agent, a physical property modifier, a plasticizer, a thixotropic agent, and a dehydration agent as necessary. You may mix substances such as additives (storage stability improvers), flame retardants, tackifiers, anti-sagging agents, colorants, radical polymerization initiators, and blend with other compatible polymers. Good.
  • the antioxidant is used to prevent oxidation of the curable composition to improve weather resistance and heat resistance, and examples thereof include hindered amine-based and hindered phenol-based antioxidants. It is done.
  • the hindered amine antioxidant include N, N ′, N ′′, N ′′ ′-tetrakis- (4,6-bis (butyl- (N-methyl-2,2,6,6-tetramethylpiperidine- 4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10-diamine, dibutylamine 1,3,5-triazine N, N'-bis- (2,2,6 , 6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine ⁇ N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate, poly [ ⁇ 6- (1, 1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4
  • hindered phenol-based antioxidants include penta Erythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], thiodiethylene-bis [3- (3,5-di-ter t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenylpropioamide), benzenepropanoic acid 3,5-bis (1,1-dimethylethyl) -4-hydroxy C7-C9 side chain alkyl ester, 2,4 -Dimethyl-6- (1-methylpentadecyl) phenol, diethyl [[3,5-bis (1,1-dimethylethyl
  • the ultraviolet absorber is used to improve the weather resistance by preventing photodegradation of the curable composition, for example, ultraviolet absorption of benzotriazole, triazine, benzophenone, benzoate, etc. Agents and the like.
  • the ultraviolet absorber include 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol and 2- (2H-benzotriazol-2-yl) -4,6- Di-tert-pentylphenol, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol, methyl 3- (3- (2H-benzotriazole-2) -Il) -5-tert-butyl-4-hydroxyphenyl) propionate / polyethylene glycol 300 reaction product, 2- (2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4 -Benzotriazole ultraviolet absorbers such as
  • the anti-aging agent is used for preventing heat deterioration of the curable composition and improving the heat resistance.
  • an anti-aging agent such as an amine-ketone type or an aromatic secondary amine type is used.
  • Antiaging agents, benzimidazole type antiaging agents, thiourea type antiaging agents, phosphorous acid type antiaging agents and the like can be mentioned.
  • amine-ketone-based anti-aging agent examples include 2,2,4-trimethyl-1,2-dihydroquinoline polymer, 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline.
  • amine-ketones such as a reaction product of diphenylamine and acetone, but are not limited thereto.
  • aromatic secondary amine-based antiaging agent examples include N-phenyl-1-naphthylamine, alkylated diphenylamine, octylated diphenylamine, 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, p- (P-toluenesulfonylamide) diphenylamine, N, N′-di-2-naphthyl-p-phenylenediamine, N, N′-diphenyl-p-phenylenediamine, N-phenyl-N′-isopropyl-p-phenylenediamine N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine, N-phenyl-N ′-(3-methacryloyloxy-2-hydroxypropyl) -p-phenylenediamine, etc. Secondary amines and the like can be mentioned, but the invention
  • benzimidazole antioxidant examples include benzimidazoles such as 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, zinc salt of 2-mercaptobenzimidazole, and the like, but are not limited thereto. is not.
  • thiourea antioxidant examples include, but are not limited to, thiourea such as 1,3-bis (dimethylaminopropyl) -2-thiourea and tributylthiourea.
  • Examples of the phosphorous acid-based antioxidant include, but are not limited to, a phosphorous acid-based material such as tris (nonylphenyl) phosphite.
  • the amount of the anti-aging agent is not particularly limited, but the anti-aging agent is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the (A) organic polymer. More preferably, it is used in the range of 0.2 to 5 parts by mass.
  • the physical property modifier is added for the purpose of improving physical properties of the curable composition such as tensile physical properties.
  • a silicon compound having one silanol group and one primary amino group in one molecule is preferably used.
  • the silicon compound include triphenylsilanol, trialkylsilanol, dialkylphenylsilanol, diphenylalkylsilanol and the like.
  • the plasticizer is added for the purpose of enhancing the stretched physical properties after curing or enabling low modulus.
  • the type of the plasticizer is not particularly limited.
  • phthalates such as dioctyl phthalate, dibutyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, diisoundecyl phthalate; dioctyl adipate, isodecyl succinate, sebacine Aliphatic dibasic acid esters such as dioctyl acid and dibutyl adipate; Glycol esters such as diethylene glycol dibenzoate, dipropylene glycol dibenzoate and pentaerythritol ester; Aliphatics such as butyl oleate and methyl acetylricinoleate Esters; Phosphate esters such as tricresyl phosphate, trioctyl phosphate, octyl diphenyl phosphat
  • triethylene glycol diethyl ether triethylene glycol ethyl methyl ether
  • triethylene glycol diethyl ether triethylene glycol diethyl ether
  • tetraethylene glycol 4 repeats such as diethyl ether, tetraethylene glycol ethyl methyl ether, tetraethylene glycol diethyl ether, etc.
  • Polyoxyethylene alkyl ethers such as polyoxyethylene dimethyl ether, which are repeated further; polystyrenes such as poly- ⁇ -methylstyrene and polystyrene; polybutadiene, butadiene-acrylonitrile copolymer, polychloroprene, polyisoprene, polybutene, water Hydrocarbon oligomers such as hydrogenated polybutadiene, hydrogenated polyisoprene and process oil; chlorinated paraffins; acrylics such as UP-1080 (manufactured by Toagosei Co., Ltd.) and UP-1061 (manufactured by Toagosei Co., Ltd.) Hydroxyl group-containing acrylic plasticizers such as UP-2000 (manufactured by Toagosei Co., Ltd.), UHE-2012 (manufactured by Toagosei Co., Ltd.); UC-3510 (manufactured by Toagosei Co
  • thixotropic agent examples include inorganic thixotropic agents such as colloidal silica and asbestos powder, organic thixotropic agents such as organic bentonite, modified polyester polyol, and fatty acid amide, hydrogenated castor oil derivative, fatty acid amide wax, and aluminum stearylate. And barium stearylate.
  • the dehydrating agent is added for the purpose of removing moisture during storage.
  • Examples of the dehydrating agent include zeolite, calcium oxide, magnesium oxide, and zinc oxide.
  • the flame retardant examples include phosphorus flame retardants such as red phosphorus and ammonium polyphosphate; metal oxide flame retardants such as antimony trioxide; bromine flame retardants; chlorine flame retardants and the like.
  • the curable composition of the present invention can be a one-component type or a two-component type as required, and can be suitably used as a one-component type.
  • the curable composition of the present invention can be cured at normal temperature by atmospheric moisture, and is suitably used as a normal temperature moisture-curable curable composition, but if necessary, curing is accelerated by heating as appropriate. You may let them.
  • the method for producing the curable composition of the present invention is not particularly limited.
  • the components (A) and (B) are blended in a predetermined amount, and other blended substances are blended as necessary, and deaerated and stirred. Can be manufactured.
  • the components (A), (B) and other compounding substances may be compounded to produce the curable composition of the present invention, and other compounding substances may be added before the aging step of the component (B). You may mix
  • component (B) When blending other compounding substances before the aging step of component (B), after obtaining a mixture containing (C) silane compound, (D) titanium catalyst and other compounding substances, the mixture may be aged. Well, after blending one of the (C) silane compound and (D) titanium catalyst with the other compounding material and performing an aging step as necessary, blend the other of (C) silane compound and (D) titanium catalyst And may be aged.
  • the component (E) is blended as another blending substance, there is no particular limitation on the blending order, but after obtaining a composition containing the components (B) and (E), the composition and the component (A) are blended. After obtaining a composition containing components (B) and (E), it is preferable to blend the remaining compounding substances.
  • the method for obtaining the composition containing the components (B) and (E) is not particularly limited, and the components (B) and (E) may be mixed, and as described above, the components before the aging step of the component (B) (E) may be blended.
  • the mixing ratio of the components (B) and (E) is not particularly limited, but the mixing ratio of the (D) titanium catalyst and the (E) silane compound is the (E) silane with respect to 1 mol of the (D) titanium catalyst.
  • the compound is preferably in the range of 0.1 to 30 mol, more preferably in the range of 0.5 to 5.0 mol, and still more preferably in the range of 0.5 to 3.0 mol.
  • (C) Silane compound, (D) titanium catalyst, and (E) silane compound may be used alone or in combination of two or more.
  • a curing catalyst obtained by aging a composition containing a titanium catalyst and (E) silane compound at a predetermined temperature is blended with the remaining compounding substances. More preferably.
  • the aging means transesterification of a part of the alkoxy group of the (D) titanium catalyst and a part of the alkoxy group of the (E) silane compound and / or the moisture contained in the air ( E) This means that a part of the silane compound is hydrolyzed with the titanium catalyst (D) and oligomerized. It is preferable to reach the state of chemical equilibrium by the aging.
  • the reaction temperature condition for aging the mixture containing the (D) titanium catalyst and the (E) silane compound is not particularly limited, but the (D) titanium catalyst and the (E) silane compound are heated at 30 ° C. to 100 ° C.
  • the reaction is preferably carried out, more preferably from 30 ° C to 90 ° C, and even more preferably from 40 ° C to 80 ° C.
  • the reaction time can be appropriately set in consideration of the reaction temperature and the like, but it is desirable to carry out the reaction until at least an equilibrium state is reached.
  • the reaction time is usually 1 to 336 hours under the above conditions, preferably Is preferably set within a range of 72 to 168 hours.
  • the aging step of the (D) titanium catalyst and (E) silane compound when the aging step of the (D) titanium catalyst and (E) silane compound is performed, the aging of the (C) silane compound and (D) titanium catalyst, and the (D) titanium catalyst and (E)
  • the order of aging of the silane compound is not limited, but since the manufacturing process is simplified, from the viewpoint of workability, a mixture of (C) silane compound, (D) titanium catalyst and (E) silane compound is mixed. On the other hand, it is preferable to ripen at a predetermined temperature at the same time. In addition, from the viewpoint of storage stability, rate of change in curing time, etc., one of (C) silane compound and (E) silane compound and (D) titanium catalyst is included.
  • the component (F) is blended as another blending substance
  • the blending order there is no particular limitation on the blending order, and it may be determined as appropriate, but it is more preferable to blend the component (E) after the aging step.
  • component (G) When component (G) is blended as another blending substance, there is no particular limitation on the blending order, but in addition to (C) one or both of (C) silane compound and (E) silane compound, and (D) titanium catalyst, component It is preferable to age the mixture containing (G) at a predetermined temperature.
  • a mixture containing one or both of (C) silane compound and (E) silane compound, (D) titanium catalyst, and component (G) may be aged at the same time at a predetermined temperature. After aging simultaneously at a predetermined temperature for a mixture containing one or both of a silane compound and (E) a silane compound and (D) a titanium catalyst, the mixture is blended with component (G), and again at a predetermined temperature.
  • the aging step may be performed a plurality of times, such as by aging. Particularly, by blending the component (G) after the aging step of (C) silane compound, (D) titanium catalyst and (E) silane compound, and further performing the aging step, the rate of change in the curing time after storage is lowered. More preferred. By performing the aging step, the storage stability can be further improved.
  • the curable composition of the present invention can be used as an adhesive, a sealing material, an adhesive material, a coating material, a potting material, a paint, a putty material, a primer, and the like. Since the curable composition of the present invention is excellent in adhesiveness, storage stability, and curability, it is particularly preferable to use it as an adhesive, but for various other buildings, automobiles, civil engineering, electric / electronics. It can be used for fields.
  • THF solvent measuring device / analyzer Alliance (manufactured by Waters), 2410 type differential refraction detector (manufactured by Waters), 996 type multi-wavelength detector (manufactured by Waters), Millenium data processing device (manufactured by Waters) Column: Plgel GUARD + 5 ⁇ mMixed-C ⁇ 3 (50 ⁇ 7.5 mm, 300 ⁇ 7.5 mm: manufactured by Polymer Lab) ⁇ Flow rate: 1 mL / min ⁇ Converted polymer: Polyethylene glycol ⁇ Measurement temperature: 40 ° C.
  • FT-NMR measuring device JNM-ECA500 (500 MHz) manufactured by JEOL Ltd.
  • FT-IR measuring device FT-IR460Plus manufactured by JASCO Corporation
  • Viscosity, curing time, and structural viscosity index (SVI value) immediately after blending the curable composition were measured.
  • the conditions were referred to as initial, and the measured viscosity, curing time, and SVI value were defined as initial viscosity, initial TFT, and initial SVI value, respectively.
  • the viscosity is measured with a BS rotational viscometer (rotor No. 7-10 rpm) when the viscosity of the curable composition is 160 Pa ⁇ s or more, and when the viscosity of the curable composition is less than 160 Pa ⁇ s, the BH type. It was measured with a rotational viscometer (rotor No. 7-20 rpm) (measurement temperature 23 ° C.). As for the curing time, the touch drying time (TFT) was measured in an environment of RH 50% at 23 ° C. according to JIS A 1439 5.19 tack-free test.
  • TFT touch drying time
  • the SVI value is calculated by dividing the viscosity at 1 rpm by the viscosity at 10 rpm using a BS type rotational viscometer (rotor No. 7) when the viscosity of the curable composition is 160 Pa ⁇ s or more.
  • a BS type rotational viscometer rotor No. 7
  • the obtained SVI value was used as an index indicating thixotropy.
  • the curable composition in the sealed glass container was left in an atmosphere of 50 ° C. for 1, 2 or 4 weeks, and the viscosity, the curing time, and the SVI value were measured.
  • the measured viscosity, curing time, and SVI value were the viscosity after storage, the TFT after storage, and the SVI value after storage, respectively.
  • the viscosity increase ratio was calculated by dividing the viscosity after storage by the initial viscosity.
  • the thickening rate after 1 week storage was evaluated according to the following evaluation criteria. ⁇ : 0.90 or more and 1.40 or less, ⁇ : 1.41 or more and 1.50 or less, ⁇ : 0.89 or less or 1.51 or more.
  • the rate of change was calculated by dividing the TFT after storage by the initial TFT.
  • the rate of change after storage for 1 week was evaluated according to the following evaluation criteria.
  • a cured product of a curable composition having a size of 100 mm ⁇ 100 mm ⁇ 3 mm was prepared by leaving it in an environment of 23 ° C. and RH 50% for 7 days, and judged by finger touch.
  • the evaluation criteria are as follows. A: Not sticky at all, ⁇ : Not sticky, ⁇ : Sticky, ⁇ : Very sticky.
  • Adhesion test 0.2 g of the curable composition was uniformly applied on the adherend, and immediately bonded in an area of 25 mm ⁇ 25 mm. After bonding, the adhesive strength was measured in accordance with the tensile shear bond strength test method of JIS K 6850 rigid adherend immediately after pressing with a small eyeball clip for 24 hours or 7 days in an atmosphere of 23 ° C. and RH 50%. .
  • Polycarbonate is used as an adherent for the adhesive strength test after 24 hours, and hard vinyl chloride (PVC), polycarbonate (PC), polystyrene (PS), ABS resin (adhesive for the adhesive strength test after 7 days ( ABS), acrylic resin (PMMA), nylon 6 (6-Ny), cold rolled steel plate (SPCC), or anodized aluminum (Al) was used. Further, the fracture state of the adhesive surface was evaluated according to the following evaluation criteria. CF: cohesive failure, AF: adhesion failure, C10A90 to C90A10: The area of the fracture state of CF and AF is expressed as an approximate percentage. CnA (100-n) is CFn%, AF (100-n)% It means the destruction state.
  • the polyoxyalkylene polymer M1 is reacted with allyl chloride at the blending ratio shown in Table 1 to remove unreacted allyl chloride and purified to obtain a polyoxyalkylene polymer having an allyl group at the terminal. Coalescence was obtained.
  • This polyoxyalkylene polymer having an allyl group at the end is reacted with trimethoxysilane, which is a silicon hydride compound, by adding 150 ppm of a platinum vinylsiloxane complex isopropanol solution having a platinum content of 3 wt%, and trimethoxysilyl at the end.
  • a polyoxyalkylene polymer A1 having a group was obtained.
  • the peak top molecular weight was 25,000 and the molecular weight distribution was 1.3.
  • the number of terminal trimethoxysilyl groups was 1.7 per molecule.
  • the polyoxyalkylene polymer M2 is reacted with allyl chloride at the blending ratio shown in Table 1 to remove unreacted allyl chloride, and purified to obtain a polyoxyalkylene polymer having an allyl group at the terminal. Coalescence was obtained.
  • This polyoxyalkylene polymer having an allyl group at the end is reacted with trimethoxysilane, which is a silicon hydride compound, by adding 150 ppm of a platinum vinylsiloxane complex isopropanol solution having a platinum content of 3 wt%, and trimethoxysilyl at the end.
  • a polyoxyalkylene polymer A2 having a group was obtained.
  • the polyoxyalkylene polymer M3 is reacted with allyl chloride at the blending ratio shown in Table 1 to remove unreacted allyl chloride and purified to obtain a polyoxyalkylene polymer having an allyl group at the terminal. Coalescence was obtained.
  • 3-mercaptopropyltrimethoxysilane (trade name: KBM803, manufactured by Shin-Etsu Chemical Co., Ltd.), which is a silyl compound, is used as a polymerization initiator.
  • Reaction was performed using 2′-azobis-2-methylbutyronitrile (AIBN, manufactured by Wako Pure Chemical Industries, Ltd.) to obtain a polyoxyalkylene polymer A3 having a trimethoxysilyl group at the terminal.
  • AIBN 2′-azobis-2-methylbutyronitrile
  • the peak top molecular weight was 15000 and the molecular weight distribution was 1.3.
  • the number of terminal trimethoxysilyl groups was 1.7 per molecule.
  • the polyoxyalkylene polymer M4 is reacted with allyl chloride at the blending ratio shown in Table 1 to remove unreacted allyl chloride, and purified to obtain a polyoxyalkylene polymer having an allyl group at the terminal. Coalescence was obtained.
  • the polyoxyalkylene polymer having an allyl group at the terminal is reacted with 3-mercaptopropyltrimethoxysilane, which is a silyl compound, using AIBN, which is a polymerization initiator, to form a polyoxyalkylene polymer having a trimethoxysilyl group at the terminal.
  • An oxyalkylene polymer A4 was obtained.
  • the peak top molecular weight was 3,500 and the molecular weight distribution was 1.2.
  • the number of terminal trimethoxysilyl groups was 1.7 per molecule.
  • the obtained silylating agent 1 was reacted with the obtained urethane prepolymer 1 at room temperature for 1 hour, then heated to 60 ° C. and stirred for 2 hours to have an isocyanate group and terminal trimethoxysilyl.
  • a polyoxyalkylene polymer A5 having a group was obtained.
  • the peak top molecular weight was 11,000 and the molecular weight distribution was 1.3.
  • the number of terminal trimethoxysilyl groups was 2.0 per molecule.
  • the obtained silylating agent 2 was reacted with the obtained urethane prepolymer 2 at room temperature for 1 hour, then heated to 60 ° C. and stirred for 2 hours to have an isocyanate group and terminal trimethoxysilyl.
  • a polyoxyalkylene polymer A6 having a group was obtained.
  • the molecular weight of the obtained polyoxyalkylene polymer A6 having a trimethoxysilyl group at the terminal was measured by GPC. As a result, the peak top molecular weight was 11,000 and the molecular weight distribution was 1.3. According to H 1 -NMR measurement, the number of terminal trimethoxysilyl groups was 2.0 per molecule.
  • the compounding quantity of each compounding substance is shown by g.
  • the polyoxyalkylene polymers M1 to M4 are the polyoxyalkylene polymers M1 to M4 obtained in Synthesis Examples 1 to 4, respectively.
  • Silylating agents 1 and 2 are silylating agents 1 and 2 obtained in Synthesis Examples 5 and 6, respectively.
  • * 1 is as follows. * 1) Polyoxypropylenediol: Trade name: Preminol 4010, manufactured by Asahi Glass Co., Ltd.
  • an organic polymer A7 having a trimethoxysilyl group which is a mixture of a polyoxyalkylene polymer, a polyoxyalkylene polymer, and a vinyl polymer.
  • the peak top molecular weight was 4000 and the molecular weight distribution was 1.6.
  • the number of terminal trimethoxysilyl groups was 2.35 per molecule.
  • the peak top molecular weight was 3000 and the molecular weight distribution was 1.6.
  • the number of trimethoxysilyl groups contained by H 1 -NMR measurement was 2.00 per molecule.
  • the reaction was further continued for 3 hours to obtain a vinyl polymer A9 having a trimethoxysilyl group.
  • the peak top molecular weight was 6000 and the molecular weight distribution was 1.6.
  • the number of trimethoxysilyl groups contained by H 1 -NMR measurement was 2.11 per molecule.
  • the peak top molecular weight was 4200, and the molecular weight distribution was 1.6.
  • the number of trimethoxysilyl groups contained by H 1 -NMR measurement was 3.03 per molecule.
  • the polyoxyalkylene polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively.
  • the reaction was further continued for 3 hours to obtain a vinyl polymer A14 having a trimethoxysilyl group.
  • the peak top molecular weight was 4500, and the molecular weight distribution was 1.6.
  • the number of trimethoxysilyl groups contained by H 1 -NMR measurement was 3.21 per molecule.
  • the disappearance of the peak due to the epoxy group near 910 cm ⁇ 1 was confirmed by FT-IR, and the peak of the secondary amine near 1140 cm ⁇ 1 was confirmed.
  • 29 Si-NMR Furthermore, the appearance of a new peak was confirmed from -60 ppm to -70 ppm.
  • silane compound C2 disappearance of a peak due to an epoxy group near 910 cm ⁇ 1 was confirmed by FT-IR, a secondary amine peak near 1140 cm ⁇ 1 was confirmed, and 29 Si-NMR Furthermore, the appearance of a new peak was confirmed from -60 ppm to -70 ppm.
  • silane compound X1, 1410 cm -1 in FT-IR to confirm the disappearance of a peak attributable to the amino groups in the vicinity of 1,120 cm -1, to confirm the disappearance of the peak due to the epoxy group in the vicinity of 910 cm -1 .
  • Synthesis Example 19 As shown in Table 5, 100 g of the silane compound C1 obtained in Synthesis Example 16 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgatrix TC-750. 63.1 g of [trade name, titanium diisopropoxy bis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.] was added and aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst B1. With respect to the obtained titanium catalyst B1, change in peak was confirmed by 29 Si-NMR.
  • Synthesis Example 20 As shown in Table 5, 100 g of the silane compound C1 obtained in Synthesis Example 16 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgatrix TC-750. Was aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst B2. With respect to the obtained titanium catalyst B2, change in peak was confirmed by 29 Si-NMR.
  • Synthesis Example 21 As shown in Table 5, 100 g of the silane compound C1 obtained in Synthesis Example 16 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgatrix TC-750. Was aged by heating and stirring at 80 ° C. for 144 hours to obtain a titanium catalyst B3. With respect to the obtained titanium catalyst B3, the change in peak was confirmed by 29 Si-NMR.
  • the silane compound C1 is the silane compound C1 obtained in Synthesis Example 16, and ORGATICS TC-750 is a trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Synthesis Example 26 As shown in Table 6, 126.93 g of the silane compound C2 obtained in Synthesis Example 17 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgax TC. 100 g of ⁇ 750 was added and aged by heating and stirring at 60 ° C. for 168 hours to obtain a titanium catalyst B8. With respect to the obtained titanium catalyst B8, the change in peak was confirmed by 29 Si-NMR.
  • Synthesis Example 27 As shown in Table 6, 156.37 g of the silane compound C3 obtained in Synthesis Example 18 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgatics TC. 100 g of ⁇ 750 was added and aged by heating and stirring at 70 ° C. for 168 hours to obtain a titanium catalyst B9. With respect to the obtained titanium catalyst B9, the change in peak was confirmed by 29 Si-NMR.
  • Synthesis Example 28 As shown in Table 6, 184.28 g of the silane compound C3 obtained in Synthesis Example 18 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgax TC. 100 g of ⁇ 750 was added and aged by heating and stirring at 70 ° C. for 168 hours to obtain a titanium catalyst B10. With respect to the obtained titanium catalyst B10, the change in peak was confirmed by 29 Si-NMR.
  • Silane compounds C2 and C3 are the silane compounds C2 and C3 obtained in Synthesis Examples 17 and 18, respectively, and ORGATICS TC-750 is a trade name, titanium diisopropoxy bis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co. is there.
  • the silane compound C1 is the silane compound C1 obtained in Synthesis Example 16, and details of other compounding substances are as follows.
  • ORGATICS TC-750 trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Phenyltrimethoxysilane Trade name: KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Vinyltrimethoxysilane Trade name: KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Methyltrimethoxysilane Trade name: KBM-13, manufactured by Shin-Etsu Chemical Co., Ltd.
  • the silane compound C1 is the silane compound C1 obtained in Synthesis Example 16, and details of other compounding substances are as follows.
  • ORGATICS TC-750 trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Phenyltrimethoxysilane Trade name: KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Vinyltrimethoxysilane Trade name: KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Normal paraffin Trade name: N-11, manufactured by JX Nippon Oil & Energy Corporation.
  • Example 1 As shown in Table 9, 100 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 19 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the titanium catalyst B1 obtained in the above was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 10 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 2 As shown in Table 9, 50 g of the polyoxyalkylene polymer A2 obtained in Synthesis Example 2 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 20 g of the polyoxyalkylene polymer A4 obtained in the above and 30 g of the vinyl polymer A10 obtained in Synthesis Example 10 and 10 g of the titanium catalyst B1 obtained in Synthesis Example 19 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 10 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 3 As shown in Table 9, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 3 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 20 g of the polyoxyalkylene polymer A3 obtained in the above and 30 g of the vinyl polymer A8 obtained in Synthesis Example 8 and 10 g of the titanium catalyst B1 obtained in Synthesis Example 19 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 10 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 4 As shown in Table 9, 90 g of the polyoxyalkylene polymer A5 obtained in Synthesis Example 5 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the vinyl polymer A9 obtained in the above and 10 g of the titanium catalyst B1 obtained in Synthesis Example 19 were added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 10 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • the compounding amount of each compounding substance is indicated by g.
  • Polymers A1 to A5 are respectively polyoxyalkylene polymers A1 to A5 obtained in Synthesis Examples 1 to 5, and polymers A8 to A10 are vinyl polymers A8 to A10 obtained in Synthesis Examples 8 to 10, respectively.
  • the titanium catalyst B1 is the titanium catalyst B1 obtained in Synthesis Example 19.
  • Example 5 As shown in Table 11, 100 g of the polyoxyalkylene polymer A6 obtained in Synthesis Example 6 and Synthesis Example 19 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube, and a water-cooled condenser. 10 g of the titanium catalyst B1 obtained in the above was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 12 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition. In addition, the initial viscosity in the storage stability test and the viscosity after storage were confirmed visually by tilting the glass container of the curable composition in the sealed glass container.
  • Example 6 As shown in Table 11, 60 g of the polyoxyalkylene polymer A6 obtained in Synthesis Example 6 and Synthesis Example 14 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube, and a water-cooled condenser. 40 g of the vinyl polymer A14 obtained in the above and 10 g of the titanium catalyst B1 obtained in Synthesis Example 19 were added and degassed and stirred at 25 ° C. to obtain a curable composition. The curable composition was tested in the same manner as in Example 5. The results are shown in Table 12.
  • the polymer A6 is the polyoxyalkylene polymer A6 obtained in Synthesis Example 6
  • the polymer A14 is the vinyl polymer A14 obtained in Synthesis Example 14
  • the titanium catalyst B1 is the titanium catalyst obtained in Synthesis Example 19. B1.
  • Example 7 As shown in Table 13, 100 g of vinyl polymer A12 obtained in Synthesis Example 12 was obtained in Synthesis Example 19 in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube and water-cooled condenser. 10g of the titanium catalyst B1 was added and degassed and stirred at 25 ° C to obtain a curable composition.
  • Table 14 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 8 As shown in Table 13, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 4 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A4 obtained in the above and 40 g of the vinyl polymer A13 obtained in Synthesis Example 13 and 10 g of the titanium catalyst B1 obtained in Synthesis Example 19 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 14 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 9 As shown in Table 13, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above, 40 g of the polyoxyalkylene polymer A4 obtained in Synthesis Example 4, 30 g of the vinyl polymer A11 obtained in Synthesis Example 11, and titanium obtained in Synthesis Example 19. 10 g of the catalyst B1 was added and deaerated and stirred at 25 ° C. to obtain a curable composition. Table 14 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 10 As shown in Table 13, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 70 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 10 g of the vinyl polymer A9 obtained in the above and 20 g of the vinyl polymer A13 obtained in Synthesis Example 13 and 10 g of the titanium catalyst B1 obtained in Synthesis Example 19 were degassed and stirred at 25 ° C. to obtain a curable composition. Obtained. Table 14 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 11 As shown in Table 13, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of the vinyl polymer A10 obtained in Synthesis Example 10 and 16.5 g of the titanium catalyst B2 obtained in Synthesis Example 20 were deaerated and stirred at 25 ° C. and cured. Sex composition was obtained. Table 14 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 12 As shown in Table 13, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of the vinyl polymer A10 obtained in Synthesis Example 10 and 7 g of the titanium catalyst B3 obtained in Synthesis Example 21 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 14 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • the compounding amount of each compounding substance is indicated by g.
  • Polymers A1 to A4 are respectively polyoxyalkylene polymers A1 to A4 obtained in Synthesis Examples 1 to 4, and Polymers A9 to A13 are vinyl polymers A9 to A13 obtained in Synthesis Examples 9 to 13, respectively.
  • the titanium catalysts B1 to B3 are the titanium catalysts B1 to B3 obtained in Synthesis Examples 19 to 21, respectively.
  • Example 13 As shown in Table 15, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of the vinyl polymer A8 obtained in Synthesis Example 8 and 11 g of the titanium catalyst B4 obtained in Synthesis Example 22 were degassed and stirred at 25 ° C. I got a thing. Table 16 shows the results of the curability test, storage stability test, surface curability test, and adhesion test of the curable composition.
  • Example 14 As shown in Table 15, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above, 40 g of the vinyl polymer A8 obtained in Synthesis Example 8, and 9 g of the titanium catalyst B5 obtained in Synthesis Example 23 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 16 shows the results of the curability test, storage stability test, surface curability test, and adhesion test of the curable composition.
  • Example 15 As shown in Table 15, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above, 40 g of the vinyl polymer A8 obtained in Synthesis Example 8, and 11 g of the titanium catalyst B6 obtained in Synthesis Example 24 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 16 shows the results of the curability test, storage stability test, surface curability test, and adhesion test of the curable composition.
  • Example 16 As shown in Table 15, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of the vinyl polymer A8 obtained in Synthesis Example 8 and 9 g of the titanium catalyst B7 obtained in Synthesis Example 25 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 16 shows the results of the curability test, storage stability test, surface curability test, and adhesion test of the curable composition.
  • Example 17 As shown in Table 15, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of the vinyl polymer A8 obtained in Synthesis Example 8 and 5 g of the titanium catalyst B1 obtained in Synthesis Example 19 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 16 shows the results of the curability test, storage stability test, surface curability test, and adhesion test of the curable composition.
  • Example 18 As shown in Table 15, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of the vinyl polymer A8 obtained in Synthesis Example 8 and 20 g of the titanium catalyst B1 obtained in Synthesis Example 19 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 16 shows the results of the curability test, storage stability test, surface curability test, and adhesion test of the curable composition.
  • Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively.
  • Polymer A8 is the vinyl polymer A8 obtained in Synthesis Example 8, and titanium catalysts B1 and B4.
  • To B7 are titanium catalysts B1 and B4 to B7 obtained in Synthesis Examples 19 and 22 to 25, respectively.
  • Example 19 As shown in Table 17, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube and water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7 and 5 g of QS-20, Nocrack 1 g of CD and 0.5 g of TBSTA were added, heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 5 g of triethyl citrate, and the titanium catalyst B1 obtained in Synthesis Example 19 10 g was added and deaerated and stirred at 25 ° C. to obtain a curable composition. Table 18 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 20 As shown in Table 17, in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7, 5 g of RY200S, and Nocrack CD Add 1 g, heat (100 ° C.), degas and stir for 1 hour, return to room temperature (25 ° C.), add 5 g of triethyl citrate and 10 g of titanium catalyst B1 obtained in Synthesis Example 19, and degas at 25 ° C. Air-stirring was performed to obtain a curable composition. Table 18 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 21 As shown in Table 17, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube and water-cooled condenser, 100 g of polymer A7 obtained in Synthesis Example 7 and 2 g of RY200S, Ryton A- 5 (50 g), LA72 (1 g), heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 5 g of triethyl citrate and 10 g of titanium catalyst B1 obtained in Synthesis Example 19 were added. Further, the mixture was deaerated and stirred at 25 ° C. to obtain a curable composition. Table 18 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 22 As shown in Table 17, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7 and 50 g of MC coated P-1 were added. 1 g of Disparon # 6500 and 1 g of Nocrack CD were added, heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 5 g of acetyltriethyl citrate, titanium obtained in Synthesis Example 19 10 g of the catalyst B1 was added, and further deaerated and stirred at 25 ° C. to obtain a curable composition. Table 18 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 23 As shown in Table 17, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7 and 50 g of MC coated P-1 were added. 2 g of Disparon # 6500 and 1 g of Nocrack CD were added, heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 5 g of acetyltributyl citrate, titanium obtained in Synthesis Example 19 10 g of the catalyst B1 was added, and further deaerated and stirred at 25 ° C. to obtain a curable composition. Table 18 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 24 As shown in Table 17, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 100 g of polymer A7 obtained in Synthesis Example 7 and 30 g of Carlex 300, Almo 250 g of Lix B316 and 2 g of Nocrack CD were added, heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 25 g of acetyltributyl citrate, titanium catalyst B1 obtained in Synthesis Example 19 10 g and 2 g of Olgatics TC750 were added, and the mixture was further deaerated and stirred at 25 ° C. to obtain a curable composition.
  • Table 18 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 25 As shown in Table 17, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7 and 40 g of MC coated P-1 were added. , 25 g of Carlex 300, 1 g of Nocrack CD, heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 8 g of triethyl citrate, the titanium catalyst obtained in Synthesis Example 19 10 g of B1 and 1 g of ORGATICS TC750 were added and further deaerated and stirred at 25 ° C. to obtain a curable composition. Table 18 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • the polymer A7 is the organic polymer A7 obtained in Synthesis Example 7
  • the titanium catalyst B1 is the titanium catalyst B1 obtained in Synthesis Example 19.
  • Details of other compounding substances are as follows.
  • QS-20 trade name, manufactured by Tokuyama Corporation, primary dry particle size of 5 to 50 ⁇ m, surface-untreated hydrophilic dry silica.
  • RY200S trade name manufactured by Nippon Aerosil Co., Ltd., hydrophobic silica, specific surface area 80 ⁇ 15 m 2 / g by BET method.
  • Ryton A-5 trade name manufactured by Shiroishi Kogyo Co., Ltd., ground calcium carbonate, surface fatty acid treatment.
  • MC coat P-1 Trade name manufactured by Shiroishi Kogyo Co., Ltd .: colloidal calcium carbonate, surface paraffin wax treatment.
  • Carlex 300 manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.05 ⁇ m.
  • Armorix B316 trade name, aluminum hydroxide, average particle diameter of 18 ⁇ m, manufactured by Armorix Co., Ltd.
  • Disparon # 6500 trade name, amide wax, manufactured by Enomoto Kasei Co., Ltd.
  • NOCRACK CD trade name, 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, manufactured by Ouchi Shinko Co., Ltd.
  • LA72 Adeka Co., Ltd. trade name, hindered amine light stabilizer.
  • TBSTA Tri-n-butoxytitanium monostearate manufactured by Nihon Kenta Co., Ltd.
  • Triethyl citrate manufactured by Tokyo Chemical Industry Co., Ltd.
  • Acetyltriethyl citrate manufactured by Tokyo Chemical Industry Co., Ltd.
  • Acetyltributyl citrate manufactured by Tokyo Chemical Industry Co., Ltd.
  • ORGATICS TC-750 trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Example 26 As shown in Table 19, in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7 was placed, heated (100 ° C.), The mixture was degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 10 g of the titanium catalyst B8 obtained in Synthesis Example 26 was added, and degassed and stirred at 25 ° C. to obtain a curable composition. Table 20 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 27 As shown in Table 19, in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7 was placed, heated (100 ° C.), After deaeration and stirring for 1 hour, the temperature was returned to room temperature (25 ° C.), 9 g of titanium catalyst B9 obtained in Synthesis Example 27 was added, and the mixture was further deaerated and stirred at 25 ° C. to obtain a curable composition. Table 20 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 28 As shown in Table 19, in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7 was placed, heated (100 ° C.), The mixture was degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 9 g of the titanium catalyst B10 obtained in Synthesis Example 28 was added, and degassed and stirred at 25 ° C. to obtain a curable composition. Table 20 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • the polymer A7 is the organic polymer A7 obtained in Synthesis Example 7
  • the titanium catalysts B8 to B10 are the titanium catalysts B8 to B10 obtained in Synthesis Examples 26 to 28, respectively.
  • Example 29 As shown in Table 21, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 45 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 20 g of the polyoxyalkylene polymer A2 obtained in the above and 35 g of vinyl polymer A15 obtained in Synthesis Example 15 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomer and ethyl acetate contained in the vinyl polymer A15, and cooled to room temperature.
  • Example 30 As shown in Table 21, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 45 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 20 g of the polyoxyalkylene polymer A2 obtained in the above and 35 g of vinyl polymer A15 obtained in Synthesis Example 15 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomer and ethyl acetate contained in the vinyl polymer A15, and cooled to room temperature.
  • Examples 31 to 33 As shown in Table 21, a curable composition was prepared in the same manner as in Example 30 except that (E) the silane compound was changed. Table 22 shows the results of the storage stability test, the curability test, and the surface curability test of the curable composition.
  • the compounding quantity of each compounding substance is shown by g
  • the polymer A15 is shown by the compounding quantity of solid content conversion.
  • Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively.
  • Polymer A15 is the vinyl polymer A15 obtained in Synthesis Example 15, and silane compound C1 is synthesized.
  • the titanium catalyst B11 is the titanium catalyst B11 obtained in Synthesis Example 29, and details of other compounding materials are as follows.
  • ORGATICS TC-750 trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Phenyltrimethoxysilane Trade name: KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd. Vinyltrimethoxysilane: Trade name: KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd. Decyltrimethoxysilane: Trade name: KBM-3013C, manufactured by Shin-Etsu Chemical Co., Ltd. Tetraethoxysilane: Trade name: KBE-04, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 34 As shown in Table 23, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube, and a water-cooled condenser. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of the vinyl polymer A15 obtained in Synthesis Example 15 were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomer and ethyl acetate contained in the vinyl polymer A15, and cooled to room temperature.
  • Examples 35 to 41 As shown in Table 23, a curable composition was prepared in the same manner as in Example 34 except that the titanium catalysts B13 to B19 were used instead of the titanium catalyst B12. Tables 24 and 25 show the results of the storage stability test, curability test, surface curability test, and adhesion test of the curable composition.
  • the compounding quantity of each compounding substance is shown by g
  • polymer A15 is shown by the compounding quantity of solid content conversion.
  • the polymers A1 to A2 are the polyoxyalkylene polymers A1 to A2 obtained in Synthesis Examples 1 and 2, respectively.
  • the polymer A15 is the vinyl polymer A15 obtained in Synthesis Example 15, and the titanium catalysts B12 to B19.
  • Are titanium catalysts B12 to B19 obtained in Synthesis Examples 30 to 37, and details of other compounding materials are as follows.
  • Whiteon SB Shiraishi Calcium Co., Ltd., heavy calcium carbonate, average particle size 2.2 ⁇ m.
  • Carlex 300 manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.05 ⁇ m.
  • Normal paraffin Trade name: N-11, manufactured by JX Nippon Oil & Energy Corporation.
  • Example 42 As shown in Table 26, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of the vinyl polymer A15 obtained in Synthesis Example 15 were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomer and ethyl acetate contained in the vinyl polymer A15, and cooled to room temperature.
  • Example 43 As shown in Table 26, a curable composition was prepared in the same manner as in Example 42 except that the titanium catalyst B20 was used instead of the titanium catalyst B21. Table 27 shows the results of the curability test, the storage stability test, and the surface curability test of the curable composition.
  • Example 44 As shown in Table 26, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of the vinyl polymer A15 obtained in Synthesis Example 15 were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomer and ethyl acetate contained in the vinyl polymer A15, and cooled to room temperature.
  • polymer A15 is shown by the compounding quantity of solid content conversion.
  • the polymers A1 to A2 are the polyoxyalkylene polymers A1 to A2 obtained in Synthesis Examples 1 and 2, respectively.
  • the polymer A15 is the vinyl polymer A15 obtained in Synthesis Example 15, and the titanium catalysts B20 to B22.
  • titanium catalysts B20 to B22 obtained in Synthesis Examples 38 to 40, respectively, and details of other compounding materials are as follows.
  • Vinyltrimethoxysilane Trade name: KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Whiteon SB trade name, heavy calcium carbonate, manufactured by Shiraishi Calcium Co., Ltd., average particle size 2.2 ⁇ m.
  • Carlex 300 trade name manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.05 ⁇ m.
  • Armorix B316 trade name, aluminum hydroxide, average particle diameter of 18 ⁇ m, manufactured by Armorix Co., Ltd.
  • Isopar M trade name, isoparaffin, manufactured by ExxonMobil Co., Ltd.
  • NOCRACK CD trade name, 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, manufactured by Ouchi Shinko Co., Ltd.
  • Example 45 As shown in Table 29, 100 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was used as a filler in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. Fuselex (registered trademark) E-2 [made by Tatsumori Co., Ltd., amorphous silica with an average particle diameter of 6 ⁇ m] 40 g was added, mixed at 100 ° C. and 10 mmHg for 1 hour, cooled to 20 ° C., and synthesis example 21.2 g of the titanium catalyst B15 obtained in No. 33 was added and vacuum mixed for 10 minutes to obtain a curable composition. Table 30 shows the results of the storage stability test, the curability test, the surface curability test, the adhesion test, and the transparency test of the curable composition.
  • Example 46 As shown in Table 29, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of the vinyl polymer A15 obtained in Synthesis Example 15 were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomer and ethyl acetate contained in the vinyl polymer A15, and cooled to room temperature.
  • the compounding quantity of FTR8100 is determined by the following method. First, FTR8100 serving as a refractive index adjusting agent is heated and melted to the component (A) at an appropriate ratio, and the refractive index is measured with an Abbe refractometer at 20 ° C. An XY plot of FTR8100 compounding ratio and refractive index is taken. The FTR8100 blending amount that matches the refractive index of the powder serving as the main filler is the blending amount.
  • Table 30 shows the results of the storage stability test, curability test, surface curability test, adhesion test and transparency test of the curable composition.
  • Example 47 As shown in Table 29, a curable composition was prepared in the same manner as in Example 46 except that the compounding substances were changed. Table 30 shows the results of the storage stability test, the curability test, the surface curability test, the adhesion test, and the transparency test of the curable composition.
  • polymer A15 is shown by the compounding quantity of solid content conversion.
  • Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively, Polymer A15 is the vinyl polymer A15 obtained in Synthesis Example 15, and titanium catalyst B15 is synthesized.
  • the details of the titanium compound B15 obtained in Example 33 and other compounding materials are as follows.
  • MR13G trade name manufactured by Soken Chemical Co., Ltd., methacrylic acid ester polymer powder, average particle size of about 1 ⁇ m.
  • Fuselex (registered trademark) E-2 trade name, manufactured by Tatsumori Co., Ltd., amorphous silica, average particle size (50% weight average when measuring particle size distribution by laser method): 6 ⁇ m.
  • FTR8100 trade name of Mitsui Oil Co., Ltd., C5 and C9 copolymer petroleum resin.
  • Table 32 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • the compounding amount of each compounding substance is indicated by g.
  • Polymers A1 to A2 are the polyoxyalkylene polymers A1 to A2 obtained in Synthesis Examples 1 and 2, respectively, and the polymer A8 is the vinyl polymer A8 obtained in Synthesis Example 8, and the silane compounds C1 and X1 Are the silane compounds C1 and X1 obtained in Synthesis Example 16 and Comparative Synthesis Example 1, respectively, and ORGATICS TC-750 is a trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd. The details of other compounding substances are the same as in Table 17.

Abstract

Provided are: a curable composition which exhibits excellent curability, adhesiveness and storage stability and which does not necessitate an organotin-type catalyst and is therefore highly safe; and a process for manufacturing the curable composition. A curable composition comprising (A) an organic polymer that contains on average 0.8 or more crosslinking silicon group in one molecule and (B) an aged curing catalyst, wherein the aged curing catalyst (B) is a catalyst obtained by mixing (C) a silane compound obtained by reacting a specific epoxysilane compound with a specific aminosilane compound with (D) a specific titanium catalyst at a mixing ratio such that the amount of the silane compound (C) is 0.1 to 30mol relative to one mol of the titanium catalyst (D) and then aging the resulting mixture at a reaction temperature of 30 to 100°C.

Description

硬化性組成物Curable composition
 本発明は、ケイ素原子に結合した水酸基または加水分解性基を有し、シロキサン結合を形成することにより架橋し得るケイ素含有基(以下、「架橋性珪素基」ともいう。)を有する有機重合体を含有する硬化性組成物に関する。 The present invention relates to an organic polymer having a silicon-containing group (hereinafter also referred to as “crosslinkable silicon group”) having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond. It relates to the curable composition containing this.
 分子中に少なくとも1個の架橋性珪素基を含有する有機重合体は、室温においても湿分等による反応性ケイ素基の加水分解反応等を伴うシロキサン結合の形成によって架橋し、ゴム状硬化物が得られるという性質を有することが知られている。これらの架橋性珪素基を有する重合体中で、主鎖骨格がポリオキシアルキレン系重合体または(メタ)アクリル酸エステル系重合体である有機重合体は、シーリング材、接着剤、塗料などの用途に広く使用されている。 An organic polymer containing at least one crosslinkable silicon group in the molecule is crosslinked at room temperature by the formation of a siloxane bond accompanied by a hydrolysis reaction of a reactive silicon group due to moisture or the like. It is known to have the property of being obtained. Among these polymers having a crosslinkable silicon group, organic polymers whose main chain skeleton is a polyoxyalkylene polymer or a (meth) acrylate polymer are used for sealing materials, adhesives, paints, etc. Widely used.
 シーリング材、接着剤、塗料などに用いられる硬化性組成物および硬化によって得られるゴム状硬化物には、硬化性、接着性、貯蔵安定性、モジュラス・強度・伸び等の機械特性等の種々の特性が要求されており、架橋性珪素基を含有する有機重合体に関しても、これまでに多くの検討がなされている。 The curable composition used for sealing materials, adhesives, paints, etc. and the rubber-like cured product obtained by curing have various properties such as curability, adhesiveness, storage stability, mechanical properties such as modulus, strength, and elongation. Properties are required, and many studies have been made on organic polymers containing crosslinkable silicon groups.
 これらの架橋性珪素基を有する有機重合体を含有する硬化性組成物は、シラノール縮合触媒を用いて硬化させており、通常、ジブチル錫ビス(アセチルアセトナート)などの、有機錫系触媒が広く使用されている。しかしながら、近年、有機錫系化合物はその毒性が指摘されており、非有機錫系触媒の開発が求められている。 These curable compositions containing an organic polymer having a crosslinkable silicon group are cured using a silanol condensation catalyst. Usually, organic tin-based catalysts such as dibutyltin bis (acetylacetonate) are widely used. in use. However, in recent years, toxicity of organotin compounds has been pointed out, and development of non-organotin catalysts has been demanded.
 この非有機錫系触媒として、チタン触媒を使用する脱アルコール型シリコーン組成物は既に市販されており、多くの用途に広く使用されている(例えば、特許文献1~3等)。
 しかし、架橋性珪素基を含有する有機重合体に、チタン触媒を添加した例は比較的少なく、特許文献4~21等に開示されている。これらのチタン触媒を用いた硬化性組成物は硬化速度が遅く、また貯蔵後に硬化速度が低下すると共に粘度が増加するといった問題があった。
As this non-organotin-based catalyst, a dealcohol-free silicone composition using a titanium catalyst is already on the market and is widely used for many applications (for example, Patent Documents 1 to 3).
However, there are relatively few examples of adding a titanium catalyst to an organic polymer containing a crosslinkable silicon group, which are disclosed in Patent Documents 4 to 21 and the like. The curable compositions using these titanium catalysts have a problem that the curing rate is slow, and the curing rate is lowered and the viscosity is increased after storage.
 また、架橋性珪素基を含有する有機重合体を含む硬化性組成物は、接着剤やシーリング材として使用されることが多く、その場合にさまざまな種類の基材への接着が求められる。この接着性を確保するために、分子内に1級のアミノ基とアルコキシ基を有する、いわゆるアミノシランが通常用いられる。しかし、架橋性珪素基を含有する有機重合体とチタン触媒を用いて、アミノシランを添加して1液型硬化性組成物を作製した場合、接着性は良好なものの、一定期間貯蔵した後では組成物の粘度が上昇し、ひどい場合には容器内で硬化し、使用できないことがある。シーリング材や接着剤は、製造してすぐに使用されるとは限らず、倉庫や店頭で数ヶ月間保管されることが多く、硬化性や粘度が貯蔵前後において一定であることが望まれている。 Further, a curable composition containing an organic polymer containing a crosslinkable silicon group is often used as an adhesive or a sealing material, and in that case, adhesion to various types of substrates is required. In order to ensure this adhesion, so-called aminosilane having a primary amino group and an alkoxy group in the molecule is usually used. However, when an organic polymer containing a crosslinkable silicon group and a titanium catalyst are used to produce a one-component curable composition by adding aminosilane, the composition is good after storage for a certain period, although the adhesiveness is good. If the viscosity of the product increases and is severe, it may harden in the container and not be used. Sealing materials and adhesives are not always used immediately after production, but are often stored for several months in warehouses or stores, and it is desired that their curability and viscosity be constant before and after storage. Yes.
特公昭39-27643号公報Japanese Examined Patent Publication No. 39-27643 米国特許第3175993号US Pat. No. 3,175,993 米国特許第3334067号US Pat. No. 3,334,067 特開昭58-17154号公報JP 58-17154 A 特開平11-209538号公報JP-A-11-209538 特開平5-311063号公報JP-A-5-311063 特開2001-302929号公報JP 2001-302929 A 特開2001-302930号公報JP 2001-302930 A 特開2001-302931号公報JP 2001-302931 A 特開2001-302934号公報JP 2001-302934 A 特開2001-348528号公報JP 2001-348528 A 特開2002-249672号公報JP 2002-249672 A 特開2003-165916号公報JP 2003-165916 A 特開2003-147220号公報JP 2003-147220 A 特開2005-325314号公報JP 2005-325314 A WO2005/108492WO2005 / 108492 WO2005/108498WO2005 / 108498 WO2005/108494WO2005 / 108494 WO2005/108499WO2005 / 108499 WO2007/037368WO2007 / 037368 特開2008-280434号公報JP 2008-280434 A
 本発明は、硬化性、接着性及び貯蔵安定性に優れ、且つ有機錫系触媒を必要とせず安全性に優れた硬化性組成物及び硬化性組成物の製造方法を提供することを目的とする。 An object of the present invention is to provide a curable composition excellent in curability, adhesiveness and storage stability, and not requiring an organic tin-based catalyst and excellent in safety, and a method for producing the curable composition. .
 上記課題を解決するために、本発明者らは鋭意研究を重ねた結果、1分子中に平均して0.8個以上の架橋性珪素基を含有する有機重合体に、硬化触媒として、特定のエポキシシラン化合物と特定のアミノシラン化合物を反応させてなるシラン化合物と、β-ケトエステルを配位させたチタニウムキレートとを所定の混合割合で混合し、熟成を施してなる熟成硬化触媒を用いることにより、硬化性、接着性及び貯蔵安定性が著しく優れており、且つ有機錫系触媒を必要とせず安全性に優れた硬化性組成物を得ることができることを見出した。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research and have identified, as a curing catalyst, an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule. By using an aging curing catalyst obtained by mixing a silane compound obtained by reacting an epoxy silane compound with a specific aminosilane compound and a titanium chelate coordinated with a β-ketoester at a predetermined mixing ratio and aging. The present inventors have found that a curable composition that is remarkably excellent in curability, adhesiveness, and storage stability and that does not require an organotin catalyst and that is excellent in safety can be obtained.
 即ち、本発明の硬化性組成物は、(A)1分子中に平均して0.8個以上の架橋性珪素基を含有する有機重合体、及び(B)熟成硬化触媒、を含有する硬化性組成物であって、前記(B)熟成硬化触媒が、(C)下記式(1)で示されるエポキシシラン化合物と下記式(2)で示されるアミノシラン化合物とを反応させてなるシラン化合物と、(D)下記式(3)で示されるチタニウムキレート及び下記式(4)で表されるチタニウムキレートからなる群から選択される1種以上のチタン触媒とを、前記(D)チタン触媒1モルに対して前記(C)シラン化合物0.1~30モルの混合割合で混合し、30~100℃の反応温度で熟成させてなる熟成硬化触媒であることを特徴とする。 That is, the curable composition of the present invention comprises (A) an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule, and (B) an aging curing catalyst. A silane compound obtained by reacting (C) an epoxysilane compound represented by the following formula (1) with an aminosilane compound represented by the following formula (2): (D) one or more titanium catalysts selected from the group consisting of a titanium chelate represented by the following formula (3) and a titanium chelate represented by the following formula (4), In contrast, (C) a aging curing catalyst obtained by mixing at a mixing ratio of 0.1 to 30 mol of the silane compound and aging at a reaction temperature of 30 to 100 ° C.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(前記式(1)において、R~Rはそれぞれ水素原子又はアルキル基であり、Rはアルキレン基またはアルキレンオキシアルキレン基であり、Rは一価炭化水素基であり、Rはアルキル基であり、aは0、1又は2である。) (In the formula (1), R 1 to R 3 are each a hydrogen atom or an alkyl group, R 4 is an alkylene group or an alkyleneoxyalkylene group, R 5 is a monovalent hydrocarbon group, and R 6 is An alkyl group, and a is 0, 1 or 2.)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(前記式(2)において、R~R12はそれぞれ水素原子又はアルキル基であり、R13は一価炭化水素基であり、R14はアルキル基であり、bは0又は1である。) (In the formula (2), R 7 to R 12 are each a hydrogen atom or an alkyl group, R 13 is a monovalent hydrocarbon group, R 14 is an alkyl group, and b is 0 or 1. )
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(前記式(3)において、n個のR21は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR22は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR23および4-n個のR24は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、nは0、1、2又は3である。) (In the formula (3), n R 21 s are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, and 4-n R 22 s are each independently a hydrogen atom. Or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, wherein 4-n R 23 and 4-n R 24 are independently substituted or unsubstituted carbon atoms having 1 to 20 carbon atoms. And n is 0, 1, 2 or 3.)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(前記式(4)において、R25は、置換あるいは非置換の2価の炭素原子数1~20の炭化水素基であり、2個のR26は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、2個のR27および2個のR28は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基である。) (In the formula (4), R 25 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms, and the two R 26 are each independently a hydrogen atom or substituted or unsubstituted. The two R 27 and the two R 28 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.)
 前記熟成が、40℃~80℃で行われることが好ましい。 The aging is preferably performed at 40 ° C to 80 ° C.
 前記(A)有機重合体100質量部に対して、前記(B)熟成硬化触媒を0.5~30質量部配合することが好適である。 It is preferable to blend 0.5 to 30 parts by mass of the (B) aging curing catalyst with respect to 100 parts by mass of the (A) organic polymer.
 前記(C)シラン化合物が、前記アミノシラン化合物1モルに対して前記エポキシシラン化合物を1.5~10モルの範囲で反応させてなるシラン化合物であることが好ましい。
 また、前記(C)シラン化合物が、前記エポキシシラン化合物と前記アミノシラン化合物とを40~100℃の反応温度で反応させてなるシラン化合物であることが好適である。
The (C) silane compound is preferably a silane compound obtained by reacting the epoxysilane compound in a range of 1.5 to 10 mol with respect to 1 mol of the aminosilane compound.
The (C) silane compound is preferably a silane compound obtained by reacting the epoxysilane compound and the aminosilane compound at a reaction temperature of 40 to 100 ° C.
 前記(A)有機重合体は、主鎖がポリシロキサンでない有機重合体であることが好適である。
 前記(A)有機重合体が、1分子中に平均して0.8個以上の架橋性珪素基を含有するポリオキシアルキレン系重合体、1分子中に平均して0.8個以上の架橋性珪素基を含有する飽和炭化水素系重合体、及び1分子中に平均して0.8個以上の架橋性珪素基を含有する(メタ)アクリル酸エステル系重合体からなる群から選択される1種以上であることが好ましい。
The (A) organic polymer is preferably an organic polymer whose main chain is not polysiloxane.
The (A) organic polymer is a polyoxyalkylene polymer containing 0.8 or more crosslinkable silicon groups on average per molecule, and 0.8 or more crosslinks on average per molecule. Selected from the group consisting of a saturated hydrocarbon polymer containing a functional silicon group and a (meth) acrylic acid ester polymer containing an average of 0.8 or more crosslinkable silicon groups in one molecule. One or more are preferable.
 前記架橋性珪素基がトリメトキシシリル基を含むことが好適である。 It is preferable that the crosslinkable silicon group contains a trimethoxysilyl group.
 本発明の硬化性組成物は、(E)1分子中に加水分解性珪素基を1個有し且つ第1級アミノ基を有なさいシラン化合物をさらに含有することが好ましい。
 前記(E)シラン化合物が、下記式(12)で示される化合物であることが好適である。
The curable composition of the present invention preferably further contains (E) a silane compound having one hydrolyzable silicon group and one primary amino group in one molecule.
The (E) silane compound is preferably a compound represented by the following formula (12).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 前記式(12)において、R41はメチル基又はエチル基であり、R41が複数存在する場合、それらは同一であってもよく、異なっていてもよいものであり、R42はメチル基又はエチル基であり、R42が複数存在する場合、それらは同一であってもよく、異なっていてもよいものであり、R43は炭素数1~10の炭化水素基であり、mは2又は3であり、nは0又は1である。 In the formula (12), R 41 is a methyl group or an ethyl group, and when a plurality of R 41 are present, they may be the same or different, and R 42 is a methyl group or An ethyl group, and when there are a plurality of R 42 , they may be the same or different, R 43 is a hydrocarbon group having 1 to 10 carbon atoms, and m is 2 or 3 and n is 0 or 1.
 本発明の硬化性組成物は、(F)充填剤をさらに含有することが好適である。前記(F)充填剤が、表面処理炭酸カルシウム、粒径0.01~300μmの非晶質シリカ及び粒径0.01~300μmの高分子粉体からなる群から選択される1種以上であることが好ましい。 The curable composition of the present invention preferably further contains (F) a filler. The filler (F) is at least one selected from the group consisting of surface-treated calcium carbonate, amorphous silica having a particle size of 0.01 to 300 μm, and polymer powder having a particle size of 0.01 to 300 μm. It is preferable.
 前記(A)有機重合体の屈折率と前記非晶質シリカの屈折率の差が0.1以下であるようにそれらの屈折率の差を一致させることにより、透明性に優れた硬化性組成物を得ることができる。 A curable composition excellent in transparency by matching the difference in refractive index so that the difference between the refractive index of the organic polymer (A) and the refractive index of the amorphous silica is 0.1 or less. You can get things.
 また、前記(A)有機重合体を主成分とする液相成分の屈折率と前記高分子粉体の屈折率の差が0.1以下であるようにそれらの屈折率の差を一致させることにより、透明性に優れた硬化性組成物を得ることができる。
 前記(A)有機重合体に屈折率調整剤を加えることにより、前記(A)有機重合体を主成分とする液相成分の屈折率と前記高分子粉体の屈折率の差を0.1以下とすることが好適である。
Further, the difference in refractive index between the liquid phase component (A) containing the organic polymer as a main component and the refractive index of the polymer powder is made to be equal to or less than 0.1. Thus, a curable composition having excellent transparency can be obtained.
By adding a refractive index adjusting agent to the (A) organic polymer, the difference between the refractive index of the liquid phase component mainly composed of the (A) organic polymer and the refractive index of the polymer powder is 0.1. The following is preferable.
 前記高分子粉体が、(メタ)アクリル酸エステル、酢酸ビニル、エチレン及び塩化ビニルからなる群から選択されたモノマーを単独で重合するか、もしくは、該モノマーと1種以上のビニル系モノマーとを共重合することによって得られる重合体を原料とした高分子粉体であることが好ましく、アクリル系高分子粉体及びビニル系高分子粉体からなる群から選択される1種以上であることがより好ましい。 The polymer powder polymerizes a monomer selected from the group consisting of (meth) acrylic acid ester, vinyl acetate, ethylene and vinyl chloride alone, or the monomer and one or more vinyl monomers The polymer powder is preferably a polymer powder obtained from a polymer obtained by copolymerization, and is at least one selected from the group consisting of an acrylic polymer powder and a vinyl polymer powder. More preferred.
 本発明の硬化性組成物は、(G)希釈剤をさらに含有することが好適である。 The curable composition of the present invention preferably further contains (G) a diluent.
 本発明の硬化性組成物は、金属水酸化物をさらに含有することが好ましい。前記金属水酸化物が水酸化アルミニウムであることが好適である。 The curable composition of the present invention preferably further contains a metal hydroxide. It is preferable that the metal hydroxide is aluminum hydroxide.
 本発明の硬化性組成物は、非熟成硬化触媒としてチタンキレート化合物をさらに含有することが好適である。該チタンキレート化合物が前記式(3)で示されるチタニウムキレート及び前記式(4)で表されるチタニウムキレートからなる群から選択される1種以上のチタン触媒であることが好ましい。 The curable composition of the present invention preferably further contains a titanium chelate compound as a non-aged curing catalyst. The titanium chelate compound is preferably at least one titanium catalyst selected from the group consisting of a titanium chelate represented by the formula (3) and a titanium chelate represented by the formula (4).
 本発明の硬化性組成物の製造方法は、(A)1分子中に平均して0.8個以上の架橋性珪素基を含有する有機重合体、及び(B)熟成硬化触媒、を配合し、硬化性組成物を製造する硬化性組成物の製造方法であって、前記(B)熟成硬化触媒が、(C)下記式(1)で示されるエポキシシラン化合物と下記式(2)で示されるアミノシラン化合物とを反応させてなるシラン化合物と、(D)下記式(3)で示されるチタニウムキレート及び下記式(4)で表されるチタニウムキレートからなる群から選択される1種以上のチタン触媒とを、前記(D)チタン触媒1モルに対して前記(C)シラン化合物0.1~30モルの混合割合で混合し、30~100℃の反応温度で熟成させてなる熟成硬化触媒であることを特徴とする。 The method for producing a curable composition of the present invention comprises (A) an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule, and (B) an aging curing catalyst. A method for producing a curable composition for producing a curable composition, wherein the (B) aging curing catalyst is represented by (C) an epoxysilane compound represented by the following formula (1) and the following formula (2): One or more types of titanium selected from the group consisting of a silane compound obtained by reacting an aminosilane compound, a titanium chelate represented by the following formula (3) and a titanium chelate represented by the following formula (4): An aging curing catalyst obtained by mixing a catalyst with 0.1 to 30 mol of the (C) silane compound with respect to 1 mol of the (D) titanium catalyst and aging at a reaction temperature of 30 to 100 ° C. It is characterized by being.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(前記式(1)において、R~Rはそれぞれ水素原子又はアルキル基であり、Rはアルキレン基またはアルキレンオキシアルキレン基であり、Rは一価炭化水素基であり、Rはアルキル基であり、aは0、1又は2である。) (In the formula (1), R 1 to R 3 are each a hydrogen atom or an alkyl group, R 4 is an alkylene group or an alkyleneoxyalkylene group, R 5 is a monovalent hydrocarbon group, and R 6 is An alkyl group, and a is 0, 1 or 2.)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(前記式(2)において、R~R12はそれぞれ水素原子又はアルキル基であり、R13は一価炭化水素基であり、R14はアルキル基であり、bは0又は1である。) (In the formula (2), R 7 to R 12 are each a hydrogen atom or an alkyl group, R 13 is a monovalent hydrocarbon group, R 14 is an alkyl group, and b is 0 or 1. )
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(前記式(3)において、n個のR21は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR22は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR23および4-n個のR24は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、nは0、1、2又は3である。) (In the formula (3), n R 21 s are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, and 4-n R 22 s are each independently a hydrogen atom. Or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, wherein 4-n R 23 and 4-n R 24 are independently substituted or unsubstituted carbon atoms having 1 to 20 carbon atoms. And n is 0, 1, 2 or 3.)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(前記式(4)において、R25は、置換あるいは非置換の2価の炭素原子数1~20の炭化水素基であり、2個のR26は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、2個のR27および2個のR28は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基である。) (In the formula (4), R 25 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms, and the two R 26 are each independently a hydrogen atom or substituted or unsubstituted. The two R 27 and the two R 28 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.)
 本発明の硬化性組成物の製造方法において、前記(A)有機重合体、前記(B)熟成硬化触媒、及びチタンキレート化合物を配合し、硬化性組成物を製造することが好ましい。
 前記チタンキレート化合物が前記式(3)で示されるチタニウムキレート及び前記式(4)で表されるチタニウムキレートからなる群から選択される1種以上のチタン触媒であることが好適である。
In the manufacturing method of the curable composition of this invention, it is preferable to mix | blend the said (A) organic polymer, the said (B) ageing hardening catalyst, and a titanium chelate compound, and manufacturing a curable composition.
It is preferable that the titanium chelate compound is at least one titanium catalyst selected from the group consisting of a titanium chelate represented by the formula (3) and a titanium chelate represented by the formula (4).
 本発明によれば、硬化性、接着性及び貯蔵安定性に優れ、且つ有機錫系触媒を必要とせず安全性に優れた硬化性組成物及び硬化性組成物の製造方法を提供することができる。また、本発明によれば、立ち上がり接着性に優れた硬化性組成物や、透明性に優れた硬化性組成物を得ることもできる。 According to the present invention, it is possible to provide a curable composition excellent in curability, adhesiveness and storage stability, and not requiring an organic tin-based catalyst and excellent in safety, and a method for producing the curable composition. . Moreover, according to this invention, the curable composition excellent in standing | starting-up adhesiveness and the curable composition excellent in transparency can also be obtained.
 以下に本発明の実施の形態を説明するが、これらは例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。 Embodiments of the present invention will be described below, but these are exemplarily shown, and it goes without saying that various modifications are possible without departing from the technical idea of the present invention.
 本発明の硬化性組成物は、(A)1分子中に平均して0.8個以上の架橋性珪素基を含有する有機重合体、及び(B)熟成硬化触媒、を含有する硬化性組成物であって、前記(B)熟成硬化触媒が、(C)前記式(1)で示されるエポキシシラン化合物と前記式(2)で示されるアミノシラン化合物とを反応させてなるシラン化合物と、(D)前記式(3)で示されるチタニウムキレート及び前記式(4)で表されるチタニウムキレートからなる群から選択される1種以上のチタン触媒とを、前記(D)チタン触媒1モルに対して前記(C)シラン化合物0.1~30モルの混合割合で混合し、30~100℃の反応温度で熟成させてなる熟成硬化触媒であることを特徴とする。 The curable composition of the present invention comprises (A) an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule, and (B) an aging curing catalyst. (B) an aging curing catalyst, (C) a silane compound obtained by reacting an epoxysilane compound represented by the formula (1) and an aminosilane compound represented by the formula (2), D) one or more titanium catalysts selected from the group consisting of a titanium chelate represented by the formula (3) and a titanium chelate represented by the formula (4), with respect to 1 mol of the titanium catalyst (D) (C) A aging curing catalyst obtained by mixing at a mixing ratio of 0.1 to 30 mol of the silane compound and aging at a reaction temperature of 30 to 100 ° C.
 前記(A)有機重合体としては、1分子中に1個以上の架橋性珪素基を含有する有機重合体であればよく、特に制限はないが、主鎖がポリシロキサンでない有機重合体であり、ポリシロキサンを除く各種の主鎖骨格を持つものを使用することが好適である。 The organic polymer (A) is not particularly limited as long as it is an organic polymer containing one or more crosslinkable silicon groups in one molecule, but is an organic polymer in which the main chain is not polysiloxane. It is preferable to use those having various main chain skeletons excluding polysiloxane.
 具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、ポリオキシプロピレン-ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレン等との共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリル及びスチレン等との共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、または、ラクトン類の開環重合で得られるポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のモノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系モノマー、酢酸ビニル、アクリロニトリル、スチレン等のモノマーをラジカル重合して得られるビニル系重合体;前記有機重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ε-カプロラクタムの開環重合によるナイロン6、ヘキサメチレンジアミンとアジピン酸の縮重合によるナイロン6・6、ヘキサメチレンジアミンとセバシン酸の縮重合によるナイロン6・10、ε-アミノウンデカン酸の縮重合によるナイロン11、ε-アミノラウロラクタムの開環重合によるナイロン12、上記のナイロンのうち2成分以上の成分を有する共重合ナイロン等のポリアミド系重合体;たとえばビスフェノールAと塩化カルボニルより縮重合して製造されるポリカーボネート系重合体、ジアリルフタレート系重合体等が例示される。 Specifically, polyoxyalkylene heavy polymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, polyoxypropylene-polyoxybutylene copolymer, etc. Copolymer; ethylene-propylene copolymer, polyisobutylene, copolymer of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene or copolymer of butadiene and acrylonitrile and / or styrene, polybutadiene, isoprene or butadiene Copolymers of acrylonitrile and styrene, etc., hydrocarbon polymers such as hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers; dibasic acids such as adipic acid and glycols A polyester polymer obtained by condensation of lactones or ring-opening polymerization of lactones; a (meth) acrylic acid ester polymer obtained by radical polymerization of monomers such as ethyl (meth) acrylate and butyl (meth) acrylate; (Meth) acrylic acid ester monomer, vinyl polymer obtained by radical polymerization of monomers such as vinyl acetate, acrylonitrile, styrene; graft polymer obtained by polymerizing vinyl monomer in the organic polymer; polysulfide Polymer: Nylon 6 by ring-opening polymerization of ε-caprolactam, Nylon 6.6 by condensation polymerization of hexamethylenediamine and adipic acid, Nylon 6.10 by condensation polymerization of hexamethylenediamine and sebacic acid, ε-aminoundecanoic acid Nylon 11, ε-aminolaurolac by condensation polymerization of A polyamide polymer such as nylon 12 produced by ring-opening polymerization of a copolymer, a copolymer nylon having two or more components of the above-mentioned nylon; a polycarbonate polymer produced by condensation polymerization of bisphenol A and carbonyl chloride, for example; Examples include diallyl phthalate polymers.
 さらに、ポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水素系重合体や、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体は比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れることから好ましい。また、ポリオキシアルキレン系重合体および(メタ)アクリル酸エステル系重合体は、透湿性が高く1液型組成物にした場合に深部硬化性に優れることから特に好ましい。 Furthermore, saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene polymers, and (meth) acrylic acid ester polymers can be obtained with a relatively low glass transition temperature. The cured product is preferable because it is excellent in cold resistance. Polyoxyalkylene polymers and (meth) acrylic acid ester polymers are particularly preferred because of their high moisture permeability and excellent deep-part curability when made into one-component compositions.
 本発明に用いる(A)有機系重合体の架橋性珪素基は、珪素原子に結合した水酸基又は加水分解性基を有し、シロキサン結合を形成することにより架橋しうる基である。前記架橋性珪素基としては、例えば、下記一般式(5)で示される基が好適である。 The crosslinkable silicon group of the (A) organic polymer used in the present invention is a group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond. As the crosslinkable silicon group, for example, a group represented by the following general formula (5) is preferable.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 前記式(5)中、R31は、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基またはR31 SiO-(R31は、前記と同じ)で示されるトリオルガノシロキシ基を示し、R31が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Xは水酸基または加水分解性基を示し、Xが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。dは0、1、2または3を、eは0、1または2を、それぞれ示す。またp個の下記一般式(6)におけるeは同一である必要はない。pは0~19の整数を示す。但し、d+(eの和)≧1を満足するものとする。 In the formula (5), R 31 represents an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or R 31 3 represents a triorganosiloxy group represented by SiO— (R 31 is the same as above), and when two or more R 31 are present, they may be the same or different. X represents a hydroxyl group or a hydrolyzable group, and when two or more X exist, they may be the same or different. d represents 0, 1, 2, or 3, and e represents 0, 1, or 2, respectively. Further, p in the following general formula (6) need not be the same. p represents an integer of 0 to 19. However, d + (sum of e) ≧ 1 is satisfied.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 該加水分解性基や水酸基は1個の珪素原子に1~3個の範囲で結合することができ、d+(eの和)は1~5の範囲が好ましい。加水分解性基や水酸基が架橋性珪素基中に2個以上結合する場合には、それらは同一であってもよく、異なっていてもよい。
 架橋性珪素基を形成する珪素原子は1個でもよく、2個以上であってもよいが、シロキサン結合等により連結された珪素原子の場合には、20個程度あってもよい。
The hydrolyzable group or hydroxyl group can be bonded to one silicon atom in the range of 1 to 3, and d + (sum of e) is preferably in the range of 1 to 5. When two or more hydrolyzable groups or hydroxyl groups are bonded to the crosslinkable silicon group, they may be the same or different.
The number of silicon atoms forming the crosslinkable silicon group may be one or two or more, but in the case of silicon atoms linked by a siloxane bond or the like, there may be about 20 silicon atoms.
 前記架橋性珪素基としては、下記一般式(7)で示される架橋性珪素基が、入手が容易である点から好ましい。 As the crosslinkable silicon group, a crosslinkable silicon group represented by the following general formula (7) is preferable because it is easily available.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 前記式(7)中、R31、Xは前記におなじ、dは1、2又は3の整数である。硬化性を考慮し、十分な硬化速度を有する硬化性組成物を得るには、前記式(7)においてaは2以上が好ましく、3がより好ましい。 In the formula (7), R 31 and X are the same as those described above, and d is an integer of 1, 2 or 3. In view of curability, in order to obtain a curable composition having a sufficient curing rate, a in the formula (7) is preferably 2 or more, and more preferably 3.
 上記R31の具体例としては、たとえばメチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、R31 SiO-で示されるトリオルガノシロキシ基等があげられる。これらの中ではメチル基が好ましい。 Specific examples of R 31 include an alkyl group such as a methyl group and an ethyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, an aralkyl group such as a benzyl group, and R 31 3 SiO—. And triorganosiloxy group. Of these, a methyl group is preferred.
 上記Xで示される加水分解性基としては、特に限定されず、従来公知の加水分解性基であればよい。具体的には、たとえば水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等があげられる。これらの中では、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基およびアルケニルオキシ基が好ましく、アルコキシ基、アミド基、アミノオキシ基がさらに好ましい。加水分解性が穏やかで取扱やすいという観点からアルコキシ基が特に好ましい。アルコキシ基の中では炭素数の少ないものの方が反応性が高く、メトキシ基>エトキシ基>プロポキシ基の順のように炭素数が多くなるほどに反応性が低くなる。目的や用途に応じて選択できるが通常メトキシ基やエトキシ基が使用される。 The hydrolyzable group represented by X is not particularly limited as long as it is a conventionally known hydrolyzable group. Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group. Among these, a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable, and an alkoxy group, an amide group, and an aminooxy group are more preferable. An alkoxy group is particularly preferred from the viewpoint of mild hydrolysis and easy handling. Among the alkoxy groups, those having a smaller number of carbon atoms have higher reactivity, and the reactivity increases as the number of carbon atoms increases in the order of methoxy group> ethoxy group> propoxy group. Although it can be selected according to the purpose and use, a methoxy group or an ethoxy group is usually used.
 架橋性珪素基の具体的な構造としては、トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基[-Si(OR)]、メチルジメトキシシリル基、メチルジエトキシシリル基等のジアルコキシシリル基[-SiR(OR)]、があげられ、トリメトキシシリル基がより好適である。ここでRはメチル基やエチル基のようなアルキル基である。 Specific examples of the crosslinkable silicon group include trialkoxysilyl groups [—Si (OR) 3 ] such as trimethoxysilyl group and triethoxysilyl group, dialkoxy such as methyldimethoxysilyl group and methyldiethoxysilyl group. A silyl group [—SiR 1 (OR) 2 ], and a trimethoxysilyl group is more preferable. Here, R is an alkyl group such as a methyl group or an ethyl group.
 また、架橋性珪素基は1種で使用しても良く、2種以上併用してもかまわない。架橋性珪素基は、主鎖または側鎖あるいはいずれにも存在しうる。 Moreover, the crosslinkable silicon group may be used alone or in combination of two or more. The crosslinkable silicon group can be present in the main chain, the side chain, or both.
 架橋性珪素基を形成する珪素原子は1個以上であるが、シロキサン結合などにより連結された珪素原子の場合には、20個以下であることが好ましい。 The number of silicon atoms forming the crosslinkable silicon group is one or more, but in the case of silicon atoms linked by a siloxane bond or the like, it is preferably 20 or less.
 架橋性珪素基を有する有機重合体は直鎖状、または分岐を有してもよく、その数平均分子量はGPCにおけるポリスチレン換算において500~100,000程度、より好ましくは1,000~50,000であり、特に好ましくは3,000~30,000である。数平均分子量が500未満では、硬化物の伸び特性の点で不都合な傾向があり、100,000を越えると、高粘度となる為に作業性の点で不都合な傾向がある。 The organic polymer having a crosslinkable silicon group may be linear or branched, and its number average molecular weight is about 500 to 100,000 in terms of polystyrene in GPC, more preferably 1,000 to 50,000. Particularly preferred is 3,000 to 30,000. If the number average molecular weight is less than 500, the cured product tends to be disadvantageous in terms of elongation characteristics, and if it exceeds 100,000, the viscosity tends to be inconvenient because of high viscosity.
 高強度、高伸びで、低弾性率を示すゴム状硬化物を得るためには、有機重合体に含有される架橋性珪素基は重合体1分子中に平均して0.8個以上、好ましくは1.1~5個存在するのがよい。分子中に含まれる架橋性珪素基の数が平均して0.8個未満になると、硬化性が不充分になり、良好なゴム弾性挙動を発現しにくくなる。架橋性珪素基は、有機重合体分子鎖の主鎖の末端あるいは側鎖の末端にあってもよいし、また、両方にあってもよい。特に、架橋性珪素基が分子鎖の主鎖の末端にのみあるときは、最終的に形成される硬化物に含まれる有機重合体成分の有効網目長が長くなるため、高強度、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなる。 In order to obtain a rubber-like cured product having high strength, high elongation, and low elastic modulus, the average number of crosslinkable silicon groups contained in the organic polymer is 0.8 or more in one molecule of the polymer. 1.1 to 5 may be present. If the number of crosslinkable silicon groups contained in the molecule is less than 0.8 on average, the curability becomes insufficient and it becomes difficult to develop good rubber elastic behavior. The crosslinkable silicon group may be at the end of the main chain or the side chain of the organic polymer molecular chain, or at both ends. In particular, when the crosslinkable silicon group is only at the end of the main chain of the molecular chain, the effective network length of the organic polymer component contained in the finally formed cured product is increased, so that the strength and elongation are high. It becomes easy to obtain a rubber-like cured product exhibiting a low elastic modulus.
 前記ポリオキシアルキレン系重合体は、本質的に下記一般式(8)で示される繰り返し単位を有する重合体である。
 -R32-O- ・・・(8)
 前記一般式(8)中、R32は炭素数1~14の直鎖状もしくは分岐アルキレン基であり、炭素数1~14の、さらには2~4の、直鎖状もしくは分岐アルキレン基が好ましい。
The polyoxyalkylene polymer is essentially a polymer having a repeating unit represented by the following general formula (8).
-R 32 -O- (8)
In the general formula (8), R 32 is a linear or branched alkylene group having 1 to 14 carbon atoms, preferably a linear or branched alkylene group having 1 to 14 carbon atoms, and more preferably 2 to 4 carbon atoms. .
 一般式(8)で示される繰り返し単位の具体例としては、
-CHO-、-CHCHO-、-CHCH(CH)O-、-CHCH(C)O-、-CHC(CHO-、-CHCHCHCHO-
等が挙げられる。ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。特にシーリング材等に使用される場合には、プロピレンオキシド重合体を主成分とする重合体から成るものが非晶質であることや比較的低粘度である点から好ましい。
Specific examples of the repeating unit represented by the general formula (8) include
-CH 2 O -, - CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (C 2 H 5) O -, - CH 2 C (CH 3) 2 O-, —CH 2 CH 2 CH 2 CH 2 O—
Etc. The main chain skeleton of the polyoxyalkylene polymer may be composed of only one type of repeating unit, or may be composed of two or more types of repeating units. In particular, when used as a sealant or the like, a polymer comprising a propylene oxide polymer as a main component is preferable because it is amorphous or has a relatively low viscosity.
 ポリオキシアルキレン系重合体の合成法としては、たとえばKOHのようなアルカリ触媒による重合法、たとえば特開昭61-197631号、同61-215622号、同61-215623号、同61-215623号に示されるような有機アルミニウム化合物とポルフィリンとを反応させて得られる、有機アルミ-ポルフィリン錯体触媒による重合法、たとえば特公昭46-27250号および特公昭59-15336号などに示される複金属シアン化物錯体触媒による重合法等があげられるが、特に限定されるものではない。有機アルミ-ポルフィリン錯体触媒による重合法や複金属シアン化物錯体触媒による重合法によれば数平均分子量6,000以上、Mw/Mnが1.6以下の高分子量で分子量分布が狭いポリオキシアルキレン系重合体を得ることができる。 As a method for synthesizing a polyoxyalkylene polymer, for example, a polymerization method using an alkali catalyst such as KOH, for example, JP-A Nos. 61-197631, 61-215622, 61-215623, and 61-215623 can be used. Polymerization methods using an organoaluminum-porphyrin complex catalyst obtained by reacting an organoaluminum compound with porphyrin as shown, for example, double metal cyanide complexes shown in JP-B-46-27250 and JP-B-59-15336 Examples of the polymerization method using a catalyst include, but are not limited to, a polymerization method. A polyoxyalkylene system having a high molecular weight with a number average molecular weight of 6,000 or more and Mw / Mn of 1.6 or less and a narrow molecular weight distribution according to a polymerization method using an organic aluminum-porphyrin complex catalyst or a polymerization method using a double metal cyanide complex catalyst A polymer can be obtained.
 上記ポリオキシアルキレン系重合体の主鎖骨格中にはウレタン結合成分等の他の成分を含んでいてもよい。ウレタン結合成分としては、たとえばトルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネートと水酸基を有するポリオキシアルキレン系重合体との反応から得られるものをあげることができる。 The main chain skeleton of the polyoxyalkylene polymer may contain other components such as a urethane bond component. Examples of the urethane bond component include aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate; aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate, and polyoxyalkylene heavy compounds having a hydroxyl group. The thing obtained from reaction with coalescence can be mention | raise | lifted.
 ポリオキシアルキレン系重合体への架橋性珪素基の導入は、分子中に不飽和基、水酸基、エポキシ基やイソシアネート基等の官能基を有するポリオキシアルキレン系重合体に、この官能基に対して反応性を示す官能基および架橋性珪素基を有する化合物を反応させることにより行うことができる(以下、高分子反応法という)。 The introduction of a crosslinkable silicon group into a polyoxyalkylene polymer can be performed on a polyoxyalkylene polymer having a functional group such as an unsaturated group, a hydroxyl group, an epoxy group or an isocyanate group in the molecule. The reaction can be carried out by reacting a compound having a reactive functional group and a crosslinkable silicon group (hereinafter referred to as a polymer reaction method).
 高分子反応法の具体例として、不飽和基含有ポリオキシアルキレン系重合体に架橋性珪素基を有するヒドロシランや架橋性珪素基を有するメルカプト化合物を作用させてヒドロシリル化やメルカプト化し、架橋性珪素基を有するポリオキシアルキレン系重合体を得る方法をあげることができる。不飽和基含有ポリオキシアルキレン系重合体は水酸基等の官能基を有する有機重合体に、この官能基に対して反応性を示す活性基および不飽和基を有する有機化合物を反応させ、不飽和基を含有するポリオキシアルキレン系重合体を得ることができる。 As a specific example of the polymer reaction method, a hydrosilane or mercapto compound obtained by allowing a hydrosilane having a crosslinkable silicon group or a mercapto compound having a crosslinkable silicon group to act on an unsaturated group-containing polyoxyalkylene polymer to form a crosslinkable silicon group The method of obtaining the polyoxyalkylene type polymer which has this can be mention | raise | lifted. An unsaturated group-containing polyoxyalkylene polymer is obtained by reacting an organic polymer having a functional group such as a hydroxyl group with an organic compound having an active group and an unsaturated group that are reactive with the functional group, A polyoxyalkylene polymer containing can be obtained.
 また、高分子反応法の他の具体例として、末端に水酸基を有するポリオキシアルキレン系重合体とイソシアネート基および架橋性珪素基を有する化合物を反応させる方法や末端にイソシアネート基を有するポリオキシアルキレン系重合体と水酸基やアミノ基等の活性水素基および架橋性珪素基を有する化合物を反応させる方法をあげることができる。イソシアネート化合物を使用すると、容易に架橋性珪素基を有するポリオキシアルキレン系重合体を得ることができる。 Other specific examples of the polymer reaction method include a method of reacting a polyoxyalkylene polymer having a hydroxyl group at a terminal with a compound having an isocyanate group and a crosslinkable silicon group, or a polyoxyalkylene system having an isocyanate group at a terminal. Examples thereof include a method of reacting a polymer with a compound having an active hydrogen group such as a hydroxyl group or an amino group and a crosslinkable silicon group. When an isocyanate compound is used, a polyoxyalkylene polymer having a crosslinkable silicon group can be easily obtained.
 架橋性珪素基を有するポリオキシアルキレン系重合体の具体例としては、特公昭45-36319号、同46-12154号、特開昭50-156599号、同54-6096号、同55-13767号、同57-164123号、特公平3-2450号、特開2005-213446号、同2005-306891号、国際公開特許WO2007-040143号、米国特許3,632,557、同4,345,053、同4,960,844等の各公報に提案されているものをあげることができる。 Specific examples of the polyoxyalkylene polymer having a crosslinkable silicon group include JP-B Nos. 45-36319, 46-12154, JP-A Nos. 50-156599, 54-6096, and 55-13767. No. 57-164123, Japanese Patent Publication No. 3-2450, Japanese Patent Application Laid-Open No. 2005-213446, No. 2005-306891, International Publication No. WO 2007-040143, US Pat. No. 3,632,557, No. 4,345,053, The ones proposed in the publications such as 4,960,844 can be listed.
 上記の架橋性珪素基を有するポリオキシアルキレン系重合体は、単独で使用してもよく、2種以上併用してもよい。 The above polyoxyalkylene polymers having a crosslinkable silicon group may be used alone or in combination of two or more.
 前記飽和炭化水素系重合体は芳香環以外の炭素-炭素不飽和結合を実質的に含有しない重合体であり、その骨格をなす重合体は、(1)エチレン、プロピレン、1-ブテン、イソブチレンなどのような炭素数2~6のオレフィン系化合物を主モノマーとして重合させるか、(2)ブタジエン、イソプレンなどのようなジエン系化合物を単独重合させ、あるいは、上記オレフィン系化合物とを共重合させた後、水素添加するなどの方法により得ることができるが、イソブチレン系重合体や水添ポリブタジエン系重合体は、末端に官能基を導入しやすく、分子量を制御しやすく、また、末端官能基の数を多くすることができるので好ましく、イソブチレン系重合体が特に好ましい。 The saturated hydrocarbon polymer is a polymer that does not substantially contain a carbon-carbon unsaturated bond other than an aromatic ring, and the polymer constituting the skeleton thereof is (1) ethylene, propylene, 1-butene, isobutylene, etc. (2) Diene compounds such as butadiene and isoprene are homopolymerized or copolymerized with the above olefin compounds. After that, it can be obtained by a method such as hydrogenation. However, isobutylene polymers and hydrogenated polybutadiene polymers are easy to introduce functional groups at the terminals, control the molecular weight, and the number of terminal functional groups. Therefore, an isobutylene polymer is particularly preferable.
 主鎖骨格が飽和炭化水素系重合体であるものは、耐熱性、耐候性、耐久性、及び湿気遮断性に優れる特徴を有する。 Those whose main chain skeleton is a saturated hydrocarbon polymer have characteristics of excellent heat resistance, weather resistance, durability, and moisture barrier properties.
 イソブチレン系重合体は、単量体単位のすべてがイソブチレン単位から形成されていてもよいし、他単量体との共重合体でもよいが、ゴム特性の面からイソブチレンに由来する繰り返し単位を50質量%以上含有するものが好ましく、80質量%以上含有するものがより好ましく、90~99質量%含有するものが特に好ましい。 In the isobutylene-based polymer, all of the monomer units may be formed from isobutylene units, or may be a copolymer with other monomers, but the repeating unit derived from isobutylene is 50 from the viewpoint of rubber properties. Those containing at least mass% are preferred, those containing at least 80 mass% are more preferred, and those containing from 90 to 99 mass% are particularly preferred.
 飽和炭化水素系重合体の合成法としては、従来、各種重合方法が報告されているが、特に近年多くのいわゆるリビング重合が開発されている。飽和炭化水素系重合体、特にイソブチレン系重合体の場合、Kennedyらによって見出されたイニファー重合(J. P. Kennedyら、J. Polymer Sci., Polymer Chem. Ed. 1997年、15巻、2843頁)を用いることにより容易に製造することが可能であり、分子量500~100,000程度を、分子量分布1.5以下で重合でき、分子末端に各種官能基を導入できることが知られている。 As a method for synthesizing a saturated hydrocarbon polymer, various polymerization methods have been reported so far, but many so-called living polymerizations have been developed in recent years. In the case of saturated hydrocarbon polymers, particularly isobutylene polymers, the inifer polymerization found by Kennedy et al. (J. P. Kennedy et al., J. Polymer Sci., Polymer Chem. Ed. 1997, 15, 2843). It is known that a polymer having a molecular weight of about 500 to 100,000 can be polymerized with a molecular weight distribution of 1.5 or less, and various functional groups can be introduced at the molecular ends.
 架橋性珪素基を有する飽和炭化水素系重合体の製法としては、たとえば、特公平4-69659号、特公平7-108928号、特開昭63-254149号、特開昭64-22904号、特開平1-197509号、特許公報第2539445号、特許公報第2873395号、特開平7-53882号の各明細書などに記載されているが、特にこれらに限定されるものではない。 Examples of the method for producing a saturated hydrocarbon polymer having a crosslinkable silicon group include, for example, JP-B-4-69659, JP-B-7-108928, JP-A-62-254149, JP-A-62-2904, Although described in each specification of Kaihei 1-197509, Japanese Patent Publication No. 2539445, Japanese Patent Publication No. 2873395, and Japanese Patent Application Laid-Open No. 7-53882, it is not particularly limited thereto.
 上記の架橋性珪素基を有する飽和炭化水素系重合体は、単独で使用してもよいし2種以上併用してもよい。 The above saturated hydrocarbon polymer having a crosslinkable silicon group may be used alone or in combination of two or more.
 前記(メタ)アクリル酸エステル系重合体の主鎖を構成する(メタ)アクリル酸エステル系モノマーとしては特に限定されず、各種のものを用いることができる。例示するならば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-アミノエチル、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、γ-(メタクリロイルオキシプロピル)ジメトキシメチルシラン、メタクリロイルオキシメチルトリメトキシシラン、メタクリロイルオキシメチルトリエトキシシラン、メタクリロイルオキシメチルジメトキシメチルシラン、メタクリロイルオキシメチルジエトキシメチルシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2-トリフルオロメチルエチル、(メタ)アクリル酸2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸ビス(トリフルオロメチル)メチル、(メタ)アクリル酸2-トリフルオロメチル-2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロヘキシルエチル、(メタ)アクリル酸2-パーフルオロデシルエチル、(メタ)アクリル酸2-パーフルオロヘキサデシルエチル等の(メタ)アクリル酸系モノマーが挙げられる。 The (meth) acrylic acid ester monomer constituting the main chain of the (meth) acrylic acid ester polymer is not particularly limited, and various types can be used. Examples include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, Isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-heptyl (meth) acrylate, N-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, phenyl (meth) acrylate, (meth) acrylic Acid toluyl, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, (meth) acrylic 3-methoxybutyl, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, stearyl (meth) acrylate, glycidyl (meth) acrylate, 2-aminoethyl (meth) acrylate, γ -(Methacryloyloxypropyl) trimethoxysilane, γ- (methacryloyloxypropyl) dimethoxymethylsilane, methacryloyloxymethyltrimethoxysilane, methacryloyloxymethyltriethoxysilane, methacryloyloxymethyldimethoxymethylsilane, methacryloyloxymethyldiethoxymethylsilane, Ethylene oxide adduct of (meth) acrylic acid, trifluoromethylmethyl (meth) acrylate, 2-trifluoromethylethyl (meth) acrylate, 2- (meth) acrylic acid 2- -Fluoroethyl ethyl, 2-perfluoroethyl-2-perfluorobutylethyl (meth) acrylate, perfluoroethyl (meth) acrylate, trifluoromethyl (meth) acrylate, bis (trifluoro) (meth) acrylate Methyl) methyl, 2-trifluoromethyl-2-perfluoroethylethyl (meth) acrylate, 2-perfluorohexylethyl (meth) acrylate, 2-perfluorodecylethyl (meth) acrylate, (meth) acrylic And (meth) acrylic acid monomers such as 2-perfluorohexadecyl ethyl acid.
 前記(メタ)アクリル酸エステル系重合体では、(メタ)アクリル酸エステル系モノマーとともに、以下のビニル系モノマーを共重合することもできる。該ビニル系モノマーを例示すると、スチレン、ビニルトルエン、α-メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩等のスチレン系モノマー;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニルモノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等の珪素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル;フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。 In the (meth) acrylic acid ester polymer, the following vinyl monomers can be copolymerized together with the (meth) acrylic acid ester monomer. Examples of the vinyl monomers include styrene monomers such as styrene, vinyl toluene, α-methyl styrene, chlorostyrene, styrene sulfonic acid, and salts thereof; fluorine-containing vinyl monomers such as perfluoroethylene, perfluoropropylene, and vinylidene fluoride. Silicon-containing vinyl monomers such as vinyltrimethoxysilane and vinyltriethoxysilane; maleic anhydride, maleic acid, monoalkyl and dialkyl esters of maleic acid; fumaric acid, monoalkyl and dialkyl esters of fumaric acid; maleimide, Methyl maleimide, ethyl maleimide, propyl maleimide, butyl maleimide, hexyl maleimide, octyl maleimide, dodecyl maleimide, stearyl maleimide, phenyl maleimide, cyclohexyl Maleimide monomers such as maleimide; Nitrile group-containing vinyl monomers such as acrylonitrile and methacrylonitrile; Amide group-containing vinyl monomers such as acrylamide and methacrylamide; Vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate, cinnamon Examples thereof include vinyl esters such as vinyl acid; alkenes such as ethylene and propylene; conjugated dienes such as butadiene and isoprene; vinyl chloride, vinylidene chloride, allyl chloride, and allyl alcohol.
 これらは、単独で用いても良いし、複数を共重合させても構わない。なかでも、生成物の物性等から、スチレン系モノマー及び(メタ)アクリル酸系モノマーからなる重合体が好ましい。より好ましくは、アクリル酸エステルモノマー及びメタクリル酸エステルモノマーからなる(メタ)アクリル系重合体であり、特に好ましくはアクリル酸エステルモノマーからなるアクリル系重合体である。一般建築用等の用途においては配合物の低粘度、硬化物の低モジュラス、高伸び、耐候、耐熱性等の物性が要求される点から、アクリル酸ブチル系モノマーが更に好ましい。一方、自動車用途等の耐油性等が要求される用途においては、アクリル酸エチルを主とした共重合体が更に好ましい。このアクリル酸エチルを主とした重合体は耐油性に優れるが低温特性(耐寒性)にやや劣る傾向があるため、その低温特性を向上させるために、アクリル酸エチルの一部をアクリル酸ブチルに置き換えることも可能である。ただし、アクリル酸ブチルの比率を増やすに伴いその良好な耐油性が損なわれていくので、耐油性を要求される用途にはその比率は40%以下にするのが好ましく、更には30%以下にするのがより好ましい。また、耐油性を損なわずに低温特性等を改善するために側鎖のアルキル基に酸素が導入されたアクリル酸-2-メトキシエチルやアクリル酸-2-エトキシエチル等を用いるのも好ましい。ただし、側鎖にエーテル結合を持つアルコキシ基の導入により耐熱性が劣る傾向にあるので、耐熱性が要求されるときには、その比率は40%以下にするのが好ましい。各種用途や要求される目的に応じて、必要とされる耐油性や耐熱性、低温特性等の物性を考慮し、その比率を変化させ、適した重合体を得ることが可能である。例えば、限定はされないが耐油性や耐熱性、低温特性等の物性バランスに優れている例としては、アクリル酸エチル/アクリル酸ブチル/アクリル酸-2-メトキシエチル(質量比で40~50/20~30/30~20)の共重合体が挙げられる。本発明においては、これらの好ましいモノマーを他のモノマーと共重合、更にはブロック共重合させても構わなく、その際は、これらの好ましいモノマーが質量比で40%以上含まれていることが好ましい。なお上記表現形式で例えば(メタ)アクリル酸とは、アクリル酸および/あるいはメタクリル酸を表す。 These may be used alone or a plurality of them may be copolymerized. Especially, the polymer which consists of a styrene-type monomer and a (meth) acrylic-acid type monomer from the physical property of a product etc. is preferable. More preferred is a (meth) acrylic polymer comprising an acrylate monomer and a methacrylic acid ester monomer, and particularly preferred is an acrylic polymer comprising an acrylate monomer. In applications such as general construction, a butyl acrylate monomer is more preferred from the viewpoint that physical properties such as low viscosity of the blend, low modulus of the cured product, high elongation, weather resistance, and heat resistance are required. On the other hand, in applications that require oil resistance, such as automobile applications, copolymers based on ethyl acrylate are more preferred. This polymer mainly composed of ethyl acrylate is excellent in oil resistance but tends to be slightly inferior in low temperature characteristics (cold resistance). Therefore, in order to improve the low temperature characteristics, a part of ethyl acrylate is converted into butyl acrylate. It is also possible to replace it. However, as the ratio of butyl acrylate is increased, its good oil resistance is impaired. Therefore, for applications requiring oil resistance, the ratio is preferably 40% or less, and more preferably 30% or less. More preferably. It is also preferable to use 2-methoxyethyl acrylate or 2-ethoxyethyl acrylate in which oxygen is introduced into the alkyl group in the side chain in order to improve low temperature characteristics and the like without impairing oil resistance. However, since heat resistance tends to be inferior due to the introduction of an alkoxy group having an ether bond in the side chain, when heat resistance is required, the ratio is preferably 40% or less. In accordance with various uses and required purposes, it is possible to obtain suitable polymers by changing the ratio in consideration of required physical properties such as oil resistance, heat resistance and low temperature characteristics. For example, although not limited, examples of excellent balance of physical properties such as oil resistance, heat resistance, and low-temperature characteristics include ethyl acrylate / butyl acrylate / -2-methoxyethyl acrylate (40-50 / 20 by mass ratio). To 30/30 to 20). In the present invention, these preferable monomers may be copolymerized with other monomers, and further block copolymerized, and in this case, it is preferable that these preferable monomers are contained in a mass ratio of 40% or more. . In the above expression format, for example, (meth) acrylic acid represents acrylic acid and / or methacrylic acid.
 本発明において、(メタ)アクリル酸エステル重合体を得る方法は、特に限定されず、公知の重合法(例えば、特開昭63-112642号、特開2007-230947号、特開2001-40037号、特開2003-313397号等の記載の合成法)を利用することができ、ラジカル重合反応を用いたラジカル重合法が好ましい。ラジカル重合法としては、重合開始剤を用いて所定の単量体単位を共重合させるラジカル重合法(フリーラジカル重合法)や、末端などの制御された位置に反応性シリル基を導入することが可能な制御ラジカル重合法が挙げられる。但し、重合開始剤としてアゾ系化合物、過酸化物などを用いる通常のフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に2以上と大きく、粘度が高くなるという問題を有している。従って、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系重合体を得るためには、制御ラジカル重合法を用いることが好適である。 In the present invention, the method for obtaining the (meth) acrylic acid ester polymer is not particularly limited, and known polymerization methods (for example, JP-A-63-112642, JP-A-2007-230947, JP-A-2001-40037). And a synthesis method described in JP-A-2003-313397), and a radical polymerization method using a radical polymerization reaction is preferable. As the radical polymerization method, a radical polymerization method (free radical polymerization method) in which a predetermined monomer unit is copolymerized using a polymerization initiator or a reactive silyl group is introduced at a controlled position such as a terminal. Possible controlled radical polymerization methods are mentioned. However, a polymer obtained by a normal free radical polymerization method using an azo compound or a peroxide as a polymerization initiator has a problem that the molecular weight distribution is generally as large as 2 or more and the viscosity is increased. Yes. Therefore, in order to obtain a (meth) acrylate polymer having a narrow molecular weight distribution and a low viscosity and having a crosslinkable functional group at the molecular chain terminal at a high ratio. It is preferable to use a controlled radical polymerization method.
 制御ラジカル重合法としては、特定の官能基を有する連鎖移動剤を用いたフリーラジカル重合法やリビングラジカル重合法が挙げられ、付加-開裂移動反応(Reversible Addition-Fragmentation chain Transfer;RAFT)重合法、遷移金属錯体を用いたラジカル重合法(Transition-Metal-Mediated Living Radical Polymerization)等のリビングラジカル重合法がより好ましい。また、反応性シリル基を有するチオール化合物を用いた反応や、反応性シリル基を有するチオール化合物及びメタロセン化合物を用いた反応(特開2001-40037号公報)も好適である。 Examples of the controlled radical polymerization method include free radical polymerization method and living radical polymerization method using a chain transfer agent having a specific functional group, such as an addition-cleavage transfer reaction (RAFT) polymerization method, Living radical polymerization methods such as a radical polymerization method using a transition metal complex (Transition-Metal-Mediated Living Radical Polymerization) are more preferable. A reaction using a thiol compound having a reactive silyl group and a reaction using a thiol compound having a reactive silyl group and a metallocene compound (Japanese Patent Laid-Open No. 2001-40037) are also suitable.
<フリーラジカル重合法>
 フリーラジカル重合法を用いる場合は、連鎖移動剤、開始剤を用いて0℃~200℃で反応させることが好ましい。より好ましくは25℃~150℃の範囲内に設定することが特に好ましい。重合反応温度を上記範囲内に設定することにより、反応を暴走させることなく安定に進行させることができる。使用する重合性不飽和化合物の不飽和基の活性にもよるが、比較的重合性の高いアクリル酸エステル系の重合性不飽和化合物を用いた場合でも、反応温度を0℃未満とした場合、活性が低くなり、充分な重合率を達成するために必要な時間が長くなり、効率が悪い。さらに、スチレン型不飽和化合物のように重合活性が低い化合物を用いた場合でも、25℃以上の条件であれば、充分な重合率を達成することができる。フリーラジカル重合法を用いる場合において、反応時間は、重合率、分子量等を考慮して適宜設定することができるが、例えば上記のような条件では反応時間は、通常は1~144時間、好ましくは2~8時間の範囲内に設定することが好ましい。
<Free radical polymerization method>
When the free radical polymerization method is used, the reaction is preferably carried out at 0 ° C. to 200 ° C. using a chain transfer agent and an initiator. More preferably, it is particularly preferably set within the range of 25 ° C to 150 ° C. By setting the polymerization reaction temperature within the above range, the reaction can proceed stably without causing runaway. Depending on the activity of the unsaturated group of the polymerizable unsaturated compound to be used, even when a relatively unsaturated acrylate-based polymerizable unsaturated compound is used, when the reaction temperature is less than 0 ° C, The activity is low, the time required to achieve a sufficient polymerization rate is lengthened, and the efficiency is poor. Further, even when a compound having a low polymerization activity such as a styrene type unsaturated compound is used, a sufficient polymerization rate can be achieved under the condition of 25 ° C. or higher. In the case of using the free radical polymerization method, the reaction time can be appropriately set in consideration of the polymerization rate, molecular weight, etc. For example, the reaction time is usually 1 to 144 hours under the above conditions, preferably It is preferable to set within the range of 2 to 8 hours.
 前記連鎖移動剤としては、公知の連鎖移動剤を広く使用でき特に制限はないが、チオール化合物が好ましく、反応性シリル基を有するチオール化合物がより好ましい。例えば、メルカプトメチルトリメトキシシラン、メルカプトメチルメチルジメトキシシラン、メルカプトメチルジメチルメトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルメチルジエトキシシラン、メルカプトメチルジメチルエトキシシラン、メルカプトメチルトリプロポキシシシラン、メルカプトメチルメチルジプロポキシシラン、メルカプトメチルジメチルプロポキシシラン、3-メルカプトプロピル-トリメトキシシラン、3-メルカプトプロピル-トリエトキシシラン、3-メルカプトプロピル-モノメチルジメトキシシラン、3-メルカプトプロピル-モノフェニルジメトキシシラン、3-メルカプトプロピル-ジメチルモノメトキシシラン、3-メルカプトプロピル-モノメチルジエトキシシラン、4-メルカプトブチル-トリメトキシシランおよび3-メルカプトブチル-トリメトキシシランが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。 As the chain transfer agent, known chain transfer agents can be widely used and are not particularly limited. However, a thiol compound is preferable, and a thiol compound having a reactive silyl group is more preferable. For example, mercaptomethyltrimethoxysilane, mercaptomethylmethyldimethoxysilane, mercaptomethyldimethylmethoxysilane, mercaptomethyltriethoxysilane, mercaptomethylmethyldiethoxysilane, mercaptomethyldimethylethoxysilane, mercaptomethyltripropoxysilane, mercaptomethylmethyldisilane Propoxysilane, mercaptomethyldimethylpropoxysilane, 3-mercaptopropyl-trimethoxysilane, 3-mercaptopropyl-triethoxysilane, 3-mercaptopropyl-monomethyldimethoxysilane, 3-mercaptopropyl-monophenyldimethoxysilane, 3-mercaptopropyl -Dimethylmonomethoxysilane, 3-mercaptopropyl-monomethyldiethoxysilane, 4- Rukaputobuchiru - trimethoxysilane and 3-mercaptopropyl butyl - trimethoxysilane. These may be used alone or in combination of two or more.
 前記連鎖移動剤は、分子量、分子量分布等を考慮して適宜設定することができるが、通常の量で使用することができ、具体的には、重合させようとする重合性不飽和化合物100mol部に対して、通常は0.001~30mol部、好ましくは0.01~20mol部の量で使用される。 The chain transfer agent can be appropriately set in consideration of molecular weight, molecular weight distribution, etc., but can be used in a normal amount, specifically, 100 mol parts of a polymerizable unsaturated compound to be polymerized. The amount is usually 0.001 to 30 mol parts, preferably 0.01 to 20 mol parts.
 前記開始剤としては、特に限定されないが、例えば、アゾ系開始剤、過酸化物系開始剤、イオン性開始剤およびレドックス開始剤等が挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。 The initiator is not particularly limited, and examples thereof include an azo initiator, a peroxide initiator, an ionic initiator, and a redox initiator. These may be used alone or in combination of two or more.
 前記アゾ系開始剤としては、例えば、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(V-70、和光純薬工業(株)製)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(V-65、和光純薬工業(株)製)、2,2’-アゾビスイソブチロニトリル(V-60、和光純薬工業(株)製)、2,2’-アゾビス(2-メチルブチロニトリル)(V-59、和光純薬工業(株)製)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)(V-40、和光純薬工業(株)製)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド(V-30、和光純薬工業(株)製)、2-フェニルアゾ-4-メトキシ-2,4-ジメチル-バレロニトリル(V-19、和光純薬工業(株)製)等のアゾニトリル化合物、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド](VA-080、和光純薬工業(株)製)、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド](VA-082、和光純薬工業(株)製)、2,2’-アゾビス[2-メチル-N-[2-(1-ヒドロキシブチル)]-プロピオンアミド](VA-085、和光純薬工業(株)製)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド](VA-086、和光純薬工業(株)製)、2,2’-アゾビス(2-メチルプロピオンアミド)ジハイドレート(VA-088、和光純薬工業(株)製)、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド](VF-096、和光純薬工業(株)製)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)(VAm-110、和光純薬工業(株)製)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)(VAm-111、和光純薬工業(株)製)等のアゾアミド化合物、2,2’-アゾビス(2,4,4-トリメチルペンタン)(VR-110、和光純薬工業(株)製)、2,2’-アゾビス(2-メチルプロパン)(VR-160、和光純薬工業(株)製)等のアルキルアゾ化合物等が挙げられる。 Examples of the azo initiator include 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) (V-70, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis. (2,4-dimethylvaleronitrile) (V-65, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobisisobutyronitrile (V-60, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (2-methylbutyronitrile) (V-59, manufactured by Wako Pure Chemical Industries, Ltd.), 1,1′-azobis (cyclohexane-1-carbonitrile) (V-40, Wako Pure) Yakuhin Kogyo Co., Ltd.), 1-[(1-cyano-1-methylethyl) azo] formamide (V-30, Wako Pure Chemical Industries, Ltd.), 2-phenylazo-4-methoxy-2,4 -Dimethyl-valeronitrile (V-19, manufactured by Wako Pure Chemical Industries, Ltd.) Zonitrile compound, 2,2′-azobis [2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide] (VA-080, manufactured by Wako Pure Chemical Industries, Ltd.) 2,2′-azobis [2-methyl-N- [1,1-bis (hydroxymethyl) ethyl] propionamide] (VA-082, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis [ 2-methyl-N- [2- (1-hydroxybutyl)]-propionamide] (VA-085, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis [2-methyl-N- (2 -Hydroxyethyl) -propionamide] (VA-086, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (2-methylpropionamide) dihydrate (VA-088, manufactured by Wako Pure Chemical Industries, Ltd.) ), 2, 2 ' Azobis [N- (2-propenyl) -2-methylpropionamide] (VF-096, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (N-butyl-2-methylpropionamide) (VAm -110, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (N-cyclohexyl-2-methylpropionamide) (VAm-111, manufactured by Wako Pure Chemical Industries, Ltd.), 2 2,2′-azobis (2,4,4-trimethylpentane) (VR-110, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (2-methylpropane) (VR-160, Wako Pure Chemical) And alkylazo compounds such as those manufactured by Kogyo Co., Ltd.
 前記過酸化物系開始剤としては、例えば、メチルエチルケトンパーオキサイド(パーメックH、日脂(株)製)、シクロヘキサノンパーオキ種(パーヘキサH、日脂(株)製)、メチルシクロヘキサノンパーオキサイド(パーヘキサQ、日脂(株)製)、メチルアセトアセテートパーオキサイド(パーキュアーSA、日脂(株)製)、アセチルアセトンパーオキサイド(パーキュアーA、日脂(株)製)等のケトンパーオキサイド類、1,1-ビス(t-ヘキシルパーオキシ)3,3,5-トリメチルシクロヘキサン(パーヘキサTMH、日脂(株)製)、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン(パーヘキサHC、日脂(株)製)、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン(パーヘキサ3M、日脂(株)製)、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン(パーヘキサC、日脂(株)製)、1,1-ビス(t-ブチルパーオキシ)シクロドデカン(パーヘキサCD-R、日脂(株)製)、2,2’-ビス(t-ブチルパーオキシ)ブタン(パーヘキサ22、日脂(株)製)、n-ブチル4,4-ビス(t-ブチルパーオキシ)バレレート)パーヘキサV、日脂(株)製)、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン(パーテトラA、日脂(株)製)等のパーオキシケタール類、t-ブチルヒドロパーオキサイド(パーブチルH-69、日脂(株)製)、p-メンタンヒドロパーオキサイド(パーメンタH、日脂(株)製)、ジイソプロピルベンゼンヒドロパーオキサイド(パークミルP、日脂(株)製)、1,1,3,3-テトラメチルブチルヒドロパーオキサイド(パーオクタH、日脂(株)製)、クメンヒドロパーオキサイド(パークミルH-80、日脂(株)製)、t-ヘキシルヒドロパーオキサイド(パーヘキシルH、日脂(株)製)等のヒドロパーオキサイド類、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3(パーヘキシン25B、日脂(株)製)、ジ-t-ブチルパーオキサイド(パーブチルD-R、日脂(株)製)、t-ブチルクミルパーオキ種(パーブチルC、日脂(株)製)、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン(パーヘキサ25B、日脂(株)製)、ジクミルパーオキ種(パークミルD-R、日脂(株)製、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン(パーブチルP、日脂(株)製)等のジアルキルパーオキサイド類、オクタノイルパーオキ種(パーロイルO、日脂(株)製)、ラウロイルパーオキ種(パーロイルL、日脂(株)製)、ステアロイルパーオキ種(パーロイルS、日脂(株)製)、スクシニックアシッドパーオキ種(パーロイルSA、日脂(株)製)、ベンゾイルパーオキサイド(ナイパーBW、日脂(株)製)、イソブチリルパーオキサイド(パーロイルIB、日脂(株)製)、2,4-ジクロロベンゾイルパーオキ種(ナイパーCS、日脂(株)製)、3,5,5-トリメチルヘキサノイルパーオキ種(パーロイル355、日脂(株)製)等のジアシルパーオキサイド類、ジ-n-プロピルパーオキシジカーボネート(パーロイルNPP-50M、日脂(株)製)、ジイソプロピルパーオキシジカーボネート(パーロイルIPP-50、日脂(株)製)、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(パーロイルTCP、日脂(株)製)、ジ-2-エトキシエチルパーオキシジカーボネート(パーロイルEEP、日脂(株)製)、ジ-2-エトキシヘキシルパーオキシジカーボネート(パーロイルOPP、日脂(株)製)、ジ-2-メトキシブチルパーオキシジカーボネート(パーロイルMBP、日脂(株)製)、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート(パーロイルSOP、日脂(株)製)等のパーオキシジカーボネート類、α,α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン(ナイパーND-R、日脂(株)製)、クミルパーオキシネオデカノエート(パークミルND-R、日脂(株)製)、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート(パーオクタND-R、日脂(株)製)、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート(パーシクロND-R、日脂(株)製)、t-ヘキシルパーオキシネオデカノエート(パーヘキシルND-R、日脂(株)製)、t-ブチルパーオキシネオデカノエート(パーブチルND-R、日脂(株)製)、t-ヘキシルパーオキシピバレート(パーヘキシルPV、日脂(株)製)、t-ブチルパーオキシピバレート(パーブチルPV、日脂(株)製)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(パーオクタO、日脂(株)製)、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン(パーヘキサ250、日脂(株)製)、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート(パーシクロO、日脂(株)製)、t-ヘキシルパーオキシ-2-エチルヘキサノエート(パーヘキシルO、日脂(株)製)、t-ブチルパーオキシ-2-エチルヘキサノエート(パーブチルO、日脂(株)製)、t-ブチルパーオキシイソブチレート(パーブチルIB、日脂(株)製)、t-ヘキシルパーオキシイソプロピルモノカーボネート(パーヘキシルI、日脂(株)製)、t-ブチルパーオキシマレイックアシッド(パーブチルMA、日脂(株)製)、t-ブチルパーオキシ3,5,5-トリメチルヘキサノエート(パーブチル355、日脂(株)製)、t-ブチルパーオキシラウレート(パーブチルL、日脂(株)製)、2,5-ジメチル-2,5-ビス(m-トルオイルパーオキシ)ヘキサン(パーヘキサ25MT、日脂(株)製)、t-ブチルパーオキシイソプロピルモノカーボネート(パーブチルI、日脂(株)製)、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(パーブチルE、日脂(株)製)、t-ヘキシルパーオキシベンゾエート(パーヘキシルZ、日脂(株)製)、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン(パーヘキサ25Z、日脂(株)製)、t-ブチルパーオキシアセテート(パーブチルA、日脂(株)製)、t-ブチルパーオキシ-m-トルオイルベンゾエート(パーブチルZT、日脂(株)製)、t-ブチルパーオキシベンゾエート(パーブチルZ、日脂(株)製)、ビス(t-ブチルパーオキシ)イソフタレート(パーブチルIF、日脂(株)製)等のパーオキシエステル類、t-ブチルパーオキシアリルモノカーボネート(ペロマーAC、日脂(株)製)、t-ブチルトリメチルシリルパーオキサイド(パーブチルSM、日脂(株)製)、3,3’-4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン(BTTB-50、日脂(株)製)、2,3-ジメチル-2,3-ジフェニルブタン(ノフマーBC、日脂(株)製)等が挙げられる。 Examples of the peroxide initiator include methyl ethyl ketone peroxide (Permec H, manufactured by NOF Corporation), cyclohexanone peroxide species (Perhexa H, manufactured by NOF Corporation), methylcyclohexanone peroxide (Perhexa Q). , Manufactured by NOF Corporation), methylacetoacetate peroxide (Percure SA, manufactured by NOF Corporation), ketone peroxides such as acetylacetone peroxide (Percure A, manufactured by NOF Corporation), 1,1 -Bis (t-hexylperoxy) 3,3,5-trimethylcyclohexane (Perhexa TMH, manufactured by NOF Corporation), 1,1-bis (t-hexylperoxy) cyclohexane (Perhexa HC, NOF Corporation ), 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane (per Oxa 3M, manufactured by NOF Corporation), 1,1-bis (t-butylperoxy) cyclohexane (Perhexa C, manufactured by NOF Corporation), 1,1-bis (t-butylperoxy) cyclododecane (Perhexa CD-R, manufactured by NOF Corporation), 2,2′-bis (t-butylperoxy) butane (Perhexa 22, manufactured by NOF Corporation), n-butyl 4,4-bis (t -Butylperoxy) valerate) perhexa V, manufactured by NOF Corporation), 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane (pertetra A, manufactured by NOF Corporation), etc. Peroxyketals, t-butyl hydroperoxide (Perbutyl H-69, manufactured by NOF Corporation), p-menthane hydroperoxide (Permenta H, manufactured by NOF Corporation), diisopropylbenzene hydroperoxide ( Cumyl P, manufactured by NOF Corporation), 1,1,3,3-tetramethylbutyl hydroperoxide (Perocta H, manufactured by NOF Corporation), cumene hydroperoxide (Park Mill H-80, NOF Corporation) ), Hydroperoxides such as t-hexyl hydroperoxide (Perhexyl H, NOF Corporation), 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3 (Perhexin 25B, manufactured by NOF Corporation), di-t-butyl peroxide (Perbutyl DR, manufactured by NOF Corporation), t-butyl cumyl peroxy species (Perbutyl C, manufactured by NOF Corporation) ), 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane (Perhexa 25B, manufactured by NOF Corporation), Dicumyl Peroxy species (Park Mill DR, manufactured by NOF Corporation), α, α'-bis (t- Dialkyl peroxides such as tilperoxy) diisopropylbenzene (perbutyl P, manufactured by NOF Corporation), octanoyl peroxy species (Perroyl O, manufactured by NOF Corporation), lauroyl peroxy species (Perroyl L, NOF Corporation) Co., Ltd.), stearoyl peroxy species (Perroyl S, manufactured by NOF Corporation), succinic acid peroxy species (Perloyl SA, manufactured by NOF Corporation), benzoyl peroxide (Nyper BW, NOF Corporation )), Isobutyryl peroxide (Perroyl IB, manufactured by NOF Corporation), 2,4-dichlorobenzoyl peroxy species (Nyper CS, manufactured by NOF Corporation), 3,5,5-trimethylhexanoyl Diacyl peroxides such as peroxy species (Perroyl 355, manufactured by NOF Corporation), di-n-propyl peroxydicarbonate (Perloy NPP-50M, manufactured by NOF Corporation), diisopropyl peroxydicarbonate (Perroyl IPP-50, manufactured by NOF Corporation), bis (4-t-butylcyclohexyl) peroxydicarbonate (Perloyl TCP, Nippon Oil Corporation) Fatty Co., Ltd.), di-2-ethoxyethyl peroxydicarbonate (Perroyl EEP, manufactured by NOF Corporation), di-2-ethoxyhexyl peroxydicarbonate (Perloyl OPP, manufactured by NOF Corporation) Di-2-methoxybutyl peroxydicarbonate (Perroyl MBP, manufactured by NOF Corporation), di (3-methyl-3-methoxybutyl) peroxydicarbonate (Perloyl SOP, manufactured by NOF Corporation), etc. Peroxydicarbonates, α, α'-bis (neodecanoylperoxy) diisopropylbenzene (Nyper ND-R, (Manufactured by NOF Corporation), cumyl peroxyneodecanoate (Park Mill ND-R, manufactured by NOF Corporation), 1,1,3,3-tetramethylbutylperoxyneodecanoate (perocta ND- R, manufactured by NOF Corporation), 1-cyclohexyl-1-methylethyl peroxyneodecanoate (percyclo ND-R, manufactured by NOF Corporation), t-hexylperoxyneodecanoate (perhexyl ND) -R, manufactured by NOF Corporation, t-butyl peroxyneodecanoate (perbutyl ND-R, manufactured by NOF Corporation), t-hexyl peroxypivalate (perhexyl PV, NOF Corporation) ), T-butyl peroxypivalate (Perbutyl PV, manufactured by NOF Corporation), 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (Perocta O, NOF Corporation) ) Made 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane (Perhexa 250, manufactured by NOF Corporation), 1-cyclohexyl-1-methylethylperoxy-2-ethylhexano Ate (Percyclo O, manufactured by NOF Corporation), t-hexylperoxy-2-ethylhexanoate (Perhexyl O, manufactured by NOF Corporation), t-butylperoxy-2-ethylhexanoate ( Perbutyl O, manufactured by NOF Corporation), t-butyl peroxyisobutyrate (Perbutyl IB, manufactured by NOF Corporation), t-hexyl peroxyisopropyl monocarbonate (Perhexyl I, manufactured by NOF Corporation) T-butyl peroxymaleic acid (Perbutyl MA, manufactured by NOF Corporation), t-butylperoxy 3,5,5-trimethylhexanoate (Perb 355, manufactured by NOF Corporation), t-butyl peroxylaurate (Perbutyl L, manufactured by NOF Corporation), 2,5-dimethyl-2,5-bis (m-toluoylperoxy) hexane (Perhexa 25MT, manufactured by NOF Corporation), t-butyl peroxyisopropyl monocarbonate (Perbutyl I, manufactured by NOF Corporation), t-butyl peroxy-2-ethylhexyl monocarbonate (Perbutyl E, NOF Corporation) Co., Ltd.), t-hexyl peroxybenzoate (Perhexyl Z, manufactured by NOF Corporation), 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane (Perhexa 25Z, manufactured by NOF Corporation) ), T-butyl peroxyacetate (Perbutyl A, manufactured by NOF Corporation), t-butylperoxy-m-toluoyl benzoate (Perbutyl ZT, manufactured by NOF Corporation) ), T-butyl peroxybenzoate (Perbutyl Z, manufactured by NOF Corporation), peroxyesters such as bis (t-butylperoxy) isophthalate (Perbutyl IF, manufactured by NOF Corporation), t- Butyl peroxyallyl monocarbonate (Peromer AC, manufactured by NOF Corporation), t-butyltrimethylsilyl peroxide (Perbutyl SM, manufactured by NOF Corporation), 3,3′-4,4′-tetra (t- Butyl peroxycarbonyl) benzophenone (BTTB-50, manufactured by NOF Corporation), 2,3-dimethyl-2,3-diphenylbutane (NOFMER BC, manufactured by NOF Corporation) and the like.
 前記イオン性開始剤としては、例えば、2,2’-アゾビス[2-(フェニルアミジノ)プロパン]ジヒドロクロリド(VA-545、和光純薬工業(株)製)、2,2’-アゾビス{2-[N-(4-クロロフェニル)アミジノ]プロパン}ジヒドロクロリド(VA-546、和光純薬工業(株)製)、2,2’-アゾビス{2-[N-(4-ヒドロキシフェニル)アミジノ]プロパン}ジヒドロクロリド(VA-548、和光純薬工業(株)製)、2,2’-アゾビス[2-(N-ベンジルアミジノ)プロパン]ジヒドロクロリド(VA-552、和光純薬工業(株)製)、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]ジヒドロクロリド(VA-553、和光純薬工業(株)製)、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロリド(VA-50、和光純薬工業(株)製)、2,2’-アゾビス{2-[N-(4-ヒドロキシエチル)アミジノ]プロパン}ジヒドロクロリド(VA-558、和光純薬工業(株)製)、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド(VA-041、和光純薬工業(株)製)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド(VA-044、和光純薬工業(株)製)、2,2’-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]ジヒドロクロリド(VA-054、和光純薬工業(株)製)、2,2’-アゾビス[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド(VA-058、和光純薬工業(株)製)、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド(VA-059、和光純薬工業(株)製)、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}ジヒドロクロリド(VA-060、和光純薬工業(株)製)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン](VA-061、和光純薬工業(株)製)等のカチオン性開始剤、過硫酸カリウム(KPS、和光純薬工業(株)製)、過硫酸アンモニウム(APS、和光純薬工業(株)製)などのアニオン性開始剤、が挙げられる。 Examples of the ionic initiator include 2,2′-azobis [2- (phenylamidino) propane] dihydrochloride (VA-545, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis {2 -[N- (4-chlorophenyl) amidino] propane} dihydrochloride (VA-546, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis {2- [N- (4-hydroxyphenyl) amidino] Propane} dihydrochloride (VA-548, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis [2- (N-benzylamidino) propane] dihydrochloride (VA-552, Wako Pure Chemical Industries, Ltd.) 2,2′-azobis [2- (N-allylamidino) propane] dihydrochloride (VA-553, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (2-amidino) Lopan) dihydrochloride (VA-50, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis {2- [N- (4-hydroxyethyl) amidino] propane} dihydrochloride (VA-558, Wako Pure) 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride (VA-041, manufactured by Wako Pure Chemical Industries), 2 , 2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (VA-044, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2'-azobis [2- (4,5, 6,7-tetrahydro-1H-1,3-diazepin-2-yl) propane] dihydrochloride (VA-054, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis [2- (3,4) , 5,6-Tetrahydropyrimidi -2-yl) propane] dihydrochloride (VA-058, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis [2- (5-hydroxy-3,4,5,6-tetrahydropyrimidine-2] -Yl) propane] dihydrochloride (VA-059, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane } Dihydrochloride (VA-060, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis [2- (2-imidazolin-2-yl) propane] (VA-061, Wako Pure Chemical Industries, Ltd.) And anionic initiators such as potassium persulfate (KPS, manufactured by Wako Pure Chemical Industries, Ltd.) and ammonium persulfate (APS, manufactured by Wako Pure Chemical Industries, Ltd.).
 前記レドックス開始剤としては、例えば、有機過酸化物と第3級アミンに基づく系、例えば過酸化ベンゾイルとジメチルアニリンに基づく系;並びに有機ヒドロパーオキシドと遷移金属に基づく系、例えばクメンヒドロパーオキシドとコバルトナフテートに基づく系等が挙げられる。 Such redox initiators include, for example, systems based on organic peroxides and tertiary amines, such as systems based on benzoyl peroxide and dimethylaniline; and systems based on organic hydroperoxides and transition metals, such as cumene hydroperoxide. And systems based on cobalt naphthate.
 前記開始剤は、分子量、分子量分布等を考慮して適宜設定することができるが、通常の量で使用することができ、具体的には、重合させようとする重合性不飽和化合物100mol部に対して、通常は0.001~30mol部、好ましくは0.01~20mol部の量で使用される。 The initiator can be appropriately set in consideration of molecular weight, molecular weight distribution, etc., but can be used in a normal amount, specifically, in 100 mol parts of the polymerizable unsaturated compound to be polymerized. On the other hand, it is usually used in an amount of 0.001 to 30 mol parts, preferably 0.01 to 20 mol parts.
<付加-開裂移動反応重合法>
 付加-開裂移動反応重合法を用いる場合は、連鎖移動剤、開始剤を用いて0℃~200℃で反応させることが好ましい。より好ましくは25℃~150℃範囲内に設定することが特に好ましい。重合反応温度を上記範囲内に設定することにより、反応を暴走させることなく安定に進行させることができる。使用する重合性不飽和化合物の不飽和基の活性にもよるが、比較的重合性の高いアクリル酸エステル系の重合性不飽和化合物を用いた場合でも、反応温度を0℃未満とした場合、活性が低くなり、充分な重合率を達成するために必要な時間が長くなり、効率が悪い。さらに、スチレン型不飽和化合物のように重合活性が低い化合物を用いた場合でも、25℃以上の条件であれば、充分な重合率を達成することができる。付加-開裂移動反応重合法を用いる場合において、反応時間は、重合率、分子量等を考慮して適宜設定することができるが、例えば上記のような条件では反応時間は、通常は30分~144時間、好ましくは1~24時間の範囲内に設定することが好ましい。
<Addition-cleavage transfer reaction polymerization method>
When the addition-cleavage transfer reaction polymerization method is used, the reaction is preferably carried out at 0 ° C. to 200 ° C. using a chain transfer agent and an initiator. More preferably, it is particularly preferably set within the range of 25 ° C to 150 ° C. By setting the polymerization reaction temperature within the above range, the reaction can proceed stably without causing runaway. Depending on the activity of the unsaturated group of the polymerizable unsaturated compound to be used, even when a relatively unsaturated acrylate-based polymerizable unsaturated compound is used, when the reaction temperature is less than 0 ° C, The activity is low, the time required to achieve a sufficient polymerization rate is lengthened, and the efficiency is poor. Further, even when a compound having a low polymerization activity such as a styrene type unsaturated compound is used, a sufficient polymerization rate can be achieved under the condition of 25 ° C. or higher. In the case of using the addition-cleavage transfer reaction polymerization method, the reaction time can be appropriately set in consideration of the polymerization rate, molecular weight, etc. For example, under the above conditions, the reaction time is usually 30 minutes to 144. The time is preferably set within the range of 1 to 24 hours.
 前記連鎖移動剤としては、例えば、ベンゾイル-1-ピロールカルボジチオエート、ベンゾイルジチオベンゾエート、シアノイソプロピルジチオベンゾエート、クミルジチオベンゾエート、メトキシカルボニルフェニルメチルジチオベンゾエート、シアノベンジルジチオベンゾエート、1-フェニルエチルジチオベンゾエート、t-ブチルジチオベンゾエイトS-(チオベンジル)チオグリコリル酸、1-フェニルエチルフェニルジチオベンゾエート、3-ベンジルスルファニルチオカルボニルスルファニル-プロピオン酸、2-(ベンジルスルファニルチオカルボニルスルファニル)エタノール、3-ベンジルスルファニルチオカルボニルスルファニルプロピオン酸、S-(1-エトキシカルボニルエチル)O-エチルキサンテート、エチル-2-(2-トリフルオロエトキシチオカルボニルスルファニル)プロピオネート、エチル-2-(1-ジエトキシホスホニル-2,2,2-トリフルオロエトキシチオカルボニルスルファニル)プロピオネート、ビスチオベンゾイルジスルフィド、ビス(2,6-ジメチルチオベンゾイル)ジスルフィド、ビス(2,4-ジメチルチオベンゾイル)ジスルフィド、ビス(4-メトキシチオベンゾイル)ジスルフィド、ビス(2,4ジメトキシチオベンゾイル)ジスルフィド、ビス(4-フルオロチオベンゾイル)ジスルフィド、ビス(2,4-ジフルオロチオベンゾイル)ジスルフィド、ビス(4-シアノチオベンゾイル)ジスルフィド、ビス(3,5―ジシアノチオベンゾイル)ジスルフィド、ビス(3,5-ビス(トリフルオロメチル)ジチオベンゾエ-ト)ジスルフィド、ビス(2,3,4,5,6―ペンタフルオロチオベンゾイル)ジスルフィド、ビス(4-フェニルチオベンゾイル)ジスルフィド、ビス(2-ナフチルチオニル)ジスルフィド、ビス(1-ナフチルチオニル)ジスルフィド、トリフェニルメチルジチオイソニコチネート、2-シアノイソプロピル(2,6-ジメチル)ジチオベンゾエ-ト、2-シアノイソプロピル(2,4-ジメチル)ジチオベンゾエート、2-シアノイソプロピル(4-メトキシ)ジチオベンゾエート、2-シアノイソプロピル(2,4-ジメトキシ)ジチオベンゾエート、2-シアノイソプロピル(4-フルオロ)ジチオベンゾエート、2-シアノイソプロピル(2,4-ジフルオロ)ジチオベンゾエート、2-シアノイソプロピルジチオイソニコチネート、2-シアノイソプロピル4-シアノジチオベンゾエート、2-シアノイソプロピル3,5-ジシアノジチオベンゾエート、2-シアノイソプロピル3,5-ビス(トリフルオロメチル)ジチオベンゾエート、2-シアノイソプロピル2,3,4,5、6-ペンタフルオロジチオベンゾエート、2-シアノイソプロピル4-ピリジニウムジチオカルボキシエート4-トルエンスルフォネイト塩、2-シアノイソプロピル(4-フェニル)ジチオベンゾエート、2-シアノイソプロピル-2-ナフチルジチオレート、2-シアノイソプロピル-1-ナフチルジチオレート、2-シアノ-4-メチルペンタ-2-イルジチオベンゾエート、2-シアノ-4-メチルペンタ-2-イル-4-シアノジチオベンゾエート、2-シアノ-4-メチルペンタ-2-イル3,5-ビストリフルオロメチルジチオベンゾエート、2-シアノ-4-メチルペンタ-2-イル-4-メトキシフェニルジチオベンゾエートが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。 Examples of the chain transfer agent include benzoyl-1-pyrrolecarbodithioate, benzoyldithiobenzoate, cyanoisopropyldithiobenzoate, cumyldithiobenzoate, methoxycarbonylphenylmethyldithiobenzoate, cyanobenzyldithiobenzoate, 1-phenylethyldithiobenzoate T-butyldithiobenzoate S- (thiobenzyl) thioglycolyl acid, 1-phenylethylphenyldithiobenzoate, 3-benzylsulfanylthiocarbonylsulfanyl-propionic acid, 2- (benzylsulfanylthiocarbonylsulfanyl) ethanol, 3-benzylsulfanylthio Carbonylsulfanylpropionic acid, S- (1-ethoxycarbonylethyl) O-ethylxanthate, D 2- (2-trifluoroethoxythiocarbonylsulfanyl) propionate, ethyl-2- (1-diethoxyphosphonyl-2,2,2-trifluoroethoxythiocarbonylsulfanyl) propionate, bisthiobenzoyl disulfide, bis ( 2,6-dimethylthiobenzoyl) disulfide, bis (2,4-dimethylthiobenzoyl) disulfide, bis (4-methoxythiobenzoyl) disulfide, bis (2,4dimethoxythiobenzoyl) disulfide, bis (4-fluorothiobenzoyl) ) Disulfide, bis (2,4-difluorothiobenzoyl) disulfide, bis (4-cyanothiobenzoyl) disulfide, bis (3,5-dicyanothiobenzoyl) disulfide, bis (3,5-bis (trifluorome Di) dithiobenzoate) disulfide, bis (2,3,4,5,6-pentafluorothiobenzoyl) disulfide, bis (4-phenylthiobenzoyl) disulfide, bis (2-naphthylthionyl) disulfide, bis (1- Naphthylthionyl) disulfide, triphenylmethyldithioisonicotinate, 2-cyanoisopropyl (2,6-dimethyl) dithiobenzoate, 2-cyanoisopropyl (2,4-dimethyl) dithiobenzoate, 2-cyanoisopropyl (4-methoxy) ) Dithiobenzoate, 2-cyanoisopropyl (2,4-dimethoxy) dithiobenzoate, 2-cyanoisopropyl (4-fluoro) dithiobenzoate, 2-cyanoisopropyl (2,4-difluoro) dithiobenzoate, 2-cyanoisopropyl Lopyldithioisonicotinate, 2-cyanoisopropyl 4-cyanodithiobenzoate, 2-cyanoisopropyl 3,5-dicyanodithiobenzoate, 2-cyanoisopropyl 3,5-bis (trifluoromethyl) dithiobenzoate, 2-cyanoisopropyl 2,3,4,5,6-pentafluorodithiobenzoate, 2-cyanoisopropyl 4-pyridinium dithiocarboxyate 4-toluenesulfonate salt, 2-cyanoisopropyl (4-phenyl) dithiobenzoate, 2-cyanoisopropyl- 2-naphthyl dithiolate, 2-cyanoisopropyl-1-naphthyl dithiolate, 2-cyano-4-methylpent-2-yldithiobenzoate, 2-cyano-4-methylpent-2-yl-4-cyanodithiobenzoate 2-cyano-4-methylpent-2-yl 3,5-bis-trifluoromethyl dithiobenzoate, and a 2-cyano-4-methylpent-2-yl-4-methoxy-phenyl dithiobenzoate. These may be used alone or in combination of two or more.
 前記連鎖移動剤は、分子量、分子量分布等を考慮して適宜設定することができるが、通常の量で使用することができ、具体的には、重合させようとする重合性不飽和化合物100mol部に対して、通常は0.001~30mol部、好ましくは0.01~20mol部の量で使用される。 The chain transfer agent can be appropriately set in consideration of molecular weight, molecular weight distribution, etc., but can be used in a normal amount, specifically, 100 mol parts of a polymerizable unsaturated compound to be polymerized. The amount is usually 0.001 to 30 mol parts, preferably 0.01 to 20 mol parts.
 前記開始剤としては、特に限定されないが、例えば、アゾ系開始剤、過酸化物系開始剤、イオン性開始剤等が挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。 The initiator is not particularly limited, and examples thereof include an azo initiator, a peroxide initiator, and an ionic initiator. These may be used alone or in combination of two or more.
 前記アゾ系開始剤としては、例えば、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)(V-70、和光純薬工業(株)製)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(V-65、和光純薬工業(株)製)、2,2’-アゾビスイソブチロニトリル(V-60、和光純薬工業(株)製)、2,2’-アゾビス(2-メチルブチロニトリル)(V-59、和光純薬工業(株)製)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)(V-40、和光純薬工業(株)製)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド(V-30、和光純薬工業(株)製)、2-フェニルアゾ-4-メトキシ-2,4-ジメチル-バレロニトリル(V-19、和光純薬工業(株)製)等のアゾニトリル化合物、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド](VA-080、和光純薬工業(株)製)、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド](VA-082、和光純薬工業(株)製)、2,2’-アゾビス[2-メチル-N-[2-(1-ヒドロキシブチル)]-プロピオンアミド](VA-085、和光純薬工業(株)製)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド](VA-086、和光純薬工業(株)製)、2,2’-アゾビス(2-メチルプロピオンアミド)ジハイドレート(VA-088、和光純薬工業(株)製)、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド](VF-096、和光純薬工業(株)製)、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)(VAm-110、和光純薬工業(株)製)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)(VAm-111、和光純薬工業(株)製)等のアゾアミド化合物、2,2’-アゾビス(2,4,4-トリメチルペンタン)(VR-110、和光純薬工業(株)製)、2,2’-アゾビス(2-メチルプロパン)(VR-160、和光純薬工業(株)製)等のアルキルアゾ化合物等が挙げられる。 Examples of the azo initiator include 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) (V-70, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis. (2,4-dimethylvaleronitrile) (V-65, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobisisobutyronitrile (V-60, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (2-methylbutyronitrile) (V-59, manufactured by Wako Pure Chemical Industries, Ltd.), 1,1′-azobis (cyclohexane-1-carbonitrile) (V-40, Wako Pure) Yakuhin Kogyo Co., Ltd.), 1-[(1-cyano-1-methylethyl) azo] formamide (V-30, Wako Pure Chemical Industries, Ltd.), 2-phenylazo-4-methoxy-2,4 -Dimethyl-valeronitrile (V-19, manufactured by Wako Pure Chemical Industries, Ltd.) Zonitrile compound, 2,2′-azobis [2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide] (VA-080, manufactured by Wako Pure Chemical Industries, Ltd.) 2,2′-azobis [2-methyl-N- [1,1-bis (hydroxymethyl) ethyl] propionamide] (VA-082, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis [ 2-methyl-N- [2- (1-hydroxybutyl)]-propionamide] (VA-085, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis [2-methyl-N- (2 -Hydroxyethyl) -propionamide] (VA-086, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (2-methylpropionamide) dihydrate (VA-088, manufactured by Wako Pure Chemical Industries, Ltd.) ), 2, 2 ' Azobis [N- (2-propenyl) -2-methylpropionamide] (VF-096, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (N-butyl-2-methylpropionamide) (VAm -110, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (N-cyclohexyl-2-methylpropionamide) (VAm-111, manufactured by Wako Pure Chemical Industries, Ltd.), 2 2,2′-azobis (2,4,4-trimethylpentane) (VR-110, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (2-methylpropane) (VR-160, Wako Pure Chemical) And alkylazo compounds such as those manufactured by Kogyo Co., Ltd.
 前記過酸化物系開始剤としては、例えば、メチルエチルケトンパーオキサイド(パーメックH、日脂(株)製)、シクロヘキサノンパーオキ種(パーヘキサH、日脂(株)製)、メチルシクロヘキサノンパーオキサイド(パーヘキサQ、日脂(株)製)、メチルアセトアセテートパーオキサイド(パーキュアーSA、日脂(株)製)、アセチルアセトンパーオキサイド(パーキュアーA、日脂(株)製)等のケトンパーオキサイド類、1,1-ビス(t-ヘキシルパーオキシ)3,3,5-トリメチルシクロヘキサン(パーヘキサTMH、日脂(株)製)、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン(パーヘキサHC、日脂(株)製)、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン(パーヘキサ3M、日脂(株)製)、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン(パーヘキサC、日脂(株)製)、1,1-ビス(t-ブチルパーオキシ)シクロドデカン(パーヘキサCD-R、日脂(株)製)、2,2’-ビス(t-ブチルパーオキシ)ブタン(パーヘキサ22、日脂(株)製)、n-ブチル4,4-ビス(t-ブチルパーオキシ)バレレート)パーヘキサV、日脂(株)製)、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン(パーテトラA、日脂(株)製)等のパーオキシケタール類、t-ブチルヒドロパーオキサイド(パーブチルH-69、日脂(株)製)、p-メンタンヒドロパーオキサイド(パーメンタH、日脂(株)製)、ジイソプロピルベンゼンヒドロパーオキサイド(パークミルP、日脂(株)製)、1,1,3,3-テトラメチルブチルヒドロパーオキサイド(パーオクタH、日脂(株)製)、クメンヒドロパーオキサイド(パークミルH-80、日脂(株)製)、t-ヘキシルヒドロパーオキサイド(パーヘキシルH、日脂(株)製)等のヒドロパーオキサイド類、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3(パーヘキシン25B、日脂(株)製)、ジ-t-ブチルパーオキサイド(パーブチルD-R、日脂(株)製)、t-ブチルクミルパーオキ種(パーブチルC、日脂(株)製)、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン(パーヘキサ25B、日脂(株)製)、ジクミルパーオキ種(パークミルD-R、日脂(株)製、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン(パーブチルP、日脂(株)製)等のジアルキルパーオキサイド類、オクタノイルパーオキ種(パーロイルO、日脂(株)製)、ラウロイルパーオキ種(パーロイルL、日脂(株)製)、ステアロイルパーオキ種(パーロイルS、日脂(株)製)、スクシニックアシッドパーオキ種(パーロイルSA、日脂(株)製)、ベンゾイルパーオキサイド(ナイパーBW、日脂(株)製)、イソブチリルパーオキサイド(パーロイルIB、日脂(株)製)、2,4-ジクロロベンゾイルパーオキ種(ナイパーCS、日脂(株)製)、3,5,5-トリメチルヘキサノイルパーオキ種(パーロイル355、日脂(株)製)等のジアシルパーオキサイド類、ジ-n-プロピルパーオキシジカーボネート(パーロイルNPP-50M、日脂(株)製)、ジイソプロピルパーオキシジカーボネート(パーロイルIPP-50、日脂(株)製)、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(パーロイルTCP、日脂(株)製)、ジ-2-エトキシエチルパーオキシジカーボネート(パーロイルEEP、日脂(株)製)、ジ-2-エトキシヘキシルパーオキシジカーボネート(パーロイルOPP、日脂(株)製)、ジ-2-メトキシブチルパーオキシジカーボネート(パーロイルMBP、日脂(株)製)、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート(パーロイルSOP、日脂(株)製)等のパーオキシジカーボネート類、α,α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン(ナイパーND-R、日脂(株)製)、クミルパーオキシネオデカノエート(パークミルND-R、日脂(株)製)、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート(パーオクタND-R、日脂(株)製)、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート(パーシクロND-R、日脂(株)製)、t-ヘキシルパーオキシネオデカノエート(パーヘキシルND-R、日脂(株)製)、t-ブチルパーオキシネオデカノエート(パーブチルND-R、日脂(株)製)、t-ヘキシルパーオキシピバレート(パーヘキシルPV、日脂(株)製)、t-ブチルパーオキシピバレート(パーブチルPV、日脂(株)製)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(パーオクタO、日脂(株)製)、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン(パーヘキサ250、日脂(株)製)、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート(パーシクロO、日脂(株)製)、t-ヘキシルパーオキシ-2-エチルヘキサノエート(パーヘキシルO、日脂(株)製)、t-ブチルパーオキシ-2-エチルヘキサノエート(パーブチルO、日脂(株)製)、t-ブチルパーオキシイソブチレート(パーブチルIB、日脂(株)製)、t-ヘキシルパーオキシイソプロピルモノカーボネート(パーヘキシルI、日脂(株)製)、t-ブチルパーオキシマレイックアシッド(パーブチルMA、日脂(株)製)、t-ブチルパーオキシ3,5,5-トリメチルヘキサノエート(パーブチル355、日脂(株)製)、t-ブチルパーオキシラウレート(パーブチルL、日脂(株)製)、2,5-ジメチル-2,5-ビス(m-トルオイルパーオキシ)ヘキサン(パーヘキサ25MT、日脂(株)製)、t-ブチルパーオキシイソプロピルモノカーボネート(パーブチルI、日脂(株)製)、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート(パーブチルE、日脂(株)製)、t-ヘキシルパーオキシベンゾエート(パーヘキシルZ、日脂(株)製)、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン(パーヘキサ25Z、日脂(株)製)、t-ブチルパーオキシアセテート(パーブチルA、日脂(株)製)、t-ブチルパーオキシ-m-トルオイルベンゾエート(パーブチルZT、日脂(株)製)、t-ブチルパーオキシベンゾエート(パーブチルZ、日脂(株)製)、ビス(t-ブチルパーオキシ)イソフタレート(パーブチルIF、日脂(株)製)等のパーオキシエステル類、t-ブチルパーオキシアリルモノカーボネート(ペロマーAC、日脂(株)製)、t-ブチルトリメチルシリルパーオキサイド(パーブチルSM、日脂(株)製)、3,3’-4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン(BTTB-50、日脂(株)製)、2,3-ジメチル-2,3-ジフェニルブタン(ノフマーBC、日脂(株)製)等が挙げられる。 Examples of the peroxide initiator include methyl ethyl ketone peroxide (Permec H, manufactured by NOF Corporation), cyclohexanone peroxide species (Perhexa H, manufactured by NOF Corporation), methylcyclohexanone peroxide (Perhexa Q). , Manufactured by NOF Corporation), methylacetoacetate peroxide (Percure SA, manufactured by NOF Corporation), ketone peroxides such as acetylacetone peroxide (Percure A, manufactured by NOF Corporation), 1,1 -Bis (t-hexylperoxy) 3,3,5-trimethylcyclohexane (Perhexa TMH, manufactured by NOF Corporation), 1,1-bis (t-hexylperoxy) cyclohexane (Perhexa HC, NOF Corporation ), 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane (per Oxa 3M, manufactured by NOF Corporation), 1,1-bis (t-butylperoxy) cyclohexane (Perhexa C, manufactured by NOF Corporation), 1,1-bis (t-butylperoxy) cyclododecane (Perhexa CD-R, manufactured by NOF Corporation), 2,2′-bis (t-butylperoxy) butane (Perhexa 22, manufactured by NOF Corporation), n-butyl 4,4-bis (t -Butylperoxy) valerate) perhexa V, manufactured by NOF Corporation), 2,2-bis (4,4-di-t-butylperoxycyclohexyl) propane (pertetra A, manufactured by NOF Corporation), etc. Peroxyketals, t-butyl hydroperoxide (Perbutyl H-69, manufactured by NOF Corporation), p-menthane hydroperoxide (Permenta H, manufactured by NOF Corporation), diisopropylbenzene hydroperoxide ( Cumyl P, manufactured by NOF Corporation), 1,1,3,3-tetramethylbutyl hydroperoxide (Perocta H, manufactured by NOF Corporation), cumene hydroperoxide (Park Mill H-80, NOF Corporation) ), Hydroperoxides such as t-hexyl hydroperoxide (Perhexyl H, NOF Corporation), 2,5-dimethyl-2,5-bis (t-butylperoxy) hexyne-3 (Perhexin 25B, manufactured by NOF Corporation), di-t-butyl peroxide (Perbutyl DR, manufactured by NOF Corporation), t-butyl cumyl peroxy species (Perbutyl C, manufactured by NOF Corporation) ), 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane (Perhexa 25B, manufactured by NOF Corporation), Dicumyl Peroxy species (Park Mill DR, manufactured by NOF Corporation), α, α'-bis (t- Dialkyl peroxides such as tilperoxy) diisopropylbenzene (perbutyl P, manufactured by NOF Corporation), octanoyl peroxy species (Perroyl O, manufactured by NOF Corporation), lauroyl peroxy species (Perroyl L, NOF Corporation) Co., Ltd.), stearoyl peroxy species (Perroyl S, manufactured by NOF Corporation), succinic acid peroxy species (Perloyl SA, manufactured by NOF Corporation), benzoyl peroxide (Nyper BW, NOF Corporation )), Isobutyryl peroxide (Perroyl IB, manufactured by NOF Corporation), 2,4-dichlorobenzoyl peroxy species (Nyper CS, manufactured by NOF Corporation), 3,5,5-trimethylhexanoyl Diacyl peroxides such as peroxy species (Perroyl 355, manufactured by NOF Corporation), di-n-propyl peroxydicarbonate (Perloy NPP-50M, manufactured by NOF Corporation), diisopropyl peroxydicarbonate (Perroyl IPP-50, manufactured by NOF Corporation), bis (4-t-butylcyclohexyl) peroxydicarbonate (Perloyl TCP, Nippon Oil Corporation) Fatty Co., Ltd.), di-2-ethoxyethyl peroxydicarbonate (Perroyl EEP, manufactured by NOF Corporation), di-2-ethoxyhexyl peroxydicarbonate (Perloyl OPP, manufactured by NOF Corporation) Di-2-methoxybutyl peroxydicarbonate (Perroyl MBP, manufactured by NOF Corporation), di (3-methyl-3-methoxybutyl) peroxydicarbonate (Perloyl SOP, manufactured by NOF Corporation), etc. Peroxydicarbonates, α, α'-bis (neodecanoylperoxy) diisopropylbenzene (Nyper ND-R, (Manufactured by NOF Corporation), cumyl peroxyneodecanoate (Park Mill ND-R, manufactured by NOF Corporation), 1,1,3,3-tetramethylbutylperoxyneodecanoate (perocta ND- R, manufactured by NOF Corporation), 1-cyclohexyl-1-methylethyl peroxyneodecanoate (percyclo ND-R, manufactured by NOF Corporation), t-hexylperoxyneodecanoate (perhexyl ND) -R, manufactured by NOF Corporation, t-butyl peroxyneodecanoate (perbutyl ND-R, manufactured by NOF Corporation), t-hexyl peroxypivalate (perhexyl PV, NOF Corporation) ), T-butyl peroxypivalate (Perbutyl PV, manufactured by NOF Corporation), 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (Perocta O, NOF Corporation) ) Made 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane (Perhexa 250, manufactured by NOF Corporation), 1-cyclohexyl-1-methylethylperoxy-2-ethylhexano Ate (Percyclo O, manufactured by NOF Corporation), t-hexylperoxy-2-ethylhexanoate (Perhexyl O, manufactured by NOF Corporation), t-butylperoxy-2-ethylhexanoate ( Perbutyl O, manufactured by NOF Corporation), t-butyl peroxyisobutyrate (Perbutyl IB, manufactured by NOF Corporation), t-hexyl peroxyisopropyl monocarbonate (Perhexyl I, manufactured by NOF Corporation) T-butyl peroxymaleic acid (Perbutyl MA, manufactured by NOF Corporation), t-butylperoxy 3,5,5-trimethylhexanoate (Perb 355, manufactured by NOF Corporation), t-butyl peroxylaurate (Perbutyl L, manufactured by NOF Corporation), 2,5-dimethyl-2,5-bis (m-toluoylperoxy) hexane (Perhexa 25MT, manufactured by NOF Corporation), t-butyl peroxyisopropyl monocarbonate (Perbutyl I, manufactured by NOF Corporation), t-butyl peroxy-2-ethylhexyl monocarbonate (Perbutyl E, NOF Corporation) Co., Ltd.), t-hexyl peroxybenzoate (Perhexyl Z, manufactured by NOF Corporation), 2,5-dimethyl-2,5-bis (benzoylperoxy) hexane (Perhexa 25Z, manufactured by NOF Corporation) ), T-butyl peroxyacetate (Perbutyl A, manufactured by NOF Corporation), t-butylperoxy-m-toluoyl benzoate (Perbutyl ZT, manufactured by NOF Corporation) ), T-butyl peroxybenzoate (Perbutyl Z, manufactured by NOF Corporation), peroxyesters such as bis (t-butylperoxy) isophthalate (Perbutyl IF, manufactured by NOF Corporation), t- Butyl peroxyallyl monocarbonate (Peromer AC, manufactured by NOF Corporation), t-butyltrimethylsilyl peroxide (Perbutyl SM, manufactured by NOF Corporation), 3,3′-4,4′-tetra (t- Butyl peroxycarbonyl) benzophenone (BTTB-50, manufactured by NOF Corporation), 2,3-dimethyl-2,3-diphenylbutane (NOFMER BC, manufactured by NOF Corporation) and the like.
 前記イオン性開始剤としては、例えば、2,2’-アゾビス[2-(フェニルアミジノ)プロパン]ジヒドロクロリド(VA-545、和光純薬工業(株)製)、2,2’-アゾビス{2-[N-(4-クロロフェニル)アミジノ]プロパン}ジヒドロクロリド(VA-546、和光純薬工業(株)製)、2,2’-アゾビス{2-[N-(4-ヒドロキシフェニル)アミジノ]プロパン}ジヒドロクロリド(VA-548、和光純薬工業(株)製)、2,2’-アゾビス[2-(N-ベンジルアミジノ)プロパン]ジヒドロクロリド(VA-552、和光純薬工業(株)製)、2,2’-アゾビス[2-(N-アリルアミジノ)プロパン]ジヒドロクロリド(VA-553、和光純薬工業(株)製)、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロリド(VA-50、和光純薬工業(株)製)、2,2’-アゾビス{2-[N-(4-ヒドロキシエチル)アミジノ]プロパン}ジヒドロクロリド(VA-558、和光純薬工業(株)製)、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド(VA-041、和光純薬工業(株)製)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド(VA-044、和光純薬工業(株)製)、2,2’-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]ジヒドロクロリド(VA-054、和光純薬工業(株)製)、2,2’-アゾビス[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド(VA-058、和光純薬工業(株)製)、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド(VA-059、和光純薬工業(株)製)、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン}ジヒドロクロリド(VA-060、和光純薬工業(株)製)、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン](VA-061、和光純薬工業(株)製)等のカチオン性開始剤、過硫酸カリウム(KPS、和光純薬工業(株)製)、過硫酸アンモニウム(APS、和光純薬工業(株)製)などのアニオン性開始剤、が挙げられる。 Examples of the ionic initiator include 2,2′-azobis [2- (phenylamidino) propane] dihydrochloride (VA-545, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis {2 -[N- (4-chlorophenyl) amidino] propane} dihydrochloride (VA-546, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis {2- [N- (4-hydroxyphenyl) amidino] Propane} dihydrochloride (VA-548, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis [2- (N-benzylamidino) propane] dihydrochloride (VA-552, Wako Pure Chemical Industries, Ltd.) 2,2′-azobis [2- (N-allylamidino) propane] dihydrochloride (VA-553, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis (2-amidino) Lopan) dihydrochloride (VA-50, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis {2- [N- (4-hydroxyethyl) amidino] propane} dihydrochloride (VA-558, Wako Pure) 2,2′-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride (VA-041, manufactured by Wako Pure Chemical Industries), 2 , 2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride (VA-044, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2'-azobis [2- (4,5, 6,7-tetrahydro-1H-1,3-diazepin-2-yl) propane] dihydrochloride (VA-054, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis [2- (3,4) , 5,6-Tetrahydropyrimidi -2-yl) propane] dihydrochloride (VA-058, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis [2- (5-hydroxy-3,4,5,6-tetrahydropyrimidine-2] -Yl) propane] dihydrochloride (VA-059, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2'-azobis {2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane } Dihydrochloride (VA-060, manufactured by Wako Pure Chemical Industries, Ltd.), 2,2′-azobis [2- (2-imidazolin-2-yl) propane] (VA-061, Wako Pure Chemical Industries, Ltd.) And anionic initiators such as potassium persulfate (KPS, manufactured by Wako Pure Chemical Industries, Ltd.) and ammonium persulfate (APS, manufactured by Wako Pure Chemical Industries, Ltd.).
 前記開始剤は、分子量、分子量分布等を考慮して適宜設定することができるが、通常の量で使用することができ、具体的には、重合させようとする重合性不飽和化合物100mol部に対して、通常は0.001~30mol部、好ましくは0.01~20mol部の量で使用される。 The initiator can be appropriately set in consideration of molecular weight, molecular weight distribution, etc., but can be used in a normal amount, specifically, in 100 mol parts of the polymerizable unsaturated compound to be polymerized. On the other hand, it is usually used in an amount of 0.001 to 30 mol parts, preferably 0.01 to 20 mol parts.
<反応性シリル基を有するチオール化合物及びメタロセン化合物を用いた重合法>
 金属触媒としてメタロセン化合物を用い、さらに分子中に少なくとも1つの反応性シリル基を有するチオール化合物を用いて0℃~150℃で反応させることが好ましい。より好ましくは25℃~120℃範囲内に設定することが特に好ましい。重合反応温度を上記範囲内に設定することにより、反応を暴走させることなく安定に進行させることができる。使用する重合性不飽和化合物の不飽和基の活性にもよるが、比較的重合性の高いアクリル酸エステル系の重合性不飽和化合物を用いた場合でも、反応温度を0℃未満とした場合、活性が低くなり、充分な重合率を達成するために必要な時間が長くなり、効率が悪い。さらに、スチレン型不飽和化合物のように重合活性が低い化合物を用いた場合でも、25℃以上の条件であれば、充分な重合率を達成することができる。該重合法を用いる場合において、反応時間は、重合率、分子量等を考慮して適宜設定することができるが、例えば上記のような条件では反応時間は、通常は1~12時間、好ましくは2~8時間の範囲内に設定することが好ましい。
<Polymerization method using a thiol compound having a reactive silyl group and a metallocene compound>
It is preferable to use a metallocene compound as the metal catalyst, and further to react at 0 ° C. to 150 ° C. using a thiol compound having at least one reactive silyl group in the molecule. More preferably, it is particularly preferably set within the range of 25 ° C to 120 ° C. By setting the polymerization reaction temperature within the above range, the reaction can proceed stably without causing runaway. Depending on the activity of the unsaturated group of the polymerizable unsaturated compound to be used, even when a relatively unsaturated acrylate-based polymerizable unsaturated compound is used, when the reaction temperature is less than 0 ° C, The activity is low, the time required to achieve a sufficient polymerization rate is lengthened, and the efficiency is poor. Further, even when a compound having a low polymerization activity such as a styrene type unsaturated compound is used, a sufficient polymerization rate can be achieved under the condition of 25 ° C. or higher. In the case of using the polymerization method, the reaction time can be appropriately set in consideration of the polymerization rate, molecular weight, etc. For example, under the above conditions, the reaction time is usually 1 to 12 hours, preferably 2 It is preferable to set within a range of up to 8 hours.
 上記メタロセン化合物としては特に限定されないが、例えば、ジシクロペンタジエン-Ti-ジクロライド、ジシクロペンタジエン-Ti-ビスフェニル、ジシクロペンタジエン-Ti-ビス-2,3,4,5,6-ペンタフルオロフェニ-1-イル、ジシクロペンタジエン-Ti-ビス-2,3,5,6-テトラフルオロフェニ-1-イル、ジシクロペンタジエン-Ti-ビス-2,5,6-トリフルオロフェニ-1-イル、ジシクロペンタジエン-Ti-ビス-2,6-ジフルオロフェニ-1-イル、ジシクロペンタジエン-Ti-ビス-2,4-ジフルオロフェニ-1-イル、ジメチルシクロペンタジエニル-Ti-ビス-2,3,4,5,6-ペンタフルオロフェニ-1-イル、ジメチルシクロペンタジエニル-Ti-ビス-2,3,5,6-テトラフルオロフェニ-1-イル、ジメチルシクロペンタジエニル-Ti-ビス-2,6-ジフルオロフェニ-1-イル、ジメチルシクロペンタジエニル-Ti-ビス-2,6-ジフルオロ-3-(ピル-1-イル)-フェニ-1-イルのようなチタノセン化合物;ジシクロペンタジエニル-Zr-ジクロライド、ジシクロペンタジエン-Zr-ビスフェニル、ジシクロペンタジエン-Zr-ビス-2,3,4,5,6-ペンタフルオロフェニ-1-イル、ジシクロペンタジエン-Zr-ビス-2,3,5,6-テトラフルオロフェニ-1-イル、ジシクロペンタジエン-Zr-ビス-2,5,6-トリフルオロフェニ-1-イル、ジシクロペンタジエン-Zr-ビス-2,6-ジフルオロフェニ-1-イル、ジシクロペンタジエン-Zr-ビス-2,4-ジフルオロフェニ-1-イル、ジメチルシクロペンタジエニル-Zr-ビス-2,3,4,5,6-ペンタフルオロフェニ-1-イル、ジメチルシクロペンタジエニル-Zr-ビス-2,3,5,6-テトラフルオロフェニ-1-イル、ジメチルシクロペンタジエニル-Zr-ビス-2,6-ジフルオロフェニ-1-イル、ジメチルシクロペンタジエニル-Zr-ビス-2,6-ジフルオロ-3-(ピル-1-イル)-フェニ-1-イル)のようなジルコノセン化合物;ジシクロペンタジエニル-V-クロライド、ビスメチルシクロペンタジエニル-V-クロライド、ビスペンタメチルシクロペンタジエニル-V-クロライド、ジシクロペンタジエニル-Ru-クロライド、ジシクロペンタジエニル-Cr-クロライドなどを挙げることができる。これらは単独で用いてもよく、2種以上併用してもよい。 The metallocene compound is not particularly limited. For example, dicyclopentadiene-Ti-dichloride, dicyclopentadiene-Ti-bisphenyl, dicyclopentadiene-Ti-bis-2,3,4,5,6-pentafluoropheny -1-yl, dicyclopentadiene-Ti-bis-2,3,5,6-tetrafluorophen-1-yl, dicyclopentadiene-Ti-bis-2,5,6-trifluorophen-1-yl Dicyclopentadiene-Ti-bis-2,6-difluorophen-1-yl, dicyclopentadiene-Ti-bis-2,4-difluorophen-1-yl, dimethylcyclopentadienyl-Ti-bis-2 , 3,4,5,6-pentafluorophen-1-yl, dimethylcyclopentadienyl-Ti-bis-2, , 5,6-tetrafluorophen-1-yl, dimethylcyclopentadienyl-Ti-bis-2,6-difluorophen-1-yl, dimethylcyclopentadienyl-Ti-bis-2,6-difluoro- Titanocene compounds such as 3- (pyr-1-yl) -phen-1-yl; dicyclopentadienyl-Zr-dichloride, dicyclopentadiene-Zr-bisphenyl, dicyclopentadiene-Zr-bis-2, 3,4,5,6-pentafluorophen-1-yl, dicyclopentadiene-Zr-bis-2,3,5,6-tetrafluorophen-1-yl, dicyclopentadiene-Zr-bis-2, 5,6-trifluorophen-1-yl, dicyclopentadiene-Zr-bis-2,6-difluorophen-1-yl, dicyclopentadi -Zr-bis-2,4-difluorophen-1-yl, dimethylcyclopentadienyl-Zr-bis-2,3,4,5,6-pentafluorophen-1-yl, dimethylcyclopentadienyl -Zr-bis-2,3,5,6-tetrafluorophen-1-yl, dimethylcyclopentadienyl-Zr-bis-2,6-difluorophen-1-yl, dimethylcyclopentadienyl-Zr- Zirconocene compounds such as bis-2,6-difluoro-3- (pyr-1-yl) -phen-1-yl); dicyclopentadienyl-V-chloride, bismethylcyclopentadienyl-V-chloride Bispentamethylcyclopentadienyl-V-chloride, dicyclopentadienyl-Ru-chloride, dicyclopentadienyl-Cr-chlora Id etc. can be mentioned. These may be used alone or in combination of two or more.
 前記メタロセン化合物は、通常の触媒量で使用することができ、具体的には、重合させようとする重合性不飽和化合物100mol部に対して、通常は0.1~0.00001mol部、好ましくは0.0001~0.00005mol部の量で使用される。 The metallocene compound can be used in a usual catalytic amount. Specifically, it is usually 0.1 to 0.00001 mol part, preferably 100 to 100 mol part of the polymerizable unsaturated compound to be polymerized, preferably Used in an amount of 0.0001-0.00005 mol parts.
 上記反応性シリル基を有するチオール化合物としては特に限定されないが、例えば、メルカプトメチルトリメトキシシラン、メルカプトメチルメチルジメトキシシラン、メルカプトメチルジメチルメトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルメチルジエトキシシラン、メルカプトメチルジメチルエトキシシラン、メルカプトメチルトリプロポキシシシラン、メルカプトメチルメチルジプロポキシシラン、メルカプトメチルジメチルプロポキシシラン、3-メルカプトプロピル-トリメトキシシラン、3-メルカプトプロピル-トリメトキシシラン、3-メルカプトプロピル-トリエトキシシラン、3-メルカプトプロピル-モノメチルジメトキシシラン、3-メルカプトプロピル-モノフェニルジメトキシシラン、3-メルカプトプロピル-ジメチルモノメトキシシラン、3-メルカプトプロピル-モノメチルジエトキシシラン、4-メルカプトブチル-トリメトキシシランおよび3-メルカプトブチル-トリメトキシシラン等を挙げることができる。これらは単独で用いてもよく、2種以上併用してもよい。 The thiol compound having a reactive silyl group is not particularly limited. For example, mercaptomethyltrimethoxysilane, mercaptomethylmethyldimethoxysilane, mercaptomethyldimethylmethoxysilane, mercaptomethyltriethoxysilane, mercaptomethylmethyldiethoxysilane, mercapto Methyldimethylethoxysilane, mercaptomethyltripropoxysilane, mercaptomethylmethyldipropoxysilane, mercaptomethyldimethylpropoxysilane, 3-mercaptopropyl-trimethoxysilane, 3-mercaptopropyl-trimethoxysilane, 3-mercaptopropyl-triethoxy Silane, 3-mercaptopropyl-monomethyldimethoxysilane, 3-mercaptopropyl-monophenyldimethoxysilane Down, 3-mercaptopropyl - dimethyl mono silane, 3-mercaptopropyl - monomethyl diethoxy silane, 4-mercaptomethyl-butyl - trimethoxysilane and 3-mercaptopropyl butyl - and tri methoxy silane. These may be used alone or in combination of two or more.
 前記反応性シリル基を有するチオール化合物の使用量は、得ようとする重合体の分子量、重合速度等を考慮して適宜設定することができるが、反応を円滑に進め、かつ反応を暴走させないためには、メタロセン化合物と反応性シリル基を有するチオール化合物とは通常は100:1~1:50000の範囲内のモル比、好ましくは10:1~1:10000のモル比で使用される。 The amount of the thiol compound having a reactive silyl group can be appropriately set in consideration of the molecular weight of the polymer to be obtained, the polymerization rate, etc., but the reaction proceeds smoothly and does not run away. In this case, the metallocene compound and the thiol compound having a reactive silyl group are usually used in a molar ratio in the range of 100: 1 to 1: 50000, preferably in a molar ratio of 10: 1 to 1: 10000.
<遷移金属錯体を用いたラジカル重合法>
 遷移金属錯体を用いたラジカル重合法を用いる場合は、遷移金属錯体、有機ハロゲン化物及び/または配位子を用いて0℃~200℃で反応させることが好ましい。より好ましくは25℃~150℃範囲内に設定することが特に好ましい。重合反応温度を上記範囲内に設定することにより、反応を暴走させることなく安定に進行させることができる。使用する重合性不飽和化合物の不飽和基の活性にもよるが、比較的重合性の高いアクリル酸エステル系の重合性不飽和化合物を用いた場合でも、反応温度を0℃未満とした場合、活性が低くなり、充分な重合率を達成するために必要な時間が長くなり、効率が悪い。さらに、スチレン型不飽和化合物のように重合活性が低い化合物を用いた場合でも、25℃以上の条件であれば、充分な重合率を達成することができる。付加-開裂移動反応重合法を用いる場合において、反応時間は、重合率、分子量等を考慮して適宜設定することができるが、例えば上記のような条件では反応時間は、通常は30分~144時間、好ましくは1~24時間の範囲内に設定することが好ましい。
<Radical polymerization using transition metal complex>
When a radical polymerization method using a transition metal complex is used, it is preferable to perform the reaction at 0 ° C. to 200 ° C. using a transition metal complex, an organic halide and / or a ligand. More preferably, it is particularly preferably set within the range of 25 ° C to 150 ° C. By setting the polymerization reaction temperature within the above range, the reaction can proceed stably without causing runaway. Depending on the activity of the unsaturated group of the polymerizable unsaturated compound to be used, even when a relatively unsaturated acrylate-based polymerizable unsaturated compound is used, when the reaction temperature is less than 0 ° C, The activity is low, the time required to achieve a sufficient polymerization rate is lengthened, and the efficiency is poor. Further, even when a compound having a low polymerization activity such as a styrene type unsaturated compound is used, a sufficient polymerization rate can be achieved under the condition of 25 ° C. or higher. In the case of using the addition-cleavage transfer reaction polymerization method, the reaction time can be appropriately set in consideration of the polymerization rate, molecular weight, etc. For example, under the above conditions, the reaction time is usually 30 minutes to 144. The time is preferably set within the range of 1 to 24 hours.
 前記遷移金属錯体としては特に限定されず、例えば、WO97/18247号に記載されているものが利用可能である。中でも好ましいものとして、0価の銅、1価の銅、2価のルテニウム、2価の鉄又は2価のニッケルの錯体が挙げられる。なかでも、銅の錯体が好ましい。1価の銅化合物を具体的に例示するならば、塩化第一銅、臭化第一銅、ヨウ化第一銅、シアン化第一銅、酸化第一銅、過塩素酸第一銅等である。塩化第一銅、臭化第一銅、ヨウ化第一銅、シアン化第一銅、酸化第一銅、過塩素酸第一銅を用いる場合は、必要に応じて0価の銅、塩化第二銅、臭化第二銅、ヨウ化第二銅を使用することもできる。
また、2価の塩化ルテニウムのトリストリフェニルホスフィン錯体(RuCl(PPh)も触媒として好適である。ルテニウム化合物を触媒として用いる場合は、活性化剤としてアルミニウムアルコキシド類が添加される。更に、2価の鉄のビストリフェニルホスフィン錯体(FeCl(PPh)、2価のニッケルのビストリフェニルホスフィン錯体(NiCl(PPh)、及び2価のニッケルのビストリブチルホスフィン錯体(NiBr(PBu)も触媒として好適である。
It does not specifically limit as said transition metal complex, For example, what is described in WO97 / 18247 can be utilized. Among these, a complex of zero-valent copper, monovalent copper, divalent ruthenium, divalent iron, or divalent nickel is preferable. Of these, a copper complex is preferable. Specific examples of monovalent copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous perchlorate, etc. is there. When using cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous perchlorate, if necessary, zero-valent copper, cuprous chloride Dicopper, cupric bromide, and cupric iodide can also be used.
A tristriphenylphosphine complex of divalent ruthenium chloride (RuCl 2 (PPh 3 ) 3 ) is also suitable as a catalyst. When a ruthenium compound is used as a catalyst, an aluminum alkoxide is added as an activator. Further, a divalent iron bistriphenylphosphine complex (FeCl 2 (PPh 3 ) 2 ), a divalent nickel bistriphenylphosphine complex (NiCl 2 (PPh 3 ) 2 ), and a divalent nickel bistributylphosphine complex (NiBr 2 (PBu 3 ) 2 ) is also suitable as a catalyst.
 触媒として銅化合物を用いる場合、その配位子として、WO97/18247号に記載されている配位子の利用が可能である。特に限定はされないが、アミン系配位子が良く、好ましくは、2,2′-ビピリジル及びその誘導体等のビピリジル化合物、1,10-フェナントロリン及びその誘導体、ヘキサメチルトリエチレンテトラアミン、ビスピコリルアミン、トリアルキルアミン、テトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン、ヘキサメチル(2-アミノエチル)アミン等の脂肪族アミン等の配位子である。本発明においては、これらの内では、ポリアミン化合物、特にペンタメチルジエチレントリアミン、ヘキサメチル(2-アミノエチル)アミン等の脂肪族ポリアミンが好ましい。また、触媒として銅化合物を用いる場合の配位子として、ポリアミン化合物、ピリジン系化合物、又は脂肪族アミン化合物を用いる場合には、これらの配位子がアミノ基を3つ以上持つものであることが好ましい。なお、本発明におけるアミノ基とは、窒素原子-炭素原子結合を有する基を表すが、この中でも、窒素原子が炭素原子及び/又は水素原子とのみ結合する基であることが好ましい。また、上記に挙げたメタロセン化合物も使用できる。 When a copper compound is used as the catalyst, the ligand described in WO97 / 18247 can be used as the ligand. Although not particularly limited, amine-based ligands are preferable, and bipyridyl compounds such as 2,2′-bipyridyl and its derivatives, 1,10-phenanthroline and its derivatives, hexamethyltriethylenetetraamine, bispicolylamine , Ligands of aliphatic amines such as trialkylamine, tetramethylethylenediamine, pentamethyldiethylenetriamine, and hexamethyl (2-aminoethyl) amine. In the present invention, among these, polyamine compounds, particularly aliphatic polyamines such as pentamethyldiethylenetriamine and hexamethyl (2-aminoethyl) amine are preferred. Moreover, when using a polyamine compound, a pyridine-type compound, or an aliphatic amine compound as a ligand in the case of using a copper compound as a catalyst, these ligands must have three or more amino groups. Is preferred. The amino group in the present invention represents a group having a nitrogen atom-carbon atom bond, and among these, a group in which the nitrogen atom is bonded only to a carbon atom and / or a hydrogen atom is preferable. The metallocene compounds listed above can also be used.
 上記のような配位子を用いる量は、通常の原子移動ラジカル重合の条件では、遷移金属の配位座の数と、配位子の配位する基の数から決定され、ほぼ等しくなるように設定されている。例えば、通常、2,2′-ビピリジル及びその誘導体をCuBrに対して加える量はモル比で2倍であり、ペンタメチルジエチレントリアミンの場合はモル比で1倍である。本発明において配位子を添加して重合を開始する、及び/または、配位子を添加して触媒活性を制御する場合は、特に限定はされないが、金属原子が配位子に対して過剰になる方が好ましい。配位座と配位する基の比は好ましくは1.2倍以上であり、更に好ましくは1.4倍以上であり、特に好ましくは1.6倍以上であり、特別に好ましくは2倍以上である。 The amount of the ligand as described above is determined from the number of coordination sites of the transition metal and the number of groups coordinated by the ligand under the conditions of normal atom transfer radical polymerization, so that they are almost equal. Is set to For example, the amount of 2,2′-bipyridyl and its derivatives added to CuBr is usually twice as much as the molar ratio, and in the case of pentamethyldiethylenetriamine, it is once as large as the molar ratio. In the present invention, when a ligand is added to initiate polymerization and / or when a catalyst activity is controlled by adding a ligand, there is no particular limitation, but the metal atom is excessive with respect to the ligand. Is preferred. The ratio between the coordination position and the coordinating group is preferably 1.2 times or more, more preferably 1.4 times or more, particularly preferably 1.6 times or more, and particularly preferably 2 times or more. It is.
 有機ハロゲン化物、特に反応性の高い炭素-ハロゲン結合を有する有機ハロゲン化物(例えば、α位にハロゲンを有するカルボニル化合物や、ベンジル位にハロゲンを有する化合物)、あるいはハロゲン化スルホニル化合物等が開始剤として用いられる。
 具体的に例示するならば、C-CHX、C-C(H)(X)CH、C-C(X)(CH、XCH-C-CHX、XC(H)(CH)-CH5-C(H)(CH)X(ただし、上の化学式中、Cはフェニル基、Xは塩素、臭素、またはヨウ素)、R-C(H)(X)-CO、R-C(CH)(X)-CO、R-C(H)(X)-C(O)R、R-C(CH)(X)-C(O)R、R-C-SOX(式中、R、Rは水素原子または炭素数1~20のアルキル基、アリール基、またはアラルキル基、Xは塩素、臭素、またはヨウ素)等が挙げられる。
As an initiator, an organic halide, particularly an organic halide having a highly reactive carbon-halogen bond (for example, a carbonyl compound having a halogen at the α-position or a compound having a halogen at the benzyl-position) or a sulfonyl halide is used. Used.
Specifically, C 6 H 5 —CH 2 X, C 6 H 5 —C (H) (X) CH 3 , C 6 H 5 —C (X) (CH 3 ) 2 , XCH 2 C 6 H 5 -CH 2 X, XC (H) (CH 3) -C 6 H5-C (H) (CH 3) X ( where in the above formula, C 6 H 5 is a phenyl group, X is chlorine , Bromine, or iodine), R 3 —C (H) (X) —CO 2 R 4 , R 3 —C (CH 3 ) (X) —CO 2 R 4 , R 3 —C (H) (X) -C (O) R 4 , R 3 -C (CH 3 ) (X) -C (O) R 4 , R 3 -C 6 H 4 -SO 2 X (wherein R 3 and R 4 are hydrogen atoms Or an alkyl group having 1 to 20 carbon atoms, an aryl group, or an aralkyl group, and X is chlorine, bromine, or iodine).
 遷移金属錯体を用いたラジカル重合法において、トリエトキシアルミニウム、トリプロポキシアルミニウム、トリイソプロポキシアルミニウム、トリn-ブトキシアルミニウム、トリt-ブトキシアルミニウム、トリsec―ブトキシアルミニウムのようなアルミニウムトリアルキレートやジオクチル錫やジエチルヘキシル錫、ジブチル錫の様な二価錫化合物やグルコース、アスコルビン酸のような有機物など重合を活性化させるための添加剤として使用できる。 Aluminum radical chelates such as triethoxyaluminum, tripropoxyaluminum, triisopropoxyaluminum, tri-n-butoxyaluminum, tri-t-butoxyaluminum, trisec-butoxyaluminum and dioctyltin in radical polymerization methods using transition metal complexes And divalent tin compounds such as diethylhexyltin and dibutyltin, and organic substances such as glucose and ascorbic acid can be used as additives for activating the polymerization.
 前記(メタ)アクリル酸エステル重合体の合成において、重合は無溶剤または各種溶剤中で行うことができる。溶剤の種類としては、例えば、ベンゼン、キシレン、トルエン等の炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶媒、塩化メチレン、クロロホルム等のハロゲン化炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、メタノール、エタノール、プロパノール、イソプロパノール、n-ブチルアルコール、tert-ブチルアルコール等のアルコール系溶媒、アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶媒、酢酸エチル、酢酸ブチル等のエステル系溶媒、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶媒等、ポリオキシアルキレン重合体が挙げられ、単独または2種以上を混合して用いることができる。 In the synthesis of the (meth) acrylic acid ester polymer, the polymerization can be carried out without solvent or in various solvents. Examples of the solvent include hydrocarbon solvents such as benzene, xylene and toluene, ether solvents such as diethyl ether and tetrahydrofuran, halogenated hydrocarbon solvents such as methylene chloride and chloroform, acetone, methyl ethyl ketone, and methyl isobutyl ketone. Ketone solvents such as methanol, ethanol, propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol, nitrile solvents such as acetonitrile, propionitrile, benzonitrile, ethyl acetate, butyl acetate, etc. Polyoxyalkylene polymers such as ester solvents, carbonate solvents such as ethylene carbonate and propylene carbonate, and the like can be mentioned, and these can be used alone or in admixture of two or more.
 また、溶剤としてポリオキシアルキレン系重合体、飽和炭化水素系重合体等を用いることにより、後の脱気工程等を不要とすることができる。 Further, by using a polyoxyalkylene polymer, a saturated hydrocarbon polymer or the like as a solvent, a subsequent degassing step or the like can be made unnecessary.
 上記の架橋性珪素基を有する(メタ)アクリル酸エステル系重合体は、単独で使用してもよいし2種以上併用してもよい。 The above (meth) acrylic acid ester-based polymer having a crosslinkable silicon group may be used alone or in combination of two or more.
 これらの架橋性珪素基を有する有機重合体は、単独で使用してもよいし2種以上併用してもよい。具体的には、架橋性珪素基を有するポリオキシアルキレン系重合体、架橋性珪素基を有する飽和炭化水素系重合体、及び架橋性珪素基を有する(メタ)アクリル酸エステル系重合体、からなる群から選択される2種以上をブレンドしてなる有機重合体も使用できる。 These organic polymers having a crosslinkable silicon group may be used alone or in combination of two or more. Specifically, it comprises a polyoxyalkylene polymer having a crosslinkable silicon group, a saturated hydrocarbon polymer having a crosslinkable silicon group, and a (meth) acrylic acid ester polymer having a crosslinkable silicon group. An organic polymer obtained by blending two or more selected from the group can also be used.
 架橋性珪素基を有するポリオキシアルキレン系重合体と架橋性珪素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法は、特開昭59-122541号、特開昭63-112642号、特開平6-172631号、特開平11-116763号公報等に提案されているが、特にこれらに限定されるものではない。好ましい具体例は、架橋性珪素基を有し分子鎖が実質的に、下記一般式(9):
 -CH-C(R35)(COOR36)- ・・・(9)
(式中、R35は水素原子またはメチル基、R36は炭素数1~8のアルキル基を示す)で表される炭素数1~8のアルキル基を有する(メタ)アクリル酸エステル単量体単位と、下記一般式(10):
 -CH-C(R35)(COOR37)- ・・・(10)
(式中、R35は前記に同じ、R37は炭素数10以上のアルキル基を示す)で表される炭素数10以上のアルキル基を有する(メタ)アクリル酸エステル単量体単位からなる共重合体に、架橋性珪素基を有するポリオキシアルキレン系重合体をブレンドして製造する方法である。
A method for producing an organic polymer obtained by blending a polyoxyalkylene polymer having a crosslinkable silicon group and a (meth) acrylic acid ester polymer having a crosslinkable silicon group is disclosed in JP-A-59-122541. Although proposed in Japanese Laid-Open Patent Publication No. 63-112642, Japanese Laid-Open Patent Publication No. 6-172631, and Japanese Laid-Open Patent Publication No. 11-116763, the invention is not particularly limited thereto. Preferable specific examples include a crosslinkable silicon group and a molecular chain substantially having the following general formula (9):
—CH 2 —C (R 35 ) (COOR 36 ) — (9)
(Wherein R 35 represents a hydrogen atom or a methyl group, and R 36 represents an alkyl group having 1 to 8 carbon atoms) (meth) acrylic acid ester monomer having an alkyl group having 1 to 8 carbon atoms Unit and the following general formula (10):
—CH 2 —C (R 35 ) (COOR 37 ) — (10)
(Wherein R 35 is the same as described above, and R 37 represents an alkyl group having 10 or more carbon atoms) and is a copolymer comprising a (meth) acrylic acid ester monomer unit having an alkyl group having 10 or more carbon atoms. In this method, a polymer is blended with a polyoxyalkylene polymer having a crosslinkable silicon group.
 前記一般式(9)のR36としては、たとえばメチル基、エチル基、プロピル基、n-ブチル基、t-ブチル基、2-エチルヘキシル基等の炭素数1~8、好ましくは1~4、さらに好ましくは1~2のアルキル基があげられる。なお、R36のアルキル基は単独でもよく、2種以上混合していてもよい。 R 36 in the general formula (9) is, for example, a methyl group, an ethyl group, a propyl group, an n-butyl group, a t-butyl group, a 2-ethylhexyl group, etc., having 1 to 8, preferably 1 to 4, More preferred are 1 to 2 alkyl groups. The alkyl group of R 36 may alone, or may be a mixture of two or more.
 前記一般式(10)のR37としては、たとえばラウリル基、トリデシル基、セチル基、ステアリル基、ベヘニル基等の炭素数10以上、通常は10~30、好ましくは10~20の長鎖のアルキル基があげられる。なお、R37のアルキル基はR36の場合と同様、単独でもよく、2種以上混合したものであってもよい。 R 37 in the general formula (10) is, for example, a long-chain alkyl having 10 or more carbon atoms such as lauryl group, tridecyl group, cetyl group, stearyl group, behenyl group, etc., usually 10-30, preferably 10-20. Group. Incidentally, as with the alkyl group for R 37 is the R 36, alone may be, or may be a mixture of two or more.
 該(メタ)アクリル酸エステル系共重合体の分子鎖は実質的に式(9)及び式(10)の単量体単位からなるが、ここでいう「実質的に」とは該共重合体中に存在する式(9)及び式(10)の単量体単位の合計が50質量%をこえることを意味する。式(9)及び式(10)の単量体単位の合計は好ましくは70質量%以上である。 The molecular chain of the (meth) acrylic acid ester copolymer is substantially composed of monomer units of the formula (9) and the formula (10), and the term “substantially” here means the copolymer. It means that the total of the monomer units of the formula (9) and the formula (10) present therein exceeds 50% by mass. The total of the monomer units of the formula (9) and the formula (10) is preferably 70% by mass or more.
 また式(9)の単量体単位と式(10)の単量体単位の存在比は、質量比で95:5~40:60が好ましく、90:10~60:40がさらに好ましい。 The abundance ratio of the monomer unit of formula (9) and the monomer unit of formula (10) is preferably 95: 5 to 40:60, more preferably 90:10 to 60:40, in terms of mass ratio.
 該共重合体に含有されていてもよい式(9)及び式(10)以外の単量体単位(以下、他の単量体単位とも称する)としては、たとえばアクリル酸、メタクリル酸等のα,β-不飽和カルボン酸;アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド等のアミド基、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート、アミノエチルビニルエーテル等のアミノ基を含む単量体;その他アクリロニトリル、スチレン、α-メチルスチレン、アルキルビニルエーテル、塩化ビニル、酢酸ビニル、プロピオン酸ビニル、エチレン等に起因する単量体単位があげられる。 Examples of monomer units other than the formulas (9) and (10) that may be contained in the copolymer (hereinafter also referred to as other monomer units) include α such as acrylic acid and methacrylic acid. , Β-unsaturated carboxylic acids; amide groups such as acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, epoxy groups such as glycidyl acrylate, glycidyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, aminoethyl vinyl ether, etc. And other monomer units derived from acrylonitrile, styrene, α-methylstyrene, alkyl vinyl ether, vinyl chloride, vinyl acetate, vinyl propionate, ethylene and the like.
 架橋性珪素基を有するポリオキシアルキレン系重合体と架橋性珪素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法に用いられる架橋性珪素基を有する(メタ)アクリル酸エステル系重合体の他の好ましい具体例としては、例えば、特開2008-44975号に開示されているような、(a1)(メタ)アクリル酸メチル単量体単位と、(a2)アルキル基の炭素数が8である(メタ)アクリル酸アルキルエステル単量体単位と、を含む架橋性珪素基を有するアクリル系重合体が挙げられる。 Having a crosslinkable silicon group used in a method for producing an organic polymer obtained by blending a polyoxyalkylene polymer having a crosslinkable silicon group and a (meth) acrylic acid ester polymer having a crosslinkable silicon group (meta ) Other preferred specific examples of the acrylate polymer include, for example, (a1) a methyl (meth) acrylate monomer unit as disclosed in JP-A-2008-44975, and (a2) An acrylic polymer having a crosslinkable silicon group containing a (meth) acrylic acid alkyl ester monomer unit having an alkyl group having 8 carbon atoms.
 前記アクリル系共重合体の分子鎖は、前記(a1)単量体単位及び前記(a2)単量体単位を、合計50質量%以上含むものが好ましく、前記(a1)及び(a2)の単量体単位の合計が70質量%以上であることがより好ましい。前記(a1)と前記(a2)の存在比は質量比で(a1)/(a2)=90/10~20/80であることが好ましく、70/30~30/70がより好ましい。(a1)/(a2)の質量比が90/10~20/80の範囲とすることにより、透明性を向上させることができる。
 前記アクリル系共重合体は、前記(a1)及び(a2)以外の単量体単位が含まれていてもよい。(a1)及び(a2)以外の単量体単位としては、たとえば、前記(メタ)アクリル酸エステル系共重合体の説明において前述した他の単量体単位を同様に用いることができる。
The molecular chain of the acrylic copolymer preferably contains a total of 50% by mass or more of the monomer unit (a1) and the monomer unit (a2). It is more preferable that the total of the monomer units is 70% by mass or more. The abundance ratio of the (a1) and the (a2) is preferably (a1) / (a2) = 90/10 to 20/80, more preferably 70/30 to 30/70 in terms of mass ratio. When the mass ratio of (a1) / (a2) is in the range of 90/10 to 20/80, the transparency can be improved.
The acrylic copolymer may contain monomer units other than (a1) and (a2). As the monomer unit other than (a1) and (a2), for example, the other monomer units described above in the description of the (meth) acrylic acid ester-based copolymer can be used in the same manner.
 前記アクリル系共重合体の数平均分子量は、600~5000が好ましく、1000~4500がより好ましい。数平均分子量を該範囲とすることにより、架橋性珪素基を有するポリオキシアルキレン系重合体との相溶性を向上させることができる。
 前記アクリル系共重合体は、架橋性珪素基を有するポリオキシアルキレン系重合体100質量部に対して、5~900質量部用いることが好ましい。これらアクリル系共重合体は、単独で使用しても良く、2種以上併用しても良い。
The number average molecular weight of the acrylic copolymer is preferably 600 to 5000, more preferably 1000 to 4500. By setting the number average molecular weight within this range, compatibility with the polyoxyalkylene polymer having a crosslinkable silicon group can be improved.
The acrylic copolymer is preferably used in an amount of 5 to 900 parts by mass with respect to 100 parts by mass of the polyoxyalkylene polymer having a crosslinkable silicon group. These acrylic copolymers may be used alone or in combination of two or more.
 架橋性珪素基を有する飽和炭化水素系重合体と架橋性珪素基を有する(メタ)アクリル酸エステル系共重合体をブレンドしてなる有機重合体は、特開平1-168764号、特開2000-186176号公報等に提案されているが、特にこれらに限定されるものではない。 Organic polymers obtained by blending a saturated hydrocarbon polymer having a crosslinkable silicon group and a (meth) acrylic acid ester copolymer having a crosslinkable silicon group are disclosed in JP-A-1-168774 and 2000-2000. Although it is proposed in Japanese Patent No. 186176, etc., it is not particularly limited thereto.
 さらに、架橋性珪素基を有する(メタ)アクリル酸エステル系共重合体をブレンドしてなる有機重合体の製造方法としては、他にも、架橋性珪素基を有する有機重合体の存在下で(メタ)アクリル酸エステル系単量体の重合を行う方法が利用できる。この製造方法は、特開昭59-78223号、特開昭59-168014号、特開昭60-228516号、特開昭60-228517号等の各公報に具体的に開示されているが、これらに限定されるものではない。 Furthermore, as a method for producing an organic polymer obtained by blending a (meth) acrylic acid ester-based copolymer having a crosslinkable silicon group, in the presence of an organic polymer having a crosslinkable silicon group ( A method of polymerizing a meth) acrylate monomer can be used. This production method is specifically disclosed in JP-A-59-78223, JP-A-59-168014, JP-A-60-228516, JP-A-60-228517, etc. It is not limited to these.
 2種以上の重合体をブレンドして使用するときは、架橋性珪素基を有するポリオキシアルキレン系重合体100質量部に対し、架橋性珪素基を有する飽和炭化水素系重合体、及び/又は架橋性珪素基を有する(メタ)アクリル酸エステル系重合体を10~200質量部使用することが好ましく、20~80質量部使用することがさらに好ましい。 When two or more kinds of polymers are blended and used, a saturated hydrocarbon polymer having a crosslinkable silicon group and / or a crosslink with respect to 100 parts by mass of the polyoxyalkylene polymer having a crosslinkable silicon group. The (meth) acrylic acid ester-based polymer having a functional silicon group is preferably used in an amount of 10 to 200 parts by weight, more preferably 20 to 80 parts by weight.
 本発明の硬化性組成物は、硬化触媒として(B)熟成硬化触媒を用いるものであり、且つ該(B)熟成硬化触媒が、(C)前記式(1)で示されるエポキシシラン化合物と前記式(2)で示されるアミノシラン化合物とを反応させてなるシラン化合物と、(D)前記式(3)で示されるチタニウムキレート及び前記式(4)で表されるチタニウムキレートからなる群から選択される1種以上のチタン触媒とを、前記(D)チタン触媒1モルに対して前記(C)シラン化合物0.1~30モルの混合割合で混合し、30~100℃の反応温度で熟成させてなる熟成硬化触媒である。 The curable composition of the present invention uses (B) an aging curing catalyst as a curing catalyst, and the (B) aging curing catalyst comprises (C) the epoxysilane compound represented by the formula (1) and the above A silane compound obtained by reacting an aminosilane compound represented by the formula (2), (D) a titanium chelate represented by the formula (3), and a titanium chelate represented by the formula (4). One or more titanium catalysts are mixed at a mixing ratio of 0.1 to 30 moles of the (C) silane compound with respect to 1 mole of the (D) titanium catalyst and aged at a reaction temperature of 30 to 100 ° C. Is an aging curing catalyst.
 前記(B)熟成硬化触媒に用いられる前記(C)シラン化合物は、下記式(1)で示されるエポキシシラン化合物と下記式(2)で示されるアミノシラン化合物とを反応させてなるシラン化合物である。 The (C) silane compound used for the (B) aging curing catalyst is a silane compound obtained by reacting an epoxysilane compound represented by the following formula (1) with an aminosilane compound represented by the following formula (2). .
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 前記式(1)において、R~Rはそれぞれ水素原子又はアルキル基であり、水素原子、メチル基、エチル基、プロピル基が好ましく、水素原子がより好ましい。Rはアルキレン基またはアルキレンオキシアルキレン基であり、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、メチレンオキシエチレン基、メチレンオキシプロピレン基、メチレンオキシブチレン基、エチレンオキシエチレン基、エチレンオキシプロピレン基が好ましく、ブチレン基、オクチレン基、メチレンオキシプロピレン基がより好ましい。Rは一価炭化水素基であり、メチル基、エチル基、プロピル基等のアルキル基;ビニル基、アリル基、ブテニル基等のアルケニル基;フェニル基、トリル基等のアリール基が好ましく、メチル基がより好ましい。Rが複数存在する場合、それらは同じであっても異なっていてもよい。Rはアルキル基であり、メチル基、エチル基、プロピル基が好ましく、メチル基、エチル基がより好ましい。Rが複数存在する場合、それらは同じであっても異なっていてもよい。aは0、1又は2であり、0が好ましい。 In the formula (1), R 1 to R 3 are each a hydrogen atom or an alkyl group, preferably a hydrogen atom, a methyl group, an ethyl group, or a propyl group, and more preferably a hydrogen atom. R 4 is an alkylene group or an alkyleneoxyalkylene group, and is a methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, methyleneoxyethylene group, methyleneoxypropylene group, methyleneoxybutylene. Group, ethyleneoxyethylene group and ethyleneoxypropylene group are preferable, butylene group, octylene group and methyleneoxypropylene group are more preferable. R 5 is a monovalent hydrocarbon group, preferably an alkyl group such as a methyl group, an ethyl group or a propyl group; an alkenyl group such as a vinyl group, an allyl group or a butenyl group; an aryl group such as a phenyl group or a tolyl group; Groups are more preferred. When a plurality of R 5 are present, they may be the same or different. R 6 is an alkyl group, preferably a methyl group, an ethyl group, or a propyl group, and more preferably a methyl group or an ethyl group. When a plurality of R 6 are present, they may be the same or different. a is 0, 1 or 2, and 0 is preferable.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 前記式(2)において、R~R12はそれぞれ水素原子又はアルキル基であり、水素原子、メチル基、エチル基、プロピル基が好ましく、水素原子がより好ましい。R13は一価炭化水素基であり、アルキル基またはアルコキシ基が好ましく、メチル基、エチル基、プロピル基、メトキシ基、エトキシ基、プロポキシ基がより好ましく、メトキシ基、エトキシ基がさらに好ましい。R14はアルキル基であり、メチル基、エチル基、プロピル基が好ましく、メチル基、エチル基がより好ましい。bは0又は1である。(3-b)個のR14は同じであっても異なっていてもよい。 In the formula (2), R 7 to R 12 are each a hydrogen atom or an alkyl group, preferably a hydrogen atom, a methyl group, an ethyl group, or a propyl group, and more preferably a hydrogen atom. R 13 is a monovalent hydrocarbon group, preferably an alkyl group or an alkoxy group, more preferably a methyl group, an ethyl group, a propyl group, a methoxy group, an ethoxy group, or a propoxy group, and even more preferably a methoxy group or an ethoxy group. R 14 is an alkyl group, preferably a methyl group, an ethyl group, or a propyl group, and more preferably a methyl group or an ethyl group. b is 0 or 1. (3-b) R 14 may be the same or different.
 前記エポキシシラン化合物としては、例えば、4-オキシラニルブチルトリメトキシシラン、8-オキシラニルオクチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等が挙げられる。 Examples of the epoxysilane compound include 4-oxiranylbutyltrimethoxysilane, 8-oxiranyloctyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Glycidoxypropyltriethoxysilane and the like.
 前記アミノシラン化合物としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン等が挙げられる。 Examples of the aminosilane compound include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, and the like.
 前記エポキシシラン化合物と前記アミノシラン化合物との反応条件は、前記アミノシラン化合物の1級アミノ基が前記エポキシシラン化合物と反応し、該1級アミノ基が2級アミノ基もしくは3級アミノ基となり、該1級アミノ基が残存しないように反応させればよい。
 そのための反応条件としては、例えば、溶媒の存在下あるいは非存在下で、前記アミノシラン化合物と前記エポキシシラン化合物とを混合し、25℃~100℃、好ましくは30℃~90℃、より好ましくは40℃~80℃の反応温度で反応させることが好適である。反応温度を上記範囲内に設定することにより、反応を暴走させることなく安定に進行させることができる。反応温度を25℃未満とした場合、活性が低くなり、充分な反応達成に必要な時間が長くなり、効率が悪い。反応時間は、反応温度等を考慮して適宜設定することができるが、例えば上記のような条件では反応時間は、通常は1~336時間、好ましくは24~72時間の範囲内に設定することが好適である。
 エポキシシラン化合物とアミノシラン化合物の反応比(モル比)は、アミノシラン化合物1モルに対してエポキシシラン化合物を1.5~10モルとなるように反応させることが好ましく、1.6~5.0モルがより好ましく、1.7~2.4モルがさらに好ましい。
The reaction condition between the epoxysilane compound and the aminosilane compound is that the primary amino group of the aminosilane compound reacts with the epoxysilane compound, the primary amino group becomes a secondary amino group or a tertiary amino group, What is necessary is just to make it react so that a primary amino group may not remain | survive.
As the reaction conditions for that purpose, for example, the aminosilane compound and the epoxysilane compound are mixed in the presence or absence of a solvent, and 25 ° C to 100 ° C, preferably 30 ° C to 90 ° C, more preferably 40 ° C. It is preferable to carry out the reaction at a reaction temperature of from 0 ° C to 80 ° C. By setting the reaction temperature within the above range, the reaction can proceed stably without causing runaway. When the reaction temperature is less than 25 ° C., the activity is low, the time required to achieve a sufficient reaction is lengthened, and the efficiency is poor. The reaction time can be appropriately set in consideration of the reaction temperature and the like. For example, under the above conditions, the reaction time is usually set in the range of 1 to 336 hours, preferably 24 to 72 hours. Is preferred.
The reaction ratio (molar ratio) between the epoxysilane compound and the aminosilane compound is preferably such that the epoxysilane compound is reacted in an amount of 1.5 to 10 moles with respect to 1 mole of the aminosilane compound. Is more preferable, and 1.7 to 2.4 mol is more preferable.
 前記エポキシシラン化合物と前記アミノシラン化合物を、加熱反応、好ましくは40℃以上、より好ましくは40~100℃、さらに好ましくは40~80℃の反応温度で加熱反応させることにより、エポキシシラン化合物のエポキシ環が開裂し、この反応により生成した水酸基と該アミノシラン化合物中のアルコキシ基とのアルコール交換反応により環化し、下記式(11)で示されるカルバシラトラン誘導体を得ることができる。下記式(11)で示されるカルバシラトラン誘導体は29Si-NMRにて-60ppmから-70ppmにピークを有する化合物である。 The epoxy silane compound and the amino silane compound are heated and reacted at a reaction temperature of preferably 40 ° C. or higher, more preferably 40 to 100 ° C., and still more preferably 40 to 80 ° C. Is cleaved and cyclized by an alcohol exchange reaction between the hydroxyl group produced by this reaction and the alkoxy group in the aminosilane compound, whereby a carbacyltolane derivative represented by the following formula (11) can be obtained. The carbacyltolane derivative represented by the following formula (11) is a compound having a peak from −60 ppm to −70 ppm in 29 Si-NMR.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 前記式(11)において、R~R及びaはそれぞれ前記式(1)と同じであり、R~R12は前記式(2)と同じであり、前記式(2)のbが0の場合、R15は前記式(2)のOR14と同じであり、前記式(2)のbが1の場合、R15は前記式(2)のR13と同じである。なお、珪素原子に結合しているアルコキシ基はアルコール交換反応により、一部置換される場合があり、原料の珪素原子結合アルコキシ基と、反応により生成するカルバシラトラン誘導体中の珪素原子結合アルコキシ基が同じでない場合もある。 In Formula (11), R 1 to R 6 and a are the same as in Formula (1), R 7 to R 12 are the same as in Formula (2), and b in Formula (2) is When 0, R 15 is the same as OR 14 in the formula (2), and when b in the formula (2) is 1, R 15 is the same as R 13 in the formula (2). The alkoxy group bonded to the silicon atom may be partially substituted by an alcohol exchange reaction. The silicon atom-bonded alkoxy group of the raw material and the silicon atom-bonded alkoxy group in the carbacyltran derivative generated by the reaction May not be the same.
 前記(B)熟成硬化触媒に用いられる(D)チタン触媒は、下記式(3)で示されるチタニウムキレート及び下記式(4)で表されるチタニウムキレートからなる群から選択される1種以上である。 The (D) titanium catalyst used in the (B) aging curing catalyst is at least one selected from the group consisting of a titanium chelate represented by the following formula (3) and a titanium chelate represented by the following formula (4). is there.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 前記式(3)において、n個のR21は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR22は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR23および4-n個のR24は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、nは0、1、2又は3である。 In the formula (3), n R 21 s are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, and 4-n R 22 s are each independently a hydrogen atom or A substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, wherein 4-n R 23 and 4-n R 24 are each independently substituted or unsubstituted C 1-20 carbon atoms. A hydrocarbon group and n is 0, 1, 2 or 3;
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 前記式(4)において、R25は、置換あるいは非置換の2価の炭素原子数1~20の炭化水素基であり、2個のR26は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、2個のR27および2個のR28は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基である。 In the formula (4), R 25 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms, and the two R 26 are independently a hydrogen atom or a substituted or unsubstituted group. It is a hydrocarbon group having 1 to 20 carbon atoms, and two R 27 and two R 28 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
 前記式(3)又は前記式(4)で示されるチタニウムキレートとしては、例えば、チタニウムジメトキシドビス(エチルアセトアセテート)、チタニウムジエトキシドビス(エチルアセトアセテート)、チタニウムジイソプロポキシドビス(エチルアセトアセテート)、チタニウムジイソプロポキシドビス(メチルアセトアセテート)、チタニウムジイソプロポキシドビス(t-ブチルアセトアセテート)、チタニウムジイソプロポキシドビス(メチル-3-オキソ-4,4-ジメチルヘキサノエート)、チタニウムジイソプロポキシドビス(エチル-3-オキソ-4,4,4-トリフルオロブタノエート)、チタニウムジ-n-ブトキシドビス(エチルアセトアセテート)、チタニウムジイソブトキシドビス(エチルアセトアセテート)、チタニウムジ-t-ブトキシドビス(エチルアセトアセテート)、チタニウムジ-2-エチルヘキソキシドビス(エチルアセトアセテート)、チタニウムビス(1-メトキシ-2-プロポキシド)ビス(エチルアセトアセテート)、チタニウムビス(3-オキソ-2-ブトキシド)ビス(エチルアセトアセテート)、チタニウムビス(3-ジエチルアミノプロポキシド)ビス(エチルアセトアセテート)、チタニウムトリイソプロポキシド(エチルアセトアセテート)、チタニウムトリイソプロポキシド(アリルアセトアセテート)、チタニウムトリイソプロポキシド(メタクリロキシエチルアセトアセテート)、1,2-ジオキシエタンチタニウムビス(エチルアセトアセテート)、1,3-ジオキシプロパンチタニウムビス(エチルアセトアセテート)、2,4-ジオキシペンタンチタニウムビス(エチルアセトアセテート)、2,4-ジメチル-2,4-ジオキシペンタンチタニウムビス(エチルアセトアセテート)、チタニウムテトラキス(エチルアセトアセテート)、チタニウムビス(トリメチルシロキシ)ビス(エチルアセトアセテート)、チタニウムビス(トリメチルシロキシ)ビス(アセチルアセテート)、などが挙げられる。これらの中でもチタニウムジエトキシドビス(エチルアセトアセテート)、チタニウムジイソプロポキシドビス(エチルアセトアセテート)、チタニウムジブトキシドビス(エチルアセトアセテート)等が挙げられ、チタニウムジイソプロポキシドビス(エチルアセトアセテート)がより好適である。 Examples of the titanium chelate represented by the formula (3) or the formula (4) include titanium dimethoxide bis (ethyl acetoacetate), titanium diethoxide bis (ethyl acetoacetate), and titanium diisopropoxide bis (ethyl). Acetoacetate), titanium diisopropoxide bis (methyl acetoacetate), titanium diisopropoxide bis (t-butyl acetoacetate), titanium diisopropoxide bis (methyl-3-oxo-4,4-dimethylhexano) Eth), titanium diisopropoxide bis (ethyl-3-oxo-4,4,4-trifluorobutanoate), titanium di-n-butoxide bis (ethyl acetoacetate), titanium diisobutoxide bis (ethyl acetoacetate) ) Titanium di-t-butoxide bis (ethyl acetoacetate), Titanium di-2-ethylhexoxide bis (ethyl acetoacetate), Titanium bis (1-methoxy-2-propoxide) bis (ethyl acetoacetate), Titanium bis (3-oxo-2-butoxide) bis (ethylacetoacetate), titanium bis (3-diethylaminopropoxide) bis (ethylacetoacetate), titanium triisopropoxide (ethylacetoacetate), titanium triisopropoxide (allyl) Acetoacetate), titanium triisopropoxide (methacryloxyethyl acetoacetate), 1,2-dioxyethane titanium bis (ethyl acetoacetate), 1,3-dioxypropane titanium bis (ethyl acetate) Toacetate), 2,4-dioxypentane titanium bis (ethyl acetoacetate), 2,4-dimethyl-2,4-dioxypentane titanium bis (ethyl acetoacetate), titanium tetrakis (ethyl acetoacetate), titanium bis (Trimethylsiloxy) bis (ethylacetoacetate), titanium bis (trimethylsiloxy) bis (acetylacetate), and the like. Among these, titanium diethoxide bis (ethyl acetoacetate), titanium diisopropoxide bis (ethyl acetoacetate), titanium dibutoxide bis (ethyl acetoacetate) and the like, titanium diisopropoxide bis (ethyl acetoacetate) ) Is more preferable.
 前記チタニウムキレートのキレート配位子を形成し得るキレート試薬としては、例えば、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸t-ブチル、アセト酢酸アリル、アセト酢酸(2-メタクリロキシエチル)、3-オキソ-4,4-ジメチルヘキサン酸メチル、3-オキソ-4,4,4-トリフルオロブタン酸エチルなどのβ-ケトエステルが挙げられ、アセト酢酸メチル、アセト酢酸エチルが好ましく、アセト酢酸エチルがより好ましい。また、キレート配位子が2個以上存在する場合、それぞれのキレート配位子は同一であっても異なっていてもよい。 Examples of the chelating reagent capable of forming the chelate ligand of the titanium chelate include, for example, methyl acetoacetate, ethyl acetoacetate, t-butyl acetoacetate, allyl acetoacetate, acetoacetate (2-methacryloxyethyl), 3-oxo Examples include β-ketoesters such as methyl -4,4-dimethylhexanoate and ethyl 3-oxo-4,4,4-trifluorobutanoate, preferably methyl acetoacetate and ethyl acetoacetate, more preferably ethyl acetoacetate . When two or more chelate ligands are present, each chelate ligand may be the same or different.
 前記(B)熟成硬化触媒は、前記(D)チタン触媒1モルに対して前記(C)シラン化合物を0.1~30モルの混合割合で予め混合し、30~100℃の反応温度で熟成させてなる熟成硬化触媒である。ここで熟成とは、前記(D)チタン触媒のアルコキシ基の一部と前記(C)シラン化合物のアルコキシ基の一部をエステル交換反応させること及び/又は空気中等に含まれる水分にて前記(C)シラン化合物の一部を前記(D)チタン触媒にて加水分解させ、オリゴマー化させることを意味する。上記熟成により、化学平衡の状態に達すること、もしくは化学平衡の状態に達した後の状態とすることが好適である。 The (B) aging curing catalyst is prepared by previously mixing the (C) silane compound in a mixing ratio of 0.1 to 30 mol with respect to 1 mol of the (D) titanium catalyst, and aging at a reaction temperature of 30 to 100 ° C. This is an aging curing catalyst. Here, aging means transesterification of a part of the alkoxy group of the (D) titanium catalyst and a part of the alkoxy group of the (C) silane compound and / or moisture contained in the air ( C) It means that a part of the silane compound is hydrolyzed with the (D) titanium catalyst to be oligomerized. It is preferable to reach the state of chemical equilibrium by the aging, or the state after reaching the state of chemical equilibrium.
 前記(D)チタン触媒と前記(C)シラン化合物との混合割合は、前記(D)チタン触媒1モルに対して前記(C)シラン化合物0.1~30モルの範囲であり、好ましくは前記(D)チタン触媒1モルに対して前記(C)シラン化合物0.5~5.0モルの範囲であり、さらに好ましくは前記(D)チタン触媒1モルに対して前記(C)シラン化合物0.5~3.0モルの範囲である。前記(D)チタン触媒及び前記(C)シラン化合物は、それぞれ1種で用いてもよく、2種以上組み合わせて用いてもよい。 The mixing ratio of the (D) titanium catalyst and the (C) silane compound is in the range of 0.1 to 30 mol of the (C) silane compound with respect to 1 mol of the (D) titanium catalyst. (D) In the range of 0.5 to 5.0 moles of the (C) silane compound relative to 1 mole of the titanium catalyst, more preferably, the (C) silane compound 0 relative to 1 mole of the (D) titanium catalyst. The range is from 5 to 3.0 mol. The (D) titanium catalyst and the (C) silane compound may be used singly or in combination of two or more.
 前記(D)チタン触媒と前記(C)シラン化合物との混合物を熟成させる反応温度条件は、前記(D)チタン触媒と前記(C)シラン化合物とを30℃~100℃で反応させるものであり、30℃~90℃が好ましく、40℃~80℃がさらに好ましい。反応温度を上記範囲内に設定することにより、反応を暴走させることなく安定に進行させることができる。反応温度を30℃未満とした場合、活性が低くなり、充分な反応達成に必要な時間が長くなり、効率が悪い。反応時間は、反応温度等を考慮して適宜設定することができるが、少なくとも平衡状態に達するまで反応させることが望ましく、例えば上記のような条件では反応時間は、通常は1~336時間、好ましくは72~168時間の範囲内に設定することが好適である。 The reaction temperature condition for aging the mixture of the (D) titanium catalyst and the (C) silane compound is such that the (D) titanium catalyst and the (C) silane compound are reacted at 30 to 100 ° C. 30 ° C. to 90 ° C. is preferable, and 40 ° C. to 80 ° C. is more preferable. By setting the reaction temperature within the above range, the reaction can proceed stably without causing runaway. When the reaction temperature is less than 30 ° C., the activity is low, the time required to achieve a sufficient reaction is lengthened, and the efficiency is poor. The reaction time can be appropriately set in consideration of the reaction temperature and the like, but it is desirable to carry out the reaction until at least an equilibrium state is reached. For example, the reaction time is usually 1 to 336 hours under the above conditions, preferably Is preferably set within a range of 72 to 168 hours.
 前記(B)熟成硬化触媒の配合割合は特に制限はないが、前記(A)有機重合体100質量部に対して前記(B)熟成硬化触媒を0.5~30質量部配合することが好ましく、5.0~20.0質量部配合することがより好ましい。前記(B)熟成硬化触媒は1種でもよく、2種以上組み合わせて用いてもよい。 The blending ratio of the (B) aging curing catalyst is not particularly limited, but it is preferable to blend 0.5 to 30 parts by mass of the (B) aging curing catalyst with respect to 100 parts by mass of the (A) organic polymer. More preferably, 5.0 to 20.0 parts by mass is blended. The (B) aging curing catalyst may be used alone or in combination of two or more.
 本発明の硬化性組成物は、硬化触媒として前記(B)熟成硬化触媒を使用するが、熟成を行っていない非熟成硬化触媒や他の熟成硬化触媒を併用してもよい。特に、(B)熟成硬化触媒に加えて、非熟成硬化触媒としてチタンキレート化合物を併用することが好適である。(B)熟成硬化触媒と熟成を行っていないチタンキレート化合物を併用することにより、立ち上がり接着性を向上させることができる。前記チタンキレート化合物としては、特に制限はなく公知のチタンキレート化合物を用いることができるが、前記式(3)で示されるチタニウムキレート及び前記式(4)で表されるチタニウムキレートからなる群から選択される1種以上のチタン触媒が好ましい。また、チタンテトラアセチルアセトナート等の他のチタンキレート化合物を用いてもよい。 The curable composition of the present invention uses the above-mentioned (B) aging curing catalyst as a curing catalyst, but may be used in combination with a non-aging curing catalyst or other aging curing catalyst that has not been aged. In particular, in addition to the (B) aging curing catalyst, it is preferable to use a titanium chelate compound in combination as a non-aging curing catalyst. (B) The rising adhesiveness can be improved by using an aging curing catalyst and a titanium chelate compound which has not been aged. The titanium chelate compound is not particularly limited, and a known titanium chelate compound can be used, and is selected from the group consisting of a titanium chelate represented by the formula (3) and a titanium chelate represented by the formula (4). One or more titanium catalysts are preferred. Further, other titanium chelate compounds such as titanium tetraacetylacetonate may be used.
 非熟成硬化触媒として使用されるチタンキレート化合物の配合割合は特に制限はないが、前記(B)熟成硬化触媒100質量部に対して、前記非熟成硬化触媒として使用されるチタンキレート化合物を1~100質量部配合することが好ましく、10~20質量部配合することがより好ましい。前記チタンキレート化合物は1種で用いてもよく、2種以上組み合わせて用いてもよい。 The blending ratio of the titanium chelate compound used as the non-aged curing catalyst is not particularly limited, but 1 to 1 of the titanium chelate compound used as the non-aged curing catalyst with respect to 100 parts by mass of the (B) matured curing catalyst. It is preferable to mix 100 parts by mass, and it is more preferable to add 10 to 20 parts by mass. The titanium chelate compounds may be used alone or in combination of two or more.
 本発明の硬化性組成物は、本発明の効果を低下させない程度に他の硬化触媒を併用することもできる。他の硬化触媒としては、例えば、有機金属化合物やアミン類等が挙げられ、特にシラノール縮合触媒を用いることが好ましい。前記シラノール縮合触媒としては、例えば、スタナスオクトエート、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫ジアセテート、ジブチル錫ジアセチルアセトナート、ジブチル錫オキサイド、ジブチル錫ビストリエトキシシリケート、ジブチル錫ジステアレート、ジオクチル錫ジラウレート、ジオクチル錫ジバーサテート、オクチル酸錫及びナフテン酸錫等の有機錫化合物;ジメチルスズオキサイド、ジブチルスズオキサイド、ジオクチルスズオキサイド等のジアルキルスズオキサイド;ジブチル錫オキサイドとフタル酸エステルとの反応物等;テトラブチルチタネート、テトラプロピルチタネート等のチタン酸エステル類;アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジイソプロポキシアルミニウムエチルアセトアセテート等の有機アルミニウム化合物類;ジルコニウムテトラアセチルアセトナート等のキレート化合物類;オクチル酸鉛及びナフテン酸鉛等の有機酸鉛;オクチル酸ビスマス、ネオデカン酸ビスマス及びロジン酸ビスマス等の有機酸ビスマス;シラノール縮合触媒として公知のその他の酸性触媒及び塩基性触媒等が挙げられる。しかしながら、有機錫化合物は添加量に応じて、得られる硬化性組成物の毒性が強くなる場合がある。 The curable composition of the present invention can be used in combination with other curing catalysts to the extent that the effects of the present invention are not reduced. Examples of other curing catalysts include organometallic compounds and amines, and it is particularly preferable to use a silanol condensation catalyst. Examples of the silanol condensation catalyst include stannous octoate, dibutyltin dioctoate, dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, dibutyltin diacetylacetonate, dibutyltin oxide, dibutyltin bistriethoxysilicate, dibutyltin distearate. , Dioctyltin dilaurate, dioctyltin diversate, organotin compounds such as tin octylate and tin naphthenate; dialkyltin oxides such as dimethyltin oxide, dibutyltin oxide and dioctyltin oxide; reaction products of dibutyltin oxide and phthalate, etc. ; Titanates such as tetrabutyl titanate and tetrapropyl titanate; aluminum trisacetylacetonate, aluminum trisethylate Organoaluminum compounds such as acetoacetate and diisopropoxyaluminum ethylacetoacetate; Chelate compounds such as zirconium tetraacetylacetonate; Leaded organic acids such as lead octylate and lead naphthenate; Bismuth octylate, bismuth neodecanoate and rosin Examples include organic acid bismuth such as bismuth acid; other acidic catalysts and basic catalysts known as silanol condensation catalysts. However, the toxicity of the resulting curable composition may increase depending on the amount of the organotin compound added.
 本発明の硬化性組成物は、(E)1分子中に加水分解性珪素基を1個有し且つ第1級アミノ基を有なさいシラン化合物をさらに含有することが好適である。(E)シラン化合物を配合することにより、貯蔵安定性及び引張り物性をより改善することができる。 It is preferable that the curable composition of the present invention further includes (E) a silane compound having one hydrolyzable silicon group and one primary amino group in one molecule. (E) By adding a silane compound, storage stability and tensile physical properties can be further improved.
 前記(E)シラン化合物としては、1分子中に加水分解性珪素基を1個有し且つ第1級アミノ基を有なさい公知のシラン化合物を広く使用することができる。該シラン化合物(E)の加水分解珪素基において、珪素原子に結合する加水分解性基としては第1級アミノ基を除く公知の加水分解性基を用いることができるが、アルコキシル基が好ましい。前記(E)成分は、貯蔵安定性及び引張り物性を考慮すると加水分解性ケイ素基がトリアルコキシシリル基、又はジアルコキシシリル基であることが好ましく、トリアルコキシシリル基であることがより好ましい。 As the (E) silane compound, known silane compounds having one hydrolyzable silicon group and one primary amino group in one molecule can be widely used. In the hydrolyzed silicon group of the silane compound (E), a known hydrolyzable group excluding a primary amino group can be used as the hydrolyzable group bonded to the silicon atom, but an alkoxyl group is preferred. In the component (E), in consideration of storage stability and tensile physical properties, the hydrolyzable silicon group is preferably a trialkoxysilyl group or a dialkoxysilyl group, and more preferably a trialkoxysilyl group.
 前記(E)シラン化合物としては、下記式(12)で示される化合物がより好適に用いられる。 As the (E) silane compound, a compound represented by the following formula (12) is more preferably used.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 前記式(12)において、R41はメチル基又はエチル基であり、R41が複数存在する場合、それらは同一であってもよく、異なっていてもよい。R42はメチル基又はエチル基であり、R42が複数存在する場合、それらは同一であってもよく、異なっていてもよい。R43は炭素数1~10の炭化水素基である。mは2又は3であり、3がより好ましい。nは0又は1である。 In the formula (12), R 41 is a methyl group or an ethyl group, and when a plurality of R 41 are present, they may be the same or different. R 42 is a methyl group or an ethyl group, and when a plurality of R 42 are present, they may be the same or different. R 43 is a hydrocarbon group having 1 to 10 carbon atoms. m is 2 or 3, and 3 is more preferable. n is 0 or 1.
 前記(E)シラン化合物としては、具体的には、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、トリフェニルメトキシシラン、2-カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニルアミノメチルトリメトキシシラン等のフェニル基を含有するアルコキシシラン;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基を含有するアルコキシシラン;3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルメチルジエトキシシラン、3-イソシアネートプロピルメチルジメトキシシラン、(イソシアネートメチル)トリメトキシシラン、(イソシアネートメチル)ジメトキシメチルシラン、(イソシアネートメチル)トリエトキシシラン、(イソシアネートメチル)ジエトキシメチルシラン等のイソシアネート基を含有するアルコキシシラン;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン等のメルカプト基を含有するアルコキシシラン;2-カルボキシエチルトリエトキシシラン、N-2-(カルボキシメチル)アミノエチル-3-アミノプロピルトリメトキシシラン等のカルボキシシラン;ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロイルオキシプロピルトリエトキシシラン、メタクリロイルオキシメチルトリメトキシシラン等のビニル型不飽和基を含有するアルコキシシラン;3-クロロプロピルトリメトキシシラン等のハロゲンを含有するアルコキシシラン;トリス(3-トリメトキシシリルプロピル)イソシアヌレート等のイソシアヌレートシラン;N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ビニルベンジル-3-アミノプロピルトリエトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、ビス(3-トリメトキシシリルプロピル)アミン、N-エチル-3-アミノイソブチルトリメトキシシラン等の2級アミノ基及び/又は3級アミノ基を含有するアルコキシシラン;N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1,3-ジメチルブチリデン)-3-(トリメトキシシリル)-1-プロパンアミン等のケチミン型シラン;テトラメトキシシラン、テトラエトキシシラン、エトキシトリメトキシシラン、ジメトキシジエトキシシラン、メトキシトリエトキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-i-ブトキシシラン、テトラ-t-ブトキシシランなどのテトラアルコキシシラン(テトラアルキルシリケート);メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリフェノキシシラン、エチルトリメトキシシラン、ブチルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシランなどのトリアルコキシシラン;ジメチルジメトキシシラン、ジエチルジメトキシシランなどのジアルコキシシラン;トリメチルメトキシシラン、トリメチルエトキシシランなどのモノアルコキシシラン;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシランなどのアルキルイソプロペノキシシラン;等を挙げることができる。 Specific examples of the (E) silane compound include phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, triphenylmethoxysilane, 2-carboxyethylphenylbis (2-methoxyethoxy) silane, and N-phenyl. -3-alkoxysilanes containing a phenyl group such as 3-aminopropyltrimethoxysilane, N-phenylaminomethyltrimethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidyl Alkoxysilanes containing epoxy groups such as sidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane; Socyanate propyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, 3-isocyanatopropylmethyldimethoxysilane, (isocyanatemethyl) trimethoxysilane, (isocyanatemethyl) dimethoxymethylsilane, (isocyanate) Alkoxysilanes containing isocyanate groups such as (methyl) triethoxysilane, (isocyanatemethyl) diethoxymethylsilane; 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3- Mercaptopropylmethyldiethoxysilane, mercaptomethyltriethoxysilane, mercaptomethyltrimethoxysilane, Alkoxysilanes containing mercapto groups such as lucaptomethyltriethoxysilane; carboxysilanes such as 2-carboxyethyltriethoxysilane, N-2- (carboxymethyl) aminoethyl-3-aminopropyltrimethoxysilane; vinyltrimethoxy Alkoxysilanes containing vinyl unsaturated groups such as silane, vinyltriethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-acryloyloxypropyltriethoxysilane, methacryloyloxymethyltrimethoxysilane; 3-chloropropyltrimethoxy Alkoxysilane containing halogen such as silane; isocyanurate silane such as tris (3-trimethoxysilylpropyl) isocyanurate; N-benzyl-3-aminopropyltrimeth Xisilane, N-vinylbenzyl-3-aminopropyltriethoxysilane, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexylaminomethyldiethoxymethylsilane, N, N′-bis [3- (trimethoxysilyl) propyl] Alkoxysilanes containing secondary amino groups and / or tertiary amino groups such as ethylenediamine, bis (3-trimethoxysilylpropyl) amine, N-ethyl-3-aminoisobutyltrimethoxysilane; N- (1,3- Ketimine type silanes such as dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, N- (1,3-dimethylbutylidene) -3- (trimethoxysilyl) -1-propanamine; Silane, tetraethoxysilane, ethoxytrimethoxysilane, Tetraalkoxysilanes such as methoxydiethoxysilane, methoxytriethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n-butoxysilane, tetra-i-butoxysilane, tetra-t-butoxysilane ( Tetraalkyl silicate); methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltriphenoxysilane, ethyltrimethoxysilane, butyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, trifluoropropyltri Trialkoxysilanes such as methoxysilane; dialkoxysilanes such as dimethyldimethoxysilane and diethyldimethoxysilane; trimethylmethoxysilane and trimethylethoxysilane What monoalkoxysilanes; and the like can be given; dimethyl isopropenoxysilane silane, alkyl isopropenoxysilane silane such as methyltrimethoxysilane isopropenoxysilane silane.
 前記式(12)で示される化合物としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン等のジアルコキシシラン;メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン等のアルキルトリアルコキシシラン;フェニルトリメトキシシラン、フェニルトリエトキシシラン等のフェニル基を含有するアルコキシシラン;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニル型不飽和基を含有するアルコキシシラン;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基を含有するアルコキシシラン等が挙げられ、フェニル基を含有するアルコキシシランがより好ましい。 Examples of the compound represented by the formula (12) include dialkoxysilanes such as dimethyldimethoxysilane and dimethyldiethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and hexyltrimethoxysilane. Alkyl trialkoxysilanes such as decyltrimethoxysilane; alkoxysilanes containing phenyl groups such as phenyltrimethoxysilane and phenyltriethoxysilane; vinyl-type unsaturated groups such as vinyltrimethoxysilane and vinyltriethoxysilane Alkoxysilanes; alkoxysilanes containing epoxy groups such as 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane, etc. Shishiran is more preferable.
 前記(E)シラン化合物の配合割合は特に制限はないが、前記(A)有機重合体100質量部に対して、前記(E)シラン化合物を0.1~20質量部配合することが好ましく、0.3~20質量部配合することがより好ましく、0.5~10質量部配合することがさらに好ましい。前記(E)シラン化合物は1種で用いてもよく、2種以上組み合わせて用いてもよい。 The blending ratio of the (E) silane compound is not particularly limited, but it is preferable to blend 0.1 to 20 parts by weight of the (E) silane compound with respect to 100 parts by weight of the (A) organic polymer. It is more preferable to add 0.3 to 20 parts by mass, and it is even more preferable to add 0.5 to 10 parts by mass. The (E) silane compound may be used alone or in combination of two or more.
 本発明の硬化性組成物は、(F)充填剤をさらに含有することが好適である。(F)充填剤を配合することにより、硬化物を補強することができる。
 前記(F)充填剤としては、公知の充填剤を広く用いることができ、特に制限はないが、例えば、炭酸カルシウム、炭酸マグネシウム、珪藻土含水ケイ酸、含水けい酸、無水ケイ酸、ケイ酸カルシウム、微粉末シリカ、二酸化チタン、クレー、タルク、カーボンブラック、スレート粉、マイカ、カオリン、ゼオライト、高分子粉体等が挙げられ、炭酸カルシウム、微粉末シリカ及び高分子粉体が好ましく、表面処理炭酸カルシウム、粒径0.01~300μmの非晶質シリカ及び粒径0.01~300μmの高分子粉体からなる群から選択される1種以上がより好ましい。また、ガラスビーズ、シリカビーズ、アルミナビーズ、カーボンビーズ、スチレンビーズ、フェノールビーズ、アクリルビーズ、多孔質シリカ、シラスバルーン、ガラスバルーン、シリカバルーン、サランバルーン、アクリルバルーン等を用いることもでき、これらの中で、組成物の硬化後の伸びの低下が少ない点からアクリルバルーンがより好ましい。
The curable composition of the present invention preferably further contains (F) a filler. (F) A hardened | cured material can be reinforced by mix | blending a filler.
As the filler (F), known fillers can be widely used and are not particularly limited. For example, calcium carbonate, magnesium carbonate, diatomaceous earth hydrous silicic acid, hydrous silicic acid, anhydrous silicic acid, calcium silicate , Fine powder silica, titanium dioxide, clay, talc, carbon black, slate powder, mica, kaolin, zeolite, polymer powder, etc., calcium carbonate, fine powder silica and polymer powder are preferred, surface treated carbonic acid One or more selected from the group consisting of calcium, amorphous silica having a particle size of 0.01 to 300 μm, and polymer powder having a particle size of 0.01 to 300 μm are more preferable. In addition, glass beads, silica beads, alumina beads, carbon beads, styrene beads, phenol beads, acrylic beads, porous silica, shirasu balloons, glass balloons, silica balloons, saran balloons, acrylic balloons, etc. can be used. Among them, an acrylic balloon is more preferable from the viewpoint that the decrease in elongation after curing of the composition is small.
 前記炭酸カルシウムとしては、重質炭酸カルシウム、軽質炭酸カルシウム、コロイダル炭酸カルシウム、粉砕炭酸カルシウム等、いずれも使用可能であるが、コロイダル炭酸カルシウムがより好適である。これら炭酸カルシウムは単独で用いてもよく、2種以上併用してもよい。
 前記炭酸カルシウムの一次粒径が0.5μm以下であることが好ましく、0.01~0.1μmであることがより好ましい。このような粒径の小さい微粉炭酸カルシウムを使用することにより、硬化性組成物にチキソ性を付与することができる。
As the calcium carbonate, any of heavy calcium carbonate, light calcium carbonate, colloidal calcium carbonate, ground calcium carbonate and the like can be used, but colloidal calcium carbonate is more preferable. These calcium carbonates may be used alone or in combination of two or more.
The primary particle diameter of the calcium carbonate is preferably 0.5 μm or less, more preferably 0.01 to 0.1 μm. By using such fine powdered calcium carbonate having a small particle diameter, thixotropy can be imparted to the curable composition.
 また、炭酸カルシウムの中でも、チキソ性の付与、硬化物(硬化皮膜)に対する補強効果の観点から、表面処理炭酸カルシウムが好ましく、表面処理した微粉炭酸カルシウムがより好ましい。さらに、表面処理した微粉炭酸カルシウムに、他の炭酸カルシウム、例えば、表面処理されていない、粒径の大きな炭酸カルシウムである重質炭酸カルシウムや、表面処理した粒径の大きい炭酸カルシウム等を併用してもよい。表面処理した微粉炭酸カルシウムと他の炭酸カルシウムを併用するときは、表面処理した微粉炭酸カルシウムと、その他の炭酸カルシウムの比率(質量比)は、1:9~9:1が好ましく、3:7~7:3がより好ましい。 Also, among calcium carbonates, surface-treated calcium carbonate is preferable from the viewpoint of imparting thixotropy and reinforcing effect on a cured product (cured film), and surface-treated fine calcium carbonate is more preferable. Furthermore, surface-treated fine powdered calcium carbonate is used in combination with other calcium carbonates such as heavy calcium carbonate that has not been surface-treated and has a large particle size, or surface-treated calcium carbonate with a large particle size. May be. When the surface-treated fine calcium carbonate and other calcium carbonate are used in combination, the ratio (mass ratio) between the surface-treated fine calcium carbonate and the other calcium carbonate is preferably 1: 9 to 9: 1. 3: 7 ~ 7: 3 is more preferred.
 前記表面処理炭酸カルシウムにおいて、用いられる表面処理剤に特に制限はなく、公知の表面処理剤を広く使用可能である。該表面処理剤としては、例えば、高級脂肪酸系化合物、樹脂酸系化合物、芳香族カルボン酸エステル、陰イオン系界面活性剤、陽イオン系界面活性剤、ノニオン系界面活性剤、パラフィン、チタネートカップリング剤及びシランカップリング剤等が挙げられ、高級脂肪酸系化合物及びパラフィンがより好ましい。これら表面処理剤は単独で用いてもよく、2種以上併用してもよい。 In the surface-treated calcium carbonate, the surface treatment agent to be used is not particularly limited, and known surface treatment agents can be widely used. Examples of the surface treatment agent include higher fatty acid compounds, resin acid compounds, aromatic carboxylic acid esters, anionic surfactants, cationic surfactants, nonionic surfactants, paraffin, and titanate couplings. And higher fatty acid compounds and paraffin are more preferable. These surface treatment agents may be used alone or in combination of two or more.
 前記高級脂肪酸系化合物としては、例えば、ステアリン酸ナトリウムのような炭素数が10以上の高級脂肪酸系のアルカリ金属塩等が挙げられる。
 前記樹脂酸系化合物としては、例えば、アビエチン酸、ネオアビエチン酸、d-ピマル酸、i-d-ピマル酸、ボドカルプ酸、安息香酸、ケイ皮酸等が挙げられる。
 前記芳香族カルボン酸エステルとしては、例えば、フタル酸のオクチルアルコール、ブチルアルコール、イソブチルアルコールなどとのエステル、ナフト酸の低級アルコールエステル、ロジン酸の低級アルコールエステル及び芳香族ジカルボン酸またはロジン酸のマレイン酸付加物のような芳香族ポリカルボン酸の部分エステル化物または異種アルコールエステル化物等が挙げられる。
 前記陰イオン系界面活性剤としては、例えば、ドデシル硫酸ナトリウムのような硫酸エステル型、またはドデシルベンゼンスルホン酸ナトリウム、ラウリルスルホン酸ナトリウム、ドデシルベンゼンスルホン酸などのスルホン酸型の陰イオン系界面活性剤が挙げられる。
Examples of the higher fatty acid compounds include higher fatty acid alkali metal salts having 10 or more carbon atoms such as sodium stearate.
Examples of the resin acid compound include abietic acid, neoabietic acid, d-pimalic acid, id-pimalic acid, bodocarpic acid, benzoic acid, and cinnamic acid.
Examples of the aromatic carboxylic acid ester include phthalic acid octyl alcohol, butyl alcohol, isobutyl alcohol and the like, naphthic acid lower alcohol ester, rosin acid lower alcohol ester, and aromatic dicarboxylic acid or rosin acid malee. Examples thereof include partially esterified products of aromatic polycarboxylic acids such as acid adducts, and different alcohol esterified products.
Examples of the anionic surfactant include a sulfate ester type such as sodium dodecyl sulfate, or a sulfonic acid type anionic surfactant such as sodium dodecylbenzene sulfonate, sodium lauryl sulfonate, and dodecyl benzene sulfonic acid. Is mentioned.
 前記表面処理炭酸カルシウムとしては、公知の表面処理された炭酸カルシウムを広く使用することができ、特に制限はないが、例えば、Vigot 15(白石カルシウム(株)製、脂肪酸で表面処理された軽質炭酸カルシウム、一次粒子径0.15μm)等の表面処理軽質炭酸カルシウム;Vigot 10(白石カルシウム(株)製、脂肪酸で表面処理されたコロイダル炭酸カルシウム、一次粒子径0.10μm)、白艶華DD(白石カルシウム(株)製、樹脂酸で表面処理されたコロイダル炭酸カルシウム、一次粒子径0.05μm)、カーレックス300(丸尾カルシウム(株)製、脂肪酸で表面処理されたコロイダル炭酸カルシウム、一次粒子径0.05μm)、ネオライトSS(竹原化学工業(株)製、脂肪酸で表面処理されたコロイダル炭酸カルシウム、平均粒子径0.04μm)、ネオライトGP-20(竹原化学工業(株)製、樹脂酸で表面処理されたコロイダル炭酸カルシウム、平均粒子径0.03μm)、カルシーズP(神島化学工業(株)製、脂肪酸で表面処理されたコロイダル炭酸カルシウム、平均粒子径0.15μm)等の表面処理コロイダル炭酸カルシウム;MCコートP1(丸尾カルシウム(株)製、パラフィンで表面処理された重質炭酸カルシウム、一次粒子径3.3μm)、AFF-95((株)ファイマテック製、カチオンポリマーで表面された重質炭酸カルシウム、一次粒子径0.9μm)、AFF-Z((株)ファイマテック製、カチオンポリマー及び帯電防止剤で表面された重質炭酸カルシウム、一次粒子径1.0μm)等の表面処理重質炭酸カルシウムが挙げられる。 As the surface-treated calcium carbonate, known surface-treated calcium carbonate can be widely used and is not particularly limited. For example, Vigot 15 (manufactured by Shiroishi Calcium Co., Ltd., light carbonate surface-treated with fatty acid) Surface treatment light calcium carbonate such as calcium, primary particle diameter 0.15 μm; Vigot 10 (manufactured by Shiroishi Calcium Co., Ltd., colloidal calcium carbonate surface treated with fatty acid, primary particle diameter 0.10 μm), white sinter flower DD (Shiraishi calcium Colloidal calcium carbonate surface-treated with resin acid, primary particle size 0.05 μm, Carlex 300 (manufactured by Maruo Calcium Co., Ltd., colloidal calcium carbonate surface-treated with fatty acid, primary particle size 0. 05μm), Neolite SS (manufactured by Takehara Chemical Co., Ltd.), surface-treated with fatty acid Loyal calcium carbonate, average particle size 0.04μm), Neolite GP-20 (manufactured by Takehara Chemical Industry Co., Ltd., colloidal calcium carbonate surface-treated with resin acid, average particle size 0.03μm), Calsees P (Kamishima Chemical Industry) Surface-treated colloidal calcium carbonate such as colloidal calcium carbonate surface-treated with fatty acid manufactured by Co., Ltd .; MC Coat P1 (manufactured by Maruo Calcium Co., Ltd., heavy carbonate surface-treated with paraffin) Calcium, primary particle size 3.3 μm), AFF-95 (manufactured by Pfematech Co., Ltd., heavy calcium carbonate surfaced with a cationic polymer, primary particle size 0.9 μm), AFF-Z (manufactured by Pmatech) Surface treatment heavy such as heavy calcium carbonate surfaced with cationic polymer and antistatic agent, primary particle diameter 1.0 μm) An example is calcium carbonate.
 前記表面処理炭酸カルシウムは、前記(A)有機重合体100質量部に対して、0~500質量部配合することが好ましく、10~300質量部配合することがより好ましく、15~100質量部配合することがさらに好ましい。前記表面処理炭酸カルシウムは1種で用いてもよく、2種以上組み合わせて用いてもよい。また、表面処理炭酸カルシウムと表面処理を行っていない炭酸カルシウムを併用してもよい。 The surface-treated calcium carbonate is preferably added in an amount of 0 to 500 parts by weight, more preferably 10 to 300 parts by weight, and more preferably 15 to 100 parts by weight with respect to 100 parts by weight of the (A) organic polymer. More preferably. The said surface treatment calcium carbonate may be used by 1 type, and may be used in combination of 2 or more type. Moreover, you may use together the surface treatment calcium carbonate and the calcium carbonate which has not surface-treated.
 前記非晶質シリカとしては、公知の非晶質シリカを広く使用可能であり、特に制限はないが、その粒径が0.01~300μmであることが好ましく、0.1~100μmがより好ましく、1~30μmがさらに好ましい。
 前記(A)有機重合体の屈折率と前記非晶質シリカの屈折率の差が0.1以下である非晶質シリカを用いることにより、透明性をより向上させることができる。前記(A)有機重合体の屈折率と前記非晶質シリカの屈折率の差は、0.1以下が好ましく、0.05以下がより好ましく、0.03以下がさらに好ましい。
As the amorphous silica, known amorphous silica can be widely used, and is not particularly limited. However, the particle size is preferably 0.01 to 300 μm, more preferably 0.1 to 100 μm. 1 to 30 μm is more preferable.
By using amorphous silica in which the difference between the refractive index of the organic polymer (A) and the refractive index of the amorphous silica is 0.1 or less, the transparency can be further improved. The difference between the refractive index of the organic polymer (A) and the refractive index of the amorphous silica is preferably 0.1 or less, more preferably 0.05 or less, and even more preferably 0.03 or less.
 前記非晶質シリカは、前記(A)有機重合体100質量部に対して、0~500質量部配合することが好ましく、1~200質量部配合することがより好ましく、5~50質量部配合することがさらに好ましい。前記非晶質シリカは1種で用いてもよく、2種以上組み合わせて用いてもよい。また、粒径が0.01~300μmである非晶質シリカとともに、粒径範囲が上記と異なる非晶質シリカや結晶質シリカを併用してもよい。 The amorphous silica is preferably blended in an amount of 0 to 500 parts by weight, more preferably 1 to 200 parts by weight, and more preferably 5 to 50 parts by weight with respect to 100 parts by weight of the (A) organic polymer. More preferably. The amorphous silica may be used alone or in combination of two or more. In addition to amorphous silica having a particle size of 0.01 to 300 μm, amorphous silica or crystalline silica having a particle size different from the above may be used in combination.
 前記高分子粉体としては、公知の高分子粉体を広く使用可能であり、特に制限はないが、その粒径が0.01~300μmであることが好ましく、0.1~100μmがより好ましく、1~30μmがさらに好ましい。 As the polymer powder, known polymer powders can be widely used, and are not particularly limited. However, the particle size is preferably 0.01 to 300 μm, more preferably 0.1 to 100 μm. 1 to 30 μm is more preferable.
 前記高分子紛体としては、例えば、(メタ)アクリル酸エステル、酢酸ビニル、エチレン及び塩化ビニルからなる群から選択されたモノマーを単独で重合するか、もしくは、該モノマーと1種以上のビニル系モノマーとを共重合することによって得られる重合体を原料とした高分子粉体が好適に用いられ、アクリル系高分子粉体やビニル系高分子粉体がより好ましく、アクリル系高分子粉体がさらに好ましい。 As the polymer powder, for example, a monomer selected from the group consisting of (meth) acrylic acid ester, vinyl acetate, ethylene and vinyl chloride is polymerized alone, or the monomer and one or more vinyl monomers are used. A polymer powder made from a polymer obtained by copolymerization of a polymer is preferably used, an acrylic polymer powder or a vinyl polymer powder is more preferred, and an acrylic polymer powder is further preferable.
 本発明の硬化性組成物の透明性をより向上させるために、前記(A)有機重合体を主成分とする液相成分の屈折率と前記高分子粉体の屈折率の差を0.1以下とすることが好ましく、0.05以下がより好ましく、0.03以下がさらに好ましい。
 前記(A)有機重合体を主成分とする液相成分の屈折率と前記高分子粉体の屈折率の差を0.1以下とする方法としては、特に制限はないが、(1)高分子粉体の屈折率に、(A)有機重合体を主成分とする液相成分の屈折率を合わせる方法、及び(2)(A)有機重合体の屈折率に高分子粉体の屈折率を合わせる方法等が挙げられる。
In order to further improve the transparency of the curable composition of the present invention, the difference between the refractive index of the liquid phase component containing (A) the organic polymer as the main component and the refractive index of the polymer powder is 0.1. Preferably, it is preferably 0.05 or less, more preferably 0.03 or less.
The method for setting the difference between the refractive index of the liquid phase component containing (A) the organic polymer as the main component and the refractive index of the polymer powder to 0.1 or less is not particularly limited, but (1) high (A) a method of matching the refractive index of the liquid phase component containing an organic polymer as a main component with the refractive index of the molecular powder, and (2) (A) the refractive index of the polymer powder with the refractive index of the organic polymer. And the like.
 前記(1)の方法としては、例えば、(A)有機重合体を主成分とする液相成分に、相溶する屈折率調整剤を必要量配合し、液相成分の屈折率を調整する方法が挙げられる。具体的には、(A)有機重合体の屈折率が1.46~1.48程度であり、高分子粉体の屈折率の方が高い態様においては、(A)有機重合体よりも高い屈折率を有する屈折率調整剤{例えば、エポキシ樹脂〔例:エピコート828(ビスフェノールA、油化シェルエポキシ(株)製、屈折率1.57)〕、石油樹脂〔例:FTR6100(C5とC9の共重合物、三井石油化学(株)製、屈折率1.56)〕、テルペンフェノール樹脂〔例:ポリスターT145(ヤスハラケミカル(株)製、屈折率1.59)〕}を、(A)有機重合体に加熱溶融する方法が挙げられる。 As the method of (1), for example, (A) a method of adjusting a refractive index of a liquid phase component by blending a necessary amount of a compatible refractive index adjusting agent with a liquid phase component mainly composed of an organic polymer. Is mentioned. Specifically, in an embodiment where (A) the refractive index of the organic polymer is about 1.46 to 1.48 and the refractive index of the polymer powder is higher, it is higher than (A) the organic polymer. Refractive index adjusting agent having a refractive index {for example, epoxy resin [Example: Epicoat 828 (Bisphenol A, manufactured by Yuka Shell Epoxy Co., Ltd., refractive index 1.57)], petroleum resin [Example: FTR6100 (of C5 and C9 Copolymer, Mitsui Petrochemical Co., Ltd., refractive index 1.56)], terpene phenol resin [Example: Polystar T145 (Yasuhara Chemical Co., Ltd., refractive index 1.59)]} There is a method of heating and melting the coalescence.
 前記(2)の方法としては、例えば、高分子粉体のモノマー配合を適宜変更する方法が挙げられる。具体的には、(A)有機重合体の屈折率が1.46~1.48程度であり、高分子粉体としてアクリル系高分子粉体を用いる態様において、高分子粉体の屈折率を高くする方法としては、例えば、塩化ビニル〔屈折率1.53(重合体)〕、アルリロニトリル〔屈折率1.52(重合体)〕等の単量体を(メタ)アクリル酸エステル単量体に共重合する方法が挙げられる。また、該態様において、(E4)高分子粉体の屈折率を低くする方法としては、例えば、ラウリルメタクリレート〔屈折率1.44(単量体)〕、アリルメタクリレート〔屈折率1.44(単量体)〕、2(2-エトキシエトキシ)エチルアクリレート〔屈折率1.43(単量体)〕等の単量体をメタ)アクリル酸エステル単量体に共重合する方法が挙げられる。 Examples of the method (2) include a method of appropriately changing the monomer composition of the polymer powder. Specifically, in the embodiment where the refractive index of the organic polymer (A) is about 1.46 to 1.48 and acrylic polymer powder is used as the polymer powder, the refractive index of the polymer powder is As a method for increasing the viscosity, for example, a monomer such as vinyl chloride [refractive index 1.53 (polymer)] and allylonitrile [refractive index 1.52 (polymer)] is used as a single monomer of (meth) acrylate. The method of copolymerizing to a body is mentioned. In this embodiment, the method (E4) for reducing the refractive index of the polymer powder includes, for example, lauryl methacrylate [refractive index 1.44 (monomer)], allyl methacrylate [refractive index 1.44 (single Monomer)], and a monomer such as 2 (2-ethoxyethoxy) ethyl acrylate [refractive index of 1.43 (monomer)] is copolymerized with a meth) acrylate monomer.
 前記高分子紛体は、前記(A)有機重合体100質量部に対して、0~500質量部配合することが好ましく、0.5~100質量部配合することがより好ましく、1~50質量部配合することがさらに好ましい。前記高分子紛体は1種で用いてもよく、2種以上組み合わせて用いてもよい。 The polymer powder is preferably blended in an amount of 0 to 500 parts by weight, more preferably 0.5 to 100 parts by weight, based on 100 parts by weight of the organic polymer (A). It is more preferable to blend. The polymer powder may be used alone or in combination of two or more.
 本発明の硬化性組成物において、前記(F)充填剤の配合割合は特に制限はないが、前記(A)有機重合体100質量部に対して、前記(F)充填剤を0~500質量部配合することが好ましく、2~250質量部配合することがより好ましく、5~125質量部配合することがさらに好ましい。前記(F)充填剤は1種で用いてもよく、2種以上組み合わせて用いてもよい。 In the curable composition of the present invention, the blending ratio of the filler (F) is not particularly limited, but the filler (F) is added in an amount of 0 to 500 masses per 100 mass parts of the organic polymer (A). It is preferably blended in an amount of 2 to 250 parts by weight, more preferably 5 to 125 parts by weight. The said (F) filler may be used by 1 type, and may be used in combination of 2 or more type.
 本発明の硬化性組成物は、(G)希釈剤をさらに含有することが好適である。(G)希釈剤を配合することにより、粘度等の物性を調整することができる。
 (G)希釈剤としては、公知の希釈剤を広く用いることができ、特に制限はないが、例えば、ノルマルパラフィン、イソパラフィン等の飽和炭化水素系溶剤,リニアレンダイマー(出光興産株式会社商品名)等の下記式(I)で表されるα-オレフィン誘導体,トルエン、キシレン等の芳香族炭化水素系溶剤,エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノール、デカノール、ダイアセトンアルコール等のアルコール系溶剤、酢酸エチル、酢酸ブチル、酢酸アミル、酢酸セロソルブ等のエステル系溶剤,クエン酸アセチルトリエチル、クエン酸アセチルトリブチル、クエン酸トリエチル等のクエン酸エステル系溶剤,メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤等の各種溶剤が挙げられる。
 R51-Z-R52 ・・・(I)
(前記式(I)において、R51、R52はそれぞれ独立に炭素数2~20の直鎖状アルキル基を表し、Zは下記式(Ia)~(Ic)のいずれかで表される2価基を表わす。)
The curable composition of the present invention preferably further contains (G) a diluent. (G) By blending a diluent, physical properties such as viscosity can be adjusted.
(G) As a diluent, a well-known diluent can be widely used, and there is no restriction | limiting in particular, For example, saturated hydrocarbon solvents, such as normal paraffin and isoparaffin, a linearlen dimer (Idemitsu Kosan Co., Ltd. brand name) Α-olefin derivatives represented by the following formula (I), aromatic hydrocarbon solvents such as toluene and xylene, alcohols such as ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, and diacetone alcohol Solvents, ester solvents such as ethyl acetate, butyl acetate, amyl acetate and cellosolve, citrate solvents such as acetyl triethyl citrate, acetyl tributyl citrate and triethyl citrate, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone Various solvents such as
R 51 -ZR 52 (I)
(In the formula (I), R 51 and R 52 each independently represents a linear alkyl group having 2 to 20 carbon atoms, and Z is represented by any one of the following formulas (Ia) to (Ic): Represents a valent group.)
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(式(Ib)中、R53は水素原子もしくは炭素数1~40の直鎖状または分岐状のアルキル基を表す。) (In the formula (Ib), R 53 represents a hydrogen atom or a linear or branched alkyl group having 1 to 40 carbon atoms.)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 前記(G)希釈剤の引火点には特に制限はないが、得られる硬化性組成物の安全性を考慮すると硬化性組成物の引火点は高い方が望ましく、硬化性組成物からの揮発物質は少ない方が好ましい。
 そのため、前記(G)希釈剤の引火点は60℃以上であることが好ましく、70℃以上であることがより好ましい。2以上の(G)希釈剤を混合して使用するときは、混合した希釈剤の引火点が70℃以上であることが好ましい。しかし、一般的に引火点が高い希釈剤は硬化性組成物に対する希釈効果が低くなる傾向が見られるため、引火点は250℃以下であることが好適である。
The flash point of the diluent (G) is not particularly limited, but considering the safety of the resulting curable composition, it is desirable that the flash point of the curable composition is high. Volatile substances from the curable composition Is preferably less.
Therefore, the flash point of the (G) diluent is preferably 60 ° C. or higher, and more preferably 70 ° C. or higher. When two or more (G) diluents are mixed and used, the flash point of the mixed diluent is preferably 70 ° C. or higher. However, generally, a diluent having a high flash point tends to have a low dilution effect on the curable composition, and therefore, the flash point is preferably 250 ° C. or lower.
 本発明の硬化性組成物の安全性、希釈効果の双方を考慮すると、(G)希釈剤としては飽和炭化水素系溶剤が好適であり、ノルマルパラフィン、イソパラフィンがより好適である。ノルマルパラフィン、イソパラフィンの炭素数は10~16であることが好ましい。具体的にはN-11(ノルマルパラフィン、JX日鉱日石エネルギー(株)製、炭素数11、引火点68℃)、N-12(ノルマルパラフィン、JX日鉱日石エネルギー(株)製、炭素数12、引火点85℃)、IPソルベント2028(イソパラフィン、出光興産(株)製、炭素数10から16、引火点86℃)等が挙げられる。 In consideration of both safety and dilution effect of the curable composition of the present invention, (G) a saturated hydrocarbon solvent is preferable as the diluent, and normal paraffin and isoparaffin are more preferable. Normal paraffin and isoparaffin preferably have 10 to 16 carbon atoms. Specifically, N-11 (normal paraffin, manufactured by JX Nippon Oil & Energy Corporation, carbon number 11, flash point 68 ° C.), N-12 (normal paraffin, manufactured by JX Nippon Oil & Energy Corporation, carbon number) 12, flash point 85 ° C.), IP solvent 2028 (isoparaffin, manufactured by Idemitsu Kosan Co., Ltd., carbon number 10 to 16, flash point 86 ° C.) and the like.
 前記(G)希釈剤の配合割合は特に制限はないが、前記(A)有機重合体100質量部に対して、前記(G)希釈剤を0~50質量部配合することが好ましく、0.1~30質量部配合することがより好ましく、0.1~15質量部配合することがさらに好ましい。前記(G)希釈剤は1種で用いてもよく、2種以上組み合わせて用いてもよい。 The blending ratio of the (G) diluent is not particularly limited, but it is preferable to blend 0 to 50 parts by mass of the (G) diluent with respect to 100 parts by mass of the (A) organic polymer. 1 to 30 parts by mass is more preferable, and 0.1 to 15 parts by mass is even more preferable. The said (G) diluent may be used by 1 type, and may be used in combination of 2 or more type.
 本発明の硬化性組成物は、金属水酸化物をさらに含有することが好適である。前記金属水酸化物を配合することにより、難燃性を付与し、作業性を向上させることができると共に、硬化物を補強することができる。さらに、金属水酸化物はハロゲン系難燃剤等の他の難燃剤に比べて、安全性が高いという効果も奏する。特に、金属水酸化物と表面処理炭酸カルシウムを併用することにより、作業性(チキソ性)をより向上させることができ、且つ難燃性を付与することができる。前記金属水酸化物は表面処理剤で表面処理された金属水酸化物を使用してもよい。
 前記金属水酸化物としては、例えば、水酸化アルミニウム、水酸化マグネシウム等が挙げられ、水酸化アルミニウムがより好適である。
The curable composition of the present invention preferably further contains a metal hydroxide. By mix | blending the said metal hydroxide, a flame retardance can be provided, workability | operativity can be improved, and hardened | cured material can be reinforced. Furthermore, the metal hydroxide also has an effect of higher safety than other flame retardants such as halogen flame retardants. In particular, by using a metal hydroxide and surface-treated calcium carbonate in combination, workability (thixotropic properties) can be further improved and flame retardancy can be imparted. The metal hydroxide may be a metal hydroxide surface-treated with a surface treatment agent.
Examples of the metal hydroxide include aluminum hydroxide and magnesium hydroxide, and aluminum hydroxide is more preferable.
 前記金属水酸化物の配合割合は特に制限はないが、前記(A)有機重合体100質量部に対して、前記金属水酸化物を0~500質量部配合することが好ましく、2~250質量部配合することがより好ましく、5~125質量部配合することがさらに好ましい。前記金属水酸化物は単独で用いてもよく2種以上併用してもよい。また、他の公知の難燃剤を併用してもよい。 The blending ratio of the metal hydroxide is not particularly limited, but 0 to 500 parts by weight of the metal hydroxide is preferably blended with respect to 100 parts by weight of the (A) organic polymer. More preferably, 5 to 125 parts by mass is added. The said metal hydroxide may be used independently and may be used together 2 or more types. Moreover, you may use together another well-known flame retardant.
 本発明の硬化性組成物は、前記した成分に加えて、必要に応じて、紫外線吸収剤、酸化防止剤、老化防止剤、接着性付与剤、物性調整剤、可塑剤、揺変剤、脱水剤(保存安定性改良剤)、難燃剤、粘着付与剤、垂れ防止剤、着色剤、ラジカル重合開始剤などの物質を配合してもよく、また相溶する他の重合体をブレンドしてもよい。 In addition to the above-described components, the curable composition of the present invention includes an ultraviolet absorber, an antioxidant, an anti-aging agent, an adhesiveness imparting agent, a physical property modifier, a plasticizer, a thixotropic agent, and a dehydration agent as necessary. You may mix substances such as additives (storage stability improvers), flame retardants, tackifiers, anti-sagging agents, colorants, radical polymerization initiators, and blend with other compatible polymers. Good.
 前記酸化防止剤は、硬化性組成物の酸化を防止して、耐候性、耐熱性を改善するために使用されるものであり、例えば、ヒンダードアミン系やヒンダードフェノール系の酸化防止剤等が挙げられる。ヒンダードアミン系酸化防止剤としては、例えば、N,N′,N″,N″′-テトラキス-(4,6-ビス(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N′-ビス-(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミン・N-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合体、[デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジル)エステル、1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物(70%)]-ポリプロピレン(30%)、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネート、メチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケ-ト、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケ-ト、1-[2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ[4.5]デカン-2,4-ジオンなどが挙げられるが、これらに限定されるものではない。ヒンダードフェノール系酸化防止剤としては、例えば、ペンタエリストール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、チオジエチレン-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N′-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルプロピオアミド]、ベンゼンプロパン酸3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシC7-C9側鎖アルキルエステル、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、ジエチル[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスホネート、3,3′,3″,5,5′,5″-ヘキサン-tert-ブチル-4-a,a′,a″-(メシチレン-2,4,6-トリル)トリ-p-クレゾール、カルシウムジエチルビス[[[3,5-ビス-(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスホネート]、4,6-ビス(オクチルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、N-フェニルベンゼンアミンと2,4,4-トリメチルペンテンとの反応生成物、2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノールなどが挙げられるが、これらに限定されるものではない。前記酸化防止剤は単独で使用しても良く、または、2種類以上を併用しても良い。 The antioxidant is used to prevent oxidation of the curable composition to improve weather resistance and heat resistance, and examples thereof include hindered amine-based and hindered phenol-based antioxidants. It is done. Examples of the hindered amine antioxidant include N, N ′, N ″, N ″ ′-tetrakis- (4,6-bis (butyl- (N-methyl-2,2,6,6-tetramethylpiperidine- 4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10-diamine, dibutylamine 1,3,5-triazine N, N'-bis- (2,2,6 , 6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine · N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate, poly [{6- (1, 1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2 , 2,6,6-tetramethyl-4- Peridyl) imino}], dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, [bis (2,2,6,6-tetramethyl-decanedioic acid) 1 (octyloxy) -4-piperidyl) ester, reaction product of 1,1-dimethylethyl hydroperoxide and octane (70%)]-polypropylene (30%), bis (1,2,2,6,6- Pentamethyl-4-piperidyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate, methyl 1,2,2,6,6-pentamethyl-4-piperidyl seba Kate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate 1- [2- [3- (3,5-Di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 8-acetyl-3-dodecyl-7,7,9,9- Examples include, but are not limited to, tetramethyl-1,3,8-triazaspiro [4.5] decane-2,4-dione, etc. Examples of hindered phenol-based antioxidants include penta Erythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], thiodiethylene-bis [3- (3,5-di-ter t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenylpropioamide), benzenepropanoic acid 3,5-bis (1,1-dimethylethyl) -4-hydroxy C7-C9 side chain alkyl ester, 2,4 -Dimethyl-6- (1-methylpentadecyl) phenol, diethyl [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] phosphonate, 3,3 ', 3 ", 5, 5 ′, 5 ″ -hexane-tert-butyl-4-a, a ′, a ″-(mesitylene-2,4,6-tolyl) tri-p-cresol, calci Mudiethylbis [[[3,5-bis- (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] phosphonate], 4,6-bis (octylthiomethyl) -o-cresol, ethylenebis (oxyethylene) Bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate], hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3 , 5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, N-phenylbenzenamine Product of 2,4,4-trimethylpentene with 2,6-di-tert-butyl-4- (4,6-bis (octylthio) -1,3,5 Triazin-2-ylamino) phenol and the like, but not limited thereto. The antioxidants may be used alone or in combination of two or more.
 前記紫外線吸収剤は、硬化性組成物の光劣化を防止して、耐候性を改善するために使用されるものであり、例えば、ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系、ベンゾエート系等の紫外線吸収剤等が挙げられる。紫外線吸収剤としては、例えば、2,4-ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネート/ポリエチレングリコール300の反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール等のベンゾトリアゾール系紫外線吸収剤、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール等のトリアジン系紫外線吸収剤、オクタベンゾン等のベンゾフェノン系紫外線吸収剤、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系紫外線吸収剤などが挙げられるが、これらに限定されるものではない。前記紫外線吸収剤は単独で使用してもよく、又は、2種類以上を併用しても良い。 The ultraviolet absorber is used to improve the weather resistance by preventing photodegradation of the curable composition, for example, ultraviolet absorption of benzotriazole, triazine, benzophenone, benzoate, etc. Agents and the like. Examples of the ultraviolet absorber include 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol and 2- (2H-benzotriazol-2-yl) -4,6- Di-tert-pentylphenol, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol, methyl 3- (3- (2H-benzotriazole-2) -Il) -5-tert-butyl-4-hydroxyphenyl) propionate / polyethylene glycol 300 reaction product, 2- (2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4 -Benzotriazole ultraviolet absorbers such as methylphenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(he Sil) oxy] -phenol and other triazine ultraviolet absorbers, benzophenone ultraviolet absorbers such as octabenzone, 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate, etc. Examples include, but are not limited to, benzoate ultraviolet absorbers. The said ultraviolet absorber may be used independently or may use 2 or more types together.
 老化防止剤は、硬化性組成物の熱劣化を防止して、耐熱性を改善するために使用されるものであり、例えば、アミン-ケトン系等の老化防止剤、芳香族第二級アミン系老化防止剤、ベンズイミダゾール系老化防止剤、チオウレア系老化防止剤、亜リン酸系老化防止剤等が挙げられる。 The anti-aging agent is used for preventing heat deterioration of the curable composition and improving the heat resistance. For example, an anti-aging agent such as an amine-ketone type or an aromatic secondary amine type is used. Antiaging agents, benzimidazole type antiaging agents, thiourea type antiaging agents, phosphorous acid type antiaging agents and the like can be mentioned.
 前記アミン-ケトン系等の老化防止剤としては、例えば、2,2,4-トリメチル-1,2-ジヒドロキノリン重合体、6-エトキシ-1,2-ジヒドロ-2,2,4-トリメチルキノリン、ジフェニルアミンとアセトンの反応物等のアミン-ケトン系などが挙げられるが、これらに限定されるものではない。 Examples of the amine-ketone-based anti-aging agent include 2,2,4-trimethyl-1,2-dihydroquinoline polymer, 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline. And amine-ketones such as a reaction product of diphenylamine and acetone, but are not limited thereto.
 前記芳香族第二級アミン系老化防止剤としては、例えば、N-フェニル-1-ナフチルアミン、アルキル化ジフェニルアミン、オクチル化ジフェニルアミン、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン、p-(p-トルエンスルホニルアミド)ジフェニルアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン、N,N’-ジフェニル-p-フェニレンジアミン、N-フェニル-N’-イソプロピル-p-フェニレンジアミン、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン、N-フェニル-N’-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)-p-フェニレンジアミン等の芳香族第二級アミン系などが挙げられるが、これらに限定されるものではない。 Examples of the aromatic secondary amine-based antiaging agent include N-phenyl-1-naphthylamine, alkylated diphenylamine, octylated diphenylamine, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine, p- (P-toluenesulfonylamide) diphenylamine, N, N′-di-2-naphthyl-p-phenylenediamine, N, N′-diphenyl-p-phenylenediamine, N-phenyl-N′-isopropyl-p-phenylenediamine N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine, N-phenyl-N ′-(3-methacryloyloxy-2-hydroxypropyl) -p-phenylenediamine, etc. Secondary amines and the like can be mentioned, but the invention is not limited to these.
 前記ベンズイミダゾール系老化防止剤としては、例えば、2-メルカプトベンズイミダゾール、2-メルカプトメチルベンズイミダゾール、2-メルカプトベンズイミダゾールの亜鉛塩等のベンズイミダゾール系などが挙げられるが、これらに限定されるものではない。 Examples of the benzimidazole antioxidant include benzimidazoles such as 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, zinc salt of 2-mercaptobenzimidazole, and the like, but are not limited thereto. is not.
 前記チオウレア系老化防止剤としては、例えば、1,3-ビス(ジメチルアミノプロピル)-2-チオ尿素、トリブチルチオ尿素等のチオウレア系などが挙げられるが、これらに限定されるものではない。 Examples of the thiourea antioxidant include, but are not limited to, thiourea such as 1,3-bis (dimethylaminopropyl) -2-thiourea and tributylthiourea.
 前記亜リン酸系老化防止剤としては、例えば、トリス(ノニルフェニル)ホスファイト等の亜リン酸系などが挙げられるが、これらに限定されるものではない。 Examples of the phosphorous acid-based antioxidant include, but are not limited to, a phosphorous acid-based material such as tris (nonylphenyl) phosphite.
 老化防止剤の使用量は特に制限はないが、前記(A)有機重合体100質量部に対して老化防止剤を好ましくは0.1~20質量部、より好ましくは0.2~10質量部、さらに好ましくは0.2~5質量部の範囲で使用するのが好適である。 The amount of the anti-aging agent is not particularly limited, but the anti-aging agent is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the (A) organic polymer. More preferably, it is used in the range of 0.2 to 5 parts by mass.
 前記物性調整剤は引っ張り物性等の硬化性組成物の物性を改善する目的で添加される。前記物性調整剤の例としては、例えば、1分子中にシラノール基を1個有し且つ第1級アミノ基を有なさいシリコン化合物が好適に用いられる。該シリコン化合物としては、例えば、トリフェニルシラノール、トリアルキルシラノール、ジアルキルフェニルシラノール、ジフェニルアルキルシラノール等が挙げられる。 The physical property modifier is added for the purpose of improving physical properties of the curable composition such as tensile physical properties. As an example of the physical property adjusting agent, for example, a silicon compound having one silanol group and one primary amino group in one molecule is preferably used. Examples of the silicon compound include triphenylsilanol, trialkylsilanol, dialkylphenylsilanol, diphenylalkylsilanol and the like.
 前記可塑剤は硬化後の伸び物性を高めたり、低モジュラス化を可能とする目的で添加される。前記可塑剤としては、その種類は特に限定されないが、例えば、ジオクチルフタレート、ジブチルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジイソウンデシルフタレートなどの如きフタル酸エステル類;アジピン酸ジオクチル、コハク酸イソデシル、セバシン酸ジオクチル、アジピン酸ジブチルなどの如き脂肪族二塩基酸エステル類;ジエチレングリコールジベンゾエート、ジプロピレングリコールジベンゾエート、ペンタエリスリトールエステルなどの如きグリコールエステル類;オレイン酸ブチル、アセチルリシノール酸メチルなどの如き脂肪族エステル類;リン酸トリクレジル、リン酸トリオクチル、リン酸オクチルジフェニル、リン酸トリブチル、リン酸トリクレジルなどの如きリン酸エステル類;エポキシ化大豆油、エポキシ化アマニ油、エポキシステアリン酸ベンジルなどの如きエポキシ可塑剤類;二塩基酸と2価アルコールとのポリエステル類などのポリエステル系可塑剤;ポリプロピレングリコールやポリエチレングリコールの誘導体などのポリエーテル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル等の繰返しが2のもの、トリエチレングリコールジエチルエーテル、トリエチレングリコールエチルメチルエーテル、トリエチレングリコールジエチルエーテル等の繰返しが3のもの、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールエチルメチルエーテル、テトラエチレングリコールジエチルエーテル等の繰り返しが4のもの、繰り返しがそれ以上のポリオキシエチレンジメチルエーテルなどのポリオキシエチレンアルキルエーテル類;ポリ-α-メチルスチレン、ポリスチレンなどのポリスチレン類;ポリブタジエン、ブタジエン-アクリロニトリル共重合体、ポリクロロプレン、ポリイソプレン、ポリブテン、水添ポリブタジエン、水添ポリイソプレン、プロセスオイルなどの炭化水素系オリゴマー類;塩素化パラフィン類;UP-1080(東亞合成(株)製)やUP-1061(東亞合成(株)製)などの如きアクリル系可塑剤類;UP-2000(東亞合成(株)製)、UHE-2012(東亞合成(株)製)などの如き水酸基含有アクリル系可塑剤類;UC-3510(東亞合成(株)製)などの如きカルボキシル基含有アクリルポリマー類;UG-4000(東亞合成(株)製)などの如きエポキシ基含有アクリルポリマー類;US-6110(東亞合成(株)製)、US-6120(東亞合成(株)製)などの如き0.8個未満、好ましくは0.4個未満のシリル基含有アクリルポリマー類などが例示される。 The plasticizer is added for the purpose of enhancing the stretched physical properties after curing or enabling low modulus. The type of the plasticizer is not particularly limited. For example, phthalates such as dioctyl phthalate, dibutyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, diisoundecyl phthalate; dioctyl adipate, isodecyl succinate, sebacine Aliphatic dibasic acid esters such as dioctyl acid and dibutyl adipate; Glycol esters such as diethylene glycol dibenzoate, dipropylene glycol dibenzoate and pentaerythritol ester; Aliphatics such as butyl oleate and methyl acetylricinoleate Esters; Phosphate esters such as tricresyl phosphate, trioctyl phosphate, octyl diphenyl phosphate, tributyl phosphate, tricresyl phosphate; Epoxy plasticizers such as modified soybean oil, epoxidized linseed oil, and epoxy benzyl stearate; Polyester plasticizers such as polyesters of dibasic acids and dihydric alcohols; Polyethers such as polypropylene glycol and polyethylene glycol derivatives Diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, etc. with 2 repetitions, triethylene glycol diethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol diethyl ether, etc. with 3 repetitions, tetraethylene glycol 4 repeats such as diethyl ether, tetraethylene glycol ethyl methyl ether, tetraethylene glycol diethyl ether, etc. , Polyoxyethylene alkyl ethers such as polyoxyethylene dimethyl ether, which are repeated further; polystyrenes such as poly-α-methylstyrene and polystyrene; polybutadiene, butadiene-acrylonitrile copolymer, polychloroprene, polyisoprene, polybutene, water Hydrocarbon oligomers such as hydrogenated polybutadiene, hydrogenated polyisoprene and process oil; chlorinated paraffins; acrylics such as UP-1080 (manufactured by Toagosei Co., Ltd.) and UP-1061 (manufactured by Toagosei Co., Ltd.) Hydroxyl group-containing acrylic plasticizers such as UP-2000 (manufactured by Toagosei Co., Ltd.), UHE-2012 (manufactured by Toagosei Co., Ltd.); UC-3510 (manufactured by Toagosei Co., Ltd.) Carboxyl group-containing acrylic polymers such as UG-4 Epoxy group-containing acrylic polymers such as 00 (manufactured by Toagosei Co., Ltd.); less than 0.8 such as US-6110 (manufactured by Toagosei Co., Ltd.), US-6120 (manufactured by Toagosei Co., Ltd.) Examples of the silyl group-containing acrylic polymer are preferably less than 0.4.
 前記揺変剤としては、例えば、コロイダルシリカ、石綿粉等の無機揺変剤、有機ベントナイト、変性ポリエステルポリオール、脂肪酸アマイド等の有機揺変剤、水添ヒマシ油誘導体、脂肪酸アマイドワックス、ステアリル酸アルミニウム、ステアリル酸バリウム等が挙げられる。 Examples of the thixotropic agent include inorganic thixotropic agents such as colloidal silica and asbestos powder, organic thixotropic agents such as organic bentonite, modified polyester polyol, and fatty acid amide, hydrogenated castor oil derivative, fatty acid amide wax, and aluminum stearylate. And barium stearylate.
 前記脱水剤は保存中における水分を除去する目的で添加される。前記脱水剤として、例えば、ゼオライト、酸化カルシウム、酸化マグネシウム、酸化亜鉛等が挙げられる。 The dehydrating agent is added for the purpose of removing moisture during storage. Examples of the dehydrating agent include zeolite, calcium oxide, magnesium oxide, and zinc oxide.
 前記難燃剤としては、例えば、赤リン、ポリリン酸アンモニウム等のリン系難燃剤;三酸化アンチモン等の金属酸化物系難燃剤;臭素系難燃剤;塩素系難燃剤等が挙げられる。 Examples of the flame retardant include phosphorus flame retardants such as red phosphorus and ammonium polyphosphate; metal oxide flame retardants such as antimony trioxide; bromine flame retardants; chlorine flame retardants and the like.
 本発明の硬化性組成物は、必要に応じて1液型とすることもできるし、2液型とすることもできるが、特に1液型として好適に用いることができる。本発明の硬化性組成物は大気中の湿気により常温で硬化することが可能であり、常温湿気硬化型硬化性組成物として好適に用いられるが、必要に応じて、適宜、加熱により硬化を促進させてもよい。 The curable composition of the present invention can be a one-component type or a two-component type as required, and can be suitably used as a one-component type. The curable composition of the present invention can be cured at normal temperature by atmospheric moisture, and is suitably used as a normal temperature moisture-curable curable composition, but if necessary, curing is accelerated by heating as appropriate. You may let them.
 本発明の硬化性組成物を製造する方法は特に制限はなく、例えば、前記成分(A)及び(B)を所定量配合し、また必要に応じて他の配合物質を配合し、脱気攪拌することにより製造することができる。
 成分(A)及び(B)以外の他の配合物質の配合順は特に制限はなく、適宜決定すればよい。例えば、例えば、成分(A)、(B)及び他の配合物質をそれぞれ配合し、本発明の硬化性組成物を製造してもよく、成分(B)の熟成工程前に他の配合物質を配合し、(C)シラン化合物、(D)チタン触媒及び他の配合物質を含む混合物に対して熟成工程を行ってもよい。また、全ての配合物質を配合した組成物や成分(B)を含む組成物に対してさらに所定温度で熟成させてもよい。非熟成硬化触媒を併用する場合は、非熟成硬化触媒の添加後は熟成工程を行わないように硬化性組成物を製造することが好適である。
The method for producing the curable composition of the present invention is not particularly limited. For example, the components (A) and (B) are blended in a predetermined amount, and other blended substances are blended as necessary, and deaerated and stirred. Can be manufactured.
There are no particular restrictions on the blending order of the blended substances other than the components (A) and (B), and they may be determined as appropriate. For example, for example, the components (A), (B) and other compounding substances may be compounded to produce the curable composition of the present invention, and other compounding substances may be added before the aging step of the component (B). You may mix | blend and may perform an aging process with respect to the mixture containing (C) silane compound, (D) titanium catalyst, and another compounding substance. Moreover, you may age | cure | ripen at the predetermined temperature further with respect to the composition which mix | blended all the compounding substances, and the composition containing a component (B). When a non-aged curing catalyst is used in combination, it is preferable to produce the curable composition so that the aging process is not performed after the addition of the non-aged curing catalyst.
 成分(B)の熟成工程前に他の配合物質を配合する場合は、(C)シラン化合物、(D)チタン触媒及び他の配合物質を含む混合物を得た後、該混合物を熟成してもよく、(C)シラン化合物及び(D)チタン触媒の一方と他の配合物質を配合し、必要に応じて熟成工程を行った後、(C)シラン化合物及び(D)チタン触媒の他方を配合し、熟成を行ってもよい。 When blending other compounding substances before the aging step of component (B), after obtaining a mixture containing (C) silane compound, (D) titanium catalyst and other compounding substances, the mixture may be aged. Well, after blending one of the (C) silane compound and (D) titanium catalyst with the other compounding material and performing an aging step as necessary, blend the other of (C) silane compound and (D) titanium catalyst And may be aged.
 他の配合物質として成分(E)を配合する場合は、配合順に特に制限はないが、成分(B)と(E)を含む組成物を得た後、該組成物と成分(A)を配合する等、成分(B)及び(E)を含む組成物を得た後、残りの配合物質を配合することが好ましい。成分(B)と(E)を含む組成物を得る方法は特に制限はなく、成分(B)及び(E)を混合してもよく、前述した如く、成分(B)の熟成工程前に成分(E)を配合してもよい。 When the component (E) is blended as another blending substance, there is no particular limitation on the blending order, but after obtaining a composition containing the components (B) and (E), the composition and the component (A) are blended. After obtaining a composition containing components (B) and (E), it is preferable to blend the remaining compounding substances. The method for obtaining the composition containing the components (B) and (E) is not particularly limited, and the components (B) and (E) may be mixed, and as described above, the components before the aging step of the component (B) (E) may be blended.
 成分(B)と(E)の配合割合は特に制限はないが、(D)チタン触媒と(E)シラン化合物の混合割合は、前記(D)チタン触媒1モルに対して前記(E)シラン化合物を0.1~30モルの範囲が好ましく、0.5~5.0モルの範囲がより好ましく、0.5~3.0モルの範囲がさらに好ましい。(C)シラン化合物、(D)チタン触媒及び(E)シラン化合物は、それぞれ1種で用いてもよく、2種以上組み合わせて用いてもよい。 The mixing ratio of the components (B) and (E) is not particularly limited, but the mixing ratio of the (D) titanium catalyst and the (E) silane compound is the (E) silane with respect to 1 mol of the (D) titanium catalyst. The compound is preferably in the range of 0.1 to 30 mol, more preferably in the range of 0.5 to 5.0 mol, and still more preferably in the range of 0.5 to 3.0 mol. (C) Silane compound, (D) titanium catalyst, and (E) silane compound may be used alone or in combination of two or more.
 成分(E)としてアルコキシシリル基を有するシラン化合物を用いる場合は、(D)チタン触媒と(E)シラン化合物を含む組成物を所定温度で熟成させてなる硬化触媒を、残りの配合物質と配合することがより好ましい。ここで熟成とは、前記(D)チタン触媒のアルコキシ基の一部と前記(E)シラン化合物のアルコキシ基の一部をエステル交換反応させること及び/又は空気中等に含まれる水分にて前記(E)シラン化合物の一部を前記(D)チタン触媒にて加水分解させ、オリゴマー化させることを意味する。上記熟成により、化学平衡の状態に達することが好適である。 When a silane compound having an alkoxysilyl group is used as the component (E), (D) a curing catalyst obtained by aging a composition containing a titanium catalyst and (E) silane compound at a predetermined temperature is blended with the remaining compounding substances. More preferably. Here, the aging means transesterification of a part of the alkoxy group of the (D) titanium catalyst and a part of the alkoxy group of the (E) silane compound and / or the moisture contained in the air ( E) This means that a part of the silane compound is hydrolyzed with the titanium catalyst (D) and oligomerized. It is preferable to reach the state of chemical equilibrium by the aging.
 前記(D)チタン触媒及び前記(E)シラン化合物を含む混合物を熟成させる反応温度条件は特に制限はないが、前記(D)チタン触媒と前記(E)シラン化合物とを30℃~100℃で反応させることが好ましく、30℃~90℃がより好ましく、40℃~80℃がさらに好ましい。反応温度を上記範囲内に設定することにより、反応を暴走させることなく安定に進行させることができる。反応温度を30℃未満とした場合、活性が低くなり、充分な反応達成に必要な時間が長くなり、効率が悪い。反応時間は、反応温度等を考慮して適宜設定することができるが、少なくとも平衡状態に達するまで反応させることが望ましく、例えば上記のような条件では反応時間は、通常は1~336時間、好ましくは72~168時間の範囲内に設定することが好適である。 The reaction temperature condition for aging the mixture containing the (D) titanium catalyst and the (E) silane compound is not particularly limited, but the (D) titanium catalyst and the (E) silane compound are heated at 30 ° C. to 100 ° C. The reaction is preferably carried out, more preferably from 30 ° C to 90 ° C, and even more preferably from 40 ° C to 80 ° C. By setting the reaction temperature within the above range, the reaction can proceed stably without causing runaway. When the reaction temperature is less than 30 ° C., the activity is low, the time required to achieve a sufficient reaction is lengthened, and the efficiency is poor. The reaction time can be appropriately set in consideration of the reaction temperature and the like, but it is desirable to carry out the reaction until at least an equilibrium state is reached. For example, the reaction time is usually 1 to 336 hours under the above conditions, preferably Is preferably set within a range of 72 to 168 hours.
 本発明において、前記(D)チタン触媒と(E)シラン化合物の熟成工程を行う場合は、前記(C)シラン化合物と(D)チタン触媒の熟成、及び前記(D)チタン触媒と(E)シラン化合物の熟成の順序に制限はないが、製造工程が簡素化される為、作業性の点からは、(C)シラン化合物、(D)チタン触媒及び(E)シラン化合物を混合した混合物に対して所定温度で同時に熟成させることが好ましく、また、貯蔵安定性及び硬化時間の変化率等の点からは、(C)シラン化合物及び(E)シラン化合物の一方と(D)チタン触媒を含む混合物を所定温度で熟成させた後、(C)シラン化合物及び(E)シラン化合物の他方を配合し、必要に応じて再度所定温度で熟成させる方法や、(C)シラン化合物と(D)チタン触媒を熟成させたものと、(D)チタン触媒と(E)シラン化合物を熟成させたものを混合し、必要に応じてさらに該混合した混合物を熟成させる方法が好ましい。該熟成工程を行うことにより、貯蔵安定性をさらに改善することができる。 In the present invention, when the aging step of the (D) titanium catalyst and (E) silane compound is performed, the aging of the (C) silane compound and (D) titanium catalyst, and the (D) titanium catalyst and (E) The order of aging of the silane compound is not limited, but since the manufacturing process is simplified, from the viewpoint of workability, a mixture of (C) silane compound, (D) titanium catalyst and (E) silane compound is mixed. On the other hand, it is preferable to ripen at a predetermined temperature at the same time. In addition, from the viewpoint of storage stability, rate of change in curing time, etc., one of (C) silane compound and (E) silane compound and (D) titanium catalyst is included. After the mixture is aged at a predetermined temperature, the other of (C) the silane compound and (E) the silane compound is blended and aged again at a predetermined temperature as necessary, or (C) the silane compound and (D) titanium Aged catalyst As was, (D) were mixed those aged titanium catalyst and (E) a silane compound, a method of further aging the mixture was the mixed as needed is preferred. By performing the aging step, the storage stability can be further improved.
 他の配合物質として成分(F)を配合する場合は、配合順に特に制限はなく、適宜決定すればよいが、熟成工程後に成分(E)を配合することがより好適である。 When the component (F) is blended as another blending substance, there is no particular limitation on the blending order, and it may be determined as appropriate, but it is more preferable to blend the component (E) after the aging step.
 他の配合物質として成分(G)を配合する場合は、配合順に特に制限はないが、(C)シラン化合物及び(E)シラン化合物の一方又は両方、及び(D)チタン触媒に加えて、成分(G)を含む混合物に対して所定温度で熟成させることが好ましい。この場合、(C)シラン化合物及び(E)シラン化合物の一方又は両方と、(D)チタン触媒と、成分(G)とを含む混合物に対して所定温度で同時に熟成させてもよく、(C)シラン化合物及び(E)シラン化合物の一方又は両方、及び(D)チタン触媒を含む混合物に対して所定温度で同時に熟成させた後、該混合物に成分(G)を配合し、再度、所定温度で熟成させる等、複数回、熟成工程を行ってもよい。特に、(C)シラン化合物、(D)チタン触媒及び(E)シラン化合物の熟成工程後に成分(G)を配合し、さらに熟成工程を行うことにより、貯蔵後の硬化時間の変化率を低くすることができ、より好ましい。該熟成工程を行うことにより、貯蔵安定性をさらに改善することができる。 When component (G) is blended as another blending substance, there is no particular limitation on the blending order, but in addition to (C) one or both of (C) silane compound and (E) silane compound, and (D) titanium catalyst, component It is preferable to age the mixture containing (G) at a predetermined temperature. In this case, a mixture containing one or both of (C) silane compound and (E) silane compound, (D) titanium catalyst, and component (G) may be aged at the same time at a predetermined temperature. After aging simultaneously at a predetermined temperature for a mixture containing one or both of a silane compound and (E) a silane compound and (D) a titanium catalyst, the mixture is blended with component (G), and again at a predetermined temperature. The aging step may be performed a plurality of times, such as by aging. Particularly, by blending the component (G) after the aging step of (C) silane compound, (D) titanium catalyst and (E) silane compound, and further performing the aging step, the rate of change in the curing time after storage is lowered. More preferred. By performing the aging step, the storage stability can be further improved.
 本発明の硬化性組成物は、接着剤、シーリング材、粘着材、コーティング材、ポッティング材、塗料、パテ材及びプライマー等として用いることができる。本発明の硬化性組成物は、接着性、貯蔵安定性、硬化性に優れているため、特に、接着剤に用いることが好ましいが、その他各種建築物用、自動車用、土木用、電気・電子分野用等に使用することができる。 The curable composition of the present invention can be used as an adhesive, a sealing material, an adhesive material, a coating material, a potting material, a paint, a putty material, a primer, and the like. Since the curable composition of the present invention is excellent in adhesiveness, storage stability, and curability, it is particularly preferable to use it as an adhesive, but for various other buildings, automobiles, civil engineering, electric / electronics. It can be used for fields.
 以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, it is needless to say that these examples are shown by way of example and should not be interpreted in a limited manner.
 合成例、実施例および比較例における分析、測定は以下の方法に従って行った。
1)数平均分子量の測定
 ゲルパーミエーションクロマトグラフィー(GPC)により下記条件で測定した。本発明において、該測定条件でGPCにより測定し、標準ポリエチレングリコールで換算した最大頻度の分子量を数平均分子量と称する。
 THF溶媒測定装置
・分析装置:Alliance(Waters社製)、2410型示差屈折検出器(Waters社製)、996型多波長検出器(Waters社製)、Milleniamデータ処理装置(Waters社製)
・カラム:Plgel GUARD+5μmMixed-C×3本(50×7.5mm,300×7.5mm:PolymerLab社製)
・流速:1mL/分
・換算したポリマー:ポリエチレングリコール
・測定温度:40℃
 FT-NMR測定装置:日本電子(株)製JNM-ECA500(500MHz)
 FT-IR測定装置:日本分光(株)製FT-IR460Plus
Analysis and measurement in Synthesis Examples, Examples and Comparative Examples were performed according to the following methods.
1) Measurement of number average molecular weight It measured on the following conditions by the gel permeation chromatography (GPC). In the present invention, the maximum frequency molecular weight measured by GPC under the measurement conditions and converted with standard polyethylene glycol is referred to as the number average molecular weight.
THF solvent measuring device / analyzer: Alliance (manufactured by Waters), 2410 type differential refraction detector (manufactured by Waters), 996 type multi-wavelength detector (manufactured by Waters), Millenium data processing device (manufactured by Waters)
Column: Plgel GUARD + 5 μmMixed-C × 3 (50 × 7.5 mm, 300 × 7.5 mm: manufactured by Polymer Lab)
・ Flow rate: 1 mL / min ・ Converted polymer: Polyethylene glycol ・ Measurement temperature: 40 ° C.
FT-NMR measuring device: JNM-ECA500 (500 MHz) manufactured by JEOL Ltd.
FT-IR measuring device: FT-IR460Plus manufactured by JASCO Corporation
2)貯蔵安定性試験、硬化性(TFT)試験及びチクソトロピー性試験
 硬化性組成物配合直後の粘度、硬化時間及び構造粘性指数(SVI値)を測定した。該条件を初期と称し、該測定された粘度、硬化時間及びSVI値をそれぞれ初期粘度、初期TFT及び初期SVI値とした。
2) Storage stability test, curability (TFT) test, and thixotropy test Viscosity, curing time, and structural viscosity index (SVI value) immediately after blending the curable composition were measured. The conditions were referred to as initial, and the measured viscosity, curing time, and SVI value were defined as initial viscosity, initial TFT, and initial SVI value, respectively.
 粘度は、硬化性組成物の粘度が160Pa・s以上の時はBS型回転粘度計(ローターNo.7-10rpm)により測定し、硬化性組成物の粘度が160Pa・s未満の時はBH型回転粘度計(ローターNo.7-20rpm)により測定した(測定温度23℃)。
 硬化時間は、JIS A 1439 5.19 タックフリー試験に準じて、23℃RH50%の環境下にて指触乾燥時間(TFT)を測定した。
 SVI値は、硬化性組成物の粘度が160Pa・s以上の時はBS型回転粘度計(ローターNo.7)を用いて、1rpmの粘度を10rpmの粘度で割ることにより算出し、硬化性組成物の粘度が160Pa・s未満の時はBH型回転粘度計(ローターNo.7)を用いて、2rpmの粘度を20rpmの粘度で割ることにより算出した(測定温度23℃)。上記求められたSVI値をチクソトロピー性を示す指標として用いた。
The viscosity is measured with a BS rotational viscometer (rotor No. 7-10 rpm) when the viscosity of the curable composition is 160 Pa · s or more, and when the viscosity of the curable composition is less than 160 Pa · s, the BH type. It was measured with a rotational viscometer (rotor No. 7-20 rpm) (measurement temperature 23 ° C.).
As for the curing time, the touch drying time (TFT) was measured in an environment of RH 50% at 23 ° C. according to JIS A 1439 5.19 tack-free test.
The SVI value is calculated by dividing the viscosity at 1 rpm by the viscosity at 10 rpm using a BS type rotational viscometer (rotor No. 7) when the viscosity of the curable composition is 160 Pa · s or more. When the viscosity of the product was less than 160 Pa · s, it was calculated by dividing the viscosity at 2 rpm by the viscosity at 20 rpm using a BH type rotational viscometer (rotor No. 7) (measurement temperature 23 ° C.). The obtained SVI value was used as an index indicating thixotropy.
 次に密封ガラス容器内の硬化性組成物を50℃雰囲気下にて1、2又は4週間放置し、粘度、硬化時間及びSVI値を測定した。該測定された粘度、硬化時時間及びSVI値をそれぞれ貯蔵後の粘度、貯蔵後のTFT及び貯蔵後のSVI値とした。
 貯蔵後の粘度を初期粘度にて割ることにより増粘率を算出した。また、1週間貯蔵後の増粘率を下記評価基準にて評価した。
 ○:0.90以上1.40以下、△:1.41以上1.50以下、×:0.89以下もしくは1.51以上。
 また、貯蔵後のTFTを初期TFTにて割ることにより変化率を算出した。また、1週間貯蔵後の変化率を下記評価基準にて評価した。
 ◎:0.90以上1.10以下、○:0.80以上0.89以下、もしくは1.11以上1.30以下、×:0.79以下もしくは1.31以上。
Next, the curable composition in the sealed glass container was left in an atmosphere of 50 ° C. for 1, 2 or 4 weeks, and the viscosity, the curing time, and the SVI value were measured. The measured viscosity, curing time, and SVI value were the viscosity after storage, the TFT after storage, and the SVI value after storage, respectively.
The viscosity increase ratio was calculated by dividing the viscosity after storage by the initial viscosity. Moreover, the thickening rate after 1 week storage was evaluated according to the following evaluation criteria.
○: 0.90 or more and 1.40 or less, Δ: 1.41 or more and 1.50 or less, ×: 0.89 or less or 1.51 or more.
The rate of change was calculated by dividing the TFT after storage by the initial TFT. The rate of change after storage for 1 week was evaluated according to the following evaluation criteria.
A: 0.90 or more and 1.10 or less, B: 0.80 or more and 0.89 or less, or 1.11 or more and 1.30 or less, X: 0.79 or less or 1.31 or more.
3)表面硬化性試験
 23℃RH50%の環境下にて7日間放置して、100mm×100mm×3mmの大きさの硬化性組成物の硬化物を作製し、指触にて判断した。評価基準は下記の通りである。
 ◎:まったくベタつかない、○:ベタつかない、△:ベタつく、×:非常にベタつく。
3) Surface Curability Test A cured product of a curable composition having a size of 100 mm × 100 mm × 3 mm was prepared by leaving it in an environment of 23 ° C. and RH 50% for 7 days, and judged by finger touch. The evaluation criteria are as follows.
A: Not sticky at all, ○: Not sticky, △: Sticky, ×: Very sticky.
4)接着性試験
 被着材の上に0.2gの硬化性組成物を均一に塗布し、25mm×25mmの面積で直ちに貼り合わせた。貼り合わせ後、23℃RH50%の雰囲気下で24時間又は7日間、目玉クリップ小により圧締した直後にJIS K 6850 剛性被着材の引張りせん断接着強さ試験方法に準じて接着強度を測定した。24時間後の接着強度試験の被着材としてはポリカーボネートを使用し、7日後の接着強度試験の被着材としては、硬質塩ビ(PVC)、ポリカーボネート(PC)、ポリスチレン(PS)、ABS樹脂(ABS)、アクリル樹脂(PMMA)、ナイロン6(6-Ny)、冷間圧延鋼板(SPCC)、又はアルマイトアルミ(Al)を使用した。また、接着面の破壊状態について、下記評価基準にて評価した。
 CF:凝集破壊、AF:接着破壊、C10A90~C90A10:CF及びAFの破壊状態の面積をおおよその百分率で表したものであり、CnA(100-n)はCFn%、AF(100-n)%の破壊状態を意味する。
4) Adhesion test 0.2 g of the curable composition was uniformly applied on the adherend, and immediately bonded in an area of 25 mm × 25 mm. After bonding, the adhesive strength was measured in accordance with the tensile shear bond strength test method of JIS K 6850 rigid adherend immediately after pressing with a small eyeball clip for 24 hours or 7 days in an atmosphere of 23 ° C. and RH 50%. . Polycarbonate is used as an adherent for the adhesive strength test after 24 hours, and hard vinyl chloride (PVC), polycarbonate (PC), polystyrene (PS), ABS resin (adhesive for the adhesive strength test after 7 days ( ABS), acrylic resin (PMMA), nylon 6 (6-Ny), cold rolled steel plate (SPCC), or anodized aluminum (Al) was used. Further, the fracture state of the adhesive surface was evaluated according to the following evaluation criteria.
CF: cohesive failure, AF: adhesion failure, C10A90 to C90A10: The area of the fracture state of CF and AF is expressed as an approximate percentage. CnA (100-n) is CFn%, AF (100-n)% It means the destruction state.
5)透明性試験
 厚さ2mmのアクリル板間に3mmのスペーサを用いて硬化性組成物を伸ばし、その透明性を目視にて観察し、下記評価基準にて評価した。
 ◎:無色透明、○:無色で少し白濁、×:白濁状態。
5) Transparency test The curable composition was stretched using a 3 mm spacer between acrylic plates having a thickness of 2 mm, and the transparency was visually observed and evaluated according to the following evaluation criteria.
◎: colorless and transparent, ○: colorless and slightly cloudy, ×: cloudy.
(合成例1)
 攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、エチレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテート-グライム錯体触媒の存在下、プロピレンオキシドを反応させて得られた水酸基価換算分子量24000、かつ分子量分布1.3のポリオキシプロピレントリオールを得た。得られたポリオキシプロピレントリオールにナトリウムメトキシドのメタノール溶液を添加し、加熱減圧下メタノールを留去してポリオキシプロピレントリオールの末端水酸基をナトリウムアルコキシドに変換し、ポリオキシアルキレン系重合体M1を得た。
(Synthesis Example 1)
Hydroxyl value obtained by reacting propylene oxide in a flask equipped with a stirrer, nitrogen gas inlet tube, thermometer and reflux condenser in the presence of ethylene glycol as an initiator and zinc hexacyanocobaltate-glyme complex catalyst A polyoxypropylene triol having a reduced molecular weight of 24,000 and a molecular weight distribution of 1.3 was obtained. A methanol solution of sodium methoxide is added to the obtained polyoxypropylene triol, methanol is distilled off under heating and reduced pressure, and the terminal hydroxyl group of the polyoxypropylene triol is converted to sodium alkoxide to obtain a polyoxyalkylene polymer M1. It was.
 次に表1に示す配合割合にて、ポリオキシアルキレン系重合体M1に塩化アリルを反応させて、未反応の塩化アリルを除去し、精製して、末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、水素化ケイ素化合物であるトリメトキシシランを白金含量3wt%の白金ビニルシロキサン錯体イソプロパノール溶液150ppmを添加して反応させ、末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A1を得た。
 得られた末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A1の分子量をGPCにより測定した結果、ピークトップ分子量は25000、分子量分布1.3であった。H-NMR測定により末端のトリメトキシシリル基は1分子あたり1.7個であった。
Next, the polyoxyalkylene polymer M1 is reacted with allyl chloride at the blending ratio shown in Table 1 to remove unreacted allyl chloride and purified to obtain a polyoxyalkylene polymer having an allyl group at the terminal. Coalescence was obtained. This polyoxyalkylene polymer having an allyl group at the end is reacted with trimethoxysilane, which is a silicon hydride compound, by adding 150 ppm of a platinum vinylsiloxane complex isopropanol solution having a platinum content of 3 wt%, and trimethoxysilyl at the end. A polyoxyalkylene polymer A1 having a group was obtained.
As a result of measuring the molecular weight of the obtained polyoxyalkylene polymer A1 having a trimethoxysilyl group by GPC, the peak top molecular weight was 25,000 and the molecular weight distribution was 1.3. According to H 1 -NMR measurement, the number of terminal trimethoxysilyl groups was 1.7 per molecule.
(合成例2)
 攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、エチレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテート-グライム錯体触媒の存在下、プロピレンオキシドを反応させて得られた水酸基価換算分子量11000、かつ分子量分布1.3のポリオキシプロピレントリオールを得た。得られたポリオキシプロピレントリオールにナトリウムメトキシドのメタノール溶液を添加し、加熱減圧下メタノールを留去してポリオキシプロピレントリオールの末端水酸基をナトリウムアルコキシドに変換し、ポリオキシアルキレン系重合体M2を得た。
(Synthesis Example 2)
Hydroxyl value obtained by reacting propylene oxide in a flask equipped with a stirrer, nitrogen gas inlet tube, thermometer and reflux condenser in the presence of ethylene glycol as an initiator and zinc hexacyanocobaltate-glyme complex catalyst A polyoxypropylene triol having a converted molecular weight of 11000 and a molecular weight distribution of 1.3 was obtained. A methanol solution of sodium methoxide is added to the obtained polyoxypropylene triol, methanol is distilled off under heating and reduced pressure, and the terminal hydroxyl group of the polyoxypropylene triol is converted to sodium alkoxide to obtain a polyoxyalkylene polymer M2. It was.
 次に表1に示す配合割合にて、ポリオキシアルキレン系重合体M2に塩化アリルを反応させて、未反応の塩化アリルを除去し、精製して、末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、水素化ケイ素化合物であるトリメトキシシランを白金含量3wt%の白金ビニルシロキサン錯体イソプロパノール溶液150ppmを添加して反応させ、末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A2を得た。
 得られた末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A2の分子量をGPCにより測定した結果、ピークトップ分子量は12000、分子量分布1.3であった。H-NMR測定により末端のトリメトキシシリル基は1分子あたり1.7個であった。
Next, the polyoxyalkylene polymer M2 is reacted with allyl chloride at the blending ratio shown in Table 1 to remove unreacted allyl chloride, and purified to obtain a polyoxyalkylene polymer having an allyl group at the terminal. Coalescence was obtained. This polyoxyalkylene polymer having an allyl group at the end is reacted with trimethoxysilane, which is a silicon hydride compound, by adding 150 ppm of a platinum vinylsiloxane complex isopropanol solution having a platinum content of 3 wt%, and trimethoxysilyl at the end. A polyoxyalkylene polymer A2 having a group was obtained.
As a result of measuring the molecular weight of the obtained polyoxyalkylene polymer A2 having a trimethoxysilyl group by GPC, the peak top molecular weight was 12,000 and the molecular weight distribution was 1.3. According to H 1 -NMR measurement, the number of terminal trimethoxysilyl groups was 1.7 per molecule.
(合成例3)
 攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、グリセリンを開始剤とし、亜鉛ヘキサシアノコバルテート-グライム錯体触媒の存在下、プロピレンオキシドを反応させて得られた水酸基価換算分子量14000、かつ分子量分布1.3のポリオキシプロピレントリオールを得た。得られたポリオキシプロピレントリオールにナトリウムメトキシドのメタノール溶液を添加し、加熱減圧下メタノールを留去してポリオキシプロピレントリオールの末端水酸基をナトリウムアルコキシドに変換し、ポリオキシアルキレン系重合体M3を得た。
(Synthesis Example 3)
Hydroxyl value obtained by reacting propylene oxide in the presence of zinc hexacyanocobaltate-glyme complex catalyst in a flask equipped with a stirrer, nitrogen gas inlet tube, thermometer and reflux condenser in the presence of glycerin as an initiator A polyoxypropylene triol having a molecular weight of 14,000 and a molecular weight distribution of 1.3 was obtained. A methanol solution of sodium methoxide is added to the obtained polyoxypropylene triol, methanol is distilled off under heating and reduced pressure, and the terminal hydroxyl group of the polyoxypropylene triol is converted to sodium alkoxide to obtain a polyoxyalkylene polymer M3. It was.
 次に表1に示す配合割合にて、ポリオキシアルキレン系重合体M3に塩化アリルを反応させて、未反応の塩化アリルを除去し、精製して、末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、シリル化合物である3-メルカプトプロピルトリメトキシシラン(商品名:KBM803、信越化学工業(株)製)を、重合開始剤である2,2’-アゾビス-2-メチルブチロニトリル(AIBN、和光純薬工業(株)製)を用いて反応させ、末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A3を得た。
 得られた末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A3の分子量をGPCにより測定した結果、ピークトップ分子量は15000、分子量分布1.3であった。H-NMR測定により末端のトリメトキシシリル基は1分子あたり1.7個であった。
Next, the polyoxyalkylene polymer M3 is reacted with allyl chloride at the blending ratio shown in Table 1 to remove unreacted allyl chloride and purified to obtain a polyoxyalkylene polymer having an allyl group at the terminal. Coalescence was obtained. For this polyoxyalkylene polymer having an allyl group at its terminal, 3-mercaptopropyltrimethoxysilane (trade name: KBM803, manufactured by Shin-Etsu Chemical Co., Ltd.), which is a silyl compound, is used as a polymerization initiator. Reaction was performed using 2′-azobis-2-methylbutyronitrile (AIBN, manufactured by Wako Pure Chemical Industries, Ltd.) to obtain a polyoxyalkylene polymer A3 having a trimethoxysilyl group at the terminal.
As a result of measuring the molecular weight of the obtained polyoxyalkylene polymer A3 having a trimethoxysilyl group by GPC, the peak top molecular weight was 15000 and the molecular weight distribution was 1.3. According to H 1 -NMR measurement, the number of terminal trimethoxysilyl groups was 1.7 per molecule.
(合成例4)
 攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、数平均分子量Mn=3000のポリオキシプロピレンジオール(商品名:Diol3000、三井化学(株)製)を入れ、ナトリウムメトキシドのメタノール溶液を添加し、加熱減圧下メタノールを留去してポリオキシプロピレントリオールの末端水酸基をナトリウムアルコキシドに変換し、ポリオキシアルキレン系重合体M4を得た。
(Synthesis Example 4)
A polyoxypropylene diol having a number average molecular weight Mn = 3000 (trade name: Diol 3000, manufactured by Mitsui Chemicals, Inc.) is placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser, and sodium methoxide is added. Of methanol was distilled off under reduced pressure by heating to convert the terminal hydroxyl group of polyoxypropylene triol into sodium alkoxide to obtain a polyoxyalkylene polymer M4.
 次に表1に示す配合割合にて、ポリオキシアルキレン系重合体M4に塩化アリルを反応させて、未反応の塩化アリルを除去し、精製して、末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、シリル化合物である3-メルカプトプロピルトリメトキシシランを、重合開始剤であるAIBNを用いて反応させ、末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A4を得た。
 得られた末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A4の分子量をGPCにより測定した結果、ピークトップ分子量は3500、分子量分布1.2であった。H-NMR測定により末端のトリメトキシシリル基は1分子あたり1.7個であった。
Next, the polyoxyalkylene polymer M4 is reacted with allyl chloride at the blending ratio shown in Table 1 to remove unreacted allyl chloride, and purified to obtain a polyoxyalkylene polymer having an allyl group at the terminal. Coalescence was obtained. The polyoxyalkylene polymer having an allyl group at the terminal is reacted with 3-mercaptopropyltrimethoxysilane, which is a silyl compound, using AIBN, which is a polymerization initiator, to form a polyoxyalkylene polymer having a trimethoxysilyl group at the terminal. An oxyalkylene polymer A4 was obtained.
As a result of measuring the molecular weight of the obtained polyoxyalkylene polymer A4 having a trimethoxysilyl group by GPC, the peak top molecular weight was 3,500 and the molecular weight distribution was 1.2. According to H 1 -NMR measurement, the number of terminal trimethoxysilyl groups was 1.7 per molecule.
(合成例5)
 表1に示すように、攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、数平均分子量10000のポリオキシプロピレンジオール(商品名:プレミノール4010、旭硝子(株)製)を100.00g、m-キシレンジイソシアネート(商品名:タケネート500、三井化学(株)製)を3.95g、窒素雰囲気下、攪拌混合しながら90℃で3時間反応させウレタンプレポリマー1を得た。
 攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えた新たなフラスコに、減圧脱気後、窒素ガス置換して、窒素気流下にて3-アミノプロピルトリメトキシシランを2.69g加え、続いてn-ブチルアクリレート(東京化成工業(株)製)を3.76g加え、室温で24時間攪拌し、反応物(シリル化剤1)を得た。
(Synthesis Example 5)
As shown in Table 1, a polyoxypropylene diol having a number average molecular weight of 10,000 (trade name: Preminol 4010, manufactured by Asahi Glass Co., Ltd.) was added to a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser. 100.00 g, 3.95 g of m-xylene diisocyanate (trade name: Takenate 500, manufactured by Mitsui Chemicals, Inc.) were reacted at 90 ° C. for 3 hours with stirring and mixing in a nitrogen atmosphere to obtain urethane prepolymer 1.
A new flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser was degassed under reduced pressure, replaced with nitrogen gas, and 2.69 g of 3-aminopropyltrimethoxysilane was added under a nitrogen stream. Subsequently, 3.76 g of n-butyl acrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) was added and stirred at room temperature for 24 hours to obtain a reaction product (silylating agent 1).
 得られたシリル化剤1を前記得られたウレタンプレポリマー1と室温にて1時間反応させ、その後60℃まで昇温して2時間攪拌して、イソシアネート基を有し且つ末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A5を得た。
 得られた末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A5の分子量をGPCにより測定した結果、ピークトップ分子量は11000、分子量分布1.3であった。H-NMR測定により末端のトリメトキシシリル基は1分子あたり2.0個であった。
The obtained silylating agent 1 was reacted with the obtained urethane prepolymer 1 at room temperature for 1 hour, then heated to 60 ° C. and stirred for 2 hours to have an isocyanate group and terminal trimethoxysilyl. A polyoxyalkylene polymer A5 having a group was obtained.
As a result of measuring the molecular weight of the obtained polyoxyalkylene polymer A5 having a trimethoxysilyl group by GPC, the peak top molecular weight was 11,000 and the molecular weight distribution was 1.3. According to H 1 -NMR measurement, the number of terminal trimethoxysilyl groups was 2.0 per molecule.
(合成例6)
 表1に示すように、攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、数平均分子量10000のポリオキシプロピレンジオール(商品名:プレミノール4010、旭硝子(株)製)を100.00g、2,4-トリレンジイソシアネート(商品名:コスモネートT-80、三井化学(株)製)を3.49g、窒素雰囲気下、攪拌混合しながら90℃で3時間反応させウレタンプレポリマー2を得た。
 攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えた新たなフラスコに、減圧脱気後、窒素ガス置換して、窒素気流下にてn-ブチルアミンを1.54g加え、続いてアクリロキシメチルトリメトキシシラン(Gelest社製)を4.04g加え、室温で24時間攪拌し、反応物(シリル化剤2)を得た。
(Synthesis Example 6)
As shown in Table 1, a polyoxypropylene diol having a number average molecular weight of 10,000 (trade name: Preminol 4010, manufactured by Asahi Glass Co., Ltd.) was added to a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser. 100.00 g of 2,4-tolylene diisocyanate (trade name: Cosmonate T-80, manufactured by Mitsui Chemicals Co., Ltd.) 3.49 g of urethane pre-reacted at 90 ° C. for 3 hours with stirring and mixing in a nitrogen atmosphere. Polymer 2 was obtained.
A new flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser was degassed under reduced pressure, then replaced with nitrogen gas, and 1.54 g of n-butylamine was added under a nitrogen stream. 4.04 g of roxymethyltrimethoxysilane (manufactured by Gelest) was added and stirred at room temperature for 24 hours to obtain a reaction product (silylating agent 2).
 得られたシリル化剤2を前記得られたウレタンプレポリマー2と室温にて1時間反応させ、その後60℃まで昇温して2時間攪拌して、イソシアネート基を有し且つ末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A6を得た。
 得られた末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A6の分子量をGPCにより測定した結果、ピークトップ分子量は11000、分子量分布1.3であった。H-NMR測定により末端のトリメトキシシリル基は1分子あたり2.0個であった。
The obtained silylating agent 2 was reacted with the obtained urethane prepolymer 2 at room temperature for 1 hour, then heated to 60 ° C. and stirred for 2 hours to have an isocyanate group and terminal trimethoxysilyl. A polyoxyalkylene polymer A6 having a group was obtained.
The molecular weight of the obtained polyoxyalkylene polymer A6 having a trimethoxysilyl group at the terminal was measured by GPC. As a result, the peak top molecular weight was 11,000 and the molecular weight distribution was 1.3. According to H 1 -NMR measurement, the number of terminal trimethoxysilyl groups was 2.0 per molecule.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表1において、各配合物質の配合量はgで示される。ポリオキシアルキレン系重合体M1~M4はそれぞれ合成例1~4で得られたポリオキシアルキレン系重合体M1~M4である。シリル化剤1及び2はそれぞれ合成例5及び6で得られたシリル化剤1及び2である。*1は下記の通りである。
*1)ポリオキシプロピレンジオール:商品名:プレミノール4010、旭硝子(株)製。
In Table 1, the compounding quantity of each compounding substance is shown by g. The polyoxyalkylene polymers M1 to M4 are the polyoxyalkylene polymers M1 to M4 obtained in Synthesis Examples 1 to 4, respectively. Silylating agents 1 and 2 are silylating agents 1 and 2 obtained in Synthesis Examples 5 and 6, respectively. * 1 is as follows.
* 1) Polyoxypropylenediol: Trade name: Preminol 4010, manufactured by Asahi Glass Co., Ltd.
(合成例7)
 表2に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例1で得た末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A1を400g、合成例2で得た末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A2を200g加え、80℃に加温した。別の容器にメチルメタクリレート(商品名:ライトエステルM、共栄社(株)製)247g、n-ブチルアクリレート23g、ステアリルメタクリレート(商品名:ライトエステルS、共栄社(株)製)49g、3-メタクリロキシプロピルトリメトキシシラン(商品名:KBM503、信越化学工業(株)製)45g、3-メルカプトプロピルトリメトキシシラン23.77g、AIBN10.56gを混合し、撹拌後、滴下装置に充填し3時間かけて滴下した。滴下終了後、さらに3時間反応させ、ポリオキシアルキレン系重合体とポリオキシアルキレン系重合体とビニル系重合体の混合物であるトリメトキシシリル基を有する有機重合体A7を得た。
 得られたトリメトキシシリル基を有する有機重合体A7の分子量をGPCにより測定した結果、ピークトップ分子量は4000、分子量分布は1.6であった。H-NMR測定により末端のトリメトキシシリル基は1分子あたり2.35個であった。
(Synthesis Example 7)
As shown in Table 2, a polyoxyalkylene polymer having a trimethoxysilyl group at the terminal obtained in Synthesis Example 1 in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser. 400 g of A1 and 200 g of polyoxyalkylene polymer A2 having a trimethoxysilyl group at the terminal obtained in Synthesis Example 2 were added and heated to 80 ° C. In another container, 247 g of methyl methacrylate (trade name: Light Ester M, manufactured by Kyoeisha Co., Ltd.), 23 g of n-butyl acrylate, 49 g of stearyl methacrylate (trade name: Light Ester S, manufactured by Kyoeisha Co., Ltd.), 3-methacryloxy 45 g of propyltrimethoxysilane (trade name: KBM503, manufactured by Shin-Etsu Chemical Co., Ltd.), 23.77 g of 3-mercaptopropyltrimethoxysilane and 10.56 g of AIBN are mixed, and after stirring, filled in a dropping device over 3 hours. It was dripped. After completion of the dropping, the reaction was further continued for 3 hours to obtain an organic polymer A7 having a trimethoxysilyl group, which is a mixture of a polyoxyalkylene polymer, a polyoxyalkylene polymer, and a vinyl polymer.
As a result of measuring the molecular weight of the obtained organic polymer A7 having a trimethoxysilyl group by GPC, the peak top molecular weight was 4000 and the molecular weight distribution was 1.6. According to H 1 -NMR measurement, the number of terminal trimethoxysilyl groups was 2.35 per molecule.
(合成例8)
 表2に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、酢酸エチル(和光純薬工業(株)製)184g入れ、70℃に加温した。別の容器にメチルメタクリレート247g、n-ブチルアクリレート23g、ラウリルメタクリレート(商品名:ライトエステルL、共栄社(株)製)56g、3-アクリロキシプロピルトリメトキシシラン(商品名:KBM5103、信越化学工業(株)製)58.64g、3-メルカプトプロピルトリメトキシシラン26.21g、AIBN15.73gを混合し、撹拌後、滴下装置に充填し3時間かけて滴下した。滴下終了後、さらに3時間反応させ、トリメトキシシリル基を有するビニル系重合体A8を得た。
 得られたビニル系重合体A8の分子量をGPCにより測定した結果、ピークトップ分子量は3000、分子量分布は1.6であった。H-NMR測定により含有されるトリメトキシシリル基は1分子あたり2.00個であった。
(Synthesis Example 8)
As shown in Table 2, 184 g of ethyl acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was put into a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser, and heated to 70 ° C. did. In another container, 247 g of methyl methacrylate, 23 g of n-butyl acrylate, 56 g of lauryl methacrylate (trade name: Light Ester L, manufactured by Kyoeisha), 3-acryloxypropyltrimethoxysilane (trade name: KBM5103, Shin-Etsu Chemical Co., Ltd.) 58.64 g), 3-mercaptopropyltrimethoxysilane 26.21 g, and AIBN 15.73 g were mixed, stirred, filled into a dropping device, and dropped over 3 hours. After completion of dropping, the reaction was further continued for 3 hours to obtain a vinyl polymer A8 having a trimethoxysilyl group.
As a result of measuring the molecular weight of the obtained vinyl polymer A8 by GPC, the peak top molecular weight was 3000 and the molecular weight distribution was 1.6. The number of trimethoxysilyl groups contained by H 1 -NMR measurement was 2.00 per molecule.
(合成例9)
 表2に示すように攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、酢酸エチル152.8g入れ、70℃に加温した。別の容器にメチルメタクリレート247g、n-ブチルアクリレート23g、ラウリルメタクリレート56g、3-アクリロキシプロピルトリメトキシシラン13.1g、3-メルカプトプロピルトリメトキシシラン12.60g、AIBN4.68gを混合し、撹拌後、滴下装置に充填し3時間かけて滴下した。滴下終了後、さらに3時間反応させ、トリメトキシシリル基を有するビニル系重合体A9を得た。
 得られたビニル系重合体A9の分子量をGPCにより測定した結果、ピークトップ分子量は6000、分子量分布は1.6であった。H-NMR測定により含有されるトリメトキシシリル基は1分子あたり2.11個であった。
(Synthesis Example 9)
As shown in Table 2, 152.8 g of ethyl acetate was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser, and heated to 70 ° C. In a separate container, 247 g of methyl methacrylate, 23 g of n-butyl acrylate, 56 g of lauryl methacrylate, 13.1 g of 3-acryloxypropyltrimethoxysilane, 12.60 g of 3-mercaptopropyltrimethoxysilane, and 4.68 g of AIBN are mixed and stirred. Then, it was filled in a dropping device and dropped over 3 hours. After completion of the dropping, the reaction was further continued for 3 hours to obtain a vinyl polymer A9 having a trimethoxysilyl group.
As a result of measuring the molecular weight of the obtained vinyl polymer A9 by GPC, the peak top molecular weight was 6000 and the molecular weight distribution was 1.6. The number of trimethoxysilyl groups contained by H 1 -NMR measurement was 2.11 per molecule.
(合成例10)
 表2に示すように、撹拌装置、窒素ガス導入管、温度計および還流冷却管を備えたフラスコに、m-キシレン43.00g、メチルメタクリレート80.00g、2-エチルヘキシルメタクリレート(東京化成工業(株)製)20.00g、アクリロキシメチルトリメトキシシラン(Gelest社製)20.00g、及び金属触媒としてジルコノセンジクロライド0.10gを仕込みフラスコ内に窒素ガスを導入しながらフラスコの内容物を80℃に加熱した。ついで、充分に窒素ガス置換したメルカプトメチルトリメトキシシラン20.00gを撹拌下にフラスコ内に一気に添加した。メルカプトメチルトリメトキシシラン20.00gを添加後、撹拌中のフラスコ内の内容物の温度が80℃に維持できるように、加熱及び冷却を4時間行った。さらに、充分に窒素ガス置換したメルカプトメチルトリメトキシシラン20.00gを撹拌下に5分かけてフラスコ内に追加添加した。メルカプトメチルトリメトキシシラン20.00g全量を追加添加後、撹拌中のフラスコ内の内容物の温度が90℃に維持できるように、さらに冷却及び加温を行いながら、反応を4時間行った。合計で8時間5分間の反応後、反応物の温度を室温に戻し、反応物にベンゾキノン溶液(95%THF溶液)を20.00g添加して重合を停止し、トリメトキシシリル基を有するビニル系重合体A10を得た。
 得られたビニル系重合体A10の分子量をGPCにより測定した結果、ピークトップ分子量は4000、分子量分布は1.6であった。H-NMR測定により含有されるトリメトキシシリル基は1分子あたり2.00個であった。
(Synthesis Example 10)
As shown in Table 2, in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser, m-xylene 43.00 g, methyl methacrylate 80.00 g, 2-ethylhexyl methacrylate (Tokyo Chemical Industry Co., Ltd.) )) 20.00 g, acryloxymethyltrimethoxysilane (manufactured by Gelest) 20.00 g, and 0.10 g of zirconocene dichloride as a metal catalyst were charged, and the contents of the flask were brought to 80 ° C. while introducing nitrogen gas into the flask. Heated. Subsequently, 20.00 g of mercaptomethyltrimethoxysilane sufficiently substituted with nitrogen gas was added all at once to the flask with stirring. After adding 20.00 g of mercaptomethyltrimethoxysilane, heating and cooling were performed for 4 hours so that the temperature of the contents in the stirring flask could be maintained at 80 ° C. Further, 20.00 g of mercaptomethyltrimethoxysilane sufficiently substituted with nitrogen gas was added to the flask over 5 minutes with stirring. After the addition of 20.00 g of the total amount of mercaptomethyltrimethoxysilane, the reaction was carried out for 4 hours while further cooling and heating so that the temperature of the contents in the stirring flask could be maintained at 90 ° C. After a total of 8 hours and 5 minutes of reaction, the temperature of the reaction product was returned to room temperature, 20.00 g of a benzoquinone solution (95% THF solution) was added to the reaction product to stop the polymerization, and a vinyl system having a trimethoxysilyl group Polymer A10 was obtained.
As a result of measuring the molecular weight of the obtained vinyl polymer A10 by GPC, the peak top molecular weight was 4000, and the molecular weight distribution was 1.6. The number of trimethoxysilyl groups contained by H 1 -NMR measurement was 2.00 per molecule.
(合成例11)
 表2に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、酢酸エチル166g入れ、70℃に加温した。別の容器にメチルメタクリレート247g、n-ブチルアクリレート23g、ラウリルメタクリレート56g、3-アクリロキシプロピルトリメトキシシラン33.7g、3-メタクリロキシプロピルトリメトキシシラン4.31g、3-メルカプトプロピルトリメトキシシラン16.91g、パーオクタO(日油(株)製)11.13gを混合し、撹拌後、滴下装置に充填し3時間かけて滴下した。滴下終了後、さらに3時間反応させ、トリメトキシシリル基を有するビニル系重合体A11を得た。
 得られたビニル系重合体A11の分子量をGPCにより測定した結果、ピークトップ分子量は4200、分子量分布は1.6であった。H-NMR測定により含有されるトリメトキシシリル基は1分子あたり3.03個であった。
(Synthesis Example 11)
As shown in Table 2, 166 g of ethyl acetate was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser, and heated to 70 ° C. In a separate container, 247 g of methyl methacrylate, 23 g of n-butyl acrylate, 56 g of lauryl methacrylate, 33.7 g of 3-acryloxypropyltrimethoxysilane, 4.31 g of 3-methacryloxypropyltrimethoxysilane, 16-mercaptopropyltrimethoxysilane 16 .91 g and Perocta O (manufactured by NOF Corporation) 11.13 g were mixed, stirred, filled into a dropping device, and dropped over 3 hours. After completion of dropping, the reaction was further continued for 3 hours to obtain a vinyl polymer A11 having a trimethoxysilyl group.
As a result of measuring the molecular weight of the obtained vinyl polymer A11 by GPC, the peak top molecular weight was 4200, and the molecular weight distribution was 1.6. The number of trimethoxysilyl groups contained by H 1 -NMR measurement was 3.03 per molecule.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 表2において、各配合物質の配合量はgで示される。ポリオキシアルキレン系重合体A1及びA2はそれぞれ合成例1及び2で得られたポリオキシアルキレン系重合体A1及びA2である。 In Table 2, the compounding amount of each compounding substance is indicated by g. The polyoxyalkylene polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively.
(合成例12)
 表3に示すように、撹拌装置、窒素ガス導入管、温度計および還流冷却管を備えたフラスコに、プロピレンカーボネート(東京化成工業(株)製)を10g、トルエン(東京化成工業(株)製)30g、n-ブチルアクリレート100g、ラウリルアクリレート(東京化成工業(株)製)49g、3-アクリロキシプロピルトリメトキシシラン11.62g、合成した3-(トリメトキシシリル)プロピル-2-ブロモプロピオネート5.21g及び遷移金属触媒としてCuBr4.74g、配位子としてN,N,N’,N’’,N’’―ペンタメチレンジエチレントリアミン(商品名:カオーライザーNo.3、花王(株)製)2.86g仕込みフラスコ内に窒素ガスを導入しながらフラスコの内容物を80℃に加熱した。12時間の反応後、反応物の温度を室温に戻し、大気をいれ重合を停止し、脱水メタノール(東京化成工業(株)製)にて反応物を沈殿精製し、トリメトキシシリル基を有するビニル系重合体A12を得た。
 得られたビニル系重合体A12の数平均分子量は10000であり、かつMw/Mn=1.1であった。H-NMR測定により含有されるトリメトキシシリル基は1分子あたり2.0個であった。
(Synthesis Example 12)
As shown in Table 3, 10 g of propylene carbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) and toluene (manufactured by Tokyo Chemical Industry Co., Ltd.) were added to a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser. ) 30 g, n-butyl acrylate 100 g, lauryl acrylate (Tokyo Chemical Industry Co., Ltd.) 49 g, 3-acryloxypropyltrimethoxysilane 11.62 g, synthesized 3- (trimethoxysilyl) propyl-2-bromopropio 5.21 g of Nate and 4.74 g of CuBr as a transition metal catalyst, N, N, N ′, N ″, N ″ -pentamethylenediethylenetriamine as a ligand (trade name: Kao Raiser No. 3, manufactured by Kao Corporation) ) 2.86 g The contents of the flask were heated to 80 ° C. while introducing nitrogen gas into the flask. After the reaction for 12 hours, the temperature of the reaction product is returned to room temperature, the atmosphere is put in, the polymerization is stopped, the reaction product is precipitated and purified with dehydrated methanol (manufactured by Tokyo Chemical Industry Co., Ltd.), and vinyl having a trimethoxysilyl group. A polymer A12 was obtained.
The number average molecular weight of the obtained vinyl polymer A12 was 10,000, and Mw / Mn = 1.1. The number of trimethoxysilyl groups contained by H 1 -NMR measurement was 2.0 per molecule.
(合成例13)
 表3に示すように、撹拌装置、窒素ガス導入管、温度計および還流冷却管を備えたフラスコに、酢酸エチル100g、メチルメタクリレート60g、n-ブチルメタクリレート(東京化成工業(株)製)10g、ラウリルメタクリレート10g、3-メタクリロキシプロピルトリメトキシシラン14.05g、合成した2-シアノプロピ-2-イルジチオベンゾエート5g、AIBN1.86gを仕込みフラスコ内に窒素ガスを導入しながらフラスコの内容物を80℃に加熱した。撹拌中のフラスコ内の内容物の温度が80℃に維持できるように、加熱及び冷却を8時間行った。反応後、反応物の温度を室温に戻し、トリメトキシシリル基を有するビニル系重合体A13を得た。
 得られたビニル系重合体A13の数平均分子量は4000であり、かつMw/Mn=1.1であった。H-NMR測定により含有されるトリメトキシシリル基は1分子あたり2.0個であった。
(Synthesis Example 13)
As shown in Table 3, in a flask equipped with a stirrer, a nitrogen gas introduction tube, a thermometer and a reflux condenser, 100 g of ethyl acetate, 60 g of methyl methacrylate, 10 g of n-butyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.), 10 g of lauryl methacrylate, 14.05 g of 3-methacryloxypropyltrimethoxysilane, 5 g of synthesized 2-cyanoprop-2-yldithiobenzoate and 1.86 g of AIBN were charged, and the contents of the flask were kept at 80 ° C. while introducing nitrogen gas into the flask. Heated. Heating and cooling were performed for 8 hours so that the temperature of the contents in the stirring flask could be maintained at 80 ° C. After the reaction, the temperature of the reaction product was returned to room temperature to obtain a vinyl polymer A13 having a trimethoxysilyl group.
The number average molecular weight of the obtained vinyl polymer A13 was 4000, and Mw / Mn = 1.1. The number of trimethoxysilyl groups contained by H 1 -NMR measurement was 2.0 per molecule.
(合成例14)
 表3に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、酢酸エチル188g入れ、70℃に加温した。別の容器にメチルメタクリレート264g、n-ブチルアクリレート24g、ラウリルメタクリレート48g、2-エチルヘキシルメタクリレート40g、アクリロキシメチルトリメトキシシラン25.17g、メタクリロキシメチルトリメトキシシラン(Gelest社製)10.68g、メルカプトメチルトリメトキシシラン(Gelest社製)15.48g、AIBN6.71gを混合し、撹拌後、滴下装置に充填し3時間かけて滴下した。滴下終了後、さらに3時間反応させ、トリメトキシシリル基を有するビニル系重合体A14を得た。
 得られたビニル系重合体A14の分子量をGPCにより測定した結果、ピークトップ分子量は4500、分子量分布は1.6であった。H-NMR測定により含有されるトリメトキシシリル基は1分子あたり3.21個であった。
(Synthesis Example 14)
As shown in Table 3, 188 g of ethyl acetate was put into a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser, and heated to 70 ° C. In a separate container, 264 g of methyl methacrylate, 24 g of n-butyl acrylate, 48 g of lauryl methacrylate, 40 g of 2-ethylhexyl methacrylate, 25.17 g of acryloxymethyltrimethoxysilane, 10.68 g of methacryloxymethyltrimethoxysilane (manufactured by Gelest), mercapto Methyltrimethoxysilane (manufactured by Gelest) (15.48 g) and AIBN (6.71 g) were mixed, stirred, charged into a dropping device, and dropped over 3 hours. After completion of the dropping, the reaction was further continued for 3 hours to obtain a vinyl polymer A14 having a trimethoxysilyl group.
As a result of measuring the molecular weight of the obtained vinyl polymer A14 by GPC, the peak top molecular weight was 4500, and the molecular weight distribution was 1.6. The number of trimethoxysilyl groups contained by H 1 -NMR measurement was 3.21 per molecule.
(合成例15)
 表3に示すように、撹拌装置、窒素ガス導入管、温度計および還流冷却管を備えたフラスコに、酢酸エチルを40.00g、メチルメタクリレート70.00g、2-エチルヘキシルメタクリレート(東京化成工業(株)製)30.00g、3-メタクリロキシプロピルトリメトキシシラン(商品名:KBM503、信越化学工業(株)製)12.00g、及び金属触媒としてチタノセンジクライド0.10gを仕込みフラスコ内に窒素ガスを導入しながらフラスコの内容物を80℃に加熱した。ついで、充分に窒素ガス置換した3-メルカプトプロピルトリメトキシシラン4.30gを撹拌下にフラスコ内に一気に添加した。3-メルカプトプロピルトリメトキシシラン4.30gを添加後、撹拌中のフラスコ内の内容物の温度が80℃に維持できるように、加熱及び冷却を4時間行った。さらに、充分に窒素ガス置換した3-メルカプトプロピルトリメトキシシラン4.30gを撹拌下に5分かけてフラスコ内に追加添加した。3-メルカプトプロピルトリメトキシシラン4.30g全量を追加添加後、撹拌中のフラスコ内の内容物の温度が90℃に維持できるように、さらに冷却及び加温を行いながら、反応を4時間行った。合計で8時間5分間の反応後、反応物の温度を室温に戻し、反応物にベンゾキノン溶液(95%THF溶液)を20.00g添加して重合を停止し、トリメトキシシリル基を有するビニル系重合体A15を得た。ピークトップ分子量は4000、分子量分布は2.4であった。H-NMR測定により含有されるトリメトキシシリル基は1分子あたり2.00個であった。
(Synthesis Example 15)
As shown in Table 3, 40.00 g of ethyl acetate, 70.00 g of methyl methacrylate, 2-ethylhexyl methacrylate (Tokyo Chemical Industry Co., Ltd.) were placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser. )) 30.00 g, 3-methacryloxypropyltrimethoxysilane (trade name: KBM503, manufactured by Shin-Etsu Chemical Co., Ltd.) 12.00 g, and titanocene diclyde 0.10 g as a metal catalyst were charged in a flask with nitrogen gas The contents of the flask were heated to 80 ° C. while introducing. Next, 4.30 g of 3-mercaptopropyltrimethoxysilane sufficiently purged with nitrogen gas was added into the flask all at once with stirring. After adding 4.30 g of 3-mercaptopropyltrimethoxysilane, heating and cooling were performed for 4 hours so that the temperature of the contents in the flask under stirring could be maintained at 80 ° C. Further, 4.30 g of 3-mercaptopropyltrimethoxysilane sufficiently substituted with nitrogen gas was added to the flask over 5 minutes with stirring. After an additional amount of 4.30 g of 3-mercaptopropyltrimethoxysilane was added, the reaction was performed for 4 hours while further cooling and heating so that the temperature of the contents in the stirring flask could be maintained at 90 ° C. . After a total of 8 hours and 5 minutes of reaction, the temperature of the reaction product was returned to room temperature, 20.00 g of a benzoquinone solution (95% THF solution) was added to the reaction product to stop the polymerization, and a vinyl system having a trimethoxysilyl group Polymer A15 was obtained. The peak top molecular weight was 4000, and the molecular weight distribution was 2.4. The number of trimethoxysilyl groups contained by H 1 -NMR measurement was 2.00 per molecule.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 表3において、各配合物質の配合量はgで示される。 In Table 3, the compounding amount of each compounding substance is indicated by g.
(合成例16)
 表4に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、3-アミノプロピルトリメトキシシラン(商品名:Z-6610、東レ・ダウコーニング・シリコーン(株)製)100g、3-グリシドキシプロピルトリメトキシシラン(商品名:Z-6040、東レ・ダウコーニング・シリコーン(株)製)276g加え、50℃にて72時間撹拌し、シラン化合物C1を得た。得られたシラン化合物C1について、FT-IRにて910cm-1付近のエポキシ基に起因するピークの消失を確認し、1140cm-1付近の2級アミンのピークを確認し、また、29Si-NMRより-60ppmから-70ppmに新たなピークの出現が確認できた。
(Synthesis Example 16)
As shown in Table 4, 3-aminopropyltrimethoxysilane (trade name: Z-6610, Toray Dow Corning, Ltd.) was added to a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser. 100 g of Silicone Co., Ltd., 276 g of 3-glycidoxypropyltrimethoxysilane (trade name: Z-6040, manufactured by Toray Dow Corning Silicone Co., Ltd.), and stirred at 50 ° C. for 72 hours to give a silane compound C1 was obtained. With respect to the obtained silane compound C1, the disappearance of the peak due to the epoxy group near 910 cm −1 was confirmed by FT-IR, and the peak of the secondary amine near 1140 cm −1 was confirmed. 29 Si-NMR Furthermore, the appearance of a new peak was confirmed from -60 ppm to -70 ppm.
(合成例17)
 表4に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、3-アミノプロピルトリメトキシシラン44.62g、3-グリシドキシプロピルトリメトキシシラン100g加え、50℃にて72時間撹拌し、シラン化合物C2を得た。得られたシラン化合物C2について、FT-IRにて910cm-1付近のエポキシ基に起因するピークの消失を確認し、1140cm-1付近の2級アミンのピークを確認し、また、29Si-NMRより-60ppmから-70ppmに新たなピー
クの出現が確認できた。
(Synthesis Example 17)
As shown in Table 4, in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser, 44.62 g of 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane 100 g was added and stirred at 50 ° C. for 72 hours to obtain a silane compound C2. With respect to the obtained silane compound C2, disappearance of a peak due to an epoxy group near 910 cm −1 was confirmed by FT-IR, a secondary amine peak near 1140 cm −1 was confirmed, and 29 Si-NMR Furthermore, the appearance of a new peak was confirmed from -60 ppm to -70 ppm.
(合成例18)
 表4に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、3-アミノプロピルトリメトキシシラン31.61g、3-グリシドキシプロピルトリメトキシシラン100g加え50℃にて72時間撹拌し、シラン化合物C3を得た。得られたシラン化合物C3について、FT-IRにて1410cm-1、1120cm-1付近のアミノ基に起因するピークの消失を確認し、1140cm-1付近の2級アミンのピークを確認し、また、29Si-NMRより-60ppmから-70ppmに新たなピークの出現が確認できた。
(Synthesis Example 18)
As shown in Table 4, in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser, 31.61 g of 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane 100 g was added and stirred at 50 ° C. for 72 hours to obtain a silane compound C3. For the obtained silane compound C3, the disappearance of the peak due to the amino group near 1410 cm −1 and 1120 cm −1 was confirmed by FT-IR, and the peak of the secondary amine near 1140 cm −1 was confirmed. From 29 Si-NMR, it was confirmed that a new peak appeared from −60 ppm to −70 ppm.
(比較合成例1)
 表4に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン50.00g、3-グリシドキシプロピルトリメトキシシラン127.5g加え50℃にて72時間撹拌し、シラン化合物X1を得た。得られたシラン化合物X1について、FT-IRにて1410cm-1、1120cm-1付近のアミノ基に起因するピークの消失を確認し、910cm-1付近のエポキシ基に起因するピークの消失を確認した。
(Comparative Synthesis Example 1)
As shown in Table 4, in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser, 50.00 g of N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 127.5 g of 3-glycidoxypropyltrimethoxysilane was added and stirred at 50 ° C. for 72 hours to obtain a silane compound X1. The obtained silane compound X1, 1410 cm -1 in FT-IR, to confirm the disappearance of a peak attributable to the amino groups in the vicinity of 1,120 cm -1, to confirm the disappearance of the peak due to the epoxy group in the vicinity of 910 cm -1 .
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 表4において、各配合物質の配合量はgで示される。 In Table 4, the compounding amount of each compounding substance is indicated by g.
(合成例19)
 表5に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例16で得たシラン化合物C1を100g入れ、続いてオルガチックス TC-750[マツモトファインケミカル(株)製の商品名、チタニウムジイソプロポキシビス(エチルアセトアセテート)]を63.1g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒B1を得た。得られたチタン触媒B1について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 19)
As shown in Table 5, 100 g of the silane compound C1 obtained in Synthesis Example 16 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgatrix TC-750. 63.1 g of [trade name, titanium diisopropoxy bis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.] was added and aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst B1. With respect to the obtained titanium catalyst B1, change in peak was confirmed by 29 Si-NMR.
(合成例20)
 表5に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例16で得たシラン化合物C1を100g入れ、続いてオルガチックス TC-750を126.2g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒B2を得た。得られたチタン触媒B2について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 20)
As shown in Table 5, 100 g of the silane compound C1 obtained in Synthesis Example 16 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgatrix TC-750. Was aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst B2. With respect to the obtained titanium catalyst B2, change in peak was confirmed by 29 Si-NMR.
(合成例21)
 表5に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例16で得たシラン化合物C1を100g入れ、続いてオルガチックス TC-750を31.5g入れ、80℃にて144時間加熱撹拌することにより熟成し、チタン触媒B3を得た。得られたチタン触媒B3について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 21)
As shown in Table 5, 100 g of the silane compound C1 obtained in Synthesis Example 16 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgatrix TC-750. Was aged by heating and stirring at 80 ° C. for 144 hours to obtain a titanium catalyst B3. With respect to the obtained titanium catalyst B3, the change in peak was confirmed by 29 Si-NMR.
(合成例22)
 攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、トリエチルアミン23.47g、チタニウムテトラクロライド10g、続いてt-ブチルアルコールを17.19g入れた。室温で2時間撹拌し、沈殿物を濾過し、蒸留精製し、チタニウムテトラt-ブトキサイドを得た。得られたチタニウムテトラt-ブトキサイドを10g、エチルアセトアセテート(日本合成(株)製)を7.65g入れ、室温にて2時間撹拌しその後、70℃にて2時間撹拌した。反応終了後、減圧下にて未反応物等を取り除き、チタン触媒D1を得た。
 続いて、表5に示すように、得られたチタン触媒D1 14.12gに、合成例16で得たシラン化合物C1を19.85g入れ、50℃にて72時間加熱撹拌することにより熟成し、チタン触媒B4を得た。得られたチタン触媒B4について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 22)
A flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser was charged with 23.47 g of triethylamine, 10 g of titanium tetrachloride, and then 17.19 g of t-butyl alcohol. The mixture was stirred at room temperature for 2 hours, and the precipitate was filtered and purified by distillation to obtain titanium tetra-t-butoxide. 10 g of the obtained titanium tetra-t-butoxide and 7.65 g of ethyl acetoacetate (manufactured by Nippon Gosei Co., Ltd.) were added and stirred at room temperature for 2 hours, and then stirred at 70 ° C. for 2 hours. After completion of the reaction, unreacted substances and the like were removed under reduced pressure to obtain a titanium catalyst D1.
Subsequently, as shown in Table 5, 19.85 g of the silane compound C1 obtained in Synthesis Example 16 was added to 14.12 g of the obtained titanium catalyst D1, and the mixture was aged by heating and stirring at 50 ° C. for 72 hours. A titanium catalyst B4 was obtained. With respect to the obtained titanium catalyst B4, the change in peak was confirmed by 29 Si-NMR.
(合成例23)
 チタニウムテトライソプロポキシド(商品名:オルガチックス TA-10、マツモトファインケミカル(株)製)を50g、メチルアセトアセテート(日本合成(株)製)を40.85g入れ、室温にて2時間撹拌した後、70℃にて2時間撹拌した。反応終了後、減圧下にて未反応物等を取り除き、チタン触媒D2を得た。
 続いて、表5に示すように、得られたチタン触媒D2 69.71gに、合成例16で得たシラン化合物C1を106.96入れ、60℃にて168時間加熱撹拌することにより熟成し、チタン触媒B5を得た。得られたチタン触媒B5について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 23)
After adding 50 g of titanium tetraisopropoxide (trade name: Olgatyx TA-10, manufactured by Matsumoto Fine Chemical Co., Ltd.) and 40.85 g of methyl acetoacetate (manufactured by Nihon Gosei Co., Ltd.), the mixture was stirred at room temperature for 2 hours. The mixture was stirred at 70 ° C. for 2 hours. After completion of the reaction, unreacted substances and the like were removed under reduced pressure to obtain a titanium catalyst D2.
Subsequently, as shown in Table 5, the silane compound C1 obtained in Synthesis Example 16 was placed in 69.71 g of the obtained titanium catalyst D2, and aged by heating and stirring at 60 ° C. for 168 hours. A titanium catalyst B5 was obtained. With respect to the obtained titanium catalyst B5, the change in peak was confirmed by 29 Si-NMR.
(合成例24)
 チタニウムテトライソプロポキサイドを50g、イソプロピルアセトアセテート(日本合成(株)製)を50.72g入れ、室温にて2時間撹拌した後、70℃にて2時間撹拌した。反応終了後、減圧下にて未反応物等を取り除き、チタン触媒D3を得た。
 続いて、表5に示すように、得られたチタン触媒D3 79.58gに、合成例16で得たシラン化合物C1を118.85入れ70℃にて72時間加熱撹拌することにより熟成し、チタン触媒B6を得た。得られたチタン触媒B6について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 24)
50 g of titanium tetraisopropoxide and 50.72 g of isopropyl acetoacetate (manufactured by Nihon Gosei Co., Ltd.) were added and stirred at room temperature for 2 hours, and then stirred at 70 ° C. for 2 hours. After completion of the reaction, unreacted substances and the like were removed under reduced pressure to obtain a titanium catalyst D3.
Subsequently, as shown in Table 5, the silane compound C1 obtained in Synthesis Example 16 was added to 79.58 g of the obtained titanium catalyst D3 and aged by heating and stirring at 70 ° C. for 72 hours. Catalyst B6 was obtained. With respect to the obtained titanium catalyst B6, the change in peak was confirmed by 29 Si-NMR.
(合成例25)
 表5に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例16で得たシラン化合物C1を100g、(E)ビニルトリメトキシシラン(商品名:KBM1003、信越化学(株)製)を3.8g、オルガチックス TC-750を78.88g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒B7を得た。得られたチタン触媒B7について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 25)
As shown in Table 5, 100 g of the silane compound C1 obtained in Synthesis Example 16 was added to a flask equipped with a stirrer, a nitrogen gas introduction tube, a thermometer, a dropping device, and a reflux condenser, and (E) vinyltrimethoxysilane ( 3.8 g of trade name: KBM1003, manufactured by Shin-Etsu Chemical Co., Ltd.) and 78.88 g of ORGATICS TC-750 were added, and the mixture was aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst B7. With respect to the obtained titanium catalyst B7, the change in peak was confirmed by 29 Si-NMR.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 表5において、各配合物質の配合量はgで示される。シラン化合物C1は合成例16で得たシラン化合物C1であり、オルガチックス TC-750は、マツモトファインケミカル(株)製の商品名、チタニウムジイソプロポキシビス(エチルアセトアセテート)である。 In Table 5, the compounding amount of each compounding substance is indicated by g. The silane compound C1 is the silane compound C1 obtained in Synthesis Example 16, and ORGATICS TC-750 is a trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
(合成例26)
 表6に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例17で得たシラン化合物C2を126.93g入れ、続いてオルガチックス TC-750を100g入れ、60℃にて168時間加熱撹拌することにより熟成し、チタン触媒B8を得た。得られたチタン触媒B8について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 26)
As shown in Table 6, 126.93 g of the silane compound C2 obtained in Synthesis Example 17 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgax TC. 100 g of −750 was added and aged by heating and stirring at 60 ° C. for 168 hours to obtain a titanium catalyst B8. With respect to the obtained titanium catalyst B8, the change in peak was confirmed by 29 Si-NMR.
(合成例27)
 表6に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例18で得たシラン化合物C3を156.37g入れ、続いてオルガチックス TC-750を100g入れ、70℃にて168時間加熱撹拌することにより熟成し、チタン触媒B9を得た。得られたチタン触媒B9について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 27)
As shown in Table 6, 156.37 g of the silane compound C3 obtained in Synthesis Example 18 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgatics TC. 100 g of −750 was added and aged by heating and stirring at 70 ° C. for 168 hours to obtain a titanium catalyst B9. With respect to the obtained titanium catalyst B9, the change in peak was confirmed by 29 Si-NMR.
(合成例28)
 表6に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例18で得たシラン化合物C3を184.28g入れ、続いてオルガチックス TC-750を100g入れ、70℃にて168時間加熱撹拌することにより熟成し、チタン触媒B10を得た。得られたチタン触媒B10について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 28)
As shown in Table 6, 184.28 g of the silane compound C3 obtained in Synthesis Example 18 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgax TC. 100 g of −750 was added and aged by heating and stirring at 70 ° C. for 168 hours to obtain a titanium catalyst B10. With respect to the obtained titanium catalyst B10, the change in peak was confirmed by 29 Si-NMR.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 表6において、各配合物質の配合量はgで示される。シラン化合物C2及びC3はそれぞれ合成例17及び18で得たシラン化合物C2及びC3であり、オルガチックス TC-750はマツモトファインケミカル(株)製の商品名、チタニウムジイソプロポキシビス(エチルアセトアセテート)である。 In Table 6, the compounding amount of each compounding substance is indicated by g. Silane compounds C2 and C3 are the silane compounds C2 and C3 obtained in Synthesis Examples 17 and 18, respectively, and ORGATICS TC-750 is a trade name, titanium diisopropoxy bis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co. is there.
(合成例29)
 表7に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例16で得たシラン化合物C1を10g、オルガチックス TC-750を40g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒B11を得た。得られたチタン触媒B11について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 29)
As shown in Table 7, 10 g of the silane compound C1 obtained in Synthesis Example 16 and 40 g of ORGATIC TC-750 were placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser. The mixture was aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst B11. With respect to the obtained titanium catalyst B11, the change in peak was confirmed by 29 Si-NMR.
(合成例30)
 表7に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例16で得たシラン化合物C1を60g、オルガチックス TC-750を40g入れ、70℃にて144時間加熱撹拌することにより熟成した後、ノルマルパラフィン(商品名:N-11、JX日鉱日石エネルギー(株)製)を100g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒B12を得た。得られたチタン触媒B12について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 30)
As shown in Table 7, 60 g of the silane compound C1 obtained in Synthesis Example 16 and 40 g of ORGATIC TC-750 were placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser. After maturing by heating and stirring at 70 ° C. for 144 hours, 100 g of normal paraffin (trade name: N-11, manufactured by JX Nippon Oil & Energy Corporation) is added and stirring is performed at 70 ° C. for 144 hours. To obtain a titanium catalyst B12. With respect to the obtained titanium catalyst B12, the change in peak was confirmed by 29 Si-NMR.
(合成例31)
 表7に示すように配合物質の配合割合を変更した以外は合成例30と同様の方法によりチタン触媒B13を得た。得られたチタン触媒B13について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 31)
As shown in Table 7, a titanium catalyst B13 was obtained by the same method as in Synthesis Example 30 except that the blending ratio of the blended materials was changed. With respect to the obtained titanium catalyst B13, the change in peak was confirmed by 29 Si-NMR.
(合成例32)
 表7に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例16で得たシラン化合物C1を10g、(E)シラン化合物としてフェニルトリメトキシシラン(商品名:KBM103、信越化学工業(株)製)を50g、オルガチックス TC-750を40g、ノルマルパラフィンを100g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒B14を得た。得られたチタン触媒B14について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 32)
As shown in Table 7, 10 g of the silane compound C1 obtained in Synthesis Example 16 was added to a flask equipped with a stirrer, a nitrogen gas introduction tube, a thermometer, a dropping device, and a reflux condenser, and (E) 50 g of methoxysilane (trade name: KBM103, manufactured by Shin-Etsu Chemical Co., Ltd.), 40 g of Organics TC-750 and 100 g of normal paraffin were added, and the mixture was aged by heating and stirring at 70 ° C. for 144 hours, and the titanium catalyst B14 Got. With respect to the obtained titanium catalyst B14, the change in peak was confirmed by 29 Si-NMR.
(合成例33)
 表7に示すように配合物質の配合割合を変更した以外は合成例32と同様の方法によりチタン触媒B15を得た。得られたチタン触媒B15について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 33)
As shown in Table 7, a titanium catalyst B15 was obtained in the same manner as in Synthesis Example 32 except that the blending ratio of the blended materials was changed. With respect to the obtained titanium catalyst B15, the change in peak was confirmed by 29 Si-NMR.
(合成例34~37)
 表7に示すように(E)シラン化合物を変更した以外は合成例32と同様の方法によりチタン触媒B16~B19を得た。得られたチタン触媒B16~B19について、29Si-NMRよりピークの変化を確認した。
(Synthesis Examples 34 to 37)
As shown in Table 7, titanium catalysts B16 to B19 were obtained in the same manner as in Synthesis Example 32 except that (E) the silane compound was changed. With respect to the obtained titanium catalysts B16 to B19, the change in peak was confirmed by 29 Si-NMR.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 表7において、各配合物質の配合量はgで示される。シラン化合物C1は合成例16で得たシラン化合物C1であり、その他の配合物質の詳細は下記の通りである。
 オルガチックス TC-750:マツモトファインケミカル(株)製の商品名、チタニウムジイソプロポキシビス(エチルアセトアセテート)。
 フェニルトリメトキシシラン:商品名:KBM-103、信越化学工業(株)製。
 ビニルトリメトキシシラン:商品名:KBM-1003、信越化学工業(株)製。
 メチルトリメトキシシラン:商品名:KBM-13、信越化学工業(株)製。
 3-グリシドキシプロピルトリメトキシシラン:商品名:KBM-403、信越化学工業(株)製。
 デシルトリメトキシシラン:商品名:KBM-3013C、信越化学工業(株)製。
 ノルマルパラフィン:商品名:N-11、JX日鉱日石エネルギー(株)製。
In Table 7, the compounding quantity of each compounding substance is shown by g. The silane compound C1 is the silane compound C1 obtained in Synthesis Example 16, and details of other compounding substances are as follows.
ORGATICS TC-750: trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
Phenyltrimethoxysilane: Trade name: KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd.
Vinyltrimethoxysilane: Trade name: KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd.
Methyltrimethoxysilane: Trade name: KBM-13, manufactured by Shin-Etsu Chemical Co., Ltd.
3-Glycidoxypropyltrimethoxysilane: Trade name: KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.
Decyltrimethoxysilane: Trade name: KBM-3013C, manufactured by Shin-Etsu Chemical Co., Ltd.
Normal paraffin: Trade name: N-11, manufactured by JX Nippon Oil & Energy Corporation.
(合成例38)
 表8に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例16で得たシラン化合物C1を10g、(E)シラン化合物としてフェニルトリメトキシシラン(商品名:KBM103、信越化学工業(株)製)を50g入れ、続いてオルガチックス TC-750を40g入れ、70℃にて144時間加熱撹拌することにより熟成した後、ノルマルパラフィンを100g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒B20を得た。得られたチタン触媒B20について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 38)
As shown in Table 8, 10 g of the silane compound C1 obtained in Synthesis Example 16 was added to a flask equipped with a stirrer, a nitrogen gas introduction tube, a thermometer, a dropping device, and a reflux condenser, and (E) 50 g of methoxysilane (trade name: KBM103, manufactured by Shin-Etsu Chemical Co., Ltd.) is added, followed by 40 g of ORGATICS TC-750, aging by heating and stirring at 70 ° C. for 144 hours, and then 100 g of normal paraffin. The mixture was aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst B20. With respect to the obtained titanium catalyst B20, the change in peak was confirmed by 29 Si-NMR.
(合成例39)
 表8に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例16で得たシラン化合物C1を10g、オルガチックス TC-750を40g入れ、70℃にて144時間加熱撹拌することにより熟成した後、(E)シラン化合物としてフェニルトリメトキシシラン(商品名:KBM103、信越化学工業(株)製)を50g、ノルマルパラフィンを100g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒B21を得た。得られたチタン触媒B21について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 39)
As shown in Table 8, 10 g of the silane compound C1 obtained in Synthesis Example 16 and 40 g of ORGATIC TC-750 were placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser. The mixture was aged by heating and stirring at 70 ° C. for 144 hours, and (E) 50 g of phenyltrimethoxysilane (trade name: KBM103, manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane compound and 100 g of normal paraffin were added. The mixture was aged by heating and stirring at 144 ° C. for 144 hours to obtain a titanium catalyst B21. With respect to the obtained titanium catalyst B21, the change in peak was confirmed by 29 Si-NMR.
(合成例40)
 表8に示すように配合物質の配合割合を変更した以外は合成例37と同様の方法によりチタン触媒B22を得た。得られたチタン触媒B22について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 40)
As shown in Table 8, a titanium catalyst B22 was obtained in the same manner as in Synthesis Example 37 except that the blending ratio of the blended materials was changed. With respect to the obtained titanium catalyst B22, the change in peak was confirmed by 29 Si-NMR.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表8において、各配合物質の配合量はgで示される。シラン化合物C1は合成例16で得たシラン化合物C1であり、その他の配合物質の詳細は下記の通りである。
 オルガチックス TC-750:マツモトファインケミカル(株)製の商品名、チタニウムジイソプロポキシビス(エチルアセトアセテート)。
 フェニルトリメトキシシラン:商品名:KBM-103、信越化学工業(株)製。
 ビニルトリメトキシシラン:商品名:KBM-1003、信越化学工業(株)製。
 ノルマルパラフィン:商品名:N-11、JX日鉱日石エネルギー(株)製。
In Table 8, the compounding quantity of each compounding substance is shown by g. The silane compound C1 is the silane compound C1 obtained in Synthesis Example 16, and details of other compounding substances are as follows.
ORGATICS TC-750: trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
Phenyltrimethoxysilane: Trade name: KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd.
Vinyltrimethoxysilane: Trade name: KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd.
Normal paraffin: Trade name: N-11, manufactured by JX Nippon Oil & Energy Corporation.
(実施例1)
 表9に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を100gと合成例19で得たチタン触媒B1を10g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表10に示した。
Example 1
As shown in Table 9, 100 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 19 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the titanium catalyst B1 obtained in the above was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 10 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例2)
 表9に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例2で得たポリオキシアルキレン系重合体A2を50gと合成例4で得たポリオキシアルキレン系重合体A4を20gと合成例10で得たビニル系重合体A10を30g、合成例19で得たチタン触媒B1を10g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表10に示した。
(Example 2)
As shown in Table 9, 50 g of the polyoxyalkylene polymer A2 obtained in Synthesis Example 2 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 20 g of the polyoxyalkylene polymer A4 obtained in the above and 30 g of the vinyl polymer A10 obtained in Synthesis Example 10 and 10 g of the titanium catalyst B1 obtained in Synthesis Example 19 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 10 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例3)
 表9に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例3で得たポリオキシアルキレン系重合体A3を20gと合成例8で得たビニル系重合体A8を30g、合成例19で得たチタン触媒B1を10g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表10に示した。
(Example 3)
As shown in Table 9, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 3 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 20 g of the polyoxyalkylene polymer A3 obtained in the above and 30 g of the vinyl polymer A8 obtained in Synthesis Example 8 and 10 g of the titanium catalyst B1 obtained in Synthesis Example 19 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 10 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例4)
 表9に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例5で得たポリオキシアルキレン系重合体A5を90gと合成例9で得たビニル系重合体A9を10g、合成例19で得たチタン触媒B1を10g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表10に示した。
Example 4
As shown in Table 9, 90 g of the polyoxyalkylene polymer A5 obtained in Synthesis Example 5 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the vinyl polymer A9 obtained in the above and 10 g of the titanium catalyst B1 obtained in Synthesis Example 19 were added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 10 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 表9において、各配合物質の配合量はgで示される。重合体A1~A5はそれぞれ合成例1~5で得たポリオキシアルキレン系重合体A1~A5であり、重合体A8~A10はそれぞれ合成例8~10で得たビニル系重合体A8~A10であり、チタン触媒B1は合成例19で得たチタン触媒B1である。 In Table 9, the compounding amount of each compounding substance is indicated by g. Polymers A1 to A5 are respectively polyoxyalkylene polymers A1 to A5 obtained in Synthesis Examples 1 to 5, and polymers A8 to A10 are vinyl polymers A8 to A10 obtained in Synthesis Examples 8 to 10, respectively. Yes, the titanium catalyst B1 is the titanium catalyst B1 obtained in Synthesis Example 19.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
(実施例5)
 表11に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例6で得たポリオキシアルキレン系重合体A6を100gと合成例19で得たチタン触媒B1を10g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表12に示した。なお、貯蔵安定性試験における初期粘度と貯蔵後の粘度は、密封ガラス容器内の硬化性組成物をガラス容器を傾けて目視にて確認した。
(Example 5)
As shown in Table 11, 100 g of the polyoxyalkylene polymer A6 obtained in Synthesis Example 6 and Synthesis Example 19 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube, and a water-cooled condenser. 10 g of the titanium catalyst B1 obtained in the above was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 12 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition. In addition, the initial viscosity in the storage stability test and the viscosity after storage were confirmed visually by tilting the glass container of the curable composition in the sealed glass container.
(実施例6)
 表11に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例6で得たポリオキシアルキレン系重合体A6を60gと合成例14で得たビニル系重合体A14を40g、合成例19で得たチタン触媒B1を10g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物を実施例5と同様に試験を行った。結果を表12に示した。
(Example 6)
As shown in Table 11, 60 g of the polyoxyalkylene polymer A6 obtained in Synthesis Example 6 and Synthesis Example 14 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube, and a water-cooled condenser. 40 g of the vinyl polymer A14 obtained in the above and 10 g of the titanium catalyst B1 obtained in Synthesis Example 19 were added and degassed and stirred at 25 ° C. to obtain a curable composition. The curable composition was tested in the same manner as in Example 5. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 表11において、各配合物質の配合量はgで示される。重合体A6は合成例6で得たポリオキシアルキレン系重合体A6であり、重合体A14は合成例14で得たビニル系重合体A14であり、チタン触媒B1は合成例19で得たチタン触媒B1である。 In Table 11, the blending amount of each compounding substance is indicated by g. The polymer A6 is the polyoxyalkylene polymer A6 obtained in Synthesis Example 6, the polymer A14 is the vinyl polymer A14 obtained in Synthesis Example 14, and the titanium catalyst B1 is the titanium catalyst obtained in Synthesis Example 19. B1.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
(実施例7)
 表13に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例12で得たビニル系重合体A12を100gと合成例19で得たチタン触媒B1を10g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表14に示した。
(Example 7)
As shown in Table 13, 100 g of vinyl polymer A12 obtained in Synthesis Example 12 was obtained in Synthesis Example 19 in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube and water-cooled condenser. 10g of the titanium catalyst B1 was added and degassed and stirred at 25 ° C to obtain a curable composition. Table 14 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例8)
 表13に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例4で得たポリオキシアルキレン系重合体A4を10gと合成例13で得たビニル系重合体A13を40g、合成例19で得たチタン触媒B1を10g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表14に示した。
(Example 8)
As shown in Table 13, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 4 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A4 obtained in the above and 40 g of the vinyl polymer A13 obtained in Synthesis Example 13 and 10 g of the titanium catalyst B1 obtained in Synthesis Example 19 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 14 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例9)
 表13に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例4で得たポリオキシアルキレン系重合体A4を40gと合成例11で得たビニル系重合体A11を30g、合成例19で得たチタン触媒B1を10g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表14に示した。
Example 9
As shown in Table 13, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above, 40 g of the polyoxyalkylene polymer A4 obtained in Synthesis Example 4, 30 g of the vinyl polymer A11 obtained in Synthesis Example 11, and titanium obtained in Synthesis Example 19. 10 g of the catalyst B1 was added and deaerated and stirred at 25 ° C. to obtain a curable composition. Table 14 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例10)
 表13に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を70gと合成例9で得たビニル系重合体A9を10gと合成例13で得たビニル系重合体A13を20g、合成例19で得たチタン触媒B1を10g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表14に示した。
(Example 10)
As shown in Table 13, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 70 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 10 g of the vinyl polymer A9 obtained in the above and 20 g of the vinyl polymer A13 obtained in Synthesis Example 13 and 10 g of the titanium catalyst B1 obtained in Synthesis Example 19 were degassed and stirred at 25 ° C. to obtain a curable composition. Obtained. Table 14 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例11)
 表13に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例10で得たビニル系重合体A10を40g、合成例20で得たチタン触媒B2を16.5g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表14に示した。
(Example 11)
As shown in Table 13, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of the vinyl polymer A10 obtained in Synthesis Example 10 and 16.5 g of the titanium catalyst B2 obtained in Synthesis Example 20 were deaerated and stirred at 25 ° C. and cured. Sex composition was obtained. Table 14 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例12)
 表13に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例10で得たビニル系重合体A10を40g、合成例21で得たチタン触媒B3を7g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表14に示した。
(Example 12)
As shown in Table 13, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of the vinyl polymer A10 obtained in Synthesis Example 10 and 7 g of the titanium catalyst B3 obtained in Synthesis Example 21 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 14 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 表13において、各配合物質の配合量はgで示される。重合体A1~A4はそれぞれ合成例1~4で得たポリオキシアルキレン系重合体A1~A4であり、重合体A9~A13はそれぞれ合成例9~13で得たビニル系重合体A9~A13であり、チタン触媒B1~B3はそれぞれ合成例19~21で得たチタン触媒B1~B3である。 In Table 13, the compounding amount of each compounding substance is indicated by g. Polymers A1 to A4 are respectively polyoxyalkylene polymers A1 to A4 obtained in Synthesis Examples 1 to 4, and Polymers A9 to A13 are vinyl polymers A9 to A13 obtained in Synthesis Examples 9 to 13, respectively. The titanium catalysts B1 to B3 are the titanium catalysts B1 to B3 obtained in Synthesis Examples 19 to 21, respectively.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
(実施例13)
 表15に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例8で得たビニル系重合体A8を40g、合成例22で得たチタン触媒B4を11g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表16に示した。
(Example 13)
As shown in Table 15, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of the vinyl polymer A8 obtained in Synthesis Example 8 and 11 g of the titanium catalyst B4 obtained in Synthesis Example 22 were degassed and stirred at 25 ° C. I got a thing. Table 16 shows the results of the curability test, storage stability test, surface curability test, and adhesion test of the curable composition.
(実施例14)
 表15に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例8で得たビニル系重合体A8を40g、合成例23で得たチタン触媒B5を9g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表16に示した。
(Example 14)
As shown in Table 15, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above, 40 g of the vinyl polymer A8 obtained in Synthesis Example 8, and 9 g of the titanium catalyst B5 obtained in Synthesis Example 23 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 16 shows the results of the curability test, storage stability test, surface curability test, and adhesion test of the curable composition.
(実施例15)
 表15に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例8で得たビニル系重合体A8を40g、合成例24で得たチタン触媒B6を11g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表16に示した。
(Example 15)
As shown in Table 15, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above, 40 g of the vinyl polymer A8 obtained in Synthesis Example 8, and 11 g of the titanium catalyst B6 obtained in Synthesis Example 24 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 16 shows the results of the curability test, storage stability test, surface curability test, and adhesion test of the curable composition.
(実施例16)
 表15に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例8で得たビニル系重合体A8を40g、合成例25で得たチタン触媒B7を9g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表16に示した。
(Example 16)
As shown in Table 15, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of the vinyl polymer A8 obtained in Synthesis Example 8 and 9 g of the titanium catalyst B7 obtained in Synthesis Example 25 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 16 shows the results of the curability test, storage stability test, surface curability test, and adhesion test of the curable composition.
(実施例17)
 表15に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例8で得たビニル系重合体A8を40g、合成例19で得たチタン触媒B1を5g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表16に示した。
(Example 17)
As shown in Table 15, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of the vinyl polymer A8 obtained in Synthesis Example 8 and 5 g of the titanium catalyst B1 obtained in Synthesis Example 19 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 16 shows the results of the curability test, storage stability test, surface curability test, and adhesion test of the curable composition.
(実施例18)
 表15に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例8で得たビニル系重合体A8を40g、合成例19で得たチタン触媒B1を20g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表16に示した。
(Example 18)
As shown in Table 15, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of the vinyl polymer A8 obtained in Synthesis Example 8 and 20 g of the titanium catalyst B1 obtained in Synthesis Example 19 were degassed and stirred at 25 ° C. to obtain a curable composition. I got a thing. Table 16 shows the results of the curability test, storage stability test, surface curability test, and adhesion test of the curable composition.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 表15において、各配合物質の配合量はgで示される。重合体A1~A2はそれぞれ合成例1~2で得たポリオキシアルキレン系重合体A1~A2であり、重合体A8は合成例8で得たビニル系重合体A8であり、チタン触媒B1、B4~B7はそれぞれ合成例19、22~25で得たチタン触媒B1、B4~B7である。 In Table 15, the compounding amount of each compounding substance is indicated by g. Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively. Polymer A8 is the vinyl polymer A8 obtained in Synthesis Example 8, and titanium catalysts B1 and B4. To B7 are titanium catalysts B1 and B4 to B7 obtained in Synthesis Examples 19 and 22 to 25, respectively.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
(実施例19)
 表17に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例7で得た重合体A7を100gとQS-20を5g、ノクラックCDを1g、TBSTAを0.5g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温(25℃)まで戻しクエン酸トリエチルを5gと、合成例19で得たチタン触媒B1を10g入れ、さらに25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表18に示した。
(Example 19)
As shown in Table 17, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube and water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7 and 5 g of QS-20, Nocrack 1 g of CD and 0.5 g of TBSTA were added, heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 5 g of triethyl citrate, and the titanium catalyst B1 obtained in Synthesis Example 19 10 g was added and deaerated and stirred at 25 ° C. to obtain a curable composition. Table 18 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例20)
 表17に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例7で得た重合体A7を100gとRY200Sを5g、ノクラックCDを1g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温(25℃)まで戻しクエン酸トリエチルを5gと、合成例19で得たチタン触媒B1を10g入れ、さらに25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表18に示した。
(Example 20)
As shown in Table 17, in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7, 5 g of RY200S, and Nocrack CD Add 1 g, heat (100 ° C.), degas and stir for 1 hour, return to room temperature (25 ° C.), add 5 g of triethyl citrate and 10 g of titanium catalyst B1 obtained in Synthesis Example 19, and degas at 25 ° C. Air-stirring was performed to obtain a curable composition. Table 18 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例21)
 表17に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例7で得た重合体A7を100gとRY200Sを2g、ライトンA-5を50g、LA72を1g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温(25℃)まで戻しクエン酸トリエチルを5gと、合成例19で得たチタン触媒B1を10g入れ、さらに25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表18に示した。
(Example 21)
As shown in Table 17, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube and water-cooled condenser, 100 g of polymer A7 obtained in Synthesis Example 7 and 2 g of RY200S, Ryton A- 5 (50 g), LA72 (1 g), heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 5 g of triethyl citrate and 10 g of titanium catalyst B1 obtained in Synthesis Example 19 were added. Further, the mixture was deaerated and stirred at 25 ° C. to obtain a curable composition. Table 18 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例22)
 表17に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例7で得た重合体A7を100gとMCコートP-1を50g、ディスパロン#6500を1g、ノクラックCDを1g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温(25℃)まで戻しクエン酸アセチルトリエチルを5gと、合成例19で得たチタン触媒B1を10g入れ、さらに25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表18に示した。
(Example 22)
As shown in Table 17, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7 and 50 g of MC coated P-1 were added. 1 g of Disparon # 6500 and 1 g of Nocrack CD were added, heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 5 g of acetyltriethyl citrate, titanium obtained in Synthesis Example 19 10 g of the catalyst B1 was added, and further deaerated and stirred at 25 ° C. to obtain a curable composition. Table 18 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例23)
 表17に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例7で得た重合体A7を100gとMCコートP-1を50g、ディスパロン#6500を2g、ノクラックCDを1g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温(25℃)まで戻しクエン酸アセチルトリブチルを5gと、合成例19で得たチタン触媒B1を10g入れ、さらに25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表18に示した。
(Example 23)
As shown in Table 17, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7 and 50 g of MC coated P-1 were added. 2 g of Disparon # 6500 and 1 g of Nocrack CD were added, heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 5 g of acetyltributyl citrate, titanium obtained in Synthesis Example 19 10 g of the catalyst B1 was added, and further deaerated and stirred at 25 ° C. to obtain a curable composition. Table 18 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例24)
 表17に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例7で得た重合体A7を100gとカーレックス300を30g、アルモリックスB316を250g、ノクラックCDを2g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温(25℃)まで戻しクエン酸アセチルトリブチルを25gと、合成例19で得たチタン触媒B1を10gとオルガチックスTC750を2g入れ、さらに25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表18に示した。
(Example 24)
As shown in Table 17, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 100 g of polymer A7 obtained in Synthesis Example 7 and 30 g of Carlex 300, Almo 250 g of Lix B316 and 2 g of Nocrack CD were added, heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 25 g of acetyltributyl citrate, titanium catalyst B1 obtained in Synthesis Example 19 10 g and 2 g of Olgatics TC750 were added, and the mixture was further deaerated and stirred at 25 ° C. to obtain a curable composition. Table 18 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例25)
 表17に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例7で得た重合体A7を100gとMCコートP-1を40g、カーレックス300を25g、ノクラックCDを1g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温(25℃)まで戻しクエン酸トリエチルを8gと、合成例19で得たチタン触媒B1を10gとオルガチックスTC750を1g入れ、さらに25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表18に示した。
(Example 25)
As shown in Table 17, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7 and 40 g of MC coated P-1 were added. , 25 g of Carlex 300, 1 g of Nocrack CD, heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 8 g of triethyl citrate, the titanium catalyst obtained in Synthesis Example 19 10 g of B1 and 1 g of ORGATICS TC750 were added and further deaerated and stirred at 25 ° C. to obtain a curable composition. Table 18 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 表17において、各配合物質の配合量はgで示される。重合体A7は合成例7で得た有機重合体A7であり、チタン触媒B1は合成例19で得たチタン触媒B1である。その他の配合物質の詳細は下記の通りである。
 QS-20:(株)トクヤマ製の商品名、一次粒径5~50μm、表面無処理の親水性乾式シリカ。
 RY200S:日本アエロジル(株)製の商品名、疎水性シリカ、BET法による比表面積80±15m/g。
 ライトンA-5:白石工業(株)製の商品名、粉砕炭酸カルシウム、表面脂肪酸処理。
 MCコートP-1:白石工業(株)製の商品名:コロイド炭酸カルシウム、表面パラフィンワックス処理。
 カーレックス300:丸尾カルシウム(株)製、脂肪酸表面処理炭酸カルシウム、一次粒子径(電子顕微鏡)0.05μm。
 アルモリックスB316:アルモリックス(株)製の商品名、水酸化アルミニウム、平均粒子径18μm。
 ディスパロン#6500:楠本化成(株)製の商品名、アマイドワックス。
 ノクラックCD:大内振興(株)製の商品名、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン。
 LA72:(株)アデカ製の商品名、ヒンダードアミン系光安定剤。
 TBSTA:日本層達(株)製、トリ-n-ブトキシチタンモノステアレート。
 クエン酸トリエチル:東京化成(株)製。
 クエン酸アセチルトリエチル:東京化成(株)製。
 クエン酸アセチルトリブチル:東京化成(株)製。
 オルガチックス TC-750:マツモトファインケミカル(株)製の商品名、チタニウムジイソプロポキシビス(エチルアセトアセテート)。
In Table 17, the compounding quantity of each compounding substance is shown by g. The polymer A7 is the organic polymer A7 obtained in Synthesis Example 7, and the titanium catalyst B1 is the titanium catalyst B1 obtained in Synthesis Example 19. Details of other compounding substances are as follows.
QS-20: trade name, manufactured by Tokuyama Corporation, primary dry particle size of 5 to 50 μm, surface-untreated hydrophilic dry silica.
RY200S: trade name manufactured by Nippon Aerosil Co., Ltd., hydrophobic silica, specific surface area 80 ± 15 m 2 / g by BET method.
Ryton A-5: trade name manufactured by Shiroishi Kogyo Co., Ltd., ground calcium carbonate, surface fatty acid treatment.
MC coat P-1: Trade name manufactured by Shiroishi Kogyo Co., Ltd .: colloidal calcium carbonate, surface paraffin wax treatment.
Carlex 300: manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.05 μm.
Armorix B316: trade name, aluminum hydroxide, average particle diameter of 18 μm, manufactured by Armorix Co., Ltd.
Disparon # 6500: trade name, amide wax, manufactured by Enomoto Kasei Co., Ltd.
NOCRACK CD: trade name, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine, manufactured by Ouchi Shinko Co., Ltd.
LA72: Adeka Co., Ltd. trade name, hindered amine light stabilizer.
TBSTA: Tri-n-butoxytitanium monostearate manufactured by Nihon Kenta Co., Ltd.
Triethyl citrate: manufactured by Tokyo Chemical Industry Co., Ltd.
Acetyltriethyl citrate: manufactured by Tokyo Chemical Industry Co., Ltd.
Acetyltributyl citrate: manufactured by Tokyo Chemical Industry Co., Ltd.
ORGATICS TC-750: trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
(実施例26)
 表19に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例7で得た重合体A7を100g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温(25℃)まで戻し、合成例26で得たチタン触媒B8を10g入れ、さらに25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表20に示した。
(Example 26)
As shown in Table 19, in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7 was placed, heated (100 ° C.), The mixture was degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 10 g of the titanium catalyst B8 obtained in Synthesis Example 26 was added, and degassed and stirred at 25 ° C. to obtain a curable composition. Table 20 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例27)
 表19に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例7で得た重合体A7を100g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温(25℃)まで戻し、合成例27で得たチタン触媒B9を9g入れ、さらに25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表20に示した。
(Example 27)
As shown in Table 19, in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7 was placed, heated (100 ° C.), After deaeration and stirring for 1 hour, the temperature was returned to room temperature (25 ° C.), 9 g of titanium catalyst B9 obtained in Synthesis Example 27 was added, and the mixture was further deaerated and stirred at 25 ° C. to obtain a curable composition. Table 20 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例28)
 表19に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例7で得た重合体A7を100g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温(25℃)まで戻し、合成例28で得たチタン触媒B10を9g入れ、さらに25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表20に示した。
(Example 28)
As shown in Table 19, in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser, 100 g of the polymer A7 obtained in Synthesis Example 7 was placed, heated (100 ° C.), The mixture was degassed and stirred for 1 hour, returned to room temperature (25 ° C.), 9 g of the titanium catalyst B10 obtained in Synthesis Example 28 was added, and degassed and stirred at 25 ° C. to obtain a curable composition. Table 20 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 表19において、各配合物質の配合量はgで示される。重合体A7は合成例7で得た有機重合体A7であり、チタン触媒B8~B10はそれぞれ合成例26~28で得たチタン触媒B8~B10である。 In Table 19, the compounding amount of each compounding substance is indicated by g. The polymer A7 is the organic polymer A7 obtained in Synthesis Example 7, and the titanium catalysts B8 to B10 are the titanium catalysts B8 to B10 obtained in Synthesis Examples 26 to 28, respectively.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
(実施例29)
 表21に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を45gと合成例2で得たポリオキシアルキレン系重合体A2を20gと合成例15で得たビニル系重合体A15固形分換算で35gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A15に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、合成例29で得たチタン触媒B11を5g入れ、25℃で脱気撹拌し、硬化性組成物を得た。該硬化性組成物の貯蔵安定性試験、硬化性試験及び表面硬化性試験の結果を表22に示した。
(Example 29)
As shown in Table 21, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 45 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 20 g of the polyoxyalkylene polymer A2 obtained in the above and 35 g of vinyl polymer A15 obtained in Synthesis Example 15 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomer and ethyl acetate contained in the vinyl polymer A15, and cooled to room temperature. Thereafter, 5 g of the titanium catalyst B11 obtained in Synthesis Example 29 was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 22 shows the results of the storage stability test, the curability test, and the surface curability test of the curable composition.
(実施例30)
 表21に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を45gと合成例2で得たポリオキシアルキレン系重合体A2を20gと合成例15で得たビニル系重合体A15固形分換算で35gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A15に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、合成例29で得たチタン触媒B11を5g、フェニルトリメトキシシランを5g入れ、25℃で脱気撹拌し、硬化性組成物を得た。該硬化性組成物の貯蔵安定性試験、硬化性試験及び表面硬化性試験の結果を表22に示した。
(Example 30)
As shown in Table 21, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 45 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 20 g of the polyoxyalkylene polymer A2 obtained in the above and 35 g of vinyl polymer A15 obtained in Synthesis Example 15 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomer and ethyl acetate contained in the vinyl polymer A15, and cooled to room temperature. Thereafter, 5 g of the titanium catalyst B11 obtained in Synthesis Example 29 and 5 g of phenyltrimethoxysilane were added and stirred at 25 ° C. to obtain a curable composition. Table 22 shows the results of the storage stability test, the curability test, and the surface curability test of the curable composition.
(実施例31~33)
 表21に示す如く(E)シラン化合物を変更した以外は実施例30と同様の方法で硬化性組成物を調製した。該硬化性組成物の貯蔵安定性試験、硬化性試験及び表面硬化性試験の結果を表22に示した。
(Examples 31 to 33)
As shown in Table 21, a curable composition was prepared in the same manner as in Example 30 except that (E) the silane compound was changed. Table 22 shows the results of the storage stability test, the curability test, and the surface curability test of the curable composition.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
 表21において、各配合物質の配合量はgで示され、重合体A15は固形分換算の配合量で示される。重合体A1~A2はそれぞれ合成例1~2で得たポリオキシアルキレン系重合体A1~A2であり、重合体A15は合成例15で得たビニル系重合体A15であり、シラン化合物C1は合成例16で得たシラン化合物C1であり、チタン触媒B11は合成例29で得たチタン触媒B11であり、その他の配合物質の詳細は下記の通りである。
 オルガチックス TC-750:マツモトファインケミカル(株)製の商品名、チタニウムジイソプロポキシビス(エチルアセトアセテート)。
 フェニルトリメトキシシラン:商品名:KBM-103、信越化学工業(株)製。
 ビニルトリメトキシシラン:商品名:KBM-1003、信越化学工業(株)製。
 デシルトリメトキシシラン:商品名:KBM-3013C、信越化学工業(株)製。
 テトラエトキシシラン:商品名:KBE-04、信越化学工業(株)製。
In Table 21, the compounding quantity of each compounding substance is shown by g, and the polymer A15 is shown by the compounding quantity of solid content conversion. Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively. Polymer A15 is the vinyl polymer A15 obtained in Synthesis Example 15, and silane compound C1 is synthesized. It is the silane compound C1 obtained in Example 16, the titanium catalyst B11 is the titanium catalyst B11 obtained in Synthesis Example 29, and details of other compounding materials are as follows.
ORGATICS TC-750: trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
Phenyltrimethoxysilane: Trade name: KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd.
Vinyltrimethoxysilane: Trade name: KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd.
Decyltrimethoxysilane: Trade name: KBM-3013C, manufactured by Shin-Etsu Chemical Co., Ltd.
Tetraethoxysilane: Trade name: KBE-04, manufactured by Shin-Etsu Chemical Co., Ltd.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
(実施例34)
 表23に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を27gと合成例2で得たポリオキシアルキレン系重合体A2を52gと合成例15で得たビニル系重合体A15固形分換算で21gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A15に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、ホワイトンSB(白石カルシウム(株)製、重質炭酸カルシウム、平均粒子径2.2μm)を40g、カーレックス300(丸尾カルシウム(株)製、脂肪酸表面処理炭酸カルシウム、一次粒子径(電子顕微鏡)0.05μm)を20g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温まで戻し、合成例30で得たチタン触媒B12を20g入れ、25℃で脱気撹拌し、硬化性組成物を得た。該硬化性組成物の貯蔵安定性試験、硬化性試験、表面硬化性試験及び接着性試験の結果を表24及び25に示した。
(Example 34)
As shown in Table 23, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube, and a water-cooled condenser. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of the vinyl polymer A15 obtained in Synthesis Example 15 were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomer and ethyl acetate contained in the vinyl polymer A15, and cooled to room temperature. Thereafter, 40 g of Whiten SB (manufactured by Shiraishi Calcium Co., Ltd., heavy calcium carbonate, average particle size 2.2 μm), Carlex 300 (manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle size (electronic) (Microscope) 0.05 μm) was added, heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature, 20 g of titanium catalyst B12 obtained in Synthesis Example 30 was charged, degassed and stirred at 25 ° C., A curable composition was obtained. Tables 24 and 25 show the results of the storage stability test, curability test, surface curability test, and adhesion test of the curable composition.
(実施例35~41)
 表23に示す如く、チタン触媒B12の代わりにチタン触媒B13~B19を用いた以外は実施例34と同様の方法で硬化性組成物を調製した。該硬化性組成物の貯蔵安定性試験、硬化性試験、表面硬化性試験及び接着性試験の結果を表24及び25に示した。
(Examples 35 to 41)
As shown in Table 23, a curable composition was prepared in the same manner as in Example 34 except that the titanium catalysts B13 to B19 were used instead of the titanium catalyst B12. Tables 24 and 25 show the results of the storage stability test, curability test, surface curability test, and adhesion test of the curable composition.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
 表23において、各配合物質の配合量はgで示され、重合体A15は固形分換算の配合量で示される。重合体A1~A2はそれぞれ合成例1~2で得たポリオキシアルキレン系重合体A1~A2であり、重合体A15は合成例15で得たビニル系重合体A15であり、チタン触媒B12~B19は合成例30~37で得たチタン触媒B12~B19であり、その他の配合物質の詳細は下記の通りである。
 ホワイトンSB:白石カルシウム(株)製、重質炭酸カルシウム、平均粒子径2.2μm。
 カーレックス300:丸尾カルシウム(株)製、脂肪酸表面処理炭酸カルシウム、一次粒子径(電子顕微鏡)0.05μm。
 ノルマルパラフィン:商品名:N-11、JX日鉱日石エネルギー(株)製。
In Table 23, the compounding quantity of each compounding substance is shown by g, and polymer A15 is shown by the compounding quantity of solid content conversion. The polymers A1 to A2 are the polyoxyalkylene polymers A1 to A2 obtained in Synthesis Examples 1 and 2, respectively. The polymer A15 is the vinyl polymer A15 obtained in Synthesis Example 15, and the titanium catalysts B12 to B19. Are titanium catalysts B12 to B19 obtained in Synthesis Examples 30 to 37, and details of other compounding materials are as follows.
Whiteon SB: Shiraishi Calcium Co., Ltd., heavy calcium carbonate, average particle size 2.2 μm.
Carlex 300: manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.05 μm.
Normal paraffin: Trade name: N-11, manufactured by JX Nippon Oil & Energy Corporation.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
(実施例42)
 表26に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を27gと合成例2で得たポリオキシアルキレン系重合体A2を52gと合成例15で得たビニル系重合体A15固形分換算で21gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A15に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、充填剤としてホワイトンSBを40g、表面処理炭酸カルシウムとしてカーレックス300を20g、老化防止剤としてノクラックCDを1g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温(25℃)まで戻し、合成例39で得たチタン触媒B21を10g入れ、さらに脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験及び表面硬化性試験の結果を表27に示した。
(Example 42)
As shown in Table 26, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of the vinyl polymer A15 obtained in Synthesis Example 15 were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomer and ethyl acetate contained in the vinyl polymer A15, and cooled to room temperature. Thereafter, 40 g of whiten SB as a filler, 20 g of Carlex 300 as a surface-treated calcium carbonate, and 1 g of NOCRACK CD as an anti-aging agent were added, heated (100 ° C.), degassed, and stirred for 1 hour, and room temperature (25 C.), 10 g of the titanium catalyst B21 obtained in Synthesis Example 39 was added, and the mixture was further deaerated and stirred to obtain a curable composition. Table 27 shows the results of the curability test, the storage stability test, and the surface curability test of the curable composition.
(実施例43)
 表26に示す如く、チタン触媒B21の代わりにチタン触媒B20を用いた以外は実施例42と同様の方法で硬化性組成物を調製した。該硬化性組成物の硬化性試験、貯蔵安定性試験及び表面硬化性試験の結果を表27に示した。
(Example 43)
As shown in Table 26, a curable composition was prepared in the same manner as in Example 42 except that the titanium catalyst B20 was used instead of the titanium catalyst B21. Table 27 shows the results of the curability test, the storage stability test, and the surface curability test of the curable composition.
(実施例44)
 表26に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を27gと合成例2で得たポリオキシアルキレン系重合体A2を52gと合成例15で得たビニル系重合体A15固形分換算で21gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A15に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、水酸化アルミニウムとしてアルモリックスB316を150g、老化防止剤としてノクラックCDを5g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温(25℃)まで戻し、希釈剤としてアイソパーMを20g、(E)成分としてビニルトリメトキシシランを2.5gと合成例40で得たチタン触媒B22を9.2g入れ、さらに脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験及び表面硬化性試験の結果を表27に、接着性試験の結果を表28に示した。
(Example 44)
As shown in Table 26, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of the vinyl polymer A15 obtained in Synthesis Example 15 were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomer and ethyl acetate contained in the vinyl polymer A15, and cooled to room temperature. Thereafter, 150 g of Almorix B316 as aluminum hydroxide and 5 g of NOCRACK CD as anti-aging agent were added, heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature (25 ° C.), and ISOPAR M as a diluent. 20 g, 2.5 g of vinyltrimethoxysilane as component (E) and 9.2 g of the titanium catalyst B22 obtained in Synthesis Example 40 were added and further deaerated and stirred to obtain a curable composition. Table 27 shows the results of the curability test, storage stability test and surface curability test of the curable composition, and Table 28 shows the results of the adhesion test.
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
 表26において、各配合物質の配合量はgで示され、重合体A15は固形分換算の配合量で示される。重合体A1~A2はそれぞれ合成例1~2で得たポリオキシアルキレン系重合体A1~A2であり、重合体A15は合成例15で得たビニル系重合体A15であり、チタン触媒B20~B22はそれぞれ合成例38~40で得たチタン触媒B20~B22であり、その他の配合物質の詳細は下記の通りである。
 ビニルトリメトキシシラン:商品名:KBM-1003、信越化学工業(株)製。
 ホワイトンSB:白石カルシウム(株)製の商品名、重質炭酸カルシウム、平均粒子径2.2μm。
 カーレックス300:丸尾カルシウム(株)製の商品名、脂肪酸表面処理炭酸カルシウム、一次粒子径(電子顕微鏡)0.05μm。
 アルモリックスB316:アルモリックス(株)製の商品名、水酸化アルミニウム、平均粒子径18μm。
 アイソパーM:エクソンモービル有限会社製の商品名、イソパラフィン。
 ノクラックCD:大内振興(株)製の商品名、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン。
In Table 26, the compounding quantity of each compounding substance is shown by g, and polymer A15 is shown by the compounding quantity of solid content conversion. The polymers A1 to A2 are the polyoxyalkylene polymers A1 to A2 obtained in Synthesis Examples 1 and 2, respectively. The polymer A15 is the vinyl polymer A15 obtained in Synthesis Example 15, and the titanium catalysts B20 to B22. Are titanium catalysts B20 to B22 obtained in Synthesis Examples 38 to 40, respectively, and details of other compounding materials are as follows.
Vinyltrimethoxysilane: Trade name: KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd.
Whiteon SB: trade name, heavy calcium carbonate, manufactured by Shiraishi Calcium Co., Ltd., average particle size 2.2 μm.
Carlex 300: trade name manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.05 μm.
Armorix B316: trade name, aluminum hydroxide, average particle diameter of 18 μm, manufactured by Armorix Co., Ltd.
Isopar M: trade name, isoparaffin, manufactured by ExxonMobil Co., Ltd.
NOCRACK CD: trade name, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine, manufactured by Ouchi Shinko Co., Ltd.
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
(実施例45)
 表29に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を100g、充填剤としてヒューズレックス(登録商標)E-2[(株)龍森製、平均粒径6μmの非晶質シリカ]を40g入れ、100℃、10mmHgで1時間混合した後、20℃に冷却し、合成例33で得たチタン触媒B15を21.2g入れ、10分間真空混合して、硬化性組成物を得た。
 該硬化性組成物の貯蔵安定性試験、硬化性試験、表面硬化性試験、接着性試験及び透明性試験の結果を表30に示した。
(Example 45)
As shown in Table 29, 100 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was used as a filler in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. Fuselex (registered trademark) E-2 [made by Tatsumori Co., Ltd., amorphous silica with an average particle diameter of 6 μm] 40 g was added, mixed at 100 ° C. and 10 mmHg for 1 hour, cooled to 20 ° C., and synthesis example 21.2 g of the titanium catalyst B15 obtained in No. 33 was added and vacuum mixed for 10 minutes to obtain a curable composition.
Table 30 shows the results of the storage stability test, the curability test, the surface curability test, the adhesion test, and the transparency test of the curable composition.
(実施例46)
 表29に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を27gと合成例2で得たポリオキシアルキレン系重合体A2を52gと合成例15で得たビニル系重合体A15固形分換算で21gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A15に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、充填剤としてMR13G(綜研化学(株)製、メタクリル酸エステル重合体粉体、平均粒径約1μmの高分子紛体)を20g、屈折率調整剤としてFTR8100(三井石油(株)製、C5とC9の共重合系石油樹脂)を17g入れ、100℃、10mmHgで1時間混合した後、20℃に冷却し、合成例33で得たチタン触媒B15を21.2g入れ、10分間真空混合して、硬化性組成物を得た。
(Example 46)
As shown in Table 29, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of the vinyl polymer A15 obtained in Synthesis Example 15 were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomer and ethyl acetate contained in the vinyl polymer A15, and cooled to room temperature. Thereafter, 20 g of MR13G (manufactured by Soken Chemical Co., Ltd., polymer powder powder, polymer powder having an average particle size of about 1 μm) as a filler, and FTR8100 (manufactured by Mitsui Oil Co., Ltd., C5) as a refractive index adjuster. And C9 copolymer petroleum resin) were mixed at 100 ° C. and 10 mmHg for 1 hour, cooled to 20 ° C., and 21.2 g of the titanium catalyst B15 obtained in Synthesis Example 33 was added and vacuum mixed for 10 minutes. Thus, a curable composition was obtained.
 なお、FTR8100の配合量は次の方法で決定する。まず、(A)成分に屈折率調整剤となるFTR8100を適当な比で加熱溶融し、20℃でアッベ屈折計で屈折率を測定する。FTR8100配合比と屈折率のX-Yプロットをとる。主充填剤となる粉体の屈折率に一致するFTR8100配合量が求める配合量である。 In addition, the compounding quantity of FTR8100 is determined by the following method. First, FTR8100 serving as a refractive index adjusting agent is heated and melted to the component (A) at an appropriate ratio, and the refractive index is measured with an Abbe refractometer at 20 ° C. An XY plot of FTR8100 compounding ratio and refractive index is taken. The FTR8100 blending amount that matches the refractive index of the powder serving as the main filler is the blending amount.
 該硬化性組成物の貯蔵安定性試験、硬化性試験、表面硬化性試験、接着性試験及び透明性試験の結果を表30に示した。 Table 30 shows the results of the storage stability test, curability test, surface curability test, adhesion test and transparency test of the curable composition.
(実施例47)
 表29に示した如く、配合物質を変更した以外は実施例46と同様の方法で硬化性組成物を調製した。該硬化性組成物の貯蔵安定性試験、硬化性試験、表面硬化性試験、接着性試験及び透明性試験の結果を表30に示した。
(Example 47)
As shown in Table 29, a curable composition was prepared in the same manner as in Example 46 except that the compounding substances were changed. Table 30 shows the results of the storage stability test, the curability test, the surface curability test, the adhesion test, and the transparency test of the curable composition.
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000059
 表29において、各配合物質の配合量はgで示され、重合体A15は固形分換算の配合量で示される。重合体A1~A2はそれぞれ合成例1~2で得たポリオキシアルキレン系重合体A1~A2であり、重合体A15は合成例15で得たビニル系重合体A15であり、チタン触媒B15は合成例33で得たチタン触媒B15であり、その他の配合物質の詳細は下記の通りである。
 MR13G:綜研化学(株)製の商品名、メタクリル酸エステル重合体粉体、平均粒径約1μm。
 ヒューズレックス(登録商標)E-2:(株)龍森製の商品名、非晶質シリカ、平均粒径(レーザ法で粒度分布を測定した際の50%重量平均):6μm。
 FTR8100:三井石油(株)製の商品名、C5とC9の共重合系石油樹脂。
In Table 29, the compounding quantity of each compounding substance is shown by g, and polymer A15 is shown by the compounding quantity of solid content conversion. Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively, Polymer A15 is the vinyl polymer A15 obtained in Synthesis Example 15, and titanium catalyst B15 is synthesized. The details of the titanium compound B15 obtained in Example 33 and other compounding materials are as follows.
MR13G: trade name manufactured by Soken Chemical Co., Ltd., methacrylic acid ester polymer powder, average particle size of about 1 μm.
Fuselex (registered trademark) E-2: trade name, manufactured by Tatsumori Co., Ltd., amorphous silica, average particle size (50% weight average when measuring particle size distribution by laser method): 6 μm.
FTR8100: trade name of Mitsui Oil Co., Ltd., C5 and C9 copolymer petroleum resin.
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000060
(比較例1)
 表31に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を100gとオルガチックス TC-750を4g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表32に示した。
(Comparative Example 1)
As shown in Table 31, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube and water-cooled condenser, 100 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Olgax TC 4g of -750 was added and degassed and stirred at 25 ° C to obtain a curable composition. Table 32 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(比較例2)
 表31に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例8で得たビニル系重合体A8を40g、3-グリシドキシプロピルトリメトキシシラン3g、オルガチックス TC-750を4g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表32に示した。
(Comparative Example 2)
As shown in Table 31, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above, 40 g of the vinyl polymer A8 obtained in Synthesis Example 8, 3 g of 3-glycidoxypropyltrimethoxysilane, and 4 g of Orgatyx TC-750 were added at 25 ° C. The mixture was deaerated and stirred to obtain a curable composition. Table 32 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(比較例3)
 表31に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例8で得たビニル系重合体A8を40g、QS-20を5g入れ、100℃で加熱脱気撹拌し、室温(25℃)まで戻し、3-グリシドキシプロピルトリメトキシシラン3g、オルガチックス TC-750を4gを入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表32に示した。
(Comparative Example 3)
As shown in Table 31, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of the vinyl polymer A8 obtained in Synthesis Example 8 and 5 g of QS-20 were heated and degassed and stirred at 100 ° C., and returned to room temperature (25 ° C.). Then, 3 g of 3-glycidoxypropyltrimethoxysilane and 4 g of Orgatyx TC-750 were added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 32 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(比較例4)
 表31に示すように攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例8で得たビニル系重合体A8を40g、ライトンA-5を50g入れ、100℃で加熱脱気撹拌をした。室温(25℃)まで戻し合成例16で得たシラン化合物C1を6g、オルガチックス TC-750を4gに入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表32に示した。
(Comparative Example 4)
As shown in Table 31, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was used in Synthesis Example 2. 10 g of the obtained polyoxyalkylene polymer A2 and 40 g of the vinyl polymer A8 obtained in Synthesis Example 8 and 50 g of Ryton A-5 were added, and the mixture was heated and deaerated and stirred at 100 ° C. The mixture was returned to room temperature (25 ° C.), 6 g of the silane compound C1 obtained in Synthesis Example 16 and 4 g of ORGATICS TC-750 were put in, and degassed and stirred at 25 ° C. to obtain a curable composition. Table 32 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(比較例5)
 表31に示すように攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例8で得たビニル系重合体A8を40g、ライトンA-5を50g入れ、100℃で加熱脱気撹拌をした。室温(25℃)まで戻し比較合成例1で得たシラン化合物X1を6g、オルガチックス TC-750を4gに入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表32に示した。
(Comparative Example 5)
As shown in Table 31, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was used in Synthesis Example 2. 10 g of the obtained polyoxyalkylene polymer A2 and 40 g of the vinyl polymer A8 obtained in Synthesis Example 8 and 50 g of Ryton A-5 were added, and the mixture was heated and deaerated and stirred at 100 ° C. The mixture was returned to room temperature (25 ° C.), 6 g of the silane compound X1 obtained in Comparative Synthesis Example 1 and 4 g of ORGATIC TC-750 were added, and degassed and stirred at 25 ° C. to obtain a curable composition. Table 32 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000061
 表31において、各配合物質の配合量はgで示される。重合体A1~A2はそれぞれ合成例1~2で得たポリオキシアルキレン系重合体A1~A2であり、重合体A8は合成例8で得たビニル系重合体A8であり、シラン化合物C1及びX1はそれぞれ合成例16及び比較合成例1で得たシラン化合物C1及びX1であり、オルガチックス TC-750はマツモトファインケミカル(株)製の商品名、チタニウムジイソプロポキシビス(エチルアセトアセテート)である。その他の配合物質の詳細は表17と同じである。 In Table 31, the compounding amount of each compounding substance is indicated by g. Polymers A1 to A2 are the polyoxyalkylene polymers A1 to A2 obtained in Synthesis Examples 1 and 2, respectively, and the polymer A8 is the vinyl polymer A8 obtained in Synthesis Example 8, and the silane compounds C1 and X1 Are the silane compounds C1 and X1 obtained in Synthesis Example 16 and Comparative Synthesis Example 1, respectively, and ORGATICS TC-750 is a trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd. The details of other compounding substances are the same as in Table 17.
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000062
 表9~表30に示すように本発明の硬化性組成物はいずれにおいても十分な接着性、貯蔵安定性及び硬化性を示した。また、表17及び18に示した如く、熟成硬化触媒と非熟成硬化触媒を併用した場合は、TFTが早くなるが、貯蔵安定性は良好であり、特に、24時間後の接着強度が非常に高いという優れた特性を示した。 As shown in Tables 9 to 30, all of the curable compositions of the present invention exhibited sufficient adhesion, storage stability and curability. Further, as shown in Tables 17 and 18, when an aging curing catalyst and a non-aging curing catalyst are used in combination, the TFT becomes faster, but the storage stability is good, and in particular, the adhesive strength after 24 hours is very high. Excellent characteristics of high.

Claims (25)

  1.  (A)1分子中に平均して0.8個以上の架橋性珪素基を含有する有機重合体、及び
     (B)熟成硬化触媒、
    を含有する硬化性組成物であって、
     前記(B)熟成硬化触媒が、(C)下記式(1)で示されるエポキシシラン化合物と下記式(2)で示されるアミノシラン化合物とを反応させてなるシラン化合物と、(D)下記式(3)で示されるチタニウムキレート及び下記式(4)で表されるチタニウムキレートからなる群から選択される1種以上のチタン触媒とを、前記(D)チタン触媒1モルに対して前記(C)シラン化合物0.1~30モルの混合割合で混合し、30~100℃の反応温度で熟成させてなる熟成硬化触媒であることを特徴とする硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001

    (前記式(1)において、R~Rはそれぞれ水素原子又はアルキル基であり、Rはアルキレン基またはアルキレンオキシアルキレン基であり、Rは一価炭化水素基であり、Rはアルキル基であり、aは0、1又は2である。)
    Figure JPOXMLDOC01-appb-C000002

    (前記式(2)において、R~R12はそれぞれ水素原子又はアルキル基であり、R13は一価炭化水素基であり、R14はアルキル基であり、bは0又は1である。)
    Figure JPOXMLDOC01-appb-C000003

    (前記式(3)において、n個のR21は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR22は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR23および4-n個のR24は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、nは0、1、2又は3である。)
    Figure JPOXMLDOC01-appb-C000004

    (前記式(4)において、R25は、置換あるいは非置換の2価の炭素原子数1~20の炭化水素基であり、2個のR26は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、2個のR27および2個のR28は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基である。)
    (A) an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule, and (B) an aging curing catalyst,
    A curable composition containing
    The (B) aging curing catalyst comprises (C) a silane compound obtained by reacting an epoxysilane compound represented by the following formula (1) and an aminosilane compound represented by the following formula (2), and (D) the following formula ( 3) one or more titanium catalysts selected from the group consisting of a titanium chelate represented by the following formula (4) and a titanium chelate represented by the following formula (4): A curable composition comprising an aging curing catalyst prepared by mixing silane compounds at a mixing ratio of 0.1 to 30 mol and aging at a reaction temperature of 30 to 100 ° C.
    Figure JPOXMLDOC01-appb-C000001

    (In the formula (1), R 1 to R 3 are each a hydrogen atom or an alkyl group, R 4 is an alkylene group or an alkyleneoxyalkylene group, R 5 is a monovalent hydrocarbon group, and R 6 is An alkyl group, and a is 0, 1 or 2.)
    Figure JPOXMLDOC01-appb-C000002

    (In the formula (2), R 7 to R 12 are each a hydrogen atom or an alkyl group, R 13 is a monovalent hydrocarbon group, R 14 is an alkyl group, and b is 0 or 1. )
    Figure JPOXMLDOC01-appb-C000003

    (In the formula (3), n R 21 s are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, and 4-n R 22 s are each independently a hydrogen atom. Or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, wherein 4-n R 23 and 4-n R 24 are independently substituted or unsubstituted carbon atoms having 1 to 20 carbon atoms. And n is 0, 1, 2 or 3.)
    Figure JPOXMLDOC01-appb-C000004

    (In the formula (4), R 25 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms, and the two R 26 are each independently a hydrogen atom or substituted or unsubstituted. The two R 27 and the two R 28 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.)
  2.  前記熟成が、40℃~80℃で行われることを特徴とする請求項1記載の硬化性組成物。 2. The curable composition according to claim 1, wherein the aging is performed at 40 ° C. to 80 ° C.
  3.  前記(A)有機重合体100質量部に対して、前記(B)熟成硬化触媒を0.5~30質量部配合することを特徴とする請求項1又は2記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein 0.5 to 30 parts by mass of the (B) aging curing catalyst is blended with 100 parts by mass of the (A) organic polymer.
  4.  前記(C)シラン化合物が、前記アミノシラン化合物1モルに対して前記エポキシシラン化合物を1.5~10モルの範囲で反応させてなるシラン化合物であることを特徴とする請求項1~3のいずれか1項記載の硬化性組成物。 4. The silane compound according to claim 1, wherein the (C) silane compound is a silane compound obtained by reacting the epoxysilane compound in a range of 1.5 to 10 mol with respect to 1 mol of the aminosilane compound. The curable composition according to claim 1.
  5.  前記(C)シラン化合物が、前記エポキシシラン化合物と前記アミノシラン化合物とを40~100℃の反応温度で反応させてなるシラン化合物であることを特徴とする請求項1~4のいずれか1項記載の硬化性組成物。 5. The silane compound according to claim 1, wherein the (C) silane compound is a silane compound obtained by reacting the epoxysilane compound and the aminosilane compound at a reaction temperature of 40 to 100 ° C. Curable composition.
  6.  前記(A)有機重合体は、主鎖がポリシロキサンでない有機重合体であることを特徴とする請求項1~5のいずれか1項記載の硬化性組成物。 6. The curable composition according to claim 1, wherein the organic polymer (A) is an organic polymer whose main chain is not polysiloxane.
  7.  前記(A)有機重合体が、1分子中に平均して0.8個以上の架橋性珪素基を含有するポリオキシアルキレン系重合体、1分子中に平均して0.8個以上の架橋性珪素基を含有する飽和炭化水素系重合体、及び1分子中に平均して0.8個以上の架橋性珪素基を含有する(メタ)アクリル酸エステル系重合体からなる群から選択される1種以上であること
    を特徴とする請求項1~6のいずれか1項記載の硬化性組成物。
    The (A) organic polymer is a polyoxyalkylene polymer containing 0.8 or more crosslinkable silicon groups on average per molecule, and 0.8 or more crosslinks on average per molecule. Selected from the group consisting of a saturated hydrocarbon polymer containing a functional silicon group and a (meth) acrylic acid ester polymer containing an average of 0.8 or more crosslinkable silicon groups in one molecule. The curable composition according to any one of claims 1 to 6, wherein the curable composition is one or more.
  8.  前記架橋性珪素基がトリメトキシシリル基を含むことを特徴とする請求項1~7のいずれか1項記載の硬化性組成物。 The curable composition according to any one of claims 1 to 7, wherein the crosslinkable silicon group contains a trimethoxysilyl group.
  9.  (E)1分子中に加水分解性珪素基を1個有し且つ第1級アミノ基を有なさいシラン化合物をさらに含有することを特徴とする請求項1~8のいずれか1項記載の硬化性組成物。 9. The curing according to claim 1, further comprising (E) a silane compound having one hydrolyzable silicon group and one primary amino group in one molecule. Sex composition.
  10.  前記(E)シラン化合物が、下記式(12)で示される化合物であることを特徴とする請求項9記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000005

    (前記式(12)において、R41はメチル基又はエチル基であり、R41が複数存在する場合、それらは同一であってもよく、異なっていてもよいものであり、R42はメチル基又はエチル基であり、R42が複数存在する場合、それらは同一であってもよく、異なっていてもよいものであり、R43は炭素数1~10の炭化水素基であり、mは2又は3であり、nは0又は1である。)
    The curable composition according to claim 9, wherein the (E) silane compound is a compound represented by the following formula (12).
    Figure JPOXMLDOC01-appb-C000005

    (In the formula (12), R 41 is a methyl group or an ethyl group, and when a plurality of R 41 are present, they may be the same or different, and R 42 is a methyl group. Or when there are a plurality of R 42 s , they may be the same or different, R 43 is a hydrocarbon group having 1 to 10 carbon atoms, and m is 2 Or 3 and n is 0 or 1.)
  11.  (F)充填剤をさらに含有することを特徴とする請求項1~10のいずれか1項記載の硬化性組成物。 The curable composition according to any one of claims 1 to 10, further comprising (F) a filler.
  12.  前記(F)充填剤が、表面処理炭酸カルシウム、粒径0.01~300μmの非晶質シリカ及び粒径0.01~300μmの高分子粉体からなる群から選択される1種以上であることを特徴とする請求項11記載の硬化性組成物。 The filler (F) is at least one selected from the group consisting of surface-treated calcium carbonate, amorphous silica having a particle size of 0.01 to 300 μm, and polymer powder having a particle size of 0.01 to 300 μm. The curable composition according to claim 11.
  13.  前記(A)有機重合体の屈折率と前記非晶質シリカの屈折率の差が0.1以下であることを特徴とする請求項12記載の硬化性組成物。 The curable composition according to claim 12, wherein the difference between the refractive index of the organic polymer (A) and the refractive index of the amorphous silica is 0.1 or less.
  14.  前記(A)有機重合体を主成分とする液相成分の屈折率と前記高分子粉体の屈折率の差が0.1以下であることを特徴とする請求項12又は13記載の硬化性組成物。 14. The curability according to claim 12 or 13, wherein the difference between the refractive index of the liquid phase component (A) composed mainly of the organic polymer and the refractive index of the polymer powder is 0.1 or less. Composition.
  15.  前記(A)有機重合体に屈折率調整剤を加えることにより、前記(A)有機重合体を主成分とする液相成分の屈折率と前記高分子粉体の屈折率の差を0.1以下とすることを特徴とする請求項14記載の硬化性組成物。 By adding a refractive index adjusting agent to the (A) organic polymer, the difference between the refractive index of the liquid phase component mainly composed of the (A) organic polymer and the refractive index of the polymer powder is 0.1. It is set as follows, The curable composition of Claim 14 characterized by the above-mentioned.
  16.  前記高分子粉体が、(メタ)アクリル酸エステル、酢酸ビニル、エチレン及び塩化ビニルからなる群から選択されたモノマーを単独で重合するか、もしくは、該モノマーと1種以上のビニル系モノマーとを共重合することによって得られる重合体を原料とした高分子粉体であることを特徴とする請求項12~15のいずれか1項記載の硬化性組成物。 The polymer powder polymerizes a monomer selected from the group consisting of (meth) acrylic acid ester, vinyl acetate, ethylene and vinyl chloride alone, or the monomer and one or more vinyl monomers. The curable composition according to any one of claims 12 to 15, wherein the curable composition is a polymer powder made from a polymer obtained by copolymerization.
  17.  前記高分子粉体が、アクリル系高分子粉体及びビニル系高分子粉体からなる群から選択される1種以上であることを特徴とする請求項16項記載の硬化性組成物。 The curable composition according to claim 16, wherein the polymer powder is at least one selected from the group consisting of an acrylic polymer powder and a vinyl polymer powder.
  18.  (G)希釈剤をさらに含有することを特徴とする請求項1~17のいずれか1項記載の
    硬化性組成物。
    The curable composition according to any one of claims 1 to 17, further comprising (G) a diluent.
  19.  金属水酸化物をさらに含有することを特徴とする請求項1~18のいずれか1項記載の硬化性組成物。 The curable composition according to any one of claims 1 to 18, further comprising a metal hydroxide.
  20.  前記金属水酸化物が水酸化アルミニウムであることを特徴とする請求項19記載の硬化性組成物。 20. The curable composition according to claim 19, wherein the metal hydroxide is aluminum hydroxide.
  21.  非熟成硬化触媒としてチタンキレート化合物をさらに含有することを特徴とする請求項1~20のいずれか1項記載の硬化性組成物。 The curable composition according to any one of claims 1 to 20, further comprising a titanium chelate compound as a non-aged curing catalyst.
  22.  前記チタンキレート化合物が前記式(3)で示されるチタニウムキレート及び前記式(4)で表されるチタニウムキレートからなる群から選択される1種以上のチタン触媒であることを特徴とする請求項21記載の硬化性組成物。 The titanium chelate compound is one or more titanium catalysts selected from the group consisting of a titanium chelate represented by the formula (3) and a titanium chelate represented by the formula (4). The curable composition as described.
  23.  (A)1分子中に平均して0.8個以上の架橋性珪素基を含有する有機重合体、及び(B)熟成硬化触媒、を配合し、硬化性組成物を製造する硬化性組成物の製造方法であって、
     前記(B)熟成硬化触媒が、(C)下記式(1)で示されるエポキシシラン化合物と下記式(2)で示されるアミノシラン化合物とを反応させてなるシラン化合物と、(D)下記式(3)で示されるチタニウムキレート及び下記式(4)で表されるチタニウムキレートからなる群から選択される1種以上のチタン触媒とを、前記(D)チタン触媒1モルに対して前記(C)シラン化合物0.1~30モルの混合割合で混合し、30~100℃の反応温度で熟成させてなる熟成硬化触媒であることを特徴とする硬化性組成物の製造方法。
    Figure JPOXMLDOC01-appb-C000006

    (前記式(1)において、R~Rはそれぞれ水素原子又はアルキル基であり、Rはアルキレン基またはアルキレンオキシアルキレン基であり、Rは一価炭化水素基であり、Rはアルキル基であり、aは0、1又は2である。)
    Figure JPOXMLDOC01-appb-C000007

    (前記式(2)において、R~R12はそれぞれ水素原子又はアルキル基であり、R13は一価炭化水素基であり、R14はアルキル基であり、bは0又は1である。)
    Figure JPOXMLDOC01-appb-C000008

    (前記式(3)において、n個のR21は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR22は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR23および4-n個のR24は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、nは0、1、2又は3である。)
    Figure JPOXMLDOC01-appb-C000009

    (前記式(4)において、R25は、置換あるいは非置換の2価の炭素原子数1~20の炭化水素基であり、2個のR26は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、2個のR27および2個のR28は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基である。)
    A curable composition for producing a curable composition by blending (A) an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule and (B) an aging curing catalyst. A manufacturing method of
    The (B) aging curing catalyst comprises (C) a silane compound obtained by reacting an epoxysilane compound represented by the following formula (1) and an aminosilane compound represented by the following formula (2), and (D) the following formula ( 3) one or more titanium catalysts selected from the group consisting of a titanium chelate represented by the following formula (4) and a titanium chelate represented by the following formula (4): A method for producing a curable composition, which is an aging curing catalyst obtained by mixing silane compounds at a mixing ratio of 0.1 to 30 mol and aging at a reaction temperature of 30 to 100 ° C.
    Figure JPOXMLDOC01-appb-C000006

    (In the formula (1), R 1 to R 3 are each a hydrogen atom or an alkyl group, R 4 is an alkylene group or an alkyleneoxyalkylene group, R 5 is a monovalent hydrocarbon group, and R 6 is An alkyl group, and a is 0, 1 or 2.)
    Figure JPOXMLDOC01-appb-C000007

    (In the formula (2), R 7 to R 12 are each a hydrogen atom or an alkyl group, R 13 is a monovalent hydrocarbon group, R 14 is an alkyl group, and b is 0 or 1. )
    Figure JPOXMLDOC01-appb-C000008

    (In the formula (3), n R 21 s are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, and 4-n R 22 s are each independently a hydrogen atom. Or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, wherein 4-n R 23 and 4-n R 24 are independently substituted or unsubstituted carbon atoms having 1 to 20 carbon atoms. And n is 0, 1, 2 or 3.)
    Figure JPOXMLDOC01-appb-C000009

    (In the formula (4), R 25 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms, and the two R 26 are each independently a hydrogen atom or substituted or unsubstituted. The two R 27 and the two R 28 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.)
  24.  前記(A)有機重合体、前記(B)熟成硬化触媒、及びチタンキレート化合物を配合し、硬化性組成物を製造することを特徴とする請求項23記載の硬化性組成物の製造方法。 24. The method for producing a curable composition according to claim 23, wherein the curable composition is produced by blending the (A) organic polymer, the (B) aging curing catalyst, and a titanium chelate compound.
  25.  前記チタンキレート化合物が前記式(3)で示されるチタニウムキレート及び前記式(4)で表されるチタニウムキレートからなる群から選択される1種以上のチタン触媒であることを特徴とする請求項24記載の硬化性組成物の製造方法。 25. The titanium chelate compound is one or more titanium catalysts selected from the group consisting of a titanium chelate represented by the formula (3) and a titanium chelate represented by the formula (4). The manufacturing method of curable composition of description.
PCT/JP2011/074849 2010-10-27 2011-10-27 Curable composition WO2012057281A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012540939A JP6161103B2 (en) 2010-10-27 2011-10-27 Method for producing curable composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010240976 2010-10-27
JP2010-240976 2010-10-27

Publications (1)

Publication Number Publication Date
WO2012057281A1 true WO2012057281A1 (en) 2012-05-03

Family

ID=45993984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074849 WO2012057281A1 (en) 2010-10-27 2011-10-27 Curable composition

Country Status (2)

Country Link
JP (1) JP6161103B2 (en)
WO (1) WO2012057281A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043519A (en) * 2012-08-27 2014-03-13 Cemedine Co Ltd Curable composition
JP2014059445A (en) * 2012-09-18 2014-04-03 Konica Minolta Inc Heat generating belt, fixing device, and image forming apparatus
JP2015025689A (en) * 2013-07-25 2015-02-05 セメダイン株式会社 Method for bonding radiation shielding material
JP2019505618A (en) * 2015-12-17 2019-02-28 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Titanium complexes as vulcanization catalysts
WO2021182118A1 (en) * 2020-03-09 2021-09-16 株式会社カネカ Organic polymer, curable composition, and cured product
WO2021206026A1 (en) * 2020-04-09 2021-10-14 株式会社カネカ Curable composition

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528854B2 (en) * 1972-01-13 1977-03-11
JPS6323226B2 (en) * 1984-07-26 1988-05-16 Dau Kooningu Ltd
JPS6460656A (en) * 1987-08-28 1989-03-07 Toray Silicone Co Room temperature-curable organopolysiloxane composition
JPH10195085A (en) * 1996-11-18 1998-07-28 Toray Dow Corning Silicone Co Ltd Carbasilatrane derivative, its production, adhesion accelerator and hardenable silicone composition
JPH1171458A (en) * 1996-08-14 1999-03-16 Asahi Optical Co Ltd Transparent resin and composite with adhesiveness, ultraviolet-curable composition for coating film formation, anti-reflection glass with scattering prevention function, cushioning material, ultraviolet-cutting sheet, ultraviolet-cutting filter for television, filter for vdt, and high-refractive-index primer composition and production of lens with primer using the primer composition
JP2002038014A (en) * 2000-07-26 2002-02-06 Dow Corning Toray Silicone Co Ltd Silicone aqueous emulsion composition
JP2005290275A (en) * 2004-04-01 2005-10-20 Sekisui Chem Co Ltd Curable composition, sealing material and adhesive
WO2005108492A1 (en) * 2004-05-07 2005-11-17 Kaneka Corporation Curable composition
JP2005325314A (en) * 2004-05-17 2005-11-24 Kaneka Corp Curable composition
JP2006089619A (en) * 2004-09-24 2006-04-06 Shin Etsu Chem Co Ltd Room temperature curing organopolysiloxane composition
WO2007037368A1 (en) * 2005-09-30 2007-04-05 Kaneka Corporation One-pack type curable composition
JP2010209269A (en) * 2009-03-12 2010-09-24 Shin-Etsu Chemical Co Ltd Room temperature curable organopolysiloxane composition, method for producing the same, and automobile oil seal

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528854B2 (en) * 1972-01-13 1977-03-11
JPS6323226B2 (en) * 1984-07-26 1988-05-16 Dau Kooningu Ltd
JPS6460656A (en) * 1987-08-28 1989-03-07 Toray Silicone Co Room temperature-curable organopolysiloxane composition
JPH1171458A (en) * 1996-08-14 1999-03-16 Asahi Optical Co Ltd Transparent resin and composite with adhesiveness, ultraviolet-curable composition for coating film formation, anti-reflection glass with scattering prevention function, cushioning material, ultraviolet-cutting sheet, ultraviolet-cutting filter for television, filter for vdt, and high-refractive-index primer composition and production of lens with primer using the primer composition
JPH10195085A (en) * 1996-11-18 1998-07-28 Toray Dow Corning Silicone Co Ltd Carbasilatrane derivative, its production, adhesion accelerator and hardenable silicone composition
JP2002038014A (en) * 2000-07-26 2002-02-06 Dow Corning Toray Silicone Co Ltd Silicone aqueous emulsion composition
JP2005290275A (en) * 2004-04-01 2005-10-20 Sekisui Chem Co Ltd Curable composition, sealing material and adhesive
WO2005108492A1 (en) * 2004-05-07 2005-11-17 Kaneka Corporation Curable composition
JP2005325314A (en) * 2004-05-17 2005-11-24 Kaneka Corp Curable composition
JP2006089619A (en) * 2004-09-24 2006-04-06 Shin Etsu Chem Co Ltd Room temperature curing organopolysiloxane composition
WO2007037368A1 (en) * 2005-09-30 2007-04-05 Kaneka Corporation One-pack type curable composition
JP2010209269A (en) * 2009-03-12 2010-09-24 Shin-Etsu Chemical Co Ltd Room temperature curable organopolysiloxane composition, method for producing the same, and automobile oil seal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043519A (en) * 2012-08-27 2014-03-13 Cemedine Co Ltd Curable composition
JP2014059445A (en) * 2012-09-18 2014-04-03 Konica Minolta Inc Heat generating belt, fixing device, and image forming apparatus
US9268272B2 (en) 2012-09-18 2016-02-23 Konica Minolta, Inc. Heat-generation belt, fixing device, and image forming apparatus
JP2015025689A (en) * 2013-07-25 2015-02-05 セメダイン株式会社 Method for bonding radiation shielding material
JP2019505618A (en) * 2015-12-17 2019-02-28 ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェンHenkel AG & Co. KGaA Titanium complexes as vulcanization catalysts
WO2021182118A1 (en) * 2020-03-09 2021-09-16 株式会社カネカ Organic polymer, curable composition, and cured product
WO2021206026A1 (en) * 2020-04-09 2021-10-14 株式会社カネカ Curable composition
CN115380081A (en) * 2020-04-09 2022-11-22 株式会社钟化 Curable composition

Also Published As

Publication number Publication date
JP6161103B2 (en) 2017-07-12
JPWO2012057281A1 (en) 2014-05-12

Similar Documents

Publication Publication Date Title
JP5887786B2 (en) Curable composition
KR100709734B1 (en) Curing composition and method for producing curing composition
KR101343864B1 (en) Curable composition
JP6161103B2 (en) Method for producing curable composition
JP5991523B2 (en) Room temperature moisture curable adhesive composition
JP5855350B2 (en) Curable composition having improved storage stability adhesion
JP6108514B2 (en) Curable composition
JP5582333B2 (en) Curable composition
US20190225795A1 (en) Two-pack type epoxy resin composition
JP3983228B2 (en) One-component curable composition
JP4754455B2 (en) Curable composition
JP5971522B2 (en) Curable composition
JP3953995B2 (en) One-component curable composition
JP2016210879A (en) Curable composition
JP6052061B2 (en) Curable composition and curing catalyst
JP6425187B2 (en) Moisture curable type curable composition
JP5138186B2 (en) Curable sealing material or curable putty composition excellent in paintability
JP5370369B2 (en) Curable composition
JP2016027088A (en) Curable composition excellent in thixotropic property
JP5311529B2 (en) Curable composition
JP2016047912A (en) Curable composition having excellent preservation stability
JP2013129754A (en) Method for manufacturing display device, and electric and electronic equipment, motorcycle and automobile each mounted with the display device
JP4739457B2 (en) Curable composition
JP2012046698A (en) Curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012540939

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836414

Country of ref document: EP

Kind code of ref document: A1