WO2012057088A1 - 導光板の製造方法 - Google Patents

導光板の製造方法 Download PDF

Info

Publication number
WO2012057088A1
WO2012057088A1 PCT/JP2011/074450 JP2011074450W WO2012057088A1 WO 2012057088 A1 WO2012057088 A1 WO 2012057088A1 JP 2011074450 W JP2011074450 W JP 2011074450W WO 2012057088 A1 WO2012057088 A1 WO 2012057088A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
light guide
dot pattern
light
mesh
Prior art date
Application number
PCT/JP2011/074450
Other languages
English (en)
French (fr)
Inventor
関口 泰広
川口 裕次郎
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012057088A1 publication Critical patent/WO2012057088A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity

Definitions

  • the present invention relates to a method of manufacturing a light guide plate, and more particularly, to a method of manufacturing a light guide plate having diffusion dots formed on one side.
  • a method for manufacturing a light guide plate a method described in JP-A-9-68614 (Patent Document 1) is known.
  • a prototype light guide plate is manufactured by printing a plurality of printing dots (diffusion dots) with a predetermined dot pattern on one surface of a plate-like body to be a light guide plate.
  • a light source is installed on the side of the prototype light guide plate, light from the light source is supplied to the prototype light guide plate, and light emission from the exit surface facing the surface on which the printed dots are formed is inspected.
  • the illuminance distribution of light emitted from the emission surface is not the desired illuminance distribution
  • a light guide plate capable of realizing the desired illuminance distribution by appropriately modifying the dot pattern of the printed dots has been manufactured.
  • An object of the present invention is to provide a method for manufacturing a light guide plate more efficiently.
  • the light guide plate manufacturing method has a first surface that emits light and a second surface that faces the first surface, and a plurality of diffusion dots that reflect light are formed on the second surface.
  • a method of manufacturing a formed light guide plate wherein a design step for designing a dot pattern that defines an arrangement of a plurality of diffusion dots, and shape data of a first surface, a plurality of unit regions are arranged in i rows and j columns ( i, j is an integer greater than or equal to 0)
  • the first mesh dividing step for dividing with a mesh array and the dot pattern formed on the second surface is the same as the mesh for dividing the shape data of the first surface
  • the side of a prototype light guide plate And a brightness distribution acquisition step of acquiring a brightness distribution of light input through a side surface located on the
  • the prototype light guide plate manufacturing step, the brightness distribution acquisition step, the determination step, and the correction step are repeated until the brightness distribution falls within an allowable range.
  • the correction step (i , J)
  • a coverage ratio ⁇ i, j which is a ratio of the area of the diffusing dots to the area of the first unit region, is calculated, and the coverage ratio ⁇ i, j based on the corrected dot pattern satisfies the formula (1).
  • correct the dot pattern is performed in the correction step.
  • a i, j is the brightness of the (i, j) -th unit area of the mesh that divides the shape data of the first surface acquired in the brightness distribution acquisition step
  • b i, j is the target brightness for the (i, j) -th unit region
  • N is a number representing the reflectivity of (b i, j / a i, j ) based on the diffusion characteristics of the diffusion dots. is there.
  • the dot pattern is corrected based on the formula (1) including N indicating the reflection degree, the number of dot pattern corrections can be reduced. As a result, the manufacturing efficiency of the light guide plate can be achieved.
  • the diffusion characteristics of the diffusion dots are as follows. When the light is incident on a plane made of the material constituting the diffusion dots, the brightness is obtained when the brightness of the light in the angle direction of the specular reflection is P 0. It can be expressed by a reflection angle ⁇ 1/2 that becomes 1 / 2P 0 .
  • the above N is a number satisfying the formula (2) for ⁇ 1/2 ⁇ 30 ° when the thickness of the light guide plate is t (mm), and 30 ° ⁇ 1/2 ⁇ With respect to 60 °, it is possible to satisfy the equation (3).
  • the brightness distribution may be acquired in a state where at least one of the reflection sheet and the optical film is disposed with respect to the prototype light guide plate.
  • the reflective sheet when the reflective sheet is disposed, the reflective sheet is disposed on the second surface side, and when the optical film is disposed, the optical film can be disposed on the first surface side.
  • the brightness distribution can be obtained in a state closer to the configuration in which the light guide plate is actually used.
  • a method for manufacturing a light guide plate more efficiently can be provided.
  • FIG. 1 It is a schematic diagram which shows schematic structure of the transmissive image display apparatus containing the light-guide plate manufactured by one Embodiment of the manufacturing method of this invention. It is a top view at the time of seeing the light-guide plate shown in FIG. 1 from the back side.
  • (A) is drawing which shows 1 process of the manufacturing method of a light-guide plate.
  • (B) It is drawing which shows an example of the test
  • (A) is a schematic diagram which shows the state by which the shape data of the 1st surface were divided
  • (B) is a schematic diagram which shows the state divided
  • FIG. 1 is a schematic diagram showing a schematic configuration of a transmissive image display device to which a light guide plate manufactured according to an embodiment of the present invention is applied.
  • the transmissive image display device 10 is shown in an exploded manner.
  • the transmissive image display device 10 can be suitably used as a display device for a mobile phone or various electronic devices.
  • the transmissive image display device 10 includes a light guide plate 12, a light source unit 14 disposed on the side surface 12a side of the light guide plate 12, and a reflection sheet 16 disposed on the back surface (lower side in the drawing) of the light guide plate 12. And a transmissive image display unit 18 disposed on the front side (upper side in the drawing) of the light guide plate 12.
  • a plurality of optical films 20 can be disposed between the light guide plate 12 and the transmissive image display unit 18. Examples of the optical film 20 are a diffusion film, a prism film, a brightness enhancement film, and the like.
  • the light source unit 14 includes a plurality of point light sources 14A arranged in a line (in FIG. 1, arranged in a direction orthogonal to the paper surface).
  • An example of the point light source 14A is a light emitting diode.
  • the light source included in the light source unit 14 may be a linear light source such as a fluorescent lamp (cold cathode ray lamp).
  • the light source unit 14 may include a reflector 14 ⁇ / b> B as a reflection unit that reflects light on the side opposite to the light guide plate 12 in order to efficiently make light incident on the light guide plate 12 side.
  • the light guide plate 12, the light source unit 14, and the reflection sheet 16 shown in FIG. 1 constitute a backlight unit (surface light source device) 22 that supplies planar light to the transmissive image display unit 18.
  • a backlight unit surface light source device 22 that supplies planar light to the transmissive image display unit 18.
  • the optical films can also be part of the backlight unit 22.
  • the transmissive image display unit 18 is illuminated with planar light emitted from the light guide plate 12 and displays an image.
  • An example of the transmissive image display unit 18 is a liquid crystal display panel as a polarizing plate bonding body in which linear polarizing plates are arranged on both surfaces of a liquid crystal cell.
  • the transmissive image display device 10 is a liquid crystal display device.
  • FIG. 2 is a plan view when the light guide plate 12 shown in FIG. 1 is viewed from the back side.
  • the light guide plate 12 is a plate-like body having a substantially rectangular shape in plan view.
  • the light guide plate 12 is made of a translucent material.
  • the refractive index of the translucent material is usually 1.46 to 1.62.
  • Examples of the translucent material include a translucent resin material and a translucent glass material.
  • Examples of the translucent resin material include acrylic resin, cycloolefin resin, polycarbonate resin, MS resin (methyl methacrylate-styrene copolymer resin), polystyrene resin, AS resin (acrylonitrile-styrene copolymer resin), and the like.
  • a preferable example of the translucent resin material is an acrylic resin in terms of cost, high transparency, and low colorability.
  • the light guide plate 12 has an emission surface (first surface) 12b and a back surface (second surface) 12c that face each other in the thickness direction.
  • the thickness t of the light guide plate 12 is the distance between the exit surface 12b and the back surface 12c.
  • An example of the thickness t of the light guide plate 12 is about 3 mm.
  • the thickness t of the light guide plate 12 may be about 2 mm or about 4 mm.
  • a plurality of diffusion dots 24 are printed on the back surface 12c.
  • the diffusion dots 24 are for diffusing light.
  • the diffusion dots 24 may be, for example, microlens dots or white dots by ink jet printing, transparent dots by laser printing, dots by injection molding, or white or transparent dots by screen printing.
  • the plurality of diffusing dots 24 are for reflecting the light incident through the side surface 12a from the light source unit 14 disposed on the side of the side surface 12a of the light guide plate 12 and emitting the light from the output surface 12b.
  • the plurality of diffusion dots 24 are arranged in a dot pattern such that the illuminance of light emitted from the emission surface 12b is substantially uniform.
  • An example of the dot pattern is a pattern in which the density increases according to the distance from the light source 14A.
  • the light guide plate 12 When the light guide plate 12 is applied to the transmissive image display device 10 shown in FIG. 1, the light guide plate 12 has the back surface 12c facing the reflection sheet 16 and the emission surface 12b positioned on the transmissive image display unit 18 side. 12 is installed. In this configuration, the light emitted from the light source unit 14 enters the light guide plate 12 through the side surface 12a. The light incident on the light guide plate 12 propagates in the light guide plate 12 while being totally reflected in the light guide plate 12. At this time, light is diffused by the diffusion dots 24 arranged in a predetermined dot pattern, and planar light is emitted from the emission surface 12b. When a part of the light propagating through the light guide plate 12 is emitted to the outside from the back surface 12c, the light is reflected by the reflection sheet 16 and enters the light guide plate 12 again.
  • the planar light emitted from the emission surface 12 b illuminates the transmissive image display unit 18.
  • the transmissive image display unit 18 displays an image using the illumination light.
  • the transmissive image display device 10 includes the optical film 20, the light emitted from the light guide plate 12 passes through the optical film 20 and illuminates the transmissive image display unit 18.
  • the diffusing dots 24 are described as printing dots formed by printing.
  • An example of such printing dots as the diffusion dots 24 is ink.
  • FIG. 3A is a drawing showing one step of the method of manufacturing the light guide plate.
  • the diffusion dots 24 are formed by printing.
  • An example of a method for printing the diffusion dots 24 on the light guide plate 12 is an ink jet method in which ink is printed while the ink jet head 28 is scanned.
  • the ink applied to the surface 26 a using the designed dot pattern as print data becomes the diffusion dots 24.
  • the surface 26 a on which the diffusion dots 24 are printed becomes the back surface 12 c of the light guide plate 12.
  • the light guide plate 12 manufactured as described above is referred to as “trial light guide plate 12 s ”.
  • FIG. 3 (b) the light source unit 14 is arranged on the side of the trial the light guide plate 12 s, the light output from the light source unit 14 is incident on prototype light guide plate 12 s .
  • the photodetector 30 detects the light radiate
  • An example of the photodetector 30 is a CCD camera.
  • FIG. 3B is a drawing showing an example of an inspection method for a prototype light guide plate. Upon inspection of a prototype light guide plate 12 s, as shown in FIG.
  • the reflective sheet 16 is provided on a back side of the trial the light guide plate 12 s Also good. Furthermore, at least one optical film 20 may be provided on the exit surface 12b side of the trial the light guide plate 12 s.
  • the configuration is the same as that of the device (for example, the backlight unit 22) on which the light guide plate 12 is mounted. At least one of the reflection sheet 16 and the optical film 20 may be provided.
  • the reflection sheet 16 and the optical film 20 are the transmissive image display device 10 (for example, a television unit). It is preferable that it is the structure similar to the reflective sheet and optical film which are actually used as the backlight unit 22 of this.
  • the dot pattern of the diffusing dots 24 is corrected, and the prototype light guide plate 12 is again used by the print data based on the corrected dot pattern. s is produced.
  • the light guide plate 12 capable of realizing a desired illuminance distribution is manufactured by repeating the correction of the dot pattern.
  • the dot pattern is corrected as follows in order to improve the manufacturing efficiency.
  • a dot pattern correction method in this embodiment will be described.
  • the shape data of the exit surface 12b is a mesh 34 in which a plurality of unit regions 32 are arranged in i rows and j columns (i and j are integers of 0 or more). Is divided into meshes.
  • the dot pattern formed on the back surface 12c is mesh-divided by the same mesh 34 as that on the exit surface 12b.
  • mesh 34 1 mesh 34 which divides the dot pattern
  • unit area 32 of the mesh 34 1 is also referred to as a unit area 32 1
  • a unit region 32 of the mesh 34 2 referred unit areas 32 2 both.
  • FIG. 4B in order to clarify the correspondence between the unit regions 32 1 and 32 2 that the mesh 34 1 and the mesh 34 2 have, the case where the mesh is seen from the same direction as that in FIG. relationship is shown between the mesh 34 2 and diffusing dots 24 in the case which is viewed from the surface 12b side.
  • the coverage set S alpha is obtained for the mesh 34 2.
  • Coverage ⁇ is the ratio of the area of the diffusing dots 24 occupying the area of the unit region 32 2.
  • the (i, j) th unit region 32 2 of the coverage of alpha is referred to as alpha i, j.
  • the illuminance set Sa is acquired by measuring the illuminance for each unit region 32 1 .
  • Illuminance set S a corresponds to the illuminance distribution.
  • the illuminance of the (i, j) -th unit region 32 1 acquired in this way is referred to as a i, j .
  • the illuminance set S a is closer to the illuminance set S b of the target, the coverage set S beta after correction by modifying the dot pattern.
  • b i, j is the target illuminance for the (i, j) -th unit region 32 1 constituting the target illuminance set S b .
  • N is a number representing the reflection of the corresponding to the diffusion properties of the diffusing dots 24 (b i, j / a i, j).
  • the “diffusion characteristic of the diffusing dots 24” means that, as shown in FIG. It is represented by a reflection angle ⁇ 1/2 at which the luminance is half the luminance (P 0/2 ) with respect to the luminance P 0 in the direction.
  • P ( ⁇ ) cos m ( ⁇ ) P 0 (where m is a real number).
  • FIG. 6 is a diagram illustrating an example of a luminance distribution of diffused light.
  • the horizontal axis of FIG. 6 indicates the emission angle ⁇ (°) with respect to the reflection angle ⁇ of the specular reflection, and the vertical axis indicates the relative luminance normalized with respect to the luminance of light in the direction of the reflection angle ⁇ .
  • N represents a light guide plate 12 having a thickness t of 2.5 mm or more and less than 3.5 mm, particularly when manufacturing the light guide plate 12 having a thickness t of 3 mm, as shown in FIG. It can be determined based on the chart shown.
  • the illuminance uniformity can be 95% by repeating the correction seven times.
  • the combination of ⁇ 1/2 and N whose numerical values are shown in the chart indicates that the illuminance uniformity is converged without being diverged by correction.
  • N in the case where a numerical value is described in the cell of the chart shown in FIG. 7 may be adopted according to ⁇ 1/2 of the diffusion dot 24.
  • N is employed that corresponds to the cell that is underlined for the number of times in the chart shown in FIG. This is because, in N corresponding to the number of underlined times, the number of corrections is smaller for each ⁇ 1 / 2 , and the manufacturing efficiency of the light guide plate 12 can be further improved.
  • N is the chart shown in FIG. 8 when manufacturing the light guide plate 12 having a thickness t of 1.5 mm or more and less than 2.5 mm, particularly the light guide plate 12 having a thickness t of 2 mm.
  • N corresponding to the cell underlined in the number of times in the chart shown in FIG. 8 is preferably adopted.
  • N is shown in FIG. 9 in the case of manufacturing the light guide plate 12 having a thickness t of 3.5 mm or more and less than 4.5 mm, particularly the light guide plate 12 having a thickness t of 4 mm. Can be selected from the chart values.
  • N in the equation (4) is a real number satisfying the equation (5) for ⁇ 1/2 ⁇ 30 ° when the thickness of the light guide plate 12 is t (mm), and 30 ⁇ For 1/2 ⁇ 60 °, any real number satisfying equation (6) may be used.
  • the above formulas (5) and (6) are formulas calculated so as to include N corresponding to the number of times the above-described underline is added in FIG. 7, FIG. 8, and FIG.
  • FIG. 10 is a flowchart of the manufacturing method according to the present embodiment.
  • a dot pattern of the diffusion dots 24 to be formed on the back surface 12c is designed (S10: design step).
  • the shape data of the exit surface 12b and the dot pattern formed on the back surface 12c are divided into meshes 34 1 and 34 2 (S12: mesh division step).
  • the meshes 34 1 and 34 2 are meshes having the same configuration.
  • the diffusion dots 24 are printed on one side 26 a of the plate-like body 26 to be the light guide plate 12.
  • the formation of the diffusing dots 24 can be performed, for example, by printing by an ink jet method as shown in FIG.
  • the prototype light guide plate 12 s having the diffusion dots 24 formed on one side 26 a is obtained (S 14: prototype light guide plate manufacturing step).
  • Illuminance b i, j as explained by using FIG. 3 (b), the output light from the light source unit 14 which is arranged on the side of the trial the light guide plate 12 s, which is emitted from the emission surface 12b The light may be acquired by the light detector 30 detecting it.
  • the dot pattern of the diffusing dots 24 is modified (S20: correction step).
  • the correction method is as described above. That, (i, j) for the dot pattern after the correction-th unit areas 32 2 coverage beta i, j is to satisfy equation (4) is modified dot pattern.
  • N in the formula (4) is selected from the charts shown in FIGS. 7 to 9 according to the thickness t of the light guide plate 12 to be manufactured.
  • the determination step S18 the trial light guide plate manufacturing step S14, the illuminance distribution acquisition step S16, the determination step S18, and the correction step S20 are repeated until the acquired illuminance distribution falls within an allowable range for the desired illuminance distribution.
  • prototype light guide plate 12 s is within the allowable range for the desired illumination distribution (YES in S18), depending on the print data when a prototype light guide plate 12 s the illuminance is measured is manufactured, prototype light guide plate The light guide plate 12 is manufactured in the same manner as when 12 s is manufactured (S22: Light guide plate manufacturing step).
  • the dot pattern design in the design step S10, the shape data of the emission surface 12b in the mesh division step S12, the mesh division of the dot pattern, and the dot pattern correction in the correction step S20 all use a computer. Done.
  • the dot pattern is corrected based on the coefficient (b i, j / a i, j ) and the reflection characteristic reflection factor N.
  • N is determined based on the charts shown in FIGS. Therefore, the dot pattern can converge quickly to a dot pattern for obtaining a desired illuminance distribution. As a result, the manufacturing efficiency of the light guide plate can be improved.
  • N may be determined based on the formula (5) or the formula (6) according to the thickness t. Also in this case, since the dot pattern is corrected using Expression (4) including N, the number of dot pattern corrections can be reduced.
  • the brightness distribution acquisition step in the form in which the brightness distribution is acquired in a state where at least one of the reflection sheet 16 and the optical film 20 is provided, the brightness becomes closer to the configuration of the apparatus in which the light guide plate is used. A depth distribution is obtained. As a result, a desired dot pattern can be easily obtained.
  • the dot pattern is corrected so that (b i, j / a i, j ) is within a certain range with respect to all the combinations of i and j, for each unit region 32 1
  • the dot pattern is corrected so that the illuminance is averaged.
  • the mesh division of the emission surface 12b and the dot pattern is performed in the mesh division step S12.
  • the mesh division of each of the shape data of the emission surface 12b and the dot pattern may not be performed as one step between S10 and S14.
  • segmentation step) of the shape data of the output surface 12b should just be performed before the measurement of illumination intensity distribution.
  • the dot pattern mesh division (second mesh division step) may be performed before the correction step S20 or at the time of the correction step 20.
  • the light source unit 14 is actually arranged and light is incident to measure the illuminance distribution.
  • the illuminance distribution may be acquired by simulation.
  • the light source unit 14 is disposed on the side of the side surface 12 a of the light guide plate 12.
  • the light source part 14 should just be arrange
  • the light source unit 14 is not limited to the case of being disposed on the side of the one side surface 12 a illustrated in the embodiment. .
  • the diffusion dots are described as printed dots formed by printing. It was. Examples of the method for creating printing dots include laser printing, ink jet printing, and screen printing. However, the diffusion dots may be formed by extrusion molding or injection molding. In other words, in step S14 and step S22 of FIG. 10, a light guide plate having diffusion dots may be manufactured using extrusion molding or injection molding.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

 導光板(12)の製造方法では、光が出射される第1の面(12a)及びドットパターンを同じメッシュで分割し、設計したドットパターンで拡散ドットを第2の面に形成して導光板を試作し、試作導光板の第1の面から出射される光の明るさ分布が所望の明るさ分布に対する許容範囲か否かを判定し、許容範囲のとき導光板を製造し、許容範囲でないときドットパターンを修正する。この際、ドットパターン用のメッシュ(34)のうち各単位領域の拡散ドットの被覆率αi,jを算出し、修正後の被覆率βi,jがβi,j=(bi,j/ai,j×αi,jを満たすようにドットパターンを修正する。ai,jは第1の面用のメッシュ(34)のうち各単位領域の明るさ、bi,jは各単位領域の目標明るさ、Nは拡散ドットの拡散特性に基づく(bi,j/ai,j)の反映度を表す数である。

Description

導光板の製造方法
 本発明は、導光板を製造する方法、特に、片面に拡散ドットが形成された導光板を製造する方法に関する。
 従来、導光板を製造する方法としては、特開平9-68614号公報(特許文献1)に記載の方法が知られている。この文献に記載の技術では、まず、導光板となるべき板状体の片面に所定のドットパターンで複数の印刷ドット(拡散ドット)を印刷して、試作導光板が作製される。そして、試作導光板の側方に光源を設置して、試作導光板に光源からの光が供給され、印刷ドットが形成されている面に対向する出射面からの発光が検査される。出射面からの発光の照度分布が所望の照度分布でない場合に、印刷ドットのドットパターンを適宜修正して、所望の照度分布を実現可能な導光板が製造されていた。
特開平9-68614号公報
 しかしながら、印刷ドット(拡散ドット)のドットパターンの修正を経験的に行っていたため、修正により多くの時間がかかっていた。その結果、導光板の製造にもより多くの時間が要された。
 本発明は、導光板をより効率的に製造する方法を提供することを目的とする。
 本発明に係る導光板の製造方法は、光を出射する第1の面と第1の面に対向する第2の面とを有し、光を反射する複数の拡散ドットが第2の面に形成された導光板を製造する方法であって、複数の拡散ドットの配置を規定するドットパターンを設計する設計ステップと、第1の面の形状データを、複数の単位領域がi行j列(i,jは0以上の整数)に配列されたメッシュで分割する第1のメッシュ分割ステップと、第2の面に形成されるドットパターンを、第1の面の形状データを分割するメッシュと同じメッシュで分割する第2のメッシュ分割ステップと、設計されたドットパターンに基づいて、第2の面に複数の拡散ドットを有する導光板を試作する試作導光板製造ステップと、試作された導光板である試作導光板の側面であって第1及び第2の面の側方に位置する側面を介して入力され第1の面から出射される光の明るさ分布を取得する明るさ分布取得ステップと、取得した明るさ分布が所望の明るさ分布に対する許容範囲か否かを判定する判定ステップと、取得した明るさ分布が許容範囲である場合、試作導光板のドットパターンに基づいて、前記第2の面に複数の拡散ドットを有する導光板を製造する導光板製造ステップと、取得した明るさ分布が許容範囲でない場合、設計ステップにおけるドットパターンを修正して新たなドットパターンを設計する修正ステップと、を備える。この製造方法では、明るさ分布が許容範囲内になるまで、試作導光板製造ステップ、明るさ分布取得ステップ、判定ステップ、及び修正ステップを繰り返し、上記修正ステップでは、ドットパターンに対するメッシュのうち(i,j)番目の単位領域の面積に対する拡散ドットの面積が占める割合である被覆率αi,jを算出し、修正後のドットパターンに基づく被覆率βi,jが式(1)を満たすように、ドットパターンを修正する。
Figure JPOXMLDOC01-appb-M000004
(ただし、ai,jは、明るさ分布取得ステップで取得された、第1の面の形状データを分割するメッシュのうち(i,j)番目の単位領域の明るさであり、bi,jは、(i,j)番目の単位領域に対する目標の明るさであり、及び、Nは、拡散ドットの拡散特性に基づく(bi,j/ai,j)の反映度を表す数である。) 
 この方法では、上記反映度を示すNを含む式(1)に基づいて、ドットパターンが修正されるため、ドットパターンの修正回数が低減され得る。その結果、導光板の製造効率が図られ得る。
 上記拡散ドットの拡散特性は、拡散ドットの拡散特性は、拡散ドットを構成する材料からなる平面に光を入射した場合に、鏡面反射の角度方向の光の輝度をPとしたとき、輝度が1/2Pとなる反射角θ1/2で表すことができる。
 この場合、上記Nは、導光板の厚さをt(mm)としたとき、θ1/2≦30°に対しては式(2)を満たす数であり、30°<θ1/2<60°に対しては式(3)を満たす数である、とすることができる。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 上記明るさ分布取得ステップでは、試作導光板に対して反射シート及び光学フィルムの少なくとも一方が配置された状態で上記明るさ分布が取得されてもよい。このように、反射シートが配置される場合は、反射シートは第2の面側に配置され、光学フィルムが配置される場合は、光学フィルムは第1の面側に配置され得る。
 この場合、導光板が実際に使用される構成により近い状態で明るさ分布を取得できる。
 本発明によれば、導光板をより効率的に製造する方法を提供することができる。
本発明の製造方法の一実施形態により製造された導光板を含む透過型画像表示装置の概略構成を示す模式図である。 図1に示した導光板を背面側からみた場合の平面図である。 (a)は、導光板の製造方法の一工程を示す図面である。(b)試作導光板の検査方法の一例を示す図面である。 (a)は、第1の面の形状データがメッシュで分割された状態を示す模式図である。(b)は、第2の面に形成されるドットパターンのメッシュで分割された状態を示す模式図である。 拡散ドットの拡散特性を説明するための図面である。 拡散光の輝度分布の一例を示す図面である。 厚さが3mmである導光板に対して各θ1/2に対する好適なNを示す図表である。 厚さが2mmである導光板に対して各θ1/2に対する好適なNを示す図表である。 厚さが4mmである導光板に対して各θ1/2に対する好適なNを示す図表である。 本発明に係る導光板の製造方法の一実施形態のフローチャートである。
 以下、図面を参照して本発明の実施形態が説明される。図面の説明において、同一要素には同一符号が付され、重複する説明が省略される。図面の寸法比率は、説明のものと必ずしも一致していない。
 図1は、本発明の一実施形態によって製造される導光板を適用した透過型画像表示装置の概略構成を示す模式図である。図1では、透過型画像表示装置10が分解されて示されている。透過型画像表示装置10は、携帯電話や各種電子機器の表示装置として好適に利用され得る。
 透過型画像表示装置10は、導光板12と、導光板12の側面12a側に配置された光源部14と、導光板12の裏面(図中の下側)側に配置された反射シート16と、導光板12の正面側(図中の上側)に配置される透過型画像表示部18とを備える。導光板12と透過型画像表示部18との間には、複数枚の光学フィルム20が配置され得る。光学フィルム20の例は、拡散フィルム、プリズムフィルム及び輝度向上フィルム等である。
 光源部14は、ライン状に配列(図1では、紙面に直交する方向に配列)された複数の点状光源14Aを備える。点状光源14Aの例は、発光ダイオードである。光源部14が有する光源は、蛍光ランプ(冷陰極線ランプ)のような線状光源でもよい。光源部14は、導光板12側に光を効率的に入射するために、導光板12と反対側に、光を反射させる反射部としてのリフレクター14Bを備えてもよい。
 図1に示された導光板12、光源部14及び反射シート16は、透過型画像表示部18に面状の光を供給するバックライトユニット(面光源装置)22を構成する。図1に示されたように、透過型画像表示部18と導光板12との間に複数の光学フィルムが設けられる場合には、光学フィルムもバックライトユニット22の一部であり得る。
 透過型画像表示部18は導光板12から出射される面状の光で照明されて画像を表示する。透過型画像表示部18の例は、液晶セルの両面に直線偏光板が配置された偏光板貼合体としての液晶表示パネルである。この場合、透過型画像表示装置10は、液晶表示装置である。
 図1及び図2が参照されて、導光板12が説明される。図2は、図1に示した導光板12を背面側からみた場合の平面図である。
 導光板12は、平面視形状が略矩形の板状体である。導光板12は透光性材料からなる。透光性材料の屈折率は通常1.46~1.62である。透光性材料の例は、透光性樹脂材料及び透光性ガラス材料を含む。透光性樹脂材料の例は、アクリル樹脂、シクロオレフィン樹脂、ポリカーボネート樹脂、MS樹脂(メタクリル酸メチル-スチレン共重合体樹脂)、ポリスチレン樹脂、AS樹脂(アクリロニトリル-スチレン共重合体樹脂)などを含む。なお、コストの面、透明性が高い、着色性が低い点で、透光性樹脂材料の好ましい例は、アクリル樹脂である。
 図1に示されるように、導光板12は、厚さ方向において互いに対向する出射面(第1の面)12bと裏面(第2の面)12cとを有する。導光板12の厚さtは出射面12bと裏面12cとの間の距離である。導光板12の厚さtの例は約3mmである。しかしながら、導光板12の厚さtは、約2mmや約4mmであってもよい。図1及び図2に示されるように、裏面12cには、複数の拡散ドット24が印刷されている。拡散ドット24は、光を拡散させるためのものである。拡散ドット24には、例えば、インクジェット印刷によるマイクロレンズドット又は白色ドット、レーザ印刷による透明ドット、射出成型によるドット、又はスクリーン印刷による白色又は透明ドットが用いられ得る。複数の拡散ドット24は、導光板12の側面12aの側方に配置された光源部14から側面12aを介して入射された光を反射し、出射面12bから出射するためのものである。複数の拡散ドット24は、出射面12bから出射される光の照度が略均一になるようなドットパターンで配置されている。ドットパターンの一例は、光源14Aからの距離に応じて密度が増加するようなパターンである。
 図1に示された透過型画像表示装置10に導光板12が適用される場合、裏面12cが反射シート16と対向し、出射面12bが透過型画像表示部18側に位置するように導光板12が設置される。この構成では、光源部14から出射された光は、側面12aを介して導光板12内に入射する。導光板12内に入射された光は、導光板12内を全反射しながら導光板12内を伝搬する。この際、所定のドットパターンで配置された拡散ドット24で光が拡散され、出射面12bから面状の光が出射される。導光板12を伝搬する光の一部が裏面12cから外側に出射された場合には、反射シート16で反射されて再度導光板12内に入射される。
 出射面12bから出射された面状の光は、透過型画像表示部18を照明する。透過型画像表示部18は、その照明光を利用して画像を表示する。透過型画像表示装置10が光学フィルム20を備えている場合には、導光板12から出射された光は光学フィルム20を通過して透過型画像表示部18を照明する。
 次に、導光板12の製造方法の一例が説明される。本実施形態では、拡散ドット24は、印刷によって形成される印刷ドットとして説明される。このような拡散ドット24としての印刷ドットの一例はインクである。
 導光板12の製造では、まず、裏面12cに形成すべき拡散ドット24のドットパターンが設計される。そして、図3(a)に示されるように、設計されたドットパターンに基づいて、導光板12となるべき板状体(導光板本体)26の一面(片面)26aに拡散ドット24を形成することによって、導光板12が試作される。図3(a)は、導光板の製造方法の一工程を示す図面である。前述されたように、本実施形態では印刷により拡散ドット24が形成される。導光板12に拡散ドット24を印刷する方法の例は、インクジェットヘッド28を走査しながらインクを印刷するインクジェット法である。この場合、設計されたドットパターンを印刷データとして面26aに塗布されたインクが拡散ドット24となる。拡散ドット24が印刷された面26aが、導光板12が有する裏面12cとなる。以下では、上記のようにして試作された導光板12が「試作導光板12」と称される。
 次いで、試作導光板12が所望の照度分布を実現できているかどうかが検査される。具体的には、図3(b)に示されるように、試作導光板12の側方に光源部14が配置され、光源部14から出力された光が試作導光板12に入射される。そして、出射面12bから出射される光を光検出器30が検出する。光検出器30の例はCCDカメラである。図3(b)は、試作導光板の検査方法の一例を示す図面である。試作導光板12の検査の際には、図3(b)に示されるように、図1に示された配置と同様に、試作導光板12の背面側に反射シート16が設けられてもよい。更に、試作導光板12の出射面12b側に少なくとも一枚の光学フィルム20が設けられてもよい。換言すれば、試作導光板12が所望の照度分布を実現できているかどうかが検査される場合、導光板12が搭載される装置(例えば、バックライトユニット22)と同様の構成となるように、反射シート16及び光学フィルム20のうちの少なくとも一方が設けられてもよい。このように反射シート16及び光学フィルム20のうちの少なくとも一方が配置されて試作導光板12が検査される場合、反射シート16及び光学フィルム20は透過型画像表示装置10(例えば、テレビユニット)のバックライトユニット22として実際に使用される反射シート及び光学フィルムと同様の構成であることが好ましい。
 試作導光板12の照度分布(明るさ分布)が所望の照度分布に対する許容範囲内である場合には、試作導光板12に形成された拡散ドット24のドットパターンと同じドットパターンで導光板12が製造される。一方、試作導光板12の照度分布が所望の照度分布に対する許容範囲を超えている場合、拡散ドット24のドットパターンが修正され、修正後のドットパターンに基づいた印刷データによって再度試作導光板12が作製される。このようにドットパターンの修正を繰り返すことで、所望の照度分布を実現できる導光板12が製造される。
 本実施形態の製造方法では、製造効率の向上を図るために、次のようにしてドットパターンが修正される。本実施形態におけるドットパターンの修正方法が説明される。
 本実施形態では、図4(a)に示されるように、複数個の単位領域32がi行j列(i,jは0以上の整数)に配置されたメッシュ34で出射面12bの形状データがメッシュ分割される。図4(b)に示されるように、裏面12cに形成されるドットパターンが出射面12bの場合と同じメッシュ34でメッシュ分割される。
 以下の説明では、出射面12b及びドットパターンをそれぞれ分割するメッシュ34が区別して説明される場合には、出射面12bを分割するメッシュ34がメッシュ34とも称され、ドットパターンを分割するメッシュ34がメッシュ34とも称される。同様に、メッシュ34の単位領域32が単位領域32とも称され、メッシュ34の単位領域32が単位領域32とも称される。図4(b)では、メッシュ34とメッシュ34がそれぞれ有する単位領域32、32の対応関係を明確にするために、図4(a)と同じ方向からみられた場合、すなわち、出射面12b側からみられた場合のメッシュ34と拡散ドット24との対応関係が示されている。
 ドットパターンの修正のために、メッシュ34の単位領域32毎に被覆率αが算出され、メッシュ34に対する被覆率セットSαが得られる。被覆率αは、単位領域32の面積に占める拡散ドット24の面積の割合である。(i,j)番目の単位領域32の被覆率αがαi,jと称される。図4(b)に示された照度測定では、単位領域32毎に、照度を測定することによって、照度セットSが取得される。照度セットSは照度分布に対応する。このようにして取得された(i,j)番目の単位領域32の照度がai,jと称される。
 そして、照度セットSが目標の照度セットSに近づくように、ドットパターンを修正して修正後の被覆率セットSβが得られる。
 具体的には、修正後のドットパターンに対する(i,j)番目の単位領域32の被覆率βi,jが次式を満たすように、単位領域32毎にドットパターンを修正し、被覆率セットSβが得られる。
Figure JPOXMLDOC01-appb-M000007
 式(4)中のbi,jは、目標の照度セットSを構成する(i,j)番目の単位領域32に対する目標照度である。Nは、拡散ドット24の拡散特性に応じた(bi,j/ai,j)の反映度を表す数である。
 本実施形態では「拡散ドット24の拡散特性」は、図5に示されるように、拡散ドット24を構成する材料からなる平面36に光が入射角φで入射した場合、鏡面反射の反射角φ方向の輝度Pに対して、輝度が半分の輝度(P/2)となる反射角θ1/2で表される。
 上記拡散特性の定義が説明される。図5に示された上記材料で構成される平面36に光が入射されると、光は種々の方向に反射し拡散する。図5に示されるように反射角φの方向に対する拡散光の方向をθとしたときの輝度がP(θ)と称される。本実施形態では、P(θ)はP(θ)=cos(θ)P(ただし、mは実数)と定義される。そして、cos(θ)=1/2となるθが半値幅θ1/2と設定され、拡散特性が定義されている。
 図6は、拡散光の輝度分布の一例を示す図面である。図6の横軸は鏡面反射の反射角φに対する出射角θ(°)を示しており、縦軸は、反射角φの方向の光の輝度に対して規格化された相対輝度である。図中の複数の特性曲線I~VIIは、図6中、左側から順にθ1/2=10°,20°,30°,40°,50°,60°,70°,80°のものに対応する。
 式(4)中のNは、厚さtが2.5mm以上且つ3.5mmより小さい範囲の導光板12、特に厚さtが3mmである導光板12を製造する場合には、図7に示された図表に基づいて決定され得る。図7は、t=約3mmである導光板12において、各θ1/2に対する好適なNを示す図表である。図7に示された図表は、所定のNに対して式(4)に基づいたドットパターンの修正が、試作導光板12の出射面12bから出力される光の照度均斉度が95%となるまで繰り返された回数を、θ1/2で定義される拡散特性に対してプロットしたものである。例えば、θ1/2=10で定義される拡散特性の拡散ドット24に対しては、Nが1.1であれば、7回修正を繰り返すことで、照度均斉度が95%になり得る。図表中、数値が示されているθ1/2とNとの組み合わせは、修正により照度均斉度が発散せずに収束していることを示している。
 Nの値としては、図7に示された図表のセル内に数値が記載されている場合のNが、拡散ドット24のθ1/2に応じて採用されればよい。しかしながら、好ましくは、図7に示された図表中の回数に下線が付されたセルに対応するNが採用される。これは、下線が付された回数に対応するNでは、各θ1/2に対して修正回数がより少なくなっており、導光板12の製造効率の向上が更に図られ得るからである。
 同様に、Nは、厚さtが1.5mm以上且つ2.5mmより小さい範囲の導光板12、特に厚さtが2mmである導光板12を製造する場合には、図8に示される図表の値から選択され得る。図8は、t=約2mmである導光板12において、各θ1/2に対する好適なNを示す図表である。この場合も、図7に基づいて選択されるNの場合と同様に、好ましくは、図8に示された図表中の回数に下線が付されたセルに対応するNが採用される。
 更に同様に、Nは、厚さtが3.5mm以上且つ4.5mmより小さい範囲の導光板12、特に厚さtが4mmである導光板12を製造する場合には、図9に示された図表の値から選択され得る。図9は、t=約4mmである導光板12において、各θ1/2に対する好適なNを示す図表である。この場合も、図7に基づいて選択されるNの場合と同様に、好ましくは、図9に示された図表中の回数に下線が付されたセルに対応するNが採用される。
 ここでは、導光板12の厚さt及びθ1/2に応じて、予め修正回数が取得された結果である図7、図8及び図9を元にNが選択される例が示された。しかしながら、式(4)中のNは、導光板12の厚さをt(mm)としたとき、θ1/2≦30°に対しては式(5)を満たす実数であり、30<θ1/2<60°に対しては式(6)を満たす実数であればよい。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 上記式(5)及び式(6)は、図7、図8及び図9において、前述された下線が付された回数に対応するNが含まれるように算出された式である。
 次に、上記修正方法が組み込まれた導光板12の製造方法が、図10を参照して説明される。図10は、本実施形態に係る製造方法のフローチャートである。
 裏面12cに形成されるべき拡散ドット24のドットパターンが設計される(S10:設計ステップ)。次に、出射面12bの形状データ及び裏面12cに形成されるドットパターンがそれぞれメッシュ34,34でメッシュ分割される(S12:メッシュ分割ステップ)。前述されたようにメッシュ34,34は同じ構成のメッシュである。
 次いで、設計されたドットパターンを印刷データとして、導光板12となるべき板状体26の片面26aに拡散ドット24が印刷される。拡散ドット24の形成は、図3(a)に示されたように例えばインクジェット法による印刷により行い得る。これにより、片面26aに拡散ドット24が形成された試作導光板12が得られる(S14:試作導光板製造ステップ)。
 そして、メッシュ分割ステップS12で分割されたメッシュ34の単位領域32毎に照度bi,jが取得され、照度分布が得られる(S16:照度分布取得ステップ)。照度bi,jは、図3(b)を利用して説明されたように、試作導光板12の側方に配置された光源部14から光を出力し、出射面12bから出射された光を光検出器30が検出して取得されればよい。
 次に、取得された照度分布が所望の照度分布に対する許容範囲内か否かが判定される(S18:判定ステップ)。ここでは、すべてのiとjの組に対して(bi,j/ai,j)が、
 0.95≦(bi,j/ai,j)≦1.05
を満たすか否かが判定される。
 試作導光板12の照度分布が所望の照度分布に対する許容範囲を超えている場合(S18でNO)、拡散ドット24のドットパターンが修正される(S20:修正ステップ)。修正方法は、前述されたとおりである。すなわち、修正後のドットパターンに対する(i,j)番目の単位領域32の被覆率βi,jが式(4)を満たすように、ドットパターンが修正される。この際、式(4)中のNは、製造する導光板12の厚さtに応じて図7~図9に示された図表から選択しておく。
 ドットパターンを修正した後、試作導光板製造ステップS14に戻り、修正後のドットパターンを新たな印刷データとして、再度試作導光板12が製造される。
 そして、判定ステップS18において、取得した照度分布が所望の照度分布に対する許容範囲内になるまで、試作導光板製造ステップS14、照度分布取得ステップS16、判定ステップS18及び修正ステップS20が繰り返される。
 試作導光板12の照度分布が所望の照度分布に対する許容範囲内である場合(S18でYES)は、照度が測定された試作導光板12が製造された場合の印刷データによって、試作導光板12が製造された場合と同様にして導光板12が製造される(S22:導光板製造ステップ)。
 上記製造方法では、設計ステップS10でのドットパターンの設計、メッシュ分割ステップS12での出射面12bの形状データ及びドットパターンのメッシュ分割並びに修正ステップS20でのドットパターンの修正は、いずれもコンピュータを利用して行われる。
 上記製造方法によれば、係数(bi,j/ai,j)と、拡散特性の反映度Nに基づいて、ドットパターンが修正される。この際、Nが、図7~図9に示された図表に基づいて決定されている。そのため、ドットパターンが、所望の照度分布を得るためのドットパターンに早く収束し得る。その結果、導光板の製造効率が向上し得る。なお、Nが厚さtに応じて式(5)又は式(6)に基づいて決定されてもよいことは、前述されたとおりである。この場合も、そのNを含む式(4)を利用してドットパターンが修正されるため、ドットパターンの修正回数が少なくなり得る。また、明るさ分布取得ステップにおいて、反射シート16及び光学フィルム20の少なくとも一方が設けられた状態で明るさ分布が取得される形態では、導光板が使用される装置の構成により近づいた状態で明るさ分布が取得される。その結果、所望のドットパターンが更に得られやすい。
 以上、本発明の実施形態が説明されたが、本発明は上記実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲で種々の変更が可能である。例えば、上記説明では、判定ステップS18で、すべてのiとjの組に対して(bi,j/ai,j)が、
 0.95≦(bi,j/ai,j)≦1.05
を満たすか否かが判定された。しかしながら、判定条件はこの場合に限らず、取得された照度分布が所望の照度分布に対する許容範囲内か否かが判定されればよい。なお、上記のように、すべてのiとjの組み合わせに対して(bi,j/ai,j)が一定範囲内になるようにドットパターンが修正される場合、単位領域32毎に照度が平均化されるようにドットパターンが修正されていることになる。
 更にまた、図10のフローチャートの説明では、出射面12b及びドットパターンそれぞれのメッシュ分割がメッシュ分割ステップS12で実施されるとして説明された。しかしながら、出射面12bの形状データ及びドットパターンのそれぞれのメッシュ分割は、S10とS14との間に一つのステップとして行われなくてもよい。そして、出射面12bの形状データのメッシュ分割(第1のメッシュ分割ステップ)は照度分布の測定前に行われていればよい。ドットパターンのメッシュ分割(第2のメッシュ分割ステップ)は、修正ステップS20の前又は修正ステップ20の時に行われてもよい。
 照度分布取得ステップS16では、実際に光源部14を配置して光を入射して照度分布が測定されたが、例えば、シミュレーションで照度分布が取得されてもよい。
 上記実施形態の説明では、導光板12の側面12aの側方に光源部14が配置されていた。しかしながら、光源部14は、導光板12の側方に配置されていればよく、例えば、光源部14は、角部から光が入射されるように角部の側方に配置され得る。図1に例示されたように導光板12の4つの側面の側方に光源部14が配置される際には、実施形態で示された一つの側面12aの側方に配置する場合に限定されない。例えば、側面12aと対向する側面の側方にも更に光源部14が配置されてもよい上記実施形態の導光板の製造方法に関する説明では、拡散ドットが、印刷により形成された印刷ドットとして説明された。印刷ドットの作成方法としてはレーザ印刷やインクジェット印刷、スクリーン印刷などが挙げられる。しかしながら、押出成型や射出成型によって拡散ドットが形成されてもよい。換言すれば、図10のステップS14及びステップS22において、押出成型や射出成型を利用して、拡散ドットを有する導光板が製造されてもよい。
 これまでの説明では、「明るさ」を「照度」によって表していたが、「明るさ」は「強度」によって表されてもよい。
 12…導光板、12b…出射面(第1の面)、12c…裏面(第2の面)、12…試作導光板、24…拡散ドット、32…単位領域(第1の面の形状データを分割するメッシュの単位領域)、32…単位領域(ドットパターンを分割するメッシュの単位領域)、34…メッシュ(第1の面の形状データを分割するメッシュ)、34…メッシュ(ドットパターンを分割するメッシュ)。

Claims (4)

  1.  光を出射する第1の面と前記第1の面に対向する第2の面とを有し、光を反射する複数の拡散ドットが前記第2の面に形成された導光板を製造する方法であって、
     複数の前記拡散ドットの配置を規定するドットパターンを設計する設計ステップと、
     
    前記第1の面の形状データを、複数の単位領域がi行j列(i,jは0以上の整数)に配列されたメッシュで分割する第1のメッシュ分割ステップと、
     前記第2の面に形成される前記ドットパターンを、前記第1の面の形状データを分割するメッシュと同じメッシュで分割する第2のメッシュ分割ステップと、
     設計されたドットパターンに基づいて、前記第2の面に複数の拡散ドットを有する導光板を試作する試作導光板製造ステップと、
     試作された前記導光板である試作導光板の側面であって前記第1及び第2の面の側方に位置する前記側面を介して入力され前記第1の面から出射される光の明るさ分布を取得する明るさ分布取得ステップと、
     取得した前記明るさ分布が所望の明るさ分布に対する許容範囲か否かを判定する判定ステップと、
     取得した前記明るさ分布が前記許容範囲である場合、前記試作導光板のドットパターンに基づいて、前記第2の面に複数の拡散ドットを有する導光板を製造する導光板製造ステップと、
     取得した前記明るさ分布が前記許容範囲でない場合、前記設計ステップにおける前記ドットパターンを修正して新たなドットパターンを設計する修正ステップと、
    を備え、
     前記明るさ分布が前記許容範囲内になるまで、前記試作導光板製造ステップ、前記明るさ分布取得ステップ、前記判定ステップ、及び前記修正ステップを繰り返し、前記修正ステップでは、前記ドットパターンに対する前記メッシュのうち(i,j)番目の単位領域の面積に対する前記拡散ドットの面積が占める割合である被覆率αi,jを算出し、修正後のドットパターンに基づく被覆率βi,jが式(1)を満たすように、ドットパターンを修正する、
    導光板の製造方法。
    Figure JPOXMLDOC01-appb-M000001
    (式(1)中、
     ai,jは、前記明るさ分布取得ステップで取得された、前記第1の面の形状データを分割する前記メッシュのうち(i,j)番目の単位領域の明るさであり、
     bi,jは、(i,j)番目の単位領域に対する目標の明るさであり、及び、
     Nは、前記拡散ドットの拡散特性に基づく(bi,j/ai,j)の反映度を表す数である。)
  2.  前記拡散ドットの拡散特性は、前記拡散ドットを構成する材料からなる平面に光を入射した場合に、鏡面反射の角度方向の光の輝度をPとしたとき、輝度が1/2Pとなる反射角θ1/2で表される、
    請求項1記載の方法。
  3.  前記Nは、前記導光板の厚さをt(mm)としたとき、θ1/2≦30°に対しては式(2)を満たす実数であり、30<θ1/2<60°に対しては式(3)を満たす実数である請求項2記載の方法。
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
  4. 前記明るさ分布取得ステップでは、前記試作導光板上に反射シート及び光学フィルムの少なくとも一方が配置された状態で前記明るさ分布が取得され、
     前記反射シートが配置される場合、前記反射シートは前記第2の面側に配置され、
     前記光学フィルムが配置される場合、前記光学フィルムは前記第1の面側に配置される、
     請求項1~3の何れか一項記載の方法。
PCT/JP2011/074450 2010-10-25 2011-10-24 導光板の製造方法 WO2012057088A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-238347 2010-10-25
JP2010238347 2010-10-25

Publications (1)

Publication Number Publication Date
WO2012057088A1 true WO2012057088A1 (ja) 2012-05-03

Family

ID=45993796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074450 WO2012057088A1 (ja) 2010-10-25 2011-10-24 導光板の製造方法

Country Status (3)

Country Link
JP (1) JP2012109235A (ja)
TW (1) TW201227017A (ja)
WO (1) WO2012057088A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3890299A1 (en) 2020-04-03 2021-10-06 Vestel Elektronik Sanayi ve Ticaret A.S. Camera unit having a light guide plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6174866B2 (ja) * 2013-02-26 2017-08-02 ローム株式会社 導光体、線状光源ユニット、画像読取装置、ドキュメントスキャナ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323124A (ja) * 1992-05-20 1993-12-07 Ohtsu Tire & Rubber Co Ltd :The 導光板におけるドットパターン作成方法
JP2001034210A (ja) * 1999-07-21 2001-02-09 Nippon Sheet Glass Co Ltd 平面表示灯および光散乱体パターンの形成方法
JP2005202244A (ja) * 2004-01-16 2005-07-28 Taesan Lcd Co Ltd Lcd用バックライトユニットのディザリングを利用した導光板パターンの設計方法
JP2007507815A (ja) * 2004-11-15 2007-03-29 アイエス・ハイテック・インコーポレーテッド 導光板パターンの自動化された設計方法およびそのシステム
JP2009271376A (ja) * 2008-05-08 2009-11-19 Hitachi Displays Ltd 液晶表示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0968614A (ja) * 1995-08-31 1997-03-11 Rohm Co Ltd 面照明装置および面照明装置用導光板の製造方法
JP3982560B2 (ja) * 2001-05-22 2007-09-26 日亜化学工業株式会社 面発光装置の導光板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05323124A (ja) * 1992-05-20 1993-12-07 Ohtsu Tire & Rubber Co Ltd :The 導光板におけるドットパターン作成方法
JP2001034210A (ja) * 1999-07-21 2001-02-09 Nippon Sheet Glass Co Ltd 平面表示灯および光散乱体パターンの形成方法
JP2005202244A (ja) * 2004-01-16 2005-07-28 Taesan Lcd Co Ltd Lcd用バックライトユニットのディザリングを利用した導光板パターンの設計方法
JP2007507815A (ja) * 2004-11-15 2007-03-29 アイエス・ハイテック・インコーポレーテッド 導光板パターンの自動化された設計方法およびそのシステム
JP2009271376A (ja) * 2008-05-08 2009-11-19 Hitachi Displays Ltd 液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3890299A1 (en) 2020-04-03 2021-10-06 Vestel Elektronik Sanayi ve Ticaret A.S. Camera unit having a light guide plate

Also Published As

Publication number Publication date
TW201227017A (en) 2012-07-01
JP2012109235A (ja) 2012-06-07

Similar Documents

Publication Publication Date Title
KR101372849B1 (ko) 콜리메이팅 도광판, 확산 유닛 및 이를 채용한 디스플레이장치
JP4878335B2 (ja) 導光板の製造方法、導光板及びバックライトユニット並びに表示装置
US6788359B2 (en) Method for illuminating liquid crystal display device, a back-light assembly for performing the same, and a liquid crystal display device using the same
US7217025B2 (en) Backlight unit
JP4992721B2 (ja) 面発光装置及び液晶表示装置
JP4750848B2 (ja) 照明装置及び液晶表示装置
JP2004527780A (ja) 非放射式表示装置のための光源装置
CN109031512B (zh) 导光膜组件、前置光源和反射式显示装置
JP5380580B2 (ja) 導光板
JP2013206834A (ja) 導光体を用いた照明ユニット及びこれを備えた表示装置
JP2004170698A (ja) 光学部材及びバックライトユニット並びに光学部材の製造方法
JP5322630B2 (ja) 照明装置
JP2007017941A (ja) 透過率調整部材および面状照明装置、並びにそれを用いた液晶表示装置
CN115176197B (zh) 光学膜片、背光模组及显示装置
US20080225555A1 (en) Light guide plate, display apparatus and electronic device
CN111624815B (zh) 一种背光模组及显示装置
WO2012057088A1 (ja) 導光板の製造方法
JP2006134661A (ja) 面状光源及びこれを用いた液晶表示装置
JP2012032537A (ja) 光偏向板、面光源装置及び透過型画像表示装置
JP4984512B2 (ja) 面発光装置及び液晶表示装置
JP2011232367A (ja) 光学シート、面光源装置、透過型表示装置
JP4220327B2 (ja) 面光源素子およびそれを用いた表示装置
JP2017004637A (ja) 導光板、面光源装置、透過型表示装置
JP2013206595A (ja) 導光板、導光板を用いた照明装置および表示装置
JP2013016387A (ja) 導光板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836221

Country of ref document: EP

Kind code of ref document: A1