WO2012057073A1 - Solar thermal collector member and manufacturing method thereof - Google Patents

Solar thermal collector member and manufacturing method thereof Download PDF

Info

Publication number
WO2012057073A1
WO2012057073A1 PCT/JP2011/074424 JP2011074424W WO2012057073A1 WO 2012057073 A1 WO2012057073 A1 WO 2012057073A1 JP 2011074424 W JP2011074424 W JP 2011074424W WO 2012057073 A1 WO2012057073 A1 WO 2012057073A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar heat
heat collecting
collecting member
layer
metal layer
Prior art date
Application number
PCT/JP2011/074424
Other languages
French (fr)
Japanese (ja)
Inventor
箕浦 潔
彰信 石動
千明 三成
貴文 端山
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012057073A1 publication Critical patent/WO2012057073A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/30Auxiliary coatings, e.g. anti-reflective coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/60Details of absorbing elements characterised by the structure or construction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a solar heat collecting member and a manufacturing method thereof.
  • An apparatus using solar heat includes, for example, a hot water supply system including a solar heat collecting member.
  • Patent Document 1 It is known that a periodic structure is formed on the surface of a solar heat collecting member in order to perform wavelength selective absorption of solar heat (for example, see Patent Document 1).
  • Patent Document 1 describes that a rectangular cavity is provided on the surface of a solar heat collecting member (wavelength selective solar absorbing material).
  • FIG. 33 shows a schematic diagram of a solar heat collecting member 900A provided with a rectangular cavity of Patent Document 1.
  • Patent Document 1 describes that the wavelength dependency of the absorptance is caused by absorption by surface plasmons induced by a periodic structure and absorption of a standing wave mode by a cavity structure.
  • the opening diameter and depth of the cavity provided on the surface of the tungsten substrate are substantially the same as the specific wavelengths in the visible light and near infrared wavelength regions of sunlight.
  • Patent Document 1 describes that high-speed atomic beam etching is performed using an alumina mask from which a barrier layer has been removed in order to form a solar heat collecting member 900A.
  • Patent Document 1 describes another solar heat collecting member.
  • FIG. 34 shows a schematic diagram of the solar heat collecting member 900B.
  • a quadrangular pyramid (pyramid shape) microstructure is arranged in a matrix on the surface of a tungsten substrate. Note that Patent Document 1 does not mention a specific method for manufacturing the solar heat collecting member 900B.
  • the inventor of the present application has not been able to sufficiently collect heat with the solar heat collecting members 900A and 900B, and particularly cannot absorb light with a relatively short wavelength, and the solar heat collecting member It was found that 900A and 900B cannot be easily produced.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a solar heat collecting member capable of efficiently collecting heat. Another object of the present invention is to provide a simple method for producing a solar heat collecting member.
  • a solar heat collecting member is a solar heat collecting member comprising a metal layer having a surface, wherein the surface of the metal layer has a moth-eye structure including a plurality of convex portions or an inverted moth eye including a plurality of concave portions.
  • the two-dimensional size of each of the plurality of convex portions or the plurality of concave portions when viewed from the normal direction is 50 nm or more and less than 380 nm.
  • an average distance between the plurality of recesses or the plurality of recesses when viewed from the normal direction is not less than 50 nm and less than 380 nm.
  • a flange is provided between two adjacent convex portions of the plurality of convex portions or two adjacent concave portions of the plurality of concave portions.
  • an average distance between the plurality of convex portions or the plurality of concave portions is smaller than a two-dimensional size of each of the plurality of convex portions or the plurality of concave portions.
  • the average height of the plurality of convex portions or the average depth of the plurality of concave portions is 50 nm or more and less than 500 nm.
  • the surface of the metal layer has an inverted moth-eye structure including the plurality of recesses.
  • the metal layer includes at least one selected from the group consisting of gold, silver, copper, aluminum, nickel, zinc, platinum, tungsten, and tantalum.
  • the solar heat collecting member further includes an aluminum layer, and a porous alumina layer positioned between the aluminum layer and the metal layer.
  • the plurality of convex portions or the plurality of concave portions do not have periodicity.
  • a method for producing a solar heat collecting member is a method for producing a solar heat collecting member having a surface of a moth-eye structure including a plurality of protrusions or an inverted moth-eye structure including a plurality of recesses, comprising: (a) aluminum A step of preparing a mold substrate or an aluminum substrate having a layer; and (b) a porous layer that defines a plurality of fine recesses by partially anodizing the aluminum layer or the aluminum substrate, and A step of forming a porous alumina layer having a barrier layer provided on the bottom of each of the plurality of fine recesses, and (c) after the step (b), by bringing the porous alumina layer into contact with an etching solution. Etching to enlarge the plurality of fine recesses of the porous alumina layer; and (d) the porous alumina layer. Comprising a step of forming a metal layer on the plurality of minute recesses.
  • electroplating or vapor deposition is performed in the step (d).
  • the method for producing the solar heat collecting member further includes (e) a step of peeling the metal layer from the porous alumina layer.
  • a method for producing a solar heat collecting member according to the present invention is a method for producing a solar heat collecting member having a surface of a moth-eye structure including a plurality of protrusions or an inverted moth-eye structure including a plurality of recesses, comprising: (a) aluminum A step of preparing a mold substrate or an aluminum substrate having a layer; and (b) a porous layer that defines a plurality of fine recesses by partially anodizing the aluminum layer or the aluminum substrate, and A step of forming a porous alumina layer having a barrier layer provided on the bottom of each of the plurality of fine recesses, and (c) after the step (b), by bringing the porous alumina layer into contact with an etching solution.
  • the photocurable resin in the step (d), is irradiated with ultraviolet rays in a state where the photocurable resin is applied to the plurality of fine recesses of the porous alumina layer.
  • electroplating or vapor deposition is performed in the step (d).
  • the method for producing the solar heat collecting member further includes (f) a step of peeling the metal layer from the mold.
  • the method for producing a solar heat collecting member further includes a step of repeating the step (b) and the step (c) until adjacent fine concave portions among the plurality of fine concave portions are continuous. To do.
  • the solar heat collecting member according to the present invention can efficiently collect heat. Moreover, according to this invention, a solar-heat collection member can be produced simply.
  • FIG. 1 It is typical sectional drawing of embodiment of the solar-heat collection member by this invention.
  • (A) is a typical perspective view of the solar heat collecting member of this embodiment,
  • (b) is a typical top view.
  • (A) And (b) is a typical perspective view of the solar-heat collection member of this embodiment, respectively. It is a typical top view of the solar heat collecting member of this embodiment.
  • (A) is a typical perspective view of the solar heat collecting member of this embodiment, (b) is a typical top view.
  • (A) And (b) is a typical perspective view of the solar-heat collection member of this embodiment, respectively.
  • (A)-(e) is a schematic diagram for demonstrating the manufacturing method of the solar-heat collection member of this embodiment, respectively.
  • (A)-(g) is a schematic diagram for demonstrating the manufacturing method of the solar-heat collection member of this embodiment, respectively. It is a figure which shows the SEM image of the solar-heat collection member of this embodiment.
  • (A) is a schematic diagram which shows the behavior of the light of a comparatively short wavelength
  • (b) is a schematic diagram which shows the behavior of the light of a comparatively long wavelength. It is a graph which shows a sunlight spectrum. It is a graph which shows the radiation spectrum of a black body. It is a graph which shows the wavelength dependence of the absorptivity of the solar heat collecting member of this embodiment.
  • FIG. (A) is a diagram showing samples 1 to 3, and (b) is a diagram showing sample 4.
  • FIG. (A) is an image obtained by measuring the sample 1 with an optical microscope, and (b) to (d) are images obtained by measuring the sample 1 with a scanning electron microscope.
  • (A) And (b) is the SEM perspective image and SEM front image of sample 2, respectively.
  • (A) And (b) is the SEM perspective image and SEM front image of the sample 4, respectively.
  • 6 is a graph showing the wavelength dependence of the reflectance of samples 1 to 4.
  • (A) is a graph which shows the wavelength dependence of the absorptance of samples 1, 3, and 4,
  • (b) and (c) are graphs which show the wavelength dependence of the absorptivity of the conventional solar heat collecting member.
  • (A)-(c) is a figure for demonstrating the model used for calculation of a reflectance and an absorptance.
  • (A) is a graph which shows the wavelength dependence of the absorption factor of the different angle of the solar heat collection member of this embodiment, (b) shows the wavelength dependency of the absorption factor of the different angle of the conventional solar heat collection member. It is a graph.
  • (A) to (j) are schematic diagrams of samples 5 to 10c, respectively. 10 is a graph showing the wavelength dependence of the reflectance of samples 5 to 8. 10 is a graph showing the wavelength dependence of the reflectance of samples 9a to 10c. It is a graph which shows the wavelength dependence of the reflectance of the solar-heat collection member containing gold
  • FIG. 1 shows a schematic diagram of a solar heat collecting member 10A of the present embodiment.
  • the solar heat collecting member 10 ⁇ / b> A includes a metal layer M.
  • the surface of the metal layer M has a moth-eye structure including a plurality of convex portions 10p.
  • the metal layer M includes at least one selected from the group consisting of gold, silver, copper, zinc, aluminum, nickel, platinum, tungsten, and tantalum.
  • the thickness of the metal layer M is 100 nm or more.
  • the (two-dimensional) size of the convex portion 10p is shorter than the wavelength of light in the visible region.
  • the two-dimensional size of each of the plurality of convex portions 10p when viewed from the normal direction is not less than 50 nm and less than 380 nm.
  • the convex portions 10p are arranged almost periodically.
  • the average height of the convex portion 10p is 50 nm or more and less than 500 nm.
  • the average height of the convex portion 10p may be smaller than the wavelength of light in the visible region.
  • the average height of the convex portion 10p may be 50 nm or more and less than 380 nm.
  • the metal layer M is made of metal, or its main component is metal, and the metal layer M has a thickness greater than or equal to a predetermined thickness, so that light does not pass through the solar heat collecting member 10A.
  • the surface of the metal layer M has a moth-eye structure in which the two-dimensional size of each protrusion 10p is 50 nm or more and less than 380 nm, and reflection of light in the visible region at the interface is suppressed. As a result, solar heat collection Most of the light incident on the member 10A is absorbed. For this reason, the solar heat collecting member 10A can efficiently absorb solar heat.
  • the metal layer M may be affixed to a support body, and a support body may have heat insulation.
  • the lower surface of the metal layer M is shown flat, but the lower surface of the metal layer M may not be flat and may have a surface corresponding to the moth-eye structure with a substantially constant thickness.
  • the metal layer M may be supported by a support body, and a support body may have heat insulation.
  • FIG. 2 (a) shows a schematic perspective view of the solar heat collecting member 10A
  • FIG. 2 (b) shows a schematic top view of the solar heat collecting member 10A
  • the convex portion 10p has a substantially conical shape.
  • each convex part 10p is comprised by the substantially constant size.
  • the outer edge shape of the convex portion 10p when viewed from the direction perpendicular to the main surface is typically a regular hexagon.
  • the protrusions 10p have an array that is two-dimensionally filled with the highest density when viewed from a direction perpendicular to the main surface, and the array of protrusions 10p has periodicity.
  • the fact that the arrangement of the convex portions 10p has periodicity is based on the geometric center of gravity of the certain convex portion 10p (hereinafter simply referred to as “center of gravity”) when viewed from the direction perpendicular to the main surface. It means that the sum of the vectors directed to the centroids of all the convex portions 10p adjacent to the convex portion 10p becomes zero.
  • the six vectors from the centroid of a certain convex portion 10p to the centroids of the six adjacent convex portions 10p have substantially the same length, and their directions are different from each other by 60 degrees. The sum is zero. Actually, if the sum of the vectors is less than 5% of the total length of the vector, it can be determined that the vector has periodicity.
  • FIG. 2 one convex portion 10p is surrounded by six adjacent convex portions 10p, but each convex portion 10p is connected to three to six convex portions 10p adjacent to the convex portion 10p. You may be surrounded.
  • the convex portion 10p has a substantially conical shape, and the full width at half maximum along the cross section of the convex portion 10p is almost half the size of the convex portion 10p, but the present invention is not limited to this.
  • the full width at half maximum along the cross section with the convex portion 10p may be larger than half of the size of the convex portion 10p.
  • the full width at half maximum along a cross section with the convex part 10p is smaller than the half of the magnitude
  • a collar part may be provided on the ridge line connecting the vertices 10t of the adjacent convex parts 10p.
  • FIG. 4 shows a schematic top view of the solar heat collecting member 10A.
  • a plurality of convex portions 10p having substantially the same length of vectors connecting the centroids are arranged around a certain convex portion 10p.
  • the average inter-adjacent distance indicating the distance between the apexes 10t of the adjacent convex portions 10p among the plurality of convex portions 10p is slightly smaller than the average diameter (two-dimensional size) of the plurality of convex portions 10p.
  • a flange portion 10s is provided between the apexes 10t of the adjacent convex portions 10p.
  • the collar portion 10s is located on a ridge line connecting the vertices 10t of the adjacent convex portions 10p.
  • the flange portion 10s is located on a ridge line connecting adjacent bottom points 10u. Also in FIG. 4, one convex portion 10p is surrounded by six adjacent convex portions 10p, but each convex portion 10p is surrounded by three to six convex portions 10p adjacent to the convex portion 10p. It may be.
  • moth-eye structure was formed in the surface of the metal layer M of the solar heat collecting member 10A mentioned above, this invention is not limited to this.
  • An inverted moth-eye structure may be formed on the surface of the metal layer M.
  • FIG. 5 shows a schematic diagram of the solar heat collecting member 10B.
  • the solar heat collection member 10B has the same configuration as the solar heat collection member 10A described above except for the surface structure of the metal layer M, and redundant description is omitted to avoid redundancy.
  • the solar heat collecting member 10B includes a metal layer M.
  • the surface of the metal layer M has an inverted moth-eye structure including a plurality of recesses 10q.
  • the two-dimensional size of each of the plurality of recesses 10q when viewed from the normal direction is not less than 50 nm and less than 380 nm.
  • the average depth of the recess 10q is 50 nm or more and less than 500 nm.
  • the average depth of the recess 10q may be smaller than the wavelength of light in the visible region.
  • the average depth of the recess 10q may be 50 nm or more and less than 380 nm.
  • the metal layer M may be affixed to a support body, and a support body may have heat insulation.
  • the lower surface of the metal layer M is shown flat, but the lower surface of the metal layer M does not have to be flat, and has a surface corresponding to the moth-eye structure inverted at a substantially constant thickness. May be.
  • the metal layer M may be supported by a support body, and a support body may have heat insulation.
  • Fig. 6 (a) shows a schematic perspective view of the solar heat collecting member 10B
  • Fig. 6 (b) shows a schematic top view of the solar heat collecting member 10B
  • the concave portion 10q has a substantially conical shape
  • each concave portion 10q has a substantially constant size.
  • the outer edge shape of the recess 10q when viewed from the direction perpendicular to the main surface is typically a regular hexagon.
  • the recesses 10q have an array that is two-dimensionally filled with the highest density when viewed from the direction perpendicular to the main surface, and the array of recesses 10q has periodicity.
  • the arrangement of the recesses 10q having periodicity means that the fine pores have a geometrical center of gravity (hereinafter simply referred to as “center of gravity”) when viewed from a direction perpendicular to the main surface.
  • center of gravity a geometrical center of gravity
  • the six vectors from the center of gravity of a certain recess 10q to the center of gravity of each of the six adjacent recesses 10q have substantially the same length, and their directions differ from each other by 60 degrees, so the sum of these vectors is Zero.
  • the sum of the vectors is less than 5% of the total length of the vector, it can be determined that the vector has periodicity.
  • each concave portion 10q is surrounded by six concave portions 10q adjacent to the concave portion 10q, but each concave portion 10q is surrounded by three to six concave portions 10q adjacent to the concave portion 10q. Also good.
  • the recess 10q has a substantially conical shape, and the full width at half maximum along the cross section of the recess 10q is almost half of the size of the recess 10q.
  • the present invention is not limited to this.
  • the full width at half maximum along the cross section having the recess 10q may be larger than half the size of the recess 10q.
  • the full width at half maximum along a cross section with the recessed part 10q is smaller than the half of the magnitude
  • the solar heat collecting members 10A and 10B can be produced by forming the metal layer M on the porous alumina layer Sc formed by anodic oxidation.
  • a mold base S is prepared.
  • the mold substrate S has a support and an aluminum layer supported by the support.
  • FIG. 8A shows only the aluminum layer of the mold base S.
  • the aluminum layer is formed by a known method (for example, electron beam evaporation method or sputtering method).
  • the aluminum layer is formed by sputtering an aluminum target having a purity of 99.99% by mass or more.
  • the thickness of the aluminum layer is preferably 500 nm or more, and preferably 3000 nm or less from the viewpoint of productivity.
  • the thickness of the aluminum layer is 1000 nm (1 ⁇ m).
  • the mold substrate S itself may be an aluminum substrate.
  • a plurality of fine recesses (pores) Sp are defined by anodizing the aluminum layer or the aluminum substrate partially (surface portion) under predetermined conditions.
  • the porous alumina layer Sc having the porous layer Sa and the barrier layer Sb provided at the bottom of each of the plurality of fine recesses Sp is formed.
  • the average inter-adjacent distance D int between the bottom points of the adjacent pores Sp is represented by the sum of the average thickness 2L of the pore walls and the average pore diameter D p of the pores Sp. Since the thickness of the pore wall is equal to the thickness L of the barrier layer, the average thickness of the entire pore wall separating the two pores Sp is expressed as 2L.
  • the generation density, pore diameter, depth, and the like of the pores Sp can be controlled according to the conditions of anodization (for example, the formation voltage, the type and concentration of the electrolytic solution, and the anodization time). Further, the regularity of the arrangement of the pores Sp can be controlled by controlling the magnitude of the formation voltage.
  • an electrolytic solution for example, an acidic aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, chromic acid, citric acid, and malic acid is used.
  • An oxalic acid aqueous solution is preferably used as the electrolytic solution.
  • a hard porous alumina layer can be suitably formed, and such a porous alumina layer exhibits high durability.
  • the temperature of the oxalic acid aqueous solution is 5 ° C. or more and 30 ° C. or less
  • the concentration of the oxalic acid aqueous solution is 0.1 mass% or more and 2 mass% or less.
  • the concentration of the oxalic acid aqueous solution is lower than 0.1% by mass, the direction in which the pores extend is not perpendicular to the substrate surface.
  • the concentration of the oxalic acid aqueous solution is larger than 2% by mass, anodization starts before the formation voltage reaches a predetermined value, and a desired moth-eye structure may not be formed.
  • the porous alumina layer Sc that is initially generated may contain many defects due to the influence of impurities or the like, the porous alumina layer Sc that is formed first is removed as necessary, and then the porous alumina layer Sc Sc may be formed again.
  • the thickness of the porous alumina layer Sc initially formed and removed is preferably 200 nm or more from the viewpoint of reproducibility, and preferably 2000 nm or less from the viewpoint of productivity.
  • the initially formed porous alumina layer Sc may be partially removed (for example, from the surface to a certain depth).
  • the removal of the porous alumina layer Sc can be performed by a known method such as immersion in a phosphoric acid aqueous solution or a chromium phosphoric acid mixed solution for a predetermined time.
  • etching is performed by bringing the porous alumina layer Sc into contact with an etching solution to enlarge a plurality of minute recesses Sp of the porous alumina layer Sc.
  • the amount of etching (that is, the size and depth of the pores Sp) can be controlled by adjusting the type / concentration of the etching solution and the etching time.
  • the etching solution for example, an aqueous solution of 10% by mass of phosphoric acid, an organic acid such as formic acid, acetic acid or citric acid, or a mixed solution of chromium phosphoric acid can be used.
  • an acidic aqueous solution such as sulfuric acid, hydrochloric acid, or oxalic acid, or an alkaline aqueous solution such as sodium hydroxide may be used as the etching solution.
  • an aqueous phosphoric acid solution is preferably used as the etching solution.
  • the phosphoric acid aqueous solution is not only inexpensive and low in danger, but also can control the etching rate relatively easily.
  • the temperature of the phosphoric acid aqueous solution is 10 ° C. or more and 50 ° C. or less, and the concentration of the phosphoric acid aqueous solution is 0.1 M or more and 10 M or less.
  • anodic oxidation and etching may be repeated.
  • a porous alumina layer Sc having pores (fine concave portions) Sp having a desired uneven shape can be obtained.
  • the step shape on the side surface of the pore Sp can be controlled along with the generation density, pore diameter and depth of the pore Sp.
  • the pore diameter of the pore Sp may be expanded until adjacent pores Sp are continuous. In this case, the average pore diameter D p of the pores Sp is approximately equal to the average distance D int between the pores Sp.
  • the two-dimensional size of the plurality of minute recesses (pores) Sp is 50 nm or more and less than 380 nm, and the distance between the bottom points of the adjacent pores Sp is 50 nm or more and 380 nm. It is preferable that it is less than.
  • an example in which the anodizing process and the etching process are alternately performed has been described, but the cleaning process and the drying process are performed between the anodizing process and the etching process or between the etching process and the anodizing process.
  • a process may be performed.
  • you may change conditions, such as a formation voltage, between each anodizing process.
  • the metal layer M is formed on the porous alumina layer Sc.
  • the metal layer M is formed by, for example, electroplating or vapor deposition.
  • the metal layer M containing at least one of gold, silver, copper, nickel and platinum can be formed by electroplating.
  • electroplating is suitable for forming the metal layer M containing a noble metal.
  • the metal layer M including at least one of gold, silver, copper, aluminum, nickel, zinc, tungsten, tantalum, and platinum can be formed by vapor deposition.
  • the metal layer M is suitably used as a solar heat collecting member or a part thereof.
  • the metal layer M when the thin metal layer M is formed on the porous alumina layer Sc, an inverted moth-eye structure is formed on the surface of the metal layer M.
  • the metal layer M when viewed from the normal direction, when the two-dimensional size of the plurality of fine recesses (pores) is 50 nm or more and less than 380 nm, the metal layer M is used as the solar heat collecting member 10B described above.
  • the two-dimensional size of the plurality of fine recesses (pores) may correspond to the wavelength in the visible region.
  • the metal layer M may be used as the solar heat collecting member 10b.
  • the aluminum layer, the porous alumina layer Sc, and the metal layer M are laminated in this order.
  • the solar heat collecting members 10B and 10b can be easily produced by anodic oxidation and etching.
  • the metal layer M is then peeled off from the porous alumina layer Sc as shown in FIG. 8 (e). May be. If peeling cannot be easily performed, the porous alumina layer Sc may be dissolved with an electrolytic solution. The surface of the peeled metal layer M has a moth-eye structure.
  • peeling the metal layer M from the porous alumina layer Sc is also called electroforming.
  • the metal layer M is used as the solar heat collecting member 10A described above.
  • the two-dimensional size of the plurality of fine protrusions may correspond to the wavelength in the visible region.
  • the metal layer M may be used as the solar heat collecting member 10a.
  • the solar heat collecting members 10A and 10a can be easily manufactured by anodic oxidation and etching.
  • solar heat collecting member 10A, 10a is affixed on a metal base material as needed.
  • the metal layer M is formed directly on the porous alumina layer, but the present invention is not limited to this. You may form the metal layer M on the type
  • a mold base S having an aluminum layer is prepared.
  • the mold substrate S itself may be an aluminum substrate.
  • each of the porous layer Sa defining the plurality of minute recesses Sp and the plurality of minute recesses A porous alumina layer Sc having a barrier layer Sb provided on the bottom of the substrate is formed.
  • etching is performed by bringing the porous alumina layer Sc into contact with an etching solution to enlarge a plurality of minute recesses Sp of the porous alumina layer Sc.
  • porous alumina layer Sc formed as described above is used as a mold.
  • 9A to 9C are the same as those described above with reference to FIGS. 8A to 8C, and redundant description is omitted to avoid redundancy. .
  • the photocurable resin layer K is formed by irradiating the photocurable resin with ultraviolet rays in a state where the photocurable resin is applied to the plurality of fine recesses Sp of the porous alumina layer Sc.
  • Photocurability is obtained by irradiating the photocurable resin with ultraviolet rays (UV) through the mold substrate S in a state where the photocurable resin is applied between the surface of the workpiece L and the porous alumina layer Sc. Cure the resin.
  • the photocurable resin layer K in which the convex part was formed is formed in the surface which contact
  • the photocurable resin may be applied to the surface of the workpiece L or may be applied to the porous alumina layer Sc.
  • an acrylic resin can be used.
  • the photocurable resin layer K to which the concavo-convex structure of the porous alumina layer Sc is transferred becomes the workpiece L. Formed on the surface.
  • a metal layer M is formed on the surface of the photocurable resin layer K corresponding to the plurality of fine recesses.
  • the metal layer M is formed by electroplating or vapor deposition. This metal layer M is suitably used as a solar heat collecting member or a part thereof.
  • the metal layer M is used as the solar heat collecting member 10A described above.
  • the two-dimensional size of the plurality of fine protrusions may correspond to the wavelength in the visible region.
  • the metal layer M may be used as the solar heat collecting member 10a.
  • the workpiece L, the photocurable resin layer K, and the metal layer M are laminated in this order.
  • the solar heat collecting members 10A and 10a can be easily produced by anodic oxidation and etching.
  • the metal layer M is then removed from the photocurable resin layer K as shown in FIG. 9 (g). It may be peeled off. In this way, the metal layer M having a surface provided with a plurality of recesses corresponding to the plurality of minute recesses of the porous alumina layer Sc is formed.
  • the metal layer M is used as the solar heat collecting member 10B described above.
  • the two-dimensional size of the plurality of fine recesses (pores) may correspond to the wavelength in the visible region.
  • the metal layer M may be used as the solar heat collecting member 10b.
  • the solar heat collecting members 10B and 10b can be easily manufactured by anodic oxidation and etching.
  • the solar-heat collection members 10B and 10b are affixed on a metal base material as needed.
  • the surface of the metal layer M of the solar heat collecting member of the present embodiment may have a moth-eye structure or an inverted moth-eye structure.
  • the moth-eye structure is formed as described above with reference to FIG. 8, and the inverted moth-eye structure is as described above with reference to FIG. It is formed.
  • the uneven structure of the porous alumina layer Sc is not directly transferred to the metal layer M, but the uneven structure of the porous alumina layer Sc is indirectly transferred to the metal layer M via the photocurable resin layer K.
  • the metal layer M can be easily peeled off. For this reason, the inverted moth-eye structure can be formed efficiently.
  • the convex portions 10p or the concave portions 10q are arranged almost periodically, but the present invention is not limited to this.
  • the concave portion or the convex portion array in the concave-convex structure has no periodicity.
  • Non-periodicity means that if the sum of vectors from the center of gravity of a pore toward the center of gravity of all pores adjacent to the pore is 5% or more of the total length of the vector, the period is substantially periodic. It can be said that it does not have sex.
  • the concavo-convex structure has periodicity, the period is preferably smaller than the wavelength of light.
  • FIG. 10 is a view showing an image obtained by photographing the surface of the solar heat collecting member 10B with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the solar heat collecting member 10B is manufactured according to the process described above with reference to FIG. 9, and the metal layer M is formed of nickel.
  • the recess 10q has no periodicity.
  • the vertex 10t is formed in a pointed shape, and a flange portion 10s is formed between the adjacent concave portions 10q.
  • the average distance between adjacent recesses is about 200 nm.
  • FIG. 11A is a schematic diagram showing the behavior when light having a relatively short wavelength is incident on the solar heat collecting members 10A and 10B
  • FIG. 11B is a diagram showing light having a relatively long wavelength. It is a schematic diagram which shows the behavior at the time of entering into 10A, 10B.
  • light having a wavelength of 300 nm or more and less than 2000 nm shows the behavior shown in FIG. 11A
  • light having a wavelength of 2000 nm or more and less than 10000 nm shows the behavior shown in FIG.
  • the solar heat collecting members 10A and 10B In the solar heat collecting members 10A and 10B, reflection of short wavelength light is efficiently suppressed, whereas long wavelength light is efficient. Reflected in.
  • a general metal exhibits a high reflectance on a flat surface, but the surface of the metal layer M of the solar heat collecting members 10A and 10B has a moth-eye structure or an inversion in which the size of the convex portion 10p or the concave portion 10q is 50 nm or more and less than 380 nm. Since the moth-eye structure is provided, the reflectance of light having a wavelength substantially equal to the size of the structure is low, while the reflectance of light having a wavelength sufficiently longer than the size of the structure is high.
  • the height of the convex part 10p or the recessed part 10q influences similarly.
  • the reflectance of light having a wavelength substantially equal to the height or depth of the structure is low.
  • the wavelength of light is sufficiently longer than the height or depth of the structure, the reflectance is high even if it has a moth-eye structure or an inverted moth-eye structure, as in the case of incidence on a flat surface.
  • the reflectance of the solar heat collecting members 10A and 10B changes according to the wavelength of light. Further, as described above, since the reflectivity has an anti-correlation with the absorptance, the absorptance of the solar heat collecting members 10A and 10B varies depending on the wavelength of light. Such solar heat collecting members 10A and 10B are also called selective absorbing members.
  • the reflectance of the solar heat collecting members 10A and 10B is relatively low in the visible region and relatively high in the infrared region (particularly the mid-infrared region). The relationship between light reflection and radiation will be described below.
  • the above reflectance is strictly a reflectance including not only a regular reflection component but also a diffuse reflection component. Such reflectance is measured using, for example, an integrating sphere.
  • this member is a metal
  • permeability is substantially zero. If the thickness of the metal is approximately 100 nm, the incident light behaves in substantially the same manner as when the metal layer M is bulk due to the influence of free electrons.
  • the absorptance is proportional to the emissivity.
  • the spectral absorptance is proportional to the spectral emissivity.
  • a black body is relatively easy to absorb heat, but is relatively easy to radiate heat.
  • metal is relatively difficult to radiate heat, but relatively difficult to absorb heat.
  • Spectral emissivity is expressed as the ratio of the radiant emittance of a thermal radiator with the same temperature to the radiant emittance of a perfect radiator (black body) at a certain temperature.
  • FIG. 12 shows the wavelength dependence of the spectral radiation distribution of sunlight.
  • FIG. 12 shows the spectrum outside the atmosphere (air mass 0) together with the spectrum on the ground (air mass 1.5).
  • the radiant intensity in the visible region is relatively high, and the radiant intensity in the infrared region (particularly at a wavelength of 2000 nm or more) is relatively low.
  • FIG. 13 shows the blackbody radiation spectrum.
  • FIG. 13 also shows changes in the peak wavelength of the black body obtained by Wien's law.
  • Wien's law the peak wavelength of light in thermal radiation is short at high temperatures and long at low temperatures.
  • the peak wavelength of the emitted light is about 0.5 ⁇ m
  • the peak wavelength of the emitted light is about 10 ⁇ m.
  • the temperature of the solar heat collecting members 10A and 10B is about 400K to 500K. While most wavelengths of sunlight are less than 2 ⁇ m, most wavelengths of emitted light from the solar heat collecting members 10 ⁇ / b> A and 10 ⁇ / b> B are 2 ⁇ m or more. For this reason, the solar heat collecting members 10A and 10B have relatively high absorptance at a short wavelength (for example, less than 2 ⁇ m), and relatively low at a long wavelength (for example, 2 ⁇ m or more). When it is low (that is, the reflectance is relatively high), heat collection can be performed efficiently.
  • FIG. 14 shows the wavelength dependency of the absorption rate.
  • metals have a relatively high reflectivity, and metals exhibit a relatively low absorption for light of any wavelength.
  • silicon carbide exhibits a relatively high absorption rate with respect to light of an arbitrary wavelength.
  • the solar heat collecting members 10A and 10B used for heat collection preferably have a relatively high absorption rate in the visible region and relatively low in the infrared region.
  • the absorptance is high (that is, the reflectance is low) at a short wavelength of less than 2 ⁇ m and low at a long wavelength of 2 ⁇ m or more.
  • Samples 1 to 4 are all produced by nickel electroforming. Hereinafter, samples 1 to 4 will be described with reference to FIGS.
  • FIG. 15 (a) shows Samples 1 to 3
  • FIG. 15 (b) shows Sample 4. Samples 2 and 3 are different regions within the same nickel plate.
  • FIG. 16A shows an image of sample 1 measured with an optical microscope
  • FIGS. 16B to 16D show images of sample 1 measured with SEM.
  • the magnifications in FIGS. 16B to 16D are 1K, 10K, and 35K, respectively.
  • Sample 1 has an inverted moth-eye structure.
  • the pitch (average distance between adjacent neighbors) is 200 nm, and the height is 400 nm.
  • the sample 1 has convex portions formed with an average distance between adjacent neighbors smaller than the wavelength in the visible region, and the surface of the sample 1 looks black.
  • Sample 1 is created as follows. An aluminum layer having a thickness of 1 ⁇ m is formed on a glass substrate, and an inverted moth-eye structure is formed by repeating anodization and etching. Anodization is performed for 55 seconds at 0.3 wt% oxalic acid, 80 V, and a liquid temperature of 5 degrees. Etching is performed at a liquid temperature of 30 ° C. for 25 minutes using 1 mol / l of phosphoric acid. Anodization and etching are alternately performed. Anodization is performed 5 times in total, and etching is performed 4 times in total. As described above, a porous alumina layer having a reversed moth-eye structure is formed.
  • FIGS. 16 (a), 16 (b), and 16 (c) a portion of the sample 1 that is scratched is circled. This area has a metallic luster.
  • FIGS. 17A and 17B show a SEM perspective image and a SEM front image of Sample 2, respectively.
  • a micro corner cube array is provided on the surface of the sample 2.
  • the pitch of the sample 2 shown in FIGS. 17A and 17B is 12 ⁇ m.
  • Sample 2 and sample 3 are produced as follows. First, a semiconductor wafer is prepared, and anisotropic etching is performed on a part of the surface of the semiconductor wafer. Thereafter, the shape of this portion of the semiconductor wafer is mechanically adjusted to form a micro corner cube array. Note that another region of the semiconductor wafer remains substantially flat. Such a semiconductor wafer is electroplated using a nickel electrolytic solution to form a metal layer M having a thickness of 1 mm on the semiconductor wafer. This metal layer M can be easily peeled from the semiconductor wafer. Samples 2 and 3 are formed by such electroforming.
  • Sample 4 has an inverted moth-eye structure.
  • the average distance between adjacent recesses is 200 nm, and the height is 200 nm.
  • the sample 4 has recesses formed with an average distance between adjacent neighbors smaller than the wavelength in the visible region, and the surface of the sample 4 looks black.
  • Sample 4 is formed as follows. First, a porous alumina layer is formed in the same manner as the formation of Sample 1. Thereafter, this formed product is used as a mold and transferred to an acrylic photocurable resin. Electroplating is performed on the acrylic photocurable resin using a nickel electrolytic solution to form a metal layer M having a thickness of 1 mm on the semiconductor wafer. This metal layer M can be easily peeled off. Sample 4 is formed by such electroforming.
  • Sample 1 was prepared by forming metal layer M directly on the porous alumina layer formed on the glass substrate, whereas sample 4 was light obtained by transferring the porous alumina layer formed on the glass substrate.
  • a metal layer M is formed on the curable resin.
  • the porous alumina layer when forming the sample 4 is formed in the same manner as the porous alumina layer of the sample 1, but the average height of the convex portions of the metal layer M formed in the sample 1 is about 400 nm.
  • the average depth of the recesses of the metal layer M formed in is about 200 nm.
  • Fig. 19 shows the wavelength dependence of the reflectance of samples 1 to 4.
  • the sample 2 nickel provided with a micro corner cube array having a pitch of 24 ⁇ m is used.
  • the reflectance at a wavelength of 350 nm to 2000 nm is measured using a spectrophotometer U-4100 manufactured by Hitachi, Ltd., and the reflectance at a wavelength of 2500 nm to 15000 nm is measured using an infrared reflectance meter.
  • a main body Nicolet Avatar 370 manufactured by Thermo Fisher Scientific Co., Ltd. and a microscope Continuum are used as an infrared reflectance measuring device.
  • the reflectance is measured using three light sources having different wavelengths of emitted light.
  • the straight lines shown in the graph are not continuous.
  • Sample 3 has a relatively flat surface of nickel, and it is considered that a general metal reflection spectrum was obtained from the visible region to the infrared region. Since Sample 2 has a ⁇ m level structure, the reflectance is considered to remain low even in the infrared region.
  • Sample 1 and Sample 4 have a structure at the nm level, and the reflectance of light having a shorter wavelength than that of the structure is low, but the reflectance of light having a relatively longer wavelength than that of the structure is comparative. It is thought that it becomes high.
  • Such a sample 1 is used as the solar heat collecting member 10A described with reference to FIG. 1, and the sample 4 is used as the solar heat collecting member 10B described with reference to FIG.
  • the average height of the convex portion 10p of the sample 1 is 400 nm, whereas the average depth of the concave portion 10q of the sample 4 is 200 nm.
  • the degree of unevenness of sample 1 is larger than that of sample 4
  • the rising wavelength of reflectance of sample 1 is considered to be larger than the rising wavelength of reflectance of sample 4.
  • FIG. 20A shows the wavelength dependence of the absorption rate of Samples 1, 3, and 4.
  • the vertical axis represents the reflectance, but in FIG. 20A, the vertical axis represents the absorption rate.
  • sample 3 has a substantially flat surface, and the absorptance is relatively low over the entire wavelength.
  • Samples 1 and 4 have a moth-eye structure or an inverted moth-eye structure, and have a relatively high absorption rate at a low wavelength and a relatively low absorption rate at a high wavelength.
  • FIG. 20B shows the wavelength dependency of the absorption rate of the solar heat collecting member 900A shown in FIG. 33
  • FIG. 20C shows the wavelength dependency of the absorption rate of the solar heat collecting member 900B shown in FIG. Showing gender.
  • the absorption rate in the visible region of samples 1 and 4 is relatively high. For this reason, solar heat can be absorbed efficiently.
  • the reflectance and absorptance of the solar heat collecting member can be calculated.
  • interfacial reflection is explained by Fresnel's law regardless of the material of the substance (metal or insulator).
  • the interface refers to a bonded surface of dissimilar materials in which a change in refractive index occurs at a thickness (for example, 1/10) or less sufficiently smaller than the wavelength of the target light.
  • the refractive index varies over a region that is equal to or longer than the wavelength, the reflection does not follow normal Fresnel law.
  • the virtual refractive index is set by virtually dividing into layers sufficiently thinner than the wavelength, and Fresnel reflection at all virtual interfaces is performed. Handling such as integration is required.
  • the structure of the metal layer and the model used for calculation will be described with reference to FIG.
  • FIG. 21 (a) is a schematic cross-sectional view of a solar heat collecting member having a moth-eye structure, which is provided with fine convex portions arranged densely.
  • a moth-eye structure including a fine convex portion in which a cross section including a vertex is substantially represented by an isosceles triangle is considered.
  • the refractive index (effective refractive index) of the moth-eye structure changes linearly with respect to the height of the convex portion.
  • the refractive index (effective refractive index) of such a moth-eye structure is equivalent to the refractive index of a laminate having a plurality of layers whose refractive index increases from the air side toward the substrate side, as shown in FIG. You can think of it.
  • the number of layers is 30 and the thickness of each layer is equal.
  • the calculation of the reflectance is based on the effective refractive index medium theory (for example, Tatsuta Tatsuo, Applied Optics (Baifukan) Chapter 4).
  • FIG. 22A shows the wavelength dependency of the absorption rate of the solar heat collecting member 10A.
  • the horizontal axis represents the wavelength
  • the vertical axis represents the absorption rate.
  • the solar heat collecting member 10A is a nickel layer having a height h of the convex portion of 900 nm.
  • the calculation is performed assuming that the number of layers is 30 and the thicknesses of the respective layers are equal. Further, reflectances of 0 °, 20 °, 40 °, 60 ° and 80 ° in the front are obtained.
  • the refractive index for each wavelength of nickel refers to the JK Consulting website (Internet http://www.krushwitz.com/ni.htm).
  • FIG. 22B shows the angle dependency of the absorption rate of the solar heat collecting member 900A shown in FIG.
  • the absorption rate of the solar heat collecting member 10A is relatively high in the visible region over an angle of 0 ° to 60 °, and the solar heat absorption is efficiently performed. It can be carried out.
  • Samples 5 to 10c are produced as follows.
  • Sample 5 has an acrylic photocurable resin layer formed in the same manner as sample 4, and this acrylic photocurable resin layer itself is used as a sample. Moreover, the film is affixed on the black acrylic board.
  • Sample 6 is formed as follows. First, an acrylic photocurable resin layer is formed in the same manner as the formation of the sample 5. Thereafter, the metal layer M is formed by coating the acrylic photocurable resin layer with gold. This coating is performed by sputtering, for example.
  • a quick coater (VPS-020 type manufactured by Vacuum Kiko Co., Ltd.) that is also preferably used for preventing charging during SEM observation can be used.
  • the processing time is about 3 minutes.
  • Sample 7 forms a porous alumina layer on a glass substrate in the same manner as the formation of sample 1, and uses this porous alumina layer itself as a sample.
  • Sample 8 is formed as follows. First, a porous alumina layer is formed on a glass substrate in the same manner as the formation of the sample 7, and the metal layer M is formed by coating the porous alumina layer with gold. This coating is performed by sputtering, for example.
  • a quick coater (VPS-020 type manufactured by Vacuum Kiko Co., Ltd.) that is also preferably used for preventing charging during SEM observation can be used.
  • the processing time is about 3 minutes.
  • Samples 9a, 9b, and 9c form a porous alumina layer on a glass substrate in the same manner as the formation of sample 1, and the porous alumina layer itself is used as a sample.
  • the anodic oxidation time is 25 seconds and the depth of the concave portion is 400 nm
  • the anodic oxidation time is 15 seconds and the depth of the concave portion is 240 nm.
  • the anodization time is 23 seconds and the depth of the recess is 370 nm.
  • the anodization time is 31 seconds, and the depth of the recess is 500 nm.
  • Samples 10a, 10b, and 10c are formed as follows. First, a porous alumina layer is formed on a glass substrate similarly to the formation of samples 9a, 9b, and 9c. Thereafter, a metal layer M is formed by coating the porous alumina layer with gold. This coating is performed by sputtering, for example.
  • a quick coater (VPS-020 type manufactured by Vacuum Kiko Co., Ltd.) that is also preferably used for preventing charging during SEM observation can be used.
  • the processing time is about 3 minutes.
  • FIGS. 23 (a) to 23 (j) show schematic diagrams of Samples 5 to 10c, respectively.
  • FIG. 24 shows the wavelength dependence of the reflectance of samples 5 to 8
  • FIG. 25 shows the wavelength dependence of the reflectance of samples 9a to 10c.
  • 24 and 25 show the results of measuring the reflectance of samples 5 to 10c over a wavelength range of 350 nm to 2000 nm using a spectrophotometer U-4100 manufactured by Hitachi, Ltd.
  • FIG. 24 and 25 show the results of measuring the reflectance of samples 5 to 10c over a wavelength range of 350 nm to 2000 nm using a spectrophotometer U-4100 manufactured by Hitachi, Ltd.
  • the reflectance remains low from the wavelength of 350 nm to 2000 nm, whereas the moth-eye structure is formed on the photocurable resin layer. It can be seen that in the sample 6 provided with the metal layer M, the reflectance increases from the region exceeding the wavelength of 800 nm. However, the photocurable resin layer does not reflect light, but transmits light, so that the sample 5 cannot efficiently absorb solar heat.
  • the sample 6 is used as the solar heat collecting member 10A described with reference to FIG.
  • Sample 7 and Sample 8 has an inverted moth-eye structure, but Sample 7 laminated with glass / aluminum / alumite has a relatively high reflectance even in the visible region (wavelength 350 nm to 800 nm). When the wavelength is longer than 800 nm, it further increases.
  • the metal layer M is provided on the surface and absorbs light in the visible region, so that the reflectance in the visible region is particularly low. Note that the difference in reflectance between the sample 7 and the sample 8 in the visible region can also be confirmed visually.
  • the sample 8 is used as the solar heat collecting member 10B described with reference to FIG.
  • the reflectivities of the glass / aluminum / alumite laminated samples 9a, 9b, 9c are relatively high in the visible region (350 nm to 800 nm), respectively, and further increase when the wavelength is longer than 800 nm.
  • the reflectance of the samples 10a, 10b, and 10c in which the metal layer M is further laminated on the glass / aluminum / alumite differs in the wavelength at which the reflectance starts to increase depending on the height of the recess. Specifically, when the depth of the recess is 250 nm, the reflectance starts increasing from a wavelength of about 500 nm, and when the depth of the recess is 370 nm, the reflectance starts increasing from a wavelength of about 600 nm. When the depth of the recess is 500 nm, the reflectance starts increasing from a wavelength of about 800 nm.
  • the reflectance does not change so much regardless of the height of the concave portion of the porous alumina layer.
  • the wavelength at which the reflectance rises according to the height of the convex portion of the metal layer M increases.
  • the change in the reflectance with respect to the wavelength increases as the height of the convex portion increases. This is presumably because the influence of interference increases depending on the height of the convex portion.
  • the solar heat collecting members 10A and 10B are made of nickel or gold has been described, but the present invention is not limited to this.
  • the wavelength dependence of the reflectance of the solar heat collecting member 10A will be described.
  • the number of layers is 30 and the thickness of each layer is equal.
  • the metal layer M five types of gold, aluminum, copper, silver, and nickel, and the height h of the convex portion are required to have reflectances of three types of 300 nm, 900 nm, and 3000 nm.
  • the refractive index for each wavelength of gold, aluminum, copper, and silver is based on Keiji Keiei, Basic Physical Properties Chart, Kyoritsu Publishing Co., Ltd.
  • the refractive index for each wavelength of nickel is JK. Consulting website (Internet http://www.krushwitz.com/ni.htm).
  • FIG. 26 to FIG. 30 show the calculation results of the reflectance of the solar heat collecting member 10A having a moth-eye structure including convex portions having a height of 300 nm, 900 nm, and 3000 nm for gold, aluminum, copper, silver, and nickel, respectively. It is a graph, and a horizontal axis is a wavelength (nm).
  • the pitch of the convex portions is 200 nm.
  • any of the five types of gold, silver, copper, aluminum, and nickel light is easily absorbed in the visible region and easily reflected in the infrared region due to the moth-eye structure in which the refractive index changes slowly. Further, the lower the convex portion, the smaller the wavelength at which the reflectance starts to increase, and the change in reflectance with respect to the change in wavelength becomes severe. On the other hand, the higher the convex portion, the larger the wavelength at which the reflectance starts to increase, and the change in reflectance with respect to the change in wavelength becomes slower.
  • the wavelength dependence of the reflectance of the solar heat collecting member 10A having a moth-eye structure including a convex portion has been described with reference to FIGS.
  • the member 10B also shows the same tendency. That is, the shallower the recess, the smaller the wavelength at which the reflectance starts to increase, and the change in reflectance with respect to the change in wavelength becomes more severe. On the other hand, the deeper the recess, the larger the wavelength at which the reflectance starts to increase, and the change in reflectance with respect to the change in wavelength becomes slower.
  • the height of the convex portion or the depth of the concave portion
  • the reflectance on the long wavelength side is lowered, and accordingly, the emissivity is increased. It is understood.
  • FIG. 31 shows a schematic diagram of the solar heat collector 100 of the present embodiment.
  • the solar heat collector 100 includes solar heat collecting members 10A, 10B, 10a, or 10b and a path 120 through which the heat medium can move.
  • the solar heat collecting member 10 ⁇ / b> A, 10 ⁇ / b> B, 10 a, or 10 b is disposed on the surface of the solar heat collector 100.
  • the solar heat collector 100 is preferably arranged at a place where sunlight is directly applied to the solar heat collecting members 10A, 10B, 10a, or 10b at least at a certain time in fine weather.
  • the outer wall of the path 120 may be in direct contact with the solar heat collecting members 10A, 10B, 10a, or 10b.
  • the entire solar heat collecting members 10A and 10B are shown in contact with the outer wall of the path, but a part of the solar heat collecting members 10A, 10B, 10a or 10b is in contact with the outer wall of the path.
  • the other parts of the solar heat collecting members 10A, 10B, 10a or 10b may not be in contact with the outer wall of the path.
  • a vacuum may be maintained between the path 120 and the solar heat collecting members 10A, 10B, 10a, or 10b.
  • the solar heat collector 100 may be a flat plate heat collector. Further, the heat medium may be circulated naturally or may be forcibly retained. Alternatively, the solar heat collector 100 may be a vacuum tube type heat collector. In this case, for example, the solar heat collecting member 10A or 10B may be used as the outer wall itself of the path through which the heat medium in the vacuum tube passes or a member that contacts the outer wall. Alternatively, the solar heat collector 100 may be a concentrating heat collector.
  • the heat medium may be a liquid such as water or an antifreeze, or may be a gas such as air.
  • the solar heat collector 100 may be used for thermoelectric power generation. Or you may use the solar-heat collector 100 for a hot-water supply system.
  • FIG. 32 shows a schematic diagram of the hot water supply system 200 of the present embodiment.
  • the hot water supply system 200 includes a solar heat collector 100 and a heat storage tank 210.
  • the heat storage tank 210 can store heat collected in the solar heat collector 100.
  • the heat medium is antifreeze.
  • the heat storage tank 210 has a heat exchanger 212 that exchanges heat from a heat medium that conveys the heat collected in the solar heat collector 100.
  • heat from the heat medium is transferred to water.
  • the hot water supply system 200 may further include a heat source 300.
  • the heat source 300 is, for example, a boiler. The heat source 300 can supply heat even when the heat storage in the heat storage tank 210 is insufficient.
  • heat can be collected efficiently.
  • a solar-heat collection member can be produced simply.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a solar thermal collector member (10A, 10B) provided with a metal layer (M) having a surface. The surface of the metal layer (M) has a moth eye structure containing multiple convexities (10p) or an inverted moth eye structure containing multiple concavities (10q), and, seen from the normal direction, the two-dimensional size of the multiple convexities (10p) or the multiple concavities (10q) is 50nm or greater and less than 380nm. By this means, the disclosed solar thermal collector member is capable of efficient heat collection.

Description

太陽熱集熱部材およびその作製方法Solar heat collecting member and manufacturing method thereof
 本発明は太陽熱集熱部材およびその作製方法に関する。 The present invention relates to a solar heat collecting member and a manufacturing method thereof.
 近年、環境調和の観点から、太陽光エネルギーの利用に関する関心が高まっている。太陽熱は、比較的低コストで利用可能であるとともに季節にかかわらず安定して利用できる。太陽熱を利用する装置には、例えば、太陽熱集熱部材を備える熱給湯システムがある。 In recent years, interest in the use of solar energy has increased from the viewpoint of environmental harmony. Solar heat is available at a relatively low cost and can be used stably regardless of the season. An apparatus using solar heat includes, for example, a hot water supply system including a solar heat collecting member.
 太陽熱の波長選択的な吸収を行うために、太陽熱集熱部材の表面に周期構造を形成することが知られている(例えば、特許文献1参照)。特許文献1には、太陽熱集熱部材(波長選択太陽光吸収材料)の表面に矩形のキャビティを設けることが記載されている。 It is known that a periodic structure is formed on the surface of a solar heat collecting member in order to perform wavelength selective absorption of solar heat (for example, see Patent Document 1). Patent Document 1 describes that a rectangular cavity is provided on the surface of a solar heat collecting member (wavelength selective solar absorbing material).
 図33に、特許文献1の矩形のキャビティの設けられた太陽熱集熱部材900Aの模式図を示す。特許文献1には、吸収率の波長依存性は、周期構造によって誘起される表面プラズモンによる吸収や、キャビティ構造による定在波モードの吸収が原因であると説明されている。太陽熱集熱部材900Aにおいて、タングステン基板の表面に設けられたキャビティの開口径および深さは、太陽光の可視光および近赤外線の波長領域の特定波長と実質的に同じ長さである。特許文献1には、太陽熱集熱部材900Aを形成するために、バリア層を除去したアルミナマスクを用いて高速原子線エッチングを行うことが記載されている。 FIG. 33 shows a schematic diagram of a solar heat collecting member 900A provided with a rectangular cavity of Patent Document 1. Patent Document 1 describes that the wavelength dependency of the absorptance is caused by absorption by surface plasmons induced by a periodic structure and absorption of a standing wave mode by a cavity structure. In solar heat collecting member 900A, the opening diameter and depth of the cavity provided on the surface of the tungsten substrate are substantially the same as the specific wavelengths in the visible light and near infrared wavelength regions of sunlight. Patent Document 1 describes that high-speed atomic beam etching is performed using an alumina mask from which a barrier layer has been removed in order to form a solar heat collecting member 900A.
 また、特許文献1には別の太陽熱集熱部材が記載されている。図34に、太陽熱集熱部材900Bの模式図を示す。この太陽熱集熱部材900Bでは、タングステン基板の表面に四角錐形状(ピラミッド形状)の微細構造がマトリクス状に配列されている。なお、特許文献1は、太陽熱集熱部材900Bの具体的な作製方法に言及していない。 Patent Document 1 describes another solar heat collecting member. FIG. 34 shows a schematic diagram of the solar heat collecting member 900B. In the solar heat collecting member 900B, a quadrangular pyramid (pyramid shape) microstructure is arranged in a matrix on the surface of a tungsten substrate. Note that Patent Document 1 does not mention a specific method for manufacturing the solar heat collecting member 900B.
特開2003-332607号公報JP 2003-332607 A
 本願発明者は、鋭意研究の結果、太陽熱集熱部材900A、900Bでは、十分に集熱を行うことができず、特に比較的短い波長の光を十分に吸収できないこと、および、太陽熱集熱部材900A、900Bを簡便に作製できないことを見出した。 As a result of earnest research, the inventor of the present application has not been able to sufficiently collect heat with the solar heat collecting members 900A and 900B, and particularly cannot absorb light with a relatively short wavelength, and the solar heat collecting member It was found that 900A and 900B cannot be easily produced.
 本発明は、上記課題を鑑みてなされたものであり、その目的は、集熱を効率的に行うことができる太陽熱集熱部材を提供することにある。また、本発明の別の目的は、簡便な太陽熱集熱部材の作製方法を提供することにある。 The present invention has been made in view of the above problems, and an object thereof is to provide a solar heat collecting member capable of efficiently collecting heat. Another object of the present invention is to provide a simple method for producing a solar heat collecting member.
 本発明による太陽熱集熱部材は、表面を有する金属層を備える太陽熱集熱部材であって、前記金属層の前記表面は、複数の凸部を含むモスアイ構造または複数の凹部を含む反転されたモスアイ構造を有しており、法線方向から見たときの前記複数の凸部または前記複数の凹部のそれぞれの2次元的な大きさは50nm以上380nm未満である。 A solar heat collecting member according to the present invention is a solar heat collecting member comprising a metal layer having a surface, wherein the surface of the metal layer has a moth-eye structure including a plurality of convex portions or an inverted moth eye including a plurality of concave portions. The two-dimensional size of each of the plurality of convex portions or the plurality of concave portions when viewed from the normal direction is 50 nm or more and less than 380 nm.
 ある実施形態において、法線方向から見たときの前記複数の凹部または前記複数の凹部の平均隣接間距離は50nm以上380nm未満である。 In an embodiment, an average distance between the plurality of recesses or the plurality of recesses when viewed from the normal direction is not less than 50 nm and less than 380 nm.
 ある実施形態において、前記複数の凸部のうちの隣接する2つの凸部または前記複数の凹部のうちの隣接する2つの凹部の間に鞍部が設けられる。 In one embodiment, a flange is provided between two adjacent convex portions of the plurality of convex portions or two adjacent concave portions of the plurality of concave portions.
 ある実施形態において、前記複数の凸部または前記複数の凹部の平均隣接間距離は、前記複数の凸部または前記複数の凹部のそれぞれの2次元的な大きさよりも小さい。 In an embodiment, an average distance between the plurality of convex portions or the plurality of concave portions is smaller than a two-dimensional size of each of the plurality of convex portions or the plurality of concave portions.
 ある実施形態において、前記複数の凸部の平均高さまたは前記複数の凹部の平均深さは50nm以上500nm未満である。 In one embodiment, the average height of the plurality of convex portions or the average depth of the plurality of concave portions is 50 nm or more and less than 500 nm.
 ある実施形態において、前記金属層の前記表面は、前記複数の凹部を含む反転されたモスアイ構造を有する。 In one embodiment, the surface of the metal layer has an inverted moth-eye structure including the plurality of recesses.
 ある実施形態において、前記金属層は、金、銀、銅、アルミニウム、ニッケル、亜鉛、白金、タングステンおよびタンタルからなる群から選択された少なくとも1つを含む。 In one embodiment, the metal layer includes at least one selected from the group consisting of gold, silver, copper, aluminum, nickel, zinc, platinum, tungsten, and tantalum.
 ある実施形態において、前記太陽熱集熱部材は、アルミニウム層と、前記アルミニウム層と前記金属層との間に位置するポーラスアルミナ層とをさらに備える。 In one embodiment, the solar heat collecting member further includes an aluminum layer, and a porous alumina layer positioned between the aluminum layer and the metal layer.
 ある実施形態において、前記複数の凸部または前記複数の凹部は周期性を有しない。 In one embodiment, the plurality of convex portions or the plurality of concave portions do not have periodicity.
 本発明による太陽熱集熱部材の作製方法は、複数の凸部を含むモスアイ構造または複数の凹部を含む反転されたモスアイ構造の表面を有する太陽熱集熱部材の作製方法であって、(a)アルミニウム層を有する型基材またはアルミニウム基材を用意する工程と、(b)前記アルミニウム層または前記アルミニウム基材を部分的に陽極酸化することによって、複数の微細な凹部を規定するポーラス層、および、前記複数の微細な凹部のそれぞれの底部に設けられたバリア層を有するポーラスアルミナ層を形成する工程と、(c)前記工程(b)の後に、前記ポーラスアルミナ層をエッチング液に接触させることによってエッチングを行い、前記ポーラスアルミナ層の前記複数の微細な凹部を拡大させる工程と、(d)前記ポーラスアルミナ層の前記複数の微細な凹部の上に金属層を形成する工程とを包含する。 A method for producing a solar heat collecting member according to the present invention is a method for producing a solar heat collecting member having a surface of a moth-eye structure including a plurality of protrusions or an inverted moth-eye structure including a plurality of recesses, comprising: (a) aluminum A step of preparing a mold substrate or an aluminum substrate having a layer; and (b) a porous layer that defines a plurality of fine recesses by partially anodizing the aluminum layer or the aluminum substrate, and A step of forming a porous alumina layer having a barrier layer provided on the bottom of each of the plurality of fine recesses, and (c) after the step (b), by bringing the porous alumina layer into contact with an etching solution. Etching to enlarge the plurality of fine recesses of the porous alumina layer; and (d) the porous alumina layer. Comprising a step of forming a metal layer on the plurality of minute recesses.
 ある実施形態では、前記工程(d)において電気めっきまたは蒸着を行う。 In one embodiment, electroplating or vapor deposition is performed in the step (d).
 ある実施形態において、前記太陽熱集熱部材の作製方法は、(e)前記金属層を前記ポーラスアルミナ層から剥離する工程をさらに包含する。 In one embodiment, the method for producing the solar heat collecting member further includes (e) a step of peeling the metal layer from the porous alumina layer.
 本発明による太陽熱集熱部材の作製方法は、複数の凸部を含むモスアイ構造または複数の凹部を含む反転されたモスアイ構造の表面を有する太陽熱集熱部材の作製方法であって、(a)アルミニウム層を有する型基材またはアルミニウム基材を用意する工程と、(b)前記アルミニウム層または前記アルミニウム基材を部分的に陽極酸化することによって、複数の微細な凹部を規定するポーラス層、および、前記複数の微細な凹部のそれぞれの底部に設けられたバリア層を有するポーラスアルミナ層を形成する工程と、(c)前記工程(b)の後に、前記ポーラスアルミナ層をエッチング液に接触させることによってエッチングを行い、前記ポーラスアルミナ層の前記複数の微細な凹部を拡大させる工程と、(d)前記ポーラスアルミナ層の前記複数の微細な凹部に対応する複数の微細な凸部を有する型を作製する工程と、(e)前記型の上に金属層を形成する工程とを包含する。 A method for producing a solar heat collecting member according to the present invention is a method for producing a solar heat collecting member having a surface of a moth-eye structure including a plurality of protrusions or an inverted moth-eye structure including a plurality of recesses, comprising: (a) aluminum A step of preparing a mold substrate or an aluminum substrate having a layer; and (b) a porous layer that defines a plurality of fine recesses by partially anodizing the aluminum layer or the aluminum substrate, and A step of forming a porous alumina layer having a barrier layer provided on the bottom of each of the plurality of fine recesses, and (c) after the step (b), by bringing the porous alumina layer into contact with an etching solution. Etching to enlarge the plurality of fine recesses of the porous alumina layer; and (d) the porous alumina layer. Comprising a step of preparing a mold having a plurality of fine convex portions corresponding to the plurality of minute recesses, and forming a metal layer on the (e) the mold.
 ある実施形態において、前記工程(d)は、前記ポーラスアルミナ層の前記複数の微細な凹部に光硬化性樹脂を付与した状態で、前記光硬化性樹脂に紫外線を照射することによって前記光硬化性樹脂を硬化する工程と、前記光硬化性樹脂を前記ポーラスアルミナ層から剥離する工程とを含む。 In one embodiment, in the step (d), the photocurable resin is irradiated with ultraviolet rays in a state where the photocurable resin is applied to the plurality of fine recesses of the porous alumina layer. A step of curing the resin, and a step of peeling the photocurable resin from the porous alumina layer.
 ある実施形態では、前記工程(d)において電気めっきまたは蒸着を行う。 In one embodiment, electroplating or vapor deposition is performed in the step (d).
 ある実施形態において、前記太陽熱集熱部材の作製方法は、(f)前記金属層を前記型から剥離する工程をさらに包含する。 In one embodiment, the method for producing the solar heat collecting member further includes (f) a step of peeling the metal layer from the mold.
 ある実施形態において、前記太陽熱集熱部材の作製方法は、前記複数の微細な凹部のうちの隣接する微細な凹部が連続するまで前記工程(b)および前記工程(c)を繰り返す工程をさらに包含する。 In one embodiment, the method for producing a solar heat collecting member further includes a step of repeating the step (b) and the step (c) until adjacent fine concave portions among the plurality of fine concave portions are continuous. To do.
 本発明による太陽熱集熱部材は、集熱を効率的に行うことができる。また、本発明によれば、太陽熱集熱部材を簡便に作製することができる。 The solar heat collecting member according to the present invention can efficiently collect heat. Moreover, according to this invention, a solar-heat collection member can be produced simply.
本発明による太陽熱集熱部材の実施形態の模式的な断面図である。It is typical sectional drawing of embodiment of the solar-heat collection member by this invention. (a)は本実施形態の太陽熱集熱部材の模式的な斜視図であり、(b)は模式的な上面図である。(A) is a typical perspective view of the solar heat collecting member of this embodiment, (b) is a typical top view. (a)および(b)はそれぞれ本実施形態の太陽熱集熱部材の模式的な斜視図である。(A) And (b) is a typical perspective view of the solar-heat collection member of this embodiment, respectively. 本実施形態の太陽熱集熱部材の模式的な上面図である。It is a typical top view of the solar heat collecting member of this embodiment. 本発明による太陽熱集熱部材の実施形態の模式的な断面図である。It is typical sectional drawing of embodiment of the solar-heat collection member by this invention. (a)は本実施形態の太陽熱集熱部材の模式的な斜視図であり、(b)は模式的な上面図である。(A) is a typical perspective view of the solar heat collecting member of this embodiment, (b) is a typical top view. (a)および(b)はそれぞれ本実施形態の太陽熱集熱部材の模式的な斜視図である。(A) And (b) is a typical perspective view of the solar-heat collection member of this embodiment, respectively. (a)~(e)はそれぞれ本実施形態の太陽熱集熱部材の作製方法を説明するための模式図である。(A)-(e) is a schematic diagram for demonstrating the manufacturing method of the solar-heat collection member of this embodiment, respectively. (a)~(g)はそれぞれ本実施形態の太陽熱集熱部材の作製方法を説明するための模式図である。(A)-(g) is a schematic diagram for demonstrating the manufacturing method of the solar-heat collection member of this embodiment, respectively. 本実施形態の太陽熱集熱部材のSEM像を示す図である。It is a figure which shows the SEM image of the solar-heat collection member of this embodiment. (a)は比較的短い波長の光の挙動を示す模式図であり、(b)は比較的長い波長の光の挙動を示す模式図である。(A) is a schematic diagram which shows the behavior of the light of a comparatively short wavelength, (b) is a schematic diagram which shows the behavior of the light of a comparatively long wavelength. 太陽光スペクトルを示すグラフである。It is a graph which shows a sunlight spectrum. 黒体の放射スペクトルを示すグラフである。It is a graph which shows the radiation spectrum of a black body. 本実施形態の太陽熱集熱部材の吸収率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the absorptivity of the solar heat collecting member of this embodiment. (a)は、サンプル1~3を示す図であり、(b)はサンプル4を示す図である。(A) is a diagram showing samples 1 to 3, and (b) is a diagram showing sample 4. FIG. (a)はサンプル1を光学顕微鏡で測定した像であり、(b)~(d)はそれぞれサンプル1を走査型電子顕微鏡で測定した像である。(A) is an image obtained by measuring the sample 1 with an optical microscope, and (b) to (d) are images obtained by measuring the sample 1 with a scanning electron microscope. (a)および(b)は、それぞれ、サンプル2のSEM斜視像およびSEM正面像である。(A) And (b) is the SEM perspective image and SEM front image of sample 2, respectively. (a)および(b)は、それぞれ、サンプル4のSEM斜視像およびSEM正面像である。(A) And (b) is the SEM perspective image and SEM front image of the sample 4, respectively. サンプル1~4の反射率の波長依存性を示すグラフである。6 is a graph showing the wavelength dependence of the reflectance of samples 1 to 4. (a)はサンプル1、3および4の吸収率の波長依存性を示すグラフであり、(b)および(c)は従来の太陽熱集熱部材の吸収率の波長依存性を示すグラフである。(A) is a graph which shows the wavelength dependence of the absorptance of samples 1, 3, and 4, (b) and (c) are graphs which show the wavelength dependence of the absorptivity of the conventional solar heat collecting member. (a)~(c)は反射率および吸収率の計算に用いたモデルを説明するための図である。(A)-(c) is a figure for demonstrating the model used for calculation of a reflectance and an absorptance. (a)は本実施形態の太陽熱集熱部材の異なる角度の吸収率の波長依存性を示すグラフであり、(b)は従来の太陽熱集熱部材の異なる角度の吸収率の波長依存性を示すグラフである。(A) is a graph which shows the wavelength dependence of the absorption factor of the different angle of the solar heat collection member of this embodiment, (b) shows the wavelength dependency of the absorption factor of the different angle of the conventional solar heat collection member. It is a graph. (a)~(j)は、それぞれ、サンプル5~10cの模式図である。(A) to (j) are schematic diagrams of samples 5 to 10c, respectively. サンプル5~8の反射率の波長依存性を示すグラフである。10 is a graph showing the wavelength dependence of the reflectance of samples 5 to 8. サンプル9a~10cの反射率の波長依存性を示すグラフである。10 is a graph showing the wavelength dependence of the reflectance of samples 9a to 10c. 金を含む太陽熱集熱部材の反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance of the solar-heat collection member containing gold | metal | money. アルミニウムを含む太陽熱集熱部材の反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance of the solar-heat collection member containing aluminum. 銅を含む太陽熱集熱部材の反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance of the solar-heat collection member containing copper. 銀を含む太陽熱集熱部材の反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance of the solar-heat collection member containing silver. ニッケルを含む太陽熱集熱部材の反射率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the reflectance of the solar-heat collection member containing nickel. 本実施形態の太陽熱集熱部材を備える太陽熱集熱器の模式図である。It is a schematic diagram of a solar heat collector provided with the solar heat collecting member of this embodiment. 図31に示した太陽熱集熱器を備える熱給湯システムの模式図である。It is a schematic diagram of a hot water supply system provided with the solar-heat collector shown in FIG. 従来の太陽熱集熱部材を示す模式図である。It is a schematic diagram which shows the conventional solar heat collecting member. 別の従来の太陽熱集熱部材を示す模式図である。It is a schematic diagram which shows another conventional solar heat collecting member.
 以下、図面を参照して、本発明による太陽熱集熱部材およびその作製方法の実施形態を説明する。ただし、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, with reference to the drawings, embodiments of the solar heat collecting member and the manufacturing method thereof according to the present invention will be described. However, the present invention is not limited to the following embodiments.
 図1に、本実施形態の太陽熱集熱部材10Aの模式図を示す。太陽熱集熱部材10Aは金属層Mを備える。なお、図1では、金属層Mの表面は、複数の凸部10pを含むモスアイ構造を有している。金属層Mは、金、銀、銅、亜鉛、アルミニウム、ニッケル、白金、タングステンおよびタンタルからなる群から選択された少なくとも1つを含む。金属層Mの厚さは100nm以上である。 FIG. 1 shows a schematic diagram of a solar heat collecting member 10A of the present embodiment. The solar heat collecting member 10 </ b> A includes a metal layer M. In FIG. 1, the surface of the metal layer M has a moth-eye structure including a plurality of convex portions 10p. The metal layer M includes at least one selected from the group consisting of gold, silver, copper, zinc, aluminum, nickel, platinum, tungsten, and tantalum. The thickness of the metal layer M is 100 nm or more.
 本実施形態の太陽熱集熱部材10Aにおいて凸部10pの(2次元的な)大きさは可視領域の光の波長よりも短い。具体的には、法線方向から見たときの複数の凸部10pのそれぞれの2次元的な大きさは50nm以上380nm未満である。ここでは、凸部10pはほぼ周期的に配列されている。また、例えば、凸部10pの平均高さは50nm以上500nm未満である。なお、凸部10pの平均高さは可視領域の光の波長よりも小さくてもよく、例えば、凸部10pの平均高さは50nm以上380nm未満であってもよい。 In the solar heat collecting member 10A of the present embodiment, the (two-dimensional) size of the convex portion 10p is shorter than the wavelength of light in the visible region. Specifically, the two-dimensional size of each of the plurality of convex portions 10p when viewed from the normal direction is not less than 50 nm and less than 380 nm. Here, the convex portions 10p are arranged almost periodically. For example, the average height of the convex portion 10p is 50 nm or more and less than 500 nm. The average height of the convex portion 10p may be smaller than the wavelength of light in the visible region. For example, the average height of the convex portion 10p may be 50 nm or more and less than 380 nm.
 一般に、ある部材に入射した光は、界面において反射されるか、その部材に吸収されるか、その部材を透過する。金属層Mは金属からなるか、または、その主成分が金属であり、金属層Mが所定以上の厚さを有するため、光は太陽熱集熱部材10Aを透過しない。 Generally, light incident on a member is reflected at the interface, absorbed by the member, or transmitted through the member. The metal layer M is made of metal, or its main component is metal, and the metal layer M has a thickness greater than or equal to a predetermined thickness, so that light does not pass through the solar heat collecting member 10A.
 金属層Mの表面は、各凸部10pの2次元的な大きさが50nm以上380nm未満のモスアイ構造を有しており、界面における可視領域の光の反射が抑制され、その結果、太陽熱集熱部材10Aに入射した光の大部分が吸収されることになる。このため、太陽熱集熱部材10Aは太陽熱を効率的に吸収することができる。 The surface of the metal layer M has a moth-eye structure in which the two-dimensional size of each protrusion 10p is 50 nm or more and less than 380 nm, and reflection of light in the visible region at the interface is suppressed. As a result, solar heat collection Most of the light incident on the member 10A is absorbed. For this reason, the solar heat collecting member 10A can efficiently absorb solar heat.
 なお、図1では、図示していないが、金属層Mは支持体に貼りつけられてもよく、支持体は断熱性を有してもよい。また、図1では、金属層Mの下面を平坦に示しているが、金属層Mの下面は平坦でなくてもよく、ほぼ一定の厚さでモスアイ構造に対応した面を有してもよい。また、金属層Mは支持体に支持されてもよく、支持体は断熱性を有してもよい。 In addition, although not shown in FIG. 1, the metal layer M may be affixed to a support body, and a support body may have heat insulation. In FIG. 1, the lower surface of the metal layer M is shown flat, but the lower surface of the metal layer M may not be flat and may have a surface corresponding to the moth-eye structure with a substantially constant thickness. . Moreover, the metal layer M may be supported by a support body, and a support body may have heat insulation.
 図2(a)に、太陽熱集熱部材10Aの模式的な斜視図を示し、図2(b)に、太陽熱集熱部材10Aの模式的な上面図を示す。凸部10pはほぼ円錐形状である。ここでは、各凸部10pはほぼ一定サイズに構成されている。主面に垂直な方向からみたときの凸部10pの外縁形状は模式的にはほぼ正六角形である。凸部10pは主面に垂直な方向から見たとき2次元的に最も高密度で充填された配列をとっており、凸部10pの配列は周期性を有している。ここで、凸部10pの配列が周期性を有しているとは、主面に垂直な方向から見たときに、ある凸部10pの幾何学重心(以下、単に「重心」という。)からその凸部10pに隣接する全ての凸部10pのそれぞれの重心に向けたベクトルの総和がゼロになることを言う。ここでは、ある凸部10pの重心から隣接する6つの凸部10pのそれぞれの重心に向けた6つのベクトルはほぼ同じ長さを有し、その方向は互いに60度ずつ異なるので、これらのベクトルの総和はゼロである。実際には、上記ベクトルの総和がベクトルの全長の5%未満であれば周期性を有すると判断できる。なお、図2では、1つの凸部10pは、隣接する6個の凸部10pに囲まれているが、各凸部10pは、その凸部10pに隣接する3~6個の凸部10pに囲まれてもよい。 FIG. 2 (a) shows a schematic perspective view of the solar heat collecting member 10A, and FIG. 2 (b) shows a schematic top view of the solar heat collecting member 10A. The convex portion 10p has a substantially conical shape. Here, each convex part 10p is comprised by the substantially constant size. The outer edge shape of the convex portion 10p when viewed from the direction perpendicular to the main surface is typically a regular hexagon. The protrusions 10p have an array that is two-dimensionally filled with the highest density when viewed from a direction perpendicular to the main surface, and the array of protrusions 10p has periodicity. Here, the fact that the arrangement of the convex portions 10p has periodicity is based on the geometric center of gravity of the certain convex portion 10p (hereinafter simply referred to as “center of gravity”) when viewed from the direction perpendicular to the main surface. It means that the sum of the vectors directed to the centroids of all the convex portions 10p adjacent to the convex portion 10p becomes zero. Here, the six vectors from the centroid of a certain convex portion 10p to the centroids of the six adjacent convex portions 10p have substantially the same length, and their directions are different from each other by 60 degrees. The sum is zero. Actually, if the sum of the vectors is less than 5% of the total length of the vector, it can be determined that the vector has periodicity. In FIG. 2, one convex portion 10p is surrounded by six adjacent convex portions 10p, but each convex portion 10p is connected to three to six convex portions 10p adjacent to the convex portion 10p. You may be surrounded.
 なお、図2において凸部10pはほぼ円錐形状であり、凸部10pのある断面に沿った半値全幅は凸部10pの大きさのほぼ半分であったが、本発明はこれに限定されない。 In FIG. 2, the convex portion 10p has a substantially conical shape, and the full width at half maximum along the cross section of the convex portion 10p is almost half the size of the convex portion 10p, but the present invention is not limited to this.
 図3(a)に示すように、凸部10pのある断面に沿った半値全幅は凸部10pの大きさの半分よりも大きくてもよい。あるいは、図3(b)に示すように、凸部10pのある断面に沿った半値全幅は凸部10pの大きさの半分よりも小さく、凸部10pは尖状形状を有してもよい。 As shown in FIG. 3 (a), the full width at half maximum along the cross section with the convex portion 10p may be larger than half of the size of the convex portion 10p. Or as shown in FIG.3 (b), the full width at half maximum along a cross section with the convex part 10p is smaller than the half of the magnitude | size of the convex part 10p, and the convex part 10p may have a pointed shape.
 また、隣接する凸部10pの頂点10tを結ぶ稜線上に鞍部が設けられてもよい。 Moreover, a collar part may be provided on the ridge line connecting the vertices 10t of the adjacent convex parts 10p.
 図4に、太陽熱集熱部材10Aの模式的な上面図を示す。上述したように、ある凸部10pの周りには重心間を結ぶベクトルの長さがほぼ等しい複数の凸部10pが配置されている。ここでは、複数の凸部10pのうちの隣接する凸部10pの頂点10t間の距離を示す平均隣接間距離は複数の凸部10pの平均直径(2次元的な大きさ)よりもわずかに小さく、隣接する凸部10pの頂点10tの間には鞍部10sが設けられている。鞍部10sは隣接する凸部10pの頂点10tを結ぶ稜線上に位置している。また、鞍部10sは隣接する底点10uを結ぶ稜線上に位置している。図4でも、1つの凸部10pは、隣接する6個の凸部10pに囲まれているが、各凸部10pは、その凸部10pに隣接する3~6個の凸部10pに囲まれていてもよい。 FIG. 4 shows a schematic top view of the solar heat collecting member 10A. As described above, a plurality of convex portions 10p having substantially the same length of vectors connecting the centroids are arranged around a certain convex portion 10p. Here, the average inter-adjacent distance indicating the distance between the apexes 10t of the adjacent convex portions 10p among the plurality of convex portions 10p is slightly smaller than the average diameter (two-dimensional size) of the plurality of convex portions 10p. A flange portion 10s is provided between the apexes 10t of the adjacent convex portions 10p. The collar portion 10s is located on a ridge line connecting the vertices 10t of the adjacent convex portions 10p. Further, the flange portion 10s is located on a ridge line connecting adjacent bottom points 10u. Also in FIG. 4, one convex portion 10p is surrounded by six adjacent convex portions 10p, but each convex portion 10p is surrounded by three to six convex portions 10p adjacent to the convex portion 10p. It may be.
 なお、上述した太陽熱集熱部材10Aの金属層Mの表面にはモスアイ構造が形成されていたが、本発明はこれに限定されない。金属層Mの表面には反転されたモスアイ構造が形成されていてもよい。 In addition, although the moth-eye structure was formed in the surface of the metal layer M of the solar heat collecting member 10A mentioned above, this invention is not limited to this. An inverted moth-eye structure may be formed on the surface of the metal layer M.
 図5に、太陽熱集熱部材10Bの模式図を示す。太陽熱集熱部材10Bは、金属層Mの表面構造を除いて、上述した太陽熱集熱部材10Aと同様の構成を有しており、冗長を避けるために重複する説明を省略する。 FIG. 5 shows a schematic diagram of the solar heat collecting member 10B. The solar heat collection member 10B has the same configuration as the solar heat collection member 10A described above except for the surface structure of the metal layer M, and redundant description is omitted to avoid redundancy.
 太陽熱集熱部材10Bは金属層Mを備えており、図5では、金属層Mの表面は、複数の凹部10qを含む反転されたモスアイ構造を有している。法線方向から見たときの複数の凹部10qのそれぞれの2次元的な大きさは50nm以上380nm未満である。また、例えば、凹部10qの平均深さは50nm以上500nm未満である。なお、凹部10qの平均深さは可視領域の光の波長よりも小さくてもよく、例えば、凹部10qの平均深さは50nm以上380nm未満であってもよい。 The solar heat collecting member 10B includes a metal layer M. In FIG. 5, the surface of the metal layer M has an inverted moth-eye structure including a plurality of recesses 10q. The two-dimensional size of each of the plurality of recesses 10q when viewed from the normal direction is not less than 50 nm and less than 380 nm. For example, the average depth of the recess 10q is 50 nm or more and less than 500 nm. The average depth of the recess 10q may be smaller than the wavelength of light in the visible region. For example, the average depth of the recess 10q may be 50 nm or more and less than 380 nm.
 このように、太陽熱集熱部材10Bの金属層Mの表面には、各凹部10qの2次元的な大きさが50nm以上380nm未満の反転されたモスアイ構造が形成されている。このため、太陽熱集熱部材10Bに入射する可視領域の光の反射が抑制され、これにより、太陽熱を効率的に吸収することができる。 Thus, on the surface of the metal layer M of the solar heat collecting member 10B, an inverted moth-eye structure in which the two-dimensional size of each recess 10q is 50 nm or more and less than 380 nm is formed. For this reason, reflection of the light of the visible region which injects into the solar-heat collection member 10B is suppressed, and, thereby, solar heat can be absorbed efficiently.
 なお、図5では、図示していないが、金属層Mは支持体に貼りつけられてもよく、支持体は断熱性を有してもよい。また、図5では、金属層Mの下面を平坦に示しているが、金属層Mの下面は平坦でなくてもよく、ほぼ一定の厚さで反転されたモスアイ構造に対応した面を有してもよい。また、金属層Mは支持体に支持されてもよく、支持体が断熱性を有してもよい。 In addition, although not shown in FIG. 5, the metal layer M may be affixed to a support body, and a support body may have heat insulation. Further, in FIG. 5, the lower surface of the metal layer M is shown flat, but the lower surface of the metal layer M does not have to be flat, and has a surface corresponding to the moth-eye structure inverted at a substantially constant thickness. May be. Moreover, the metal layer M may be supported by a support body, and a support body may have heat insulation.
 図6(a)に、太陽熱集熱部材10Bの模式的な斜視図を示し、図6(b)に、太陽熱集熱部材10Bの模式的な上面図を示す。ここでは、凹部10qはほぼ円錐形状であり、各凹部10qはほぼ一定サイズで構成されている。主面に垂直な方向からみたときの凹部10qの外縁形状は模式的にはほぼ正六角形である。凹部10qは主面に垂直な方向から見たとき2次元的に最も高密度で充填された配列をとっており、凹部10qの配列は周期性を有している。ここで、凹部10qの配列が周期性を有しているとは、主面に垂直な方向から見たときに、ある細孔の幾何学重心(以下、単に「重心」という。)からその細孔に隣接する全ての細孔のそれぞれの重心に向けたベクトルの総和がゼロになることを言う。ここでは、ある凹部10qの重心から隣接する6つの凹部10qのそれぞれの重心に向けた6つのベクトルはほぼ同じ長さを有し、その方向は互いに60度ずつ異なるので、これらのベクトルの総和はゼロである。実際には、上記ベクトルの総和がベクトルの全長の5%未満であれば周期性を有すると判断できる。 Fig. 6 (a) shows a schematic perspective view of the solar heat collecting member 10B, and Fig. 6 (b) shows a schematic top view of the solar heat collecting member 10B. Here, the concave portion 10q has a substantially conical shape, and each concave portion 10q has a substantially constant size. The outer edge shape of the recess 10q when viewed from the direction perpendicular to the main surface is typically a regular hexagon. The recesses 10q have an array that is two-dimensionally filled with the highest density when viewed from the direction perpendicular to the main surface, and the array of recesses 10q has periodicity. Here, the arrangement of the recesses 10q having periodicity means that the fine pores have a geometrical center of gravity (hereinafter simply referred to as “center of gravity”) when viewed from a direction perpendicular to the main surface. This means that the sum of the vectors toward the center of gravity of all the pores adjacent to the pore becomes zero. Here, the six vectors from the center of gravity of a certain recess 10q to the center of gravity of each of the six adjacent recesses 10q have substantially the same length, and their directions differ from each other by 60 degrees, so the sum of these vectors is Zero. Actually, if the sum of the vectors is less than 5% of the total length of the vector, it can be determined that the vector has periodicity.
 上述したように、ある凹部10qの周りには重心間を結ぶベクトルの長さがほぼ等しい複数の凹部10qが配置されている。ここでは、複数の凹部10qのうちの隣接する凹部10qの底点10uの間の距離を示す平均隣接間距離は複数の凹部10qの平均直径よりもわずかに小さく、隣接する凹部10qの底点10uの間には鞍部10sが設けられている。鞍部10sは隣接する凹部10qの底点10uを結ぶ稜線上に位置している。また、鞍部10sは隣接する頂点10tを結ぶ稜線上に位置している。図6では、各凹部10qは、その凹部10qに隣接する6個の凹部10qに囲まれているが、各凹部10qは、その凹部10qに隣接する3~6個の凹部10qに囲まれていてもよい。 As described above, around a certain recess 10q, a plurality of recesses 10q having substantially the same length of vectors connecting the centers of gravity are arranged. Here, the average inter-adjacent distance indicating the distance between the bottom points 10u of the adjacent recesses 10q among the plurality of recesses 10q is slightly smaller than the average diameter of the plurality of recesses 10q, and the bottom point 10u of the adjacent recesses 10q. A flange 10s is provided between the two. The flange portion 10s is located on a ridge line connecting the bottom points 10u of the adjacent concave portions 10q. Further, the collar portion 10s is located on a ridge line connecting adjacent vertices 10t. In FIG. 6, each concave portion 10q is surrounded by six concave portions 10q adjacent to the concave portion 10q, but each concave portion 10q is surrounded by three to six concave portions 10q adjacent to the concave portion 10q. Also good.
 なお、図6では凹部10qはほぼ円錐形状であり、凹部10qのある断面に沿った半値全幅は凹部10qの大きさのほぼ半分であったが、本発明はこれに限定されない。図7(a)に示すように、凹部10qのある断面に沿った半値全幅は凹部10qの大きさの半分よりも大きくてもよい。あるいは、図7(b)に示すように、凹部10qのある断面に沿った半値全幅は凹部10qの大きさの半分よりも小さく、凹部10qが尖状形状を有してもよい。 In FIG. 6, the recess 10q has a substantially conical shape, and the full width at half maximum along the cross section of the recess 10q is almost half of the size of the recess 10q. However, the present invention is not limited to this. As shown in FIG. 7A, the full width at half maximum along the cross section having the recess 10q may be larger than half the size of the recess 10q. Or as shown in FIG.7 (b), the full width at half maximum along a cross section with the recessed part 10q is smaller than the half of the magnitude | size of the recessed part 10q, and the recessed part 10q may have a pointed shape.
 例えば、太陽熱集熱部材10A、10Bは、陽極酸化によって形成されたポーラスアルミナ層Scの上に金属層Mを形成することによって作製できる。 For example, the solar heat collecting members 10A and 10B can be produced by forming the metal layer M on the porous alumina layer Sc formed by anodic oxidation.
 以下、図8を参照して本実施形態の太陽熱集熱部材の作製方法を説明する。 Hereinafter, a method for producing the solar heat collecting member of the present embodiment will be described with reference to FIG.
 まず、図8(a)に示すように、型基材Sを用意する。型基材Sは、支持体と、支持体に支持されたアルミニウム層とを有している。図8(a)には型基材Sのアルミニウム層のみを示している。アルミニウム層は、公知の方法(例えば電子線蒸着法またはスパッタ法)で形成される。例えば、アルミニウム層は、99.99質量%以上の純度のアルミニウムターゲットをスパッタリングすることによって形成される。アルミニウム層の厚さは、500nm以上であることが好ましく、生産性の観点から3000nm以下であることが好ましい。例えば、アルミニウム層の厚さは1000nm(1μm)である。あるいは、型基材S自体がアルミニウム基材であってもよい。 First, as shown in FIG. 8A, a mold base S is prepared. The mold substrate S has a support and an aluminum layer supported by the support. FIG. 8A shows only the aluminum layer of the mold base S. The aluminum layer is formed by a known method (for example, electron beam evaporation method or sputtering method). For example, the aluminum layer is formed by sputtering an aluminum target having a purity of 99.99% by mass or more. The thickness of the aluminum layer is preferably 500 nm or more, and preferably 3000 nm or less from the viewpoint of productivity. For example, the thickness of the aluminum layer is 1000 nm (1 μm). Alternatively, the mold substrate S itself may be an aluminum substrate.
 次に、図8(b)に示すように、アルミニウム層またはアルミニウム基材を部分的に(表面部分を)所定の条件で陽極酸化することによって、複数の微細な凹部(細孔)Spを規定するポーラス層Sa、および、複数の微細な凹部Spのそれぞれの底部に設けられたバリア層Sbを有するポーラスアルミナ層Scを形成する。隣接する細孔Spの底点の間の平均隣接間距離Dintは、細孔壁の平均厚さ2Lと細孔Spの平均孔径Dpとの和で表される。なお、細孔壁の厚さはバリア層の厚さLと等しいので、2つの細孔Spを隔てる細孔壁全体の平均厚さは2Lと表される。 Next, as shown in FIG. 8B, a plurality of fine recesses (pores) Sp are defined by anodizing the aluminum layer or the aluminum substrate partially (surface portion) under predetermined conditions. The porous alumina layer Sc having the porous layer Sa and the barrier layer Sb provided at the bottom of each of the plurality of fine recesses Sp is formed. The average inter-adjacent distance D int between the bottom points of the adjacent pores Sp is represented by the sum of the average thickness 2L of the pore walls and the average pore diameter D p of the pores Sp. Since the thickness of the pore wall is equal to the thickness L of the barrier layer, the average thickness of the entire pore wall separating the two pores Sp is expressed as 2L.
 陽極酸化の条件(例えば化成電圧、電解液の種類、濃度、さらには陽極酸化時間など)によって、細孔Spの生成密度、孔径および深さなどを制御することが出来る。また化成電圧の大きさを制御することによって、細孔Spの配列の規則性を制御することができる。電解液として、例えば、蓚酸、酒石酸、燐酸、クロム酸、クエン酸、リンゴ酸からなる群から選択される酸を含む酸性水溶液が用いられる。 The generation density, pore diameter, depth, and the like of the pores Sp can be controlled according to the conditions of anodization (for example, the formation voltage, the type and concentration of the electrolytic solution, and the anodization time). Further, the regularity of the arrangement of the pores Sp can be controlled by controlling the magnitude of the formation voltage. As the electrolytic solution, for example, an acidic aqueous solution containing an acid selected from the group consisting of oxalic acid, tartaric acid, phosphoric acid, chromic acid, citric acid, and malic acid is used.
 なお、電解液として蓚酸水溶液が好適に用いられる。蓚酸水溶液を用いることにより、硬質なポーラスアルミナ層を好適に形成することができ、このようなポーラスアルミナ層は高い耐久性を示す。例えば、蓚酸水溶液の温度は5℃以上30℃以下であり、蓚酸水溶液の濃度は0.1質量%以上2質量%以下である。蓚酸水溶液の濃度が0.1質量%よりも低いと、基板表面に対して細孔の伸びる方向が垂直にならない。また、蓚酸水溶液の濃度が2質量%よりも大きいと、化成電圧が所定の値に達する前に陽極酸化が開始してしまい、所望のモスアイ構造を形成できないことがある。 An oxalic acid aqueous solution is preferably used as the electrolytic solution. By using an oxalic acid aqueous solution, a hard porous alumina layer can be suitably formed, and such a porous alumina layer exhibits high durability. For example, the temperature of the oxalic acid aqueous solution is 5 ° C. or more and 30 ° C. or less, and the concentration of the oxalic acid aqueous solution is 0.1 mass% or more and 2 mass% or less. When the concentration of the oxalic acid aqueous solution is lower than 0.1% by mass, the direction in which the pores extend is not perpendicular to the substrate surface. On the other hand, if the concentration of the oxalic acid aqueous solution is larger than 2% by mass, anodization starts before the formation voltage reaches a predetermined value, and a desired moth-eye structure may not be formed.
 なお、最初に生成するポーラスアルミナ層Scは、不純物等の影響で、欠陥を多く含むことがあるため、必要に応じて、最初に形成されたポーラスアルミナ層Scを除去し、その後でポーラスアルミナ層Scを再度形成してもよい。最初に形成し、除去するポーラスアルミナ層Scの厚さは、再現性の観点から200nm以上であることが好ましく、生産性の観点から2000nm以下であることが好ましい。もちろん必要に応じて、最初に形成したポーラスアルミナ層Scを部分的に(例えば表面からある深さまで)除去しても良い。ポーラスアルミナ層Scの除去は、例えば、燐酸水溶液やクロム燐酸混合液に所定時間浸漬させて除去するなど公知の方法で行うことができる。 Since the porous alumina layer Sc that is initially generated may contain many defects due to the influence of impurities or the like, the porous alumina layer Sc that is formed first is removed as necessary, and then the porous alumina layer Sc Sc may be formed again. The thickness of the porous alumina layer Sc initially formed and removed is preferably 200 nm or more from the viewpoint of reproducibility, and preferably 2000 nm or less from the viewpoint of productivity. Of course, if necessary, the initially formed porous alumina layer Sc may be partially removed (for example, from the surface to a certain depth). The removal of the porous alumina layer Sc can be performed by a known method such as immersion in a phosphoric acid aqueous solution or a chromium phosphoric acid mixed solution for a predetermined time.
 図8(c)に示すように、ポーラスアルミナ層Scをエッチング液に接触させることによってエッチングを行い、ポーラスアルミナ層Scの複数の微細な凹部Spを拡大させる。ウェットエッチングを行うことによって細孔Spをほぼ等方的に拡大することができる。エッチング液の種類・濃度、およびエッチング時間を調整することによって、エッチング量(すなわち、細孔Spの大きさおよび深さ)を制御することが出来る。エッチング液としては、例えば10質量%の燐酸や、蟻酸、酢酸、クエン酸などの有機酸の水溶液やクロム燐酸混合水溶液を用いることができる。あるいは、エッチング液として、例えば、硫酸、塩酸、蓚酸などの酸性水溶液または水酸化ナトリウムなどのアルカリ水溶液等を用いてもよい。例えば、エッチング液として燐酸水溶液が好適に用いられる。燐酸水溶液は、安価で危険性が低いだけでなく、エッチングレートを比較的容易に制御できる。例えば、燐酸水溶液の温度は10℃以上50℃以下であり、燐酸水溶液の濃度は0.1M以上10M以下である。 As shown in FIG. 8C, etching is performed by bringing the porous alumina layer Sc into contact with an etching solution to enlarge a plurality of minute recesses Sp of the porous alumina layer Sc. By performing wet etching, the pores Sp can be enlarged approximately isotropically. The amount of etching (that is, the size and depth of the pores Sp) can be controlled by adjusting the type / concentration of the etching solution and the etching time. As the etching solution, for example, an aqueous solution of 10% by mass of phosphoric acid, an organic acid such as formic acid, acetic acid or citric acid, or a mixed solution of chromium phosphoric acid can be used. Alternatively, for example, an acidic aqueous solution such as sulfuric acid, hydrochloric acid, or oxalic acid, or an alkaline aqueous solution such as sodium hydroxide may be used as the etching solution. For example, an aqueous phosphoric acid solution is preferably used as the etching solution. The phosphoric acid aqueous solution is not only inexpensive and low in danger, but also can control the etching rate relatively easily. For example, the temperature of the phosphoric acid aqueous solution is 10 ° C. or more and 50 ° C. or less, and the concentration of the phosphoric acid aqueous solution is 0.1 M or more and 10 M or less.
 なお、必要であれば、陽極酸化およびエッチングを繰り返してもよい。このように、上述した陽極酸化工程およびエッチング工程を交互に繰り返すことによって、所望の凹凸形状を有する細孔(微細な凹部)Spを有するポーラスアルミナ層Scが得られる。陽極酸化工程およびエッチング工程のそれぞれの工程の条件を適宜設定することによって、細孔Spの生成密度、孔径および深さと共に、細孔Spの側面の階段形状を制御することが出来る。また、隣接する細孔Spが連続するまで細孔Spの孔径は拡大されてもよい。この場合、細孔Spの平均孔径Dpは細孔Spの平均隣接間距離Dintとほぼ等しくなる。なお、細孔Spの底部を小さくするためには、陽極酸化工程で終える(その後のエッチング工程を行わない)ことが好ましい。この場合、反転されたモスアイ構造の凹部の先端を小さくすることができるので、効率的に光を反射することができる。法線方向から見たときに、複数の微細な凹部(細孔)Spの2次元的な大きさは50nm以上380nm未満であり、互いに隣接する細孔Spの底点間の距離は50nm以上380nm未満であることが好ましい。 If necessary, anodic oxidation and etching may be repeated. Thus, by alternately repeating the above-described anodizing step and etching step, a porous alumina layer Sc having pores (fine concave portions) Sp having a desired uneven shape can be obtained. By appropriately setting the conditions of each step of the anodizing step and the etching step, the step shape on the side surface of the pore Sp can be controlled along with the generation density, pore diameter and depth of the pore Sp. Further, the pore diameter of the pore Sp may be expanded until adjacent pores Sp are continuous. In this case, the average pore diameter D p of the pores Sp is approximately equal to the average distance D int between the pores Sp. In addition, in order to make the bottom part of the pore Sp small, it is preferable to finish by an anodic oxidation process (the subsequent etching process is not performed). In this case, since the tip of the recessed portion of the inverted moth-eye structure can be made small, light can be efficiently reflected. When viewed from the normal direction, the two-dimensional size of the plurality of minute recesses (pores) Sp is 50 nm or more and less than 380 nm, and the distance between the bottom points of the adjacent pores Sp is 50 nm or more and 380 nm. It is preferable that it is less than.
 また、ここでは、陽極酸化工程とエッチング工程とを交互に行う例を説明したが、陽極酸化工程とエッチング工程との間、あるいはエッチング工程と陽極酸化工程との間に、洗浄工程やその後に乾燥工程を行っても良い。また、各陽極酸化工程の間に、化成電圧などの条件を変更しても良い。 In addition, here, an example in which the anodizing process and the etching process are alternately performed has been described, but the cleaning process and the drying process are performed between the anodizing process and the etching process or between the etching process and the anodizing process. A process may be performed. Moreover, you may change conditions, such as a formation voltage, between each anodizing process.
 図8(d1)および図8(d2)に示すように、ポーラスアルミナ層Scの上に金属層Mを形成する。金属層Mは、例えば、電気めっきまたは蒸着で形成される。電気めっきにより、金、銀、銅、ニッケルおよび白金の少なくとも1つを含む金属層Mを形成できる。このように、電気めっきは、貴金属を含む金属層Mの形成に適している。あるいは、蒸着により、例えば、金、銀、銅、アルミニウム、ニッケル、亜鉛、タングステン、タンタルおよび白金の少なくとも1つを含む金属層Mを形成できる。金属層Mは太陽熱集熱部材またはその一部として好適に用いられる。 As shown in FIG. 8 (d1) and FIG. 8 (d2), the metal layer M is formed on the porous alumina layer Sc. The metal layer M is formed by, for example, electroplating or vapor deposition. The metal layer M containing at least one of gold, silver, copper, nickel and platinum can be formed by electroplating. Thus, electroplating is suitable for forming the metal layer M containing a noble metal. Alternatively, for example, the metal layer M including at least one of gold, silver, copper, aluminum, nickel, zinc, tungsten, tantalum, and platinum can be formed by vapor deposition. The metal layer M is suitably used as a solar heat collecting member or a part thereof.
 図8(d1)に示すように、ポーラスアルミナ層Scの上に薄い金属層Mを形成する場合、金属層Mの表面に反転されたモスアイ構造が形成される。法線方向から見たときに、複数の微細な凹部(細孔)の2次元的な大きさが50nm以上380nm未満である場合、金属層Mは、上述した太陽熱集熱部材10Bとして用いられる。なお、複数の微細な凹部(細孔)の2次元的な大きさは可視領域の波長に相当してもよい。例えば、複数の微細な凹部(細孔)の2次元的な大きさが380nm以上500nm未満である場合、金属層Mを太陽熱集熱部材10bとして用いてもよい。なお、太陽熱集熱部材10B、10bでは、アルミニウム層、ポーラスアルミナ層Scおよび金属層Mがこの順番に積層されている。太陽熱集熱部材10B、10bは、陽極酸化およびエッチングによって簡便に作製できる。 As shown in FIG. 8D1, when the thin metal layer M is formed on the porous alumina layer Sc, an inverted moth-eye structure is formed on the surface of the metal layer M. When viewed from the normal direction, when the two-dimensional size of the plurality of fine recesses (pores) is 50 nm or more and less than 380 nm, the metal layer M is used as the solar heat collecting member 10B described above. Note that the two-dimensional size of the plurality of fine recesses (pores) may correspond to the wavelength in the visible region. For example, when the two-dimensional size of the plurality of fine recesses (pores) is 380 nm or more and less than 500 nm, the metal layer M may be used as the solar heat collecting member 10b. In the solar heat collecting members 10B and 10b, the aluminum layer, the porous alumina layer Sc, and the metal layer M are laminated in this order. The solar heat collecting members 10B and 10b can be easily produced by anodic oxidation and etching.
 あるいは、図8(d2)に示すように、厚い(例えば、厚さ1mm)金属層Mを形成する場合、その後、図8(e)に示すように金属層Mをポーラスアルミナ層Scから剥離してもよい。剥離が容易に行えない場合、ポーラスアルミナ層Scを電解液で溶解させてもよい。剥離された金属層Mの表面はモスアイ構造を有している。なお、電気めっきによってポーラスアルミナ層Scの上に金属層Mを形成した後に、金属層Mをポーラスアルミナ層Scから剥離することは電鋳とも呼ばれる。法線方向から見たときに、複数の微細な凸部の2次元的な大きさが50nm以上380nm未満である場合、金属層Mは、上述した太陽熱集熱部材10Aとして用いられる。なお、複数の微細な凸部の2次元的な大きさは可視領域の波長に相当してもよい。例えば、複数の微細な凹部(細孔)の2次元的な大きさが380nm以上500nm未満である場合、金属層Mを太陽熱集熱部材10aとして用いてもよい。このように、太陽熱集熱部材10A、10aは陽極酸化およびエッチングによって簡便に作製できる。また、必要に応じて太陽熱集熱部材10A、10aは金属基材に貼り付けられる。 Alternatively, when forming a thick (for example, 1 mm thick) metal layer M as shown in FIG. 8 (d2), the metal layer M is then peeled off from the porous alumina layer Sc as shown in FIG. 8 (e). May be. If peeling cannot be easily performed, the porous alumina layer Sc may be dissolved with an electrolytic solution. The surface of the peeled metal layer M has a moth-eye structure. In addition, after forming the metal layer M on the porous alumina layer Sc by electroplating, peeling the metal layer M from the porous alumina layer Sc is also called electroforming. When viewed from the normal direction, when the two-dimensional size of the plurality of fine protrusions is 50 nm or more and less than 380 nm, the metal layer M is used as the solar heat collecting member 10A described above. Note that the two-dimensional size of the plurality of fine protrusions may correspond to the wavelength in the visible region. For example, when the two-dimensional size of the plurality of fine recesses (pores) is 380 nm or more and less than 500 nm, the metal layer M may be used as the solar heat collecting member 10a. As described above, the solar heat collecting members 10A and 10a can be easily manufactured by anodic oxidation and etching. Moreover, solar heat collecting member 10A, 10a is affixed on a metal base material as needed.
 なお、図8を参照して上述した説明では、金属層Mをポーラスアルミナ層の上に直接形成したが、本発明はこれに限定されない。ポーラスアルミナ層の微細な凹部を転写した型(例えば、光硬化性樹脂層)の上に金属層Mを形成してもよい。 In the above description with reference to FIG. 8, the metal layer M is formed directly on the porous alumina layer, but the present invention is not limited to this. You may form the metal layer M on the type | mold (for example, photocurable resin layer) which transferred the fine recessed part of the porous alumina layer.
 以下、図9を参照して本実施形態の太陽熱集熱部材の作製方法を説明する。 Hereinafter, a method for producing the solar heat collecting member of this embodiment will be described with reference to FIG.
 まず、図9(a)に示すように、アルミニウム層を有する型基材Sを用意する。あるいは、型基材S自体がアルミニウム基材であってもよい。 First, as shown in FIG. 9A, a mold base S having an aluminum layer is prepared. Alternatively, the mold substrate S itself may be an aluminum substrate.
 図9(b)に示すように、アルミニウム層またはアルミニウム基材の表面を部分的に陽極酸化することによって、複数の微細な凹部Spを規定するポーラス層Sa、および、複数の微細な凹部のそれぞれの底部に設けられたバリア層Sbを有するポーラスアルミナ層Scを形成する。 As shown in FIG. 9 (b), by partially anodizing the surface of the aluminum layer or the aluminum substrate, each of the porous layer Sa defining the plurality of minute recesses Sp and the plurality of minute recesses A porous alumina layer Sc having a barrier layer Sb provided on the bottom of the substrate is formed.
 図9(c)に示すように、ポーラスアルミナ層Scをエッチング液に接触させることによってエッチングを行い、ポーラスアルミナ層Scの複数の微細な凹部Spを拡大させる。 As shown in FIG. 9 (c), etching is performed by bringing the porous alumina layer Sc into contact with an etching solution to enlarge a plurality of minute recesses Sp of the porous alumina layer Sc.
 必要であれば、隣接する凹部Spが連続するまで陽極酸化およびエッチングを繰り返してもよい。以上のように形成されたポーラスアルミナ層Scは型として用いられる。なお、図9(a)から図9(c)は図8(a)から図8(c)を参照して上述した説明と同様であり、冗長を避けるために重複する説明を省略している。 If necessary, anodic oxidation and etching may be repeated until adjacent concave portions Sp are continuous. The porous alumina layer Sc formed as described above is used as a mold. 9A to 9C are the same as those described above with reference to FIGS. 8A to 8C, and redundant description is omitted to avoid redundancy. .
 図9(d)に示すように、ポーラスアルミナ層Scの複数の微細な凹部Spに光硬化性樹脂を付与した状態で、光硬化性樹脂に紫外線を照射することによって光硬化性樹脂層Kを形成する。被加工物Lの表面とポーラスアルミナ層Scとの間に、光硬化性樹脂を付与した状態で、型基材Sを介して光硬化性樹脂に紫外線(UV)を照射することによって光硬化性樹脂を硬化する。これにより、ポーラスアルミナ層と接する表面に、凸部の形成された光硬化性樹脂層Kが形成される。なお、光硬化性樹脂は、被加工物Lの表面に付与しておいても良いし、ポーラスアルミナ層Scに付与しておいてもよい。光硬化性樹脂としては、例えばアクリル系樹脂を用いることができる。 As shown in FIG. 9 (d), the photocurable resin layer K is formed by irradiating the photocurable resin with ultraviolet rays in a state where the photocurable resin is applied to the plurality of fine recesses Sp of the porous alumina layer Sc. Form. Photocurability is obtained by irradiating the photocurable resin with ultraviolet rays (UV) through the mold substrate S in a state where the photocurable resin is applied between the surface of the workpiece L and the porous alumina layer Sc. Cure the resin. Thereby, the photocurable resin layer K in which the convex part was formed is formed in the surface which contact | connects a porous alumina layer. The photocurable resin may be applied to the surface of the workpiece L or may be applied to the porous alumina layer Sc. As the photocurable resin, for example, an acrylic resin can be used.
 図9(e)に示すように、光硬化性樹脂層Kからポーラスアルミナ層Scを分離することによって、ポーラスアルミナ層Scの凹凸構造が転写された光硬化性樹脂層Kが被加工物Lの表面に形成される。 As shown in FIG. 9E, by separating the porous alumina layer Sc from the photocurable resin layer K, the photocurable resin layer K to which the concavo-convex structure of the porous alumina layer Sc is transferred becomes the workpiece L. Formed on the surface.
 図9(f1)および図9(f2)に示すように、光硬化性樹脂層Kの複数の微細な凹部に対応する表面の上に金属層Mを形成する。具体的には、金属層Mを電気めっきまたは蒸着で形成する。この金属層Mは太陽熱集熱部材またはその一部として好適に用いられる。 9 (f1) and FIG. 9 (f2), a metal layer M is formed on the surface of the photocurable resin layer K corresponding to the plurality of fine recesses. Specifically, the metal layer M is formed by electroplating or vapor deposition. This metal layer M is suitably used as a solar heat collecting member or a part thereof.
 図9(f1)に示すように、光硬化性樹脂層Kの上に薄い金属層Mを形成する場合、金属層Mの表面にモスアイ構造が形成される。法線方向から見たときに、複数の微細な凸部の2次元的な大きさが50nm以上380nm未満である場合、金属層Mは、上述した太陽熱集熱部材10Aとして用いられる。なお、複数の微細な凸部の2次元的な大きさは可視領域の波長に相当してもよい。例えば、複数の微細な凸部の2次元的な大きさが380nm以上500nm未満である場合、金属層Mを太陽熱集熱部材10aとして用いてもよい。なお、太陽熱集熱部材10A、10aでは、被加工物L、光硬化性樹脂層Kおよび金属層Mがこの順番に積層されている。太陽熱集熱部材10A、10aは、陽極酸化およびエッチングによって簡便に作製できる。 As shown in FIG. 9 (f <b> 1), when the thin metal layer M is formed on the photocurable resin layer K, a moth-eye structure is formed on the surface of the metal layer M. When viewed from the normal direction, when the two-dimensional size of the plurality of fine protrusions is 50 nm or more and less than 380 nm, the metal layer M is used as the solar heat collecting member 10A described above. Note that the two-dimensional size of the plurality of fine protrusions may correspond to the wavelength in the visible region. For example, when the two-dimensional size of the plurality of fine protrusions is 380 nm or more and less than 500 nm, the metal layer M may be used as the solar heat collecting member 10a. In the solar heat collecting members 10A and 10a, the workpiece L, the photocurable resin layer K, and the metal layer M are laminated in this order. The solar heat collecting members 10A and 10a can be easily produced by anodic oxidation and etching.
 あるいは、図9(f2)に示すように、厚い(例えば、厚さ1mm)金属層Mを形成する場合、その後、図9(g)に示すように金属層Mを光硬化性樹脂層Kから剥離してもよい。このようにして、ポーラスアルミナ層Scの複数の微細な凹部に対応した複数の凹部の設けられた表面を有する金属層Mが形成される。法線方向から見たときに、複数の微細な凹部(細孔)の2次元的な大きさが50nm以上380nm未満である場合、金属層Mは、上述した太陽熱集熱部材10Bとして用いられる。なお、複数の微細な凹部(細孔)の2次元的な大きさは可視領域の波長に相当してもよい。例えば、複数の微細な凹部(細孔)の2次元的な大きさが380nm以上500nm未満である場合、金属層Mを、太陽熱集熱部材10bとして用いてもよい。このように、太陽熱集熱部材10B、10bは陽極酸化およびエッチングによって簡便に作製できる。また、必要に応じて太陽熱集熱部材10B、10bは金属基材に貼り付けられる。 Alternatively, when a thick (for example, 1 mm thick) metal layer M is formed as shown in FIG. 9 (f2), the metal layer M is then removed from the photocurable resin layer K as shown in FIG. 9 (g). It may be peeled off. In this way, the metal layer M having a surface provided with a plurality of recesses corresponding to the plurality of minute recesses of the porous alumina layer Sc is formed. When viewed from the normal direction, when the two-dimensional size of the plurality of fine recesses (pores) is 50 nm or more and less than 380 nm, the metal layer M is used as the solar heat collecting member 10B described above. Note that the two-dimensional size of the plurality of fine recesses (pores) may correspond to the wavelength in the visible region. For example, when the two-dimensional size of the plurality of fine recesses (pores) is not less than 380 nm and less than 500 nm, the metal layer M may be used as the solar heat collecting member 10b. As described above, the solar heat collecting members 10B and 10b can be easily manufactured by anodic oxidation and etching. Moreover, the solar- heat collection members 10B and 10b are affixed on a metal base material as needed.
 上述したように、本実施形態の太陽熱集熱部材の金属層Mの表面は、モスアイ構造を有してもよく、または、反転されたモスアイ構造を有してもよい。なお、金属層Mをポーラスアルミナ層Scまたは金型から剥離する場合、モスアイ構造は図8を参照して上述したように形成され、反転されたモスアイ構造は図9を参照して上述したように形成される。この場合、ポーラスアルミナ層Scの凹凸構造を金属層Mに直接転写するのではなく、光硬化性樹脂層Kを介してポーラスアルミナ層Scの凹凸構造を金属層Mに間接的に転写することにより、金属層Mの剥離を容易に行うことができる。このため、反転されたモスアイ構造は効率的に形成可能である。 As described above, the surface of the metal layer M of the solar heat collecting member of the present embodiment may have a moth-eye structure or an inverted moth-eye structure. When the metal layer M is peeled off from the porous alumina layer Sc or the mold, the moth-eye structure is formed as described above with reference to FIG. 8, and the inverted moth-eye structure is as described above with reference to FIG. It is formed. In this case, the uneven structure of the porous alumina layer Sc is not directly transferred to the metal layer M, but the uneven structure of the porous alumina layer Sc is indirectly transferred to the metal layer M via the photocurable resin layer K. The metal layer M can be easily peeled off. For this reason, the inverted moth-eye structure can be formed efficiently.
 上述した説明では、凸部10pまたは凹部10qはほぼ周期的に配列されていたが、本発明はこれに限定されない。回折光の発生を抑制するためには、凹凸構造における凹部または凸部の配列は周期性を有しないことが好ましい。周期性を有しないとは、ある細孔の重心からその細孔に隣接する全ての細孔のそれぞれの重心に向けたベクトルの総和がベクトルの全長の5%以上であれば、実質的に周期性を有しないと言える。凹凸構造に周期性がある場合には、その周期は光の波長よりも小さいことが好ましい。 In the above description, the convex portions 10p or the concave portions 10q are arranged almost periodically, but the present invention is not limited to this. In order to suppress the generation of diffracted light, it is preferable that the concave portion or the convex portion array in the concave-convex structure has no periodicity. Non-periodicity means that if the sum of vectors from the center of gravity of a pore toward the center of gravity of all pores adjacent to the pore is 5% or more of the total length of the vector, the period is substantially periodic. It can be said that it does not have sex. When the concavo-convex structure has periodicity, the period is preferably smaller than the wavelength of light.
 図10は、太陽熱集熱部材10Bの表面を走査型電子顕微鏡(scanning electron microscope:SEM)で撮影した像を示す図である。ここでは、太陽熱集熱部材10Bは、図9を参照して上述した工程に従って作製されており、金属層Mはニッケルから形成されている。ここでは、凹部10qは周期性を有していない。また、頂点10tは尖状に形成されており、隣接する凹部10qの間には鞍部10sが形成されている。凹部の平均隣接間距離は約200nmである。 FIG. 10 is a view showing an image obtained by photographing the surface of the solar heat collecting member 10B with a scanning electron microscope (SEM). Here, the solar heat collecting member 10B is manufactured according to the process described above with reference to FIG. 9, and the metal layer M is formed of nickel. Here, the recess 10q has no periodicity. Further, the vertex 10t is formed in a pointed shape, and a flange portion 10s is formed between the adjacent concave portions 10q. The average distance between adjacent recesses is about 200 nm.
 上述した説明では、モスアイ構造または反転されたモスアイ構造による可視領域の光の反射および吸収について説明したが、集熱を効率的に行うためには、熱の吸収を効率的に行うだけでなく熱放射の抑制を効率的に行うことが必要である。以下では、熱の放射についても併せて説明する。 In the above description, the reflection and absorption of light in the visible region by the moth-eye structure or the inverted moth-eye structure has been described. However, in order to collect heat efficiently, not only the heat absorption but also the heat absorption is effective. It is necessary to efficiently suppress radiation. Hereinafter, heat radiation will also be described.
 図11(a)は比較的短い波長の光が太陽熱集熱部材10A、10Bに入射した際の挙動を示す模式図であり、図11(b)は比較的長い波長の光が太陽熱集熱部材10A、10Bに入射した際の挙動を示す模式図である。例えば、図11(a)に示した挙動を示すのは波長300nm以上2000nm未満の光であり、図11(b)に示した挙動を示すのは波長2000nm以上10000nm未満の光である。 FIG. 11A is a schematic diagram showing the behavior when light having a relatively short wavelength is incident on the solar heat collecting members 10A and 10B, and FIG. 11B is a diagram showing light having a relatively long wavelength. It is a schematic diagram which shows the behavior at the time of entering into 10A, 10B. For example, light having a wavelength of 300 nm or more and less than 2000 nm shows the behavior shown in FIG. 11A, and light having a wavelength of 2000 nm or more and less than 10000 nm shows the behavior shown in FIG.
 図11(a)および図11(b)に示すように、太陽熱集熱部材10A、10Bでは、短波長の光の反射が効率的に抑制されるのに対して、長波長の光は効率的に反射される。一般的な金属は、平坦面において高い反射率を示すが、太陽熱集熱部材10A、10Bの金属層Mの表面は、凸部10pまたは凹部10qの大きさが50nm以上380nm未満のモスアイ構造または反転されたモスアイ構造を有しているため、構造の大きさとほぼ同等の波長の光の反射率は低い一方、構造の大きさよりも十分長い波長の光の反射率は高い。長波長の光は、モスアイ構造または反転されたモスアイ構造が設けられていたとしても、平坦な面と同様に挙動する。なお、凸部10pの高さおよび凹部10qの深さがほぼ等しい場合、太陽熱集熱部材の表面に凸部10pおよび凹部10qのいずれが設けられてもそれらの光学的特性の差はほとんどない。ただし、上述したように、比較的厚い金属層Mを形成する場合、凹部10qを有する金属層Mの剥離は、凸部10pを有する金属層Mよりも容易であり、また、剥離は凹部10qの深さが小さいほど容易である。 As shown in FIGS. 11 (a) and 11 (b), in the solar heat collecting members 10A and 10B, reflection of short wavelength light is efficiently suppressed, whereas long wavelength light is efficient. Reflected in. A general metal exhibits a high reflectance on a flat surface, but the surface of the metal layer M of the solar heat collecting members 10A and 10B has a moth-eye structure or an inversion in which the size of the convex portion 10p or the concave portion 10q is 50 nm or more and less than 380 nm. Since the moth-eye structure is provided, the reflectance of light having a wavelength substantially equal to the size of the structure is low, while the reflectance of light having a wavelength sufficiently longer than the size of the structure is high. Long-wavelength light behaves like a flat surface even if a moth-eye structure or an inverted moth-eye structure is provided. In addition, when the height of the convex part 10p and the depth of the recessed part 10q are substantially equal, even if any of the convex part 10p and the recessed part 10q is provided in the surface of a solar heat collecting member, there is almost no difference in those optical characteristics. However, as described above, when the relatively thick metal layer M is formed, the metal layer M having the concave portion 10q is more easily peeled off than the metal layer M having the convex portion 10p, and the peeling is performed on the concave portion 10q. The smaller the depth, the easier.
 なお、凸部10pまたは凹部10qの大きさだけでなく凸部10pの高さまたは凹部10qの深さも同様に影響する。凸部10pの高さまたは凹部10qの深さが50nm以上380nm未満の場合、その構造の高さまたは深さとほぼ同等の波長の光の反射率は低い。一方、光の波長がその構造の高さまたは深さよりも十分長い場合、モスアイ構造または反転されたモスアイ構造を有していたとしても平坦な面に入射した場合と同様に、反射率は高い。このように太陽熱集熱部材10A、10Bの反射率は光の波長に応じて変化する。また、上述したように、反射率は吸収率と反相関関係を示すため、太陽熱集熱部材10A、10Bの吸収率は光の波長に応じて異なる。このような太陽熱集熱部材10A、10Bは選択吸収部材とも呼ばれる。 In addition, not only the magnitude | size of the convex part 10p or the recessed part 10q but the height of the convex part 10p or the depth of the recessed part 10q influences similarly. When the height of the convex portion 10p or the depth of the concave portion 10q is 50 nm or more and less than 380 nm, the reflectance of light having a wavelength substantially equal to the height or depth of the structure is low. On the other hand, when the wavelength of light is sufficiently longer than the height or depth of the structure, the reflectance is high even if it has a moth-eye structure or an inverted moth-eye structure, as in the case of incidence on a flat surface. Thus, the reflectance of the solar heat collecting members 10A and 10B changes according to the wavelength of light. Further, as described above, since the reflectivity has an anti-correlation with the absorptance, the absorptance of the solar heat collecting members 10A and 10B varies depending on the wavelength of light. Such solar heat collecting members 10A and 10B are also called selective absorbing members.
 太陽熱集熱部材10A、10Bの反射率は可視領域において比較的低く、赤外領域(特に、中赤外領域)において比較的高い。以下に、光の反射および放射の関係を説明する。 The reflectance of the solar heat collecting members 10A and 10B is relatively low in the visible region and relatively high in the infrared region (particularly the mid-infrared region). The relationship between light reflection and radiation will be described below.
 上述したように、ある部材に入射した光は、反射されるか、透過するか、吸収される。このため、エネルギー保存則の点から、吸収率は以下のように示される。
 吸収率 = 100%-反射率-透過率
As described above, light incident on a certain member is reflected, transmitted, or absorbed. For this reason, from the point of energy conservation law, the absorption rate is shown as follows.
Absorptivity = 100%-reflectance-transmittance
 上記反射率は厳密には正反射成分だけでなく拡散反射成分を含む反射率である。このような反射率は、例えば、積分球を用いて測定される。また、この部材が金属である場合、透過率はほぼゼロである。金属の厚さがほぼ100nmであれば、自由電子の影響により、入射した光は金属層Mがバルクの場合とほぼ同様に挙動する。 The above reflectance is strictly a reflectance including not only a regular reflection component but also a diffuse reflection component. Such reflectance is measured using, for example, an integrating sphere. Moreover, when this member is a metal, the transmittance | permeability is substantially zero. If the thickness of the metal is approximately 100 nm, the incident light behaves in substantially the same manner as when the metal layer M is bulk due to the influence of free electrons.
 また、熱の吸収および放射の関係として、吸収率が放射率に比例することが知られている。このような関係は、キルヒホッフの法則とも呼ばれる。この法則によれば、分光吸収率は分光放射率に比例する。例えば、黒体は熱を比較的吸収しやすいが、熱を比較的放射しやすい。一方、金属は、熱を比較的放射しにくいが、熱を比較的吸収しにくい。分光放射率は、ある温度の完全放射体(黒体)との放射発散度に対する同一温度のある熱放射体の放射発散度の比で表される。 Also, as a relationship between heat absorption and radiation, it is known that the absorptance is proportional to the emissivity. Such a relationship is also called Kirchhoff's law. According to this law, the spectral absorptance is proportional to the spectral emissivity. For example, a black body is relatively easy to absorb heat, but is relatively easy to radiate heat. On the other hand, metal is relatively difficult to radiate heat, but relatively difficult to absorb heat. Spectral emissivity is expressed as the ratio of the radiant emittance of a thermal radiator with the same temperature to the radiant emittance of a perfect radiator (black body) at a certain temperature.
 蛍光および燐光がない場合、上記式は、以下のように示される。
 分光吸収率 = 100%-分光反射率-分光透過率
In the absence of fluorescence and phosphorescence, the above formula is shown as follows:
Spectral absorptivity = 100%-Spectral reflectance-Spectral transmittance
 以下に、太陽光スペクトルおよび黒体からの放射スペクトルを説明する。 The solar spectrum and the radiation spectrum from the black body are described below.
 図12に、太陽光の分光放射分布の波長依存性を示す。図12には、地上(エアマス1.5)でのスペクトルとともに大気圏外(エアマス0)のスペクトルを示している。いずれのスペクトルにおいても、可視領域の放射強度が比較的高く、赤外領域(特に、波長2000nm以上)の放射強度は比較的低い。 Fig. 12 shows the wavelength dependence of the spectral radiation distribution of sunlight. FIG. 12 shows the spectrum outside the atmosphere (air mass 0) together with the spectrum on the ground (air mass 1.5). In any spectrum, the radiant intensity in the visible region is relatively high, and the radiant intensity in the infrared region (particularly at a wavelength of 2000 nm or more) is relatively low.
 図13に、黒体放射スペクトルを示す。図13には、Wienの法則で得られる黒体のピーク波長の変化を併せて示している。Wienの法則によると、熱放射における光のピーク波長は、高温時に短く、低温時に長い。例えば、太陽表面の6000Kの場合、放射光のピーク波長は約0.5μmであり、室温環境(300K)の場合、放射光のピーク波長は約10μmである。 Fig. 13 shows the blackbody radiation spectrum. FIG. 13 also shows changes in the peak wavelength of the black body obtained by Wien's law. According to Wien's law, the peak wavelength of light in thermal radiation is short at high temperatures and long at low temperatures. For example, in the case of 6000 K on the solar surface, the peak wavelength of the emitted light is about 0.5 μm, and in the room temperature environment (300 K), the peak wavelength of the emitted light is about 10 μm.
 太陽光の照射時に、太陽熱集熱部材10A、10Bの温度は約400Kから500Kである。太陽光のほとんどの波長が2μm未満である一方、太陽熱集熱部材10A、10Bからの放射光のほとんどの波長は2μm以上である。このため、太陽熱集熱部材10A、10Bの吸収率が短波長(例えば、波長2μm未満)において比較的高く(すなわち、反射率は比較的低く)、長波長(例えば、波長2μm以上)において比較的低い(すなわち、反射率が比較的高い)場合、集熱を効率的に行うことができる。 During solar irradiation, the temperature of the solar heat collecting members 10A and 10B is about 400K to 500K. While most wavelengths of sunlight are less than 2 μm, most wavelengths of emitted light from the solar heat collecting members 10 </ b> A and 10 </ b> B are 2 μm or more. For this reason, the solar heat collecting members 10A and 10B have relatively high absorptance at a short wavelength (for example, less than 2 μm), and relatively low at a long wavelength (for example, 2 μm or more). When it is low (that is, the reflectance is relatively high), heat collection can be performed efficiently.
 図14に、吸収率の波長依存性を示す。ここでは、比較のために、一般的な金属および炭化ケイ素の吸収率の変化を併せて示している。一般に、金属は、比較的高い反射率を有しており、金属は任意の波長の光に対して比較的低い吸収率を示す。一方、炭化ケイ素は任意の波長の光に対して比較的高い吸収率を示す。これに対して、集熱に用いられる太陽熱集熱部材10A、10Bの吸収率は、可視領域において比較的高く、赤外領域において比較的低いことが好ましい。特に、2μm未満の短波長では吸収率が高く(すなわち、反射率が低く)、2μm以上の長波長では低いことが好ましい。 FIG. 14 shows the wavelength dependency of the absorption rate. Here, for comparison, changes in absorption rates of general metals and silicon carbide are also shown. In general, metals have a relatively high reflectivity, and metals exhibit a relatively low absorption for light of any wavelength. On the other hand, silicon carbide exhibits a relatively high absorption rate with respect to light of an arbitrary wavelength. On the other hand, the solar heat collecting members 10A and 10B used for heat collection preferably have a relatively high absorption rate in the visible region and relatively low in the infrared region. In particular, it is preferable that the absorptance is high (that is, the reflectance is low) at a short wavelength of less than 2 μm and low at a long wavelength of 2 μm or more.
 以下に、サンプル1~4の反射率を比較して説明する。サンプル1~4はいずれもニッケル電鋳で作製される。以下、図15から図18を参照してサンプル1~4を説明する。 Below, the reflectance of samples 1 to 4 will be compared and described. Samples 1 to 4 are all produced by nickel electroforming. Hereinafter, samples 1 to 4 will be described with reference to FIGS.
 図15(a)に、サンプル1~3を示し、図15(b)に、サンプル4を示す。サンプル2および3は同じニッケル板内の異なる領域である。 FIG. 15 (a) shows Samples 1 to 3, and FIG. 15 (b) shows Sample 4. Samples 2 and 3 are different regions within the same nickel plate.
 図16(a)に、光学顕微鏡で測定したサンプル1の像を示し、図16(b)~図16(d)に、SEMで測定したサンプル1の像を示す。図16(b)~図16(d)の倍率はそれぞれ1K、10K、35Kである。 FIG. 16A shows an image of sample 1 measured with an optical microscope, and FIGS. 16B to 16D show images of sample 1 measured with SEM. The magnifications in FIGS. 16B to 16D are 1K, 10K, and 35K, respectively.
 サンプル1は、反転されたモスアイ構造を有している。サンプル1においてピッチ(平均隣接間距離)は200nmであり、高さは400nmである。このように、サンプル1には、可視領域の波長よりも小さい平均隣接間距離で凸部が形成されており、サンプル1の表面は黒く見える。 Sample 1 has an inverted moth-eye structure. In sample 1, the pitch (average distance between adjacent neighbors) is 200 nm, and the height is 400 nm. Thus, the sample 1 has convex portions formed with an average distance between adjacent neighbors smaller than the wavelength in the visible region, and the surface of the sample 1 looks black.
 サンプル1は、以下のように作成される。ガラス基板上に厚さ1μmのアルミニウム層を形成し、陽極酸化とエッチングを繰り返して反転されたモスアイ構造を形成する。陽極酸化は、シュウ酸0.3wt%、80V、液温5度で55秒間行われる。また、エッチングは、リン酸1mol/lを用いて液温30度で25分間行われる。なお、陽極酸化およびエッチングは交互に行われる。陽極酸化は合計5回行われ、エッチングは合計4回行われる。以上のようにして反転されたモスアイ構造を有するポーラスアルミナ層が形成される。その後、このようなポーラスアルミナ層に対してニッケル電解液を用いて電気めっきを行い、ポーラスアルミナ層の上に厚さ1mmの金属層Mを形成する。ガラス基板から金属層Mを容易に剥離することは困難であるため、ガラス基板を叩き割り、リン酸で一日浸漬させた後で、エッチングを行い、金属層Mの離型を行う。このような電鋳によって、サンプル1が形成される。 Sample 1 is created as follows. An aluminum layer having a thickness of 1 μm is formed on a glass substrate, and an inverted moth-eye structure is formed by repeating anodization and etching. Anodization is performed for 55 seconds at 0.3 wt% oxalic acid, 80 V, and a liquid temperature of 5 degrees. Etching is performed at a liquid temperature of 30 ° C. for 25 minutes using 1 mol / l of phosphoric acid. Anodization and etching are alternately performed. Anodization is performed 5 times in total, and etching is performed 4 times in total. As described above, a porous alumina layer having a reversed moth-eye structure is formed. Thereafter, electroplating is performed on such a porous alumina layer using a nickel electrolytic solution to form a metal layer M having a thickness of 1 mm on the porous alumina layer. Since it is difficult to easily peel off the metal layer M from the glass substrate, the glass layer is beaten and immersed in phosphoric acid for one day, and then etching is performed to release the metal layer M. Sample 1 is formed by such electroforming.
 なお、図16(a)、図16(b)、図16(c)においてサンプル1の一部にひっかき傷をつけた部分を丸で囲んでいる。この部分には金属光沢がみられる。 In FIGS. 16 (a), 16 (b), and 16 (c), a portion of the sample 1 that is scratched is circled. This area has a metallic luster.
 図17(a)および図17(b)に、サンプル2のSEM斜視像およびSEM正面像をそれぞれ示す。サンプル2の表面にはマイクロコーナーキューブアレイが設けられている。図17(a)および図17(b)に示したサンプル2のピッチは12μmである。 FIGS. 17A and 17B show a SEM perspective image and a SEM front image of Sample 2, respectively. A micro corner cube array is provided on the surface of the sample 2. The pitch of the sample 2 shown in FIGS. 17A and 17B is 12 μm.
 サンプル2およびサンプル3は以下のように作製される。まず、半導体ウエハを用意し、半導体ウエハの表面の一部の領域に異方性エッチングを行う。その後、半導体ウエハのこの部分の形状を機械的に整えて、マイクロコーナーキューブアレイを形成する。なお、半導体ウエハの別の領域はほぼ平坦なままである。このような半導体ウエハに対して、ニッケル電解液を用いて電気めっきを行い、半導体ウエハの上に厚さ1mmの金属層Mを形成する。この金属層Mは半導体ウエハから容易に剥離できる。このような電鋳によって、サンプル2およびサンプル3が形成される。 Sample 2 and sample 3 are produced as follows. First, a semiconductor wafer is prepared, and anisotropic etching is performed on a part of the surface of the semiconductor wafer. Thereafter, the shape of this portion of the semiconductor wafer is mechanically adjusted to form a micro corner cube array. Note that another region of the semiconductor wafer remains substantially flat. Such a semiconductor wafer is electroplated using a nickel electrolytic solution to form a metal layer M having a thickness of 1 mm on the semiconductor wafer. This metal layer M can be easily peeled from the semiconductor wafer. Samples 2 and 3 are formed by such electroforming.
 図18(a)および図18(b)に、サンプル4のSEM斜視像およびSEM正面像をそれぞれ示す。サンプル4は反転されたモスアイ構造を有している。この凹部の平均隣接間距離は200nmであり、高さは200nmである。このように、サンプル4には、可視領域の波長よりも小さい平均隣接間距離で凹部が形成されており、サンプル4の表面は黒く見える。 18A and 18B show a SEM perspective image and a SEM front image of Sample 4, respectively. Sample 4 has an inverted moth-eye structure. The average distance between adjacent recesses is 200 nm, and the height is 200 nm. Thus, the sample 4 has recesses formed with an average distance between adjacent neighbors smaller than the wavelength in the visible region, and the surface of the sample 4 looks black.
 サンプル4は以下のように形成される。まず、サンプル1の形成と同様に、ポーラスアルミナ層を形成する。その後、この形成物を型として、アクリル系光硬化性樹脂に転写を行う。アクリル系光硬化性樹脂に対して、ニッケル電解液を用いて電気めっきを行い、半導体ウエハの上に厚さ1mmの金属層Mを形成する。この金属層Mは容易に剥離可能である。このような電鋳によって、サンプル4が形成される。 Sample 4 is formed as follows. First, a porous alumina layer is formed in the same manner as the formation of Sample 1. Thereafter, this formed product is used as a mold and transferred to an acrylic photocurable resin. Electroplating is performed on the acrylic photocurable resin using a nickel electrolytic solution to form a metal layer M having a thickness of 1 mm on the semiconductor wafer. This metal layer M can be easily peeled off. Sample 4 is formed by such electroforming.
 なお、サンプル1は、ガラス基板上に形成したポーラスアルミナ層の上に直接金属層Mを形成して作製したのに対して、サンプル4は、ガラス基板上に形成したポーラスアルミナ層を転写した光硬化性樹脂の上に金属層Mを形成している。サンプル4を形成する際のポーラスアルミナ層は、サンプル1のポーラスアルミナ層と同様に形成されるが、サンプル1において形成される金属層Mの凸部の平均高さは約400nmであり、サンプル4において形成される金属層Mの凹部の平均深さは約200nmである。 Sample 1 was prepared by forming metal layer M directly on the porous alumina layer formed on the glass substrate, whereas sample 4 was light obtained by transferring the porous alumina layer formed on the glass substrate. A metal layer M is formed on the curable resin. The porous alumina layer when forming the sample 4 is formed in the same manner as the porous alumina layer of the sample 1, but the average height of the convex portions of the metal layer M formed in the sample 1 is about 400 nm. The average depth of the recesses of the metal layer M formed in is about 200 nm.
 図19に、サンプル1~4の反射率の波長依存性を示す。ここでは、サンプル2として、ピッチ24μmのマイクロコーナーキューブアレイの設けられたニッケルを用いている。また、ここでは、株式会社日立製作所製の分光光度計U-4100を用いて波長350nmから2000nmの反射率を測定し、赤外反射率測定器を用いて波長2500nmから15000nmの反射率を測定する。例えば、赤外反射率測定器として、サーモフィッシャーサイエンティフィック株式会社製の本体Nicolet Avatar 370、および、顕微鏡Continuumが用いられる。なお、反射率の測定は、出射光の波長の異なる3つの光源を用いて行う。ここでは、3つの光源の波長が重なっていない部分があるため、グラフに示された直線は連続していない。 Fig. 19 shows the wavelength dependence of the reflectance of samples 1 to 4. Here, as the sample 2, nickel provided with a micro corner cube array having a pitch of 24 μm is used. Further, here, the reflectance at a wavelength of 350 nm to 2000 nm is measured using a spectrophotometer U-4100 manufactured by Hitachi, Ltd., and the reflectance at a wavelength of 2500 nm to 15000 nm is measured using an infrared reflectance meter. . For example, a main body Nicolet Avatar 370 manufactured by Thermo Fisher Scientific Co., Ltd. and a microscope Continuum are used as an infrared reflectance measuring device. Note that the reflectance is measured using three light sources having different wavelengths of emitted light. Here, since there are portions where the wavelengths of the three light sources do not overlap, the straight lines shown in the graph are not continuous.
 サンプル3はニッケルの比較的平坦な表面を有しており、可視領域から赤外領域にわたって一般的な金属の反射スペクトルが得られたと考えられる。サンプル2は、μmレベルの構造を有しているため、赤外領域においても反射率は低いままであったと考えられる。これに対して、サンプル1およびサンプル4はnmレベルの構造を有しており、構造よりも短い波長の光の反射率は低いものの、構造と比べて比較的長い波長の光の反射率は比較的高くなると考えられる。このようなサンプル1は図1を参照して説明した太陽熱集熱部材10Aとして用いられ、サンプル4は図5を参照して説明した太陽熱集熱部材10Bとして用いられる。 Sample 3 has a relatively flat surface of nickel, and it is considered that a general metal reflection spectrum was obtained from the visible region to the infrared region. Since Sample 2 has a μm level structure, the reflectance is considered to remain low even in the infrared region. On the other hand, Sample 1 and Sample 4 have a structure at the nm level, and the reflectance of light having a shorter wavelength than that of the structure is low, but the reflectance of light having a relatively longer wavelength than that of the structure is comparative. It is thought that it becomes high. Such a sample 1 is used as the solar heat collecting member 10A described with reference to FIG. 1, and the sample 4 is used as the solar heat collecting member 10B described with reference to FIG.
 なお、上述したように、サンプル1の凸部10pの平均高さは400nmであるのに対して、サンプル4の凹部10qの平均深さは200nmである。このようにサンプル1の凹凸の程度はサンプル4よりも大きいため、サンプル1の反射率の立ち上がり波長はサンプル4の反射率の立ち上がり波長よりも大きいと考えられる。 Note that, as described above, the average height of the convex portion 10p of the sample 1 is 400 nm, whereas the average depth of the concave portion 10q of the sample 4 is 200 nm. Thus, since the degree of unevenness of sample 1 is larger than that of sample 4, the rising wavelength of reflectance of sample 1 is considered to be larger than the rising wavelength of reflectance of sample 4.
 図20を参照して吸収率の波長依存性を説明する。図20(a)にサンプル1、3、4の吸収率の波長依存性を示す。なお、図19では縦軸に反射率を示したが、図20(a)では縦軸に吸収率を示している。 The wavelength dependency of the absorption rate will be described with reference to FIG. FIG. 20A shows the wavelength dependence of the absorption rate of Samples 1, 3, and 4. In FIG. 19, the vertical axis represents the reflectance, but in FIG. 20A, the vertical axis represents the absorption rate.
 上述したように、サンプル3はほぼ平らな表面を有しており、吸収率は波長全体にわたって比較的低い。これに対して、サンプル1および4はモスアイ構造または反転されたモスアイ構造を有しており、低波長において吸収率が比較的高く高波長において吸収率が比較的低い。 As described above, sample 3 has a substantially flat surface, and the absorptance is relatively low over the entire wavelength. On the other hand, Samples 1 and 4 have a moth-eye structure or an inverted moth-eye structure, and have a relatively high absorption rate at a low wavelength and a relatively low absorption rate at a high wavelength.
 図20(b)に、図33に示した太陽熱集熱部材900Aの吸収率の波長依存性を示し、図20(c)に、図34に示した太陽熱集熱部材900Bの吸収率の波長依存性を示す。図20(a)から図20(c)の比較から理解されるように、サンプル1および4の可視領域における吸収率は比較的高い。このため、太陽熱の吸収を効率的に行うことができる。 FIG. 20B shows the wavelength dependency of the absorption rate of the solar heat collecting member 900A shown in FIG. 33, and FIG. 20C shows the wavelength dependency of the absorption rate of the solar heat collecting member 900B shown in FIG. Showing gender. As can be understood from the comparison between FIG. 20 (a) to FIG. 20 (c), the absorption rate in the visible region of samples 1 and 4 is relatively high. For this reason, solar heat can be absorbed efficiently.
 太陽熱集熱部材の反射率および吸収率を計算で求めることができる。一般に、界面反射は、物質の材料(金属や絶縁体)にかかわらず、フレネルの法則で説明される。なお、ここで界面とは、屈折率の変化が、対象の光の波長よりも十分小さな厚さ(例えば1/10)以下でおこる異種物質の接合面をさす。しかしながら、屈折率が、波長と同等または波長よりも長い領域にわたって変化する場合、反射は、通常のフレネルの法則に従わない。この場合、例えば、実効屈折率媒体理論(Effective medium theory)のように、波長よりも十分薄い層に仮想的に分割して仮想的な屈折率を設定し、全ての仮想界面でのフレネル反射を積分するといった取り扱いが必要となる。以下、図21を参照して、金属層の構造および計算に用いたモデルを説明する。 The reflectance and absorptance of the solar heat collecting member can be calculated. In general, interfacial reflection is explained by Fresnel's law regardless of the material of the substance (metal or insulator). Here, the interface refers to a bonded surface of dissimilar materials in which a change in refractive index occurs at a thickness (for example, 1/10) or less sufficiently smaller than the wavelength of the target light. However, if the refractive index varies over a region that is equal to or longer than the wavelength, the reflection does not follow normal Fresnel law. In this case, for example, as in the effective refractive index medium theory (Effect medium theory), the virtual refractive index is set by virtually dividing into layers sufficiently thinner than the wavelength, and Fresnel reflection at all virtual interfaces is performed. Handling such as integration is required. Hereinafter, the structure of the metal layer and the model used for calculation will be described with reference to FIG.
 図21(a)は、モスアイ構造を有する太陽熱集熱部材の模式的な断面図であり、緻密に配列された微細な凸部が設けられている。ここでは、図21(a)に示すように、頂点を含む断面がほぼ二等辺三角形で表される微細な凸部を含むモスアイ構造を考える。以下で例示する計算では、モスアイ構造の屈折率(実効屈折率)が凸部の高さに対して線形に変化するとしている。 FIG. 21 (a) is a schematic cross-sectional view of a solar heat collecting member having a moth-eye structure, which is provided with fine convex portions arranged densely. Here, as shown in FIG. 21A, a moth-eye structure including a fine convex portion in which a cross section including a vertex is substantially represented by an isosceles triangle is considered. In the calculation exemplified below, it is assumed that the refractive index (effective refractive index) of the moth-eye structure changes linearly with respect to the height of the convex portion.
 このようなモスアイ構造の屈折率(実効屈折率)は、図21(b)に示す、空気側から基材側へ向かって屈折率が増大する複数の層を有する積層体の屈折率と等価であると考えることができる。図21(c)に示すように、モスアイ構造の屈折率は、空気(屈折率n=1.00)側から基材側へと段階的に増大する。例示する計算では、層数を30とし、各層の厚さは等しいとした。反射率の計算は、実効屈折率媒体理論(例えば、鶴田匡夫著、応用光学(培風館)第4章)による。 The refractive index (effective refractive index) of such a moth-eye structure is equivalent to the refractive index of a laminate having a plurality of layers whose refractive index increases from the air side toward the substrate side, as shown in FIG. You can think of it. As shown in FIG. 21 (c), the refractive index of the moth-eye structure increases stepwise from the air (refractive index n = 1.00) side to the substrate side. In the illustrated calculation, the number of layers is 30 and the thickness of each layer is equal. The calculation of the reflectance is based on the effective refractive index medium theory (for example, Tatsuta Tatsuo, Applied Optics (Baifukan) Chapter 4).
 ここで、図22を参照して吸収率の角度依存性を説明する。図22(a)に、太陽熱集熱部材10Aの吸収率の波長依存性を示す。図22において横軸は波長であり、縦軸は吸収率である。ここでは、太陽熱集熱部材10Aは凸部の高さhが900nmであるニッケル層である。また、層数は30とし、各層の厚さは等しいとして計算している。また、正面0°、20°、40°、60°および80°の反射率を求めている。なお、ニッケルの波長ごとの屈折率はJK Consultingのホームページ(インターネット http://www.kruschwitz.com/ni.htm)を参考にしている。 Here, the angle dependency of the absorption rate will be described with reference to FIG. FIG. 22A shows the wavelength dependency of the absorption rate of the solar heat collecting member 10A. In FIG. 22, the horizontal axis represents the wavelength, and the vertical axis represents the absorption rate. Here, the solar heat collecting member 10A is a nickel layer having a height h of the convex portion of 900 nm. In addition, the calculation is performed assuming that the number of layers is 30 and the thicknesses of the respective layers are equal. Further, reflectances of 0 °, 20 °, 40 °, 60 ° and 80 ° in the front are obtained. In addition, the refractive index for each wavelength of nickel refers to the JK Consulting website (Internet http://www.krushwitz.com/ni.htm).
 図22(b)に、図33に示した太陽熱集熱部材900Aの吸収率の角度依存性を示す。図22(a)および図22(b)の比較から理解されるように、角度0°から60°にわたって太陽熱集熱部材10Aの吸収率は可視領域において比較的高く、太陽熱の吸収を効率的に行うことができる。 FIG. 22B shows the angle dependency of the absorption rate of the solar heat collecting member 900A shown in FIG. As understood from the comparison between FIG. 22A and FIG. 22B, the absorption rate of the solar heat collecting member 10A is relatively high in the visible region over an angle of 0 ° to 60 °, and the solar heat absorption is efficiently performed. It can be carried out.
 なお、ニッケルを電鋳して作製したサンプル1~4の反射および吸収を比較して説明したが、以下に、別のサンプル5~10cの反射および吸収を比較して説明する。サンプル5~10cは以下のように作製される。 Although the reflection and absorption of samples 1 to 4 produced by electroforming nickel were compared and described below, the reflection and absorption of other samples 5 to 10c will be compared and described below. Samples 5 to 10c are produced as follows.
 サンプル5は、サンプル4の形成と同様にアクリル系光硬化性樹脂層を形成し、このアクリル系光硬化性樹脂層自体をサンプルとしている。また、フィルムは黒色アクリル板上に貼りつけられている。 Sample 5 has an acrylic photocurable resin layer formed in the same manner as sample 4, and this acrylic photocurable resin layer itself is used as a sample. Moreover, the film is affixed on the black acrylic board.
 サンプル6は以下のように形成される。まず、サンプル5の形成と同様にアクリル系光硬化性樹脂層を形成する。その後、アクリル系光硬化性樹脂層を金でコーティングすることによって金属層Mを形成する。なお、このコーティングは、例えば、スパッタリングで行われる。例えば、SEM観察時の帯電防止にも好適に用いられるquick coater(真空機工株式会社製VPS-020型)を用いることができる。ここでは、処理時間は約3分である。 Sample 6 is formed as follows. First, an acrylic photocurable resin layer is formed in the same manner as the formation of the sample 5. Thereafter, the metal layer M is formed by coating the acrylic photocurable resin layer with gold. This coating is performed by sputtering, for example. For example, a quick coater (VPS-020 type manufactured by Vacuum Kiko Co., Ltd.) that is also preferably used for preventing charging during SEM observation can be used. Here, the processing time is about 3 minutes.
 サンプル7は、サンプル1の形成と同様にガラス基板上にポーラスアルミナ層を形成し、このポーラスアルミナ層自体をサンプルとして用いる。 Sample 7 forms a porous alumina layer on a glass substrate in the same manner as the formation of sample 1, and uses this porous alumina layer itself as a sample.
 サンプル8は以下のように形成される。まず、サンプル7の形成と同様にガラス基板上にポーラスアルミナ層を形成し、ポーラスアルミナ層に金でコーティングすることによって金属層Mを形成する。なお、このコーティングは、例えば、スパッタリングで行われる。例えば、SEM観察時の帯電防止にも好適に用いられるquick coater(真空機工株式会社製VPS-020型)を用いることができる。ここでは、処理時間は約3分である。 Sample 8 is formed as follows. First, a porous alumina layer is formed on a glass substrate in the same manner as the formation of the sample 7, and the metal layer M is formed by coating the porous alumina layer with gold. This coating is performed by sputtering, for example. For example, a quick coater (VPS-020 type manufactured by Vacuum Kiko Co., Ltd.) that is also preferably used for preventing charging during SEM observation can be used. Here, the processing time is about 3 minutes.
 サンプル9a、9b、9cは、サンプル1の形成と同様にガラス基板上にポーラスアルミナ層を形成し、このポーラスアルミナ層自体をサンプルとして用いる。ただし、サンプル1では、陽極酸化時間が25秒であり、凹部の深さは400nmであるが、サンプル9aでは、陽極酸化時間が15秒であり、凹部の深さは240nmである。サンプル9bでは、陽極酸化時間が23秒であり、凹部の深さは370nmである。サンプル9cでは、陽極酸化時間が31秒であり、凹部の深さは500nmである。 Samples 9a, 9b, and 9c form a porous alumina layer on a glass substrate in the same manner as the formation of sample 1, and the porous alumina layer itself is used as a sample. However, in sample 1, the anodic oxidation time is 25 seconds and the depth of the concave portion is 400 nm, whereas in sample 9a, the anodic oxidation time is 15 seconds and the depth of the concave portion is 240 nm. In sample 9b, the anodization time is 23 seconds and the depth of the recess is 370 nm. In sample 9c, the anodization time is 31 seconds, and the depth of the recess is 500 nm.
 サンプル10a、10b、10cは以下のように形成される。まず、サンプル9a、9b、9cの形成と同様にガラス基板上にポーラスアルミナ層を形成する。その後、ポーラスアルミナ層に金でコーティングすることによって金属層Mを形成する。なお、このコーティングは、例えば、スパッタリングで行われる。例えば、SEM観察時の帯電防止にも好適に用いられるquick coater(真空機工株式会社製VPS-020型)を用いることができる。ここでは、処理時間は約3分である。 Samples 10a, 10b, and 10c are formed as follows. First, a porous alumina layer is formed on a glass substrate similarly to the formation of samples 9a, 9b, and 9c. Thereafter, a metal layer M is formed by coating the porous alumina layer with gold. This coating is performed by sputtering, for example. For example, a quick coater (VPS-020 type manufactured by Vacuum Kiko Co., Ltd.) that is also preferably used for preventing charging during SEM observation can be used. Here, the processing time is about 3 minutes.
 図23(a)~図23(j)に、それぞれサンプル5~10cの模式図を示す。 FIGS. 23 (a) to 23 (j) show schematic diagrams of Samples 5 to 10c, respectively.
 図24にサンプル5~8の反射率の波長依存性を示し、図25にサンプル9a~10cの反射率の波長依存性を示す。図24および図25は、株式会社日立製作所製の分光光度計U-4100を用いて波長350nmから2000nmにわたってサンプル5~10cの反射率を測定した結果である。 FIG. 24 shows the wavelength dependence of the reflectance of samples 5 to 8, and FIG. 25 shows the wavelength dependence of the reflectance of samples 9a to 10c. 24 and 25 show the results of measuring the reflectance of samples 5 to 10c over a wavelength range of 350 nm to 2000 nm using a spectrophotometer U-4100 manufactured by Hitachi, Ltd. FIG.
 図24に示すように、モスアイ構造の光硬化性樹脂層が設けられたサンプル5では、反射率は波長350nmから2000nmにわたって低いままであるのに対して、光硬化性樹脂層の上にモスアイ構造の金属層Mが設けられたサンプル6では、反射率は波長800nmを超えた領域から増加することがわかる。ただし、光硬化性樹脂層は、光を反射しないが、光を透過させるため、サンプル5は、太陽熱を効率的に吸収できない。サンプル6は図1を参照して説明した太陽熱集熱部材10Aとして用いられる。 As shown in FIG. 24, in the sample 5 provided with the photocurable resin layer having the moth-eye structure, the reflectance remains low from the wavelength of 350 nm to 2000 nm, whereas the moth-eye structure is formed on the photocurable resin layer. It can be seen that in the sample 6 provided with the metal layer M, the reflectance increases from the region exceeding the wavelength of 800 nm. However, the photocurable resin layer does not reflect light, but transmits light, so that the sample 5 cannot efficiently absorb solar heat. The sample 6 is used as the solar heat collecting member 10A described with reference to FIG.
 また、サンプル7およびサンプル8のそれぞれは反転されたモスアイ構造を有しているが、ガラス/アルミ/アルマイトの積層されたサンプル7では、反射率は可視領域(波長350nm~800nm)でも比較的高く、波長800nmよりも長くなるとさらに増加する。これに対して、サンプル8では、表面に金属層Mが設けられており、可視領域の光を吸収するため、可視領域の反射率が特に低い。なお、サンプル7とサンプル8の可視領域における反射率の違いは、目視でも確認できる。サンプル8は図5を参照して説明した太陽熱集熱部材10Bとして用いられる。 Each of Sample 7 and Sample 8 has an inverted moth-eye structure, but Sample 7 laminated with glass / aluminum / alumite has a relatively high reflectance even in the visible region (wavelength 350 nm to 800 nm). When the wavelength is longer than 800 nm, it further increases. On the other hand, in the sample 8, the metal layer M is provided on the surface and absorbs light in the visible region, so that the reflectance in the visible region is particularly low. Note that the difference in reflectance between the sample 7 and the sample 8 in the visible region can also be confirmed visually. The sample 8 is used as the solar heat collecting member 10B described with reference to FIG.
 図25に示すように、ガラス/アルミ/アルマイトの積層されたサンプル9a、9b、9cの反射率は、それぞれ可視領域(350nm~800nm)において比較的高く、波長800nmよりも長くなるとさらに増加する。 As shown in FIG. 25, the reflectivities of the glass / aluminum / alumite laminated samples 9a, 9b, 9c are relatively high in the visible region (350 nm to 800 nm), respectively, and further increase when the wavelength is longer than 800 nm.
 ガラス/アルミ/アルマイトの上にさらに金属層Mの積層されたサンプル10a、10b、10cの反射率は、凹部の高さに応じて反射率の増加の開始する波長が異なる。具体的には、凹部の深さが250nmの場合には、波長約500nmから反射率の増加が開始し、凹部の深さが370nmの場合には、波長約600nmから反射率の増加が開始し、凹部の深さが500nmの場合には、波長約800nmから反射率の増加が開始する。これは、凹部が深い場合には、長波長の光でも金属層Mの形状の影響を受けて屈折率が緩やかに変化し、反射が抑制されやすいためと考えられる。このようなサンプル10a、10b、10cは図5を参照して説明した太陽熱集熱部材10Bとして用いられる。 The reflectance of the samples 10a, 10b, and 10c in which the metal layer M is further laminated on the glass / aluminum / alumite differs in the wavelength at which the reflectance starts to increase depending on the height of the recess. Specifically, when the depth of the recess is 250 nm, the reflectance starts increasing from a wavelength of about 500 nm, and when the depth of the recess is 370 nm, the reflectance starts increasing from a wavelength of about 600 nm. When the depth of the recess is 500 nm, the reflectance starts increasing from a wavelength of about 800 nm. This is considered to be because when the concave portion is deep, the refractive index gradually changes under the influence of the shape of the metal layer M even with long-wavelength light, and reflection is easily suppressed. Such samples 10a, 10b, and 10c are used as the solar heat collecting member 10B described with reference to FIG.
 サンプル9a、9b、9cの比較から理解されるように、金属層Mがない場合には、ポーラスアルミナ層の凹部の高さにかかわらず、反射率がそれほど変わらない。一方、サンプル10a、10b、10cの比較から理解されるように、金属層Mを設けた場合には、金属層Mの凸部の高さに応じて反射率の立ち上がる波長が増加する。また、サンプル10a、10b、10cの比較から理解されるように、金属層Mを設けた場合には、凸部の高さが大きくなるほど、波長に対する反射率の変化が大きくなる。これは、凸部の高さに応じて干渉の影響が大きくなるためと考えられる。 As can be understood from the comparison of the samples 9a, 9b, and 9c, in the absence of the metal layer M, the reflectance does not change so much regardless of the height of the concave portion of the porous alumina layer. On the other hand, as understood from the comparison of the samples 10a, 10b, and 10c, when the metal layer M is provided, the wavelength at which the reflectance rises according to the height of the convex portion of the metal layer M increases. Further, as understood from the comparison of the samples 10a, 10b, and 10c, when the metal layer M is provided, the change in the reflectance with respect to the wavelength increases as the height of the convex portion increases. This is presumably because the influence of interference increases depending on the height of the convex portion.
 なお、上述した説明では、太陽熱集熱部材10A、10Bがニッケルまたは金から構成された場合を説明したが、本発明はこれに限定されない。 In the above description, the case where the solar heat collecting members 10A and 10B are made of nickel or gold has been described, but the present invention is not limited to this.
 ここで再び、図21を参照して、太陽熱集熱部材10Aの反射率の波長依存性を説明する。例示する計算では、層数を30とし、各層の厚さは等しいとした。ここでは、金属層Mとして、金、アルミニウム、銅、銀およびニッケルの5種類、および、凸部の高さhは、300nm、900nmおよび3000nmの3種類についての反射率を求めている。なお、金、アルミニウム、銅、銀の波長ごとの屈折率は、工藤恵栄著、基礎物性図表、共立出版を参考にしており、また、上述したように、ニッケルの波長ごとの屈折率はJK Consultingのホームページ(インターネット http://www.kruschwitz.com/ni.htm)を参考にしている。 Here, referring again to FIG. 21, the wavelength dependence of the reflectance of the solar heat collecting member 10A will be described. In the illustrated calculation, the number of layers is 30 and the thickness of each layer is equal. Here, as the metal layer M, five types of gold, aluminum, copper, silver, and nickel, and the height h of the convex portion are required to have reflectances of three types of 300 nm, 900 nm, and 3000 nm. In addition, the refractive index for each wavelength of gold, aluminum, copper, and silver is based on Keiji Keiei, Basic Physical Properties Chart, Kyoritsu Publishing Co., Ltd. As mentioned above, the refractive index for each wavelength of nickel is JK. Consulting website (Internet http://www.krushwitz.com/ni.htm).
 図26~図30は、それぞれ、順に金、アルミニウム、銅、銀およびニッケルについて、高さ300nm、900nmおよび3000nmの凸部を含むモスアイ構造を有する太陽熱集熱部材10Aの反射率の計算結果を示すグラフであり、横軸は波長(nm)である。ここでは、凸部のピッチは200nmである。 FIG. 26 to FIG. 30 show the calculation results of the reflectance of the solar heat collecting member 10A having a moth-eye structure including convex portions having a height of 300 nm, 900 nm, and 3000 nm for gold, aluminum, copper, silver, and nickel, respectively. It is a graph, and a horizontal axis is a wavelength (nm). Here, the pitch of the convex portions is 200 nm.
 金、銀、銅、アルミニウムおよびニッケルの5種類のいずれにおいても、屈折率が緩やかに変化するモスアイ構造により、光は可視領域において吸収されやすく、赤外領域において反射しやすい。また、凸部が低いほど、反射率の増加の開始する波長が小さくなり、波長の変化に対する反射率の変化が激しくなる。反対に、凸部が高いほど、反射率の増加の開始する波長が大きくなり、波長の変化に対する反射率の変化が緩くなる。 In any of the five types of gold, silver, copper, aluminum, and nickel, light is easily absorbed in the visible region and easily reflected in the infrared region due to the moth-eye structure in which the refractive index changes slowly. Further, the lower the convex portion, the smaller the wavelength at which the reflectance starts to increase, and the change in reflectance with respect to the change in wavelength becomes severe. On the other hand, the higher the convex portion, the larger the wavelength at which the reflectance starts to increase, and the change in reflectance with respect to the change in wavelength becomes slower.
 なお、図26~図30を参照して、凸部を含むモスアイ構造を有する太陽熱集熱部材10Aの反射率の波長依存性を説明したが、凹部を含む反転されたモスアイ構造を有する太陽熱集熱部材10Bでも同様の傾向を示す。すなわち、凹部が浅いほど、反射率の増加の開始する波長が小さくなり、波長の変化に対する反射率の変化が激しくなる。反対に、凹部が深いほど、反射率の増加の開始する波長が大きくなり、波長の変化に対する反射率の変化が緩くなる。以上のように、凸部の高さ(または、凹部の深さ)が大きいと(例えば3μm程度あると)、長波長側の反射率が低下し、これに伴い、放射率が増加してしまうことが理解される。 Although the wavelength dependence of the reflectance of the solar heat collecting member 10A having a moth-eye structure including a convex portion has been described with reference to FIGS. The member 10B also shows the same tendency. That is, the shallower the recess, the smaller the wavelength at which the reflectance starts to increase, and the change in reflectance with respect to the change in wavelength becomes more severe. On the other hand, the deeper the recess, the larger the wavelength at which the reflectance starts to increase, and the change in reflectance with respect to the change in wavelength becomes slower. As described above, when the height of the convex portion (or the depth of the concave portion) is large (for example, about 3 μm), the reflectance on the long wavelength side is lowered, and accordingly, the emissivity is increased. It is understood.
 図31に、本実施形態の太陽熱集熱器100の模式図を示す。太陽熱集熱器100は、太陽熱集熱部材10A、10B、10aまたは10bと、熱媒の移動可能な経路120とを備えている。太陽熱集熱部材10A、10B、10aまたは10bは、太陽熱集熱器100の表面に配置されている。太陽熱集熱器100は、晴天時の少なくともある時間において、太陽光が直接太陽熱集熱部材10A、10B、10aまたは10bに照射される場所に配置されることが好ましい。経路120の外壁は太陽熱集熱部材10A、10B、10aまたは10bと直接接触していてもよい。 FIG. 31 shows a schematic diagram of the solar heat collector 100 of the present embodiment. The solar heat collector 100 includes solar heat collecting members 10A, 10B, 10a, or 10b and a path 120 through which the heat medium can move. The solar heat collecting member 10 </ b> A, 10 </ b> B, 10 a, or 10 b is disposed on the surface of the solar heat collector 100. The solar heat collector 100 is preferably arranged at a place where sunlight is directly applied to the solar heat collecting members 10A, 10B, 10a, or 10b at least at a certain time in fine weather. The outer wall of the path 120 may be in direct contact with the solar heat collecting members 10A, 10B, 10a, or 10b.
 なお、図31では、太陽熱集熱部材10A、10B全体が経路の外壁と接触するように図示されているが、太陽熱集熱部材10A、10B、10aまたは10bの一部が経路の外壁と接触し、太陽熱集熱部材10A、10B、10aまたは10bのほかの部分は経路の外壁と接触しなくてもよい。あるいは、経路120と太陽熱集熱部材10A、10B、10aまたは10bとの間は真空に保たれていてもよい。 In FIG. 31, the entire solar heat collecting members 10A and 10B are shown in contact with the outer wall of the path, but a part of the solar heat collecting members 10A, 10B, 10a or 10b is in contact with the outer wall of the path. The other parts of the solar heat collecting members 10A, 10B, 10a or 10b may not be in contact with the outer wall of the path. Alternatively, a vacuum may be maintained between the path 120 and the solar heat collecting members 10A, 10B, 10a, or 10b.
 なお、太陽熱集熱器100は、平板型集熱器であってもよい。また、熱媒は、自然に循環させてもよいし、強制的に滞留させてもよい。あるいは、太陽熱集熱器100は真空管型集熱器であってもよい。この場合、例えば、真空管内の熱媒の通る経路の外壁自体または外壁と接触する部材に太陽熱集熱部材10Aまたは10Bを用いればよい。あるいは、太陽熱集熱器100は、集光型集熱器であってよい。 The solar heat collector 100 may be a flat plate heat collector. Further, the heat medium may be circulated naturally or may be forcibly retained. Alternatively, the solar heat collector 100 may be a vacuum tube type heat collector. In this case, for example, the solar heat collecting member 10A or 10B may be used as the outer wall itself of the path through which the heat medium in the vacuum tube passes or a member that contacts the outer wall. Alternatively, the solar heat collector 100 may be a concentrating heat collector.
 また、熱媒は、水や不凍液等の液体であってもよく、あるいは空気等の気体であってもよい。 Further, the heat medium may be a liquid such as water or an antifreeze, or may be a gas such as air.
 太陽熱集熱器100を熱発電に用いてもよい。あるいは、太陽熱集熱器100を給湯システムに用いてもよい。 The solar heat collector 100 may be used for thermoelectric power generation. Or you may use the solar-heat collector 100 for a hot-water supply system.
 図32に、本実施形態の給湯システム200の模式図を示す。給湯システム200は、太陽熱集熱器100および蓄熱槽210を備えている。蓄熱槽210は、太陽熱集熱器100において集められた熱を蓄熱することができる。ここでは、熱媒は不凍液である。 FIG. 32 shows a schematic diagram of the hot water supply system 200 of the present embodiment. The hot water supply system 200 includes a solar heat collector 100 and a heat storage tank 210. The heat storage tank 210 can store heat collected in the solar heat collector 100. Here, the heat medium is antifreeze.
 例えば、蓄熱槽210は、太陽熱集熱器100において集められた熱を搬送する熱媒からの熱を交換する熱交換器212を有している。熱交換器212において、熱媒からの熱が水に伝えられる。なお、給湯システム200は熱源300をさらに備えてもよい。熱源300は、例えばボイラーである。熱源300により、蓄熱槽210の蓄熱が不十分な場合にも熱を供給することができる。 For example, the heat storage tank 210 has a heat exchanger 212 that exchanges heat from a heat medium that conveys the heat collected in the solar heat collector 100. In the heat exchanger 212, heat from the heat medium is transferred to water. The hot water supply system 200 may further include a heat source 300. The heat source 300 is, for example, a boiler. The heat source 300 can supply heat even when the heat storage in the heat storage tank 210 is insufficient.
 本発明によれば、集熱を効率的に行うことができる。また、本発明によれば、太陽熱集熱部材を簡便に作製することができる。 According to the present invention, heat can be collected efficiently. Moreover, according to this invention, a solar-heat collection member can be produced simply.
 M  金属層
 10A、10B  太陽熱集熱部材
 100 太陽熱集熱器
M metal layer 10A, 10B Solar heat collecting member 100 Solar heat collector

Claims (17)

  1.  表面を有する金属層を備える太陽熱集熱部材であって、
     前記金属層の前記表面は、複数の凸部を含むモスアイ構造または複数の凹部を含む反転されたモスアイ構造を有しており、
     法線方向から見たときの前記複数の凸部または前記複数の凹部のそれぞれの2次元的な大きさは50nm以上380nm未満である、太陽熱集熱部材。
    A solar heat collecting member comprising a metal layer having a surface,
    The surface of the metal layer has a moth-eye structure including a plurality of convex portions or an inverted moth-eye structure including a plurality of concave portions,
    The solar heat collecting member, wherein a two-dimensional size of each of the plurality of convex portions or the plurality of concave portions when viewed from the normal direction is 50 nm or more and less than 380 nm.
  2.  法線方向から見たときの前記複数の凹部または前記複数の凹部の平均隣接間距離は50nm以上380nm未満である、請求項1に記載の太陽熱集熱部材。 2. The solar heat collecting member according to claim 1, wherein an average distance between the plurality of recesses or the plurality of recesses when viewed from the normal direction is 50 nm or more and less than 380 nm.
  3.  前記複数の凸部のうちの隣接する2つの凸部または前記複数の凹部のうちの隣接する2つの凹部の間に鞍部が設けられる、請求項1または2に記載の太陽熱集熱部材。 The solar heat collecting member according to claim 1 or 2, wherein a flange portion is provided between two adjacent convex portions of the plurality of convex portions or two adjacent concave portions of the plurality of concave portions.
  4.  前記複数の凸部または前記複数の凹部の平均隣接間距離は、前記複数の凸部または前記複数の凹部のそれぞれの2次元的な大きさよりも小さい、請求項1から3のいずれかに記載の太陽熱集熱部材。 4. The average distance between adjacent ones of the plurality of convex portions or the plurality of concave portions is smaller than the two-dimensional size of each of the plurality of convex portions or the plurality of concave portions. 5. Solar heat collecting member.
  5.  前記複数の凸部の平均高さまたは前記複数の凹部の平均深さは50nm以上500nm未満である、請求項1から4のいずれかに記載の太陽熱集熱部材。 The solar heat collecting member according to any one of claims 1 to 4, wherein an average height of the plurality of convex portions or an average depth of the plurality of concave portions is 50 nm or more and less than 500 nm.
  6.  前記金属層の前記表面は、前記複数の凹部を含む反転されたモスアイ構造を有する、請求項1から5のいずれかに記載の太陽熱集熱部材。 The solar heat collecting member according to any one of claims 1 to 5, wherein the surface of the metal layer has an inverted moth-eye structure including the plurality of recesses.
  7.  前記金属層は、金、銀、銅、アルミニウム、ニッケル、亜鉛、白金、タングステンおよびタンタルからなる群から選択された少なくとも1つを含む、請求項1から6のいずれかに記載の太陽熱集熱部材。 The solar heat collecting member according to any one of claims 1 to 6, wherein the metal layer includes at least one selected from the group consisting of gold, silver, copper, aluminum, nickel, zinc, platinum, tungsten, and tantalum. .
  8.  アルミニウム層と、
     前記アルミニウム層と前記金属層との間に位置するポーラスアルミナ層と
    をさらに備える、請求項1から7のいずれかに記載の太陽熱集熱部材。
    An aluminum layer;
    The solar heat collecting member according to any one of claims 1 to 7, further comprising a porous alumina layer positioned between the aluminum layer and the metal layer.
  9.  前記複数の凸部または前記複数の凹部は周期性を有しない、請求項1から8のいずれかに記載の太陽熱集熱部材。 The solar heat collecting member according to any one of claims 1 to 8, wherein the plurality of convex portions or the plurality of concave portions have no periodicity.
  10.  複数の凸部を含むモスアイ構造または複数の凹部を含む反転されたモスアイ構造の表面を有する太陽熱集熱部材の作製方法であって、
     (a)アルミニウム層を有する型基材またはアルミニウム基材を用意する工程と、
     (b)前記アルミニウム層または前記アルミニウム基材を部分的に陽極酸化することによって、複数の微細な凹部を規定するポーラス層、および、前記複数の微細な凹部のそれぞれの底部に設けられたバリア層を有するポーラスアルミナ層を形成する工程と、
     (c)前記工程(b)の後に、前記ポーラスアルミナ層をエッチング液に接触させることによってエッチングを行い、前記ポーラスアルミナ層の前記複数の微細な凹部を拡大させる工程と、
     (d)前記ポーラスアルミナ層の前記複数の微細な凹部の上に金属層を形成する工程とを包含する、太陽熱集熱部材の作製方法。
    A method for producing a solar heat collecting member having a surface of a moth-eye structure including a plurality of convex portions or an inverted moth-eye structure including a plurality of concave portions,
    (A) preparing a mold substrate having an aluminum layer or an aluminum substrate;
    (B) A porous layer that defines a plurality of fine recesses by partially anodizing the aluminum layer or the aluminum substrate, and a barrier layer provided at the bottom of each of the plurality of fine recesses Forming a porous alumina layer having:
    (C) after the step (b), performing the etching by bringing the porous alumina layer into contact with an etching solution, and enlarging the plurality of fine recesses of the porous alumina layer;
    (D) forming a metal layer on the plurality of fine concave portions of the porous alumina layer.
  11.  前記工程(d)において電気めっきまたは蒸着を行う、請求項10に記載の太陽熱集熱部材の作製方法。 The method for producing a solar heat collecting member according to claim 10, wherein electroplating or vapor deposition is performed in the step (d).
  12.  (e)前記金属層を前記ポーラスアルミナ層から剥離する工程をさらに包含する、請求項10または11に記載の太陽熱集熱部材の作製方法。 (E) The method for producing a solar heat collecting member according to claim 10 or 11, further comprising a step of peeling the metal layer from the porous alumina layer.
  13.  複数の凸部を含むモスアイ構造または複数の凹部を含む反転されたモスアイ構造の表面を有する太陽熱集熱部材の作製方法であって、
     (a)アルミニウム層を有する型基材またはアルミニウム基材を用意する工程と、
     (b)前記アルミニウム層または前記アルミニウム基材を部分的に陽極酸化することによって、複数の微細な凹部を規定するポーラス層、および、前記複数の微細な凹部のそれぞれの底部に設けられたバリア層を有するポーラスアルミナ層を形成する工程と、
     (c)前記工程(b)の後に、前記ポーラスアルミナ層をエッチング液に接触させることによってエッチングを行い、前記ポーラスアルミナ層の前記複数の微細な凹部を拡大させる工程と、
     (d)前記ポーラスアルミナ層の前記複数の微細な凹部に対応する複数の微細な凸部を有する型を作製する工程と、
     (e)前記型の上に金属層を形成する工程と
    を包含する、太陽熱集熱部材の作製方法。
    A method for producing a solar heat collecting member having a surface of a moth-eye structure including a plurality of convex portions or an inverted moth-eye structure including a plurality of concave portions,
    (A) preparing a mold substrate having an aluminum layer or an aluminum substrate;
    (B) A porous layer that defines a plurality of fine recesses by partially anodizing the aluminum layer or the aluminum substrate, and a barrier layer provided at the bottom of each of the plurality of fine recesses Forming a porous alumina layer having:
    (C) after the step (b), performing the etching by bringing the porous alumina layer into contact with an etching solution, and enlarging the plurality of fine recesses of the porous alumina layer;
    (D) producing a mold having a plurality of fine convex portions corresponding to the plurality of fine concave portions of the porous alumina layer;
    (E) A method for producing a solar heat collecting member, comprising a step of forming a metal layer on the mold.
  14.  前記工程(d)は、
     前記ポーラスアルミナ層の前記複数の微細な凹部に光硬化性樹脂を付与した状態で、前記光硬化性樹脂に紫外線を照射することによって前記光硬化性樹脂を硬化する工程と、
     前記光硬化性樹脂を前記ポーラスアルミナ層から剥離する工程と
    を含む、請求項13に記載の太陽熱集熱部材の作製方法。
    The step (d)
    A step of curing the photocurable resin by irradiating the photocurable resin with ultraviolet rays in a state in which the photocurable resin is applied to the plurality of fine recesses of the porous alumina layer;
    The method for producing a solar heat collecting member according to claim 13, further comprising a step of peeling the photocurable resin from the porous alumina layer.
  15.  前記工程(d)において電気めっきまたは蒸着を行う、請求項13または14に記載の太陽熱集熱部材の作製方法。 The method for producing a solar heat collecting member according to claim 13 or 14, wherein electroplating or vapor deposition is performed in the step (d).
  16.  (f)前記金属層を前記型から剥離する工程をさらに包含する、請求項13から15のいずれかに記載の太陽熱集熱部材の作製方法。 (F) The method for producing a solar heat collecting member according to any one of claims 13 to 15, further comprising a step of peeling the metal layer from the mold.
  17.  前記複数の微細な凹部のうちの隣接する微細な凹部が連続するまで前記工程(b)および前記工程(c)を繰り返す工程をさらに包含する、請求項10から16のいずれかに記載の太陽熱集熱部材の作製方法。 The solar heat collection according to any one of claims 10 to 16, further comprising a step of repeating the step (b) and the step (c) until adjacent fine concave portions among the plurality of fine concave portions are continuous. A method for producing a thermal member.
PCT/JP2011/074424 2010-10-25 2011-10-24 Solar thermal collector member and manufacturing method thereof WO2012057073A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010238423 2010-10-25
JP2010-238423 2010-10-25

Publications (1)

Publication Number Publication Date
WO2012057073A1 true WO2012057073A1 (en) 2012-05-03

Family

ID=45993781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074424 WO2012057073A1 (en) 2010-10-25 2011-10-24 Solar thermal collector member and manufacturing method thereof

Country Status (1)

Country Link
WO (1) WO2012057073A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3014177A1 (en) * 2013-12-04 2015-06-05 Commissariat Energie Atomique SURFACE STRUCTURE FOR THERMAL SOLAR ABSORBERS AND METHOD FOR PRODUCING THE SAME.
FR3016875A1 (en) * 2014-01-30 2015-07-31 Commissariat Energie Atomique PHOTONIC SURFACE STRUCTURE IN REFRACTORY MATERIAL AND METHOD FOR PRODUCING THE SAME.
WO2016060198A1 (en) * 2014-10-16 2016-04-21 富士フイルム株式会社 Camera module, and electronic device
EP4164353A1 (en) * 2018-11-13 2023-04-12 GE Aviation Systems LLC Method and apparatus for heat-dissipation in electronics

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119948A (en) * 1984-11-14 1986-06-07 Hitachi Ltd Solar heat collector
JP2004285422A (en) * 2003-03-24 2004-10-14 Kanagawa Acad Of Sci & Technol Metallic mold, manufacturing method therefor, anodic oxidation porous alumina and manufacturing method therefor
WO2006059686A1 (en) * 2004-12-03 2006-06-08 Sharp Kabushiki Kaisha Reflection preventing material, optical element, display device, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper
JP2006214654A (en) * 2005-02-03 2006-08-17 Nippon Electric Glass Co Ltd Solar heat collecting plate, selective absorption film and solar heat water heater
JP2006287027A (en) * 2005-04-01 2006-10-19 Sharp Corp Solar cell
JP2007156017A (en) * 2005-12-02 2007-06-21 Nagaoka Univ Of Technology Transparent film, optical member and manufacturing method of transparent film
JP2009103808A (en) * 2007-10-22 2009-05-14 Asahi Kasei Corp Antireflection film
JP2010219495A (en) * 2009-02-18 2010-09-30 Nagaoka Univ Of Technology Transparent member for solar cell, and solar cell
WO2010116728A1 (en) * 2009-04-09 2010-10-14 シャープ株式会社 Die and method of manufacturing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119948A (en) * 1984-11-14 1986-06-07 Hitachi Ltd Solar heat collector
JP2004285422A (en) * 2003-03-24 2004-10-14 Kanagawa Acad Of Sci & Technol Metallic mold, manufacturing method therefor, anodic oxidation porous alumina and manufacturing method therefor
WO2006059686A1 (en) * 2004-12-03 2006-06-08 Sharp Kabushiki Kaisha Reflection preventing material, optical element, display device, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper
JP2006214654A (en) * 2005-02-03 2006-08-17 Nippon Electric Glass Co Ltd Solar heat collecting plate, selective absorption film and solar heat water heater
JP2006287027A (en) * 2005-04-01 2006-10-19 Sharp Corp Solar cell
JP2007156017A (en) * 2005-12-02 2007-06-21 Nagaoka Univ Of Technology Transparent film, optical member and manufacturing method of transparent film
JP2009103808A (en) * 2007-10-22 2009-05-14 Asahi Kasei Corp Antireflection film
JP2010219495A (en) * 2009-02-18 2010-09-30 Nagaoka Univ Of Technology Transparent member for solar cell, and solar cell
WO2010116728A1 (en) * 2009-04-09 2010-10-14 シャープ株式会社 Die and method of manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3014177A1 (en) * 2013-12-04 2015-06-05 Commissariat Energie Atomique SURFACE STRUCTURE FOR THERMAL SOLAR ABSORBERS AND METHOD FOR PRODUCING THE SAME.
WO2015083051A1 (en) * 2013-12-04 2015-06-11 Commissariat A L'energie Atomique Et Aux Energies Alternatives Surface structure for solar heat absorbers and method for the production thereof
FR3016875A1 (en) * 2014-01-30 2015-07-31 Commissariat Energie Atomique PHOTONIC SURFACE STRUCTURE IN REFRACTORY MATERIAL AND METHOD FOR PRODUCING THE SAME.
WO2015114519A1 (en) 2014-01-30 2015-08-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Photonic structure having a surface made of refractory material and manufacturing method thereof
WO2016060198A1 (en) * 2014-10-16 2016-04-21 富士フイルム株式会社 Camera module, and electronic device
JP2016080865A (en) * 2014-10-16 2016-05-16 富士フイルム株式会社 Camera module and electronic apparatus
EP4164353A1 (en) * 2018-11-13 2023-04-12 GE Aviation Systems LLC Method and apparatus for heat-dissipation in electronics

Similar Documents

Publication Publication Date Title
Zhang et al. Black silicon with order-disordered structures for enhanced light trapping and photothermic conversion
Jeong et al. Absorption mechanism and performance characterization of CuO nanostructured absorbers
CN102033255B (en) Method for preparing broad-spectrum wide-angle antireflection sub-wave length structure
JP6224345B2 (en) Heat absorbing material and method for producing the same
JPS6148124B2 (en)
Li et al. Nanostructured black aluminum prepared by laser direct writing as a high-performance plasmonic absorber for photothermal/electric conversion
EP2830098A1 (en) Thin film broadband plasmonic absorber
JP2003332607A (en) Wavelength selective solar light absorbing material and its manufacturing method
KR20110113189A (en) Substrate en verre transparent glass substrate and method for producing such a substrate
WO2012057073A1 (en) Solar thermal collector member and manufacturing method thereof
US20110185728A1 (en) High efficiency solar thermal receiver
EP3375912B1 (en) Composite material device
WO2010065635A2 (en) Sub-wavelength metallic cone structures as selective solar absorber
Zheng et al. Research status and application prospects of manufacturing technology for micro–nano surface structures with low reflectivity
US20160298875A1 (en) Surface structure for solar heat absorbers and method for the production thereof
CN101592777A (en) Method for making based on the full spectrum wide-angle condenser of nanostructured
Chen et al. Weakening heat accumulation behavior caused by femtosecond pulses for high-performance antireflection micro-nano porous structures
Berger et al. Controlling the optical performance of transparent conducting oxides using direct laser interference patterning
US20120273041A1 (en) Light concentrator with tapered dichroic materials
Thirunaukkarasu et al. Mechanically and thermally stable thin sheets of broadband antireflection surfaces fabricated by femtosecond lasers
Baryshnikova et al. Nanostructural antireflecting coatings: Classification analysis (A review)
CN104900292A (en) Preparation method of planar lobster-eye focusing lens based on semiconductor technology
Chiadini et al. Analysis of prismatic bioinspired texturing of the surface of a silicon solar cell for enhanced light-coupling efficiency
US11402132B2 (en) Solar energy converter and related methods
ES2648262T3 (en) A manufacturing process for a highly resistant temperature-resistant aluminum-based surface for solar reflector applications and reflector parts manufactured in this way

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP