WO2012057023A1 - Radiographic imaging system and control method for same - Google Patents

Radiographic imaging system and control method for same Download PDF

Info

Publication number
WO2012057023A1
WO2012057023A1 PCT/JP2011/074294 JP2011074294W WO2012057023A1 WO 2012057023 A1 WO2012057023 A1 WO 2012057023A1 JP 2011074294 W JP2011074294 W JP 2011074294W WO 2012057023 A1 WO2012057023 A1 WO 2012057023A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
image
imaging
grid
ray
Prior art date
Application number
PCT/JP2011/074294
Other languages
French (fr)
Japanese (ja)
Inventor
拓司 多田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012057023A1 publication Critical patent/WO2012057023A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B42/00Obtaining records using waves other than optical waves; Visualisation of such records by using optical means
    • G03B42/02Obtaining records using waves other than optical waves; Visualisation of such records by using optical means using X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging

Definitions

  • the present invention relates to a radiographic imaging system that detects an image based on a phase change of radiation and a control method thereof.
  • X-ray phase imaging for obtaining a high-contrast image (hereinafter referred to as a phase contrast image) from a subject having a low X-ray absorption capacity based on the phase change of X-rays has been actively conducted. Yes.
  • An X-ray imaging system using two grids (diffraction gratings) and an X-ray image detector is known as a kind of X-ray phase imaging (see, for example, Patent Document 1 and Non-Patent Document 1).
  • a first grid is disposed behind the subject as viewed from the X-ray source
  • a second grid is disposed downstream from the first grid by a Talbot distance
  • the X-ray is behind the first grid. It is configured by arranging an image detector.
  • the Talbot distance is a distance at which X-rays that have passed through the first grid form a self-image (stripe image) of the first grid due to the Talbot interference effect.
  • This self-image is modulated by the phase change of the X-rays caused by the subject and refraction. By detecting this modulation amount, the phase change of the X-ray is imaged.
  • the fringe scanning method is known as a method for detecting the modulation amount.
  • the second grid is intermittently moved with respect to the first grid, and photographing is performed while the second grid is stopped.
  • This intermittent movement is performed by a constant scanning pitch obtained by equally dividing the lattice pitch in a direction substantially parallel to the surface of the first grid and substantially perpendicular to the lattice line direction of the first grid.
  • a phase differential image representing the distribution of the X-ray refraction angle in the subject is obtained.
  • a phase contrast image is obtained by integrating the phase differential image.
  • This fringe scanning method is also used in an imaging apparatus using laser light (see, for example, Non-Patent Document 2).
  • a radiographic imaging system of the present invention includes a radiation source, a first grid, an intensity modulation unit, a radiographic image detector, a phase differential image generation unit, and a correction data generation unit.
  • the radiation source emits radiation at the time of pre-imaging without arranging the subject and at the time of actual imaging with the subject arranged.
  • the first grid passes the radiation and generates a first periodic pattern image.
  • the intensity modulation unit performs intensity modulation on the first periodic pattern image to generate a second periodic pattern image.
  • the radiological image detector detects the second periodic pattern image and generates image data.
  • the phase differential image generation unit generates a phase differential image based on the image data generated during the main photographing.
  • the correction data generation unit generates correction data based on the image data generated during the pre-photographing.
  • the correction processing unit subtracts the correction data from the phase differential image.
  • the control unit determines an exposure condition during the pre-imaging based on a second radiation dose obtained by multiplying the first radiation dose during the main imaging by ⁇ times (where ⁇ > 1). To cause the radiation source to perform radiation.
  • control unit determines whether or not the pixel data is saturated when the first radiation dose is multiplied by ⁇ . If saturation occurs, the control unit determines the second radiation dose to be a value obtained by multiplying the first radiation dose by ⁇ / ⁇ (where ⁇ is a positive number of 2 or more), and during the pre-imaging. , Causing the radiation source and the radiation image detector to execute the radiation and the image detection respectively ⁇ times or more.
  • the correction data generation unit adds each image data generated by the radiation image detector when the radiation and the image detection are performed ⁇ times or more during the pre-imaging.
  • the intensity modulation unit applies intensity modulation at a plurality of scanning positions having different phases with respect to the first periodic pattern image to generate a plurality of second periodic pattern images
  • the radiation image detector includes the plurality of radiation image detectors.
  • the second periodic pattern image is detected to generate a plurality of image data
  • the phase differential image generation unit and the correction data generation unit change the intensity of pixel data with respect to the scanning position based on the plurality of image data
  • the phase differential image and the correction data are respectively generated by calculating the phase shift amount of the intensity modulation signal representing the control signal, and the control unit obtains a value obtained by multiplying the first radiation dose by ⁇ / ⁇ .
  • the radiation and the image detection are executed at least ⁇ times at each scanning position at the time of the pre-imaging.
  • the correction data generation means adds ⁇ or more image data obtained at each scanning position when the radiation and the image detection are performed at ⁇ times or more at each scanning position during pre-imaging. Is preferred.
  • an operation unit that enables selection of the type of imaging region is further provided, and the control unit determines the first radiation dose according to the imaging region selected by the operation unit. Further, the control unit may determine the first radiation dose based on a thickest imaging part having the largest thickness among a plurality of imaging parts that can be selected by the operation unit. Further, a photo timer may be further provided, and the control unit may set a set value of the photo timer as the first radiation dose.
  • the ⁇ is preferably 100 or more.
  • the intensity modulation unit includes a second grid having a periodic pattern in the same direction as the first periodic pattern image, and a scanning mechanism that moves one of the first and second grids at a predetermined pitch. Is preferred.
  • the first grid is an absorption grid, and it is preferable to project incident radiation onto the second grid geometrically. Further, the first grid may be an absorption grid or a phase grid, and may cause a Talbot interference effect on incident radiation and project it onto the second grid.
  • the control method of the present invention includes a radiation source that emits radiation during pre-imaging without placing a subject and during the main photography with the subject, and a first periodic pattern image that passes through the radiation and generates a first periodic pattern image.
  • Grid an intensity modulation unit that applies intensity modulation to the first periodic pattern image to generate a second periodic pattern image, and radiation that detects the second periodic pattern image and generates image data
  • An image detector a phase differential image generation unit that generates a phase differential image based on the image data generated during the main photographing, and a correction that generates correction data based on the image data generated during the pre-photographing
  • the present invention is used in a radiographic system including a data generation unit and a correction processing unit that subtracts the correction data from the phase differential image.
  • the exposure condition at the time of the pre-imaging is determined based on the second radiation dose obtained by multiplying the first radiation dose at the time of the main imaging by ⁇ (where ⁇ > 1).
  • the exposure condition during pre-imaging is determined based on the second radiation dose obtained by multiplying the first radiation dose during the main imaging by ⁇ times (where ⁇ > 1). Since the radiation source performs X-ray emission, the accuracy of correction data acquired by pre-imaging can be improved.
  • an X-ray imaging system 10 includes an X-ray source 11, an imaging unit 12, a memory 13, an image processing unit 14, an image recording unit 15, an imaging control unit 16, a console 17, and a system control unit 18.
  • the X-ray source 11 has a rotary anode type X-ray tube (not shown) and a collimator (not shown) for limiting the X-ray irradiation field, and the subject H is irradiated with X-rays. Irradiate.
  • the imaging unit 12 includes an X-ray image detector 20, a first grid 21, a second grid 22, and a scanning mechanism 23.
  • the 1st and 2nd grids 21 and 22 are absorption type grids, and are arranged facing the X-ray source 11 in the Z direction which is the X-ray irradiation direction.
  • a space is provided between the X-ray source 11 and the first grid 21 so that the subject H can be arranged.
  • the X-ray image detector 20 is a flat panel detector using a semiconductor circuit, and is disposed behind the second grid 22 so that the surface thereof is orthogonal to the Z direction.
  • the first grid 21 has a plurality of X-ray absorption parts 21a and X-ray transmission parts 21b extended in the Y direction, which is one direction in a plane orthogonal to the Z direction.
  • the X-ray absorption part 21a and the X-ray transmission part 21b are alternately arranged along the X direction orthogonal to the Z direction and the Y direction, and constitute a striped grid.
  • the second grid 22 has a plurality of X-ray absorbing portions 22 a and X-ray transmitting portions 22 b that are extended in the Y direction and arranged alternately along the X direction, like the first grid 21.
  • the X-ray absorbers 21a and 22a are formed of a metal having X-ray absorption such as gold (Au) and platinum (Pt).
  • the X-ray transmissive portions 21b and 22b are formed of a material having X-ray permeability such as silicon (Si) or resin or a gap.
  • the first grid 21 transmits a X-ray emitted from the X-ray source 11 to generate a first periodic pattern image (hereinafter referred to as a G1 image).
  • the second grid 22 generates a second periodic pattern image (hereinafter referred to as a G2 image) by partially shielding (intensity modulating) the G1 image.
  • the memory 13 temporarily stores a plurality of image data obtained by the photographing unit 12.
  • the image processing unit 14 generates a phase differential image and a phase contrast image based on a plurality of image data stored in the memory 13.
  • the image recording unit 15 records the phase contrast image generated by the image processing unit 14.
  • the imaging control unit 16 controls the X-ray source 11 and the imaging unit 12.
  • the console 17 has a well-known operation unit, monitor, and the like, and enables input of shooting conditions, shooting instructions, etc., and display of image information such as shooting information and images.
  • the system control unit 18 comprehensively controls each unit according to an input signal from the input unit of the console 17.
  • the X-ray imaging system 10 is an X-ray diagnostic apparatus that images a patient as the subject H.
  • the type of the imaging region (chest, breast, lower limb, hand, shoulder joint, etc.) of the patient to be imaged can be selected by the operation unit of the console 17.
  • the scanning mechanism 23 intermittently moves the second grid 22 in the X direction, and sequentially changes the relative position of the second grid 22 with respect to the first grid 21.
  • the scanning mechanism 23 has a piezoelectric actuator or an electrostatic actuator.
  • the scanning mechanism 23 is driven based on the control of the imaging control unit 16 at the time of stripe scanning described later.
  • the memory 13 stores image data generated by the X-ray image detector 20 in each scanning step of fringe scanning.
  • the second grid 22 and the scanning mechanism 23 constitute an intensity modulation unit.
  • the image processing unit 14 includes a phase differential image generation unit 30, a correction data generation unit 31, a correction data storage unit 32, a correction processing unit 33, and a phase contrast image generation unit 34.
  • the phase differential image generation unit 30 generates a phase differential image of the subject H based on a plurality of image data obtained by the X-ray image detector 20 in each scanning step at the time of main imaging performed by arranging the subject H. Generate.
  • the correction data generation unit 31 generates a phase differential image based on a plurality of image data obtained by the X-ray image detector 20 in each scanning step at the time of pre-imaging performed without arranging the subject H. Is stored in the correction data storage unit 32 as correction data.
  • the correction data storage unit 32 is configured by a nonvolatile memory such as a flash memory.
  • the correction processing unit 33 subtracts the correction data stored in the correction data storage unit 32 from the phase differential image generated by the phase differential image generation unit 30 for each pixel, and a phase differential image after subtraction (hereinafter, corrected). (Referred to as phase differential image) is input to the phase contrast image generator 34.
  • the phase contrast image generation unit 34 generates a phase contrast image by integrating the corrected phase differential image along the X direction.
  • phase contrast image generated by the phase contrast image generation unit 34 is recorded in the image recording unit 15 and then output to the console 17 and displayed on the monitor.
  • the X-ray image detector 20 includes an image receiving unit 41, a scanning circuit 42, and a readout circuit 43.
  • the image receiving unit 41 is a two-dimensional array of a plurality of pixels 40 that convert X-rays into electric charges and store them on an active matrix substrate (not shown) along the X and Y directions.
  • the scanning circuit 42 controls the timing for reading out charges from the pixels 40.
  • the readout circuit 43 converts the charges read from the pixels 40 into image data and outputs the image data.
  • the scanning circuit 42 and each pixel 40 are connected to each other by a scanning line 44 for each row.
  • the readout circuit 43 and each pixel 40 are connected to each other by a signal line 45 for each column.
  • the arrangement pitch of the pixels 40 is about 100 ⁇ m in each of the X direction and the Y direction.
  • the pixel 40 directly converts X-rays into electric charges by a conversion layer (not shown) such as amorphous selenium, and a capacitor (not shown) connected to the converted charge at the lower electrode of the conversion layer.
  • a conversion layer such as amorphous selenium
  • a capacitor (not shown) connected to the converted charge at the lower electrode of the conversion layer.
  • Each pixel 40 is provided with a TFT switch (not shown).
  • the gate electrode of the TFT switch is connected to the scanning line 44, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 45.
  • the TFT switch is turned on by the drive pulse applied from the scanning circuit 42, the charge accumulated in the capacitor is read out to the signal line 45.
  • the pixel 40 temporarily converts X-rays into visible light with a scintillator (not shown) formed of gadolinium oxide (Gd 2 O 3 ), cesium iodide (CsI), or the like, and converts the converted visible light into photo
  • a scintillator (not shown) formed of gadolinium oxide (Gd 2 O 3 ), cesium iodide (CsI), or the like, and converts the converted visible light into photo
  • An indirect conversion type X-ray detection element that converts the charge into a charge by a diode (not shown) and stores the charge may be used.
  • a radiation image detector based on a solid-state imaging device such as a CCD sensor or a CMOS sensor may be used as the X-ray image detector 20.
  • the readout circuit 43 includes an integration amplifier, an A / D converter, a correction circuit (none of which is shown), and the like.
  • the integrating amplifier integrates the charges output from each pixel 40 via the signal line 45 and converts them into a voltage signal (image signal).
  • the A / D converter converts the image signal converted by the integrating amplifier into digital image data.
  • the correction circuit performs dark current correction, gain correction, linearity correction, and the like on the image data, and inputs the corrected image data to the memory 13.
  • the X-ray emitted from the X-ray source 11 has a cone beam shape with the X-ray focal point 11a as the light emission point, and therefore the G1 image generated by the first grid 21 is from the X-ray focal point 11a. It is enlarged in proportion to the distance.
  • the lattice pitch p 2 and the width d 2 in the X direction of the X-ray absorber 22 a of the second grid 22 are the distance L 1 between the X-ray focal point 11 a and the first grid 21, the first grid 21 and the first grid 21.
  • the grating pitch p 2 is 5 ⁇ m, and the width d 2 is half that of 2.5 ⁇ m.
  • the thickness of the X-ray absorber 21a in the Z direction is set to, for example, about 100 ⁇ m in consideration of corneal X-ray vignetting emitted from the X-ray source 11. It is not always necessary to satisfy the formula (2), and the intervals d 1 and d 2 may be set independently.
  • the 1st and 2nd grids 21 and 22 are comprised so that the X-rays which passed X-ray low absorption part 21b, 22b may be projected linearly (geometrical optical). Specifically, it is realized by setting the distances d 1 and d 2 to a value sufficiently larger than the peak wavelength of the X-rays emitted from the X-ray source 11, and most of the X-rays included in the emitted X-rays are diffracted. Without passing through, the X-ray transmission parts 21b and 22b pass through while maintaining straightness.
  • the peak wavelength of the X-ray is about 0.4 mm.
  • the distances d 1 and d 2 may be about 1 ⁇ m to 10 ⁇ m.
  • the grating pitches p 1 and p 2 are about 2 ⁇ m to 20 ⁇ m.
  • the distance L 2 can be set independently of the Talbot distance.
  • the imaging unit 12 of the present embodiment does not constitute a Talbot interferometer, but the Talbot distance Z m when the Talbot interference effect is assumed to occur in the first grid 21 is the lattice pitch p 1 , p 2 , using the X-ray wavelength (peak wavelength) ⁇ and a positive integer m, represented by the following formula (3).
  • Expression (3) is an expression that represents the Talbot distance when the X-rays emitted from the X-ray source 11 are in the shape of a cone beam. “Atsushi Momose, et al. No. 10, October 2008, 8077 ”.
  • the distance L 2 is set to a range satisfying the following expression (4).
  • a G2 image generated by intensity-modulating the G1 image generated by the first grid 21 with the second grid 22 is captured by the X-ray image detector 20.
  • the G2 image Moire fringes occur. Even when moire fringes occur in the G2 image, there is no particular problem if the period of the moire fringes in the X direction or Y direction is larger than the arrangement pitch of the pixels 40.
  • the G2 image is modulated by the subject H.
  • This modulation amount is proportional to the refraction angle of X-rays by the subject H.
  • the phase differential image corresponds to the distribution of the refraction angle of X-rays.
  • FIG. 4 illustrates one path of X-rays that are refracted according to the phase shift distribution ⁇ (x) in the X direction of the subject H.
  • Reference numeral 50 indicates a path along which the X-ray goes straight when the subject H does not exist.
  • X-rays traveling along the path 50 pass through the first and second grids 21 and 22 and enter the X-ray image detector 20.
  • Reference numeral 51 denotes an X-ray path refracted by the subject H when the subject H exists.
  • X-rays traveling along the path 51 pass through the first grid 21 and are then absorbed by the X-ray absorbing portion 22 a of the second grid 22.
  • phase shift distribution ⁇ (x) of the subject H is expressed by the following formula (5) using the refractive index distribution n (x, z) of the subject H.
  • the y-coordinate is omitted for simplification of description.
  • the G1 image projected from the first grid 21 to the position of the second grid 22 is displaced in the X direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H.
  • This displacement amount ⁇ x is approximately expressed by the following equation (6) based on the fact that the refraction angle ⁇ of X-rays is very small.
  • the refraction angle ⁇ is expressed by the following equation (7) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x).
  • the displacement amount ⁇ x is related to the phase shift distribution ⁇ (x) of the subject H.
  • This displacement amount ⁇ x is calculated by the following equation (8) based on the phase shift amount ⁇ (the phase shift amount with and without the subject H) of the intensity modulation signal generated for each pixel 40.
  • the intensity modulation signal is a waveform signal that represents a change in intensity of pixel data in accordance with a change in the relative position (scanning position) between the first grid 21 and the second grid 22 in the X direction.
  • the two-dimensional distribution of the phase shift amount ⁇ of the intensity modulation signal corresponds to the differential image of the phase shift distribution ⁇ (x).
  • a two-dimensional distribution of the phase shift amount ⁇ is a phase differential image.
  • one of the first and second grids 21 and 22 is intermittently moved by a predetermined pitch in the X direction relative to the other, and is stopped. Take a photo.
  • the first grid 21 is fixed, and the second grid 22 is intermittently moved in the X direction by the scanning mechanism 23.
  • Moire fringes generated in the G2 image move as the second grid 22 moves, and when the translational distance reaches the grating period (grating pitch p 2 ) of the second grid 22, it matches the original pattern.
  • FIG. 5 schematically shows a state where the second grid 22 is intermittently moved at a constant scanning pitch (p 2 / M) obtained by dividing the lattice pitch p 2 into M pieces.
  • the X-ray component (non-refractive component) that has not been refracted by the subject H passes through the second grid 22.
  • the X-ray that passes through the second grid 22 is substantially only a refractive component.
  • the X-ray passing through the second grid 22 has a reduced refractive component while an increased non-refractive component.
  • M pixel data are obtained for each pixel 40.
  • the M pixel data forms an intensity modulation signal.
  • the pixel data I k (x) at each scanning position k is generally represented by the following equation (9).
  • a 0 represents the intensity of incident X-rays.
  • An is a value corresponding to the contrast of the intensity modulation signal (where n is a positive integer).
  • I is an imaginary unit.
  • ⁇ (x) represents the refraction angle ⁇ as a function of the x-coordinate.
  • arg [] means extraction of a declination, and corresponds to the phase shift amount ⁇ (x) of the intensity modulation signal I k (x) as shown in the following equation (12).
  • the y coordinate is not considered, but the two-dimensional distribution ⁇ (x, y) of the phase shift amount is obtained by considering the y coordinate.
  • This two-dimensional distribution ⁇ (x, y) corresponds to the phase differential image.
  • This phase differential image ⁇ (x, y) is expressed by the following equation (13) using an arctangent function.
  • FIG. 6 exemplifies intensity modulation signals I k (x, y) obtained at the time of main photographing and photographing scanning, respectively.
  • the phase shift amount ⁇ 1 (x, y) during the main photographing is calculated by the phase differential image generation unit 30 based on the equation (13).
  • the phase shift amount ⁇ 2 (x, y) at the time of one pre-photographing is similarly calculated by the correction data generation unit 31 based on the formula (13).
  • the phase shift amount ⁇ 2 (x, y) at the time of pre-photographing is caused by a manufacturing error or a displacement of the first and second grids 21 and 22.
  • Correction processing unit 33 a phase shift amount ⁇ 1 (x, y) from the phase shift amount ⁇ 2 (x, y) is subtracted.
  • phase differential image is susceptible to noise because the X-ray refraction angle ⁇ of the subject H is very small. This noise is roughly classified into electronic noise and quantum noise. Electronic noise is caused by the X-ray image detector 20. Quantum noise depends on the X-ray dose and becomes apparent at low X-ray doses. Due to these noises, errors occur in the calculated values of the phase shift amounts ⁇ 1 (x, y), ⁇ 2 (x, y).
  • the noise variation (standard deviation) N included in the phase shift amount ( ⁇ 1 (x, y) ⁇ 2 (x, y)) after subtraction by the correction processing unit 33 is the phase shift amount ⁇ 1 (x, y )
  • Variation N1 and phase shift amount ⁇ 2 (x, y) variation N2 are expressed by the following equation (14).
  • N is referred to as total variation
  • N1 is referred to as first variation
  • N2 is referred to as second variation.
  • the first and second variations N1 and N2 are expressed by the following formula (15) and the following formula (16) using the first and second X-ray doses I1 and I2, respectively.
  • the first X-ray dose I1 is the maximum X-ray dose detected by the X-ray image detector 20 at each scanning position k at the time of main imaging.
  • the second X-ray dose I2 is the maximum X-ray dose detected by the X-ray image detector 20 at each scanning position k during pre-imaging.
  • Equations (15) and (16) The relationship between the noise variation of the phase shift amount and the maximum X-ray dose shown in Equations (15) and (16) was found by the present applicant through simulation. Specifically, the applicant assigns a random error depending on the size of each pixel data constituting the intensity modulation signal, and then calculates the phase shift amount 50 times based on the equation (13). Repeatedly, the variation (standard deviation) in the amount of phase shift was evaluated. Then, this variation was evaluated by changing the maximum value of the intensity modulation signal (corresponding to the maximum X-ray dose detected by the X-ray image detector 20) stepwise. As a result, the present applicant has found that the variation in the noise of the phase shift amount is proportional to the reciprocal of the square root of the maximum X-ray dose. Note that the present applicant has the relationship of the expressions (15) and (16) when the first and second X-ray doses I1 and I2 are the average X-ray doses detected by the X-ray image detector 20. It is found that it holds.
  • the first and second X-ray doses I1 and I2 can be increased to reduce the overall variation N. Since it is not desirable to increase the first X-ray dose I1 from the viewpoint of exposure of the subject H, in this embodiment, the overall variation N is reduced by increasing the second X-ray dose I2.
  • Table 1 shows a change in the total variation N when the second X-ray dose I2 is controlled and the second variation N2 is changed.
  • the second X-ray dose I2 is about four times the first X-ray dose I1 and the second variation N2 is about half of the first variation N1, the error caused by the second variation N2 Is about 10% of the total variation N. Further, if the second X-ray dose I2 is about 100 times the first X-ray dose I1 and the second variation N2 is about 1/10 of the first variation N1, an error caused by the second variation N2 Can be almost ignored. Therefore, the X-ray source 11 is controlled, and the second X-ray dose I2 is preferably at least 4 times, more preferably 100 times or more, with respect to the first X-ray dose I1.
  • the second X-ray dose I2 is increased too much, there is a possibility that the accumulated charge amount of the pixel 40 of the X-ray image detector 20 is saturated and the pixel data is saturated. For this reason, it is preferable to set the second X-ray dose I2 in a range where the pixel data is not saturated.
  • step S10 when an imaging part of a patient to be imaged (subject H) is selected by the operation unit of the console 17 (step S10: YES), the system control unit 18 X-ray transmittance of the selected imaging part. Based on the above, the first X-ray dose I1 optimal for imaging is calculated (step S11).
  • the system control unit 18 sets the magnification ⁇ of the second X-ray dose I2 with respect to the first X-ray dose I1, for example, 100 times (step S12).
  • is the pixel data of the pixel 40 saturated? Is determined based on the characteristics of the X-ray image detector 20 (step S13).
  • step S13 NO
  • ⁇ times the first X-ray dose I1 is determined as the second X-ray dose I2 (step S14).
  • step S13 when it is determined that the pixel data is saturated (step S13: YES), a value ( ⁇ / ⁇ ) obtained by dividing the magnification ⁇ by the positive integer ⁇ is set as a new magnification ⁇ (step S15). ⁇ times the X-ray dose I1 of 1 is determined as the second X-ray dose I2 (step S16).
  • the integer ⁇ is the smallest positive integer within a range where the pixel data is not saturated.
  • the system control unit 18 exposes the exposure condition (the X-ray source 11 of the X-ray source 11) so that the X-ray image detector 20 detects the second X-ray dose I2 determined in step S14 or step S16.
  • the tube voltage, tube current, and exposure time are determined (step S17). Since the X-ray dose depends on the mAs value represented by the product of the tube current and the exposure time, the tube current or the exposure time may be adjusted so as to obtain the determined second X-ray dose I2.
  • the system control unit 18 When the second X-ray dose I2 is determined in step S14, the system control unit 18 performs the X-ray emission by the X-ray source 11 and the detection operation by the X-ray image detector 20 at each pre-scanning scanning position k. Is performed only once.
  • the system control unit 18 determines the second X-ray dose I2 in step S16, the X-ray emission from the X-ray source 11 and the detection by the X-ray image detector 20 at each scanning position k of pre-imaging. The operation is performed ⁇ times. Therefore, in the former case, one piece of image data is obtained at each scanning position k, whereas in the latter case, ⁇ pieces of image data are obtained at each scanning position k.
  • the correction data generation unit 31 converts the pixel data I k (x, y) of each pixel 40 into the same scanning position k as shown in FIG. Addition is performed every time to generate one intensity modulation signal.
  • the correction data described above is calculated using the intensity modulation signal obtained by the addition process. Since the total X-ray dose by ⁇ exposures using the second X-ray dose I2 determined in step S16 is substantially equal to the second X-ray dose I2 determined in step S14, either step S14 or step S16 Thus, even when the second X-ray dose I2 is determined, the noise of the correction data becomes a negligible level. For this reason, the image quality of the corrected phase differential image generated by the correction processing unit 33 is improved.
  • the total amount of noise when X-ray radiation is performed once with an X-ray dose of 100 mR is expressed as (10N x 2 + N e 2 ) 1/2, and 10 times of X-ray radiation is performed with an X-ray dose of 10 mR.
  • the total amount of noise when performed is represented as ⁇ 10 (N x 2 + N e 2 ) ⁇ 1/2 . If N x >> N e , the two are almost the same.
  • the operation of the X-ray imaging system 10 will be described.
  • the exposure condition at the time of pre-imaging is determined as described above.
  • the second grid 22 is intermittently moved to each scanning position k by the scanning mechanism 23, and X-rays are obtained at each scanning position k.
  • X-ray emission from the source 11 and detection operation by the X-ray image detector 20 are performed, and image data is generated.
  • imaging is performed once or ⁇ times according to the determined second X-ray dose I2, and one or ⁇ image data is generated.
  • Each image data is stored in the memory 13, and correction data is generated by the correction data generation unit 31 of the image processing unit 14.
  • the pixel data I k (x, y) at each scanning position k is added by the correction data generation unit 31 and then the intensity is added.
  • a modulated signal is generated.
  • the correction data generated by the correction data generation unit 31 is stored in the correction data storage unit 32 until the next pre-photographing is performed.
  • the exposure conditions for main imaging are set, and the second grid 22 is set as in the case of pre-imaging.
  • image data is generated by the X-ray emission from the X-ray source 11 and the X-ray image detector 20 at each scanning position k.
  • X-ray emission is performed with the first X-ray dose I1.
  • the number of X-ray emissions at each scanning position k is one, and one piece of image data is generated at each scanning position k.
  • the image data is stored in the memory 13 and a phase differential image is generated by the phase differential image generation unit 30 of the image processing unit 14.
  • the phase differential image is input to the correction processing unit 33, and the correction processing unit 33 subtracts the correction data stored in the correction data storage unit 32 from the phase differential image.
  • phase contrast image generation unit 34 Based on the corrected phase differential image generated by the correction processing unit 33, a phase contrast image generation unit 34 generates a phase contrast image.
  • the phase contrast image is recorded in the image recording unit 15 and then displayed on the monitor of the console 17.
  • the thickness is the largest (X-rays).
  • the exposure conditions for the pre-imaging may be determined based on the thickest imaging region where the transmittance is low. In this case, since the correction data obtained by the correction data generation unit 31 is applied even when an imaging part other than the thickest imaging part is selected, it is necessary to perform pre-imaging every time the imaging part is changed on the console 17. There is no.
  • the second X-ray dose I2 is determined based on the first X-ray dose I1 calculated based on the imaging region.
  • a known phototimer (automatic exposure device) may be provided, and the second X-ray dose I2 may be determined by setting the phototimer setting value (reference X-ray dose for stopping X-ray emission) as the first X-ray dose I1. .
  • first and second grids 21 and 22 are provided between the X-ray source 11 and the X-ray image detector 20, but the X-ray source 11 and the first and second grids are further provided.
  • a known source grid may be provided between the grid 21 and the grid 21.
  • the X-rays incident on the first grid 21 are configured to be geometrically optically projected onto the second grid 22, but instead, this is disclosed in Japanese Patent No. 4445397 (US Patent).
  • the X-rays incident on the first grid form a self-image of the first grid by the Talbot interference effect and are projected onto the position of the second grid. Also good. In this case, it is necessary to set the distance between the first and second grids to the Talbot distance.
  • the first grid may be a phase grid instead of the absorption grid.
  • the phase-type grid has a thickness of the X-ray absorption part and the X-ray transmission part so that a phase difference of “ ⁇ ” or “ ⁇ / 2” occurs between the X-ray absorption part and the X-ray transmission part. It is configured by setting materials.
  • the subject H is disposed between the X-ray source 11 and the first grid 21, but the subject H is disposed between the first grid 21 and the second grid 22. You may arrange. In this case as well, a phase differential image and a phase contrast image can be similarly generated.
  • phase contrast image is displayed on the monitor, but the corrected phase differential image generated by the correction processing unit 33 may be displayed on the monitor.
  • the second grid 22 and the X-ray image detector 20 are provided separately.
  • the second grid 22 can be omitted by using the X-ray image detector disclosed in the specification.
  • This X-ray image detector is a direct conversion type X-ray image detector including a conversion layer that converts X-rays into electric charges and a charge collection electrode that collects electric charges converted in the conversion layers.
  • the charge collection electrode of each pixel is configured by arranging a plurality of linear electrode groups formed by electrically connecting linear electrodes arranged at a constant period so that their phases are different from each other. ing. In this case, the charge collection electrode constitutes an intensity modulation unit.
  • the phase differential image is generated based on the fringe scanning method.
  • the phase differential image is generated based on the Fourier transform method described in International Publication WO2010 / 050833 (US Pat. No. 8,0097,979). It may be generated.
  • This Fourier transform method obtains a Fourier spectrum of moire fringes generated in image data by Fourier transforming single image data obtained by an X-ray image detector, and obtains a spectrum corresponding to the carrier frequency from this Fourier spectrum.
  • This is a method of generating a phase differential image by performing inverse Fourier transform after separation. In this case, since it is not necessary to move the first and second grids 21 and 22, the scanning mechanism 23 can be omitted.
  • the single image data obtained by the X-ray image detector 20 is divided into groups of pixel rows (pixels arranged in the X direction) having different phases with respect to the moire fringes, and the plurality of divided image data are A phase differential image is generated in the same procedure as the above-described fringe scanning method, assuming that the images are based on a plurality of different G2 images by fringe scanning.
  • the intensity modulation signal described above is expressed as a change in intensity of pixel values for one cycle of moire fringes generated in single image data.
  • the above embodiments may be combined with each other within a consistent range.
  • the present invention is applicable not only to a radiographic imaging system for medical diagnosis but also to other radiographic systems for industrial use and nondestructive inspection.
  • the present invention can also be applied to a radiographic imaging system that uses gamma rays or the like in addition to X-rays.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention enhances the precision of corrected data acquired in pre-imaging. When an imaging site in a patient to be imaged is selected, a first X-ray dose (I1) is computed on the basis of the X-ray transmittance of the imaging site. A determination is made as to whether pixel data are saturated in the case that the first X-ray dose (I1) is a multiple of α (for example, 100). When the pixel data are not saturated, the α-multiple of the first X-ray dose (I1) is used as a second X-ray dose (I2). When the pixel data are saturated, the α/ν multiple (where ν is a positive number 2 or greater) of the first X-ray dose (I1) is used as the second X-ray dose (I2). Pre-imaging is performed with the exposure conditions being determined on the basis of the second X-ray dose (I2). In the case that the second X-ray dose (I2) is determined by multiplying the first X-ray dose (I1) by α/ν, X-ray irradiation and image detection are executed ν times or more at each scanning position of pre-imaging.

Description

放射線画像撮影システム及びその制御方法Radiographic imaging system and control method thereof
 本発明は、放射線の位相変化に基づく画像を検出する放射線画像撮影システム及びその制御方法に関する。 The present invention relates to a radiographic imaging system that detects an image based on a phase change of radiation and a control method thereof.
 放射線、例えばX線は、被検体による位相変化が強度変化より大きいことが知られている。この特性に着目し、X線の位相変化に基づいて、X線吸収能が低い被検体から高コントラストの画像(以下、位相コントラスト画像という)を得るX線位相イメージングの研究が盛んに行われている。 Radiation, such as X-rays, is known to have a greater phase change due to the subject than an intensity change. Focusing on this characteristic, research on X-ray phase imaging for obtaining a high-contrast image (hereinafter referred to as a phase contrast image) from a subject having a low X-ray absorption capacity based on the phase change of X-rays has been actively conducted. Yes.
 X線位相イメージングの一種として、2枚のグリッド(回折格子)とX線画像検出器とを用いるX線画像撮影システムが知られている(例えば、特許文献1、非特許文献1参照)。このX線画像撮影システムは、X線源から見て被検体の背後に第1のグリッドを配置し、第1のグリッドからタルボ距離だけ下流に第2のグリッドを配置し、その背後にX線画像検出器を配置することにより構成される。タルボ距離とは、第1のグリッドを通過したX線が、タルボ干渉効果によって第1のグリッドの自己像(縞画像)を形成する距離である。この自己像は、X線が被検体により位相変化し、屈折が生じることにより変調される。この変調量を検出することにより、X線の位相変化が画像化される。 An X-ray imaging system using two grids (diffraction gratings) and an X-ray image detector is known as a kind of X-ray phase imaging (see, for example, Patent Document 1 and Non-Patent Document 1). In this X-ray imaging system, a first grid is disposed behind the subject as viewed from the X-ray source, a second grid is disposed downstream from the first grid by a Talbot distance, and the X-ray is behind the first grid. It is configured by arranging an image detector. The Talbot distance is a distance at which X-rays that have passed through the first grid form a self-image (stripe image) of the first grid due to the Talbot interference effect. This self-image is modulated by the phase change of the X-rays caused by the subject and refraction. By detecting this modulation amount, the phase change of the X-ray is imaged.
 上記変調量の検出方法として縞走査法が知られている。縞走査法では、第1のグリッドに対して第2のグリッドを間欠移動させるとともに、その停止中に撮影を行う。この間欠移動は、第1のグリッドの面にほぼ平行で、かつ第1のグリッドの格子線方向にほぼ垂直な方向に、格子ピッチを等分割した一定の走査ピッチずつ行う。X線画像検出器で得られる各画素値の強度変化から、被検体でのX線の屈折角度の分布を表す位相微分画像が得られる。この位相微分画像を積分処理することにより位相コントラスト画像が得られる。この縞走査法は、レーザ光を利用した撮影装置においても用いられている(例えば、非特許文献2参照)。 The fringe scanning method is known as a method for detecting the modulation amount. In the fringe scanning method, the second grid is intermittently moved with respect to the first grid, and photographing is performed while the second grid is stopped. This intermittent movement is performed by a constant scanning pitch obtained by equally dividing the lattice pitch in a direction substantially parallel to the surface of the first grid and substantially perpendicular to the lattice line direction of the first grid. From the intensity change of each pixel value obtained by the X-ray image detector, a phase differential image representing the distribution of the X-ray refraction angle in the subject is obtained. A phase contrast image is obtained by integrating the phase differential image. This fringe scanning method is also used in an imaging apparatus using laser light (see, for example, Non-Patent Document 2).
 縞走査法では、第1及び第2のグリッドに製造誤差や配置ずれがあると、その製造誤差や配置ずれに応じたノイズが位相微分画像に生じてしまう。特許文献1では、このノイズを除去するために、被検体を配置した状態での上記一連の撮影(以下、本撮影という)とは別に、被検体を配置しない状態で上記一連の撮影(以下、プレ撮影という)を行い、本撮影で得られた位相微分画像から、プレ撮影で得られた位相微分画像(補正データ)を減算することが提案されている。 In the fringe scanning method, if there is a manufacturing error or misalignment in the first and second grids, noise corresponding to the manufacturing error or misalignment occurs in the phase differential image. In Patent Document 1, in order to remove this noise, apart from the above-described series of imaging in a state where the subject is arranged (hereinafter referred to as main imaging), the series of imaging (hereinafter, referred to as “subject” is not described). It has been proposed to subtract a phase differential image (correction data) obtained by pre-imaging from a phase differential image obtained by actual imaging.
特許第4445397号公報Japanese Patent No. 4445397
 しかしながら、被検体によるX線の位相変化は微小であるため、位相微分画像は、微小なノイズでも被検体の画像化が阻害されてしまう。このため、補正データを精度よく取得して、ノイズを精度よく除去することが望まれる。特許文献1には、補正データの高精度化についてはなんら記載されていない。 However, since the phase change of the X-ray by the subject is minute, the phase differential image inhibits the imaging of the subject even with minute noise. For this reason, it is desired to obtain correction data with high accuracy and to remove noise with high accuracy. Japanese Patent Application Laid-Open No. 2004-228561 does not describe any improvement in accuracy of correction data.
 本発明は、位相微分画像を補正するための補正データの精度を向上させることを可能とする放射線画像撮影システム及びその制御方法を提供することを目的とする。 It is an object of the present invention to provide a radiographic image capturing system and a control method thereof that can improve the accuracy of correction data for correcting a phase differential image.
 上記目的を達成するために、本発明の放射線画像撮影システムは、放射線源と、第1のグリッドと、強度変調部と、放射線画像検出器と、位相微分画像生成部と、補正データ生成部と、補正処理部と、制御部とを備える。前記放射線源は、被検体を配置しないプレ撮影時及び前記被検体を配置した本撮影時に放射線を放射する。前記第1のグリッドは、前記放射線を通過させて第1の周期パターン像を生成する。前記強度変調部は、前記第1の周期パターン像に対して強度変調を与えて第2の周期パターン像を生成する。前記放射線画像検出器は、前記第2の周期パターン像を検出して画像データを生成する。前記位相微分画像生成部は、前記本撮影時に生成された前記画像データに基づいて位相微分画像を生成する。前記補正データ生成部は、前記プレ撮影時に生成された前記画像データに基づいて補正データを生成する。前記補正処理部は、前記位相微分画像から前記補正データを減算する。前記制御部は、前記本撮影時の第1の放射線量をα倍(ただし、α>1)した第2の放射線量に基づいて前記プレ撮影時の曝射条件を決定し、この曝射条件で前記放射線源に放射を実行させる。 In order to achieve the above object, a radiographic imaging system of the present invention includes a radiation source, a first grid, an intensity modulation unit, a radiographic image detector, a phase differential image generation unit, and a correction data generation unit. A correction processing unit and a control unit. The radiation source emits radiation at the time of pre-imaging without arranging the subject and at the time of actual imaging with the subject arranged. The first grid passes the radiation and generates a first periodic pattern image. The intensity modulation unit performs intensity modulation on the first periodic pattern image to generate a second periodic pattern image. The radiological image detector detects the second periodic pattern image and generates image data. The phase differential image generation unit generates a phase differential image based on the image data generated during the main photographing. The correction data generation unit generates correction data based on the image data generated during the pre-photographing. The correction processing unit subtracts the correction data from the phase differential image. The control unit determines an exposure condition during the pre-imaging based on a second radiation dose obtained by multiplying the first radiation dose during the main imaging by α times (where α> 1). To cause the radiation source to perform radiation.
 前記制御部は、前記第1の放射線量をα倍した場合に画素データが飽和するか否かを判定することが好ましい。もし飽和する場合には、前記制御部は、前記第1の放射線量をα/ν倍(ただし、νは2以上の正数)した値を前記第2の放射線量と定め、前記プレ撮影時に、前記放射線源及び前記放射線画像検出器に前記放射及び前記画像検出をそれぞれν回以上実行させる。 It is preferable that the control unit determines whether or not the pixel data is saturated when the first radiation dose is multiplied by α. If saturation occurs, the control unit determines the second radiation dose to be a value obtained by multiplying the first radiation dose by α / ν (where ν is a positive number of 2 or more), and during the pre-imaging. , Causing the radiation source and the radiation image detector to execute the radiation and the image detection respectively ν times or more.
 前記補正データ生成部は、前記プレ撮影時に前記放射及び前記画像検出がν回以上実行された場合に、前記放射線画像検出器により生成される各画像データを加算処理することが好ましい。 It is preferable that the correction data generation unit adds each image data generated by the radiation image detector when the radiation and the image detection are performed ν times or more during the pre-imaging.
 前記強度変調部は、前記第1の周期パターン像に対して位相が異なる複数の走査位置で強度変調を与えて複数の第2の周期パターン像を生成し、前記放射線画像検出器は、前記複数の第2の周期パターン像を検出して複数の画像データを生成し、前記位相微分画像生成部及び前記補正データ生成部は、前記複数の画像データに基づき、前記走査位置に対する画素データの強度変化を表す強度変調信号の位相ズレ量を算出することにより前記位相微分画像及び前記補正データをそれぞれ生成し、前記制御部は、前記第1の放射線量をα/ν倍した値を前記第2の放射線量とする場合に、前記プレ撮影時の前記各走査位置において前記放射及び前記画像検出をν回以上実行させることが好ましい。 The intensity modulation unit applies intensity modulation at a plurality of scanning positions having different phases with respect to the first periodic pattern image to generate a plurality of second periodic pattern images, and the radiation image detector includes the plurality of radiation image detectors. The second periodic pattern image is detected to generate a plurality of image data, and the phase differential image generation unit and the correction data generation unit change the intensity of pixel data with respect to the scanning position based on the plurality of image data The phase differential image and the correction data are respectively generated by calculating the phase shift amount of the intensity modulation signal representing the control signal, and the control unit obtains a value obtained by multiplying the first radiation dose by α / ν. When the radiation dose is used, it is preferable that the radiation and the image detection are executed at least ν times at each scanning position at the time of the pre-imaging.
 前記補正データ生成手段は、プレ撮影時の前記各走査位置において前記放射及び前記画像検出がν回以上実行された場合に、前記各走査位置で得られるν枚以上の画像データを加算処理することが好ましい。 The correction data generation means adds ν or more image data obtained at each scanning position when the radiation and the image detection are performed at ν times or more at each scanning position during pre-imaging. Is preferred.
 撮影部位の種別を選択可能とする操作部をさらに備え、前記制御部は、前記操作部により選択された撮影部位応じて前記第1の放射線量を決定することが好ましい。また、前記制御部は、前記操作部により選択可能な複数の撮影部位のうち、厚みが最も大きい最厚撮影部位に基づいて前記第1の放射線量を決定してもよい。また、フォトタイマをさらに備え、前記制御部は、前記フォトタイマの設定値を前記第1の放射線量としてもよい。 It is preferable that an operation unit that enables selection of the type of imaging region is further provided, and the control unit determines the first radiation dose according to the imaging region selected by the operation unit. Further, the control unit may determine the first radiation dose based on a thickest imaging part having the largest thickness among a plurality of imaging parts that can be selected by the operation unit. Further, a photo timer may be further provided, and the control unit may set a set value of the photo timer as the first radiation dose.
 前記αは、100以上であることが好ましい。 The α is preferably 100 or more.
 前記強度変調部は、前記第1の周期パターン像と同一方向の周期パターンを有する第2のグリッドと、前記第1及び第2のグリッドの一方を所定のピッチで移動させる走査機構とを有することが好ましい。 The intensity modulation unit includes a second grid having a periodic pattern in the same direction as the first periodic pattern image, and a scanning mechanism that moves one of the first and second grids at a predetermined pitch. Is preferred.
 前記第1のグリッドは、吸収型グリッドであり、入射した放射線を幾何光学的に前記第2のグリッドに投影することが好ましい。また、前記第1のグリッドは、吸収型グリッドまたは位相型グリッドであり、入射した放射線にタルボ干渉効果を生じさせて前記第2のグリッドに投影するものであってもよい。 The first grid is an absorption grid, and it is preferable to project incident radiation onto the second grid geometrically. Further, the first grid may be an absorption grid or a phase grid, and may cause a Talbot interference effect on incident radiation and project it onto the second grid.
 本発明の制御方法は、被検体を配置しないプレ撮影時及び前記被検体を配置した本撮影時に放射線を放射する放射線源と、前記放射線を通過させて第1の周期パターン像を生成する第1のグリッドと、前記第1の周期パターン像に対して強度変調を与えて第2の周期パターン像を生成する強度変調部と、前記第2の周期パターン像を検出して画像データを生成する放射線画像検出器と、前記本撮影時に生成された前記画像データに基づいて位相微分画像を生成する位相微分画像生成部と、前記プレ撮影時に生成された前記画像データに基づいて補正データを生成する補正データ生成部と、前記位相微分画像から前記補正データを減算する補正処理部と、を備える放射線撮影システムに用いられる。本発明の制御方法は、前記本撮影時の第1の放射線量をα倍(ただし、α>1)した第2の放射線量に基づいて前記プレ撮影時の曝射条件を決定する。 The control method of the present invention includes a radiation source that emits radiation during pre-imaging without placing a subject and during the main photography with the subject, and a first periodic pattern image that passes through the radiation and generates a first periodic pattern image. Grid, an intensity modulation unit that applies intensity modulation to the first periodic pattern image to generate a second periodic pattern image, and radiation that detects the second periodic pattern image and generates image data An image detector, a phase differential image generation unit that generates a phase differential image based on the image data generated during the main photographing, and a correction that generates correction data based on the image data generated during the pre-photographing The present invention is used in a radiographic system including a data generation unit and a correction processing unit that subtracts the correction data from the phase differential image. In the control method of the present invention, the exposure condition at the time of the pre-imaging is determined based on the second radiation dose obtained by multiplying the first radiation dose at the time of the main imaging by α (where α> 1).
 本発明によれば、本撮影時の第1の放射線量をα倍(ただし、α>1)した第2の放射線量に基づいてプレ撮影時の曝射条件を決定し、この曝射条件で前記放射線源にX線放射を実行させるから、プレ撮影で取得する補正データの精度を向上させることができる。 According to the present invention, the exposure condition during pre-imaging is determined based on the second radiation dose obtained by multiplying the first radiation dose during the main imaging by α times (where α> 1). Since the radiation source performs X-ray emission, the accuracy of correction data acquired by pre-imaging can be improved.
X線画像撮影システムの構成を示す模式図である。It is a schematic diagram which shows the structure of a X-ray imaging system. 画像処理部の構成を示すブロック図である。It is a block diagram which shows the structure of an image process part. X線画像検出器の構成を示すブロック図である。It is a block diagram which shows the structure of a X-ray image detector. 第1及び第2のグリッドの構成を説明する説明図である。It is explanatory drawing explaining the structure of a 1st and 2nd grid. 縞走査法を説明する説明図である。It is explanatory drawing explaining a fringe scanning method. 強度変調信号を示すグラフである。It is a graph which shows an intensity | strength modulation signal. プレ撮影時の曝射条件の決定方法を示すフローチャートである。It is a flowchart which shows the determination method of the exposure conditions at the time of pre imaging | photography. 画素データの加算処理を説明する説明図である。It is explanatory drawing explaining the addition process of pixel data.
 図1において、放射線、例えばX線撮影システム10は、X線源11、撮影部12、メモリ13、画像処理部14、画像記録部15、撮影制御部16、コンソール17、及びシステム制御部18を備える。X線源11は、周知のように、回転陽極型のX線管(図示せず)と、X線の照射野を制限するコリメータ(図示せず)とを有し、被検体HにX線を照射する。 In FIG. 1, radiation, for example, an X-ray imaging system 10 includes an X-ray source 11, an imaging unit 12, a memory 13, an image processing unit 14, an image recording unit 15, an imaging control unit 16, a console 17, and a system control unit 18. Prepare. As is well known, the X-ray source 11 has a rotary anode type X-ray tube (not shown) and a collimator (not shown) for limiting the X-ray irradiation field, and the subject H is irradiated with X-rays. Irradiate.
 撮影部12は、X線画像検出器20、第1のグリッド21、第2のグリッド22、走査機構23を有する。第1及び第2のグリッド21,22は、吸収型グリッドであり、X線照射方向であるZ方向に関してX線源11に対向配置されている。X線源11と第1のグリッド21との間には、被検体Hが配置可能な間隔が設けられている。X線画像検出器20は、周知のように、半導体回路を用いたフラットパネル検出器であり、第2のグリッド22の背後に、表面がZ方向に直交するように配置されている。 The imaging unit 12 includes an X-ray image detector 20, a first grid 21, a second grid 22, and a scanning mechanism 23. The 1st and 2nd grids 21 and 22 are absorption type grids, and are arranged facing the X-ray source 11 in the Z direction which is the X-ray irradiation direction. A space is provided between the X-ray source 11 and the first grid 21 so that the subject H can be arranged. As is well known, the X-ray image detector 20 is a flat panel detector using a semiconductor circuit, and is disposed behind the second grid 22 so that the surface thereof is orthogonal to the Z direction.
 第1のグリッド21は、Z方向に直交する面内の一方向であるY方向に延伸された複数のX線吸収部21a及びX線透過部21bを有する。X線吸収部21a及びX線透過部21bは、Z方向及びY方向に直交するX方向に沿って交互に配列されており、縞状のグリッドを構成している。第2のグリッド22は、第1のグリッド21と同様にY方向に延伸され、かつX方向に沿って交互に配列された複数のX線吸収部22a及びX線透過部22bを有する。X線吸収部21a,22aは、金(Au)、白金(Pt)等のX線吸収性を有する金属で形成されている。X線透過部21b,22bは、シリコン(Si)や樹脂等のX線透過性を有する材料や空隙により形成されている。 The first grid 21 has a plurality of X-ray absorption parts 21a and X-ray transmission parts 21b extended in the Y direction, which is one direction in a plane orthogonal to the Z direction. The X-ray absorption part 21a and the X-ray transmission part 21b are alternately arranged along the X direction orthogonal to the Z direction and the Y direction, and constitute a striped grid. The second grid 22 has a plurality of X-ray absorbing portions 22 a and X-ray transmitting portions 22 b that are extended in the Y direction and arranged alternately along the X direction, like the first grid 21. The X-ray absorbers 21a and 22a are formed of a metal having X-ray absorption such as gold (Au) and platinum (Pt). The X-ray transmissive portions 21b and 22b are formed of a material having X-ray permeability such as silicon (Si) or resin or a gap.
 第1のグリッド21は、X線源11から放射されたX線を透過させることにより第1の周期パターン像(以下、G1像という)を生成する。第2のグリッド22は、G1像を部分的に遮蔽する(強度変調する)ことにより第2の周期パターン像(以下、G2像という)を生成する。 The first grid 21 transmits a X-ray emitted from the X-ray source 11 to generate a first periodic pattern image (hereinafter referred to as a G1 image). The second grid 22 generates a second periodic pattern image (hereinafter referred to as a G2 image) by partially shielding (intensity modulating) the G1 image.
 メモリ13は、撮影部12により得られた複数の画像データを一時的に記憶する。画像処理部14は、メモリ13に記憶された複数の画像データに基づいて位相微分画像及び位相コントラスト画像を生成する。画像記録部15は、画像処理部14により生成された位相コントラスト画像を記録する。撮影制御部16は、X線源11及び撮影部12の制御を行う。コンソール17は、周知の操作部やモニタ等を有し、撮影条件や撮影指示等の入力や、撮影情報や画像等の画像表示を可能とする。システム制御部18は、コンソール17の入力部からの入力信号に応じて、各部を統括的に制御する。 The memory 13 temporarily stores a plurality of image data obtained by the photographing unit 12. The image processing unit 14 generates a phase differential image and a phase contrast image based on a plurality of image data stored in the memory 13. The image recording unit 15 records the phase contrast image generated by the image processing unit 14. The imaging control unit 16 controls the X-ray source 11 and the imaging unit 12. The console 17 has a well-known operation unit, monitor, and the like, and enables input of shooting conditions, shooting instructions, etc., and display of image information such as shooting information and images. The system control unit 18 comprehensively controls each unit according to an input signal from the input unit of the console 17.
 X線撮影システム10は、被検体Hとして患者を撮影するX線診断装置である。コンソール17の操作部により、撮影対象とする患者の撮影部位(胸部、乳房、下肢、手、肩関節など)の種別が選択可能となっている。 The X-ray imaging system 10 is an X-ray diagnostic apparatus that images a patient as the subject H. The type of the imaging region (chest, breast, lower limb, hand, shoulder joint, etc.) of the patient to be imaged can be selected by the operation unit of the console 17.
 走査機構23は、第2のグリッド22をX方向に間欠的に移動させ、第1のグリッド21に対する第2のグリッド22の相対位置を順に変化させる。走査機構23は、圧電アクチュエータや静電アクチュエータを有する。走査機構23は、後述する縞走査の際に、撮影制御部16の制御に基づいて駆動される。メモリ13には、縞走査の各走査ステップでX線画像検出器20により生成された画像データがそれぞれ記憶される。なお、第2のグリッド22及び走査機構23が強度変調部を構成する。 The scanning mechanism 23 intermittently moves the second grid 22 in the X direction, and sequentially changes the relative position of the second grid 22 with respect to the first grid 21. The scanning mechanism 23 has a piezoelectric actuator or an electrostatic actuator. The scanning mechanism 23 is driven based on the control of the imaging control unit 16 at the time of stripe scanning described later. The memory 13 stores image data generated by the X-ray image detector 20 in each scanning step of fringe scanning. The second grid 22 and the scanning mechanism 23 constitute an intensity modulation unit.
 図2において、画像処理部14は、位相微分画像生成部30、補正データ生成部31、補正データ記憶部32、補正処理部33、及び位相コントラスト画像生成部34を有する。位相微分画像生成部30は、被検体Hを配置して行なわれる本撮影時の各走査ステップでX線画像検出器20により得られた複数の画像データに基づいて被検体Hの位相微分画像を生成する。 2, the image processing unit 14 includes a phase differential image generation unit 30, a correction data generation unit 31, a correction data storage unit 32, a correction processing unit 33, and a phase contrast image generation unit 34. The phase differential image generation unit 30 generates a phase differential image of the subject H based on a plurality of image data obtained by the X-ray image detector 20 in each scanning step at the time of main imaging performed by arranging the subject H. Generate.
 補正データ生成部31は、被検体Hを配置せずに行なわれるプレ撮影時の各走査ステップでX線画像検出器20により得られた複数の画像データに基づいて位相微分画像を生成し、これを補正データとして補正データ記憶部32に記憶させる。補正データ記憶部32は、フラッシュメモリ等の不揮発性メモリにより構成されている。 The correction data generation unit 31 generates a phase differential image based on a plurality of image data obtained by the X-ray image detector 20 in each scanning step at the time of pre-imaging performed without arranging the subject H. Is stored in the correction data storage unit 32 as correction data. The correction data storage unit 32 is configured by a nonvolatile memory such as a flash memory.
 補正処理部33は、位相微分画像生成部30により生成された位相微分画像から、補正データ記憶部32に記憶された補正データを画素ごとに減算し、減算後の位相微分画像(以下、補正済位相微分画像という)を位相コントラスト画像生成部34に入力する。位相コントラスト画像生成部34は、補正済位相微分画像をX方向に沿って積分処理することにより位相コントラスト画像を生成する。 The correction processing unit 33 subtracts the correction data stored in the correction data storage unit 32 from the phase differential image generated by the phase differential image generation unit 30 for each pixel, and a phase differential image after subtraction (hereinafter, corrected). (Referred to as phase differential image) is input to the phase contrast image generator 34. The phase contrast image generation unit 34 generates a phase contrast image by integrating the corrected phase differential image along the X direction.
 位相コントラスト画像生成部34により生成された位相コントラスト画像は、画像記録部15に記録された後、コンソール17に出力されモニタに画像表示される。 The phase contrast image generated by the phase contrast image generation unit 34 is recorded in the image recording unit 15 and then output to the console 17 and displayed on the monitor.
 図3において、X線画像検出器20は、受像部41、走査回路42、及び読み出し回路43を有する。受像部41は、X線を電荷に変換して蓄積する複数の画素40が、X方向及びY方向に沿ってアクティブマトリクス基板(図示せず)上に2次元配列されたものである。走査回路42は、画素40からの電荷の読み出しタイミングを制御する。読み出し回路43は、画素40から読み出された電荷を画像データに変換して出力する。走査回路42と各画素40とは、行ごとに走査線44によって接続されている。読み出し回路43と各画素40とは、列ごとに信号線45によって接続されている。画素40の配列ピッチは、X方向及びY方向にそれぞれ100μm程度である。 3, the X-ray image detector 20 includes an image receiving unit 41, a scanning circuit 42, and a readout circuit 43. The image receiving unit 41 is a two-dimensional array of a plurality of pixels 40 that convert X-rays into electric charges and store them on an active matrix substrate (not shown) along the X and Y directions. The scanning circuit 42 controls the timing for reading out charges from the pixels 40. The readout circuit 43 converts the charges read from the pixels 40 into image data and outputs the image data. The scanning circuit 42 and each pixel 40 are connected to each other by a scanning line 44 for each row. The readout circuit 43 and each pixel 40 are connected to each other by a signal line 45 for each column. The arrangement pitch of the pixels 40 is about 100 μm in each of the X direction and the Y direction.
 画素40は、周知のように、アモルファスセレン等の変換層(図示せず)によりX線を電荷に直接変換し、変換された電荷を変換層の下部の電極に接続されたキャパシタ(図示せず)に蓄積する直接変換型のX線検出素子である。各画素40には、TFTスイッチ(図示せず)が設けられ、TFTスイッチのゲート電極が走査線44、ソース電極がキャパシタ、ドレイン電極が信号線45に接続されている。走査回路42から印加される駆動パルスによってTFTスイッチがON状態になると、キャパシタに蓄積された電荷が信号線45に読み出される。 As is well known, the pixel 40 directly converts X-rays into electric charges by a conversion layer (not shown) such as amorphous selenium, and a capacitor (not shown) connected to the converted charge at the lower electrode of the conversion layer. ) Is a direct conversion type X-ray detection element. Each pixel 40 is provided with a TFT switch (not shown). The gate electrode of the TFT switch is connected to the scanning line 44, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 45. When the TFT switch is turned on by the drive pulse applied from the scanning circuit 42, the charge accumulated in the capacitor is read out to the signal line 45.
 なお、画素40は、酸化ガドリニウム(Gd)やヨウ化セシウム(CsI)等により形成されたシンチレータ(図示せず)でX線を一旦可視光に変換し、変換された可視光をフォトダイオード(図示せず)で電荷に変換して蓄積する間接変換型のX線検出素子としてもよい。また、X線画像検出器20として、TFTパネルをベースとした放射線画像検出器以外に、CCDセンサやCMOSセンサ等の固体撮像素子をベースとした放射線画像検出器を用いてもよい。 The pixel 40 temporarily converts X-rays into visible light with a scintillator (not shown) formed of gadolinium oxide (Gd 2 O 3 ), cesium iodide (CsI), or the like, and converts the converted visible light into photo An indirect conversion type X-ray detection element that converts the charge into a charge by a diode (not shown) and stores the charge may be used. In addition to the radiation image detector based on the TFT panel, a radiation image detector based on a solid-state imaging device such as a CCD sensor or a CMOS sensor may be used as the X-ray image detector 20.
 読み出し回路43は、積分アンプ、A/D変換器、補正回路(いずれも図示せず)等により構成されている。積分アンプは、各画素40から信号線45を介して出力された電荷を積分して電圧信号(画像信号)に変換する。A/D変換器は、積分アンプにより変換された画像信号を、デジタルの画像データに変換する。補正回路は、画像データに対して、暗電流補正、ゲイン補正、及びリニアリティ補正等を行い、補正後の画像データをメモリ13に入力する。 The readout circuit 43 includes an integration amplifier, an A / D converter, a correction circuit (none of which is shown), and the like. The integrating amplifier integrates the charges output from each pixel 40 via the signal line 45 and converts them into a voltage signal (image signal). The A / D converter converts the image signal converted by the integrating amplifier into digital image data. The correction circuit performs dark current correction, gain correction, linearity correction, and the like on the image data, and inputs the corrected image data to the memory 13.
 図4において、X線源11から放射されるX線は、X線焦点11aを発光点としたコーンビーム状であるため、第1のグリッド21により生成されるG1像は、X線焦点11aからの距離に比例して拡大される。第2のグリッド22のX線吸収部22aのX方向の格子ピッチp及び幅dは、X線焦点11aと第1のグリッド21との間の距離L、第1のグリッド21と第2のグリッド22との間の距離L、及び第1のグリッド21のX線吸収部21aの格子ピッチp及び幅dを用いて下式(1)及び(2)に示すように設定されている。 In FIG. 4, the X-ray emitted from the X-ray source 11 has a cone beam shape with the X-ray focal point 11a as the light emission point, and therefore the G1 image generated by the first grid 21 is from the X-ray focal point 11a. It is enlarged in proportion to the distance. The lattice pitch p 2 and the width d 2 in the X direction of the X-ray absorber 22 a of the second grid 22 are the distance L 1 between the X-ray focal point 11 a and the first grid 21, the first grid 21 and the first grid 21. Using the distance L 2 between the two grids 22 and the lattice pitch p 1 and the width d 1 of the X-ray absorbing portion 21a of the first grid 21, settings are made as shown in the following equations (1) and (2). Has been.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 例えば、格子ピッチpは5μmであり、幅dはその半分の2.5μmである。X線吸収部21aのZ方向の厚みは、X線源11から放射されるコーンビーム状のX線のケラレを考慮して、例えば100μm程度とされている。なお、必ずしも式(2)を満たす必要はなく、間隔d,dをそれぞれ独立に設定してもよい。 For example, the grating pitch p 2 is 5 μm, and the width d 2 is half that of 2.5 μm. The thickness of the X-ray absorber 21a in the Z direction is set to, for example, about 100 μm in consideration of corneal X-ray vignetting emitted from the X-ray source 11. It is not always necessary to satisfy the formula (2), and the intervals d 1 and d 2 may be set independently.
 第1及び第2のグリッド21,22は、X線低吸収部21b,22bを通過したX線を線形的(幾何光学的)に投影するように構成される。具体的には、間隔d,dを、X線源11から放射されるX線のピーク波長より十分大きな値とすることで実現され、放射X線に含まれる大部分のX線が回折せずに、直進性を保ったままX線透過部21b,22bを通過する。例えば、前述のX線管の回転陽極としてタングステンを用い、管電圧を50kVとした場合には、X線のピーク波長は、約0.4Åである。この場合には、間隔d,dを1μm~10μm程度とすればよい。格子ピッチp,pは、2μm~20μm程度である。 The 1st and 2nd grids 21 and 22 are comprised so that the X-rays which passed X-ray low absorption part 21b, 22b may be projected linearly (geometrical optical). Specifically, it is realized by setting the distances d 1 and d 2 to a value sufficiently larger than the peak wavelength of the X-rays emitted from the X-ray source 11, and most of the X-rays included in the emitted X-rays are diffracted. Without passing through, the X-ray transmission parts 21b and 22b pass through while maintaining straightness. For example, when tungsten is used as the rotating anode of the aforementioned X-ray tube and the tube voltage is 50 kV, the peak wavelength of the X-ray is about 0.4 mm. In this case, the distances d 1 and d 2 may be about 1 μm to 10 μm. The grating pitches p 1 and p 2 are about 2 μm to 20 μm.
 第1のグリッド21でタルボ干渉効果が生じる場合には、距離Lは、タルボ距離に制約されるが、本実施形態では、第1のグリッド21がX線を幾何光学的に投影するように構成されているため、距離Lをタルボ距離とは無関係に設定することができる。 If the Talbot effect occurs in the first grid 21, the distance L 2, as it is constrained to Talbot distance, in the present embodiment, the first grid 21 to geometrical optics projecting an X-ray because it is constituted, the distance L 2 can be set independently of the Talbot distance.
 本実施形態の撮影部12は、タルボ干渉計を構成するものではないが、第1のグリッド21でタルボ干渉効果が生じていると仮定した場合のタルボ距離Zは、格子ピッチp,p、X線波長(ピーク波長)λ、及び正の整数mを用いて、下式(3)で表される。 The imaging unit 12 of the present embodiment does not constitute a Talbot interferometer, but the Talbot distance Z m when the Talbot interference effect is assumed to occur in the first grid 21 is the lattice pitch p 1 , p 2 , using the X-ray wavelength (peak wavelength) λ and a positive integer m, represented by the following formula (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)は、X線源11から放射されるX線がコーンビーム状である場合のタルボ距離を表す式であり、「Atsushi Momose, et al., Japanese Journal of Applied Physics, Vol.47, No.10, 2008年10月, 8077頁」により知られている。 Expression (3) is an expression that represents the Talbot distance when the X-rays emitted from the X-ray source 11 are in the shape of a cone beam. “Atsushi Momose, et al. No. 10, October 2008, 8077 ”.
 本実施形態では、前述のように距離Lをタルボ距離と無関係に設定することができるため、撮影部12のZ方向への薄型化を目的とし、距離Lを、m=1の場合の最小のタルボ距離Zより短い値に設定する。すなわち、距離Lは、下式(4)を満たす範囲に設定される。 In the present embodiment, it is possible to set the distance L 2 as described above independently of the Talbot distance, for the purpose of thinning in the Z direction of the imaging unit 12, the distance L 2, in the case of m = 1 set to the minimum value shorter than a Talbot distance Z 1. That is, the distance L 2 is set to a range satisfying the following expression (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 第1のグリッド21により生成されたG1像を、第2のグリッド22で強度変調することにより生成されたG2像がX線画像検出器20によって撮影される。第2のグリッド22の位置におけるG1像のパターン周期と、第2のグリッド22の格子ピッチpとは、配置誤差などにより若干の差異が生じていることがあり、この場合には、G2像にモアレ縞が発生する。G2像にモアレ縞が発生した場合でも、モアレ縞のX方向またはY方向の周期が画素40の配列ピッチより大きい場合には特に問題はない。 A G2 image generated by intensity-modulating the G1 image generated by the first grid 21 with the second grid 22 is captured by the X-ray image detector 20. There may be a slight difference between the pattern period of the G1 image at the position of the second grid 22 and the lattice pitch p2 of the second grid 22 due to an arrangement error or the like. In this case, the G2 image Moire fringes occur. Even when moire fringes occur in the G2 image, there is no particular problem if the period of the moire fringes in the X direction or Y direction is larger than the arrangement pitch of the pixels 40.
 X線源11と第1のグリッド21との間に被検体Hを配置すると、G2像は、被検体Hにより変調を受ける。この変調量は、被検体HによるX線の屈折角に比例する。位相微分画像は、X線の屈折角の分布に対応する。 When the subject H is disposed between the X-ray source 11 and the first grid 21, the G2 image is modulated by the subject H. This modulation amount is proportional to the refraction angle of X-rays by the subject H. The phase differential image corresponds to the distribution of the refraction angle of X-rays.
 次に、位相微分画像を生成するための縞走査法を説明する。ここで、X,Y,Z方向の座標を、x座標、y座標、z座標とする。図4には、被検体HのX方向に関する位相シフト分布Φ(x)に応じて屈折するX線の1つの経路が例示されている。符号50は、被検体Hが存在しない場合にX線が直進する経路を示している。この経路50を進むX線は、第1及び第2のグリッド21,22を通過してX線画像検出器20に入射する。符号51は、被検体Hが存在する場合に、被検体Hにより屈折したX線の経路を示している。この経路51を進むX線は、第1のグリッド21を通過した後、第2のグリッド22のX線吸収部22aにより吸収される。 Next, a fringe scanning method for generating a phase differential image will be described. Here, the coordinates in the X, Y, and Z directions are the x, y, and z coordinates. FIG. 4 illustrates one path of X-rays that are refracted according to the phase shift distribution Φ (x) in the X direction of the subject H. Reference numeral 50 indicates a path along which the X-ray goes straight when the subject H does not exist. X-rays traveling along the path 50 pass through the first and second grids 21 and 22 and enter the X-ray image detector 20. Reference numeral 51 denotes an X-ray path refracted by the subject H when the subject H exists. X-rays traveling along the path 51 pass through the first grid 21 and are then absorbed by the X-ray absorbing portion 22 a of the second grid 22.
 被検体Hの位相シフト分布Φ(x)は、被検体Hの屈折率分布n(x,z)を用いて下式(5)で表される。ここで、説明の簡略化のため、y座標は省略している。 The phase shift distribution Φ (x) of the subject H is expressed by the following formula (5) using the refractive index distribution n (x, z) of the subject H. Here, the y-coordinate is omitted for simplification of description.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 第1のグリッド21から第2のグリッド22の位置に投影されたG1像は、被検体HでのX線の屈折により、その屈折角φに応じた量だけX方向に変位する。この変位量Δxは、X線の屈折角φが微小であることに基づいて、近似的に下式(6)で表される。 The G1 image projected from the first grid 21 to the position of the second grid 22 is displaced in the X direction by an amount corresponding to the refraction angle φ due to refraction of X-rays at the subject H. This displacement amount Δx is approximately expressed by the following equation (6) based on the fact that the refraction angle φ of X-rays is very small.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、屈折角φは、X線波長λと位相シフト分布Φ(x)を用いて、下式(7)で表される。 Here, the refraction angle φ is expressed by the following equation (7) using the X-ray wavelength λ and the phase shift distribution Φ (x).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 このように、変位量Δxは、被検体Hの位相シフト分布Φ(x)に関連している。そして、この変位量Δxは、各画素40ごとに生成される強度変調信号の位相ズレ量ψ(被検体Hがある場合とない場合とでの位相のズレ量)に、下式(8)のように関連している。強度変調信号とは、X方向に関する第1のグリッド21と第2のグリッド22との相対位置(走査位置)の変化に応じた画素データの強度変化を表す波形信号である。 Thus, the displacement amount Δx is related to the phase shift distribution Φ (x) of the subject H. This displacement amount Δx is calculated by the following equation (8) based on the phase shift amount ψ (the phase shift amount with and without the subject H) of the intensity modulation signal generated for each pixel 40. Are related. The intensity modulation signal is a waveform signal that represents a change in intensity of pixel data in accordance with a change in the relative position (scanning position) between the first grid 21 and the second grid 22 in the X direction.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 したがって、強度変調信号の位相ズレ量ψの2次元分布が位相シフト分布Φ(x)の微分像に対応している。ここでは、位相ズレ量ψの2次元分布を位相微分画像とする。位相微分画像をX方向に沿って積分することにより、位相シフト分布を表す位相コントラスト画像が生成される。 Therefore, the two-dimensional distribution of the phase shift amount ψ of the intensity modulation signal corresponds to the differential image of the phase shift distribution Φ (x). Here, a two-dimensional distribution of the phase shift amount ψ is a phase differential image. By integrating the phase differential image along the X direction, a phase contrast image representing the phase shift distribution is generated.
 縞走査法では、上記強度変調信号を取得するために、第1及び第2のグリッド21,22の一方を他方に対して相対的にX方向に所定ピッチずつ間欠的に移動させ、その停止中に撮影を行う。本実施形態では、第1のグリッド21を固定し、走査機構23により第2のグリッド22をX方向に間欠移動させる。G2像に生じるモアレ縞は、第2のグリッド22の移動に伴って移動し、並進距離が第2のグリッド22の格子周期(格子ピッチp)に達すると、元のパターンに一致する。 In the fringe scanning method, in order to obtain the intensity modulation signal, one of the first and second grids 21 and 22 is intermittently moved by a predetermined pitch in the X direction relative to the other, and is stopped. Take a photo. In the present embodiment, the first grid 21 is fixed, and the second grid 22 is intermittently moved in the X direction by the scanning mechanism 23. Moire fringes generated in the G2 image move as the second grid 22 moves, and when the translational distance reaches the grating period (grating pitch p 2 ) of the second grid 22, it matches the original pattern.
 図5は、格子ピッチpをM個に分割した一定の走査ピッチ(p/M)で第2のグリッド22を間欠移動させる様子を模式的に示している。走査機構23は、k=0,1,2,・・・,M-1のM個の各走査位置に、第2のグリッド22を順に移動させる。Mは2以上の整数であり、例えば、M=5とする。 FIG. 5 schematically shows a state where the second grid 22 is intermittently moved at a constant scanning pitch (p 2 / M) obtained by dividing the lattice pitch p 2 into M pieces. The scanning mechanism 23 sequentially moves the second grid 22 to the M scanning positions of k = 0, 1, 2,..., M−1. M is an integer greater than or equal to 2, for example, M = 5.
 k=0の位置では、主として、被検体Hにより屈折しなかったX線の成分(非屈折成分)が第2のグリッド22を通過する。k=1,2,・・・と順に第2のグリッド22を移動させていくと、第2のグリッド22を通過するX線は、非屈折成分が減少する一方で、被検体Hにより屈折された成分(屈折成分)が増加する。特に、k=M/2の位置では、第2のグリッド22を通過するX線は、ほぼ屈折成分のみとなる。k=M/2の位置を超えると、第2のグリッド22を通過するX線は、屈折成分が減少する一方で、非屈折成分が増加する。 In the position of k = 0, mainly the X-ray component (non-refractive component) that has not been refracted by the subject H passes through the second grid 22. When the second grid 22 is moved in order of k = 1, 2,..., X-rays passing through the second grid 22 are refracted by the subject H while the non-refractive component decreases. Component (refractive component) increases. In particular, at the position of k = M / 2, the X-ray that passes through the second grid 22 is substantially only a refractive component. Beyond the position of k = M / 2, the X-ray passing through the second grid 22 has a reduced refractive component while an increased non-refractive component.
 各走査位置k=0,1,2,・・・,M-1においてX線画像検出器20により撮影を行うと、各画素40ごとにM個の画素データが得られる。このM個の画素データが強度変調信号を構成する。 When imaging is performed by the X-ray image detector 20 at each scanning position k = 0, 1, 2,..., M−1, M pixel data are obtained for each pixel 40. The M pixel data forms an intensity modulation signal.
 以下に、強度変調信号の位相ズレ量ψの算出方法を説明する。各走査位置kにおける画素データI(x)は、一般に次式(9)で表される。 Hereinafter, a method of calculating the phase shift amount ψ of the intensity modulation signal will be described. The pixel data I k (x) at each scanning position k is generally represented by the following equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、Aは入射X線の強度を表す。Aは強度変調信号のコントラストに対応する値である(ここで、nは正の整数である)。また、iは虚数単位である。φ(x)は、上記屈折角φをx座標の関数として表したものである。 Here, A 0 represents the intensity of incident X-rays. An is a value corresponding to the contrast of the intensity modulation signal (where n is a positive integer). I is an imaginary unit. φ (x) represents the refraction angle φ as a function of the x-coordinate.
 本実施形態では、走査ピッチ(p/M)が一定であるため、下式(10)が成立する。この関係式を式(9)に適用すると、屈折角φ(x)は、下式(11)で表される。 In the present embodiment, since the scanning pitch (p 2 / M) is constant, the following expression (10) is established. When this relational expression is applied to the expression (9), the refraction angle φ (x) is expressed by the following expression (11).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ここで、arg[ ]は、偏角の抽出を意味しており、下式(12)で示すように、強度変調信号I(x)の位相ズレ量ψ(x)に相当する。 Here, arg [] means extraction of a declination, and corresponds to the phase shift amount ψ (x) of the intensity modulation signal I k (x) as shown in the following equation (12).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 以上の説明ではy座標を考慮していないが、y座標を考慮することにより、位相ズレ量の2次元分布ψ(x,y)が得られる。この2次元分布ψ(x,y)が位相微分画像に対応する。この位相微分画像ψ(x,y)は、逆正接関数を用いて下式(13)のように表される。 In the above description, the y coordinate is not considered, but the two-dimensional distribution ψ (x, y) of the phase shift amount is obtained by considering the y coordinate. This two-dimensional distribution ψ (x, y) corresponds to the phase differential image. This phase differential image ψ (x, y) is expressed by the following equation (13) using an arctangent function.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 図6は、本撮影時及び撮影走査時に得られる強度変調信号I(x,y)をそれぞれ例示している。本撮影時の位相ズレ量ψ(x,y)は、位相微分画像生成部30により式(13)に基づいて算出される。一方のプレ撮影時の位相ズレ量ψ(x,y)は、補正データ生成部31により、同様に式(13)に基づいて算出される。プレ撮影時の位相ズレ量ψ(x,y)は、第1及び第2のグリッド21,22の製造誤差や配置ずれなどに起因するものである。補正処理部33は、位相ズレ量ψ(x,y)から位相ズレ量ψ(x,y)を減算する。 FIG. 6 exemplifies intensity modulation signals I k (x, y) obtained at the time of main photographing and photographing scanning, respectively. The phase shift amount ψ 1 (x, y) during the main photographing is calculated by the phase differential image generation unit 30 based on the equation (13). The phase shift amount ψ 2 (x, y) at the time of one pre-photographing is similarly calculated by the correction data generation unit 31 based on the formula (13). The phase shift amount ψ 2 (x, y) at the time of pre-photographing is caused by a manufacturing error or a displacement of the first and second grids 21 and 22. Correction processing unit 33, a phase shift amount ψ 1 (x, y) from the phase shift amount ψ 2 (x, y) is subtracted.
 位相微分画像は、被検体HによるX線の屈折角φが微小であるため、ノイズの影響を受けやすい。このノイズは、電子ノイズと量子ノイズとに大別される。電子ノイズは、X線画像検出器20に起因する。量子ノイズは、X線量に依存し、低X線量で顕在化する。これらのノイズに起因して、位相ズレ量ψ(x,y),ψ(x,y)の算出値には誤差が生じる。 The phase differential image is susceptible to noise because the X-ray refraction angle φ of the subject H is very small. This noise is roughly classified into electronic noise and quantum noise. Electronic noise is caused by the X-ray image detector 20. Quantum noise depends on the X-ray dose and becomes apparent at low X-ray doses. Due to these noises, errors occur in the calculated values of the phase shift amounts ψ 1 (x, y), ψ 2 (x, y).
 補正処理部33による減算後の位相ズレ量(ψ(x,y)-ψ(x,y))に含まれるノイズのばらつき(標準偏差)Nは、位相ズレ量ψ(x,y)のばらつきN1、位相ズレ量ψ(x,y)のばらつきN2を用いて、下式(14)で表される。以下、Nを総合ばらつき、N1を第1のばらつき、N2を第2のばらつきという。 The noise variation (standard deviation) N included in the phase shift amount (ψ 1 (x, y) −ψ 2 (x, y)) after subtraction by the correction processing unit 33 is the phase shift amount ψ 1 (x, y ) Variation N1 and phase shift amount ψ 2 (x, y) variation N2 are expressed by the following equation (14). Hereinafter, N is referred to as total variation, N1 is referred to as first variation, and N2 is referred to as second variation.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 第1及び第2のばらつきN1,N2は、第1及び第2のX線量I1,I2を用いて、それぞれ次式(15)及び次式(16)で表される。ここで、第1のX線量I1は、本撮影時の各走査位置kで、X線画像検出器20により検出されるX線の最大線量である。第2のX線量I2は、プレ撮影時の各走査位置kで、X線画像検出器20により検出されるX線の最大線量である。 The first and second variations N1 and N2 are expressed by the following formula (15) and the following formula (16) using the first and second X-ray doses I1 and I2, respectively. Here, the first X-ray dose I1 is the maximum X-ray dose detected by the X-ray image detector 20 at each scanning position k at the time of main imaging. The second X-ray dose I2 is the maximum X-ray dose detected by the X-ray image detector 20 at each scanning position k during pre-imaging.
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015

Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 式(15),(16)に示す位相ズレ量のノイズのばらつきとX線の最大線量との関係は、シミュレーションによって本出願人が見出したものである。具体的には、本出願人は、強度変調信号を構成する各画素データにその大きさに依存したランダム誤差を与えたうえで、式(13)に基づき位相ズレ量を算出するステップを50回繰り返し、位相ズレ量のばらつき(標準偏差)を評価した。そして、このばらつきの評価を、強度変調信号の最大値(X線画像検出器20により検出されるX線の最大線量に対応)を段階的に変化させて実行した。この結果、本出願人は、位相ズレ量のノイズのばらつきが、X線の最大線量の平方根の逆数に比例することを見出した。なお、本出願人は、第1及び第2のX線量I1,I2をX線画像検出器20により検出されるX線の平均線量とした場合にも式(15),(16)の関係が成り立つことを見出している。 The relationship between the noise variation of the phase shift amount and the maximum X-ray dose shown in Equations (15) and (16) was found by the present applicant through simulation. Specifically, the applicant assigns a random error depending on the size of each pixel data constituting the intensity modulation signal, and then calculates the phase shift amount 50 times based on the equation (13). Repeatedly, the variation (standard deviation) in the amount of phase shift was evaluated. Then, this variation was evaluated by changing the maximum value of the intensity modulation signal (corresponding to the maximum X-ray dose detected by the X-ray image detector 20) stepwise. As a result, the present applicant has found that the variation in the noise of the phase shift amount is proportional to the reciprocal of the square root of the maximum X-ray dose. Note that the present applicant has the relationship of the expressions (15) and (16) when the first and second X-ray doses I1 and I2 are the average X-ray doses detected by the X-ray image detector 20. It is found that it holds.
 式(14)~(16)から、総合ばらつきNを低減するには、第1及び第2のX線量I1,I2を上げればよいことが分かる。被検体Hの被曝の観点から第1のX線量I1を上げることは望ましくないため、本実施形態では、第2のX線量I2を上げることで、総合ばらつきNを低減する。 From equations (14) to (16), it can be seen that the first and second X-ray doses I1 and I2 can be increased to reduce the overall variation N. Since it is not desirable to increase the first X-ray dose I1 from the viewpoint of exposure of the subject H, in this embodiment, the overall variation N is reduced by increasing the second X-ray dose I2.
 表1に、第2のX線量I2を制御して、第2のばらつきN2を変化させた場合の総合ばらつきNの変化を示す。 Table 1 shows a change in the total variation N when the second X-ray dose I2 is controlled and the second variation N2 is changed.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表1から、第2のX線量I2を第1のX線量I1の4倍程度として、第2のばらつきN2を第1のばらつきN1の半分程度とすれば、第2のばらつきN2に起因する誤差が総合ばらつきNの1割程度となることが分かる。さらに、第2のX線量I2を第1のX線量I1の100倍程度として、第2のばらつきN2を第1のばらつきN1の1/10程度とすれば、第2のばらつきN2に起因する誤差をほぼ無視することができる。したがって、X線源11を制御し、第1のX線量I1に対して第2のX線量I2を、少なくとも4倍以上とすることが好ましく、さらには100倍以上とすることが好ましい。 From Table 1, if the second X-ray dose I2 is about four times the first X-ray dose I1 and the second variation N2 is about half of the first variation N1, the error caused by the second variation N2 Is about 10% of the total variation N. Further, if the second X-ray dose I2 is about 100 times the first X-ray dose I1 and the second variation N2 is about 1/10 of the first variation N1, an error caused by the second variation N2 Can be almost ignored. Therefore, the X-ray source 11 is controlled, and the second X-ray dose I2 is preferably at least 4 times, more preferably 100 times or more, with respect to the first X-ray dose I1.
 一方、第2のX線量I2を上げすぎた場合には、X線画像検出器20の画素40の蓄積電荷量が飽和して画素データが飽和してしまう可能性がある。このため、第2のX線量I2を、画素データが飽和しない範囲に設定することが好ましい。 On the other hand, if the second X-ray dose I2 is increased too much, there is a possibility that the accumulated charge amount of the pixel 40 of the X-ray image detector 20 is saturated and the pixel data is saturated. For this reason, it is preferable to set the second X-ray dose I2 in a range where the pixel data is not saturated.
 次に、図7に示すフローチャートに沿ってプレ撮影時の曝射条件の決定方法について説明する。まず、コンソール17の操作部により、撮影対象(被検体H)とする患者の撮影部位が選択されると(ステップS10:YES)、システム制御部18は、選択された撮影部位のX線透過率に基づいて、撮影に最適な第1のX線量I1を算出する(ステップS11)。 Next, a method for determining exposure conditions during pre-photographing will be described with reference to the flowchart shown in FIG. First, when an imaging part of a patient to be imaged (subject H) is selected by the operation unit of the console 17 (step S10: YES), the system control unit 18 X-ray transmittance of the selected imaging part. Based on the above, the first X-ray dose I1 optimal for imaging is calculated (step S11).
 次いで、システム制御部18は、第1のX線量I1に対する第2のX線量I2の倍率αを、例えば100倍と設定し(ステップS12)、この場合に、画素40の画素データが飽和するか否かをX線画像検出器20の特性に基づいて判定する(ステップS13)。画素データが飽和しないと判定した場合には(ステップS13:NO)、第1のX線量I1のα倍を第2のX線量I2として決定する(ステップS14)。 Next, the system control unit 18 sets the magnification α of the second X-ray dose I2 with respect to the first X-ray dose I1, for example, 100 times (step S12). In this case, is the pixel data of the pixel 40 saturated? Is determined based on the characteristics of the X-ray image detector 20 (step S13). When it is determined that the pixel data is not saturated (step S13: NO), α times the first X-ray dose I1 is determined as the second X-ray dose I2 (step S14).
 一方、画素データが飽和すると判定した場合には(ステップS13:YES)、倍率αを正の整数νで割った値(α/ν)を、新たな倍率βとして設定し(ステップS15)、第1のX線量I1のβ倍を第2のX線量I2として決定する(ステップS16)。なお、整数νは、画素データが飽和しない範囲で最も小さな正の整数である。 On the other hand, when it is determined that the pixel data is saturated (step S13: YES), a value (α / ν) obtained by dividing the magnification α by the positive integer ν is set as a new magnification β (step S15). Β times the X-ray dose I1 of 1 is determined as the second X-ray dose I2 (step S16). The integer ν is the smallest positive integer within a range where the pixel data is not saturated.
 そして、システム制御部18は、ステップS14またはステップS16で決定された第2のX線量I2がX線画像検出器20で検出されるように、プレ撮影時の曝射条件(X線源11の管電圧、管電流、曝射時間)を決定する(ステップS17)。X線量は、管電流と曝射時間との積で表されるmAs値に依存するため、決定された第2のX線量I2が得られるように管電流または曝射時間を調整すればよい。 Then, the system control unit 18 exposes the exposure condition (the X-ray source 11 of the X-ray source 11) so that the X-ray image detector 20 detects the second X-ray dose I2 determined in step S14 or step S16. The tube voltage, tube current, and exposure time are determined (step S17). Since the X-ray dose depends on the mAs value represented by the product of the tube current and the exposure time, the tube current or the exposure time may be adjusted so as to obtain the determined second X-ray dose I2.
 システム制御部18は、ステップS14で第2のX線量I2を決定した場合には、プレ撮影の各走査位置kにおいて、X線源11によるX線放射とX線画像検出器20による検出動作とを1回のみ行わせる。一方、システム制御部18は、ステップS16で第2のX線量I2を決定した場合には、プレ撮影の各走査位置kにおいて、X線源11によるX線放射とX線画像検出器20による検出動作とをν回行わせる。したがって、前者の場合には、各走査位置kで1枚の画像データが得られるのに対して、後者の場合には、各走査位置kでν枚の画像データが得られる。 When the second X-ray dose I2 is determined in step S14, the system control unit 18 performs the X-ray emission by the X-ray source 11 and the detection operation by the X-ray image detector 20 at each pre-scanning scanning position k. Is performed only once. On the other hand, when the system control unit 18 determines the second X-ray dose I2 in step S16, the X-ray emission from the X-ray source 11 and the detection by the X-ray image detector 20 at each scanning position k of pre-imaging. The operation is performed ν times. Therefore, in the former case, one piece of image data is obtained at each scanning position k, whereas in the latter case, ν pieces of image data are obtained at each scanning position k.
 補正データ生成部31は、各走査位置kでν枚の画像データが得られた場合には、図8に示すように、各画素40の画素データI(x,y)を同一走査位置kごとに加算して1つの強度変調信号を生成する加算処理を行なう。この場合には、加算処理により得られた強度変調信号を用いて前述の補正データが算出される。ステップS16で決定された第2のX線量I2を用いたν回の曝射による総X線量は、ステップS14で決定された第2のX線量I2とほぼ等しいため、ステップS14とステップS16のいずれで第2のX線量I2を決定した場合においても、補正データのノイズは無視可能なレベルとなる。このため、補正処理部33により生成される補正済位相微分画像の画質が向上する。 When ν pieces of image data are obtained at each scanning position k, the correction data generation unit 31 converts the pixel data I k (x, y) of each pixel 40 into the same scanning position k as shown in FIG. Addition is performed every time to generate one intensity modulation signal. In this case, the correction data described above is calculated using the intensity modulation signal obtained by the addition process. Since the total X-ray dose by ν exposures using the second X-ray dose I2 determined in step S16 is substantially equal to the second X-ray dose I2 determined in step S14, either step S14 or step S16 Thus, even when the second X-ray dose I2 is determined, the noise of the correction data becomes a negligible level. For this reason, the image quality of the corrected phase differential image generated by the correction processing unit 33 is improved.
 なお、補正データ生成部31で複数の画素データI(x,y)を加算することによりS/Nが劣化することが考えられるが、このS/Nの劣化は無視することができる。これは、通常、電子ノイズNが量子ノイズNに比べて小さく(N>>N)、総X線量が同一であれば、X線放射の分割回数に依らず、総ノイズ量がほぼ一定であるためである。例えば、100mRのX線量で1回のX線放射を行った場合の総ノイズ量は、(10N +N 1/2と表され、10mRのX線量で10回のX線放射を行った場合の総ノイズ量は、{10(N +N )}1/2と表される。N>>Nとすると、両者はほぼ一致する。 Note that it is conceivable that the S / N deteriorates by adding a plurality of pixel data I k (x, y) in the correction data generation unit 31, but this S / N deterioration can be ignored. This is usually because the electronic noise N e is smaller than the quantum noise N x (N x >> N e ), and if the total X-ray dose is the same, the total noise amount is independent of the number of X-ray radiation divisions. This is because it is almost constant. For example, the total amount of noise when X-ray radiation is performed once with an X-ray dose of 100 mR is expressed as (10N x 2 + N e 2 ) 1/2, and 10 times of X-ray radiation is performed with an X-ray dose of 10 mR. The total amount of noise when performed is represented as {10 (N x 2 + N e 2 )} 1/2 . If N x >> N e , the two are almost the same.
 次に、X線画像撮影システム10の作用について説明する。まず、コンソール17の操作部により撮影部位が選択されると、前述したようにプレ撮影時の曝射条件が決定される。次いで、コンソール17の操作部からプレ撮影の開始指示が入力されると、走査機構23により、第2のグリッド22が間欠的に各走査位置kに移動されるとともに、各走査位置kでX線源11によるX線放射及びX線画像検出器20による検出動作が行われ、画像データが生成される。各走査位置kでは、決定された第2のX線量I2に応じて1回またはν回の撮影が行なわれ、1枚またはν枚の画像データが生成される。 Next, the operation of the X-ray imaging system 10 will be described. First, when an imaging region is selected by the operation unit of the console 17, the exposure condition at the time of pre-imaging is determined as described above. Next, when an instruction to start pre-imaging is input from the operation unit of the console 17, the second grid 22 is intermittently moved to each scanning position k by the scanning mechanism 23, and X-rays are obtained at each scanning position k. X-ray emission from the source 11 and detection operation by the X-ray image detector 20 are performed, and image data is generated. At each scanning position k, imaging is performed once or ν times according to the determined second X-ray dose I2, and one or ν image data is generated.
 各画像データはメモリ13に記憶され、画像処理部14の補正データ生成部31により補正データが生成される。なお、プレ撮影の各走査位置kでν回の撮影が行われた場合には、補正データ生成部31により各走査位置kの画素データI(x,y)が加算処理されたうえで強度変調信号が生成される。補正データ生成部31により生成された補正データは、次回のプレ撮影が行われるまでの間、補正データ記憶部32に記憶される。 Each image data is stored in the memory 13, and correction data is generated by the correction data generation unit 31 of the image processing unit 14. In addition, when ν times of photographing are performed at each scanning position k of the pre-photographing, the pixel data I k (x, y) at each scanning position k is added by the correction data generation unit 31 and then the intensity is added. A modulated signal is generated. The correction data generated by the correction data generation unit 31 is stored in the correction data storage unit 32 until the next pre-photographing is performed.
 次いで、被検体Hを配置した状態で、コンソール17から本撮影の開始指示が入力されると、本撮影用の曝射条件が設定され、プレ撮影の場合と同様に、第2のグリッド22が各走査位置kに移動されるとともに、各走査位置kでX線源11によるX線放射及びX線画像検出器20により画像データの生成が行なわれる。本撮影時には、第1のX線量I1でX線放射が行われる。この場合、各走査位置kでのX線放射回数は1回であり、各走査位置kで1枚の画像データが生成される。 Next, when an instruction to start main imaging is input from the console 17 with the subject H placed, the exposure conditions for main imaging are set, and the second grid 22 is set as in the case of pre-imaging. While being moved to each scanning position k, image data is generated by the X-ray emission from the X-ray source 11 and the X-ray image detector 20 at each scanning position k. At the time of main imaging, X-ray emission is performed with the first X-ray dose I1. In this case, the number of X-ray emissions at each scanning position k is one, and one piece of image data is generated at each scanning position k.
 画像データはメモリ13に記憶され、画像処理部14の位相微分画像生成部30により位相微分画像が生成される。この位相微分画像は、補正処理部33に入力され、補正処理部33により、位相微分画像から補正データ記憶部32に記憶された補正データが減算される。 The image data is stored in the memory 13 and a phase differential image is generated by the phase differential image generation unit 30 of the image processing unit 14. The phase differential image is input to the correction processing unit 33, and the correction processing unit 33 subtracts the correction data stored in the correction data storage unit 32 from the phase differential image.
 そして、補正処理部33により生成された補正済位相微分画像に基づいて、位相コントラスト画像生成部34により位相コントラスト画像が生成される。位相コントラスト画像は、画像記録部15に記録された後、コンソール17のモニタに画像表示される。 Then, based on the corrected phase differential image generated by the correction processing unit 33, a phase contrast image generation unit 34 generates a phase contrast image. The phase contrast image is recorded in the image recording unit 15 and then displayed on the monitor of the console 17.
 以下、本発明のその他の実施形態について説明する。なお、以下の各実施形態では、上記実施形態と同じ構成については詳しい説明は省略する。 Hereinafter, other embodiments of the present invention will be described. In the following embodiments, detailed description of the same configuration as that of the above embodiment is omitted.
 上記実施形態では、コンソール17で撮影部位が選択されるたびに、プレ撮影の曝射条件を決定しているが、コンソール17で選択可能な複数の撮影部位のうち、厚みが最も大きい(X線透過率が低い)最厚撮影部位に基づいてプレ撮影の曝射条件を決定してもよい。この場合、補正データ生成部31により得られた補正データを、最厚撮影部位以外の撮影部位が選択された場合にも適用するため、コンソール17で撮影部位を変更するたびにプレ撮影を行う必要はない。 In the above embodiment, each time an imaging region is selected on the console 17, the exposure conditions for pre-imaging are determined. Of the plurality of imaging regions that can be selected on the console 17, the thickness is the largest (X-rays). The exposure conditions for the pre-imaging may be determined based on the thickest imaging region where the transmittance is low. In this case, since the correction data obtained by the correction data generation unit 31 is applied even when an imaging part other than the thickest imaging part is selected, it is necessary to perform pre-imaging every time the imaging part is changed on the console 17. There is no.
 また、上記実施形態では、撮影部位に基づいて算出される第1のX線量I1に基づいて第2のX線量I2を決定しているが、米国特許出願公開2006/0023839号明細書等に記載の周知のフォトタイマ(自動露出装置)を設け、フォトタイマの設定値(X線放射を停止させる基準X線量)を第1のX線量I1として、第2のX線量I2を決定してもよい。 In the above embodiment, the second X-ray dose I2 is determined based on the first X-ray dose I1 calculated based on the imaging region. However, it is described in US Patent Application Publication No. 2006/0023839 and the like. A known phototimer (automatic exposure device) may be provided, and the second X-ray dose I2 may be determined by setting the phototimer setting value (reference X-ray dose for stopping X-ray emission) as the first X-ray dose I1. .
 また、上記実施形態では、ステップS16のいずれで第2のX線量I2を決定した場合には、各走査位置kでν回の撮影を行なっているが、各走査位置kでν回以上の撮影を行ってもよい。 In the above embodiment, when the second X-ray dose I2 is determined in any of Steps S16, ν times of imaging are performed at each scanning position k. However, ν times or more are captured at each scanning position k. May be performed.
 また、上記実施形態では、X線源11とX線画像検出器20との間に第1及び第2のグリッド21,22を設けているが、さらにX線源11と第1及び第2のグリッド21との間に周知の線源グリッド(source grid)を設けてもよい。 In the above embodiment, the first and second grids 21 and 22 are provided between the X-ray source 11 and the X-ray image detector 20, but the X-ray source 11 and the first and second grids are further provided. A known source grid (source grid) may be provided between the grid 21 and the grid 21.
 上記実施形態では、第1のグリッド21に入射したX線が幾何光学的に第2のグリッド22に投影されるように構成されているが、これに代えて、特許第4445397号公報(米国特許7180979号明細書)等に記載のように、第1のグリッドに入射したX線がタルボ干渉効果により第1のグリッドの自己像を形成して、第2のグリッドの位置に投影される構成としてもよい。この場合には、第1及び第2のグリッドの間の距離をタルボ距離に設定する必要がある。 In the above-described embodiment, the X-rays incident on the first grid 21 are configured to be geometrically optically projected onto the second grid 22, but instead, this is disclosed in Japanese Patent No. 4445397 (US Patent). As described in Japanese Patent No. 7180979), the X-rays incident on the first grid form a self-image of the first grid by the Talbot interference effect and are projected onto the position of the second grid. Also good. In this case, it is necessary to set the distance between the first and second grids to the Talbot distance.
 この場合には、第1のグリッドを、吸収型グリッドに代えて、位相型グリッドとすることも可能である。位相型グリッドは、X線吸収部とX線透過部との間で、X線に“π”または“π/2”の位相差が生じるように、X線吸収部及びX線透過部の厚みや材料を設定することにより構成される。 In this case, the first grid may be a phase grid instead of the absorption grid. The phase-type grid has a thickness of the X-ray absorption part and the X-ray transmission part so that a phase difference of “π” or “π / 2” occurs between the X-ray absorption part and the X-ray transmission part. It is configured by setting materials.
 また、上記実施形態では、被検体HをX線源11と第1のグリッド21との間に配置しているが、被検体Hを第1のグリッド21と第2のグリッド22との間に配置してもよい。この場合にも同様に位相微分画像及び位相コントラスト画像の生成が可能である。 In the above embodiment, the subject H is disposed between the X-ray source 11 and the first grid 21, but the subject H is disposed between the first grid 21 and the second grid 22. You may arrange. In this case as well, a phase differential image and a phase contrast image can be similarly generated.
 また、上記実施形態では、位相コントラスト画像をモニタに表示しているが、補正処理部33により生成された補正済位相微分画像をモニタに表示してもよい。 In the above embodiment, the phase contrast image is displayed on the monitor, but the corrected phase differential image generated by the correction processing unit 33 may be displayed on the monitor.
 また、上記実施形態では、第2のグリッド22とX線画像検出器20とが別々に設けられているが、X線画像検出器20に代えて、特開平2009-133823号公報(米国特許7746981号明細書)に開示されたX線画像検出器を用いることにより、第2のグリッド22を省略することができる。 In the above embodiment, the second grid 22 and the X-ray image detector 20 are provided separately. However, instead of the X-ray image detector 20, JP-A-2009-133823 (US Pat. No. 7,746,811). The second grid 22 can be omitted by using the X-ray image detector disclosed in the specification.
 このX線画像検出器は、X線を電荷に変換する変換層と、変換層において変換された電荷を収集する電荷収集電極とを備えた直接変換型のX線画像検出器である。各画素の電荷収集電極は、一定の周期で配列された線状電極を互いに電気的に接続することにより形成された複数の線状電極群を、互いに位相が異なるように配置することにより構成されている。この場合には、電荷収集電極が強度変調部を構成する。 This X-ray image detector is a direct conversion type X-ray image detector including a conversion layer that converts X-rays into electric charges and a charge collection electrode that collects electric charges converted in the conversion layers. The charge collection electrode of each pixel is configured by arranging a plurality of linear electrode groups formed by electrically connecting linear electrodes arranged at a constant period so that their phases are different from each other. ing. In this case, the charge collection electrode constitutes an intensity modulation unit.
 また、上記実施形態では、縞走査法に基づいて位相微分画像を生成しているが、国際公開WO2010/050483(米国特許8009797号明細書)に記載されたフーリエ変換法に基づいて位相微分画像を生成してもよい。このフーリエ変換法は、X線画像検出器により得られた単一の画像データをフーリエ変換することによって画像データに生じるモアレ縞のフーリエスペクトルを取得し、このフーリエスペクトルからキャリア周波数に対応したスペクトルを分離して逆フーリエ変換を行なうことにより位相微分画像を生成する方法である。この場合には、第1及び第2のグリッド21,22を移動させる必要がないため、走査機構23を省略することができる。 In the above embodiment, the phase differential image is generated based on the fringe scanning method. However, the phase differential image is generated based on the Fourier transform method described in International Publication WO2010 / 050833 (US Pat. No. 8,0097,979). It may be generated. This Fourier transform method obtains a Fourier spectrum of moire fringes generated in image data by Fourier transforming single image data obtained by an X-ray image detector, and obtains a spectrum corresponding to the carrier frequency from this Fourier spectrum. This is a method of generating a phase differential image by performing inverse Fourier transform after separation. In this case, since it is not necessary to move the first and second grids 21 and 22, the scanning mechanism 23 can be omitted.
 また、走査機構23を省略し、第1及び第2のグリッド21,22を介してX線画像検出器20により得られる単一の画像データに基づいて位相微分画像を生成する方法がある。この方法として、本出願人により特願2010-256241号として出願されている画素分割法がある。この画素分割法では、第1のグリッド21と第2のグリッド22とを、Z方向の回りに僅かに回転させて、Y方向に周期を有するモアレ縞をG2像に発生させる。X線画像検出器20により得られる単一の画像データを、該モアレ縞に対して互いに位相が異なる画素行(X方向に並ぶ画素)の群に分割し、分割された複数の画像データを、縞走査により互いに異なる複数のG2像に基づくものと見なして、上記縞走査法と同様な手順で位相微分画像を生成する。この画素分割法において、前述の強度変調信号は、単一の画像データに生じるモアレ縞の1周期分の画素値の強度変化として表される。 Further, there is a method in which the scanning mechanism 23 is omitted and a phase differential image is generated based on single image data obtained by the X-ray image detector 20 via the first and second grids 21 and 22. As this method, there is a pixel division method filed by the present applicant as Japanese Patent Application No. 2010-256241. In this pixel division method, the first grid 21 and the second grid 22 are slightly rotated around the Z direction, and moire fringes having a period in the Y direction are generated in the G2 image. The single image data obtained by the X-ray image detector 20 is divided into groups of pixel rows (pixels arranged in the X direction) having different phases with respect to the moire fringes, and the plurality of divided image data are A phase differential image is generated in the same procedure as the above-described fringe scanning method, assuming that the images are based on a plurality of different G2 images by fringe scanning. In this pixel division method, the intensity modulation signal described above is expressed as a change in intensity of pixel values for one cycle of moire fringes generated in single image data.
 上記各実施形態は、矛盾しない範囲で相互に組み合わせてもよい。本発明は、医療診断用の放射線画像撮影システムのほか、工業用や、非破壊検査等のその他の放射線撮影システムに適用可能である。また、本発明は、放射線として、X線以外にガンマ線等を用いる放射線画像撮影システムにも適用可能である。 The above embodiments may be combined with each other within a consistent range. The present invention is applicable not only to a radiographic imaging system for medical diagnosis but also to other radiographic systems for industrial use and nondestructive inspection. The present invention can also be applied to a radiographic imaging system that uses gamma rays or the like in addition to X-rays.
 10 X線画像撮影システム
 11 X線源
 21 第1のグリッド
 21a X線吸収部
 21b X線低吸収部
 22 第2のグリッド
 22a X線吸収部
 22b X線低吸収部
DESCRIPTION OF SYMBOLS 10 X-ray imaging system 11 X-ray source 21 1st grid 21a X-ray absorption part 21b X-ray low absorption part 22 2nd grid 22a X-ray absorption part 22b X-ray low absorption part

Claims (13)

  1.  被検体を配置しないプレ撮影時及び前記被検体を配置した本撮影時に放射線を放射する放射線源と、
     前記放射線を通過させて第1の周期パターン像を生成する第1のグリッドと、
     前記第1の周期パターン像に対して強度変調を与えて第2の周期パターン像を生成する強度変調部と、
     前記第2の周期パターン像を検出して画像データを生成する放射線画像検出器と、
     前記本撮影時に生成された前記画像データに基づいて位相微分画像を生成する位相微分画像生成部と、
     前記プレ撮影時に生成された前記画像データに基づいて補正データを生成する補正データ生成部と、
     前記位相微分画像から前記補正データを減算する補正処理部と、
     前記本撮影時の第1の放射線量をα倍(ただし、α>1)した第2の放射線量に基づいて前記プレ撮影時の曝射条件を決定し、この曝射条件で前記放射線源に放射を実行させる制御部と、
     を備えることを特徴とする放射線撮影システム。
    A radiation source that emits radiation at the time of pre-imaging without arranging the subject and at the main imaging with the subject arranged;
    A first grid that passes the radiation to generate a first periodic pattern image;
    An intensity modulation unit for applying intensity modulation to the first periodic pattern image to generate a second periodic pattern image;
    A radiation image detector for detecting the second periodic pattern image and generating image data;
    A phase differential image generation unit that generates a phase differential image based on the image data generated during the main photographing;
    A correction data generation unit that generates correction data based on the image data generated during the pre-shooting;
    A correction processing unit for subtracting the correction data from the phase differential image;
    Based on a second radiation dose obtained by multiplying the first radiation dose at the time of the main imaging by α times (where α> 1), an exposure condition at the time of the pre-imaging is determined. A control unit for executing radiation;
    A radiation imaging system comprising:
  2.  前記制御部は、前記第1の放射線量をα倍した場合に画素データが飽和するか否かを判定し、飽和する場合には、前記第1の放射線量をα/ν倍(ただし、νは2以上の正数)した値を前記第2の放射線量と定め、前記プレ撮影時に、前記放射線源及び前記放射線画像検出器に前記放射及び前記画像検出をそれぞれν回以上実行させることを特徴とする請求の範囲第1項に記載の放射線撮影システム。 The control unit determines whether or not pixel data is saturated when the first radiation dose is multiplied by α. If the pixel data is saturated, the control unit increases the first radiation dose by α / ν (however, ν (2 is a positive number of 2 or more) is defined as the second radiation dose, and the radiation source and the radiation image detector are caused to execute the radiation and the image detection at least ν times during the pre-imaging. The radiation imaging system according to claim 1.
  3.  前記補正データ生成部は、前記プレ撮影時に前記放射及び前記画像検出がν回以上実行された場合に、前記放射線画像検出器により生成される各画像データを加算処理することを特徴とする請求の範囲第2項に記載の放射線撮影システム。 The correction data generation unit performs addition processing on each piece of image data generated by the radiation image detector when the radiation and the image detection are executed at least ν times during the pre-imaging. The radiation imaging system according to item 2 of the range.
  4.  前記強度変調部は、前記第1の周期パターン像に対して位相が異なる複数の走査位置で強度変調を与えて複数の第2の周期パターン像を生成し、
     前記放射線画像検出器は、前記複数の第2の周期パターン像を検出して複数の画像データを生成し、
     前記位相微分画像生成部及び前記補正データ生成部は、前記複数の画像データに基づき、前記走査位置に対する画素データの強度変化を表す強度変調信号の位相ズレ量を算出することにより前記位相微分画像及び前記補正データをそれぞれ生成し、
     前記制御部は、前記第1の放射線量をα/ν倍した値を前記第2の放射線量とする場合に、前記プレ撮影時の前記各走査位置において前記放射及び前記画像検出をν回以上実行させることを特徴とする請求の範囲第1項から第3項いずれか1項に記載の放射線撮影システム。
    The intensity modulation unit generates intensity second modulation pattern at a plurality of scanning positions having different phases with respect to the first period pattern image to generate a plurality of second period pattern images,
    The radiation image detector detects the plurality of second periodic pattern images and generates a plurality of image data,
    The phase differential image generation unit and the correction data generation unit calculate the phase differential image and the phase differential image by calculating a phase shift amount of an intensity modulation signal representing an intensity change of pixel data with respect to the scanning position based on the plurality of image data. Generating each of the correction data;
    In the case where the value obtained by multiplying the first radiation dose by α / ν is used as the second radiation dose, the control unit performs the radiation and the image detection at ν times or more at each scanning position during the pre-imaging. The radiation imaging system according to any one of claims 1 to 3, wherein the radiation imaging system is executed.
  5.  前記補正データ生成手段は、プレ撮影時の前記各走査位置において前記放射及び前記画像検出がν回以上実行された場合に、前記各走査位置で得られるν枚以上の画像データを加算処理することを特徴とする請求の範囲第4項に記載の放射線撮影システム。 The correction data generation means adds ν or more image data obtained at each scanning position when the radiation and the image detection are performed at ν times or more at each scanning position during pre-imaging. The radiation imaging system according to claim 4, wherein:
  6.  撮影部位の種別を選択可能とする操作部をさらに備え、
     前記制御部は、前記操作部により選択された撮影部位応じて前記第1の放射線量を決定することを特徴とする請求の範囲第1項から第5項いずれか1項に記載の放射線撮影システム。
    It further includes an operation unit that enables selection of the type of imaging region,
    The radiographic system according to any one of claims 1 to 5, wherein the control unit determines the first radiation dose according to an imaging region selected by the operation unit. .
  7.  前記制御部は、前記操作部により選択可能な複数の撮影部位のうち、厚みが最も大きい最厚撮影部位に基づいて前記第1の放射線量を決定することを特徴とする請求の範囲第1項から第5項いずれか1項に記載の放射線撮影システム。 The said control part determines the said 1st radiation dose based on the thickest imaging | photography part with the largest thickness among the some imaging | photography parts selectable by the said operation part. The radiation imaging system according to any one of claims 5 to 5.
  8.  フォトタイマをさらに備え、
     前記制御部は、前記フォトタイマの設定値を前記第1の放射線量とすることを特徴とする請求の範囲第1項から第5項いずれか1項に記載の放射線撮影システム。
    A photo timer,
    The radiographic system according to any one of claims 1 to 5, wherein the control unit sets the set value of the phototimer as the first radiation dose.
  9.  前記αは、100以上であることを特徴とする請求の範囲第1項から第8項のいずれか1項に記載の放射線撮影システム。 The radiation imaging system according to any one of claims 1 to 8, wherein α is 100 or more.
  10.  前記強度変調部は、前記第1の周期パターン像と同一方向の周期パターンを有する第2のグリッドと、前記第1及び第2のグリッドの一方を所定のピッチで移動させる走査機構とを有することを特徴とする請求の範囲第4項から第9項いずれか1項に記載の放射線撮影システム。 The intensity modulation unit includes a second grid having a periodic pattern in the same direction as the first periodic pattern image, and a scanning mechanism that moves one of the first and second grids at a predetermined pitch. The radiation imaging system according to any one of claims 4 to 9, wherein:
  11.  前記第1のグリッドは、吸収型グリッドであり、入射した放射線を幾何光学的に前記第2のグリッドに投影することを特徴とする請求の範囲第10項に記載の放射線撮影システム。 The radiation imaging system according to claim 10, wherein the first grid is an absorption grid, and projects incident radiation onto the second grid geometrically.
  12.  前記第1のグリッドは、吸収型グリッドまたは位相型グリッドであり、入射した放射線にタルボ干渉効果を生じさせて前記第2のグリッドに投影することを特徴とする請求の範囲第10項に記載の放射線撮影システム。 11. The first grid according to claim 10, wherein the first grid is an absorption grid or a phase grid, and causes a Talbot interference effect on incident radiation to be projected onto the second grid. Radiography system.
  13.  被検体を配置しないプレ撮影時及び前記被検体を配置した本撮影時に放射線を放射する放射線源と、
     前記放射線を通過させて第1の周期パターン像を生成する第1のグリッドと、
     前記第1の周期パターン像に対して強度変調を与えて第2の周期パターン像を生成する強度変調部と、
     前記第2の周期パターン像を検出して画像データを生成する放射線画像検出器と、
     前記本撮影時に生成された前記画像データに基づいて位相微分画像を生成する位相微分画像生成部と、
     前記プレ撮影時に生成された前記画像データに基づいて補正データを生成する補正データ生成部と、
     前記位相微分画像から前記補正データを減算する補正処理部と、
     を備える放射線撮影システムの制御方法であって、
     前記本撮影時の第1の放射線量をα倍(ただし、α>1)した第2の放射線量に基づいて前記プレ撮影時の曝射条件を決定することを特徴とする放射線撮影システム制御方法。
    A radiation source that emits radiation at the time of pre-imaging without arranging the subject and at the main imaging with the subject arranged;
    A first grid that passes the radiation to generate a first periodic pattern image;
    An intensity modulation unit for applying intensity modulation to the first periodic pattern image to generate a second periodic pattern image;
    A radiation image detector for detecting the second periodic pattern image and generating image data;
    A phase differential image generation unit that generates a phase differential image based on the image data generated during the main photographing;
    A correction data generation unit that generates correction data based on the image data generated during the pre-shooting;
    A correction processing unit for subtracting the correction data from the phase differential image;
    A method for controlling a radiation imaging system comprising:
    A radiation imaging system control method, wherein an exposure condition for the pre-imaging is determined based on a second radiation dose obtained by multiplying the first radiation dose during the main imaging by α times (where α> 1). .
PCT/JP2011/074294 2010-10-28 2011-10-21 Radiographic imaging system and control method for same WO2012057023A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-242368 2010-10-28
JP2010242368 2010-10-28
JP2011022484 2011-02-04
JP2011-022484 2011-02-04

Publications (1)

Publication Number Publication Date
WO2012057023A1 true WO2012057023A1 (en) 2012-05-03

Family

ID=45993733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074294 WO2012057023A1 (en) 2010-10-28 2011-10-21 Radiographic imaging system and control method for same

Country Status (1)

Country Link
WO (1) WO2012057023A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143015A1 (en) * 2015-03-06 2016-09-15 株式会社島津製作所 Radiation phase difference imaging apparatus
WO2018020999A1 (en) * 2016-07-28 2018-02-01 株式会社島津製作所 X-ray phase difference image capture device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10262961A (en) * 1997-03-27 1998-10-06 Canon Inc Device and method for radiography
JPH11311673A (en) * 1998-04-28 1999-11-09 Shimadzu Corp Radiation image-pickup device
JP2000504179A (en) * 1996-01-31 2000-04-04 アナロジック コーポレーション Continuous self-calibration data acquisition system
JP2003037777A (en) * 2001-07-23 2003-02-07 Canon Inc Radiographic image processing unit, image processing system, radiographic image processing method, storage medium and program
WO2004058070A1 (en) * 2002-12-26 2004-07-15 Atsushi Momose X-ray imaging system and imaging method
JP2006242903A (en) * 2005-03-07 2006-09-14 Fuji Photo Film Co Ltd Radiographical image correction device
JP2008043430A (en) * 2006-08-11 2008-02-28 Shimadzu Corp Method and apparatus for evaluating x-ray image
WO2008102685A1 (en) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. Radiological image picking-up device and radiological image picking-up system
JP2010158257A (en) * 2007-04-10 2010-07-22 Konica Minolta Medical & Graphic Inc Device and system for picking up radiation image

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504179A (en) * 1996-01-31 2000-04-04 アナロジック コーポレーション Continuous self-calibration data acquisition system
JPH10262961A (en) * 1997-03-27 1998-10-06 Canon Inc Device and method for radiography
JPH11311673A (en) * 1998-04-28 1999-11-09 Shimadzu Corp Radiation image-pickup device
JP2003037777A (en) * 2001-07-23 2003-02-07 Canon Inc Radiographic image processing unit, image processing system, radiographic image processing method, storage medium and program
WO2004058070A1 (en) * 2002-12-26 2004-07-15 Atsushi Momose X-ray imaging system and imaging method
JP2006242903A (en) * 2005-03-07 2006-09-14 Fuji Photo Film Co Ltd Radiographical image correction device
JP2008043430A (en) * 2006-08-11 2008-02-28 Shimadzu Corp Method and apparatus for evaluating x-ray image
WO2008102685A1 (en) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. Radiological image picking-up device and radiological image picking-up system
JP2010158257A (en) * 2007-04-10 2010-07-22 Konica Minolta Medical & Graphic Inc Device and system for picking up radiation image

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143015A1 (en) * 2015-03-06 2016-09-15 株式会社島津製作所 Radiation phase difference imaging apparatus
JPWO2016143015A1 (en) * 2015-03-06 2017-09-28 株式会社島津製作所 Radiation phase contrast imaging device
WO2018020999A1 (en) * 2016-07-28 2018-02-01 株式会社島津製作所 X-ray phase difference image capture device

Similar Documents

Publication Publication Date Title
JP5731214B2 (en) Radiation imaging system and image processing method thereof
JP5475737B2 (en) Radiation imaging apparatus and image processing method
JP5204857B2 (en) Radiation imaging system and control method thereof
JP2011224329A (en) Radiation imaging system and method
JP2011218147A (en) Radiographic system
JP2012125343A (en) Radiographic system and image processing method
JP2011224330A (en) Radiation imaging system and offset correction method therefor
WO2012073710A1 (en) Radiography system and radiography method
WO2012057022A1 (en) Radiography system and radiography method
WO2013065502A1 (en) Radiographic imaging method and device
JP2011206490A (en) Radiographic system and radiographic method
WO2012147671A1 (en) Radiation imaging device and image processing method
WO2012057023A1 (en) Radiographic imaging system and control method for same
WO2013038881A1 (en) Radiography device and image processing method
JP2011206188A (en) Radiographic system and method
JP2013042788A (en) Radiographic apparatus and unwrapping processing method
JP2012120650A (en) Radiographic system and method for generating radiation phase contrast image
WO2013027536A1 (en) Radiography device and radiography method
WO2013027519A1 (en) Radiography device and unwrapping method
JP2011206162A (en) Radiographic system and method
WO2013099467A1 (en) Radiographic method and apparatus
WO2012147528A1 (en) Radiation imaging device and method for controlling same
WO2013088878A1 (en) Radiographic method and apparatus
JP2013063098A (en) Radiographic apparatus and image processing method
JP2012143537A (en) Radiation imaging system and image processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP