WO2013027519A1 - Radiography device and unwrapping method - Google Patents

Radiography device and unwrapping method Download PDF

Info

Publication number
WO2013027519A1
WO2013027519A1 PCT/JP2012/068572 JP2012068572W WO2013027519A1 WO 2013027519 A1 WO2013027519 A1 WO 2013027519A1 JP 2012068572 W JP2012068572 W JP 2012068572W WO 2013027519 A1 WO2013027519 A1 WO 2013027519A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
grating
phase differential
region
radiation
Prior art date
Application number
PCT/JP2012/068572
Other languages
French (fr)
Japanese (ja)
Inventor
拓司 多田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013027519A1 publication Critical patent/WO2013027519A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/42Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/488Diagnostic techniques involving pre-scan acquisition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/467Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient characterised by special input means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/612Specific applications or type of materials biological material
    • G01N2223/6126Specific applications or type of materials biological material tissue

Definitions

  • the present invention relates to a radiation imaging apparatus that detects a phase differential image based on a phase change of radiation by a subject, and a phase differential image unwrap processing method.
  • Radiation such as X-rays
  • X-rays has a characteristic of decaying depending on the weight (atomic number) of the elements constituting the substance and the density and thickness of the substance. Focusing on this characteristic, X-rays are used as a probe for seeing through the inside of a subject in fields such as medical diagnosis and nondestructive inspection.
  • a general X-ray imaging apparatus includes an X-ray source that emits X-rays and an X-ray image detector that detects X-rays. Take a picture of the line. In this case, X-rays emitted from the X-ray source are absorbed and attenuated when passing through the subject, and then enter the X-ray image detector. As a result, an image based on an X-ray intensity change by the subject is detected by the X-ray image detector.
  • the X-ray absorption ability is lower with an element having a smaller atomic number, there is a problem that a change in X-ray intensity is small and a sufficient contrast cannot be obtained in an image in a soft body tissue or soft material.
  • most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in X-ray absorption capacity between the two is small, so that it is difficult to obtain contrast.
  • X-ray phase imaging is a method of imaging the phase change of X-rays, focusing on the fact that the phase change of X-rays incident on the subject is larger than the intensity change. Can also obtain a high-contrast image.
  • an X-ray imaging apparatus in which first and second gratings are arranged in parallel at a predetermined interval between an X-ray source and an X-ray image detector. (For example, refer to Patent Document 1).
  • the first periodic pattern image is generated when the X-ray source passes through the first grating, and the second grating partially shields the first periodic pattern image.
  • Two periodic pattern images are generated.
  • the X-ray image detector detects the second periodic pattern image and generates image data.
  • the subject is disposed, for example, between the X-ray source and the first grating, and the subject undergoes a phase change in the X-ray, thereby modulating the first periodic pattern image. By detecting this modulation amount through the second periodic pattern image, the X-ray phase change can be imaged.
  • This method is called the fringe scanning method.
  • the second grating is intermittently moved in the direction parallel to the plane of the first grating and perpendicular to the grating line direction of the first grating with respect to the first grating.
  • Image data is generated by shooting during the stop.
  • an intensity modulation signal representing an intensity change of the pixel value accompanying the movement of the second lattice is generated for each pixel.
  • the phase shift amount of the intensity modulation signal (the phase shift amount from the case where the subject does not exist) is calculated, and the phase shift amount is imaged to obtain an image representing the modulation amount. Since this image represents the differential amount of the phase change (phase shift) of the X-rays by the subject, it is called a phase differential image.
  • the phase shift amount of the intensity modulation signal is calculated by using a function (arg vein) for extracting a complex argument or an arctangent function (tan -1 vein). Since the phase differential image is calculated, the phase differential image is expressed by a value convolved (wrapped) in the range of the function used for the calculation (from ⁇ to + ⁇ or from ⁇ / 2 to + ⁇ / 2). . In the phase differential image wrapped in this way, jumps (discontinuous points) corresponding to the above-described range occur at locations where the upper limit of the range changes from the lower limit or locations where the lower limit changes to the upper limit. For this reason, the wrapped phase differential image is subjected to an unwrap process for eliminating the discontinuity and making it continuous (for example, see Patent Document 2).
  • unwrap processing is performed in order along a predetermined route from a predetermined position in the image as a starting point (for example, refer to Patent Document 3).
  • the discontinuous point is determined by uniformly adding or subtracting a value corresponding to the range of the function to data on the path after the discontinuous point. It becomes continuous without.
  • the attenuation of X-rays is large in the high-absorber, and the intensity and amplitude of the intensity modulation signal are reduced.
  • the calculation accuracy of the phase shift amount is lowered, and an unwrapping error is likely to occur in the region of the phase differential image corresponding to the high absorber.
  • this unwrapping error there are discontinuities at places that are not originally discontinuous points. Due to the decrease, there is a case where the unwrapping process is not performed without being determined as a discontinuous point.
  • An object of the present invention is to provide a radiation imaging apparatus and an unwrap processing method that can reduce unwrap errors.
  • the radiation imaging apparatus of the present invention includes a radiation detector, a grating unit, a phase differential image generation unit, an OK / NG region detection unit, and an unwrap processing unit.
  • the radiation detector detects the radiation emitted from the radiation source and transmitted through the subject to generate image data.
  • the grating portion is disposed between the radiation source and the radiation detector.
  • the phase differential image generation unit generates a phase differential image represented by a value wrapped in a predetermined range based on the image data.
  • the OK / NG area detection unit detects an NG area in which an unwrap error is likely to occur from the phase differential image, and sets an area other than the NG area as an OK area.
  • the unwrap processing unit sets a starting point in the OK area, and unwraps only the OK area.
  • it further includes an offset image storage unit that stores the phase differential image generated by the phase differential image generation unit without placing the subject as an offset image, the unwrap processing unit, for the phase differential image and the offset image, It is preferable to perform an unwrap process.
  • the unwrap processing unit sets starting points in order along the through lines that pass only through the OK region and pass through the phase differential image in one direction, and performs unwrap processing between the starting points and a straight path perpendicular to the through lines from each starting point. It is preferable to perform an unwrapping process along the line.
  • the unwrap processing unit further performs unwrap processing on the pixels in the OK region remaining behind the NG region when viewed from each starting point.
  • the unwrap processing unit sets each starting point along one side of the phase differential image.
  • the unwrap processing unit when the phase differential image is divided into a plurality of OK regions by the NG region, the unwrap processing unit preferably sets a starting point in each OK region and performs unwrap processing for each OK region.
  • the grating unit generates a second periodic pattern image by partially shielding the first periodic pattern image and a first grating that generates a first periodic pattern image by passing radiation from a radiation source. It is preferable to have the second lattice.
  • the radiation image detector detects the second periodic pattern image and generates image data.
  • the grating unit further includes a scanning mechanism that moves the first grating or the second grating at a predetermined scanning pitch and sequentially sets the plurality of scanning positions.
  • the radiation image detector detects the second periodic pattern image at each scanning position and generates image data.
  • the phase differential image generation unit generates a phase differential image based on a plurality of image data generated by the radiation image detector at a plurality of scanning positions.
  • the scanning mechanism moves the first grating or the second grating in a direction perpendicular to the grating line.
  • the scanning mechanism may move the first grating or the second grating in a direction inclined with respect to the grating line.
  • phase differential image generation unit may generate a phase differential image based on single image data obtained by the radiation detector.
  • the OK / NG region detection unit detects the NG region based on one or a combination of the average intensity, amplitude, and visibility of the intensity modulation signal representing the intensity change of the pixel value.
  • the image processing apparatus may further include an NG region image replacement unit that replaces the NG region of the phase differential image using any one of an absorption image, a differential image of the absorption image, and a small-angle scattering image created based on the intensity modulation signal. preferable.
  • the first grating is an absorption grating, and it is preferable that the first periodic pattern image is generated by geometrically optically projecting incident radiation.
  • the first grating may be an absorption grating or a phase grating, and may generate a first periodic pattern image by causing a Talbot effect to incident radiation.
  • the unwrap processing method of the present invention detects an NG region in which an unwrap error is likely to occur from a phase differential image represented by a value wrapped in a predetermined range, and sets a region other than this NG region as an OK region. And a step of setting a starting point in the OK area and unwrapping only the OK area.
  • an NG region in which an unwrapping error is likely to occur is detected from a phase differential image represented by a value wrapped in a predetermined range, the other region is set as an OK region, and the origin is set in the OK region. Since it is set and only the OK area is unwrapped, unwrapping errors are reduced.
  • an X-ray imaging apparatus 10 includes an X-ray source 11, a grating unit 12, an X-ray image detector 13, a memory 14, an image processing unit 15, an image recording unit 16, an imaging control unit 17, a console 18, and a system.
  • a control unit 19 is provided.
  • the X-ray source 11 includes a rotary anode type X-ray tube (not shown) and a collimator (not shown) for limiting the X-ray irradiation field, and is controlled by the imaging control unit 17. Based on the above, X-rays are emitted toward the subject H.
  • the grating unit 12 includes a first grating 21, a second grating 22, and a scanning mechanism 23.
  • the first and second gratings 21 and 22 are disposed to face the X-ray source 11 in the Z direction, which is the X-ray irradiation direction.
  • a space is provided between the X-ray source 11 and the first grating 21 so that the subject H can be arranged.
  • the X-ray image detector 13 is a flat panel detector using a semiconductor circuit, and is disposed close to the back of the second grating 22.
  • the detection surface 13a of the X-ray image detector 13 exists on the XY plane orthogonal to the Z direction.
  • the first lattice 21 has a lattice plane on the XY plane, and a plurality of X-ray absorption portions 21a and X-ray transmission portions 21b extending in the Y direction (lattice direction) are formed on the lattice plane. .
  • the X-ray absorption parts 21a and the X-ray transmission parts 21b are alternately arranged along the X direction to form a striped pattern.
  • the second grating 22 includes a plurality of X-ray absorption parts 22 a and X-ray transmission parts 22 b that extend in the Y direction and are alternately arranged along the X direction.
  • the X-ray absorbing portions 21a and 22a are formed of a metal having X-ray absorption properties such as gold (Au) and platinum (Pt).
  • the X-ray transmissive portions 21b and 22b are formed of an X-ray transmissive material such as silicon (Si) or resin, or a gap.
  • the first grating 21 partially passes the X-rays emitted from the X-ray source 11 to generate a first periodic pattern image (hereinafter referred to as a G1 image).
  • This G1 image substantially coincides with the lattice pattern of the second lattice 22 at the position of the second lattice 22.
  • the second grating 22 partially shields the G1 image generated by the first grating 21 to generate a second periodic pattern image (hereinafter referred to as G2 image).
  • the X-ray image detector 13 detects the G2 image and generates image data.
  • the memory 14 temporarily stores the image data read from the X-ray image detector 13.
  • the image processing unit 15 generates a phase differential image based on the image data stored in the memory 14, and generates a phase contrast image based on the phase differential image.
  • the image recording unit 16 records a phase differential image and a phase contrast image.
  • the scanning mechanism 23 intermittently moves the second grating 22 in the X direction, and changes the position (scanning position) of the second grating 22 with respect to the first grating 21 in a stepwise manner.
  • the drive unit of the scanning mechanism 23 is configured by a piezoelectric actuator or an electrostatic actuator, and is driven based on the control of the imaging control unit 17 at the time of stripe scanning described later.
  • the memory 14 stores image data obtained by the X-ray image detector 13 at each scanning position of the second grating 22 with respect to the first grating 21.
  • the console 18 includes an operation unit 18a and a monitor 18b.
  • the operation unit 18a is configured by a keyboard, a mouse, and the like, and sets imaging conditions such as tube voltage, tube current, and irradiation time of the X-ray source 11, selection of an imaging mode (main imaging or pre-imaging), imaging execution instruction, and the like.
  • the operation input can be performed.
  • the main imaging is an imaging mode performed with the subject H placed between the X-ray source 11 and the first grating 21.
  • Pre-imaging is an imaging mode performed without placing the subject H between the X-ray source 11 and the first grating 21.
  • the pre-photographing is used to acquire a background component (offset image) caused by a manufacturing error or arrangement error of the first and second gratings 21 and 22.
  • the monitor 18b displays photographing information such as photographing conditions, and a phase differential image and a phase contrast image recorded in the image recording unit 16.
  • the system control unit 19 comprehensively controls each unit according to a signal input from the operation unit 18a.
  • the X-ray image detector 13 includes a plurality of pixels 30 arranged two-dimensionally, a gate scanning line 33, a scanning circuit 34, a signal line 35, and a readout circuit 36.
  • the pixel 30 includes a pixel electrode 31 for collecting charges generated in a semiconductor film such as amorphous selenium (a-Se) by incident X-rays, and a TFT (for reading the charges collected by the pixel electrode 31).
  • a-Se amorphous selenium
  • TFT Thin Film Transistor
  • the gate scanning line 33 is provided for each row of the pixels 30.
  • the scanning circuit 34 applies a scanning signal for turning on / off the TFT 32 to each gate scanning line 33.
  • the signal line 35 is provided for each column of the pixels 30.
  • the readout circuit 36 reads out electric charges from the pixels 30 through the signal lines 35, converts them into image data, and outputs them.
  • the detailed layer configuration of each pixel 30 is the same as the layer configuration described in Japanese Patent Laid-Open No. 2002-26300.
  • the readout circuit 36 includes an integration amplifier, an A / D converter, a correction circuit (none of which is shown), and the like.
  • the integrating amplifier integrates the charges output from each pixel 30 through the signal line 35 to generate an image signal.
  • the A / D converter converts the image signal generated by the integrating amplifier into digital image data.
  • the correction circuit performs dark current correction, gain correction, linearity correction, and the like on the image data, and inputs the corrected image data to the memory 14.
  • the X-ray image detector 13 is not limited to a direct conversion type that directly converts incident X-rays into electric charges, but converts incident X-rays into visible light with a scintillator such as cesium iodide (CsI) or gadolinium oxysulfide (GOS). Alternatively, an indirect conversion type in which visible light is converted into electric charge by a photodiode may be used.
  • the X-ray image detector 13 is not limited to a radiographic image detector based on a TFT panel, and a radiographic image detector based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used. .
  • X-rays irradiated from the X-ray source 11 are cone beams having the X-ray focal point 11a as a light emitting point.
  • the first grating 21 is configured to project the X-rays that have passed through the X-ray transmission part 21b substantially geometrically.
  • the width of the X-ray transmission part 21b in the X direction is set to a value sufficiently larger than the effective wavelength of X-rays radiated from the X-ray source 11, and straightness is achieved without diffracting most of the X-rays. It is realized by letting it pass while keeping.
  • the effective wavelength of X-rays is about 0.4 mm.
  • the width of the X-ray transmission part 21b may be about 1 to 10 ⁇ m. The same applies to the second grating 22.
  • the G1 image generated by the first grating 21 expands in proportion to the distance from the X-ray focal point 11a.
  • the grating pitch p 2 of the second grating 22 is determined so as to coincide with the periodic pattern of the G1 image at the position of the second grating 22.
  • the grating pitch p 2 of the second grating 22 is the grating pitch of the first grating 21 p 1 , the distance L 1 between the X-ray focal point 11 a and the first grating 21, the first grating 21.
  • the coordinates in the X, Y, and Z directions are x, y, and z.
  • the G1 image is modulated by the phase change in the X-ray caused by the subject H.
  • the modulation amount reflects the X-ray refraction angle ⁇ (x) of the subject H.
  • FIG. 3 illustrates an X-ray path emitted from the X-ray focal point 11a.
  • Reference numeral X1 indicates a path along which the X-ray goes straight when the subject H does not exist.
  • X-rays traveling along the path X 1 pass through the first and second gratings 21 and 22 and enter the X-ray image detector 13.
  • Reference numeral X2 indicates an X-ray path refracted by the subject H when the subject H exists.
  • X-rays traveling along the path X ⁇ b> 2 pass through the first grating 21 and are then absorbed by the X-ray absorption unit 22 a of the second grating 22.
  • phase shift distribution ⁇ (x) representing the amount of X-ray phase change by the subject H.
  • This phase shift distribution ⁇ (x) is expressed by the following equation (2), where X-ray wavelength is ⁇ and refractive index distribution of the subject H is n (x, z).
  • the y-coordinate is omitted for simplification of description.
  • This phase shift distribution ⁇ (x) is in the relationship of the refraction angle ⁇ (x) of X-ray and the following equation (3).
  • the amount of displacement ⁇ x in the X direction at the position of the second grating 22 between the X-ray traveling along the path X1 and the X-ray traveling along the path X2 is based on the fact that the refraction angle ⁇ (x) of the X-ray is very small. It is approximately represented by the following formula (4).
  • the displacement ⁇ x is proportional to the differential value of the phase shift distribution ⁇ (x).
  • This displacement amount ⁇ x can be detected by a fringe scanning method, and as a result, a phase differential image is obtained.
  • a value obtained by dividing the grating pitch p 2 into M pieces (p 2 / M) is set as a scanning pitch, and the scanning mechanism 23 intermittently moves the second grating 22 in the X direction at this scanning pitch. By doing so, fringe scanning is performed.
  • X-rays are emitted from the X-ray source 11 and a G2 image is detected by the X-ray image detector 13.
  • M pieces of image data are obtained, and M pixel values are obtained for each pixel 30 of the X-ray image detector 13.
  • the scanning position k is a position that is discrete in the X direction by a scanning pitch (p 2 / M).
  • a signal representing a change in the pixel value I k with respect to the scanning position k is referred to as an intensity modulation signal.
  • the broken line in the figure indicates an intensity modulation signal obtained without the subject H being placed.
  • a solid line indicates an intensity modulation signal in which the phase difference amount ⁇ (x) is generated by the subject H in a state where the subject H is arranged.
  • This phase shift amount ⁇ (x) is in the relationship of the displacement amount ⁇ x and the following equation (5).
  • a phase differential image is obtained by obtaining the phase shift amount ⁇ (x) of the intensity modulation signal based on the M pixel values I k obtained by the fringe scanning.
  • the intensity modulation signal is generally expressed by the following formula (6).
  • a 0 represents the average intensity of the incident X-ray
  • a n represents the amplitude of the intensity-modulated signal.
  • N is a positive integer
  • phase shift amount ⁇ (x) is represented by the following equation (8).
  • arg vein is a function that extracts the argument of a complex number.
  • phase shift amount ⁇ (x) can also be expressed by the following equation (9) using an arctangent function.
  • the phase shift amount ⁇ (x) is ⁇ Take a value that is convolved (wrapped) in the range of ⁇ to + ⁇ .
  • the range of the arc tangent function is usually in the range of ⁇ / 2 to + ⁇ / 2
  • the phase shift amount ⁇ (x) is calculated based on the above equation (9)
  • the phase shift amount ⁇ (x) takes a value convolved in a range of ⁇ / 2 to + ⁇ / 2.
  • the range of the arc tangent function can be expanded from ⁇ to + ⁇ by determining the denominator and the sign of the numerator in the arc tangent function. Therefore, the phase shift amount ⁇ (x) can be calculated in the range of ⁇ to + ⁇ based on the above equation (9).
  • phase differential image an image represented by data obtained by calculating the phase shift amount ⁇ (x) for each pixel 30 is referred to as a phase differential image.
  • an image represented by data obtained by multiplying or adding a phase shift amount ⁇ (x) by a constant may be a phase differential image.
  • the image processing unit 15 includes a phase differential image generation unit 40, an offset image storage unit 41, an OK / NG region detection unit 42, an unwrap processing unit 43, an offset processing unit 44, and a phase contrast image generation unit 45. ing.
  • the phase differential image generation unit 40 uses M image data acquired by fringe scanning and stored in the memory 14 in main photographing or pre-photographing, and performs calculation based on the above equation (8) or the above equation (9). By doing so, a phase differential image is generated.
  • the phase differential image generated by the phase differential image generation unit 40 at the time of pre-photographing is stored in the offset image storage unit 41 as an offset image.
  • the phase differential image generated by the phase differential image generation unit 40 during the main photographing is input to the unwrap processing unit 43.
  • the offset image storage unit 41 deletes the stored offset image and then stores the input offset image.
  • the OK / NG area detection unit 42 detects an area where an unwrap error is likely to occur in the phase differential image (hereinafter referred to as an NG area) based on the M image data stored in the memory 14, and other than this NG area This area is the OK area.
  • This NG region corresponds to a high-absorber region included in the subject H (such as a bone portion having a high X-ray absorption ability when the subject H is a human body). This is based on the fact that the average intensity A 0 , the amplitude A 1 , or the visibility A 1 / A 0 decreases due to the X-rays being absorbed by the high absorber.
  • the NG region may be detected by combining two or more of the average intensity A 0 , the amplitude A 1 , and the visibility A 1 / A 0 .
  • the size of the detected NG region may be adjusted by changing the threshold value.
  • the unwrap processing unit 43 unwraps only the OK region with respect to the phase differential image input from the phase differential image generation unit 40.
  • the unwrap processing unit 43 also unwraps only the OK region for the offset image stored in the offset image storage unit 41.
  • the offset processing unit 44 performs offset correction by subtracting the offset image after unwrapping from the phase differential image after unwrapping. Specifically, the pixel value is subtracted within the corresponding pixel 30.
  • the phase contrast image generating unit 45 generates a phase contrast image representing the phase shift distribution by integrating the phase differential image after the offset correction along the X direction. The phase differential image after the offset correction and the phase contrast image are recorded in the image recording unit 16.
  • FIG. 7 shows the phase differential image as an image of 10 ⁇ 7 pixels for the sake of simplicity of explanation.
  • the NG area detected by the OK / NG area detection unit 42 is shown.
  • the OK area is an area other than the NG area.
  • the starting point for starting the unwrapping process is set for each row or column of the phase differential image (step S10).
  • a through line that passes only through the OK region and penetrates the phase differential image in the X direction or the Y direction is searched, and a starting point is set along one of the through lines.
  • the penetrating lines along the shorter Y direction are given priority, and starting points P0 to P6 are set in one of them.
  • the starting points P0 to P6 are set along the X direction end (short side) of the phase differential image.
  • linear straight paths R0 to R6 having the starting points P0 to P6 as starting points in a direction (X direction) orthogonal to the through line where the starting points P0 to P6 are set. Is set, and the unwrapping process is executed along each of the straight paths R0 to R6 (step S11). These straight paths R0 to R6 are not set in the NG area. Therefore, behind the NG area viewed from the starting points P0 to P6, pixels that belong to the same OK area as the starting points P0 to P6 but do not have the straight paths R0 to R6 set remain.
  • step S11 first, unwrap processing is performed in order along the straight line route R0 from the starting point P0, and when the unwrap processing of the straight line route R0 ends, the unwrapping processing of the starting point P1 is performed with reference to the starting point P0. Thereafter, the unwrapping process is sequentially performed from the starting point P1 along the straight path R1. Then, the unwrapping process is not performed on the pixels remaining behind the NG area in the same row as the straight line R1, and the unwrapping process of the starting point P2 is performed with the starting point P1 as a reference. Thereafter, the unwrapping process is performed in the same procedure, and when the unwrapping process for the straight line route R6 is finished, the step S11 is finished.
  • a wraparound path is set for the pixels remaining behind the NG area, and a wraparound process is performed for performing an unwrap process along the wraparound path (step S12).
  • the wraparound path WR0 is set for pixels remaining in the same row as the straight line route R1
  • the wraparound path WR1 is set for pixels remaining in the same row as the straight line route R5.
  • the wraparound route WR0 is unwrapped from the pixel P0a on the adjacent straight route R0.
  • the wraparound path WR1 is unwrapped from the pixel P6a on the adjacent straight path R6.
  • steps S10 to S12 are executed individually for each OK area.
  • the above unwrapping process is performed in the same manner for the phase differential image obtained by the main photographing and the offset image performed by the pre photographing.
  • the unwrapping process on each path sequentially detects discontinuous points DP that change from the upper limit to the lower limit of the range of the function of the above equation (8) or the above equation (9), or from the lower limit to the upper limit.
  • the data after the detected discontinuous point DP is uniformly added or subtracted with a value corresponding to this range to eliminate the discontinuous point DP and to make the data continuous.
  • step S20 When the shooting mode is selected using the operation unit 18a (step S20), it is determined whether or not the selected shooting mode is pre-shooting (step S21). If it is pre-photographing, a standby state for photographing instructions is entered (step S22).
  • step S22 When an imaging instruction is given using the operation unit 18a (YES in step S22), the X-ray source 11 X is scanned at each scanning position k while the second grating 22 is moved by a predetermined scanning pitch by the scanning mechanism 23. Radiation and detection of the G2 image by the X-ray image detector 13 are performed (step S23). As a result of the fringe scanning, M pieces of image data are generated and stored in the memory 14.
  • the image data for M sheets stored in the memory 14 is read by the image processing unit 15.
  • a phase differential image is generated by the phase differential image generation unit 40 (step S24).
  • This phase differential image is stored in the offset image storage unit 41 as an offset image (step S25).
  • the pre-photographing operation ends here. Note that this pre-imaging may be performed at least once in a state in which the subject H is not disposed when the X-ray imaging apparatus 10 is started up, and need not be performed every time before the main imaging.
  • step S30 when the subject H is arranged and the main imaging is selected by selecting the imaging mode in step S20 (NO in step S21), the imaging instruction standby state is set (step S30).
  • a photographing instruction is given using the operation unit 18a (YES in step S30)
  • the same stripe scanning as in step S23 is performed (step S31), and M pieces of image data are stored in the memory 14.
  • the phase differential image is generated by the phase differential image generation unit 40 (step S32).
  • the unwrap processing unit 43 applies the above-described OK regions for the phase differential image generated in step S32 and the offset image stored in the offset image storage unit 41, respectively. Is unwrapped (step S34). Thereafter, the offset processing unit 44 performs offset correction for subtracting the unwrapped offset image from the unwrapped phase differential image (step S35). Thereby, subtraction of the pixel value is performed in the corresponding pixel 30.
  • phase contrast image is generated by the phase contrast image generation unit 45 integrating the phase differential image after the offset correction (step S36).
  • the phase differential image and the phase contrast image after the offset correction are recorded in the image recording unit 16 and then displayed on the monitor 18b (step S37).
  • an NG region where an unwrapping error is likely to occur is detected, and the unwrapping process is performed only for an OK region other than the NG region. An image is obtained. Since soft tissue (cartilage portion or the like), which is a region of interest in X-ray phase imaging, exists outside the NG region, it is prevented that imaging of the soft tissue is inhibited by noise due to unwrapping errors.
  • the unwrap processing is first performed between the starting points of the respective starting points P0 to P6, and each of the straight paths R0 to R6 is started from each of the starting points P0 to P6 after the unwrapping process. You may unwrap.
  • the unwrap processing is performed between the starting points of the respective starting points P0 to P6, and the data of each of the straight paths R0 to R6 after the unwrapping is obtained as the starting point P0 after the unwrapping process. It may be shifted according to the data of P6.
  • the Y direction is given priority.
  • the starting points P0 to P6 are set along the Y direction.
  • the starting points P0 to P9 may be set along the X direction with priority on the X direction.
  • each straight path R0 to R6 is set along the Y direction.
  • the wraparound path WR0 is appropriately set so as to cover the pixels remaining behind the NG region when viewed from the starting points P0 to P9. Since the specific unwrap processing method is the same as that of the said embodiment, detailed description is abbreviate
  • an origin / direction determination unit 50 that determines whether to set the origin along the Y direction or along the X direction based on the shape of the NG area is provided with an OK / NG area detection unit. 42 and the unwrap processing unit 43 may be provided.
  • the starting point direction determination unit 50 determines the starting point setting direction so that the number of wraparound processes performed on the pixels remaining behind the NG region is reduced.
  • the wrapping process is required for two lines along the X direction (lines including the starting points P1 and P5). The number of times is two.
  • a wraparound process is required for six lines along the Y direction (lines including the starting points P4 to P9). The number of wraparound processes is 6. Therefore, when the NG area has the shape shown in FIGS. 7 and 12, the starting point direction determination unit 50 determines the Y direction in which the necessary number of wraparound processes is reduced as the starting point setting direction.
  • the unwrap processing unit 43 performs unwrapping by setting each starting point in the direction determined by the starting point direction determining unit 50.
  • the starting point is set along the X-direction end or the Y-direction end of the phase differential image, but it is not always necessary to set the starting point along the end portion of the phase differential image.
  • starting points P0 to P6 are set, and a straight path is set in a direction (positive direction and negative direction of the X direction) orthogonal to the arrangement direction (Y direction) of each starting point P0 to P6. Also good.
  • the starting point is set in each column or each row so that the unwrap processing is performed for each column or each row of the phase differential image.
  • One starting point (starting point) may be set in the OK region, and the pixels adjacent to the starting point may be unwrapped in order.
  • a start point P0 is set in the OK region, and pixels adjacent in the X direction and the Y direction from this start point P0 are unwrapped.
  • the pixels adjacent in the X direction and the Y direction are unwrapped from each unwrapped pixel.
  • the adjacent pixel is a pixel belonging to the NG area, it is not considered and the unwrapping process is not performed.
  • the adjacent pixel is an adjacent pixel of another pixel that has been unwrapped, priority is given to one of them.
  • the adjacent pixel in the X direction has priority over the adjacent pixel in the Y direction.
  • the unwrapping process may be advanced in the same manner.
  • the unwrap processing unit 43 unwraps only the OK region for the offset image stored in the offset image storage unit 41. However, the unwrap processing is performed on the entire offset image. May be. As shown in FIG. 8, when there are a plurality of OK regions and the phase differential image obtained by the main imaging is unwrapped for each OK region, the unwrapping is performed independently for each OK region. Since the data may be greatly shifted between the OK regions after the processing, the shift amount is estimated from the offset image subjected to the unwrap processing as a whole, and each phase differential image after the unwrap processing is estimated based on the shift amount. You may correct
  • the OK / NG region detection unit 42 detects an NG region in which an unwrapping error is likely to occur based on the average intensity, amplitude, or visibility of the intensity modulation signal. Is not limited to this, and an area where variation between pixels of the average intensity of the intensity modulation signal (that is, dispersion between pixels of the absorption image) or dispersion between pixels of the phase differential image is larger than a predetermined value is detected as an NG area. May be.
  • variation between the pixels of this phase differential image is a dispersion
  • an absolute value is taken for each pixel of the phase differential image, and an edge portion of the superabsorbent region can be detected by detecting a portion where the absolute value exceeds a predetermined value.
  • the region may be detected as an NG region.
  • an area where the average intensity or the maximum intensity of the intensity modulation signal is larger than a predetermined value and the intensity modulation signal is saturated may be detected as an NG area.
  • This saturation of the intensity modulation signal is likely to occur in a pixel region (elementary region) that is directly transmitted to the X-ray image detector 13 through the first and second gratings 21 and 22 without passing through the subject H.
  • the intensity modulation signal is saturated, the phase shift amount ⁇ (x) cannot be obtained accurately, and this unaccompanied region is also a region where unwrapping errors are likely to occur. You may combine the above detection criteria suitably.
  • the pixel value of the predetermined pixel 30 is always high or low. May be.
  • the region where such a pixel defect occurs is a region where an unwrapping error is likely to occur because the average intensity, amplitude, or visibility of the intensity modulation signal indicates an abnormal value.
  • Such a pixel defect region can also be detected as an NG region by appropriately combining the above detection criteria.
  • an NG region image replacement unit 51 may be provided in the image processing unit 15.
  • the NG region image replacement unit 51 generates an absorption image, a differential image of the absorption image, or a small-angle scattered image based on the M image data stored in the memory 14 at the time of the actual photographing, and corresponds to the NG region of the image.
  • the portion to be replaced is inserted into the NG area of the phase differential image after offset correction.
  • the NG area of the phase contrast image may be replaced.
  • the absorption image is generated by imaging the average intensity of the intensity modulation signal.
  • the differential image of the absorption image is generated by differentiating the absorption image in a predetermined direction (for example, the X direction).
  • the small angle scattered image is generated by imaging the amplitude of the intensity modulation signal.
  • the subject H is disposed between the X-ray source 11 and the first grating 21, but the subject H is disposed between the first grating 21 and the second grating 22. You may arrange.
  • the second grating 22 is moved in the direction (X direction) perpendicular to the grid lines during fringe scanning.
  • the second grid 22 is inclined with respect to the grid lines (XY plane). May be moved in a direction not orthogonal to the X direction and the Y direction.
  • This moving direction may be any direction as long as it is within the XY plane and other than the Y direction.
  • the scanning position k may be set based on the X-direction component of the movement of the second grating 22.
  • lattice 22 is moved at the time of fringe scanning, it replaces with the 2nd grating
  • the X-ray source 11 that emits cone-beam X-rays emitted from the X-ray source 11 is used.
  • an X-ray source that emits parallel-beam X-rays is used.
  • emitted from the X-ray source 11 are made to inject into the 1st grating
  • the X focus may be dispersed by providing a multi-slit (source grating) described in WO 2006/131235 between the X-ray source 11 and the first grating 21).
  • the pitch p 0 of the multi-slit needs to satisfy the following formula (10).
  • the distance L 0 represents the distance from the multi slit to the first grating 21.
  • the position of the multi-slit becomes the position of the X-ray focal point, so the distance L 1 in the above embodiment is replaced with the distance L 0 .
  • the first and second gratings 21 are used in addition to performing the fringe scanning by moving the first grating 21 or the second grating 22 while the multi-slit is fixed. , 22 is fixed, and the multi-slit is moved to perform the fringe scanning.
  • the multi-slit may be intermittently moved in the X direction using a value (p 0 / M) obtained by dividing the multi-slit pitch p 0 by M as described above.
  • lattice 21 is comprised so that incident X-ray may be projected geometrically optically, as known in WO2004 / 058070 etc.
  • lattice 21 is comprised. May be configured to generate the Talbot effect.
  • a small-focus X-ray light source or the multi-slit may be used so as to enhance the spatial coherence of X-rays.
  • the first grating 21 can be a phase-type grating.
  • Talbot distance Z m is dependent on the beam shape of the structure and the X-ray of the first grating 21.
  • the first grating 21 are absorption type grating
  • Talbot distance Z m is represented by the following formula (11).
  • “m” is a positive integer.
  • the grating pitches p 1 and p 2 are set so as to substantially satisfy the above formula (1) (however, when a multi-slit is used, the distance L 1 is replaced with the distance L 0 ).
  • the Talbot distance Z m is And expressed by the following formula (12).
  • “m” is “0” or a positive integer.
  • the grating pitches p 1 and p 2 are set so as to substantially satisfy the above formula (1) (however, when a multi-slit is used, the distance L 1 is replaced with the distance L 0 ).
  • the Talbot distance Z m is as follows. It is represented by Formula (13). Here, “m” is “0” or a positive integer. In this case, since the pattern period of the G1 image is 1 ⁇ 2 times the grating period of the first grating 21, the grating pitches p 1 and p 2 are set so as to substantially satisfy the following expression (14). (However, when using a multi-slit, the distance L 1 is replaced by a distance L 0).
  • the first grating 21 is absorption grating, if X-rays emitted from the X-ray source 11 is a parallel beam shape, Talbot distance Z m is represented by the following formula (15).
  • “m” is a positive integer.
  • the Talbot distance Z m is It is represented by the following formula (16).
  • “m” is “0” or a positive integer.
  • the Talbot distance Z m is It is represented by Formula (17).
  • “m” is “0” or a positive integer.
  • the grating portion 12 is provided with the two gratings of the first and second gratings 21 and 22.
  • the second grating 22 may be omitted and only the first grating 21 may be used. Is possible.
  • the second grating 22 can be omitted and only the first grating 21 can be provided.
  • This X-ray image detector is a direct conversion type X-ray image detector including a conversion layer that converts X-rays into electric charges and a charge collection electrode that collects electric charges converted in the conversion layer.
  • the charge collection electrode includes a plurality of linear electrode groups.
  • One linear electrode group is obtained by electrically connecting linear electrodes arranged at a constant period, and is arranged so that the phases thereof are different from those of other linear electrode groups.
  • This linear electrode group functions as the second grating 22, and the presence of a plurality of linear electrode groups allows detection of a plurality of G2 images having different phases in one imaging. Therefore, in this configuration, the scanning mechanism 23 can be omitted.
  • the single image data obtained by the X-ray image detector 13 is divided into groups of pixel rows (pixels arranged in the X direction) having different phases from each other with respect to the moire fringes, and a plurality of divided image data is obtained.
  • a phase differential image is generated in the same procedure as the above-described fringe scanning method, assuming that the images are based on a plurality of different G2 images by fringe scanning.
  • the intensity modulation signal described above is expressed as a change in intensity of pixel values for one cycle of moire fringes generated in single image data.
  • the scanning mechanism 23 is omitted, and the phase differential image is obtained based on the single image data obtained by the X-ray image detector 13 via the first and second gratings 21 and 22.
  • a Fourier transform method described in WO2010 / 050484 is known. This Fourier transform method obtains a Fourier spectrum by performing a Fourier transform on the single image data, separates a spectrum corresponding to a carrier frequency (a spectrum carrying phase information) from the Fourier spectrum, and then reverses the spectrum.
  • This is a method of generating a phase differential image by performing Fourier transform.
  • the intensity modulation signal described above is expressed as a change in intensity of pixel values for one cycle of moire fringes generated in a single image data, as in the case of the pixel division method.
  • the present invention can be applied to an industrial radiography apparatus and the like in addition to a radiography apparatus for medical diagnosis.
  • a radiography apparatus for medical diagnosis In addition to X-rays, gamma rays or the like can be used as radiation.

Abstract

The objective of the present invention is to decrease unwrapping errors. An X-ray imaging detector (13) detects X-rays which are emitted from an X-ray source (11) and which pass through a first grating (21) and a second grating (22), and generates image data. A phase differential image generating section (40) generates a phase differential image on the basis of the image data. A suitable/unsuitable region detector (42) detects unsuitable regions in which unwrapping errors tend to occur in the phase differential image, and sets the other regions as suitable regions. An unwrapping section (43) sets starting points (P0-P6) along a penetration line which only passes through the suitable regions and penetrates the phase differential image in one direction, and performs unwrapping along linear paths (R0-R6) orthogonal to the alignment direction of the starting points (P0-P6). The unwrapping section (43) also performs unwrapping between the starting points (P0-P6) and along wraparound paths (WR0, WR1) which pass through pixels in the suitable regions that remain behind the unsuitable regions when seen from the starting points (P0-P6).

Description

放射線撮影装置及びアンラップ処理方法Radiation imaging apparatus and unwrap processing method
 本発明は、被検体による放射線の位相変化に基づく位相微分画像を検出する放射線撮影装置、及び位相微分画像のアンラップ処理方法に関する。 The present invention relates to a radiation imaging apparatus that detects a phase differential image based on a phase change of radiation by a subject, and a phase differential image unwrap processing method.
 放射線、例えばX線は、物質を構成する元素の重さ(原子番号)と、物質の密度及び厚さとに依存して減衰する特性を有する。この特性に着目し、医療診断や非破壊検査等の分野において、被検体の内部を透視するためのプローブとしてX線が利用されている。 Radiation, such as X-rays, has a characteristic of decaying depending on the weight (atomic number) of the elements constituting the substance and the density and thickness of the substance. Focusing on this characteristic, X-rays are used as a probe for seeing through the inside of a subject in fields such as medical diagnosis and nondestructive inspection.
 一般的なX線撮影装置は、X線を放射するX線源と、X線を検出するX線画像検出器とを備え、これらの間に被検体を配置して、被検体を透過したX線の撮影を行う。この場合、X線源から放射されたX線は、被検体を透過する際に吸収され減衰した後、X線画像検出器に入射する。この結果、被検体によるX線の強度変化に基づく画像がX線画像検出器により検出される。 A general X-ray imaging apparatus includes an X-ray source that emits X-rays and an X-ray image detector that detects X-rays. Take a picture of the line. In this case, X-rays emitted from the X-ray source are absorbed and attenuated when passing through the subject, and then enter the X-ray image detector. As a result, an image based on an X-ray intensity change by the subject is detected by the X-ray image detector.
 X線吸収能は、原子番号が小さい元素ほど低くなるため、生体軟部組織やソフトマテリアルなどでは、X線の強度変化が小さく、画像に十分なコントラストが得られないという問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも成分の殆どが水であり、両者のX線吸収能の差が小さいため、コントラストが得られにくい。 Since the X-ray absorption ability is lower with an element having a smaller atomic number, there is a problem that a change in X-ray intensity is small and a sufficient contrast cannot be obtained in an image in a soft body tissue or soft material. For example, most of the components of the cartilage part constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in X-ray absorption capacity between the two is small, so that it is difficult to obtain contrast.
 このような問題を背景に、被検体によるX線の強度変化に代えて、被検体によるX線の位相変化に基づいた画像を得るX線位相イメージングの研究が近年盛んに行われている。X線位相イメージングは、被検体に入射したX線の位相変化が強度変化より大きいことに着目し、X線の位相変化を画像化する方法であり、X線吸収能が低い被検体に対しても高コントラストの画像を得ることができる。 Against the background of such problems, research on X-ray phase imaging for obtaining an image based on the phase change of the X-ray by the subject instead of the change in the intensity of the X-ray by the subject has been actively conducted in recent years. X-ray phase imaging is a method of imaging the phase change of X-rays, focusing on the fact that the phase change of X-rays incident on the subject is larger than the intensity change. Can also obtain a high-contrast image.
 このようなX線位相イメージングを可能とするために、X線源とX線画像検出器との間に、第1及び第2の格子を所定の間隔で平行に配置したX線撮影装置が提案されている(例えば、特許文献1参照)。 In order to enable such X-ray phase imaging, an X-ray imaging apparatus is proposed in which first and second gratings are arranged in parallel at a predetermined interval between an X-ray source and an X-ray image detector. (For example, refer to Patent Document 1).
 このX線撮影装置では、X線源が第1の格子を通過することにより第1の周期パターン像が生成され、第2の格子が第1の周期パターン像を部分的に遮蔽することにより第2の周期パターン像が生成される。X線画像検出器は、第2の周期パターン像を検出して画像データを生成する。被検体は、例えば、X線源と第1の格子との間に配置され、被検体でX線に位相変化が生じ、第1の周期パターン像を変調させる。この変調量を第2の周期パターン像を通して検出することにより、X線の位相変化を画像化することができる。 In this X-ray imaging apparatus, the first periodic pattern image is generated when the X-ray source passes through the first grating, and the second grating partially shields the first periodic pattern image. Two periodic pattern images are generated. The X-ray image detector detects the second periodic pattern image and generates image data. The subject is disposed, for example, between the X-ray source and the first grating, and the subject undergoes a phase change in the X-ray, thereby modulating the first periodic pattern image. By detecting this modulation amount through the second periodic pattern image, the X-ray phase change can be imaged.
 この方法は、縞走査法と呼ばれている。この縞走査法では、第1の格子に対して第2の格子を、第1の格子の面に平行でかつ第1の格子の格子線方向に垂直な方向に間欠的に移動させ、その各停止中に撮影を行うことにより画像データを生成する。得られた複数の画像データに基づき、第2の格子の移動に伴う画素値の強度変化を表す強度変調信号を画素ごとに生成する。画素ごとに、強度変調信号の位相ズレ量(被検体が存在しない場合からの位相のズレ量)を算出し、この位相ズレ量を画像化することにより、上記変調量を表す画像が得られる。この画像は、被検体によるX線の位相変化(位相シフト)の微分量を表しているため、位相微分画像と呼ばれている。 This method is called the fringe scanning method. In this fringe scanning method, the second grating is intermittently moved in the direction parallel to the plane of the first grating and perpendicular to the grating line direction of the first grating with respect to the first grating. Image data is generated by shooting during the stop. Based on the obtained plurality of image data, an intensity modulation signal representing an intensity change of the pixel value accompanying the movement of the second lattice is generated for each pixel. For each pixel, the phase shift amount of the intensity modulation signal (the phase shift amount from the case where the subject does not exist) is calculated, and the phase shift amount is imaged to obtain an image representing the modulation amount. Since this image represents the differential amount of the phase change (phase shift) of the X-rays by the subject, it is called a phase differential image.
 特許文献1に記載されているように、強度変調信号の位相ズレ量は、複素数の偏角を抽出する関数(arg[…])や、逆正接関数(tan-1[…])を用いて算出されるため、位相微分画像は、算出に用いられた関数の値域(-πから+π、または、-π/2から+π/2)に畳み込まれた(ラップされた)値で表現される。このようにラップされた位相微分画像には、値域の上限から下限に変化する箇所、または下限から上限に変化する箇所で、上記値域に相当する飛び(不連続点)が生じる。このため、ラップされた位相微分画像には、不連続点をなくして連続化するためのアンラップ処理が行われている(例えば、特許文献2参照)。 As described in Patent Document 1, the phase shift amount of the intensity modulation signal is calculated by using a function (arg [...]) for extracting a complex argument or an arctangent function (tan -1 [...]). Since the phase differential image is calculated, the phase differential image is expressed by a value convolved (wrapped) in the range of the function used for the calculation (from −π to + π or from −π / 2 to + π / 2). . In the phase differential image wrapped in this way, jumps (discontinuous points) corresponding to the above-described range occur at locations where the upper limit of the range changes from the lower limit or locations where the lower limit changes to the upper limit. For this reason, the wrapped phase differential image is subjected to an unwrap process for eliminating the discontinuity and making it continuous (for example, see Patent Document 2).
 一般に、アンラップ処理は、画像内の所定位置を起点とし、この起点から所定の経路に沿って順に行われる(例えば、特許文献3参照)。具体的には、経路中に不連続点が検出されると、この不連続点以降の経路上のデータに、上記関数の値域に相当する値を一律に加算または減算することにより不連続点をなくして連続化する。 Generally, unwrap processing is performed in order along a predetermined route from a predetermined position in the image as a starting point (for example, refer to Patent Document 3). Specifically, when a discontinuous point is detected in the path, the discontinuous point is determined by uniformly adding or subtracting a value corresponding to the range of the function to data on the path after the discontinuous point. It becomes continuous without.
WO2004/058070号公報WO2004 / 058070 特開2011-045655号公報JP 2011-045655 A 特開2008-082869号公報JP 2008-082869 A
 しかしながら、被検体に骨部等のX線吸収能が高い高吸収体が含まれる場合には、高吸収体では、X線を減衰量が大きく、強度変調信号の強度や振幅が低下するため、位相ズレ量の算出精度が低下し、高吸収体に対応する位相微分画像の領域でアンラップエラーが生じやすいという問題がある。このアンラップエラーには、本来不連続点でない箇所に不連続性が生じることにより、不連続点と判定されてアンラップ処理が行われてしまうケースと、本来不連続点である箇所の不連続性が低下することにより、不連続点と判定されずにアンラップ処理が行われないケースとがある。 However, when the subject includes a high-absorber having a high X-ray absorption ability such as a bone part, the attenuation of X-rays is large in the high-absorber, and the intensity and amplitude of the intensity modulation signal are reduced. There is a problem that the calculation accuracy of the phase shift amount is lowered, and an unwrapping error is likely to occur in the region of the phase differential image corresponding to the high absorber. In this unwrapping error, there are discontinuities at places that are not originally discontinuous points. Due to the decrease, there is a case where the unwrapping process is not performed without being determined as a discontinuous point.
 例えば、図17に示すように、ラップされた位相微分画像において、高吸収体である骨部の領域に起点を設定し、起点から下方向に進む経路に沿ってアンラップ処理を行う場合には、骨部領域ではアンラップエラーが生じやすい。アンラップエラーが生じると、その箇所以降の経路に順次にエラー値(上記関数の値域に相当する値)が加算または減算され、この結果、アンラップ処理後の位相微分画像にはアンラップ処理の経路方向に沿った筋状のノイズが生じる。この筋状のノイズは、X線位相イメージングの対象部分である軟部組織(軟骨部)に重なり、軟部組織の画像化を阻害してしまう。 For example, as shown in FIG. 17, in the wrapped phase differential image, when setting the starting point in the region of the bone part that is a high-absorber, and performing the unwrapping process along the path that goes downward from the starting point, Unwrap errors are likely to occur in the bone region. When an unwrap error occurs, an error value (a value corresponding to the range of the above function) is sequentially added to or subtracted from the path after that point. As a result, the phase differential image after the unwrap process has a difference in the path direction of the unwrap process. A streak of noise along the line occurs. This streak noise overlaps with a soft tissue (cartilage portion) that is a target portion of X-ray phase imaging, and obstructs imaging of the soft tissue.
 本発明は、アンラップエラーを低減することを可能とする放射線撮影装置及びアンラップ処理方法を提供することを目的とする。 An object of the present invention is to provide a radiation imaging apparatus and an unwrap processing method that can reduce unwrap errors.
 上記目的を達成するために、本発明の放射線撮影装置は、放射線検出器と、格子部と、位相微分画像生成部と、OK/NG領域検出部と、アンラップ処理部とを備える。放射線検出器は、放射線源から射出され、被検体を透過した放射線を検出して画像データを生成する。格子部は、放射線源と放射線検出器との間に配置されている。位相微分画像生成部は、画像データに基づき、所定の範囲にラップされた値で表された位相微分画像を生成する。OK/NG領域検出部は、位相微分画像中から、アンラップエラーが生じやすいNG領域を検出し、このNG領域以外の領域をOK領域とする。アンラップ処理部は、OK領域中に起点を設定して、OK領域のみをアンラップ処理する。 To achieve the above object, the radiation imaging apparatus of the present invention includes a radiation detector, a grating unit, a phase differential image generation unit, an OK / NG region detection unit, and an unwrap processing unit. The radiation detector detects the radiation emitted from the radiation source and transmitted through the subject to generate image data. The grating portion is disposed between the radiation source and the radiation detector. The phase differential image generation unit generates a phase differential image represented by a value wrapped in a predetermined range based on the image data. The OK / NG area detection unit detects an NG area in which an unwrap error is likely to occur from the phase differential image, and sets an area other than the NG area as an OK area. The unwrap processing unit sets a starting point in the OK area, and unwraps only the OK area.
 なお、被検体を配置しない状態で位相微分画像生成部により生成された位相微分画像をオフセット画像として記憶するオフセット画像記憶部をさらに備え、アンラップ処理部は、位相微分画像及びオフセット画像に対して、アンラップ処理を行うことが好ましい。この場合、アンラップ処理後の位相微分画像からアンラップ処理後のオフセット画像を減算するオフセット処理部をさらに備えること好ましい。 In addition, it further includes an offset image storage unit that stores the phase differential image generated by the phase differential image generation unit without placing the subject as an offset image, the unwrap processing unit, for the phase differential image and the offset image, It is preferable to perform an unwrap process. In this case, it is preferable to further include an offset processing unit that subtracts the offset image after the unwrap processing from the phase differential image after the unwrap processing.
 また、アンラップ処理部は、OK領域のみを通り位相微分画像を一方向に貫通する貫通ラインに沿って順に起点を設定し、各起点間のアンラップ処理と、各起点から貫通ラインに直交する直線経路に沿ったアンラップ処理とを行うことが好ましい。 The unwrap processing unit sets starting points in order along the through lines that pass only through the OK region and pass through the phase differential image in one direction, and performs unwrap processing between the starting points and a straight path perpendicular to the through lines from each starting point. It is preferable to perform an unwrapping process along the line.
 また、アンラップ処理部は、各起点から見てNG領域の背後に残存するOK領域内の画素に対するアンラップ処理をさらに行うことが好ましい。この場合、NG領域の背後に残存する画素に対するアンラップ処理の回数が少なくなるように各起点の設定方向を決定する起点方向決定部をさらに備えることが好ましい。 Further, it is preferable that the unwrap processing unit further performs unwrap processing on the pixels in the OK region remaining behind the NG region when viewed from each starting point. In this case, it is preferable to further include a starting point direction determination unit that determines the setting direction of each starting point so that the number of unwrapping processes for the pixels remaining behind the NG region is reduced.
 また、アンラップ処理部は、各起点を、位相微分画像のいずれかの一辺に沿って設定することが好ましい。 Further, it is preferable that the unwrap processing unit sets each starting point along one side of the phase differential image.
 また、アンラップ処理部は、位相微分画像がNG領域により複数のOK領域に分断される場合には、各OK領域中に起点を設定して、各OK領域ごとにアンラップ処理を行うことが好ましい。 In addition, when the phase differential image is divided into a plurality of OK regions by the NG region, the unwrap processing unit preferably sets a starting point in each OK region and performs unwrap processing for each OK region.
 格子部は、放射線源からの放射線を通過させて第1の周期パターン像を生成する第1の格子と、第1の周期パターン像を部分的に遮蔽して第2の周期パターン像を生成する第2の格子と有することが好ましい。放射線画像検出器は、第2の周期パターン像を検出して画像データを生成する。 The grating unit generates a second periodic pattern image by partially shielding the first periodic pattern image and a first grating that generates a first periodic pattern image by passing radiation from a radiation source. It is preferable to have the second lattice. The radiation image detector detects the second periodic pattern image and generates image data.
 この場合、格子部は、第1の格子または第2の格子を所定の走査ピッチで移動させ、複数の走査位置に順に設定する走査機構をさらに有することが好ましい。放射線画像検出器は、各走査位置で第2の周期パターン像を検出して画像データを生成する。位相微分画像生成部は、複数の走査位置において放射線画像検出器により生成された複数の画像データに基づいて位相微分画像を生成する。 In this case, it is preferable that the grating unit further includes a scanning mechanism that moves the first grating or the second grating at a predetermined scanning pitch and sequentially sets the plurality of scanning positions. The radiation image detector detects the second periodic pattern image at each scanning position and generates image data. The phase differential image generation unit generates a phase differential image based on a plurality of image data generated by the radiation image detector at a plurality of scanning positions.
 走査機構は、第1の格子または第2の格子を、その格子線に直交する方向に移動させることが好ましい。走査機構は、第1の格子または第2の格子を、その格子線に対して傾斜する方向に移動させてもよい。 It is preferable that the scanning mechanism moves the first grating or the second grating in a direction perpendicular to the grating line. The scanning mechanism may move the first grating or the second grating in a direction inclined with respect to the grating line.
 また、位相微分画像生成部は、放射線検出器により得られる単一の画像データに基づいて位相微分画像を生成してもよい。 Further, the phase differential image generation unit may generate a phase differential image based on single image data obtained by the radiation detector.
 また、OK/NG領域検出部は、画素値の強度変化を表す強度変調信号の平均強度、振幅、ビジビリティのうち1つまたは複数の組み合わせに基づいてNG領域を検出することが好ましい。 Further, it is preferable that the OK / NG region detection unit detects the NG region based on one or a combination of the average intensity, amplitude, and visibility of the intensity modulation signal representing the intensity change of the pixel value.
 また、位相微分画像のNG領域を、強度変調信号に基づいて作成した、吸収画像、吸収画像の微分画像、小角散乱画像のうちいずれかを用いて置換するNG領域画像置換部をさらに備えることが好ましい。 Further, the image processing apparatus may further include an NG region image replacement unit that replaces the NG region of the phase differential image using any one of an absorption image, a differential image of the absorption image, and a small-angle scattering image created based on the intensity modulation signal. preferable.
 また、第1の格子は、吸収型格子であり、入射した放射線を幾何光学的に投影することにより第1の周期パターン像を生成することが好ましい。第1の格子は、吸収型格子または位相型格子であり、入射した放射線にタルボ効果を生じさせて第1の周期パターン像を生成するものであってもよい。 Further, the first grating is an absorption grating, and it is preferable that the first periodic pattern image is generated by geometrically optically projecting incident radiation. The first grating may be an absorption grating or a phase grating, and may generate a first periodic pattern image by causing a Talbot effect to incident radiation.
 また、放射線源から放射された放射線を部分的に遮蔽して焦点を分散化するマルチスリットを備えることが好ましい。 It is also preferable to provide a multi-slit that partially blocks the radiation emitted from the radiation source and disperses the focal point.
 また、本発明のアンラップ処理方法は、所定の範囲にラップされた値で表された位相微分画像中から、アンラップエラーが生じやすいNG領域を検出して、このNG領域以外の領域をOK領域とするステップと、OK領域中に起点を設定して、OK領域のみをアンラップ処理するステップと、を備える。 Further, the unwrap processing method of the present invention detects an NG region in which an unwrap error is likely to occur from a phase differential image represented by a value wrapped in a predetermined range, and sets a region other than this NG region as an OK region. And a step of setting a starting point in the OK area and unwrapping only the OK area.
 本発明によれば、所定の範囲にラップされた値で表された位相微分画像中から、アンラップエラーが生じやすいNG領域を検出し、それ以外の領域をOK領域とし、OK領域中に起点を設定して、OK領域のみをアンラップ処理するので、アンラップエラーが低減する。 According to the present invention, an NG region in which an unwrapping error is likely to occur is detected from a phase differential image represented by a value wrapped in a predetermined range, the other region is set as an OK region, and the origin is set in the OK region. Since it is set and only the OK area is unwrapped, unwrapping errors are reduced.
X線撮影装置の構成を示すブロック図である。It is a block diagram which shows the structure of an X-ray imaging apparatus. X線画像検出器の構成を示す模式図である。It is a schematic diagram which shows the structure of a X-ray image detector. 第1及び第2の格子の構成を説明する説明図である。It is explanatory drawing explaining the structure of the 1st and 2nd grating | lattice. 強度変調信号を示すグラフである。It is a graph which shows an intensity | strength modulation signal. 画像処理部の構成を示すブロック図である。It is a block diagram which shows the structure of an image process part. アンラップ処理方法の手順を説明するフローチャートである。It is a flowchart explaining the procedure of the unwrap processing method. アンラップ処理の起点及び経路の設定方法を説明する図である。It is a figure explaining the starting method of an unwrap process, and the setting method of a path | route. 複数のOK領域が存在する位相微分画像を示す図である。It is a figure which shows the phase differential image in which several OK area | region exists. アンラップ処理を説明する図である。It is a figure explaining an unwrap process. プレ撮影時のX線撮影装置の作用を説明するフローチャートである。It is a flowchart explaining the effect | action of the X-ray imaging apparatus at the time of pre imaging | photography. 本撮影時のX線撮影装置の作用を説明するフローチャートである。It is a flowchart explaining the effect | action of the X-ray imaging apparatus at the time of this imaging | photography. アンラップ処理の起点及び経路の別の設定方法を説明する図である。It is a figure explaining another setting method of the starting point of an unwrap process, and a course. 起点方向決定部が設けられた画像処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the image process part provided with the origin direction determination part. アンラップ処理の起点及び経路の別の設定方法を説明する図である。It is a figure explaining another setting method of the starting point of an unwrap process, and a course. 1つの起点から画素ごとに順にアンラップ処理を行う例を説明する図である。It is a figure explaining the example which performs an unwrap process in order for every pixel from one starting point. NG領域画像置換部を備えた画像処理部の構成を示すブロック図である。It is a block diagram which shows the structure of the image process part provided with the NG area | region image replacement part. 従来のアンラップ処理を説明する説明図である。It is explanatory drawing explaining the conventional unwrap process.
 図1において、X線撮影装置10は、X線源11、格子部12、X線画像検出器13、メモリ14、画像処理部15、画像記録部16、撮影制御部17、コンソール18、及びシステム制御部19を備えている。X線源11は、周知のように、回転陽極型のX線管(図示せず)と、X線の照射野を制限するコリメータ(図示せず)とを有し、撮影制御部17の制御に基づき、被検体Hに向けてX線を放射する。 In FIG. 1, an X-ray imaging apparatus 10 includes an X-ray source 11, a grating unit 12, an X-ray image detector 13, a memory 14, an image processing unit 15, an image recording unit 16, an imaging control unit 17, a console 18, and a system. A control unit 19 is provided. As is well known, the X-ray source 11 includes a rotary anode type X-ray tube (not shown) and a collimator (not shown) for limiting the X-ray irradiation field, and is controlled by the imaging control unit 17. Based on the above, X-rays are emitted toward the subject H.
 格子部12は、第1の格子21、第2の格子22、及び走査機構23を備える。第1及び第2の格子21,22は、X線照射方向であるZ方向に関してX線源11に対向配置されている。X線源11と第1の格子21との間には、被検体Hが配置可能な間隔が設けられている。X線画像検出器13は、半導体回路を用いたフラットパネル検出器であり、第2の格子22の背後に近接して配置されている。X線画像検出器13の検出面13aは、Z方向に直交するXY面に存在する。 The grating unit 12 includes a first grating 21, a second grating 22, and a scanning mechanism 23. The first and second gratings 21 and 22 are disposed to face the X-ray source 11 in the Z direction, which is the X-ray irradiation direction. A space is provided between the X-ray source 11 and the first grating 21 so that the subject H can be arranged. The X-ray image detector 13 is a flat panel detector using a semiconductor circuit, and is disposed close to the back of the second grating 22. The detection surface 13a of the X-ray image detector 13 exists on the XY plane orthogonal to the Z direction.
 第1の格子21は、XY面に格子面が存在し、この格子面には、Y方向(格子方向)に延伸された複数のX線吸収部21a及びX線透過部21bが形成されている。X線吸収部21a及びX線透過部21bは、X方向に沿って交互に配列されており、縞状のパターンを形成している。第2の格子22は、第1の格子21と同様にY方向に延伸され、かつX方向に沿って交互に配列された複数のX線吸収部22a及びX線透過部22bを備えている。X線吸収部21a,22aは、金(Au)、白金(Pt)等のX線吸収性を有する金属により形成されている。X線透過部21b,22bは、シリコン(Si)や樹脂等のX線透過性材料や空隙により形成されている。 The first lattice 21 has a lattice plane on the XY plane, and a plurality of X-ray absorption portions 21a and X-ray transmission portions 21b extending in the Y direction (lattice direction) are formed on the lattice plane. . The X-ray absorption parts 21a and the X-ray transmission parts 21b are alternately arranged along the X direction to form a striped pattern. Similar to the first grating 21, the second grating 22 includes a plurality of X-ray absorption parts 22 a and X-ray transmission parts 22 b that extend in the Y direction and are alternately arranged along the X direction. The X-ray absorbing portions 21a and 22a are formed of a metal having X-ray absorption properties such as gold (Au) and platinum (Pt). The X-ray transmissive portions 21b and 22b are formed of an X-ray transmissive material such as silicon (Si) or resin, or a gap.
 第1の格子21は、X線源11から放射されたX線を部分的に通過させて第1の周期パターン像(以下、G1像という)を生成する。このG1像は、第2の格子22の位置において、第2の格子22の格子パターンとほぼ一致する。第2の格子22は、第1の格子21により生成されたG1像を部分的に遮蔽して第2の周期パターン像(以下、G2像という)を生成する。 The first grating 21 partially passes the X-rays emitted from the X-ray source 11 to generate a first periodic pattern image (hereinafter referred to as a G1 image). This G1 image substantially coincides with the lattice pattern of the second lattice 22 at the position of the second lattice 22. The second grating 22 partially shields the G1 image generated by the first grating 21 to generate a second periodic pattern image (hereinafter referred to as G2 image).
 X線画像検出器13は、G2像を検出して画像データを生成する。メモリ14は、X線画像検出器13から読み出された画像データを一時的に記憶する。画像処理部15は、メモリ14に記憶された画像データに基づいて位相微分画像を生成し、この位相微分画像に基づいて位相コントラスト画像を生成する。画像記録部16は、位相微分画像と位相コントラスト画像とを記録する。 The X-ray image detector 13 detects the G2 image and generates image data. The memory 14 temporarily stores the image data read from the X-ray image detector 13. The image processing unit 15 generates a phase differential image based on the image data stored in the memory 14, and generates a phase contrast image based on the phase differential image. The image recording unit 16 records a phase differential image and a phase contrast image.
 走査機構23は、第2の格子22をX方向に間欠的に移動させ、第1の格子21に対する第2の格子22の位置(走査位置)を段階的に変更する。走査機構23の駆動部は、圧電アクチュエータや静電アクチュエータにより構成されており、後述する縞走査の際に、撮影制御部17の制御に基づいて駆動される。メモリ14には、第1の格子21に対する第2の格子22の各走査位置でX線画像検出器13により得られる画像データがそれぞれ記憶される。 The scanning mechanism 23 intermittently moves the second grating 22 in the X direction, and changes the position (scanning position) of the second grating 22 with respect to the first grating 21 in a stepwise manner. The drive unit of the scanning mechanism 23 is configured by a piezoelectric actuator or an electrostatic actuator, and is driven based on the control of the imaging control unit 17 at the time of stripe scanning described later. The memory 14 stores image data obtained by the X-ray image detector 13 at each scanning position of the second grating 22 with respect to the first grating 21.
 コンソール18は、操作部18a及びモニタ18bを備えている。操作部18aは、キーボードやマウス等により構成され、X線源11の管電圧、管電流、照射時間等の撮影条件の設定や、撮影モード(本撮影またはプレ撮影)の選択、撮影実行指示等の操作入力を可能とする。本撮影とは、X線源11と第1の格子21との間に被検体Hを配置した状態で行う撮影モードである。プレ撮影とは、X線源11と第1の格子21との間に被検体Hを配置せずに行う撮影モードである。プレ撮影は、第1及び第2の格子21,22の製造誤差や配置誤差等により生じるバックグランド成分(オフセット画像)を取得するために用いられる。 The console 18 includes an operation unit 18a and a monitor 18b. The operation unit 18a is configured by a keyboard, a mouse, and the like, and sets imaging conditions such as tube voltage, tube current, and irradiation time of the X-ray source 11, selection of an imaging mode (main imaging or pre-imaging), imaging execution instruction, and the like. The operation input can be performed. The main imaging is an imaging mode performed with the subject H placed between the X-ray source 11 and the first grating 21. Pre-imaging is an imaging mode performed without placing the subject H between the X-ray source 11 and the first grating 21. The pre-photographing is used to acquire a background component (offset image) caused by a manufacturing error or arrangement error of the first and second gratings 21 and 22.
 モニタ18bは、撮影条件等の撮影情報や、画像記録部16に記録された位相微分画像及び位相コントラスト画像の表示を行う。システム制御部19は、操作部18aから入力される信号に応じて各部を統括的に制御する。 The monitor 18b displays photographing information such as photographing conditions, and a phase differential image and a phase contrast image recorded in the image recording unit 16. The system control unit 19 comprehensively controls each unit according to a signal input from the operation unit 18a.
 図2において、X線画像検出器13は、2次元状に多数配列された画素30と、ゲート走査線33と、走査回路34と、信号線35と、読み出し回路36とから構成されている。画素30は、周知のように、入射X線によりアモルファスセレン(a-Se)等の半導体膜に生じた電荷を収集する画素電極31と、画素電極31によって収集された電荷を読み出すためのTFT(Thin Film Transistor)32とを備えている。 2, the X-ray image detector 13 includes a plurality of pixels 30 arranged two-dimensionally, a gate scanning line 33, a scanning circuit 34, a signal line 35, and a readout circuit 36. As is well known, the pixel 30 includes a pixel electrode 31 for collecting charges generated in a semiconductor film such as amorphous selenium (a-Se) by incident X-rays, and a TFT (for reading the charges collected by the pixel electrode 31). Thin Film Transistor) 32.
 ゲート走査線33は、画素30の行ごとに設けられている。走査回路34は、各ゲート走査線33にTFT32をオンオフするための走査信号を印加する。信号線35は、画素30の列ごとに設けられている。読み出し回路36は、各信号線35を介して画素30から電荷を読み出し、画像データに変換して出力する。なお、各画素30の詳細な層構成については、特開2002-26300号公報に記載された層構成と同様である。 The gate scanning line 33 is provided for each row of the pixels 30. The scanning circuit 34 applies a scanning signal for turning on / off the TFT 32 to each gate scanning line 33. The signal line 35 is provided for each column of the pixels 30. The readout circuit 36 reads out electric charges from the pixels 30 through the signal lines 35, converts them into image data, and outputs them. The detailed layer configuration of each pixel 30 is the same as the layer configuration described in Japanese Patent Laid-Open No. 2002-26300.
 読み出し回路36は、周知のように、積分アンプ、A/D変換器、補正回路(いずれも図示せず)等により構成されている。積分アンプは、各画素30から信号線35を介して出力された電荷を積分して画像信号を生成する。A/D変換器は、積分アンプにより生成された画像信号を、デジタル形式の画像データに変換する。補正回路は、画像データに対して、暗電流補正、ゲイン補正、及びリニアリティ補正等を行い、補正後の画像データをメモリ14に入力する。 As is well known, the readout circuit 36 includes an integration amplifier, an A / D converter, a correction circuit (none of which is shown), and the like. The integrating amplifier integrates the charges output from each pixel 30 through the signal line 35 to generate an image signal. The A / D converter converts the image signal generated by the integrating amplifier into digital image data. The correction circuit performs dark current correction, gain correction, linearity correction, and the like on the image data, and inputs the corrected image data to the memory 14.
 X線画像検出器13は、入射X線を電荷に直接変換する直接変換型に限られず、ヨウ化セシウム(CsI)やガドリウムオキシサルファイド(GOS)等のシンチレータで入射X線を可視光に変換し、可視光をフォトダイオードで電荷に変換する間接変換型であってもよい。また、X線画像検出器13には、TFTパネルをベースとした放射線画像検出器に限られず、CCDセンサやCMOSセンサ等の固体撮像素子をベースとした放射線画像検出器を用いることも可能である。 The X-ray image detector 13 is not limited to a direct conversion type that directly converts incident X-rays into electric charges, but converts incident X-rays into visible light with a scintillator such as cesium iodide (CsI) or gadolinium oxysulfide (GOS). Alternatively, an indirect conversion type in which visible light is converted into electric charge by a photodiode may be used. The X-ray image detector 13 is not limited to a radiographic image detector based on a TFT panel, and a radiographic image detector based on a solid-state imaging device such as a CCD sensor or a CMOS sensor can also be used. .
 図3において、X線源11から照射されるX線は、X線焦点11aを発光点としたコーンビームである。第1の格子21は、X線透過部21bを通過したX線をほぼ幾何光学的に投影するように構成されている。具体的には、X方向に関するX線透過部21bの幅を、X線源11から放射されるX線の実効波長より十分大きな値とし、X線の大部分を回折させずに、直進性を保ったまま通過させることで実現される。例えば、X線源11の回転陽極としてタングステンを用い、管電圧を50kVとした場合には、X線の実効波長は約0.4Åである。この場合には、X線透過部21bの幅を1~10μm程度とすればよい。なお、第2の格子22も同様である。 In FIG. 3, X-rays irradiated from the X-ray source 11 are cone beams having the X-ray focal point 11a as a light emitting point. The first grating 21 is configured to project the X-rays that have passed through the X-ray transmission part 21b substantially geometrically. Specifically, the width of the X-ray transmission part 21b in the X direction is set to a value sufficiently larger than the effective wavelength of X-rays radiated from the X-ray source 11, and straightness is achieved without diffracting most of the X-rays. It is realized by letting it pass while keeping. For example, when tungsten is used as the rotating anode of the X-ray source 11 and the tube voltage is 50 kV, the effective wavelength of X-rays is about 0.4 mm. In this case, the width of the X-ray transmission part 21b may be about 1 to 10 μm. The same applies to the second grating 22.
 第1の格子21により生成されるG1像は、X線焦点11aからの距離に比例して拡大する。第2の格子22の格子ピッチpは、第2の格子22の位置におけるG1像の周期パターンと一致するように決定されている。具体的には、第2の格子22の格子ピッチpは、第1の格子21の格子ピッチをp、X線焦点11aと第1の格子21との間の距離L、第1の格子21と第2の格子22との間の距離Lとした場合、下式(1)をほぼ満たすように設定されている。以下、X,Y,Z方向の座標を、x,y,zとする。 The G1 image generated by the first grating 21 expands in proportion to the distance from the X-ray focal point 11a. The grating pitch p 2 of the second grating 22 is determined so as to coincide with the periodic pattern of the G1 image at the position of the second grating 22. Specifically, the grating pitch p 2 of the second grating 22 is the grating pitch of the first grating 21 p 1 , the distance L 1 between the X-ray focal point 11 a and the first grating 21, the first grating 21. When the distance L 2 between the lattice 21 and the second lattice 22 is set, the following equation (1) is set to be substantially satisfied. Hereinafter, the coordinates in the X, Y, and Z directions are x, y, and z.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 G1像は、被検体HによりX線に位相変化が生じることで変調される。この変調量には、被検体HによるX線の屈折角φ(x)が反映される。図3には、X線焦点11aから放射されたX線の経路が例示されている。符号X1は、被検体Hが存在しない場合にX線が直進する経路を示している。この経路X1を進むX線は、第1及び第2の格子21,22を通過してX線画像検出器13に入射する。符号X2は、被検体Hが存在する場合に、被検体Hにより屈折したX線の経路を示している。この経路X2を進むX線は、第1の格子21を通過した後、第2の格子22のX線吸収部22aにより吸収される。 The G1 image is modulated by the phase change in the X-ray caused by the subject H. The modulation amount reflects the X-ray refraction angle φ (x) of the subject H. FIG. 3 illustrates an X-ray path emitted from the X-ray focal point 11a. Reference numeral X1 indicates a path along which the X-ray goes straight when the subject H does not exist. X-rays traveling along the path X 1 pass through the first and second gratings 21 and 22 and enter the X-ray image detector 13. Reference numeral X2 indicates an X-ray path refracted by the subject H when the subject H exists. X-rays traveling along the path X <b> 2 pass through the first grating 21 and are then absorbed by the X-ray absorption unit 22 a of the second grating 22.
 X線は、被検体HによるX線の位相変化量を表す位相シフト分布Φ(x)に応じて屈折する。この位相シフト分布Φ(x)は、X線の波長をλ、被検体Hの屈折率分布をn(x,z)として、下式(2)で表される。ここで、説明の簡略化のため、y座標は省略している。 X-rays are refracted according to the phase shift distribution Φ (x) representing the amount of X-ray phase change by the subject H. This phase shift distribution Φ (x) is expressed by the following equation (2), where X-ray wavelength is λ and refractive index distribution of the subject H is n (x, z). Here, the y-coordinate is omitted for simplification of description.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 この位相シフト分布Φ(x)は、X線の屈折角φ(x)と、下式(3)の関係にある。 This phase shift distribution Φ (x) is in the relationship of the refraction angle φ (x) of X-ray and the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 経路X1を進むX線と経路X2を進むX線との第2の格子22の位置におけるX方向への変位量Δxは、X線の屈折角φ(x)が微小であることに基づいて、近似的に下式(4)で表される。 The amount of displacement Δx in the X direction at the position of the second grating 22 between the X-ray traveling along the path X1 and the X-ray traveling along the path X2 is based on the fact that the refraction angle φ (x) of the X-ray is very small. It is approximately represented by the following formula (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 このように、変位量Δxは、位相シフト分布Φ(x)の微分値に比例することがわかる。この変位量Δxは、縞走査法により検出することができ、この結果、位相微分画像が得られる。 Thus, it can be seen that the displacement Δx is proportional to the differential value of the phase shift distribution Φ (x). This displacement amount Δx can be detected by a fringe scanning method, and as a result, a phase differential image is obtained.
 本実施形態では、格子ピッチpをM個に分割した値(p/M)を走査ピッチとし、走査機構23により、この走査ピッチで第2の格子22をX方向に間欠的に移動させることにより縞走査を行う。Mは3以上の整数であり、例えば、M=5であることが好ましい。第2の格子22の各停止中に、X線源11からX線を放射してG2像がX線画像検出器13により検出される。この縞走査により、M枚分の画像データが得られ、X線画像検出器13の各画素30について、M個の画素値が得られる。 In the present embodiment, a value obtained by dividing the grating pitch p 2 into M pieces (p 2 / M) is set as a scanning pitch, and the scanning mechanism 23 intermittently moves the second grating 22 in the X direction at this scanning pitch. By doing so, fringe scanning is performed. M is an integer greater than or equal to 3, for example, it is preferable that M = 5. During each stop of the second grating 22, X-rays are emitted from the X-ray source 11 and a G2 image is detected by the X-ray image detector 13. By this fringe scanning, M pieces of image data are obtained, and M pixel values are obtained for each pixel 30 of the X-ray image detector 13.
 図4に示すように、M個の画素値Iは、第2の格子22の走査位置k(k=0,1,2,・・・,M-1)に対して周期的に変化する。走査位置kは、X方向に走査ピッチ(p/M)ずつ離散した位置である。以下、走査位置kに対する画素値Iの変化を表す信号を強度変調信号と呼ぶ。 As shown in FIG. 4, the M pixel values I k periodically change with respect to the scanning position k (k = 0, 1, 2,..., M−1) of the second grating 22. . The scanning position k is a position that is discrete in the X direction by a scanning pitch (p 2 / M). Hereinafter, a signal representing a change in the pixel value I k with respect to the scanning position k is referred to as an intensity modulation signal.
 同図中の破線は、被検体Hを配置しない状態で得られる強度変調信号を示している。これに対して、実線は、被検体Hを配置した状態で、被検体Hにより位相ズレ量ψ(x)が生じた強度変調信号を示している。この位相ズレ量ψ(x)は、変位量Δxと下式(5)の関係にある。 The broken line in the figure indicates an intensity modulation signal obtained without the subject H being placed. On the other hand, a solid line indicates an intensity modulation signal in which the phase difference amount ψ (x) is generated by the subject H in a state where the subject H is arranged. This phase shift amount ψ (x) is in the relationship of the displacement amount Δx and the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 したがって、各画素30について、縞走査で得られるM個の画素値Iに基づき、強度変調信号の位相ズレ量ψ(x)を求めることにより、位相微分画像が得られる。 Therefore, for each pixel 30, a phase differential image is obtained by obtaining the phase shift amount ψ (x) of the intensity modulation signal based on the M pixel values I k obtained by the fringe scanning.
 なお、上式(1)を僅かに満たさない場合や、第1の格子21と第2の格子22との間にZ方向周りの回転や、XY平面に対する傾斜が僅かに生じている場合には、G2像にはモアレ縞が生じる。このモアレ縞は、第2の格子22の移動に伴って移動し、X方向への移動距離が格子ピッチpに達すると元のモアレ縞に一致するので、このモアレ縞の移動量を検出することで、第2の格子22の実際の移動量を精度よく検出することができる。 When the above formula (1) is not satisfied slightly, or when the rotation around the Z direction or the inclination with respect to the XY plane is slightly generated between the first grating 21 and the second grating 22. , Moire fringes occur in the G2 image. The moire fringes are moved by the movement of the second grating 22, the movement distance in the X-direction coincides with the original moiré fringe reaches the grating pitch p 2, detects the amount of movement of the moire fringes Thus, the actual movement amount of the second grating 22 can be detected with high accuracy.
 次に、位相ズレ量ψ(x)の算出方法について説明する。強度変調信号は、一般に下式(6)で表される。 Next, a method for calculating the phase shift amount ψ (x) will be described. The intensity modulation signal is generally expressed by the following formula (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、Aは入射X線の平均強度を表し、Aは強度変調信号の振幅を表す。「n」は正の整数、「i」は虚数単位である。図4に示すように、強度変調信号が正弦波を描く場合には、n=1である。 Here, A 0 represents the average intensity of the incident X-ray, A n represents the amplitude of the intensity-modulated signal. “N” is a positive integer and “i” is an imaginary unit. As shown in FIG. 4, when the intensity modulation signal draws a sine wave, n = 1.
 本実施形態では、走査ピッチ(p/M)が一定であるため、下式(7)が満たされる。 In this embodiment, since the scanning pitch (p 2 / M) is constant, the following expression (7) is satisfied.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 上式(7)を上式(6)に適用すると、位相ズレ量ψ(x)は、下式(8)で表される。 When the above equation (7) is applied to the above equation (6), the phase shift amount ψ (x) is represented by the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、arg[…]は、複素数の偏角を抽出する関数である。また、位相ズレ量ψ(x)は、逆正接関数を用いて下式(9)のように表すことも可能である。 Here, arg [...] is a function that extracts the argument of a complex number. Further, the phase shift amount ψ (x) can also be expressed by the following equation (9) using an arctangent function.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 複素数の偏角は、値域が-πから+πの範囲であるため、上式(8)に基づいて位相ズレ量ψ(x)を算出した場合には、位相ズレ量ψ(x)は、-πから+πの範囲に畳み込まれた(ラップされた)値を取る。これに対して、逆正接関数の値域は、通常、-π/2から+π/2の範囲であるため、上式(9)に基づいて位相ズレ量ψ(x)を算出した場合には、位相ズレ量ψ(x)は、-π/2から+π/2の範囲に畳み込まれた値を取る。なお、上式(9)において、逆正接関数内の分母及び分子の正負を判別することにより、逆正接関数の値域を-πから+πに拡張することができる。このため、上式(9)に基づいて、-πから+πの範囲で位相ズレ量ψ(x)を算出することも可能である。 Since the deviation angle of the complex number ranges from −π to + π, when the phase shift amount ψ (x) is calculated based on the above equation (8), the phase shift amount ψ (x) is − Take a value that is convolved (wrapped) in the range of π to + π. On the other hand, since the range of the arc tangent function is usually in the range of −π / 2 to + π / 2, when the phase shift amount ψ (x) is calculated based on the above equation (9), The phase shift amount ψ (x) takes a value convolved in a range of −π / 2 to + π / 2. In the above equation (9), the range of the arc tangent function can be expanded from −π to + π by determining the denominator and the sign of the numerator in the arc tangent function. Therefore, the phase shift amount ψ (x) can be calculated in the range of −π to + π based on the above equation (9).
 本実施形態では、各画素30について位相ズレ量ψ(x)を算出することにより得られるデータで表される画像を位相微分画像という。なお、位相ズレ量ψ(x)に定数を乗じたり加算したりしたデータで表される画像を位相微分画像としてもよい。 In the present embodiment, an image represented by data obtained by calculating the phase shift amount ψ (x) for each pixel 30 is referred to as a phase differential image. Note that an image represented by data obtained by multiplying or adding a phase shift amount ψ (x) by a constant may be a phase differential image.
 図5において、画像処理部15は、位相微分画像生成部40、オフセット画像記憶部41、OK/NG領域検出部42、アンラップ処理部43、オフセット処理部44、及び位相コントラスト画像生成部45を備えている。位相微分画像生成部40は、本撮影またはプレ撮影において縞走査により取得されメモリ14に記憶されたM枚分の画像データを用い、上式(8)または上式(9)に基づいて演算を行うことにより位相微分画像を生成する。 In FIG. 5, the image processing unit 15 includes a phase differential image generation unit 40, an offset image storage unit 41, an OK / NG region detection unit 42, an unwrap processing unit 43, an offset processing unit 44, and a phase contrast image generation unit 45. ing. The phase differential image generation unit 40 uses M image data acquired by fringe scanning and stored in the memory 14 in main photographing or pre-photographing, and performs calculation based on the above equation (8) or the above equation (9). By doing so, a phase differential image is generated.
 プレ撮影時に位相微分画像生成部40により生成された位相微分画像は、オフセット画像としてオフセット画像記憶部41により記憶される。本撮影時に位相微分画像生成部40により生成された位相微分画像は、アンラップ処理部43に入力される。なお、オフセット画像記憶部41は、位相微分画像生成部40から再度オフセット画像が入力された場合には、記憶中のオフセット画像を消去した後、入力されたオフセット画像を記憶する。 The phase differential image generated by the phase differential image generation unit 40 at the time of pre-photographing is stored in the offset image storage unit 41 as an offset image. The phase differential image generated by the phase differential image generation unit 40 during the main photographing is input to the unwrap processing unit 43. In addition, when the offset image is input again from the phase differential image generation unit 40, the offset image storage unit 41 deletes the stored offset image and then stores the input offset image.
 OK/NG領域検出部42は、メモリ14に記憶されたM枚分の画像データに基づき、位相微分画像中においてアンラップエラーが生じやすい領域(以下、NG領域という)を検出し、このNG領域以外の領域をOK領域とする。OK/NG領域検出部42は、各画素30について、強度変調信号の平均強度Aが閾値より低い領域、振幅Aが閾値より低い領域、またはビジビリティA/Aが閾値より低い領域をNG領域として検出する。 The OK / NG area detection unit 42 detects an area where an unwrap error is likely to occur in the phase differential image (hereinafter referred to as an NG area) based on the M image data stored in the memory 14, and other than this NG area This area is the OK area. OK / NG area detection unit 42 for each pixel 30, the average intensity A 0 is lower than the threshold region of the intensity modulated signal, the amplitude A 1 is lower than the threshold area or visibility A 1 / A 0 is lower than the threshold region, Detect as NG area.
 このNG領域は、被検体Hに含まれる高吸収体領域(被検体Hが人体である場合には、X線吸収能が高い骨部等)に対応する。これは、X線が高吸収体で吸収されることにより、平均強度A、振幅A、またはビジビリティA/Aが低下することに基づいている。なお、平均強度A、振幅A、ビジビリティA/Aのうち2以上を組み合わせてNG領域を検出してもよい。また、NG領域が散在して、ある程度の大きさを有する集合領域として得られない場合には、閾値を変化させて、検出されるNG領域の大きさを調整すればよい。 This NG region corresponds to a high-absorber region included in the subject H (such as a bone portion having a high X-ray absorption ability when the subject H is a human body). This is based on the fact that the average intensity A 0 , the amplitude A 1 , or the visibility A 1 / A 0 decreases due to the X-rays being absorbed by the high absorber. The NG region may be detected by combining two or more of the average intensity A 0 , the amplitude A 1 , and the visibility A 1 / A 0 . In addition, when the NG regions are scattered and cannot be obtained as an aggregate region having a certain size, the size of the detected NG region may be adjusted by changing the threshold value.
 アンラップ処理部43は、位相微分画像生成部40から入力された位相微分画像に対して、OK領域のみをアンラップ処理する。また、アンラップ処理部43は、オフセット画像記憶部41に記憶されたオフセット画像に対してもOK領域のみをアンラップ処理する。 The unwrap processing unit 43 unwraps only the OK region with respect to the phase differential image input from the phase differential image generation unit 40. The unwrap processing unit 43 also unwraps only the OK region for the offset image stored in the offset image storage unit 41.
 オフセット処理部44は、アンラップ処理後の位相微分画像から、アンラップ処理後のオフセット画像を減算するオフセット補正を行う。具体的には、対応する画素30内で、画素値を減算する。位相コントラスト画像生成部45は、オフセット補正後の位相微分画像をX方向に沿って積分処理することにより、位相シフト分布を表す位相コントラスト画像を生成する。オフセット補正後の位相微分画像と、位相コントラスト画像とが画像記録部16に記録される。 The offset processing unit 44 performs offset correction by subtracting the offset image after unwrapping from the phase differential image after unwrapping. Specifically, the pixel value is subtracted within the corresponding pixel 30. The phase contrast image generating unit 45 generates a phase contrast image representing the phase shift distribution by integrating the phase differential image after the offset correction along the X direction. The phase differential image after the offset correction and the phase contrast image are recorded in the image recording unit 16.
 次に、図6及び図7を参照して、アンラップ処理部43によるアンラップ処理方法を説明する。図7は、説明の簡略化のため、位相微分画像を10×7画素の画像として表している。この位相微分画像には、OK/NG領域検出部42により検出されるNG領域が示されている。OK領域はNG領域以外の領域である。 Next, an unwrap processing method by the unwrap processing unit 43 will be described with reference to FIGS. FIG. 7 shows the phase differential image as an image of 10 × 7 pixels for the sake of simplicity of explanation. In this phase differential image, the NG area detected by the OK / NG area detection unit 42 is shown. The OK area is an area other than the NG area.
 まず、位相微分画像の各行または各列に、アンラップ処理を開始する起点がそれぞれ設定される(ステップS10)。このステップでは、OK領域のみを通り位相微分画像をX方向またはY方向に貫通する貫通ラインが探索され、そのうち1つの貫通ラインに沿って起点が設定される。図7では、X方向とY方向とのそれぞれに貫通ラインが存在するため、短い方のY方向に沿う貫通ラインを優先して、このうちの1つに起点P0~P6が設定されている。ここでは、起点P0~P6は、位相微分画像のX方向端(短辺)に沿って設定されている。 First, the starting point for starting the unwrapping process is set for each row or column of the phase differential image (step S10). In this step, a through line that passes only through the OK region and penetrates the phase differential image in the X direction or the Y direction is searched, and a starting point is set along one of the through lines. In FIG. 7, since there are penetrating lines in each of the X direction and the Y direction, the penetrating lines along the shorter Y direction are given priority, and starting points P0 to P6 are set in one of them. Here, the starting points P0 to P6 are set along the X direction end (short side) of the phase differential image.
 このように起点P0~P6が設定された後、起点P0~P6が設定された貫通ラインと直交する方向(X方向)に、各起点P0~P6を起点とした直線状の直線経路R0~R6が設定され、各直線経路R0~R6に沿ってアンラップ処理が実行される(ステップS11)。この直線経路R0~R6は、NG領域には設定されない。このため、起点P0~P6側から見たNG領域の背後には、起点P0~P6と同一のOK領域に属するが、直線経路R0~R6が設定されない画素が残存する。 After the starting points P0 to P6 are set in this way, linear straight paths R0 to R6 having the starting points P0 to P6 as starting points in a direction (X direction) orthogonal to the through line where the starting points P0 to P6 are set. Is set, and the unwrapping process is executed along each of the straight paths R0 to R6 (step S11). These straight paths R0 to R6 are not set in the NG area. Therefore, behind the NG area viewed from the starting points P0 to P6, pixels that belong to the same OK area as the starting points P0 to P6 but do not have the straight paths R0 to R6 set remain.
 具体的に、ステップS11では、まず、起点P0から直線経路R0に沿って順にアンラップ処理が行われ、直線経路R0のアンラップ処理が終了すると、起点P0を基準として起点P1のアンラップ処理が行われた後、起点P1から直線経路R1に沿って順にアンラップ処理が行われる。そして、直線経路R1と同一行でNG領域の背後に残存する画素についてはアンラップ処理が行われず、起点P1を基準として起点P2のアンラップ処理が行われる。この後、同様の手順でアンラップ処理が行われ、直線経路R6のアンラップ処理が終了するとステップS11は終了する。 Specifically, in step S11, first, unwrap processing is performed in order along the straight line route R0 from the starting point P0, and when the unwrap processing of the straight line route R0 ends, the unwrapping processing of the starting point P1 is performed with reference to the starting point P0. Thereafter, the unwrapping process is sequentially performed from the starting point P1 along the straight path R1. Then, the unwrapping process is not performed on the pixels remaining behind the NG area in the same row as the straight line R1, and the unwrapping process of the starting point P2 is performed with the starting point P1 as a reference. Thereafter, the unwrapping process is performed in the same procedure, and when the unwrapping process for the straight line route R6 is finished, the step S11 is finished.
 この後、NG領域の背後に残存した画素に回り込み経路が設定され、この回り込み経路に沿ってアンラップ処理を行う回り込み処理が行われる(ステップS12)。具体的に、このステップでは、直線経路R1と同一行に残存する画素に回り込み経路WR0が設定され、直線経路R5と同一行に残存する画素に回り込み経路WR1が設定される。回り込み経路WR0は、隣接する直線経路R0上の画素P0aを起点としてアンラップ処理が行われる。回り込み経路WR1は、隣接する直線経路R6上の画素P6aを起点としてアンラップ処理が行われる。 Thereafter, a wraparound path is set for the pixels remaining behind the NG area, and a wraparound process is performed for performing an unwrap process along the wraparound path (step S12). Specifically, in this step, the wraparound path WR0 is set for pixels remaining in the same row as the straight line route R1, and the wraparound path WR1 is set for pixels remaining in the same row as the straight line route R5. The wraparound route WR0 is unwrapped from the pixel P0a on the adjacent straight route R0. The wraparound path WR1 is unwrapped from the pixel P6a on the adjacent straight path R6.
 なお、図8に示すように、NG領域が位相微分画像を分断した結果、複数のOK領域が存在することがある。この場合には、各OK領域に対して個別に、ステップS10~S12が実行される。以上のアンラップ処理は、本撮影で得られる位相微分画像と、プレ撮影で行われるオフセット画像とに対して、それぞれ同様に行われる。 In addition, as shown in FIG. 8, as a result of the NG area dividing the phase differential image, a plurality of OK areas may exist. In this case, steps S10 to S12 are executed individually for each OK area. The above unwrapping process is performed in the same manner for the phase differential image obtained by the main photographing and the offset image performed by the pre photographing.
 図9に示すように、各経路上のアンラップ処理は、上式(8)または上式(9)の関数の値域の上限から下限、または下限から上限に変化する不連続点DPを順に検出し、検出した不連続点DP以降のデータに、この値域に相当する値を一律に加算または減算することで不連続点DPをなくしてデータを連続化する処理である。 As shown in FIG. 9, the unwrapping process on each path sequentially detects discontinuous points DP that change from the upper limit to the lower limit of the range of the function of the above equation (8) or the above equation (9), or from the lower limit to the upper limit. In this process, the data after the detected discontinuous point DP is uniformly added or subtracted with a value corresponding to this range to eliminate the discontinuous point DP and to make the data continuous.
 次に、図10及び図11に示すフローチャートを参照しながらX線撮影装置10の作用を説明する。操作部18aを用いて撮影モードの選択が行われると(ステップS20)、選択された撮影モードがプレ撮影であるか否かの判定が行われる(ステップS21)。プレ撮影である場合には、撮影指示の待受状態となる(ステップS22)。 Next, the operation of the X-ray imaging apparatus 10 will be described with reference to the flowcharts shown in FIGS. When the shooting mode is selected using the operation unit 18a (step S20), it is determined whether or not the selected shooting mode is pre-shooting (step S21). If it is pre-photographing, a standby state for photographing instructions is entered (step S22).
 操作部18aを用いて撮影指示がなされると(ステップS22でYES)、走査機構23により第2の格子22が所定の走査ピッチずつ移動されながら、各走査位置kにおいて、X線源11によるX線照射及びX線画像検出器13によるG2像の検出が行われる(ステップS23)。この縞走査の結果、M枚分の画像データが生成され、メモリ14に格納される。 When an imaging instruction is given using the operation unit 18a (YES in step S22), the X-ray source 11 X is scanned at each scanning position k while the second grating 22 is moved by a predetermined scanning pitch by the scanning mechanism 23. Radiation and detection of the G2 image by the X-ray image detector 13 are performed (step S23). As a result of the fringe scanning, M pieces of image data are generated and stored in the memory 14.
 この後、画像処理部15によりメモリ14に格納されたM枚分の画像データが読み出される。画像処理部15内では、位相微分画像生成部40により位相微分画像が生成される(ステップS24)。この位相微分画像は、オフセット画像としてオフセット画像記憶部41に記憶される(ステップS25)。プレ撮影動作は、以上で終了する。なお、このプレ撮影は、X線撮影装置10の立ち上げ時等に被検体Hを配置しない状態で少なくとも一度行われればよく、本撮影の前に毎回行われる必要はない。 Thereafter, the image data for M sheets stored in the memory 14 is read by the image processing unit 15. In the image processing unit 15, a phase differential image is generated by the phase differential image generation unit 40 (step S24). This phase differential image is stored in the offset image storage unit 41 as an offset image (step S25). The pre-photographing operation ends here. Note that this pre-imaging may be performed at least once in a state in which the subject H is not disposed when the X-ray imaging apparatus 10 is started up, and need not be performed every time before the main imaging.
 次に、被検体Hが配置され、ステップS20の撮影モードの選択により本撮影が選択された場合には(ステップS21でNO)、撮影指示の待受状態となる(ステップS30)。操作部18aを用いて撮影指示がなされると(ステップS30でYES)、ステップS23と同様の縞走査が行われ(ステップS31)、メモリ14にM枚分の画像データが格納される。この後、同様に、位相微分画像生成部40によって位相微分画像が生成される(ステップS32)。 Next, when the subject H is arranged and the main imaging is selected by selecting the imaging mode in step S20 (NO in step S21), the imaging instruction standby state is set (step S30). When a photographing instruction is given using the operation unit 18a (YES in step S30), the same stripe scanning as in step S23 is performed (step S31), and M pieces of image data are stored in the memory 14. Thereafter, similarly, the phase differential image is generated by the phase differential image generation unit 40 (step S32).
 そして、メモリ14に格納された画像データに基づき、OK/NG領域検出部42により、NG領域及びOK領域の検出が行われる(ステップS33)。NG領域及びOK領域が検出されると、アンラップ処理部43により、ステップS32で生成された位相微分画像と、オフセット画像記憶部41に記憶されたオフセット画像とのそれぞれのOK領域に対して、前述のアンラップ処理が行われる(ステップS34)。この後、オフセット処理部44により、アンラップ処理後の位相微分画像から、アンラップ処理後のオフセット画像を減算するオフセット補正が行われる(ステップS35)。これにより、対応する画素30内おいて、画素値の減算が行われる。 Then, based on the image data stored in the memory 14, the NG area and the OK area are detected by the OK / NG area detecting unit 42 (step S33). When the NG region and the OK region are detected, the unwrap processing unit 43 applies the above-described OK regions for the phase differential image generated in step S32 and the offset image stored in the offset image storage unit 41, respectively. Is unwrapped (step S34). Thereafter, the offset processing unit 44 performs offset correction for subtracting the unwrapped offset image from the unwrapped phase differential image (step S35). Thereby, subtraction of the pixel value is performed in the corresponding pixel 30.
 このオフセット補正後の位相微分画像を位相コントラスト画像生成部45が積分処理することにより、位相コントラスト画像が生成される(ステップS36)。オフセット補正後の位相微分画像及び位相コントラスト画像は、画像記録部16に記録された後、モニタ18bに画像表示される(ステップS37)。 The phase contrast image is generated by the phase contrast image generation unit 45 integrating the phase differential image after the offset correction (step S36). The phase differential image and the phase contrast image after the offset correction are recorded in the image recording unit 16 and then displayed on the monitor 18b (step S37).
 以上のように、ステップS34のアンラップ処理では、アンラップエラーが生じやすいNG領域を検出し、NG領域以外のOK領域についてのみアンラップ処理を行っているため、アンラップエラーが生じ難く、ノイズの少ない位相微分画像が得られる。X線位相イメージングでの関心領域である軟部組織(軟骨部等)は、NG領域外に存在するため、アンラップエラーによるノイズで軟部組織の画像化が阻害されることは防止される。 As described above, in the unwrapping process in step S34, an NG region where an unwrapping error is likely to occur is detected, and the unwrapping process is performed only for an OK region other than the NG region. An image is obtained. Since soft tissue (cartilage portion or the like), which is a region of interest in X-ray phase imaging, exists outside the NG region, it is prevented that imaging of the soft tissue is inhibited by noise due to unwrapping errors.
 なお、上記実施形態では、アンラップ処理において、複数の直線経路R0~R6のうち1つの直線経路をアンラップ処理するたびに、その直線経路の起点と次の直線経路との起点とのアンラップ処理を行っているが、直線経路R0~R6のアンラップ処理を行う前に、各起点P0~P6の起点間を先にアンラップ処理し、アンラップ処理後の各起点P0~P6から直線経路R0~R6のそれぞれをアンラップ処理してもよい。 In the above-described embodiment, each time the unwrap process is performed on one of the plurality of straight paths R0 to R6, the unwrap process is performed between the start point of the straight path and the start point of the next straight path. However, before the unwrap processing of the straight paths R0 to R6, the unwrap processing is first performed between the starting points of the respective starting points P0 to P6, and each of the straight paths R0 to R6 is started from each of the starting points P0 to P6 after the unwrapping process. You may unwrap.
 また、逆に、各直線経路R0~R6をアンラップ処理した後、各起点P0~P6の起点間をアンラップ処理し、アンラップ処理後の各直線経路R0~R6のデータを、アンラップ処理後の起点P0~P6のデータに合わせてシフトさせてもよい。 Conversely, after unwrapping each of the straight paths R0 to R6, the unwrap processing is performed between the starting points of the respective starting points P0 to P6, and the data of each of the straight paths R0 to R6 after the unwrapping is obtained as the starting point P0 after the unwrapping process. It may be shifted according to the data of P6.
 また、上記実施形態では、アンラップ処理において、OK領域のみを通り位相微分画像を貫通する貫通ラインが探索され、X方向とY方向との両方に貫通ラインが存在する場合に、Y方向を優先してY方向に沿うように起点P0~P6を設定しているが、図12に示すように、X方向を優先してX方向に沿うように起点P0~P9を設定してもよい。この場合、Y方向に沿って各直線経路R0~R6が設定される。回り込み経路WR0は、起点P0~P9側から見てNG領域の背後に残存する画素を網羅するように適宜設定される。具体的なアンラップ処理方法は上記実施形態と同様であるため、詳しい説明は省略する。 Further, in the above embodiment, in the unwrap processing, when a through line that passes only through the OK region and penetrates the phase differential image is searched for and there are through lines in both the X direction and the Y direction, the Y direction is given priority. The starting points P0 to P6 are set along the Y direction. However, as shown in FIG. 12, the starting points P0 to P9 may be set along the X direction with priority on the X direction. In this case, each straight path R0 to R6 is set along the Y direction. The wraparound path WR0 is appropriately set so as to cover the pixels remaining behind the NG region when viewed from the starting points P0 to P9. Since the specific unwrap processing method is the same as that of the said embodiment, detailed description is abbreviate | omitted.
 また、図13に示すように、NG領域の形状に基づいて起点をY方向に沿って設定するかX方向に沿って設定するかを決定する起点方向決定部50を、OK/NG領域検出部42とアンラップ処理部43との間に設けてもよい。起点方向決定部50は、NG領域の背後に残存する画素に対して行う回り込み処理の回数が少なくなるように起点の設定方向を決定する。 Further, as shown in FIG. 13, an origin / direction determination unit 50 that determines whether to set the origin along the Y direction or along the X direction based on the shape of the NG area is provided with an OK / NG area detection unit. 42 and the unwrap processing unit 43 may be provided. The starting point direction determination unit 50 determines the starting point setting direction so that the number of wraparound processes performed on the pixels remaining behind the NG region is reduced.
 例えば、図7に示すように起点をY方向に沿って設定した場合には、X方向に沿った2つのライン(起点P1,P5を含むライン)で回り込み処理が必要となるため、回り込み処理の回数は2である。これに対して、図12に示すように起点をX方向に沿って設定した場合には、Y方向に沿った6つのライン(起点P4~P9を含むライン)で回り込み処理が必要となるため、回り込み処理の回数は6となる。したがって、NG領域が図7及び図12に示す形状の場合には、起点方向決定部50は、回り込み処理の必要回数が少なくなるY方向を起点の設定方向として決定する。アンラップ処理部43は、起点方向決定部50により決定された方向に各起点を設定してアンラップ処理を行う。 For example, when the starting point is set along the Y direction as shown in FIG. 7, the wrapping process is required for two lines along the X direction (lines including the starting points P1 and P5). The number of times is two. On the other hand, when the starting point is set along the X direction as shown in FIG. 12, a wraparound process is required for six lines along the Y direction (lines including the starting points P4 to P9). The number of wraparound processes is 6. Therefore, when the NG area has the shape shown in FIGS. 7 and 12, the starting point direction determination unit 50 determines the Y direction in which the necessary number of wraparound processes is reduced as the starting point setting direction. The unwrap processing unit 43 performs unwrapping by setting each starting point in the direction determined by the starting point direction determining unit 50.
 また、上記実施形態では、アンラップ処理において、起点を位相微分画像のX方向端またはY方向端に沿って設定しているが、必ずしも起点を位相微分画像の端部に沿って設定する必要はない。例えば、図14に示すように、起点P0~P6を設定し、各起点P0~P6の配列方向(Y方向)に直交する方向(X方向の正方向及び負方向)に直線経路を設定してもよい。 In the above embodiment, in the unwrap processing, the starting point is set along the X-direction end or the Y-direction end of the phase differential image, but it is not always necessary to set the starting point along the end portion of the phase differential image. . For example, as shown in FIG. 14, starting points P0 to P6 are set, and a straight path is set in a direction (positive direction and negative direction of the X direction) orthogonal to the arrangement direction (Y direction) of each starting point P0 to P6. Also good.
 また、上記実施形態では、アンラップ処理において、位相微分画像の各列または各行ごとにアンラップ処理を行うように、各列または各行に起点を設定しているが、これに代えて、位相微分画像のOK領域に1つの起点(開始点)を設定し、この開始点から隣り合う画素を順にアンラップ処理してもよい。 Further, in the above embodiment, in the unwrap processing, the starting point is set in each column or each row so that the unwrap processing is performed for each column or each row of the phase differential image. One starting point (starting point) may be set in the OK region, and the pixels adjacent to the starting point may be unwrapped in order.
 例えば、図15(A)に示すように、OK領域に開始点P0を設定し、この開始点P0からX方向及びY方向に隣接する画素をアンラップ処理する。次いで、図15(B)に示すように、アンラップ処理された各画素からX方向及びY方向に隣接する画素をアンラップ処理する。このとき、隣接画素がNG領域に属する画素である場合には対象とせず、アンラップ処理は行わない。また、隣接画素が、アンラップ処理された他の画素の隣接画素である場合にはいずれかを優先する。ここでは、X方向への隣接画素をY方向への隣接画素より優先している。この後、同様にアンラップ処理を進めて行けばよい。 For example, as shown in FIG. 15A, a start point P0 is set in the OK region, and pixels adjacent in the X direction and the Y direction from this start point P0 are unwrapped. Next, as shown in FIG. 15B, the pixels adjacent in the X direction and the Y direction are unwrapped from each unwrapped pixel. At this time, if the adjacent pixel is a pixel belonging to the NG area, it is not considered and the unwrapping process is not performed. Further, when the adjacent pixel is an adjacent pixel of another pixel that has been unwrapped, priority is given to one of them. Here, the adjacent pixel in the X direction has priority over the adjacent pixel in the Y direction. Thereafter, the unwrapping process may be advanced in the same manner.
 また、上記実施形態では、アンラップ処理部43は、オフセット画像記憶部41に記憶されたオフセット画像についてもOK領域のみをアンラップ処理しているが、オフセット画像の全体に対してアンラップ処理を行うようにしてもよい。図8に示すように、複数のOK領域が存在し、本撮影で得られる位相微分画像を各OK領域についてアンラップ処理する場合には、アンラップ処理がOK領域ごとに独立に行われることにより、アンラップ処理後にOK領域間でデータが大きくシフトしてしまうことがあるため、このシフト量を全体にアンラップ処理を施したオフセット画像から見積もり、このシフト量に基づいて、アンラップ処理後の位相微分画像の各OK領域の差を補正してもよい。 Further, in the above embodiment, the unwrap processing unit 43 unwraps only the OK region for the offset image stored in the offset image storage unit 41. However, the unwrap processing is performed on the entire offset image. May be. As shown in FIG. 8, when there are a plurality of OK regions and the phase differential image obtained by the main imaging is unwrapped for each OK region, the unwrapping is performed independently for each OK region. Since the data may be greatly shifted between the OK regions after the processing, the shift amount is estimated from the offset image subjected to the unwrap processing as a whole, and each phase differential image after the unwrap processing is estimated based on the shift amount. You may correct | amend the difference of an OK area | region.
 また、上記実施形態では、OK/NG領域検出部42は、強度変調信号の平均強度、振幅、またはビジビリティに基づいて、アンラップエラーが生じやすいNG領域を検出しているが、NG領域の検出基準はこれに限られず、強度変調信号の平均強度の画素間のばらつき(すなわち、吸収画像の画素間のばらつき)や、位相微分画像の画素間のばらつきが所定値より大きい領域をNG領域として検出してもよい。なお、この位相微分画像の画素間のばらつきは、第1及び第2の格子21,22の格子線に直交する方向(X方向)へのばらつきとすることが好ましい。 In the above-described embodiment, the OK / NG region detection unit 42 detects an NG region in which an unwrapping error is likely to occur based on the average intensity, amplitude, or visibility of the intensity modulation signal. Is not limited to this, and an area where variation between pixels of the average intensity of the intensity modulation signal (that is, dispersion between pixels of the absorption image) or dispersion between pixels of the phase differential image is larger than a predetermined value is detected as an NG area. May be. In addition, it is preferable that the dispersion | variation between the pixels of this phase differential image is a dispersion | variation to the direction (X direction) orthogonal to the lattice line of the 1st and 2nd grating | lattices 21 and 22. FIG.
 また、位相微分画像の各画素について絶対値を取り、この絶対値が所定値を超える箇所を検出することにより、高吸収体領域のエッジ部分を検出することができるため、このエッジ部で囲われる領域をNG領域として検出してもよい。 In addition, an absolute value is taken for each pixel of the phase differential image, and an edge portion of the superabsorbent region can be detected by detecting a portion where the absolute value exceeds a predetermined value. The region may be detected as an NG region.
 また、強度変調信号の平均強度や最大強度が所定値より大きく、強度変調信号に飽和が生じている領域をNG領域として検出してもよい。この強度変調信号の飽和は、被検体Hを透過せずに第1及び第2の格子21,22を介してX線画像検出器13に直接入射した画素領域(素抜け領域)で生じやすい。強度変調信号が飽和すると位相ズレ量ψ(x)が正確に得られなくなるため、この素抜け領域もアンラップエラーが生じやすい領域である。以上の検出基準を適宜組み合わせてもよい。 Also, an area where the average intensity or the maximum intensity of the intensity modulation signal is larger than a predetermined value and the intensity modulation signal is saturated may be detected as an NG area. This saturation of the intensity modulation signal is likely to occur in a pixel region (elementary region) that is directly transmitted to the X-ray image detector 13 through the first and second gratings 21 and 22 without passing through the subject H. When the intensity modulation signal is saturated, the phase shift amount ψ (x) cannot be obtained accurately, and this unaccompanied region is also a region where unwrapping errors are likely to occur. You may combine the above detection criteria suitably.
 さらに、X線画像検出器13、第1の格子21、第2の格子22に欠陥が生じたり、ゴミなどが付着したりした場合には、所定の画素30の画素値が常に高く、または低くなることがある。このような画素欠陥が生じた領域は、強度変調信号の平均強度、振幅、またはビジビリティが異常値を示すため、アンラップエラーが生じやすい領域となる。このような画素欠陥領域についても、上記の検出基準を適宜組み合わせることにより、NG領域として検出可能である。 Furthermore, when a defect occurs in the X-ray image detector 13, the first grating 21, or the second grating 22, or dust or the like adheres, the pixel value of the predetermined pixel 30 is always high or low. May be. The region where such a pixel defect occurs is a region where an unwrapping error is likely to occur because the average intensity, amplitude, or visibility of the intensity modulation signal indicates an abnormal value. Such a pixel defect region can also be detected as an NG region by appropriately combining the above detection criteria.
 また、上記実施形態では、NG領域にはアンラップ処理が行われないため、最終的に画像記録部16に記録されモニタ18bに表示される位相微分画像のNG領域は、不連続点が残存したノイズの大きい画像となる可能性がある。このため、図16に示すように、画像処理部15にNG領域画像置換部51を設けてもよい。 In the above embodiment, since the unwrapping process is not performed in the NG area, the NG area of the phase differential image that is finally recorded in the image recording unit 16 and displayed on the monitor 18b is a noise in which discontinuous points remain. May result in a large image. Therefore, as shown in FIG. 16, an NG region image replacement unit 51 may be provided in the image processing unit 15.
 NG領域画像置換部51は、本撮影時にメモリ14に記憶されたM枚分の画像データに基づき、吸収画像、吸収画像の微分画像、または小角散乱画像を生成し、該画像のNG領域に対応する部分を、オフセット補正後の位相微分画像のNG領域に挿入して置換する。また、同様に、位相コントラスト画像のNG領域を置換してもよい。吸収画像は、強度変調信号の平均強度を画像化することにより生成される。吸収画像の微分画像は、吸収画像を所定方向(例えば、X方向)に微分処理することにより生成される。小角散乱画像は、強度変調信号の振幅を画像化することにより生成される。 The NG region image replacement unit 51 generates an absorption image, a differential image of the absorption image, or a small-angle scattered image based on the M image data stored in the memory 14 at the time of the actual photographing, and corresponds to the NG region of the image. The portion to be replaced is inserted into the NG area of the phase differential image after offset correction. Similarly, the NG area of the phase contrast image may be replaced. The absorption image is generated by imaging the average intensity of the intensity modulation signal. The differential image of the absorption image is generated by differentiating the absorption image in a predetermined direction (for example, the X direction). The small angle scattered image is generated by imaging the amplitude of the intensity modulation signal.
 また、上記実施形態では、被検体HをX線源11と第1の格子21との間に配置しているが、被検体Hを第1の格子21と第2の格子22との間に配置してもよい。 In the above-described embodiment, the subject H is disposed between the X-ray source 11 and the first grating 21, but the subject H is disposed between the first grating 21 and the second grating 22. You may arrange.
 また、上記実施形態では、縞走査時に第2の格子22を格子線に直交する方向(X方向)に移動させているが、第2の格子22を格子線に対して傾斜する方向(XY平面内でX方向及びY方向に直交しない方向)に移動させてもよい。この移動方向は、XY平面内で、かつY方向以外であれば、いずれの方向であってもよい。この場合には、第2の格子22の移動のX方向成分に基づいて、走査位置kを設定すればよい。第2の格子22を格子線に対して傾斜する方向に移動させることにより、縞走査の一周期分の走査に要するストローク(移動距離)が長くなるため、移動精度が向上する。 In the above-described embodiment, the second grating 22 is moved in the direction (X direction) perpendicular to the grid lines during fringe scanning. However, the second grid 22 is inclined with respect to the grid lines (XY plane). May be moved in a direction not orthogonal to the X direction and the Y direction. This moving direction may be any direction as long as it is within the XY plane and other than the Y direction. In this case, the scanning position k may be set based on the X-direction component of the movement of the second grating 22. By moving the second grating 22 in a direction inclined with respect to the grid line, the stroke (movement distance) required for scanning for one period of the fringe scanning becomes longer, and the movement accuracy is improved.
 また、上記実施形態では、縞走査時に第2の格子22を移動させているが、第2の格子22に代えて、第1の格子21を格子線に直交する方向または傾斜する方向に移動させてもよい。 Moreover, in the said embodiment, although the 2nd grating | lattice 22 is moved at the time of fringe scanning, it replaces with the 2nd grating | lattice 22, and the 1st grating | lattice 21 is moved to the direction orthogonal to the grid line, or the direction which inclines. May be.
 また、上記第実施形態では、X線源11から射出されるコーンビーム状のX線を射出するX線源11を用いているが、平行ビーム状のX線を射出するX線源を用いることも可能である。この場合には、上式(1)に代えて、p=pをほぼ満たすように第1及び第2の格子21,22を構成すればよい。 In the first embodiment, the X-ray source 11 that emits cone-beam X-rays emitted from the X-ray source 11 is used. However, an X-ray source that emits parallel-beam X-rays is used. Is also possible. In this case, instead of the above equation (1), the first and second gratings 21 and 22 may be configured so as to substantially satisfy p 2 = p 1 .
 また、上記実施形態では、X線源11から射出されたX線を第1の格子21に入射させており、X線源11は単一焦点であるが、X線源11の射出側直後(X線源11と第1の格子21との間)に、WO2006/131235号公報等に記されたマルチスリット(線源格子)を設けることにより、X焦点を分散化してもよい。これより、高出力のX線源を用いることが可能となり、X線量が向上するため、位相微分画像の画質が向上する。この場合、マルチスリットのピッチpは、下式(10)を満たす必要がある。ここで、距離Lは、マルチスリットから第1の格子21までの距離を表す。 Moreover, in the said embodiment, the X-rays inject | emitted from the X-ray source 11 are made to inject into the 1st grating | lattice 21, and although the X-ray source 11 is a single focus, immediately after the emission side of the X-ray source 11 ( The X focus may be dispersed by providing a multi-slit (source grating) described in WO 2006/131235 between the X-ray source 11 and the first grating 21). As a result, it becomes possible to use a high-power X-ray source and the X-ray dose is improved, so that the image quality of the phase differential image is improved. In this case, the pitch p 0 of the multi-slit needs to satisfy the following formula (10). Here, the distance L 0 represents the distance from the multi slit to the first grating 21.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 このようにマルチスリットを設けた場合には、マルチスリットの位置がX線焦点の位置となるため、上記実施形態の距離Lは、距離Lに置き換えられる。 When the multi-slit is provided in this way, the position of the multi-slit becomes the position of the X-ray focal point, so the distance L 1 in the above embodiment is replaced with the distance L 0 .
 また、マルチスリットを設けた場合には、マルチスリットを固定したまま、第1の格子21または第2の格子22を移動させて縞走査を行うことの他に、第1及び第2の格子21,22を固定したまま、マルチスリットを移動させることにより縞走査を行うことが可能である。この場合、マルチスリットのピッチpを前述のMで割った値(p/M)を走査ピッチとして、マルチスリットをX方向に間欠移動させればよい。これにより、第1及び第2の格子21,22に対するマルチスリット60の走査位置kは、k=0,1,2,・・・,M-1と順に変更される。 In addition, when the multi-slit is provided, the first and second gratings 21 are used in addition to performing the fringe scanning by moving the first grating 21 or the second grating 22 while the multi-slit is fixed. , 22 is fixed, and the multi-slit is moved to perform the fringe scanning. In this case, the multi-slit may be intermittently moved in the X direction using a value (p 0 / M) obtained by dividing the multi-slit pitch p 0 by M as described above. As a result, the scanning position k of the multi-slit 60 with respect to the first and second gratings 21 and 22 is sequentially changed to k = 0, 1, 2,..., M−1.
 また、上記実施形態では、第1の格子21が入射X線を幾何光学的に投影するように構成しているが、WO2004/058070号公報等で知られているように、第1の格子21をタルボ効果が生じる構成としてもよい。第1の格子21でタルボ効果を生じさせるためには、X線の空間干渉性を高めるように、小焦点のX線光源を用いるか、上記マルチスリットを用いればよい。 Moreover, in the said embodiment, although the 1st grating | lattice 21 is comprised so that incident X-ray may be projected geometrically optically, as known in WO2004 / 058070 etc., the 1st grating | lattice 21 is comprised. May be configured to generate the Talbot effect. In order to generate the Talbot effect in the first grating 21, a small-focus X-ray light source or the multi-slit may be used so as to enhance the spatial coherence of X-rays.
 第1の格子21でタルボ効果が生じる場合には、第1の格子21の自己像(G1像)は、第1の格子21からZ方向にタルボ距離Zだけ離れた位置に生じる。このため、第1の格子21から第2の格子22までの距離Lをタルボ距離Zとする必要がある。この場合には、第1の格子21を位相型格子とすることも可能である。 If the Talbot effect in the first grating 21 occurs, the self-image of the first grating 21 (G1 image) occurs at a distance in the Z direction by the Talbot distance Z m from the first grating 21. Therefore, it is necessary to distance L 2 from the first grid 21 to the second grid 22 and Talbot distance Z m. In this case, the first grating 21 can be a phase-type grating.
 タルボ距離Zは、第1の格子21の構成とX線のビーム形状とに依存する。例えば、第1の格子21が吸収型格子であり、X線源11から射出されるX線がコーンビーム状である場合には、タルボ距離Zは、下式(11)で表される。ここで、「m」は、正の整数である。この場合には、格子ピッチp,pは、上式(1)をほぼ満たすように設定される(ただし、マルチスリットを用いる場合には、距離Lは距離Lに置き換えられる)。 Talbot distance Z m is dependent on the beam shape of the structure and the X-ray of the first grating 21. For example, the first grating 21 are absorption type grating, X-rays emitted from the X-ray source 11 in the case of a cone beam shape, Talbot distance Z m is represented by the following formula (11). Here, “m” is a positive integer. In this case, the grating pitches p 1 and p 2 are set so as to substantially satisfy the above formula (1) (however, when a multi-slit is used, the distance L 1 is replaced with the distance L 0 ).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 また、第1の格子21がX線にπ/2の位相変調を与える位相型格子であり、X線源11から射出されるX線がコーンビーム状である場合には、タルボ距離Zは、下式(12)で表される。ここで、「m」は、「0」または正の整数である。この場合には、格子ピッチp,pは、上式(1)をほぼ満たすように設定される(ただし、マルチスリットを用いる場合には、距離Lは距離Lに置き換えられる)。 Further, when the first grating 21 is a phase-type grating that applies phase modulation of π / 2 to the X-ray, and the X-ray emitted from the X-ray source 11 has a cone beam shape, the Talbot distance Z m is And expressed by the following formula (12). Here, “m” is “0” or a positive integer. In this case, the grating pitches p 1 and p 2 are set so as to substantially satisfy the above formula (1) (however, when a multi-slit is used, the distance L 1 is replaced with the distance L 0 ).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 また、第1の格子21がX線にπの位相変調を与える位相型格子であり、X線源11から射出されるX線がコーンビーム状である場合には、タルボ距離Zは、下式(13)で表される。ここで、「m」は、「0」または正の整数である。この場合には、G1像のパターン周期が第1の格子21の格子周期の1/2倍となるため、格子ピッチp,pは、次式(14)をほぼ満たすように設定される(ただし、マルチスリットを用いる場合には、距離Lは距離Lに置き換えられる)。 In addition, when the first grating 21 is a phase-type grating that imparts π phase modulation to X-rays and the X-rays emitted from the X-ray source 11 have a cone beam shape, the Talbot distance Z m is as follows. It is represented by Formula (13). Here, “m” is “0” or a positive integer. In this case, since the pattern period of the G1 image is ½ times the grating period of the first grating 21, the grating pitches p 1 and p 2 are set so as to substantially satisfy the following expression (14). (However, when using a multi-slit, the distance L 1 is replaced by a distance L 0).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013

Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 また、第1の格子21が吸収型格子であり、X線源11から射出されるX線が平行ビーム状である場合には、タルボ距離Zは、下式(15)で表される。ここで、「m」は、正の整数である。この場合には、格子ピッチp,pは、p=pの関係をほぼ満たすように設定される。 The first grating 21 is absorption grating, if X-rays emitted from the X-ray source 11 is a parallel beam shape, Talbot distance Z m is represented by the following formula (15). Here, “m” is a positive integer. In this case, the lattice pitches p 1 and p 2 are set so as to substantially satisfy the relationship of p 2 = p 1 .
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 また、第1の格子21がX線にπ/2の位相変調を与える位相型格子であり、X線源11から射出されるX線が平行ビーム状である場合には、タルボ距離Zは、下式(16)で表される。ここで、「m」は、「0」または正の整数である。この場合には、格子ピッチp,pは、p=pの関係をほぼ満たすように設定される。 Further, when the first grating 21 is a phase-type grating that applies phase modulation of π / 2 to X-rays, and the X-rays emitted from the X-ray source 11 are parallel beams, the Talbot distance Z m is It is represented by the following formula (16). Here, “m” is “0” or a positive integer. In this case, the lattice pitches p 1 and p 2 are set so as to substantially satisfy the relationship of p 2 = p 1 .
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 そして、第1の格子21がX線にπの位相変調を与える位相型格子であり、X線源11から射出されるX線が平行ビーム状である場合には、タルボ距離Zは、下式(17)で表される。ここで、「m」は、「0」または正の整数である。この場合には、G1像のパターン周期が第1の格子21の格子周期の1/2倍となるため、格子ピッチp,pは、p=p/2の関係をほぼ満たすように設定される。 When the first grating 21 is a phase type grating that imparts π phase modulation to X-rays, and the X-rays emitted from the X-ray source 11 are parallel beams, the Talbot distance Z m is It is represented by Formula (17). Here, “m” is “0” or a positive integer. In this case, since the pattern period of the G1 image is ½ times the grating period of the first grating 21, the grating pitches p 1 and p 2 almost satisfy the relationship of p 2 = p 1/2. Set to
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 また、上記実施形態では、格子部12に第1及び第2の格子21,22の2つの格子を設けているが、第2の格子22を省略し、第1の格子21のみとすることも可能である。 In the above embodiment, the grating portion 12 is provided with the two gratings of the first and second gratings 21 and 22. However, the second grating 22 may be omitted and only the first grating 21 may be used. Is possible.
 例えば、特開平2009-133823号公報に記されたX線画像検出器を用いることにより、第2の格子22を省略し、第1の格子21のみとすることが可能である。このX線画像検出器は、X線を電荷に変換する変換層と、変換層において変換された電荷を収集する電荷収集電極とを備えた直接変換型のX線画像検出器であり、各画素の電荷収集電極が複数の線状電極群を備える。1つの線状電極群は、一定の周期で配列された線状電極を互いに電気的に接続したものであり、他の線状電極群と互いに位相が異なるように配置されている。この線状電極群が第2の格子22として機能し、線状電極群が複数存在することにより、一度の撮影で位相の異なる複数のG2像の検出が行われる。したがって、この構成では、走査機構23を省略することが可能である。 For example, by using an X-ray image detector described in Japanese Patent Laid-Open No. 2009-133823, the second grating 22 can be omitted and only the first grating 21 can be provided. This X-ray image detector is a direct conversion type X-ray image detector including a conversion layer that converts X-rays into electric charges and a charge collection electrode that collects electric charges converted in the conversion layer. The charge collection electrode includes a plurality of linear electrode groups. One linear electrode group is obtained by electrically connecting linear electrodes arranged at a constant period, and is arranged so that the phases thereof are different from those of other linear electrode groups. This linear electrode group functions as the second grating 22, and the presence of a plurality of linear electrode groups allows detection of a plurality of G2 images having different phases in one imaging. Therefore, in this configuration, the scanning mechanism 23 can be omitted.
 また、走査機構23を省略し、第1及び第2の格子21,22を介してX線画像検出器13により得られる単一の画像データに基づいて位相微分画像を生成する方法がある。この方法として、本出願人により特願2010-256241号として出願されている画素分割法がある。この画素分割法では、第1の格子21と第2の格子22とを、Z方向の回りに僅かに回転させて、Y方向に周期を有するモアレ縞をG2像に発生させる。X線画像検出器13により得られる単一の画像データを、該モアレ縞に対して互いに位相が異なる画素行(X方向に並ぶ画素)の群に分割し、分割された複数の画像データを、縞走査により互いに異なる複数のG2像に基づくものと見なして、上記縞走査法と同様な手順で位相微分画像を生成する。この画素分割法において、前述の強度変調信号は、単一の画像データに生じるモアレ縞の1周期分の画素値の強度変化として表される。 Further, there is a method in which the scanning mechanism 23 is omitted and a phase differential image is generated based on single image data obtained by the X-ray image detector 13 via the first and second gratings 21 and 22. As this method, there is a pixel division method filed by the present applicant as Japanese Patent Application No. 2010-256241. In this pixel division method, the first grating 21 and the second grating 22 are slightly rotated around the Z direction, and moire fringes having a period in the Y direction are generated in the G2 image. The single image data obtained by the X-ray image detector 13 is divided into groups of pixel rows (pixels arranged in the X direction) having different phases from each other with respect to the moire fringes, and a plurality of divided image data is obtained. A phase differential image is generated in the same procedure as the above-described fringe scanning method, assuming that the images are based on a plurality of different G2 images by fringe scanning. In this pixel division method, the intensity modulation signal described above is expressed as a change in intensity of pixel values for one cycle of moire fringes generated in single image data.
 さらに、画素分割法と同様に、走査機構23を省略し、第1及び第2の格子21,22を介してX線画像検出器13により得られる単一の画像データに基づいて位相微分画像を生成する方法として、WO2010/050483号公報に記載されたフーリエ変換法が知られている。このフーリエ変換法は、上記単一の画像データに対してフーリエ変換を行うことによりフーリエスペクトルを取得し、このフーリエスペクトルからキャリア周波数に対応したスペクトル(位相情報を担うスペクトル)を分離した後、逆フーリエ変換を行なうことにより位相微分画像を生成する方法である。なお、このフーリエ変換法において、前述の強度変調信号は、画素分割法の場合と同様に、単一の画像データに生じるモアレ縞の1周期分の画素値の強度変化として表される。 Further, similarly to the pixel division method, the scanning mechanism 23 is omitted, and the phase differential image is obtained based on the single image data obtained by the X-ray image detector 13 via the first and second gratings 21 and 22. As a generation method, a Fourier transform method described in WO2010 / 050484 is known. This Fourier transform method obtains a Fourier spectrum by performing a Fourier transform on the single image data, separates a spectrum corresponding to a carrier frequency (a spectrum carrying phase information) from the Fourier spectrum, and then reverses the spectrum. This is a method of generating a phase differential image by performing Fourier transform. In this Fourier transform method, the intensity modulation signal described above is expressed as a change in intensity of pixel values for one cycle of moire fringes generated in a single image data, as in the case of the pixel division method.
 本発明は、医療診断用の放射線撮影装置の他に、工業用の放射線撮影装置等に適用することが可能である。また、放射線は、X線以外に、ガンマ線等を用いることも可能である。 The present invention can be applied to an industrial radiography apparatus and the like in addition to a radiography apparatus for medical diagnosis. In addition to X-rays, gamma rays or the like can be used as radiation.
 10 X線撮影装置
 12 格子部
 20 X線画像検出器
 21 第1の格子
 21a X線吸収部
 21b X線透過部
 22 第2の格子
 22a X線吸収部
 22b X線透過部
 30 画素
 31 画素電極
 33 ゲート走査線
 35 信号線
DESCRIPTION OF SYMBOLS 10 X-ray imaging apparatus 12 Grating part 20 X-ray image detector 21 1st grating | lattice 21a X-ray absorption part 21b X-ray transmission part 22 2nd grating | lattice 22a X-ray absorption part 22b X-ray transmission part 30 Pixel 31 Pixel electrode 33 Gate scanning line 35 Signal line

Claims (19)

  1.  放射線源から射出され、被検体を透過した放射線を検出して画像データを生成する放射線検出器と、
     前記放射線源と前記放射線検出器との間に配置された格子部と、
     前記画像データに基づき、所定の範囲にラップされた値で表された位相微分画像を生成する位相微分画像生成部と、
     前記位相微分画像中から、アンラップエラーが生じやすいNG領域を検出し、このNG領域以外の領域をOK領域とするOK/NG領域検出部と、
     前記OK領域中に起点を設定して、前記OK領域のみをアンラップ処理するアンラップ処理部と、
     を備えることを特徴とする放射線撮影装置。
    A radiation detector that detects radiation emitted from the radiation source and transmitted through the subject to generate image data; and
    A grating portion disposed between the radiation source and the radiation detector;
    Based on the image data, a phase differential image generation unit that generates a phase differential image represented by a value wrapped in a predetermined range;
    An OK / NG area detection unit that detects an NG area that is likely to cause an unwrap error from the phase differential image, and sets an area other than the NG area as an OK area;
    An unwrap processing unit that sets a starting point in the OK region and unwraps only the OK region;
    A radiation imaging apparatus comprising:
  2.  前記被検体を配置しない状態で前記位相微分画像生成部により生成された位相微分画像をオフセット画像として記憶するオフセット画像記憶部をさらに備え、
     前記アンラップ処理部は、前記位相微分画像及び前記オフセット画像に対して、前記アンラップ処理を行うことを特徴とする請求の範囲第1項に記載の放射線撮影装置。
    An offset image storage unit that stores the phase differential image generated by the phase differential image generation unit in a state where the subject is not disposed as an offset image;
    The radiation imaging apparatus according to claim 1, wherein the unwrap processing unit performs the unwrap processing on the phase differential image and the offset image.
  3.  前記アンラップ処理後の位相微分画像から前記アンラップ処理後のオフセット画像を減算するオフセット処理部をさらに備えることを特徴とする請求の範囲第2項に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 2, further comprising an offset processing unit that subtracts the offset image after the unwrap processing from the phase differential image after the unwrap processing.
  4.  前記アンラップ処理部は、前記OK領域のみを通り前記位相微分画像を一方向に貫通する貫通ラインに沿って順に起点を設定し、前記各起点間のアンラップ処理と、前記各起点から前記貫通ラインに直交する直線経路に沿ったアンラップ処理とを行うことを特徴とする請求の範囲第1項に記載の放射線撮影装置。 The unwrap processing unit sets a starting point in order along a penetrating line that passes only through the OK region and penetrates the phase differential image in one direction, and unwraps between the starting points, and passes from the starting point to the penetrating line. The radiation imaging apparatus according to claim 1, wherein unwrap processing is performed along an orthogonal straight path.
  5.  前記アンラップ処理部は、前記各起点から見て前記NG領域の背後に残存する前記OK領域内の画素に対するアンラップ処理をさらに行うことを特徴とする請求の範囲第4項に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 4, wherein the unwrap processing unit further performs unwrap processing on pixels in the OK region remaining behind the NG region as viewed from each starting point.
  6.  前記NG領域の背後に残存する画素に対するアンラップ処理の回数が少なくなるように前記各起点の設定方向を決定する起点方向決定部をさらに備えることを特徴とする請求の範囲第5項に記載の放射線撮影装置。 The radiation according to claim 5, further comprising a starting point direction determination unit that determines a setting direction of each starting point so that the number of unwrapping processes for pixels remaining behind the NG region is reduced. Shooting device.
  7.  前記アンラップ処理部は、前記各起点を、前記位相微分画像のいずれかの一辺に沿って設定することを特徴とする請求の範囲4項に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 4, wherein the unwrap processing unit sets the starting points along one side of the phase differential image.
  8.  前記アンラップ処理部は、前記位相微分画像が前記NG領域により複数の前記OK領域に分断される場合には、前記各OK領域中に前記起点を設定して、前記各OK領域ごとに前記アンラップ処理を行うことを特徴とする請求の範囲第1項に記載の放射線撮影装置。 When the phase differential image is divided into a plurality of OK regions by the NG region, the unwrap processing unit sets the starting point in each OK region, and performs the unwrap processing for each OK region. The radiation imaging apparatus according to claim 1, wherein:
  9.  前記格子部は、前記放射線源からの放射線を通過させて第1の周期パターン像を生成する第1の格子と、前記第1の周期パターン像を部分的に遮蔽して第2の周期パターン像を生成する第2の格子と有し、
     前記放射線画像検出器は、前記第2の周期パターン像を検出して画像データを生成することを特徴とする請求の範囲第1項に記載の放射線撮影装置。
    The grating unit includes a first grating that generates a first periodic pattern image by passing radiation from the radiation source, and a second periodic pattern image that partially shields the first periodic pattern image. A second lattice that generates
    The radiation imaging apparatus according to claim 1, wherein the radiation image detector generates the image data by detecting the second periodic pattern image.
  10.  前記格子部は、前記第1の格子または第2の格子を所定の走査ピッチで移動させ、複数の走査位置に順に設定する走査機構をさらに有し、
     前記放射線画像検出器は、前記各走査位置で前記第2の周期パターン像を検出して画像データを生成し、
     前記位相微分画像生成部は、前記複数の走査位置において前記放射線画像検出器により生成された複数の画像データに基づいて前記位相微分画像を生成することを特徴とする請求の範囲9項に記載の放射線撮影装置。
    The grating unit further includes a scanning mechanism that moves the first grating or the second grating at a predetermined scanning pitch and sequentially sets a plurality of scanning positions.
    The radiation image detector detects the second periodic pattern image at each scanning position to generate image data;
    The phase differential image generation unit generates the phase differential image based on a plurality of image data generated by the radiation image detector at the plurality of scanning positions. Radiography equipment.
  11.  前記走査機構は、前記第1の格子または前記第2の格子を、その格子線に直交する方向に移動させることを特徴とする請求の範囲第10項に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 10, wherein the scanning mechanism moves the first grating or the second grating in a direction orthogonal to the grating line.
  12.  前記走査機構は、前記第1の格子または前記第2の格子を、その格子線に対して傾斜する方向に移動させることを特徴とする請求の範囲第10項に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 10, wherein the scanning mechanism moves the first grating or the second grating in a direction inclined with respect to the grating line.
  13.  前記位相微分画像生成部は、前記放射線検出器により得られる単一の画像データに基づいて前記位相微分画像を生成することを特徴とする請求の範囲第9項に記載の放射線撮影装置。 10. The radiation imaging apparatus according to claim 9, wherein the phase differential image generation unit generates the phase differential image based on single image data obtained by the radiation detector.
  14.  前記OK/NG領域検出部は、画素値の強度変化を表す強度変調信号の平均強度、振幅、ビジビリティのうち1つまたは複数の組み合わせに基づいて前記NG領域を検出することを特徴とする請求の範囲第10項から第13項いずれか1項に記載の放射線撮影装置。 The OK / NG area detecting unit detects the NG area based on one or a combination of an average intensity, an amplitude, and a visibility of an intensity modulation signal representing an intensity change of a pixel value. The radiation imaging apparatus according to any one of ranges 10 to 13.
  15.  前記位相微分画像の前記NG領域を、前記強度変調信号に基づいて作成した、吸収画像、吸収画像の微分画像、小角散乱画像のうちいずれかを用いて置換するNG領域画像置換部をさらに備えることを特徴とする請求の範囲第14項に記載の放射線撮影装置。 An NG region image replacement unit that replaces the NG region of the phase differential image using any one of an absorption image, a differential image of the absorption image, and a small-angle scattering image created based on the intensity modulation signal; The radiation imaging apparatus according to claim 14, wherein:
  16.  前記第1の格子は、吸収型格子であり、入射した放射線を幾何光学的に投影することにより前記第1の周期パターン像を生成することを特徴とする請求の範囲第14項に記載の放射線撮影装置。 15. The radiation according to claim 14, wherein the first grating is an absorption grating, and the first periodic pattern image is generated by geometrically projecting incident radiation. Shooting device.
  17.  前記第1の格子は、吸収型格子または位相型格子であり、入射した放射線にタルボ効果を生じさせて前記第1の周期パターン像を生成することを特徴とする請求の範囲第14項に記載の放射線撮影装置。 15. The first periodic pattern image according to claim 14, wherein the first grating is an absorption grating or a phase grating, and generates the first periodic pattern image by causing a Talbot effect to incident radiation. Radiography equipment.
  18.  前記放射線源から放射された放射線を部分的に遮蔽して焦点を分散化するマルチスリットをさらに備えることを特徴とする請求の範囲第14項に記載の放射線撮影装置。 The radiation imaging apparatus according to claim 14, further comprising a multi-slit that partially blocks radiation emitted from the radiation source and disperses the focal point.
  19.  所定の範囲にラップされた値で表された位相微分画像中から、アンラップエラーが生じやすいNG領域を検出して、このNG領域以外の領域をOK領域とするステップと、
     前記OK領域中に起点を設定して、前記OK領域のみをアンラップ処理するステップと、
     を備えることを特徴とするアンラップ処理方法。
    Detecting an NG region in which an unwrapping error is likely to occur from a phase differential image represented by a value wrapped in a predetermined range, and setting a region other than the NG region as an OK region;
    Setting a starting point in the OK region and unwrapping only the OK region;
    An unwrap processing method comprising:
PCT/JP2012/068572 2011-08-22 2012-07-23 Radiography device and unwrapping method WO2013027519A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-180533 2011-08-22
JP2011180533A JP2014217397A (en) 2011-08-22 2011-08-22 Radiographic apparatus and unwrapping method

Publications (1)

Publication Number Publication Date
WO2013027519A1 true WO2013027519A1 (en) 2013-02-28

Family

ID=47746270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068572 WO2013027519A1 (en) 2011-08-22 2012-07-23 Radiography device and unwrapping method

Country Status (2)

Country Link
JP (1) JP2014217397A (en)
WO (1) WO2013027519A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112043974A (en) * 2020-09-08 2020-12-08 苏州雷泰医疗科技有限公司 Dynamic intensity modulation method and device based on orthogonal double-layer grating rotary sweep

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7147346B2 (en) 2018-08-08 2022-10-05 株式会社島津製作所 X-ray phase imaging system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058070A1 (en) * 2002-12-26 2004-07-15 Atsushi Momose X-ray imaging system and imaging method
JP2008082869A (en) * 2006-09-27 2008-04-10 Mitsutoyo Corp Phase unwrapping method in interference fringe analysis
WO2010050483A1 (en) * 2008-10-29 2010-05-06 キヤノン株式会社 X-ray imaging device and x-ray imaging method
JP2011045655A (en) * 2009-08-28 2011-03-10 Konica Minolta Medical & Graphic Inc X-ray radiographic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004058070A1 (en) * 2002-12-26 2004-07-15 Atsushi Momose X-ray imaging system and imaging method
JP2008082869A (en) * 2006-09-27 2008-04-10 Mitsutoyo Corp Phase unwrapping method in interference fringe analysis
WO2010050483A1 (en) * 2008-10-29 2010-05-06 キヤノン株式会社 X-ray imaging device and x-ray imaging method
JP2011045655A (en) * 2009-08-28 2011-03-10 Konica Minolta Medical & Graphic Inc X-ray radiographic equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIGESUMI KUWASHIMA: "Hikari Sanjigen Keisoku Gijutsu no Genjo to Shorai Doko Jitsujikan Sanjigen Gazo Keisoku", OPTICAL AND ELECTRO-OPTICAL ENGINEERING CONTACT, vol. 39, no. 2, 2001, pages 92 - 102 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112043974A (en) * 2020-09-08 2020-12-08 苏州雷泰医疗科技有限公司 Dynamic intensity modulation method and device based on orthogonal double-layer grating rotary sweep
CN112043974B (en) * 2020-09-08 2021-07-06 苏州雷泰医疗科技有限公司 Dynamic intensity modulation method and device based on orthogonal double-layer grating rotary sweep
WO2022052324A1 (en) * 2020-09-08 2022-03-17 苏州雷泰医疗科技有限公司 Dynamic intensity modulation method and apparatus based on orthogonal double-layer grating rotary sweeping

Also Published As

Publication number Publication date
JP2014217397A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5475737B2 (en) Radiation imaging apparatus and image processing method
JP5731214B2 (en) Radiation imaging system and image processing method thereof
JP5378335B2 (en) Radiography system
JP5438649B2 (en) Radiation imaging system and displacement determination method
JP2011218147A (en) Radiographic system
JP2012090944A (en) Radiographic system and radiographic method
JP2012090945A (en) Radiation detection device, radiographic apparatus, and radiographic system
JP2011224329A (en) Radiation imaging system and method
JP2011224330A (en) Radiation imaging system and offset correction method therefor
WO2013065502A1 (en) Radiographic imaging method and device
WO2012057022A1 (en) Radiography system and radiography method
JP2011206490A (en) Radiographic system and radiographic method
JP2014138625A (en) Radiographic apparatus and image processing method
WO2013038881A1 (en) Radiography device and image processing method
WO2013027519A1 (en) Radiography device and unwrapping method
JP2013042788A (en) Radiographic apparatus and unwrapping processing method
WO2013027536A1 (en) Radiography device and radiography method
JP5635169B2 (en) Radiography system
WO2013099467A1 (en) Radiographic method and apparatus
JP5610480B2 (en) Radiation image processing apparatus and method
JP2011206162A (en) Radiographic system and method
JP2013063098A (en) Radiographic apparatus and image processing method
JP2012228301A (en) Radiographic apparatus
WO2013088878A1 (en) Radiographic method and apparatus
JP2012228361A (en) Radiographic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825009

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP