WO2012057022A1 - Radiography system and radiography method - Google Patents

Radiography system and radiography method Download PDF

Info

Publication number
WO2012057022A1
WO2012057022A1 PCT/JP2011/074293 JP2011074293W WO2012057022A1 WO 2012057022 A1 WO2012057022 A1 WO 2012057022A1 JP 2011074293 W JP2011074293 W JP 2011074293W WO 2012057022 A1 WO2012057022 A1 WO 2012057022A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
grating
image
ray
gratings
Prior art date
Application number
PCT/JP2011/074293
Other languages
French (fr)
Japanese (ja)
Inventor
拓司 多田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012057022A1 publication Critical patent/WO2012057022A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/041Phase-contrast imaging, e.g. using grating interferometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/101Different kinds of radiation or particles electromagnetic radiation
    • G01N2223/1016X-ray
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/313Accessories, mechanical or electrical features filters, rotating filter disc
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts

Definitions

  • the present invention relates to a radiation imaging system and a radiation imaging method for obtaining an image based on a phase change of radiation, and more particularly to a radiation imaging system and a radiation imaging method using a fringe scanning method.
  • Radiation such as X-rays
  • X-rays has a characteristic that it is attenuated depending on the atomic number of elements constituting the substance and the density and thickness of the substance. Focusing on this characteristic, X-rays are used as a probe for seeing through the inside of a subject in fields such as medical diagnosis and nondestructive inspection.
  • an object is placed between an X-ray source that emits X-rays and an X-ray image detector that detects X-rays, and X-rays transmitted through the object are imaged.
  • X-rays emitted from the X-ray source toward the X-ray image detector are absorbed and attenuated when passing through the subject, and then enter the X-ray image detector.
  • an image based on an X-ray intensity change by the subject is detected by the X-ray image detector.
  • the X-ray absorption ability is lower with an element having a smaller atomic number, there is a problem that a change in X-ray intensity is small and a sufficient contrast cannot be obtained in an image in a soft body tissue or soft material.
  • most of the components of the cartilage portion constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the X-ray absorption capacity between them is small, so that it is difficult to obtain contrast.
  • X-ray phase imaging is a method of imaging the X-ray phase change based on the fact that the phase change of the X-ray incident on the subject is larger than the intensity change. A high-contrast image can be obtained.
  • X-ray phase imaging an X-ray imaging system using two diffraction gratings and an X-ray image detector is known (see, for example, Patent Document 1 and Non-Patent Document 1).
  • a first diffraction grating (grid) is disposed behind the subject as viewed from the X-ray source, and a second diffraction grating is disposed downstream from the first diffraction grating by a Talbot distance, It is configured by placing an X-ray image detector behind it.
  • the Talbot distance is the distance at which X-rays that have passed through the first diffraction grating form a self-image (stripe image) due to the Talbot interference effect, and depends on the grating pitch of the first diffraction grating and the X-ray wavelength.
  • This self-image is modulated by the phase change of the X-rays caused by the subject and refraction. By detecting this modulation amount, the phase change of the X-ray is imaged.
  • the fringe scanning method is known as a method for detecting the modulation amount.
  • one of the first and second diffraction gratings is intermittently moved N times by a predetermined pitch in a direction perpendicular to the grating lines, and the relative positions of the first and second diffraction gratings are changed. Then, X-ray imaging is performed immediately after each intermittent movement. A phase modulation signal representing the intensity change of the pixel data between the obtained N images is generated, and the phase shift amount of this phase modulation signal (the phase shift amount with and without the subject) is calculated. By calculating, a phase differential image representing the modulation amount is generated. A phase contrast image is obtained by integrating the phase differential image.
  • This fringe scanning method is also used in an imaging device using laser light (see, for example, Non-Patent Document 2).
  • a radiation imaging system of the present invention includes first and second gratings arranged opposite to a radiation source, and scanning in which the relative positions of the first and second gratings are changed stepwise.
  • the radiation emitted from the radiation source at each relative position is detected by a plurality of pixels arranged two-dimensionally through the first and second gratings, and pixel data of each pixel is obtained.
  • a first position sensor that detects position information of the first and second gratings at each relative position, and position information detected by the first position sensor.
  • a phase differential image generation unit that generates a phase differential image by calculating a phase shift amount of an intensity modulation signal that represents a change in intensity of pixel data for each pixel.
  • the phase differential image generation unit corrects each relative position based on each position information, creates the intensity modulation signal from the corrected relative position and pixel data, and performs a calculation based on the least square method.
  • the phase shift amount is preferably calculated by
  • the apparatus further includes a phase contrast image generation unit that generates a phase contrast image by integrating the phase differential image generated by the phase differential image generation unit.
  • the first grating is an absorption grating, and it is preferable to project incident radiation onto the second grating geometrically.
  • the first grating is preferably an absorption type grating or a phase type grating, and it is preferable that the incident radiation causes a Talbot interference effect to be projected onto the second grating.
  • the image sensor further includes a second position sensor that detects position information of the multi-slit, and the phase differential image generation unit is based on the position information detected by the first and second position sensors. It is preferable to calculate the phase shift amount of the intensity modulation signal.
  • the radiation imaging method of the present invention includes a step of changing the relative positions of the first and second gratings opposed to the radiation source in stages, and the radiation emitted from the radiation source at each relative position, Detecting a plurality of pixels arranged two-dimensionally through the first and second grids, and generating pixel data of each pixel; and at each relative position, the first and second are detected by a position sensor. Detecting the position information of the lattice of the image, and calculating the phase shift amount of the intensity modulation signal representing the intensity change of the pixel data for each pixel based on the position information detected by the position sensor, And a generating step.
  • the position information of the first and second gratings is detected by the position sensor, and the phase shift amount of the intensity modulation signal representing the intensity change of the pixel data with respect to the relative position is calculated based on the position information. Even when the relative position is misaligned, it is possible to prevent the image quality from deteriorating.
  • the X-ray imaging system 10 includes an X-ray source 11, an imaging unit 12, a memory 13, an image processing unit 14, an image recording unit 15, an imaging control unit 16, a console 17, and a system control unit 18.
  • the X-ray source 11 irradiates the subject H with X-rays.
  • the imaging unit 12 detects X-rays that have passed through the subject H based on the fringe scanning method, and generates a plurality of image data.
  • the memory 13 stores a plurality of image data.
  • the image processing unit 14 performs image processing on the plurality of image data stored in the memory 13 to generate a phase differential image and a phase contrast image.
  • the image recording unit 15 records a phase contrast image.
  • the imaging control unit 16 controls the X-ray source 11 and the imaging unit 12.
  • the console 17 includes a known operation unit and monitor.
  • the X-ray imaging system 10 comprehensively controls the entire X-ray imaging system 10 based on an operation signal input from the console 17.
  • the X-ray source 11 includes a high voltage generator, an X-ray tube, a collimator (all not shown), and the like, and emits X-rays based on the control of the imaging control unit 16.
  • the X-ray tube is of a rotary anode type, and generates X-rays by colliding an electron beam emitted from a filament with the rotary anode in accordance with a voltage applied from a high voltage generator.
  • the rotating anode rotates to reduce deterioration due to the electron beam continuously hitting the fixed position.
  • the collision portion between the rotating anode and the electron beam is an X-ray focal point that emits X-rays.
  • the collimator limits the irradiation field so as to shield components other than the imaging range among the X-rays emitted from the X-ray tube.
  • the imaging unit 12 is provided with a flat panel detector (FPD) 20 composed of a semiconductor circuit, and first and second absorption gratings 21 and 22 for detecting X-ray phase changes due to the subject H. ing.
  • the FPD 20 is disposed so that the surface thereof is orthogonal to a direction along the optical axis LA of X-rays irradiated from the X-ray source 11 (hereinafter referred to as Z direction).
  • the first absorption type grating 21 has a plurality of X-ray absorption parts 21a extending in one direction (hereinafter referred to as Y direction) in a plane orthogonal to the Z direction, and a direction (hereinafter referred to as “Z direction”). the X that direction) in which are arranged at a predetermined pitch p 1.
  • the second absorption grating 22 has a plurality of X-ray absorbing portions 22a which extend in the Y direction, in which are arranged at a predetermined pitch p 2 in the X direction.
  • a material of the X-ray absorption parts 21a and 22a a metal excellent in X-ray absorption is preferable, and for example, gold (Au) or platinum (Pt) is preferably used.
  • the first absorption type grating 21 transmits the X-rays irradiated from the X-ray source 11 to generate a first periodic pattern image (hereinafter referred to as a G1 image), and the second absorption type grating 22 is a G1 image. Is partially shielded (intensity modulated) to generate a second periodic pattern image (hereinafter referred to as G2 image).
  • the imaging unit 12 scans to sequentially change the relative position of the second absorption type grating 22 with respect to the first absorption type grating 21 by intermittently moving the second absorption type grating 22 in the X direction.
  • a mechanism 23 is provided.
  • the scanning mechanism 23 has a piezoelectric actuator or an electrostatic actuator. The scanning mechanism 23 is driven based on the control of the imaging control unit 16 at the time of stripe scanning described later.
  • the memory 13 stores image data generated by the FPD 20 at each scanning position.
  • the imaging unit 12 includes a position sensor 24 that detects position information regarding the X direction of the first and second absorption type gratings 21 and 22.
  • a position sensor 24 that detects position information regarding the X direction of the first and second absorption type gratings 21 and 22.
  • a laser displacement sensor is used as the position sensor 24.
  • the detection value of the position sensor 24 is supplied to the image processing unit 14 via the imaging control unit 16 and the system control unit 18.
  • an encoder, a potentiometer, a Hall element, an ultrasonic sensor, an acceleration sensor, or the like may be used as the position sensor 24.
  • the image processing unit 14 includes a phase differential image generation unit 14a and a phase contrast image generation unit 14b.
  • the phase differential image generation unit 14 a generates a phase differential image based on a plurality of image data in which a G2 image is captured by the FPD 20 at each scanning position and stored in the memory 13.
  • the phase differential image generation unit 14 a generates a phase differential image using the detection value supplied from the position sensor 24.
  • the phase contrast image generation unit 14b generates a phase contrast image by integrating the phase differential image generated by the phase differential image generation unit 14a along the scanning direction (X direction).
  • the phase contrast image is recorded in the image recording unit 15 and then output to the console 17 and displayed on the monitor.
  • the operation unit of the console 17 makes it possible to input imaging conditions such as tube voltage, tube current, and X-ray irradiation time of the X-ray tube, and an imaging start instruction.
  • imaging conditions such as tube voltage, tube current, and X-ray irradiation time of the X-ray tube
  • an imaging start instruction For example, a switch, a touch panel, a mouse, a keyboard or the like is used as the operation unit.
  • the monitor is composed of a liquid crystal display, a CRT display, or the like, and displays information such as photographing conditions and an image display such as a phase contrast image.
  • the FPD 20 includes an image receiving unit 31, a scanning circuit 32, and a reading circuit 33.
  • the image receiving unit 31 includes a plurality of pixels 30 that convert X-rays into electric charges and accumulate them two-dimensionally on an active matrix substrate (not shown) along the X and Y directions.
  • the scanning circuit 32 controls the timing for reading out charges from the pixels 30.
  • the readout circuit 33 converts the charges read from the pixels 30 into image data and outputs the image data.
  • the scanning circuit 32 and each pixel 30 are connected to each other by a scanning line 34 for each row.
  • the readout circuit 33 and each pixel 30 are connected by a signal line 35 for each column.
  • the arrangement pitch of the pixels 30 is about 100 ⁇ m in each of the X direction and the Y direction.
  • the pixel 30 directly converts X-rays into charges by a conversion layer (not shown) such as amorphous selenium, and a capacitor (not shown) connected to the converted charge at the lower electrode of the conversion layer.
  • a conversion layer such as amorphous selenium
  • a capacitor (not shown) connected to the converted charge at the lower electrode of the conversion layer.
  • Each pixel 30 is provided with a TFT switch (not shown).
  • the gate electrode of the TFT switch is connected to the scanning line 34, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 35.
  • the TFT switch is turned on by the drive pulse applied from the scanning circuit 32, the charge accumulated in the capacitor is read out to the signal line 35.
  • the pixel 30 temporarily converts X-rays into visible light using a scintillator (not shown) formed of gadolinium oxide (Gd 2 O 3 ), cesium iodide (CsI), or the like, and converts the converted visible light to photo
  • a scintillator (not shown) formed of gadolinium oxide (Gd 2 O 3 ), cesium iodide (CsI), or the like, and converts the converted visible light to photo
  • An indirect conversion type X-ray detection element that converts the charge into a charge by a diode (not shown) and stores the charge may be used.
  • an FPD based on a TFT panel is used as the radiation image detector.
  • a radiation image detector based on a solid-state imaging device such as a CCD sensor or a CMOS sensor may be used.
  • the readout circuit 33 includes an integration amplifier, a correction circuit, an A / D converter (none of which are shown), and the like.
  • the integrating amplifier integrates the charges output from the pixels 30 via the signal line 35 and converts them into a voltage signal (image signal).
  • the A / D converter converts the image signal converted by the integrating amplifier into digital image data.
  • the correction circuit performs dark current correction, gain correction, linearity correction, and the like on the image data, and inputs the corrected image data to the memory 13.
  • the portion of the spacing d 1 is provided an X-ray transmitting portion 21b.
  • the portion of the spacing d 2 is provided an X-ray transmitting portion 22b.
  • the first and second absorption gratings 21 and 22 are gratings that give an intensity difference to incident X-rays, and are also called amplitude gratings.
  • the X-ray transmission portions 21b and 22b are configured by an X-transmissive material such as silicon (Si) or a polymer, or a gap.
  • the first and second absorption type gratings 21 and 22 are configured to project X-rays that have passed through the X-ray transmission parts 21b and 22b linearly (geometrically). Specifically, it is realized by setting the distances d 1 and d 2 to a value sufficiently larger than the peak wavelength of the X-rays irradiated from the X-ray source 11, and most of the X-rays included in the irradiated X-rays are diffracted. Without passing through, the X-ray transmission parts 21b and 22b pass through while maintaining straightness.
  • the peak wavelength of the X-ray is about 0.4 mm.
  • the distances d 1 and d 2 may be about 1 ⁇ m to 10 ⁇ m.
  • the grating pitches p 1 and p 2 are about 2 ⁇ m to 20 ⁇ m.
  • the G1 image generated by the first absorption type grating 21 is an X-ray focal point. It is enlarged in proportion to the distance from 11a.
  • the lattice pitch p 2 and the interval d 2 of the second absorption type grating 22 are set so that the pattern of the X-ray transmission part 22 b substantially matches the pattern of the bright part of the G1 image at the position of the second absorption type grating 22. Is set.
  • the grating pitch p 2 and distance d 2 is set so as to satisfy substantially the relation of the following formula (1) and (2).
  • the distance L 2 from the first absorption type grating 21 to the second absorption type grating 22 is equal to the lattice pitch of the first absorption type grating 16 when the Talbot interference effect occurs in the first absorption type grating 21. While being constrained to Talbot distance determined by the X-ray wavelength, in the present embodiment, since the first absorption grating 21 is configured to geometrical optics projecting an incident X-ray, the distance L 2, and Talbot distance Can be set independently. This is because in this embodiment, the G1 image becomes a self-image of the first absorption type grating 21 at all positions downstream of the first absorption type grating 21.
  • the Talbot distance Z m when the Talbot interference effect is assumed to occur in the first absorption grating 21 is the first absorption.
  • Expression (3) is an expression representing the Talbot distance when the X-rays emitted from the X-ray source 11 are in the shape of a cone beam. “Atsushi Momose, et al., Japanese Journal of Applied Physics, Vol.47, No. 10, October 2008, 8077 ”.
  • the distance L 2 is set to a value in the range satisfying the following expression (4).
  • the X-ray absorbers 21a and 22a preferably completely absorb (shield) X-rays in order to generate periodic pattern images (G1 image and G2 image) with high contrast.
  • the above-described material having excellent X-ray absorption gold, platinum, etc.
  • the tube voltage of the X-ray tube is 50 kV, it is preferable to absorb 90% or more of the irradiated X-rays.
  • the thickness of the X-ray absorbing portions 21a and 22a is preferably in the range of 10 ⁇ m to 200 ⁇ m.
  • a G2 image generated by intensity-modulating the G1 image generated by the first absorption type grating 21 by the second absorption type grating 22 is photographed by the FPD 20.
  • one of the first and second absorption type gratings 21 and 22 is rotated in the XY plane, a so-called rotational moire is generated in the G2 image. Even when moire fringes occur in the G2 image, there is no particular problem as long as the period of the moire fringes in the X direction or Y direction is larger than the arrangement pitch of the pixels 30.
  • the G2 image detected by the FPD 20 is modulated by the subject H.
  • This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H.
  • Based on a plurality of image data obtained by the FPD 20, a phase differential image corresponding to the distribution of the X-ray refraction angles and a phase contrast image corresponding to a phase shift distribution described later are obtained.
  • FIG. 3 illustrates one X-ray that is refracted according to the phase shift distribution ⁇ (x) in the X direction of the subject H.
  • Reference numeral 40 indicates an X-ray path that goes straight when the subject H does not exist. X-rays traveling along the path 40 pass through the first and second absorption gratings 21 and 22 and enter the FPD 20.
  • Reference numeral 41 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 41 pass through the first absorption type grating 21 and are then absorbed by the X-ray absorption part 22 a of the second absorption type grating 22.
  • phase shift distribution ⁇ (x) of the subject H is expressed by the following formula (5) using the refractive index distribution n (x, z) of the subject H.
  • the y-coordinate is omitted for simplification of description.
  • the G1 image projected from the first absorption type grating 21 to the position of the second absorption type grating 22 is displaced in the X direction by an amount corresponding to the refraction angle ⁇ due to refraction of X-rays at the subject H. .
  • This displacement amount ⁇ x is approximately expressed by the following equation (6) based on the fact that the refraction angle ⁇ of X-rays is very small.
  • the refraction angle ⁇ is expressed by the following equation (7) using the X-ray wavelength ⁇ and the phase shift distribution ⁇ (x) of the subject H.
  • the displacement amount ⁇ x of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution ⁇ (x).
  • This displacement amount ⁇ x is the phase shift amount ⁇ of the intensity modulation signal representing the intensity change with respect to the scanning position of the pixel data of each pixel 30 detected by the FPD 20 (the phase with and without the subject H).
  • the amount of misalignment is related to the following equation (8).
  • the refraction angle ⁇ is obtained from the equation (8), and the differential amount of the phase shift distribution ⁇ (x) is obtained using the equation (7).
  • a phase contrast image corresponding to the phase shift distribution ⁇ (x) can be generated.
  • one of the first and second absorption type gratings 21 and 22 is intermittently moved by a predetermined pitch in the X direction with respect to the other (the phase of both grating periods is changed) and is stopped. Take a photo.
  • the first absorption type grating 21 is fixed, and the second absorption type grating 22 is intermittently moved by the scanning mechanism 23.
  • the moire fringes move with the movement of the second absorption type grating 22, and the movement distance in the X direction is 1 of the grating period of the second absorption type grating 22.
  • the period (grating pitch p 2 ) is reached (when the phase change reaches 2 ⁇ )
  • the moire fringes match the original pattern.
  • the second absorption grating 22 while intermittently moving by an integral fraction of the grating pitch p 2, taking a G2 image in FPD20 during the stop.
  • the position sensor 24 described above detects the positions in the X direction by measuring the positions of the end faces of the first and second absorption gratings 21 and 22.
  • FIG. 4 schematically shows how the second absorption type grating 22 is intermittently moved at a constant scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M pieces.
  • the X-ray component (non-refractive component) that has not been refracted by the subject H passes through the second absorption grating 22.
  • the X-ray component (refractive component) refracted by the subject H increases.
  • ⁇ k represents the amount of deviation from the appropriate relative phase (2 ⁇ k / M) due to the first and second absorption type gratings 21 and 22 being displaced from the appropriate relative position k.
  • FIG. 5B shows pixel data I k (x) when the first and second absorption gratings 21 and 22 are displaced from the appropriate relative position k.
  • the relative phase shift amount ⁇ k is expressed by the following formula (10), where ⁇ k is the positional shift amount of the first absorption type grating 21 in the X direction and ⁇ k is the positional shift amount of the second absorption type lattice 22 in the X direction. ).
  • the positional shift amounts ⁇ k and ⁇ k are calculated based on the detection value of the position sensor 24.
  • the pixel data I k (x) is generally represented by the following expression (11).
  • a 0 represents the intensity of incident X-rays.
  • An is a value corresponding to the contrast of the intensity modulation signal (where n is a positive integer).
  • I is an imaginary unit.
  • the pixel data I k (x) is expressed by the following equation (12) representing a sine wave.
  • Pixel data I k (x) that satisfies Expression (12) is a theoretical value.
  • the pixel data I k (x) actually obtained by the FPD 20 includes an error, and a deviation occurs from the equation (12) by the error.
  • a 0 , a 1 , and a 2 are represented by the following equations (14) to (16), respectively.
  • a 0 , a 1 , and a 2 are determined by solving the following determinant (18) based on the least square method.
  • the y coordinate of the pixel 30 is not taken into consideration. However, by performing the same calculation in consideration of the y coordinate of the pixel 30, a two-dimensional phase shift distribution ⁇ ( x, y) is obtained. This distribution ⁇ (x, y) is a phase differential image.
  • the phase differential image generation unit 14a applies a 1 and a 2 obtained by calculations based on the equations (18) to (21) for each pixel 30 to the equation (17), so that the phase differential image ⁇ (x, y) is generated.
  • the phase contrast image generation unit 14 b generates a phase contrast image by performing integration processing along the X direction on the phase differential image ⁇ (x, y).
  • the operation of the X-ray imaging system 10 configured as described above will be described.
  • the position sensor 24 detects the positions of the first and second absorption gratings 21 and 22 in the X direction, and the detection values are input to the image processing unit 14.
  • the phase differential image generation unit 14a reads M pieces of image data from the memory 13, and performs calculations based on the equations (18) to (21) using the pixel data for each pixel 30. By applying a 1 and a 2 obtained by this calculation to Expression (17), a phase differential image ⁇ (x, y) is generated.
  • the phase differential image generation unit 14a based on the detection value input from the position sensor 24, shifts the position from the relative position k of the first and second absorption gratings 21 and 22 in the X direction.
  • the quantities ⁇ k and ⁇ k are calculated, and the above-described relative phase ⁇ k is obtained based on the equations (9) and (10), and this is applied to the equations (20) and (21). Note that using Equation (9) and Equation (10) corresponds to correcting the relative position k with the detection value of the position sensor 24.
  • phase differential image ⁇ (x, y) is generated
  • integration processing is performed by the phase contrast image generation unit 14b to generate a phase contrast image.
  • the phase contrast image is recorded in the image recording unit 15 and then displayed on the monitor.
  • the positions of the first and second absorption gratings 21 and 22 are detected by the position sensor 24.
  • the positions of the first and second absorption gratings 21 and 22 are individually detected. It may be detected by the position sensor.
  • a position sensor may be fixed to one of the 1st and 2nd absorption type
  • phase contrast image is displayed on the monitor, but the phase differential image may be displayed on the monitor instead of the phase contrast image or together with the phase contrast image.
  • the two-dimensional distribution of the phase shift of the intensity modulation signal is a phase differential image.
  • the differential value of the phase shift distribution ⁇ (x, y) is multiplied or added by a constant. If so, a two-dimensional distribution of any physical quantity such as the refraction angle ⁇ may be used as the phase differential image.
  • the subject H is arranged between the X-ray source 11 and the first absorption type grating 21, but the subject H is arranged with the first absorption type 21 and the second absorption type. You may arrange
  • the position of the first and second absorption type gratings 21 and 22 is detected by the position sensor 24.
  • the position of the X-ray source 11 is further detected, and the X-ray source 11 is detected. It may be configured to correct image quality deterioration due to the positional deviation.
  • the X-ray imaging system 50 of the present embodiment includes a first position sensor 51 that detects position information about the X direction of the first and second absorption gratings 21 and 22, and an X-ray. And a second position sensor 52 that detects position information regarding the X direction of the source 11.
  • the first position sensor 51 has the same configuration as the position sensor 24 of the first embodiment.
  • the G1 image formed at the position of the second absorption grating 22 is , Move in the opposite direction.
  • the movement amount ⁇ k of the G1 image is expressed by the following equation (22) based on the geometric relationship.
  • the movement of the X-ray focal point 11a by ⁇ k in the X direction corresponds to the movement of the second absorption grating 22 by ⁇ k in the same direction.
  • the shift amount ⁇ k ′ of the relative phase between the second absorption type grating 22 and the G1 image corresponding to the movement amount ⁇ k is expressed by the following equation (23).
  • the phase differential image generation unit 14a obtains the shift amount ⁇ k by the following equation (24) instead of the above equation (10), and thereafter performs the same calculation to obtain the first and first values.
  • the positional shift of the two absorption gratings 21 and 22 and the X-ray source 11 is corrected.
  • Other configurations and operations are the same as those of the first embodiment.
  • the positions of the first and second absorption gratings 21 and 22 and the X-ray source 11 are individually detected, but a position sensor is fixed to one of these, The position sensor may be configured to detect the other two positions.
  • a multi slit (ray source grid) 60 is arranged on the emission side of the X-ray source 11.
  • the X-ray imaging system of the present embodiment has the same configuration as that of the first embodiment except that the multi-slit 60 is provided.
  • the multi-slit 60 is an absorption-type grating having the same configuration as the first and second absorption-type gratings 21 and 22, and a plurality of X-ray absorption parts 61 extending in the Y direction are periodically arranged in the X direction. It is a thing.
  • the multi-slit 60 partially shields the X-rays from the X-ray source 11 to disperse the X-ray focus in the X direction and reduce the size of each effective X-ray focus in the X direction. Therefore, the blur of the G1 image is suppressed.
  • an X-ray transmission part (not shown) is provided between the X-ray absorption parts 61 adjacent in the X direction.
  • the slit position of the multi-slit 60 becomes the X-ray focal point, and therefore the distance from the multi-slit 60 to the first absorption grating 21 corresponds to the distance L 1 of the first embodiment.
  • the amount of movement of the multi slit 60 in the X direction may be the amount of movement ⁇ k in the above equation (22).
  • the first absorption type grating 21 or the second absorption type grating 22 is moved in the fringe scanning.
  • the first and second absorption type gratings are provided. It is possible to perform fringe scanning by moving the multi slit 60 while 21 and 22 are fixed.
  • the X-ray imaging system 70 of this embodiment includes a multi-slit 60 between the X-ray source 11 and the first absorption grating 21.
  • the multi slit 60 is moved in the X direction by the scanning mechanism 71.
  • the distance L 1 is a distance from the multi slit 60 to the first absorption type grating 21.
  • the scanning mechanism 71 intermittently moves the multi-slit 60 using a value obtained by dividing the arrangement pitch p 0 by M as a scanning pitch.
  • the X-ray imaging system 70 includes a position sensor 72 that detects the positions of the multi-slit 60 and the second absorption grating 22 in the X direction at each relative position k.
  • the amount of positional deviation in the X direction of the multi slit 60 corresponds to ⁇ k of the second embodiment.
  • Other configurations and operations are the same as those of the first embodiment.
  • the position sensor 72 detects the positions of the multi-slit 60 and the second absorption grating 22, but in addition to this, the position of the first absorption grating 21 may be detected. Good.
  • the phase differential image generation unit 14a obtains the shift amount ⁇ k using the above equation (24).
  • a position sensor is fixed to any one of the multi slit 60, the first absorption type grating 21, and the second absorption type grating 22, and the other two positions are detected by the position sensor. It may be configured.
  • the movement accuracy of the multi-slit 60 by the scanning mechanism 71 is there is an advantage that it may be lower than when the first absorption type grating 21 or the second absorption type grating 22 is moved. Further, since the multi-slit 60 is disposed near the X-ray source 11, the multi-slit 60 may be smaller than the first and second absorption type gratings 21 and 22, and has an advantage that it can be easily moved.
  • the X-rays incident on the first absorption type grating 21 are configured to be geometrically optically projected onto the second absorption type grating 22, but instead of this, Patent No. 4445977 As described in US Pat. No. 7,180,796, etc., the X-rays incident on the first grating form a self-image by the Talbot interference effect and are projected onto the position of the second grating. Also good. In this case, it is necessary to set the distance between the first and second gratings to the Talbot distance.
  • the first grating may be a phase grating instead of the absorption grating.
  • the thickness of the X-ray absorption part and the X-ray transmission part is such that a phase difference of “ ⁇ ” or “ ⁇ / 2” is generated in the X-ray between the X-ray absorption part and the X-ray transmission part. It is configured by setting materials.
  • the above embodiments may be combined with each other within a consistent range.
  • the present invention can be applied to other radiographic systems such as industrial and nondestructive inspections, in addition to radiographic systems for medical diagnosis.
  • the present invention can also be applied to a radiographic imaging system that uses gamma rays or the like in addition to X-rays.
  • An image detector A position sensor for detecting position information with the multi-slit at each relative position; Based on each position information detected by the position sensor, a phase differential image generation unit that generates a phase differential image by calculating a phase shift amount of an intensity modulation signal representing an intensity change of pixel data for each pixel;
  • a radiation imaging system comprising: [Configuration 2] The radiation imaging system according to Configuration 1, wherein the position sensor further detects position information of at least one of the first grating and the second grating. [Configuration 3] The radiation imaging system according to Configuration 1, wherein the position sensor further detects position information of each of the first grating and the second grating.
  • the phase differential image generation unit corrects each relative position based on each position information, creates the intensity modulation signal from the corrected relative position and pixel data, and performs a calculation based on the least square method.
  • the radiation imaging system according to any one of configurations 1 to 3, wherein the phase shift amount is calculated by: [Configuration 5] 5.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention prevents image quality from degrading even when misalignment occurs between the relative positions of gratings during fringe scanning. First and second absorptive gratings are disposed between an X-ray source and an X-ray image detector. While the relative positions of the first and second absorptive gratings are being incrementally varied, an image is taken by the X-ray image detector at each relative position. The relative positions are detected by a position sensor. A phase differential image generator generates, on the basis of the detection value of the position sensor, a phase differential image by computing the phase shift of an intensity modulation signal that indicates the intensity variation of pixel data for each pixel. A phase contrast image generator generates a phase contrast image by integrating the phase differential image in the direction of change of the relative positions.

Description

放射線撮影システム及び放射線撮影方法Radiographic system and radiographic method
 本発明は、放射線の位相変化に基づいた画像を得る放射線撮影システム及び放射線撮影方法に関し、特に、縞走査法を用いた放射線撮影システム及び放射線撮影方法に関する。 The present invention relates to a radiation imaging system and a radiation imaging method for obtaining an image based on a phase change of radiation, and more particularly to a radiation imaging system and a radiation imaging method using a fringe scanning method.
 放射線、例えばX線は、物質を構成する元素の原子番号と、物質の密度及び厚さとに依存して減衰するといった特性を有する。この特性に着目し、医療診断や非破壊検査等の分野において、被検体の内部を透視するためのプローブとしてX線が利用されている。 Radiation, such as X-rays, has a characteristic that it is attenuated depending on the atomic number of elements constituting the substance and the density and thickness of the substance. Focusing on this characteristic, X-rays are used as a probe for seeing through the inside of a subject in fields such as medical diagnosis and nondestructive inspection.
 一般的なX線撮影装置では、X線を放射するX線源と、X線を検出するX線画像検出器との間に被検体を配置して、被検体を透過したX線の撮影を行う。この場合、X線源からX線画像検出器に向けて放射されたX線は、被検体を透過する際に吸収され減衰した後、X線画像検出器に入射する。この結果、被検体によるX線の強度変化に基づく画像がX線画像検出器により検出される。 In a general X-ray imaging apparatus, an object is placed between an X-ray source that emits X-rays and an X-ray image detector that detects X-rays, and X-rays transmitted through the object are imaged. Do. In this case, X-rays emitted from the X-ray source toward the X-ray image detector are absorbed and attenuated when passing through the subject, and then enter the X-ray image detector. As a result, an image based on an X-ray intensity change by the subject is detected by the X-ray image detector.
 X線吸収能は、原子番号が小さい元素ほど低くなるため、生体軟部組織やソフトマテリアルなどでは、X線の強度変化が小さく、画像に十分なコントラストが得られないという問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線吸収能の差が小さいため、コントラストが得られにくい。 Since the X-ray absorption ability is lower with an element having a smaller atomic number, there is a problem that a change in X-ray intensity is small and a sufficient contrast cannot be obtained in an image in a soft body tissue or soft material. For example, most of the components of the cartilage portion constituting the joint of the human body and the joint fluid in the vicinity thereof are water, and the difference in the X-ray absorption capacity between them is small, so that it is difficult to obtain contrast.
 このような問題を背景に、被検体によるX線の強度変化に代えて、被検体によるX線の位相変化に基づいた画像(以下、位相コントラスト画像と言う)を得るX線位相イメージングの研究が盛んに行われている。X線位相イメージングは、被検体に入射したX線の位相変化が強度変化より大きいことに基づき、X線の位相変化を画像化する方法であり、X線吸収能が低い被検体に対しても高コントラストの画像を得ることができる。X線位相イメージングの一種として、2枚の回折格子とX線画像検出器とを用いたX線撮影システムが知られている(例えば、特許文献1、非特許文献1参照)。 Against the background of such problems, research on X-ray phase imaging that obtains an image (hereinafter referred to as a phase contrast image) based on the X-ray phase change by the subject instead of the X-ray intensity change by the subject has been conducted. It is actively done. X-ray phase imaging is a method of imaging the X-ray phase change based on the fact that the phase change of the X-ray incident on the subject is larger than the intensity change. A high-contrast image can be obtained. As a kind of X-ray phase imaging, an X-ray imaging system using two diffraction gratings and an X-ray image detector is known (see, for example, Patent Document 1 and Non-Patent Document 1).
 このX線撮影システムは、X線源から見て被検体の背後に第1の回折格子(グリッド)を配置し、第1の回折格子からタルボ距離だけ下流に第2の回折格子を配置し、その背後にX線画像検出器を配置することにより構成される。タルボ距離とは、第1の回折格子を通過したX線が、タルボ干渉効果によって自己像(縞画像)を形成する距離であり、第1の回折格子の格子ピッチとX線波長とに依存する。この自己像は、X線が被検体により位相変化し、屈折が生じることにより変調される。この変調量を検出することにより、X線の位相変化が画像化される。 In this X-ray imaging system, a first diffraction grating (grid) is disposed behind the subject as viewed from the X-ray source, and a second diffraction grating is disposed downstream from the first diffraction grating by a Talbot distance, It is configured by placing an X-ray image detector behind it. The Talbot distance is the distance at which X-rays that have passed through the first diffraction grating form a self-image (stripe image) due to the Talbot interference effect, and depends on the grating pitch of the first diffraction grating and the X-ray wavelength. . This self-image is modulated by the phase change of the X-rays caused by the subject and refraction. By detecting this modulation amount, the phase change of the X-ray is imaged.
 上記変調量の検出方法として縞走査法が知られている。縞走査法では、第1及び第2の回折格子の一方を、格子線に垂直な方向に所定ピッチずつN回間欠移動させ、第1及び第2の回折格子の相対位置を変える。そして、各間欠移動の直後にX線撮影を行う。得られたN個の各画像間での画素データの強度変化を表す位相変調信号を生成し、この位相変調信号の位相ズレ量(被検体がある場合とない場合とでの位相ズレ量)を算出することにより、上記変調量を表す位相微分画像が生成される。この位相微分画像を積分処理することにより位相コントラスト画像が得られる。なお、この縞走査法は、レーザ光を利用した撮影装置においても用いられている(例えば、非特許文献2参照)。 The fringe scanning method is known as a method for detecting the modulation amount. In the fringe scanning method, one of the first and second diffraction gratings is intermittently moved N times by a predetermined pitch in a direction perpendicular to the grating lines, and the relative positions of the first and second diffraction gratings are changed. Then, X-ray imaging is performed immediately after each intermittent movement. A phase modulation signal representing the intensity change of the pixel data between the obtained N images is generated, and the phase shift amount of this phase modulation signal (the phase shift amount with and without the subject) is calculated. By calculating, a phase differential image representing the modulation amount is generated. A phase contrast image is obtained by integrating the phase differential image. This fringe scanning method is also used in an imaging device using laser light (see, for example, Non-Patent Document 2).
 このように縞走査法を用いた放射線撮影システムでは、縞走査時に第1及び第2の回折格子の相対位置に位置ズレが生じると、位相変調信号の位相ズレ量の算出に誤差が生じ、位相微分画像及び位相コントラスト画像の画質が劣化するという問題がある。そこで、第1及び第2の回折格子の相対位置をセンサで検出し、検出値が所定範囲外である場合に、検出結果を表示して操作者に警告を行なうことが提案されている(特許文献2参照)。 As described above, in the radiographic system using the fringe scanning method, if a positional deviation occurs in the relative positions of the first and second diffraction gratings during the fringe scanning, an error occurs in the calculation of the phase deviation amount of the phase modulation signal. There is a problem that the image quality of the differential image and the phase contrast image deteriorates. Accordingly, it has been proposed to detect the relative positions of the first and second diffraction gratings with a sensor and display a detection result to warn an operator when the detected value is outside a predetermined range (patent) Reference 2).
特許第4445397号公報Japanese Patent No. 4445397 特開2008-200360号公報JP 2008-200320 A
 しかしながら、特許文献2に記載の放射線撮影システムでは、上記相対位置に所定範囲以上の位置ズレが生じた場合には、操作者に警告が行なわれるのみであって、位相変調信号の位相ズレ量の算出誤差は生じたままである。このため、画質の良好な位相微分画像及び位相コントラスト画像を得るには、位置ズレの原因を解消したうえで再度撮影を行う必要がある。再撮影を行うと、被検体が不必要に被曝してしまうため、上記相対位置に位置ズレが生じた場合でも、再撮影を行わずに画質の劣化を防止することが望まれている。 However, in the radiation imaging system described in Patent Document 2, when a positional deviation exceeding a predetermined range occurs in the relative position, the operator is only warned, and the amount of phase deviation of the phase modulation signal is reduced. Calculation errors still occur. For this reason, in order to obtain a phase differential image and a phase contrast image with good image quality, it is necessary to perform imaging again after eliminating the cause of the positional deviation. When re-imaging is performed, the subject is unnecessarily exposed, and therefore it is desired to prevent image quality deterioration without performing re-imaging even when the relative position is displaced.
 本発明は、縞走査時の格子の相対位置に位置ズレが生じた場合でも、画質の劣化を防止することができる放射線撮影システム及び放射線撮影方法を提供することを目的とする。 It is an object of the present invention to provide a radiation imaging system and a radiation imaging method that can prevent image quality deterioration even when a positional shift occurs in the relative position of a grating during fringe scanning.
 上記目的を達成するために、本発明の放射線撮影システムは、放射線源に対向配置された第1及び第2の格子と、前記第1及び第2の格子の相対位置を段階的に変更する走査機構と、前記各相対位置において、前記放射線源から放射される放射線を、前記第1及び第2の格子を介して、二次元的に配置した複数の画素で検出し、各画素の画素データを生成する放射線画像検出器と、前記各相対位置において、前記第1及び第2の格子の位置情報を検出する第1の位置センサと、前記第1の位置センサにより検出される各位置情報に基づき、前記画素ごとに画素データの強度変化を表す強度変調信号の位相ズレ量を算出して位相微分画像を生成する位相微分画像生成部と、を備えている。 In order to achieve the above object, a radiation imaging system of the present invention includes first and second gratings arranged opposite to a radiation source, and scanning in which the relative positions of the first and second gratings are changed stepwise. The radiation emitted from the radiation source at each relative position is detected by a plurality of pixels arranged two-dimensionally through the first and second gratings, and pixel data of each pixel is obtained. Based on a radiation image detector to be generated, a first position sensor that detects position information of the first and second gratings at each relative position, and position information detected by the first position sensor. A phase differential image generation unit that generates a phase differential image by calculating a phase shift amount of an intensity modulation signal that represents a change in intensity of pixel data for each pixel.
 前記位相微分画像生成部は、前記各位置情報に基づいて前記各相対位置を補正し、補正された相対位置と画素データとで前記強度変調信号を作成し、最小二乗法に基づく計算を行なうことにより前記位相ズレ量を算出することが好ましい。 The phase differential image generation unit corrects each relative position based on each position information, creates the intensity modulation signal from the corrected relative position and pixel data, and performs a calculation based on the least square method. The phase shift amount is preferably calculated by
 前記位相微分画像生成部により生成された位相微分画像を積分処理することにより位相コントラスト画像を生成する位相コントラスト画像生成部をさらに備えることが好ましい。 It is preferable that the apparatus further includes a phase contrast image generation unit that generates a phase contrast image by integrating the phase differential image generated by the phase differential image generation unit.
 前記第1の格子は、吸収型格子であり、入射した放射線を幾何光学的に前記第2の格子に投影することが好ましい。また、前記第1の格子は、吸収型格子または位相型格子であり、入射した放射線にタルボ干渉効果を生じさせて前記第2の格子に投影することも好ましい。 The first grating is an absorption grating, and it is preferable to project incident radiation onto the second grating geometrically. The first grating is preferably an absorption type grating or a phase type grating, and it is preferable that the incident radiation causes a Talbot interference effect to be projected onto the second grating.
 前記放射線源の位置情報を検出する第2の位置センサをさらに備え、前記位相微分画像生成部は、前記第1及び第2の位置センサにより検出される位置情報に基づき、前記強度変調信号の位相ズレ量を算出することが好ましい。 A second position sensor for detecting position information of the radiation source; and the phase differential image generator generates a phase of the intensity modulation signal based on the position information detected by the first and second position sensors. It is preferable to calculate the amount of deviation.
 前記放射線源から放射された放射線を部分的に遮蔽して焦点を分散化するマルチスリットをさらに備えることが好ましい。この場合には、前記マルチスリットの位置情報を検出する第2の位置センサをさらに備え、前記位相微分画像生成部は、前記第1及び第2の位置センサにより検出される位置情報に基づき、前記強度変調信号の位相ズレ量を算出することが好ましい。 It is preferable to further include a multi-slit that partially blocks the radiation emitted from the radiation source and disperses the focal point. In this case, the image sensor further includes a second position sensor that detects position information of the multi-slit, and the phase differential image generation unit is based on the position information detected by the first and second position sensors. It is preferable to calculate the phase shift amount of the intensity modulation signal.
 本発明の放射線撮影方法は、放射線源に対向配置された第1及び第2の格子の相対位置を段階的に変更するステップと、前記各相対位置において、前記放射線源から放射され放射線を、前記第1及び第2の格子を介して、二次元的に配置した複数の画素で検出し、各画素の画素データを生成するステップと、前記各相対位置において、位置センサにより前記第1及び第2の格子の位置情報を検出するステップと、前記位置センサにより検出される各位置情報に基づき、前記画素ごとに画素データの強度変化を表す強度変調信号の位相ズレ量を算出して位相微分画像を生成するステップと、を実行するものである。 The radiation imaging method of the present invention includes a step of changing the relative positions of the first and second gratings opposed to the radiation source in stages, and the radiation emitted from the radiation source at each relative position, Detecting a plurality of pixels arranged two-dimensionally through the first and second grids, and generating pixel data of each pixel; and at each relative position, the first and second are detected by a position sensor. Detecting the position information of the lattice of the image, and calculating the phase shift amount of the intensity modulation signal representing the intensity change of the pixel data for each pixel based on the position information detected by the position sensor, And a generating step.
 本発明によれば、位置センサにより第1及び第2の格子の位置情報を検出し、この位置情報に基づき、相対位置に対する画素データの強度変化を表す強度変調信号の位相ズレ量を算出するので、相対位置に位置ズレが生じた場合でも、画質の劣化を防止することができる。 According to the present invention, the position information of the first and second gratings is detected by the position sensor, and the phase shift amount of the intensity modulation signal representing the intensity change of the pixel data with respect to the relative position is calculated based on the position information. Even when the relative position is misaligned, it is possible to prevent the image quality from deteriorating.
X線撮影システムの構成を示す説明図である。It is explanatory drawing which shows the structure of a X-ray imaging system. フラットパネル検出器の構成を示すブロック図である。It is a block diagram which shows the structure of a flat panel detector. 第1及び第2の吸収型格子の構成を示す説明図である。It is explanatory drawing which shows the structure of a 1st and 2nd absorption type grating | lattice. 縞走査法を説明する説明図である。It is explanatory drawing explaining a fringe scanning method. 強度変調信号を示すグラフであり、(A)は適正な相対位置から位置ズレがない場合、(B)は適正な相対位置から位置ズレが生じた場合の強度変調信号を示す。It is a graph which shows an intensity | strength modulation signal, (A) shows the intensity | strength modulation signal when there is no position shift from an appropriate relative position, and (B) shows the intensity modulation signal when a position deviation occurs from an appropriate relative position. 第2実施形態のX線撮影システムの構成を示す説明図である。It is explanatory drawing which shows the structure of the X-ray imaging system of 2nd Embodiment. X線焦点の位置ズレに伴うG1像の移動量を説明する説明である。It is description explaining the moving amount | distance of the G1 image accompanying the position shift of a X-ray focus. 第3実施形態のX線撮影システムの構成を示す斜視図である。It is a perspective view which shows the structure of the X-ray imaging system of 3rd Embodiment. 第4実施形態のX線撮影システムの構成を示す斜視図である。It is a perspective view which shows the structure of the X-ray imaging system of 4th Embodiment.
(第1実施形態)
 図1において、X線撮影システム10は、X線源11、撮影部12、メモリ13、画像処理部14、画像記録部15、撮影制御部16、コンソール17、及びシステム制御部18を備える。X線源11は、被検体HにX線を照射する。撮影部12は、縞走査法に基づいて被検体Hを透過したX線を検出し、複数の画像データを生成する。メモリ13は、複数の画像データを記憶する。画像処理部14は、メモリ13に記憶された複数の画像データを画像処理して位相微分画像及び位相コントラスト画像を生成する。画像記録部15は、位相コントラスト画像を記録する。撮影制御部16は、X線源11及び撮影部12の制御を行う。コンソール17は、周知の操作部やモニタを備える。X線撮影システム10は、コンソール17から入力される操作信号に基づいてX線撮影システム10の全体を統括的に制御する。
(First embodiment)
1, the X-ray imaging system 10 includes an X-ray source 11, an imaging unit 12, a memory 13, an image processing unit 14, an image recording unit 15, an imaging control unit 16, a console 17, and a system control unit 18. The X-ray source 11 irradiates the subject H with X-rays. The imaging unit 12 detects X-rays that have passed through the subject H based on the fringe scanning method, and generates a plurality of image data. The memory 13 stores a plurality of image data. The image processing unit 14 performs image processing on the plurality of image data stored in the memory 13 to generate a phase differential image and a phase contrast image. The image recording unit 15 records a phase contrast image. The imaging control unit 16 controls the X-ray source 11 and the imaging unit 12. The console 17 includes a known operation unit and monitor. The X-ray imaging system 10 comprehensively controls the entire X-ray imaging system 10 based on an operation signal input from the console 17.
 X線源11は、周知のように、高電圧発生器、X線管、コリメータ(いずれも図示せず)等で構成されており、撮影制御部16の制御に基づいてX線を放射する。X線管は、回転陽極型であり、高電圧発生器から印加される電圧に応じて、フィラメントから放出した電子線を回転陽極に衝突させることによりX線を発生する。回転陽極は、電子線が固定位置に当り続けることによる劣化を軽減するために回転している。回転陽極と電子線の衝突部分が、X線を放射するX線焦点である。コリメータは、X線管から放射されたX線のうち、撮影範囲以外の成分を遮蔽するように照射野を制限する。 As is well known, the X-ray source 11 includes a high voltage generator, an X-ray tube, a collimator (all not shown), and the like, and emits X-rays based on the control of the imaging control unit 16. The X-ray tube is of a rotary anode type, and generates X-rays by colliding an electron beam emitted from a filament with the rotary anode in accordance with a voltage applied from a high voltage generator. The rotating anode rotates to reduce deterioration due to the electron beam continuously hitting the fixed position. The collision portion between the rotating anode and the electron beam is an X-ray focal point that emits X-rays. The collimator limits the irradiation field so as to shield components other than the imaging range among the X-rays emitted from the X-ray tube.
 撮影部12には、半導体回路により構成されたフラットパネル検出器(FPD)20、被検体HによるX線の位相変化を検出するための第1及び第2の吸収型格子21,22が設けられている。FPD20は、X線源11から照射されるX線の光軸LAに沿う方向(以下、Z方向という)に表面が直交するように配置されている。 The imaging unit 12 is provided with a flat panel detector (FPD) 20 composed of a semiconductor circuit, and first and second absorption gratings 21 and 22 for detecting X-ray phase changes due to the subject H. ing. The FPD 20 is disposed so that the surface thereof is orthogonal to a direction along the optical axis LA of X-rays irradiated from the X-ray source 11 (hereinafter referred to as Z direction).
 第1の吸収型格子21は、Z方向に直交する面内の一方向(以下、Y方向という)に延伸した複数のX線吸収部21aが、Z方向及びY方向に直交する方向(以下、X方向という)に所定のピッチpで配列されたものである。同様に、第2の吸収型格子22は、Y方向に延伸した複数のX線吸収部22aが、X方向に所定のピッチpで配列されたものである。X線吸収部21a,22aの材料としては、X線吸収性に優れる金属が好ましく、例えば、金(Au)や白金(Pt)を用いることが好ましい。 The first absorption type grating 21 has a plurality of X-ray absorption parts 21a extending in one direction (hereinafter referred to as Y direction) in a plane orthogonal to the Z direction, and a direction (hereinafter referred to as “Z direction”). the X that direction) in which are arranged at a predetermined pitch p 1. Similarly, the second absorption grating 22 has a plurality of X-ray absorbing portions 22a which extend in the Y direction, in which are arranged at a predetermined pitch p 2 in the X direction. As a material of the X-ray absorption parts 21a and 22a, a metal excellent in X-ray absorption is preferable, and for example, gold (Au) or platinum (Pt) is preferably used.
 第1の吸収型格子21がX線源11から照射されたX線を透過させることにより第1の周期パターン像(以下、G1像という)を生成し、第2の吸収型格子22がG1像を部分的に遮蔽する(強度変調する)ことにより第2の周期パターン像(以下、G2像という)を生成する。 The first absorption type grating 21 transmits the X-rays irradiated from the X-ray source 11 to generate a first periodic pattern image (hereinafter referred to as a G1 image), and the second absorption type grating 22 is a G1 image. Is partially shielded (intensity modulated) to generate a second periodic pattern image (hereinafter referred to as G2 image).
 また、撮影部12は、第2の吸収型格子22をX方向に間欠的に並進移動させることにより、第1の吸収型格子21に対する第2の吸収型格子22の相対位置を順に変化させる走査機構23を備える。走査機構23は、圧電アクチュエータや静電アクチュエータを有する。走査機構23は、後述する縞走査の際に、撮影制御部16の制御に基づいて駆動される。メモリ13には、各走査位置でFPD20により生成された画像データがそれぞれ記憶される。 Further, the imaging unit 12 scans to sequentially change the relative position of the second absorption type grating 22 with respect to the first absorption type grating 21 by intermittently moving the second absorption type grating 22 in the X direction. A mechanism 23 is provided. The scanning mechanism 23 has a piezoelectric actuator or an electrostatic actuator. The scanning mechanism 23 is driven based on the control of the imaging control unit 16 at the time of stripe scanning described later. The memory 13 stores image data generated by the FPD 20 at each scanning position.
 さらに、撮影部12は、第1及び第2の吸収型格子21,22のX方向に関する位置情報をそれぞれ検出する位置センサ24を備える。位置センサ24としては、例えば、レーザ式変位センサが用いられる。位置センサ24の検出値は、撮影制御部16及びシステム制御部18を介して画像処理部14に供給される。なお、位置センサ24としては、レーザ式変位センサ以外に、エンコーダ、ポテンショメータ、ホール素子、超音波センサ、加速度センサなどを用いてもよい。 Furthermore, the imaging unit 12 includes a position sensor 24 that detects position information regarding the X direction of the first and second absorption type gratings 21 and 22. As the position sensor 24, for example, a laser displacement sensor is used. The detection value of the position sensor 24 is supplied to the image processing unit 14 via the imaging control unit 16 and the system control unit 18. In addition to the laser displacement sensor, an encoder, a potentiometer, a Hall element, an ultrasonic sensor, an acceleration sensor, or the like may be used as the position sensor 24.
 画像処理部14は、位相微分画像生成部14a及び位相コントラスト画像生成部14bにより構成される。位相微分画像生成部14aは、上記各走査位置でG2像がFPD20により撮影され、メモリ13に記憶された複数の画像データに基づき、位相微分画像を生成する。位相微分画像生成部14aは、位置センサ24から供給された検出値を用いて位相微分画像の生成を行なう。 The image processing unit 14 includes a phase differential image generation unit 14a and a phase contrast image generation unit 14b. The phase differential image generation unit 14 a generates a phase differential image based on a plurality of image data in which a G2 image is captured by the FPD 20 at each scanning position and stored in the memory 13. The phase differential image generation unit 14 a generates a phase differential image using the detection value supplied from the position sensor 24.
 位相コントラスト画像生成部14bは、位相微分画像生成部14aにより生成された位相微分画像を走査方向(X方向)に沿って積分処理することにより、位相コントラスト画像を生成する。この位相コントラスト画像は、画像記録部15に記録された後、コンソール17に出力されてモニタに表示される。 The phase contrast image generation unit 14b generates a phase contrast image by integrating the phase differential image generated by the phase differential image generation unit 14a along the scanning direction (X direction). The phase contrast image is recorded in the image recording unit 15 and then output to the console 17 and displayed on the monitor.
 コンソール17の操作部は、X線管の管電圧、管電流、X線照射時間等の撮影条件や、撮影開始指示の入力を可能とする。この操作部としては、例えば、スイッチ、タッチパネル、マウス、キーボード等が用いられる。モニタは、液晶ディスプレイやCRTディスプレイ等で構成され、撮影条件等の情報や、位相コントラスト画像等の画像表示を行う。 The operation unit of the console 17 makes it possible to input imaging conditions such as tube voltage, tube current, and X-ray irradiation time of the X-ray tube, and an imaging start instruction. For example, a switch, a touch panel, a mouse, a keyboard or the like is used as the operation unit. The monitor is composed of a liquid crystal display, a CRT display, or the like, and displays information such as photographing conditions and an image display such as a phase contrast image.
 図2において、FPD20は、受像部31、走査回路32、及び読み出し回路33を備える。受像部31は、X線を電荷に変換して蓄積する複数の画素30が、X方向及びY方向に沿ってアクティブマトリクス基板(図示せず)上に2次元配列されたものである。走査回路32は、画素30からの電荷の読み出しタイミングを制御する。読み出し回路33は、画素30から読み出された電荷を画像データに変換して出力する。走査回路32と各画素30とは、行毎に走査線34によって接続されている。読み出し回路33と各画素30とは、列毎に信号線35によって接続されている。画素30の配列ピッチは、X方向及びY方向にそれぞれ100μm程度である。 2, the FPD 20 includes an image receiving unit 31, a scanning circuit 32, and a reading circuit 33. The image receiving unit 31 includes a plurality of pixels 30 that convert X-rays into electric charges and accumulate them two-dimensionally on an active matrix substrate (not shown) along the X and Y directions. The scanning circuit 32 controls the timing for reading out charges from the pixels 30. The readout circuit 33 converts the charges read from the pixels 30 into image data and outputs the image data. The scanning circuit 32 and each pixel 30 are connected to each other by a scanning line 34 for each row. The readout circuit 33 and each pixel 30 are connected by a signal line 35 for each column. The arrangement pitch of the pixels 30 is about 100 μm in each of the X direction and the Y direction.
 画素30は、周知のように、アモルファスセレン等の変換層(図示せず)によりX線を電荷に直接変換し、変換された電荷を変換層の下部の電極に接続されたキャパシタ(図示せず)に蓄積する直接変換型のX線検出素子である。各画素30には、TFTスイッチ(図示せず)が設けられ、TFTスイッチのゲート電極が走査線34、ソース電極がキャパシタ、ドレイン電極が信号線35に接続される。走査回路32から印加される駆動パルスによってTFTスイッチがON状態になると、キャパシタに蓄積された電荷が信号線35に読み出される。 As is well known, the pixel 30 directly converts X-rays into charges by a conversion layer (not shown) such as amorphous selenium, and a capacitor (not shown) connected to the converted charge at the lower electrode of the conversion layer. ) Is a direct conversion type X-ray detection element. Each pixel 30 is provided with a TFT switch (not shown). The gate electrode of the TFT switch is connected to the scanning line 34, the source electrode is connected to the capacitor, and the drain electrode is connected to the signal line 35. When the TFT switch is turned on by the drive pulse applied from the scanning circuit 32, the charge accumulated in the capacitor is read out to the signal line 35.
 なお、画素30は、酸化ガドリニウム(Gd)やヨウ化セシウム(CsI)等により形成されたシンチレータ(図示せず)でX線を一旦可視光に変換し、変換された可視光をフォトダイオード(図示せず)で電荷に変換して蓄積する間接変換型のX線検出素子としてもよい。また、本実施形態では、放射線画像検出器としてTFTパネルをベースとしたFPDを用いているが、CCDセンサやCMOSセンサ等の固体撮像素子をベースとした放射線画像検出器を用いてもよい。 The pixel 30 temporarily converts X-rays into visible light using a scintillator (not shown) formed of gadolinium oxide (Gd 2 O 3 ), cesium iodide (CsI), or the like, and converts the converted visible light to photo An indirect conversion type X-ray detection element that converts the charge into a charge by a diode (not shown) and stores the charge may be used. In this embodiment, an FPD based on a TFT panel is used as the radiation image detector. However, a radiation image detector based on a solid-state imaging device such as a CCD sensor or a CMOS sensor may be used.
 読み出し回路33は、積分アンプ、補正回路、A/D変換器(いずれも図示せず)等により構成されている。積分アンプは、各画素30から信号線35を介して出力された電荷を積算して電圧信号(画像信号)に変換する。A/D変換器は、積分アンプにより変換された画像信号を、デジタルの画像データに変換する。補正回路は、画像データに対して、暗電流補正、ゲイン補正、及びリニアリティ補正等を行い、補正後の画像データをメモリ13に入力する。 The readout circuit 33 includes an integration amplifier, a correction circuit, an A / D converter (none of which are shown), and the like. The integrating amplifier integrates the charges output from the pixels 30 via the signal line 35 and converts them into a voltage signal (image signal). The A / D converter converts the image signal converted by the integrating amplifier into digital image data. The correction circuit performs dark current correction, gain correction, linearity correction, and the like on the image data, and inputs the corrected image data to the memory 13.
 図3において、第1の吸収型格子21のX線吸収部21aは、X方向に所定のピッチpで、互いに所定の間隔dを空けて配列されている。間隔dの部分には、X線透過部21bが設けられている。同様に、第2の吸収型格子22のX線吸収部22aは、X方向に所定のピッチpで、互いに所定の間隔dを空けて配列されている。間隔dの部分には、X線透過部22bが設けられている。第1及び第2の吸収型格子21,22は、入射X線に強度差を与える格子であり、振幅型格子とも呼ばれる。X線透過部21b,22bは、シリコン(Si)やポリマー等のX透過性材料や、空隙により構成されている。 In FIG. 3, X-ray absorbing portion 21a of the first absorption grating 21, at a predetermined pitch p 1 in the X direction, and are arranged at a predetermined interval d 1 from each other. The portion of the spacing d 1, is provided an X-ray transmitting portion 21b. Similarly, X-ray absorbing portion 22a of the second absorption-type grating 22, at a predetermined pitch p 2 in the X direction, and are arranged at a predetermined interval d 2 from each other. The portion of the spacing d 2, is provided an X-ray transmitting portion 22b. The first and second absorption gratings 21 and 22 are gratings that give an intensity difference to incident X-rays, and are also called amplitude gratings. The X-ray transmission portions 21b and 22b are configured by an X-transmissive material such as silicon (Si) or a polymer, or a gap.
 第1及び第2の吸収型格子21,22は、X線透過部21b,22bを通過したX線を線形的(幾何光学的)に投影するように構成されている。具体的には、間隔d,dを、X線源11から照射されるX線のピーク波長より十分大きな値とすることで実現され、照射X線に含まれる大部分のX線が回折せずに、直進性を保ったままX線透過部21b,22bを通過する。例えば、前述のX線管の回転陽極としてタングステンを用い、管電圧を50kVとした場合には、X線のピーク波長は、約0.4Åである。この場合には、間隔d,dを1μm~10μm程度とすればよい。格子ピッチp,pは、2μm~20μm程度である。 The first and second absorption type gratings 21 and 22 are configured to project X-rays that have passed through the X-ray transmission parts 21b and 22b linearly (geometrically). Specifically, it is realized by setting the distances d 1 and d 2 to a value sufficiently larger than the peak wavelength of the X-rays irradiated from the X-ray source 11, and most of the X-rays included in the irradiated X-rays are diffracted. Without passing through, the X-ray transmission parts 21b and 22b pass through while maintaining straightness. For example, when tungsten is used as the rotating anode of the aforementioned X-ray tube and the tube voltage is 50 kV, the peak wavelength of the X-ray is about 0.4 mm. In this case, the distances d 1 and d 2 may be about 1 μm to 10 μm. The grating pitches p 1 and p 2 are about 2 μm to 20 μm.
 X線源11から照射されるX線は、平行ビームではなく、X線焦点11aを発光点としたコーンビームであるため、第1の吸収型格子21により生成されるG1像は、X線焦点11aからの距離に比例して拡大される。第2の吸収型格子22の格子ピッチp及び間隔dは、X線透過部22bのパターンが、第2の吸収型格子22の位置におけるG1像の明部のパターンとほぼ一致するように設定されている。X線焦点11aから第1の吸収型格子21までの距離をL、第1の吸収型格子21から第2の吸収型格子22までの距離をLとした場合に、格子ピッチp及び間隔dは、下式(1)及び(2)の関係をほぼ満たすように設定されている。 Since the X-ray irradiated from the X-ray source 11 is not a parallel beam but a cone beam having the X-ray focal point 11a as a light emitting point, the G1 image generated by the first absorption type grating 21 is an X-ray focal point. It is enlarged in proportion to the distance from 11a. The lattice pitch p 2 and the interval d 2 of the second absorption type grating 22 are set so that the pattern of the X-ray transmission part 22 b substantially matches the pattern of the bright part of the G1 image at the position of the second absorption type grating 22. Is set. When the distance from the X-ray focal point 11a to the first absorption-type grating 21 is L 1 and the distance from the first absorption-type grating 21 to the second absorption-type grating 22 is L 2 , the grating pitch p 2 and distance d 2 is set so as to satisfy substantially the relation of the following formula (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、必ずしも式(2)を満たす必要はなく、間隔d,dをそれぞれ独立に設定してもよい。 It is not always necessary to satisfy the formula (2), and the intervals d 1 and d 2 may be set independently.
 第1の吸収型格子21から第2の吸収型格子22までの距離Lは、第1の吸収型格子21でタルボ干渉効果が生じる場合には、第1の吸収型格子16の格子ピッチとX線波長とで決まるタルボ距離に制約されるが、本実施形態では、第1の吸収型格子21が入射X線を幾何光学的に投影させる構成であるため、距離Lを、タルボ距離とは無関係に設定することができる。本実施形態では、第1の吸収型格子21の下流のすべての位置で、G1像が第1の吸収型格子21の自己像となるためである。 The distance L 2 from the first absorption type grating 21 to the second absorption type grating 22 is equal to the lattice pitch of the first absorption type grating 16 when the Talbot interference effect occurs in the first absorption type grating 21. While being constrained to Talbot distance determined by the X-ray wavelength, in the present embodiment, since the first absorption grating 21 is configured to geometrical optics projecting an incident X-ray, the distance L 2, and Talbot distance Can be set independently. This is because in this embodiment, the G1 image becomes a self-image of the first absorption type grating 21 at all positions downstream of the first absorption type grating 21.
 本実施形態の撮影部12は、タルボ干渉計を構成するものではないが、第1の吸収型格子21でタルボ干渉効果が生じていると仮定した場合のタルボ距離Zは、第1の吸収型格子21の格子ピッチp、第2の吸収型格子22の格子ピッチp、X線波長(ピーク波長)λ、及び正の整数mを用いて、下式(3)で表される。 Although the imaging unit 12 of the present embodiment does not constitute a Talbot interferometer, the Talbot distance Z m when the Talbot interference effect is assumed to occur in the first absorption grating 21 is the first absorption. the grating pitch p 1 of the type grating 21, the grating pitch p 2, X-ray wavelength (peak wavelength) lambda of the second absorption-type grating 22, and using the positive integer m, represented by the following formula (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)は、X線源11から照射されるX線がコーンビーム状である場合のタルボ距離を表す式であり、「Atsushi Momose, et al., Japanese Journal of Applied Physics, Vol.47, No.10, 2008年10月, 8077頁」により知られている。 Expression (3) is an expression representing the Talbot distance when the X-rays emitted from the X-ray source 11 are in the shape of a cone beam. “Atsushi Momose, et al., Japanese Journal of Applied Physics, Vol.47, No. 10, October 2008, 8077 ”.
 本実施形態では、前述のように距離Lをタルボ距離と無関係に設定することができるため、撮影部12のZ方向への薄型化を目的とし、距離Lを、m=1の場合の最小のタルボ距離Zより短い値に設定する。すなわち、距離Lは、下式(4)を満たす範囲の値に設定される。 In the present embodiment, it is possible to set the distance L 2 as described above independently of the Talbot distance, for the purpose of thinning in the Z direction of the imaging unit 12, the distance L 2, in the case of m = 1 set to the minimum value shorter than a Talbot distance Z 1. That is, the distance L 2 is set to a value in the range satisfying the following expression (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 X線吸収部21a,22aは、コントラストの高い周期パターン像(G1像及びG2像)を生成するためには、X線を完全に吸収(遮蔽)することが好ましい。しかし、上記したX線吸収性に優れる材料(金、白金等)を用いたとしても、吸収されずに透過するX線が少なからず存在する。このため、X線の吸収性を高めるためには、X線吸収部21a,22aのそれぞれの厚み(Z方向の厚さ)をできるだけ厚くすること(すなわち、アスペクト比を高めること)が好ましい。例えば、X線管の管電圧が50kVの場合には、照射X線の90%以上を吸収することが好ましい。X線吸収部21a,22aの厚みは、10μm~200μmの範囲であることが好ましい。 The X-ray absorbers 21a and 22a preferably completely absorb (shield) X-rays in order to generate periodic pattern images (G1 image and G2 image) with high contrast. However, even if the above-described material having excellent X-ray absorption (gold, platinum, etc.) is used, there are not a few X-rays that are transmitted without being absorbed. For this reason, in order to increase the X-ray absorption, it is preferable to increase the thickness (thickness in the Z direction) of each of the X-ray absorption portions 21a and 22a as much as possible (that is, increase the aspect ratio). For example, when the tube voltage of the X-ray tube is 50 kV, it is preferable to absorb 90% or more of the irradiated X-rays. The thickness of the X-ray absorbing portions 21a and 22a is preferably in the range of 10 μm to 200 μm.
 第1の吸収型格子21により生成されたG1像を、第2の吸収型格子22で強度変調することにより生成されたG2像がFPD20によって撮影される。第2の吸収型格子22の位置におけるG1像のパターン周期と、第2の吸収型格子22の格子ピッチpとは、配置誤差などにより若干の差異が生じていることがあり、この場合には、G2像にモアレ縞が発生する。また、第1及び第2の吸収型格子21,22のいずれかがXY面内に回転した場合には、G2像に、いわゆる回転モアレが発生する。G2像にモアレ縞が発生した場合でも、モアレ縞のX方向またはY方向の周期が画素30の配列ピッチより大きい範囲であれば特に問題が生じることはない。 A G2 image generated by intensity-modulating the G1 image generated by the first absorption type grating 21 by the second absorption type grating 22 is photographed by the FPD 20. There may be a slight difference between the pattern period of the G1 image at the position of the second absorption grating 22 and the grating pitch p 2 of the second absorption grating 22 due to an arrangement error or the like. Causes moiré fringes in the G2 image. In addition, when one of the first and second absorption type gratings 21 and 22 is rotated in the XY plane, a so-called rotational moire is generated in the G2 image. Even when moire fringes occur in the G2 image, there is no particular problem as long as the period of the moire fringes in the X direction or Y direction is larger than the arrangement pitch of the pixels 30.
 X線源11と第1の吸収型格子21との間に被検体Hを配置すると、FPD20により検出されるG2像は、被検体Hにより変調を受ける。この変調量は、被検体Hによる屈折効果によって偏向したX線の角度に比例する。FPD20により得られた複数の画像データに基づき、X線の屈折角の分布に対応する位相微分画像と、後述する位相シフト分布に対応する位相コントラスト画像が得られる。 When the subject H is disposed between the X-ray source 11 and the first absorption type grating 21, the G2 image detected by the FPD 20 is modulated by the subject H. This modulation amount is proportional to the angle of the X-ray deflected by the refraction effect by the subject H. Based on a plurality of image data obtained by the FPD 20, a phase differential image corresponding to the distribution of the X-ray refraction angles and a phase contrast image corresponding to a phase shift distribution described later are obtained.
 次に、位相微分画像及び位相コントラスト画像の生成方法を説明する。ここで、X,Y,Z方向の座標を、x座標、y座標、z座標とする。図3には、被検体HのX方向に関する位相シフト分布Φ(x)に応じて屈折する1つのX線が例示されている。符号40は、被検体Hが存在しない場合に直進するX線の経路を示している。この経路40を進むX線は、第1及び第2の吸収型格子21,22を通過してFPD20に入射する。符号41は、被検体Hが存在する場合に、被検体Hにより屈折して偏向したX線の経路を示している。この経路41を進むX線は、第1の吸収型格子21を通過した後、第2の吸収型格子22のX線吸収部22aにより吸収される。 Next, a method for generating a phase differential image and a phase contrast image will be described. Here, the coordinates in the X, Y, and Z directions are the x, y, and z coordinates. FIG. 3 illustrates one X-ray that is refracted according to the phase shift distribution Φ (x) in the X direction of the subject H. Reference numeral 40 indicates an X-ray path that goes straight when the subject H does not exist. X-rays traveling along the path 40 pass through the first and second absorption gratings 21 and 22 and enter the FPD 20. Reference numeral 41 indicates an X-ray path refracted and deflected by the subject H when the subject H exists. X-rays traveling along this path 41 pass through the first absorption type grating 21 and are then absorbed by the X-ray absorption part 22 a of the second absorption type grating 22.
 被検体Hの位相シフト分布Φ(x)は、被検体Hの屈折率分布n(x,z)を用いて下式(5)で表される。ここで、説明の簡略化のため、y座標は省略している。 The phase shift distribution Φ (x) of the subject H is expressed by the following formula (5) using the refractive index distribution n (x, z) of the subject H. Here, the y-coordinate is omitted for simplification of description.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 第1の吸収型格子21から第2の吸収型格子22の位置に投影されたG1像は、被検体HでのX線の屈折により、その屈折角φに応じた量だけX方向に変位する。この変位量Δxは、X線の屈折角φが微小であることに基づいて、近似的に下式(6)で表される。 The G1 image projected from the first absorption type grating 21 to the position of the second absorption type grating 22 is displaced in the X direction by an amount corresponding to the refraction angle φ due to refraction of X-rays at the subject H. . This displacement amount Δx is approximately expressed by the following equation (6) based on the fact that the refraction angle φ of X-rays is very small.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、屈折角φは、X線波長λと被検体Hの位相シフト分布Φ(x)を用いて、下式(7)で表される。 Here, the refraction angle φ is expressed by the following equation (7) using the X-ray wavelength λ and the phase shift distribution Φ (x) of the subject H.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 このように、被検体HでのX線の屈折によるG1像の変位量Δxは、位相シフト分布Φ(x)に関連している。そして、この変位量Δxは、FPD20で検出される各画素30の画素データの上記走査位置に対する強度変化を表す強度変調信号の位相ズレ量ψ(被検体Hがある場合とない場合とでの位相のズレ量)に、下式(8)のように関連している。 Thus, the displacement amount Δx of the G1 image due to the refraction of X-rays at the subject H is related to the phase shift distribution Φ (x). This displacement amount Δx is the phase shift amount ψ of the intensity modulation signal representing the intensity change with respect to the scanning position of the pixel data of each pixel 30 detected by the FPD 20 (the phase with and without the subject H). (The amount of misalignment) is related to the following equation (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 したがって、各画素30の強度変調信号の位相ズレ量ψを求めることにより、式(8)から屈折角φが求まり、式(7)を用いて位相シフト分布Φ(x)の微分量が求まる。これをxについて積算処理することにより、位相シフト分布Φ(x)に対応する位相コントラスト画像を生成することができる。 Accordingly, by obtaining the phase shift amount ψ of the intensity modulation signal of each pixel 30, the refraction angle φ is obtained from the equation (8), and the differential amount of the phase shift distribution Φ (x) is obtained using the equation (7). By integrating this with respect to x, a phase contrast image corresponding to the phase shift distribution Φ (x) can be generated.
 次に、位相ズレ量ψを求めるための縞走査法について説明する。縞走査法では、第1及び第2の吸収型格子21,22の一方を他方に対してX方向に所定ピッチずつ間欠的に移動させ(両者の格子周期の位相を変化させ)、その停止中に撮影を行う。本実施形態では、第1の吸収型格子21を固定し、走査機構23により第2の吸収型格子22を間欠移動させる。G2像にモアレ縞が生じる場合には、モアレ縞は、第2の吸収型格子22の移動に伴って移動し、X方向への移動距離が、第2の吸収型格子22の格子周期の1周期(格子ピッチp)に達すると(位相変化が2πに達すると)、モアレ縞は元のパターンに一致する。 Next, a fringe scanning method for obtaining the phase shift amount ψ will be described. In the fringe scanning method, one of the first and second absorption type gratings 21 and 22 is intermittently moved by a predetermined pitch in the X direction with respect to the other (the phase of both grating periods is changed) and is stopped. Take a photo. In the present embodiment, the first absorption type grating 21 is fixed, and the second absorption type grating 22 is intermittently moved by the scanning mechanism 23. When moire fringes are generated in the G2 image, the moire fringes move with the movement of the second absorption type grating 22, and the movement distance in the X direction is 1 of the grating period of the second absorption type grating 22. When the period (grating pitch p 2 ) is reached (when the phase change reaches 2π), the moire fringes match the original pattern.
 具体的には、第2の吸収型格子22を、格子ピッチpの整数分の1ずつ間欠移動させながら、その停止中にFPD20でG2像を撮影する。前述の位置センサ24は、第1及び第2の吸収型格子21,22の端面の位置を計測することにより、それぞれのX方向に関する位置を検出する。 Specifically, the second absorption grating 22, while intermittently moving by an integral fraction of the grating pitch p 2, taking a G2 image in FPD20 during the stop. The position sensor 24 described above detects the positions in the X direction by measuring the positions of the end faces of the first and second absorption gratings 21 and 22.
 図4は、格子ピッチpをM個に分割した一定の走査ピッチ(p/M)で第2の吸収型格子22を間欠移動させる様子を模式的に示している。走査機構23は、k=0,1,2,・・・,M-1のM個の各相対位置に、第2の吸収型格子22を順に移動させる。Mは2以上の整数であり、例えば、M=5とする。 FIG. 4 schematically shows how the second absorption type grating 22 is intermittently moved at a constant scanning pitch (p 2 / M) obtained by dividing the grating pitch p 2 into M pieces. The scanning mechanism 23 sequentially moves the second absorption type grating 22 to M relative positions of k = 0, 1, 2,..., M−1. M is an integer greater than or equal to 2, for example, M = 5.
 まず、k=0の位置では、主として、被検体Hにより屈折しなかったX線の成分(非屈折成分)が第2の吸収型格子22を通過する。次に、k=1,2,・・・と順に第2の吸収型格子22を移動させていくと、第2の吸収型格子22を通過するX線は、非屈折成分が減少する一方で、被検体Hにより屈折したX線の成分(屈折成分)が増加する。特に、k=M/2の位置では、ほぼ屈折成分のみが第2の吸収型格子22を通過する。k=M/2の位置を超えると、逆に、第2の吸収型格子22を通過するX線は、屈折成分が減少する一方で、非屈折成分が増加する。 First, at the position of k = 0, mainly the X-ray component (non-refractive component) that has not been refracted by the subject H passes through the second absorption grating 22. Next, when the second absorption type grating 22 is moved in order of k = 1, 2,..., X-rays passing through the second absorption type grating 22 are reduced in non-refractive components. The X-ray component (refractive component) refracted by the subject H increases. In particular, at the position of k = M / 2, almost only the refractive component passes through the second absorption type grating 22. When the position exceeds k = M / 2, the X-ray passing through the second absorption grating 22 decreases the refractive component while increasing the non-refractive component.
 各相対位置k=0,1,2,・・・,M-1においてFPD20により撮影を行うと、各画素30ごとにM個の画素データが得られる。図5(A),(B)は、M=5の場合における強度変調信号を例示している。δは、第1の吸収型格子21に対する第2の吸収型格子22の相対的な位相(以下、相対位相という)を表しており、下式(9)で定義される。 When photographing is performed by the FPD 20 at each relative position k = 0, 1, 2,..., M−1, M pixel data are obtained for each pixel 30. 5A and 5B exemplify intensity modulation signals in the case of M = 5. [delta] k is the relative phase of the second absorption grating 22 relative to the first absorption grating 21 (hereinafter, referred to as relative phase) represents the, defined by the following equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、γは、第1及び第2の吸収型格子21,22が適正な相対位置kから位置ズレしたことによる、適正な相対位相(2πk/M)からのズレ量を表している。同図(A)は、第1及び第2の吸収型格子21,22が適正な相対位置kから位置ズレしていない場合、すなわちγ=0である場合の画素データI(x)を示している。これに対して、同図(B)は、第1及び第2の吸収型格子21,22が適正な相対位置kから位置ズレした場合の画素データI(x)を示している。 Here, γ k represents the amount of deviation from the appropriate relative phase (2πk / M) due to the first and second absorption type gratings 21 and 22 being displaced from the appropriate relative position k. FIG. 6A shows pixel data I k (x) when the first and second absorption gratings 21 and 22 are not displaced from the appropriate relative position k, that is, when γ k = 0. Show. On the other hand, FIG. 5B shows pixel data I k (x) when the first and second absorption gratings 21 and 22 are displaced from the appropriate relative position k.
 相対位相のズレ量γは、X方向に関する第1の吸収型格子21の位置ズレ量をα、X方向に関する第2の吸収型格子22の位置ズレ量をβとして、下式(10)で表される。この位置ズレ量α,βは、位置センサ24の検出値に基づいて算出される。 The relative phase shift amount γ k is expressed by the following formula (10), where α k is the positional shift amount of the first absorption type grating 21 in the X direction and β k is the positional shift amount of the second absorption type lattice 22 in the X direction. ). The positional shift amounts α k and β k are calculated based on the detection value of the position sensor 24.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 以下に、強度変調信号を構成するM個の画素データI(x)に基づき、被検体Hによる強度変調信号の位相ズレ量ψ(x)を算出する方法を説明する。画素データI(x)は、一般に、下式(11)で表される。 Hereinafter, a method for calculating the phase shift amount ψ (x) of the intensity modulation signal by the subject H based on the M pieces of pixel data I k (x) constituting the intensity modulation signal will be described. The pixel data I k (x) is generally represented by the following expression (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ここで、Aは入射X線の強度を表す。Aは強度変調信号のコントラストに対応する値(ここで、nは正の整数である)。また、iは虚数単位である。 Here, A 0 represents the intensity of incident X-rays. An is a value corresponding to the contrast of the intensity modulation signal (where n is a positive integer). I is an imaginary unit.
 式(11)において、n≧2以上の高次の項を無視すると、画素データI(x)は、正弦波を表す下式(12)で表される。 If high-order terms of n ≧ 2 in the equation (11) are ignored, the pixel data I k (x) is expressed by the following equation (12) representing a sine wave.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 式(12)を満たす画素データI(x)は理論値である。一方、FPD20により実際に得られる画素データI(x)は誤差を含んでおり、その誤差の分だけ式(12)からずれが生じる。 Pixel data I k (x) that satisfies Expression (12) is a theoretical value. On the other hand, the pixel data I k (x) actually obtained by the FPD 20 includes an error, and a deviation occurs from the equation (12) by the error.
 画素データI(x)の実測値から位相ズレ量ψ(x)を算出するには、まず、式(12)を下式(13)に示すように変形する。 In order to calculate the phase shift amount ψ (x) from the actual measurement value of the pixel data I k (x), first, the equation (12) is transformed as shown in the following equation (13).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ここで、a,a,aは、それぞれ下式(14)~(16)で表される。 Here, a 0 , a 1 , and a 2 are represented by the following equations (14) to (16), respectively.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014

Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015

Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 そして、最小二乗法等を用いて、画素データI(x)の理論値と実測値との差を最小にするようa,a,aを決定すれば、下式(17)に示すように、a,aから位相ズレ量ψ(x)が求まる。 Then, if a 0 , a 1 , a 2 are determined so as to minimize the difference between the theoretical value and the actual measurement value of the pixel data I k (x) using the least square method or the like, the following equation (17) is obtained. As shown, the phase shift amount ψ (x) is obtained from a 1 and a 2 .
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 最小二乗法を用いた位相ズレ量の方法は、「応用光学 光計測入門 谷田貝豊彦著 第二版 平成17年2月15日発行 丸善株式会社 (第196頁~第198頁)」に記されている。本実施形態では、最小二乗法に基づく下記の行列式(18)を解くことにより、a,a,aを決定する。 The method of phase shift using the least square method is described in “Introduction to Applied Optical Measurement, Toyohiko Yadagai, Second Edition, published on February 15, 2005, Maruzen Co., Ltd. (pages 196 to 198)” Yes. In the present embodiment, a 0 , a 1 , and a 2 are determined by solving the following determinant (18) based on the least square method.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 ここで、a,A(δ),B(δ)は、下式(19)~(21)で表される。 Here, a, A (δ k ), and B (δ k ) are expressed by the following equations (19) to (21).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019

Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020

Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 以上の説明では、画素30のy座標を考慮していないが、画素30のy座標を考慮して同様の演算を行うことにより、X方向及びY方向に関する2次元的な位相ズレの分布ψ(x,y)が得られる。この分布ψ(x,y)が位相微分画像である。 In the above description, the y coordinate of the pixel 30 is not taken into consideration. However, by performing the same calculation in consideration of the y coordinate of the pixel 30, a two-dimensional phase shift distribution ψ ( x, y) is obtained. This distribution ψ (x, y) is a phase differential image.
 また、上記説明では、式(12)においてn≧2以上の高次の項を無視しているが、n≧2以上の項も線形結合で表されるため、n≧2以上の項を含めた場合においても式(17)~(21)が成立する。 In the above description, higher-order terms of n ≧ 2 or more are ignored in equation (12). However, since terms of n ≧ 2 are also expressed by a linear combination, the terms of n ≧ 2 are included. Even in this case, equations (17) to (21) are established.
 位相微分画像生成部14aは、各画素30について、式(18)~(21)に基づく演算で得たa,aを式(17)に適用することにより、位相微分画像ψ(x,y)を生成する。位相コントラスト画像生成部14bは、位相微分画像ψ(x,y)に対して、X方向に沿った積分処理を施すことにより、位相コントラスト画像を生成する。 The phase differential image generation unit 14a applies a 1 and a 2 obtained by calculations based on the equations (18) to (21) for each pixel 30 to the equation (17), so that the phase differential image ψ (x, y) is generated. The phase contrast image generation unit 14 b generates a phase contrast image by performing integration processing along the X direction on the phase differential image ψ (x, y).
 次に、以上のように構成されたX線撮影システム10の作用を説明する。コンソール17から撮影開始指示が入力されると、走査機構23により第2の吸収型格子22が所定の走査ピッチ(p/M)ずつ間欠移動され、相対位置kが、k=0,1,2,・・・,M-1と順に変更されながら、各相対位置kにおいて、X線源11によるX線の曝射及びFPD20による検出動作が行われる。 Next, the operation of the X-ray imaging system 10 configured as described above will be described. When an imaging start instruction is input from the console 17, the second absorption grating 22 is intermittently moved by a predetermined scanning pitch (p 2 / M) by the scanning mechanism 23, and the relative position k is k = 0, 1, 2,..., M−1 in order, X-ray exposure by the X-ray source 11 and detection operation by the FPD 20 are performed at each relative position k.
 この結果、FPD20によりM枚の画像データが生成され、メモリ13に格納される。また、各相対位置kにおいて、位置センサ24により、第1及び第2の吸収型格子21,22のX方向に関する位置がそれぞれ検出され、検出値が画像処理部14に入力される。 As a result, M pieces of image data are generated by the FPD 20 and stored in the memory 13. At each relative position k, the position sensor 24 detects the positions of the first and second absorption gratings 21 and 22 in the X direction, and the detection values are input to the image processing unit 14.
 次いで、位相微分画像生成部14aにより、メモリ13からM枚の画像データが読み出され、各画素30ごとに画素データを用いて、式(18)~(21)に基づく演算が行われる。この演算で得られたa,aを式(17)に適用することにより、位相微分画像ψ(x,y)が生成される。 Next, the phase differential image generation unit 14a reads M pieces of image data from the memory 13, and performs calculations based on the equations (18) to (21) using the pixel data for each pixel 30. By applying a 1 and a 2 obtained by this calculation to Expression (17), a phase differential image ψ (x, y) is generated.
 この演算の際に、位相微分画像生成部14aは、位置センサ24から入力された検出値に基づいて、X方向に関する第1及び第2の吸収型格子21,22の相対位置kからの位置ズレ量α,βを算出するとともに、式(9)及び式(10)に基づいて、前述の相対位相δを求め、これを式(20)及び式(21)に適用する。なお、式(9)及び式(10)を用いることは、位置センサ24の検出値で相対位置kを補正することに相当する。 At the time of this calculation, the phase differential image generation unit 14a, based on the detection value input from the position sensor 24, shifts the position from the relative position k of the first and second absorption gratings 21 and 22 in the X direction. The quantities α k and β k are calculated, and the above-described relative phase δ k is obtained based on the equations (9) and (10), and this is applied to the equations (20) and (21). Note that using Equation (9) and Equation (10) corresponds to correcting the relative position k with the detection value of the position sensor 24.
 位相微分画像ψ(x,y)が生成された後、位相コントラスト画像生成部14bにより積分処理が行われ、位相コントラスト画像が生成される。この位相コントラスト画像は、画像記録部15に記録された後、モニタに画像表示される。 After the phase differential image ψ (x, y) is generated, integration processing is performed by the phase contrast image generation unit 14b to generate a phase contrast image. The phase contrast image is recorded in the image recording unit 15 and then displayed on the monitor.
 なお、本実施形態では、位置センサ24により第1及び第2の吸収型格子21,22の位置をそれぞれ検出しているが、第1及び第2の吸収型格子21,22の位置をそれぞれ個別の位置センサで検出してもよい。また、第1及び第2の吸収型格子21,22の一方に位置センサを固定し、この位置センサで他方の位置を検出することで両者の相対位置を検出してもよい。 In the present embodiment, the positions of the first and second absorption gratings 21 and 22 are detected by the position sensor 24. However, the positions of the first and second absorption gratings 21 and 22 are individually detected. It may be detected by the position sensor. Moreover, a position sensor may be fixed to one of the 1st and 2nd absorption type | mold grating | lattices 21 and 22, and both position may be detected by detecting the other position with this position sensor.
 また、本実施形態では、走査機構23による第2の吸収型格子22の初期位置を、被検体Hが存在しない場合においてG1像の暗部がX線吸収部22aにほぼ一致する位置(k=0)としているが、初期位置はこれに限られず、k=0,1,2,・・・,M-1のうちいずれを選択してもよい。 In the present embodiment, the initial position of the second absorption type grating 22 by the scanning mechanism 23 is a position where the dark part of the G1 image substantially coincides with the X-ray absorption part 22a when the subject H is not present (k = 0). However, the initial position is not limited to this, and any one of k = 0, 1, 2,..., M−1 may be selected.
 また、本実施形態では、位相コントラスト画像をモニタに表示しているが、位相コントラスト画像に代えて、若しくは、位相コントラスト画像とともに、位相微分画像をモニタに表示してもよい。 In this embodiment, the phase contrast image is displayed on the monitor, but the phase differential image may be displayed on the monitor instead of the phase contrast image or together with the phase contrast image.
 また、本実施形態では、強度変調信号の位相ズレの2次元分布を位相微分画像としているが、位相シフト分布Φ(x,y)の微分値に定数を乗じたり付加したりした関係を有するものであれば、屈折角φ等、いかなる物理量の2次元分布を位相微分画像としてもよい。 In the present embodiment, the two-dimensional distribution of the phase shift of the intensity modulation signal is a phase differential image. However, the differential value of the phase shift distribution Φ (x, y) is multiplied or added by a constant. If so, a two-dimensional distribution of any physical quantity such as the refraction angle φ may be used as the phase differential image.
 また、本実施形態では、被検体HをX線源11と第1の吸収型格子21との間に配置しているが、被検体Hを第1の吸収型格子21と第2の吸収型格子22との間に配置してもよい。この場合にも同様に位相微分画像及び位相コントラスト画像の生成が可能である。 In this embodiment, the subject H is arranged between the X-ray source 11 and the first absorption type grating 21, but the subject H is arranged with the first absorption type 21 and the second absorption type. You may arrange | position between the grating | lattices 22. FIG. In this case as well, a phase differential image and a phase contrast image can be similarly generated.
 以下では、本発明のその他の実施形態について説明する。なお、以下の各実施形態では、既に説明済みの実施形態と同じ構成については、同符号を用いて詳しい説明は省略する。 Hereinafter, other embodiments of the present invention will be described. In the following embodiments, the same reference numerals are used for the same configurations as those already described, and detailed description thereof is omitted.
(第2実施形態)
 第1実施形態では、位置センサ24により第1及び第2の吸収型格子21,22の位置検出を行っているが、これに加えてさらにX線源11の位置検出を行ない、X線源11の位置ズレに伴う画質劣化を補正するように構成してもよい。
(Second Embodiment)
In the first embodiment, the position of the first and second absorption type gratings 21 and 22 is detected by the position sensor 24. In addition to this, the position of the X-ray source 11 is further detected, and the X-ray source 11 is detected. It may be configured to correct image quality deterioration due to the positional deviation.
 本実施形態のX線撮影システム50は、図6に示すように、第1及び第2の吸収型格子21,22のX方向に関する位置情報をそれぞれ検出する第1の位置センサ51と、X線源11のX方向に関する位置情報を検出する第2の位置センサ52とを備える。第1の位置センサ51は、第1実施形態の位置センサ24と同一構成である。 As shown in FIG. 6, the X-ray imaging system 50 of the present embodiment includes a first position sensor 51 that detects position information about the X direction of the first and second absorption gratings 21 and 22, and an X-ray. And a second position sensor 52 that detects position information regarding the X direction of the source 11. The first position sensor 51 has the same configuration as the position sensor 24 of the first embodiment.
 図7に示すように、X線源11の位置ズレに伴って、X線焦点11aがX方向にηだけ移動したとすると、第2の吸収型格子22の位置に形成されるG1像は、その反対方向に移動する。このG1像の移動量ξは、幾何学的関係に基づき下式(22)で表される。 As shown in FIG. 7, if the X-ray focal point 11a is moved by η k in the X direction with the positional deviation of the X-ray source 11, the G1 image formed at the position of the second absorption grating 22 is , Move in the opposite direction. The movement amount ξ k of the G1 image is expressed by the following equation (22) based on the geometric relationship.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 すなわち、X線焦点11aがX方向にηだけ移動したことは、第2の吸収型格子22が同方向にξだけ移動したことに相当する。この移動量ξに対応する第2の吸収型格子22とG1像との相対位相のズレ量γ’は、下式(23)で表される。 That is, the movement of the X-ray focal point 11a by η k in the X direction corresponds to the movement of the second absorption grating 22 by ξ k in the same direction. The shift amount γ k ′ of the relative phase between the second absorption type grating 22 and the G1 image corresponding to the movement amount ξ k is expressed by the following equation (23).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 したがって、本実施形態では、位相微分画像生成部14aは、上式(10)に代えて、下式(24)によりズレ量γを求め、以下同様な計算を行うことにより、第1及び第2の吸収型格子21,22、及びX線源11の位置ズレを補正する。その他の構成及び作用は、第1実施形態と同一である。 Therefore, in the present embodiment, the phase differential image generation unit 14a obtains the shift amount γ k by the following equation (24) instead of the above equation (10), and thereafter performs the same calculation to obtain the first and first values. The positional shift of the two absorption gratings 21 and 22 and the X-ray source 11 is corrected. Other configurations and operations are the same as those of the first embodiment.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 なお、本実施形態では、第1及び第2の吸収型格子21,22、及びX線源11の位置をそれぞれ個別に検出しているが、これらのうちの1つに位置センサを固定し、この位置センサで他の2つの位置をそれぞれ検出するように構成してもよい。 In the present embodiment, the positions of the first and second absorption gratings 21 and 22 and the X-ray source 11 are individually detected, but a position sensor is fixed to one of these, The position sensor may be configured to detect the other two positions.
(第3実施形態)
 第1実施形態では、X線源11からFPD20までの距離を長くした場合に、X線焦点11aの焦点サイズ(一般的に0.1mm~1mm程度)によるG1像のボケが影響し、位相コントラスト画像の画質の低下をもたらす恐れがある。そこで、本発明の第3実施形態として、図8に示すように、X線源11の射出側にマルチスリット(線源格子)60を配置する。本実施形態のX線撮影システムは、マルチスリット60を備えること以外は、上記第1実施形態と同一構成である。
(Third embodiment)
In the first embodiment, when the distance from the X-ray source 11 to the FPD 20 is increased, the blur of the G1 image due to the focal spot size (generally about 0.1 mm to 1 mm) of the X-ray focal spot 11a affects the phase contrast. There is a risk of degrading the image quality. Therefore, as a third embodiment of the present invention, as shown in FIG. 8, a multi slit (ray source grid) 60 is arranged on the emission side of the X-ray source 11. The X-ray imaging system of the present embodiment has the same configuration as that of the first embodiment except that the multi-slit 60 is provided.
 マルチスリット60は、第1及び第2の吸収型格子21,22と同様な構成の吸収型格子であり、Y方向に延伸した複数のX線吸収部61が、X方向に周期的に配列されたものである。このマルチスリット60は、X線源11からのX線を部分的に遮蔽して、X線焦点をX方向に分散化するとともに、X方向に関する実効的な各X線焦点のサイズを縮小することにより、G1像のボケを抑制する。なお、X方向に隣接するX線吸収部61の間には、同様に、X線透過部(図示せず)が設けられている。 The multi-slit 60 is an absorption-type grating having the same configuration as the first and second absorption- type gratings 21 and 22, and a plurality of X-ray absorption parts 61 extending in the Y direction are periodically arranged in the X direction. It is a thing. The multi-slit 60 partially shields the X-rays from the X-ray source 11 to disperse the X-ray focus in the X direction and reduce the size of each effective X-ray focus in the X direction. Therefore, the blur of the G1 image is suppressed. Similarly, an X-ray transmission part (not shown) is provided between the X-ray absorption parts 61 adjacent in the X direction.
 本実施形態では、マルチスリット60のスリット位置がX線焦点となるため、マルチスリット60から第1の吸収型格子21までの距離が第1実施形態の距離Lに相当する。本実施形態では、マルチスリット60のX方向に関する位置情報を位置センサで検出することにより、第2実施形態と同様にX線焦点の移動による画質劣化を補正することが可能である。マルチスリット60のX方向に関する移動量を上式(22)の移動量ηとすればよい。なお、X線吸収部61のX方向に関する配列ピッチをpとすると、幾何学的関係から、p=p/Lの関係を満たす必要がある。その他の構成及び作用は、第1実施形態と同一である。 In the present embodiment, the slit position of the multi-slit 60 becomes the X-ray focal point, and therefore the distance from the multi-slit 60 to the first absorption grating 21 corresponds to the distance L 1 of the first embodiment. In the present embodiment, it is possible to correct image quality degradation due to the movement of the X-ray focal point, as in the second embodiment, by detecting position information regarding the X direction of the multi-slit 60 with a position sensor. The amount of movement of the multi slit 60 in the X direction may be the amount of movement η k in the above equation (22). If the arrangement pitch in the X direction of the X-ray absorber 61 is p 0 , it is necessary to satisfy the relationship of p 0 = p 2 L 1 / L 2 from the geometrical relationship. Other configurations and operations are the same as those of the first embodiment.
(第4実施形態)
 上記各実施形態では、縞走査において第1の吸収型格子21または第2の吸収型格子22を移動させているが、マルチスリット60を設けた場合には、第1及び第2の吸収型格子21,22を固定したまま、マルチスリット60を移動させることにより縞走査を行うことが可能である。
(Fourth embodiment)
In each of the above embodiments, the first absorption type grating 21 or the second absorption type grating 22 is moved in the fringe scanning. However, when the multi-slit 60 is provided, the first and second absorption type gratings are provided. It is possible to perform fringe scanning by moving the multi slit 60 while 21 and 22 are fixed.
 図9において、本実施形態のX線撮影システム70は、X線源11と第1の吸収型格子21との間にマルチスリット60を備える。このマルチスリット60は、走査機構71によりX方向に移動される。本実施形態では、第3実施形態と同様に、距離Lは、マルチスリット60から第1の吸収型格子21までの距離である。X線吸収部61のX方向に関する配列ピッチpは、p=p/Lの関係を満たす。 In FIG. 9, the X-ray imaging system 70 of this embodiment includes a multi-slit 60 between the X-ray source 11 and the first absorption grating 21. The multi slit 60 is moved in the X direction by the scanning mechanism 71. In the present embodiment, similarly to the third embodiment, the distance L 1 is a distance from the multi slit 60 to the first absorption type grating 21. The arrangement pitch p 0 in the X direction of the X-ray absorber 61 satisfies the relationship p 0 = p 2 L 1 / L 2 .
 走査機構71は、配列ピッチpを前述のMで割った値を走査ピッチとして、マルチスリット60を間欠移動させる。これにより、第1及び第2の吸収型格子21,22に対するマルチスリット60の相対位置kは、k=0,1,2,・・・,M-1と順に変更される。 The scanning mechanism 71 intermittently moves the multi-slit 60 using a value obtained by dividing the arrangement pitch p 0 by M as a scanning pitch. As a result, the relative position k of the multi-slit 60 with respect to the first and second absorption type gratings 21 and 22 is sequentially changed to k = 0, 1, 2,..., M−1.
 また、X線撮影システム70には、各相対位置kにおいて、マルチスリット60及び第2の吸収型格子22のX方向に関する位置をそれぞれ検出する位置センサ72を備える。本実施形態では、マルチスリット60がX線焦点に相当するため、マルチスリット60のX方向への位置ズレ量は、第2実施形態のηに相当する。 The X-ray imaging system 70 includes a position sensor 72 that detects the positions of the multi-slit 60 and the second absorption grating 22 in the X direction at each relative position k. In the present embodiment, since the multi slit 60 corresponds to the X-ray focal point, the amount of positional deviation in the X direction of the multi slit 60 corresponds to η k of the second embodiment.
 したがって、位相微分画像生成部14aは、上式(24)において、α=0としたうえでズレ量γを求め、同様な計算を行うことにより、マルチスリット60及び第2の吸収型格子22の位置ズレを補正する。その他の構成及び作用は、第1実施形態と同一である。 Therefore, the phase differential image generation unit 14a obtains the shift amount γ k after setting α k = 0 in the above equation (24), and performs the same calculation, whereby the multi-slit 60 and the second absorption type grating are obtained. 22 position shift is corrected. Other configurations and operations are the same as those of the first embodiment.
 なお、本実施形態では、位置センサ72によりマルチスリット60及び第2の吸収型格子22の位置を検出しているが、これに加えて、第1の吸収型格子21の位置を検出してもよい。この場合には、位相微分画像生成部14aは、上式(24)を用いてズレ量γを求める。また、マルチスリット60、第1の吸収型格子21、第2の吸収型格子22のそれぞれを個別の位置センサにより検出してもよい。また、マルチスリット60、第1の吸収型格子21、第2の吸収型格子22のうちのいずれか1つに位置センサを固定し、この位置センサで他の2つの位置をそれぞれ検出するように構成してもよい。 In the present embodiment, the position sensor 72 detects the positions of the multi-slit 60 and the second absorption grating 22, but in addition to this, the position of the first absorption grating 21 may be detected. Good. In this case, the phase differential image generation unit 14a obtains the shift amount γ k using the above equation (24). Moreover, you may detect each of the multi slit 60, the 1st absorption-type grating | lattice 21, and the 2nd absorption-type grating | lattice 22 with an individual position sensor. In addition, a position sensor is fixed to any one of the multi slit 60, the first absorption type grating 21, and the second absorption type grating 22, and the other two positions are detected by the position sensor. It may be configured.
 さらに、マルチスリット60と第1及び第2の吸収型格子21,22とでは振動が生じる起因が異なり、マルチスリット60にのみ振動が生じることが考えられるため、マルチスリット60にのみ位置センサを設けてもよい。この場合には、位相微分画像生成部14aは、上式(24)において、α=β=0としたうえでズレ量γを求め、同様な計算を行うことにより、マルチスリット60の位置ズレを補正する。 Furthermore, since the cause of the vibration is different between the multi-slit 60 and the first and second absorption type gratings 21, 22, it is considered that the multi-slit 60 only vibrates. Therefore, a position sensor is provided only in the multi-slit 60. May be. In this case, the phase differential image generation unit 14a obtains the shift amount γ k after setting α k = β k = 0 in the above equation (24), and performs the same calculation, whereby the multi-slit 60 Correct the misalignment.
 本実施形態では、通常、距離Lが距離Lより大きく、配列ピッチpが配列ピッチp,pと比べて比較的大きいことから、マルチスリット60の走査機構71による移動精度が、第1の吸収型格子21または第2の吸収型格子22を移動させる場合よりも低くてもよいという利点がある。また、マルチスリット60は、X線源11の近くに配置されているため、第1及び第2の吸収型格子21,22に比べてサイズが小さくてよく、移動させやすいという利点がある。 In the present embodiment, since the distance L 1 is usually larger than the distance L 2 and the arrangement pitch p 0 is relatively larger than the arrangement pitches p 1 and p 2 , the movement accuracy of the multi-slit 60 by the scanning mechanism 71 is There is an advantage that it may be lower than when the first absorption type grating 21 or the second absorption type grating 22 is moved. Further, since the multi-slit 60 is disposed near the X-ray source 11, the multi-slit 60 may be smaller than the first and second absorption type gratings 21 and 22, and has an advantage that it can be easily moved.
(第5実施形態)
 上記各実施形態では、第1の吸収型格子21に入射したX線が幾何光学的に第2の吸収型格子22に投影されるように構成されているが、これに代えて、特許第4445397号公報(米国特許7180979号明細書)等に記載のように、第1の格子に入射したX線がタルボ干渉効果により自己像を形成して、第2の格子の位置に投影される構成としてもよい。この場合には、第1及び第2の格子の間の距離をタルボ距離に設定する必要がある。
(Fifth embodiment)
In each of the above embodiments, the X-rays incident on the first absorption type grating 21 are configured to be geometrically optically projected onto the second absorption type grating 22, but instead of this, Patent No. 4445977 As described in US Pat. No. 7,180,796, etc., the X-rays incident on the first grating form a self-image by the Talbot interference effect and are projected onto the position of the second grating. Also good. In this case, it is necessary to set the distance between the first and second gratings to the Talbot distance.
 この場合には、第1の格子を、吸収型格子に代えて、位相型格子とすることも可能である。位相型格子は、X線吸収部とX線透過部との間で、X線に“π”または“π/2”の位相差が生じるように、X線吸収部及びX線透過部の厚みや材料を設定することにより構成される。 In this case, the first grating may be a phase grating instead of the absorption grating. The thickness of the X-ray absorption part and the X-ray transmission part is such that a phase difference of “π” or “π / 2” is generated in the X-ray between the X-ray absorption part and the X-ray transmission part. It is configured by setting materials.
 上記各実施形態は、矛盾しない範囲で相互に組み合わせてもよい。本発明は、医療診断用の放射線撮影システムの他、工業用や、非破壊検査等のその他の放射線撮影システムに適用することが可能である。また、本発明は、放射線として、X線以外にガンマ線等を用いる放射線画像撮影システムにも適用可能である。 The above embodiments may be combined with each other within a consistent range. The present invention can be applied to other radiographic systems such as industrial and nondestructive inspections, in addition to radiographic systems for medical diagnosis. The present invention can also be applied to a radiographic imaging system that uses gamma rays or the like in addition to X-rays.
 また、本明細書中では、実施形態4に関連する以下の構成を開示している。
[構成1]
 放射線源に対向配置された第1及び第2の格子と、
 前記放射線源と前記第1の格子との間に配置され、前記放射線源から放射された放射線を部分的に遮蔽して焦点を分散化するマルチスリットと、
 前記第1及び第2の格子に対する前記マルチスリットの相対位置を段階的に変更する走査機構と、
 前記各相対位置において、前記放射線源から放射される放射線を、前記第1及び第2の格子を介して、二次元的に配置した複数の画素で検出し、各画素の画素データを生成する放射線画像検出器と、
 前記各相対位置において、前記マルチスリットとの位置情報を検出する位置センサと、
 前記位置センサにより検出される各位置情報に基づき、前記画素ごとに画素データの強度変化を表す強度変調信号の位相ズレ量を算出して位相微分画像を生成する位相微分画像生成部と、
 を備えることを特徴とする放射線撮影システム。
[構成2]
 前記位置センサは、前記第1の格子及び前記第2の格子の少なくとも一方の位置情報をさらに検出することを特徴とする構成1に記載の放射線撮影システム。
[構成3]
 前記位置センサは、前記第1の格子及び前記第2の格子のそれぞれの位置情報をさらに検出することを特徴とする構成1に記載の放射線撮影システム。
[構成4]
 前記位相微分画像生成部は、前記各位置情報に基づいて前記各相対位置を補正し、補正された相対位置と画素データとで前記強度変調信号を作成し、最小二乗法に基づく計算を行なうことにより前記位相ズレ量を算出することを特徴とする構成1から3いずれか1つに記載の放射線撮影システム。
[構成5]
 前記位相微分画像生成部により生成された位相微分画像を積分処理することにより位相コントラスト画像を生成する位相コントラスト画像生成部を、さらに備えることを特徴とする構成1から4いずれか1つに記載の放射線撮影システム。
Further, in the present specification, the following configuration related to the fourth embodiment is disclosed.
[Configuration 1]
First and second gratings disposed opposite the radiation source;
A multi-slit disposed between the radiation source and the first grating and partially shielding the radiation emitted from the radiation source to disperse the focal point;
A scanning mechanism that changes the relative position of the multi slit with respect to the first and second gratings in stages;
Radiation that detects radiation radiated from the radiation source at each relative position by a plurality of pixels arranged two-dimensionally via the first and second gratings and generates pixel data of each pixel. An image detector;
A position sensor for detecting position information with the multi-slit at each relative position;
Based on each position information detected by the position sensor, a phase differential image generation unit that generates a phase differential image by calculating a phase shift amount of an intensity modulation signal representing an intensity change of pixel data for each pixel;
A radiation imaging system comprising:
[Configuration 2]
The radiation imaging system according to Configuration 1, wherein the position sensor further detects position information of at least one of the first grating and the second grating.
[Configuration 3]
The radiation imaging system according to Configuration 1, wherein the position sensor further detects position information of each of the first grating and the second grating.
[Configuration 4]
The phase differential image generation unit corrects each relative position based on each position information, creates the intensity modulation signal from the corrected relative position and pixel data, and performs a calculation based on the least square method. The radiation imaging system according to any one of configurations 1 to 3, wherein the phase shift amount is calculated by:
[Configuration 5]
5. The configuration according to claim 1, further comprising: a phase contrast image generation unit that generates a phase contrast image by integrating the phase differential image generated by the phase differential image generation unit. Radiography system.
 10 X線撮影システム
 20 フラットパネル検出器
 21 第1の吸収型格子
 21a X線吸収部
 21b X線透過部
 22 第2の吸収型格子
 22a X線吸収部
 22b X線透過部
DESCRIPTION OF SYMBOLS 10 X-ray imaging system 20 Flat panel detector 21 1st absorption grating 21a X-ray absorption part 21b X-ray transmission part 22 2nd absorption type grating 22a X-ray absorption part 22b X-ray transmission part

Claims (9)

  1.  放射線源に対向配置された第1及び第2の格子と、
     前記第1及び第2の格子の相対位置を段階的に変更する走査機構と、
     前記各相対位置において、前記放射線源から放射される放射線を、前記第1及び第2の格子を介して、二次元的に配置した複数の画素で検出し、各画素の画素データを生成する放射線画像検出器と、
     前記各相対位置において、前記第1及び第2の格子の位置情報を検出する第1の位置センサと、
     前記第1の位置センサにより検出される各位置情報に基づき、前記画素ごとに画素データの強度変化を表す強度変調信号の位相ズレ量を算出して位相微分画像を生成する位相微分画像生成部と、
     を備えることを特徴とする放射線撮影システム。
    First and second gratings disposed opposite the radiation source;
    A scanning mechanism that changes the relative positions of the first and second gratings in stages;
    Radiation that detects radiation radiated from the radiation source at each relative position by a plurality of pixels arranged two-dimensionally via the first and second gratings and generates pixel data of each pixel. An image detector;
    A first position sensor for detecting position information of the first and second gratings at each relative position;
    A phase differential image generation unit configured to generate a phase differential image by calculating a phase shift amount of an intensity modulation signal representing an intensity change of pixel data for each pixel based on each position information detected by the first position sensor; ,
    A radiation imaging system comprising:
  2.  前記位相微分画像生成部は、前記各位置情報に基づいて前記各相対位置を補正し、補正された相対位置と画素データとで前記強度変調信号を作成し、最小二乗法に基づく計算を行なうことにより前記位相ズレ量を算出することを特徴とする請求の範囲第1項に記載の放射線撮影システム。 The phase differential image generation unit corrects each relative position based on each position information, creates the intensity modulation signal from the corrected relative position and pixel data, and performs a calculation based on the least square method. The radiation imaging system according to claim 1, wherein the phase shift amount is calculated by:
  3.  前記位相微分画像生成部により生成された位相微分画像を積分処理することにより位相コントラスト画像を生成する位相コントラスト画像生成部を、さらに備えることを特徴とする請求の範囲第1項または第2項に記載の放射線撮影システム。 3. The phase contrast image generation unit according to claim 1, further comprising a phase contrast image generation unit that generates a phase contrast image by integrating the phase differential image generated by the phase differential image generation unit. The radiation imaging system described.
  4.  前記第1の格子は、吸収型格子であり、入射した放射線を幾何光学的に前記第2の格子に投影することを特徴とする請求の範囲第1項から第3項いずれか1項に記載の放射線撮影システム。 The first grating according to any one of claims 1 to 3, wherein the first grating is an absorptive grating, and projects incident radiation onto the second grating geometrically. Radiography system.
  5.  前記第1の格子は、吸収型格子または位相型格子であり、入射した放射線にタルボ干渉効果を生じさせて前記第2の格子に投影することを特徴とする請求の範囲第1項から第3項いずれか1項に記載の放射線撮影システム。 4. The first to third aspects according to claim 1, wherein the first grating is an absorption type grating or a phase type grating, and causes a Talbot interference effect on incident radiation to be projected onto the second grating. The radiation imaging system according to any one of Items.
  6.  前記放射線源の位置情報を検出する第2の位置センサをさらに備え、
     前記位相微分画像生成部は、前記第1及び第2の位置センサにより検出される位置情報に基づき、前記強度変調信号の位相ズレ量を算出することを特徴とする請求の範囲第1項から第5項に記載の放射線撮影システム。
    A second position sensor for detecting position information of the radiation source;
    The phase differential image generation unit calculates a phase shift amount of the intensity modulation signal based on position information detected by the first and second position sensors. 6. The radiographic system according to item 5.
  7.  前記放射線源から放射された放射線を部分的に遮蔽して焦点を分散化するマルチスリットをさらに備えることを特徴とする請求の範囲第1項に記載の放射線撮影システム。 The radiation imaging system according to claim 1, further comprising a multi-slit that partially shields radiation emitted from the radiation source and disperses the focal point.
  8.  前記マルチスリットの位置情報を検出する第2の位置センサをさらに備え、
     前記位相微分画像生成部は、前記第1及び第2の位置センサにより検出される位置情報に基づき、前記強度変調信号の位相ズレ量を算出することを特徴とする請求の範囲第7項に記載の放射線撮影システム。
    A second position sensor for detecting position information of the multi-slit;
    8. The phase differential image generation unit according to claim 7, wherein the phase differential image generation unit calculates a phase shift amount of the intensity modulation signal based on position information detected by the first and second position sensors. Radiography system.
  9.  放射線源に対向配置された第1及び第2の格子の相対位置を段階的に変更するステップと、
     前記各相対位置において、前記放射線源から放射され放射線を、前記第1及び第2の格子を介して、二次元的に配置した複数の画素で検出し、各画素の画素データを生成するステップと、
     前記各相対位置において、位置センサにより前記第1及び第2の格子の位置情報を検出するステップと、
     前記位置センサにより検出される各位置情報に基づき、前記画素ごとに画素データの強度変化を表す強度変調信号の位相ズレ量を算出して位相微分画像を生成するステップと、
     を実行することを特徴とする放射線撮影方法。
    Changing the relative positions of the first and second gratings opposed to the radiation source in stages;
    Detecting radiation emitted from the radiation source at each relative position by a plurality of pixels arranged two-dimensionally via the first and second gratings, and generating pixel data of each pixel; ,
    Detecting position information of the first and second gratings by a position sensor at each relative position;
    Calculating a phase shift amount of an intensity modulation signal representing intensity change of pixel data for each pixel based on each position information detected by the position sensor, and generating a phase differential image;
    A radiation imaging method characterized in that
PCT/JP2011/074293 2010-10-27 2011-10-21 Radiography system and radiography method WO2012057022A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-240959 2010-10-27
JP2010240959A JP2014012029A (en) 2010-10-27 2010-10-27 Radiographic system and image processing method

Publications (1)

Publication Number Publication Date
WO2012057022A1 true WO2012057022A1 (en) 2012-05-03

Family

ID=45993732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074293 WO2012057022A1 (en) 2010-10-27 2011-10-21 Radiography system and radiography method

Country Status (2)

Country Link
JP (1) JP2014012029A (en)
WO (1) WO2012057022A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166735A (en) * 2014-02-14 2015-09-24 キヤノン株式会社 X-ray Talbot interferometer and X-ray Talbot interferometer system
CN105228524A (en) * 2013-05-22 2016-01-06 西门子股份公司 Phase-contrast x-ray imaging equipment
US9665950B2 (en) 2014-08-06 2017-05-30 Konica Minolta, Inc. X-ray imaging system and image processing device
CN109561864A (en) * 2016-07-28 2019-04-02 株式会社岛津制作所 X-ray phase difference photographic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6543838B2 (en) * 2014-08-28 2019-07-17 株式会社緑野リサーチ Phase imaging apparatus and restoration method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125833A1 (en) * 2006-04-24 2007-11-08 The University Of Tokyo X-ray image picking-up device and x-ray image picking-up method
WO2008096691A1 (en) * 2007-02-07 2008-08-14 Konica Minolta Medical & Graphic, Inc. X-ray imaging element and method, and x-ray imaging device
WO2008102574A1 (en) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. X-ray photography system
JP2008200360A (en) * 2007-02-21 2008-09-04 Konica Minolta Medical & Graphic Inc Radiographic system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125833A1 (en) * 2006-04-24 2007-11-08 The University Of Tokyo X-ray image picking-up device and x-ray image picking-up method
WO2008096691A1 (en) * 2007-02-07 2008-08-14 Konica Minolta Medical & Graphic, Inc. X-ray imaging element and method, and x-ray imaging device
WO2008102574A1 (en) * 2007-02-21 2008-08-28 Konica Minolta Medical & Graphic, Inc. X-ray photography system
JP2008200360A (en) * 2007-02-21 2008-09-04 Konica Minolta Medical & Graphic Inc Radiographic system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105228524A (en) * 2013-05-22 2016-01-06 西门子股份公司 Phase-contrast x-ray imaging equipment
JP2015166735A (en) * 2014-02-14 2015-09-24 キヤノン株式会社 X-ray Talbot interferometer and X-ray Talbot interferometer system
US9665950B2 (en) 2014-08-06 2017-05-30 Konica Minolta, Inc. X-ray imaging system and image processing device
CN109561864A (en) * 2016-07-28 2019-04-02 株式会社岛津制作所 X-ray phase difference photographic device

Also Published As

Publication number Publication date
JP2014012029A (en) 2014-01-23

Similar Documents

Publication Publication Date Title
JP5548085B2 (en) Adjustment method of diffraction grating
JP5438649B2 (en) Radiation imaging system and displacement determination method
JP5731214B2 (en) Radiation imaging system and image processing method thereof
JP5475737B2 (en) Radiation imaging apparatus and image processing method
JP5378335B2 (en) Radiography system
US20120148021A1 (en) Radiation imaging system and radiographic image processing method
JP2012090945A (en) Radiation detection device, radiographic apparatus, and radiographic system
JP2011224329A (en) Radiation imaging system and method
JP2011218147A (en) Radiographic system
JP2011224330A (en) Radiation imaging system and offset correction method therefor
WO2012057022A1 (en) Radiography system and radiography method
JP2011206490A (en) Radiographic system and radiographic method
JP2014138625A (en) Radiographic apparatus and image processing method
WO2013038881A1 (en) Radiography device and image processing method
JP2011206188A (en) Radiographic system and method
JP2013042788A (en) Radiographic apparatus and unwrapping processing method
JP2011206162A (en) Radiographic system and method
JP5635169B2 (en) Radiography system
WO2013027519A1 (en) Radiography device and unwrapping method
JP5610480B2 (en) Radiation image processing apparatus and method
WO2013099467A1 (en) Radiographic method and apparatus
WO2013027536A1 (en) Radiography device and radiography method
JP2012228301A (en) Radiographic apparatus
JP2012143537A (en) Radiation imaging system and image processing method
WO2012057023A1 (en) Radiographic imaging system and control method for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP