WO2012056985A1 - Substrate transfer device and substrate processing system provided with same - Google Patents

Substrate transfer device and substrate processing system provided with same Download PDF

Info

Publication number
WO2012056985A1
WO2012056985A1 PCT/JP2011/074137 JP2011074137W WO2012056985A1 WO 2012056985 A1 WO2012056985 A1 WO 2012056985A1 JP 2011074137 W JP2011074137 W JP 2011074137W WO 2012056985 A1 WO2012056985 A1 WO 2012056985A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
robot hand
transfer apparatus
substrate transfer
substrate processing
Prior art date
Application number
PCT/JP2011/074137
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 中林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012056985A1 publication Critical patent/WO2012056985A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/061Lifting, gripping, or carrying means, for one or more sheets forming independent means of transport, e.g. suction cups, transport frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/04Arrangements of vacuum systems or suction cups

Definitions

  • the present invention relates to a substrate transfer apparatus that transfers a substrate using a robot hand, and also relates to a substrate processing system including the substrate transfer apparatus and a plurality of substrate processing apparatuses.
  • various types of substrate processing apparatuses are applied to substrates in order to perform various types of processing on substrates (glass substrates, semiconductor substrates, etc.) that are workpieces.
  • substrates glass substrates, semiconductor substrates, etc.
  • a substrate transfer apparatus equipped with a robot hand is used for loading and unloading a substrate to and from the substrate processing apparatus, and the substrate can be lifted off, lifted on, transferred, etc. using the robot hand equipped in the substrate transfer apparatus.
  • the substrate is carried into and out of the substrate processing apparatus.
  • a substrate processing system configured to cover and carry in and out of a plurality of substrate processing apparatuses with a single substrate transfer apparatus has become common. It's getting on.
  • Electrostatic discharge is a physical phenomenon in which the charge accumulated in an object moves with other objects in a non-contact state, and generally occurs when a charged object is placed close to another object. Is.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 8-97121
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-216228
  • Patent Document 3 Japanese Patent Application Laid-Open No. 83
  • Patent Document 3 discloses the above.
  • a surface electrometer and an ionizer are arranged above a stage on which a substrate is placed, and the surface of the upper surface of the substrate placed on the stage
  • the electric potential is detected using a surface electrometer, and the ionized gas is sprayed onto the upper surface of the substrate using an ionizer based on the detection result to neutralize the charge on the upper surface of the substrate, thereby eliminating the charge.
  • a surface electrometer is disposed above the stage on which the substrate is placed, and ionized gas is released to the stage.
  • the surface potential of the upper surface of the substrate placed on the stage was detected using a surface potentiometer, and ionized toward the lower surface of the substrate through the discharge hole based on the detection result
  • a surface potentiometer By discharging the gas, the charge on the lower surface of the substrate is neutralized and the charge is eliminated, thereby preventing electrostatic discharge from occurring when the substrate is lifted off.
  • the robot hand provided in the substrate transfer apparatus is provided with a discharge hole for discharging ionized gas, and the robot hand Prior to supporting the substrate, the ionized gas is blown toward the substrate through the discharge hole to neutralize the charge on the surface of the substrate, thereby removing static electricity. This causes electrostatic discharge when the substrate is lifted off. To prevent that.
  • JP-A-8-97121 JP 2000-216228 A Japanese Patent Laid-Open No. 2000-82732
  • the robot hand is provided with a discharge hole for discharging ionized gas. Therefore, it is not necessary to provide each of a plurality of substrate processing apparatuses used in the manufacturing process with an ionizer or the like, and an advantage is obtained in that the apparatus configuration can be simplified.
  • the location of the ionized gas sprayed onto the substrate is limited to the portion of the substrate facing the upper surface of the robot hand.
  • the present invention has been made to solve the above-described problems, and can prevent the electrostatic discharge more reliably and effectively, and can transfer the substrate that can simplify and downsize the manufacturing equipment. It is an object to provide a mounting apparatus and a substrate processing system including the same.
  • a substrate transfer apparatus sequentially transfers a plurality of substrates by sequentially raising and lowering the plurality of substrates, and has a plurality of support portions positioned in parallel with each other, below the substrate.
  • a robot hand that can support the substrate by being inserted into the robot hand, a robot hand lifting mechanism for lifting and lowering the robot hand, and generating positive ions and / or negative ions, and generating the generated positive ions and / or negative ions
  • an ion sending part that sends the air on an air current.
  • the support unit is configured to place an air flow including positive ions and / or negative ions sent by the ion sending unit between the support units adjacent to each other.
  • a discharge hole is provided for direct spraying toward the portion to be performed.
  • the discharge hole is provided in an inclined manner in the support portion so as to face a portion located between the adjacent support portions of the supported substrate. Is preferred.
  • the support portion may have an inclined surface that is continuous with an upper surface and a side surface. In that case, the discharge hole is provided in the inclined surface. It is preferable that
  • the substrate transfer device is provided in the robot hand, and is capable of detecting the surface potential of the lower surface of the substrate supported in a state where the substrate is supported by the robot hand; It is preferable to further include a control unit capable of variably adjusting the flow rate of the air flow sent out by controlling the drive of the unit. In that case, it is preferable that the control unit controls the driving of the ion sending unit based on information on the surface potential of the lower surface of the substrate detected by the surface potential detection unit.
  • the control unit can variably adjust the ascending speed and / or the descending speed of the substrate by controlling the driving of the robot hand lifting mechanism. .
  • the substrate processing system based on this invention is equipped with the substrate transfer apparatus based on this invention mentioned above, and the several substrate processing apparatus for processing a board
  • the said substrate transfer apparatus is set to the said several substrate processing apparatus. It is comprised as a site
  • ADVANTAGE OF THE INVENTION while being able to prevent an electrostatic discharge more reliably and effectively, it can be set as the board
  • substrate transfer apparatus which can simplify and reduce a manufacturing facility, and can be set as a substrate processing system provided with the same. it can.
  • FIG. 1 It is a top view which shows the outline
  • FIG. It is a schematic perspective view of the robot hand of the substrate transfer apparatus in the embodiment of the present invention. It is a schematic cross section of the support part of the robot hand shown in FIG. It is a figure which shows the structure of the functional block of the board
  • FIG. 1 is a plan view showing an outline of a substrate processing system in an embodiment of the present invention.
  • 2 is a schematic perspective view of the robot hand of the substrate transfer apparatus shown in FIG. 1
  • FIG. 3 is a schematic cross-sectional view of a support portion of the robot hand shown in FIG.
  • FIG. 4 is a diagram showing a functional block configuration of the substrate transfer apparatus shown in FIG. First, with reference to these FIG. 1 thru
  • the substrate processing system 1 includes three substrate processing apparatuses including a first substrate processing apparatus 3, a second substrate processing apparatus 4, and a third substrate processing apparatus 5, and one substrate.
  • the transfer apparatus 20 is mainly provided.
  • Each of the first substrate processing apparatus 3, the second substrate processing apparatus 4, and the third substrate processing apparatus 5 is an apparatus for performing a predetermined process on the substrate 100 that is a workpiece.
  • the substrate transfer apparatus 20 is an apparatus for sequentially carrying the substrates 100 in and out of the three substrate processing apparatuses.
  • the substrate 100 accommodated in the substrate transport cassette 2 is carried into the first substrate processing apparatus 3 by the substrate transfer apparatus 20.
  • the substrate 100 after being loaded into the first substrate processing apparatus 3 and subjected to a predetermined process is unloaded from the first substrate processing apparatus 3 by the substrate transfer apparatus 20 and loaded into the second substrate processing apparatus 4.
  • the substrate 100 after being loaded into the second substrate processing apparatus 4 and subjected to a predetermined process is unloaded from the second substrate processing apparatus 4 by the substrate transfer apparatus 20 and loaded into the third substrate processing apparatus 5.
  • the substrate 100 after being loaded into the third substrate processing apparatus 5 and subjected to a predetermined process is unloaded from the third substrate processing apparatus 5 by the substrate transfer apparatus 20 and loaded into the substrate transport cassette 2.
  • the plurality of substrates 100 accommodated in the substrate transport cassette 2 are sequentially transferred by the substrate transfer device 20, so that the plurality of substrates 100 are transferred. A series of processes are sequentially performed individually.
  • the substrate transfer device 20 has a robot hand 21.
  • the robot hand 21 is made of a fork-like member that can support the substrate 100 by being inserted below the substrate 100, and has a plurality of support portions 22 provided in parallel to each other (see FIG. 2). ).
  • the robot hand 21 is supported by a robot hand drive mechanism 31 (see FIG. 4), which will be described later, so that the position thereof can be adjusted arbitrarily.
  • each of the first substrate processing apparatus 3, the second substrate processing apparatus 4 and the third substrate processing apparatus 5 has a stage 10 for placing the substrate 100 in the chamber.
  • the stage 10 is a stage for supporting the substrate 100 while processing the substrate 100.
  • a plurality of groove portions 12 into which the support portion 22 of the robot hand 21 of the substrate transfer apparatus 20 can be inserted are provided in parallel on the mounting surface 11 (see FIGS. 5A to 5C) which is the upper surface of the stage 10. It has been.
  • any of the first substrate processing apparatus 3, the second substrate processing apparatus 4, and the third substrate processing apparatus 5 may perform any processing on the substrate 100.
  • a heat treatment apparatus, a film forming apparatus, An exposure apparatus, a developing apparatus, a cleaning apparatus, an impurity introduction apparatus, and the like correspond to these.
  • the case where the substrate processing system includes three substrate processing apparatuses is illustrated, but the number of substrate processing apparatuses is not particularly limited, and at least one substrate processing system is provided. Preferably, two or more substrate processing apparatuses may be provided. Further, in the present embodiment, the case where the substrate processing system includes one substrate transfer device is illustrated, but the number of substrate transfer devices is not particularly limited, and the substrate processing system is not limited. Two or more substrate transfer apparatuses may be provided.
  • a plurality of suction pads 23 are provided on the upper surface of the support portion 22 of the robot hand 21, respectively. These suction pads 23 are members for stably sucking and holding the substrate 100 by the robot hand 21, and each suction pad 23 is a pump which will be described later via a communication path provided inside the robot hand 21. 32 (see FIG. 4).
  • the suction pad 23 generates a negative pressure on the surface thereof when the pump 32 is driven, and sucks and holds the substrate 100 disposed on the support portion 22 using the negative pressure.
  • various types such as a general cylindrical suction pad, a bellows type suction pad, and a Bernoulli type suction pad can be used.
  • a plurality of surface potential detection sensors 24 are provided on the upper surface of the support portion 22 of the robot hand 21. These surface potential detection sensors 24 correspond to a surface potential detection unit for detecting the surface potential of the lower surface 111 (see FIGS. 5A to 5C, etc.) of the substrate 100 supported by the robot hand 21.
  • the detection directions of the sensors 24 are all arranged so as to face the robot hand 21.
  • the surface potential detection sensors 24 are preferably laid out as evenly as possible on the upper surface of the robot hand 21 and supported by the robot hand 21 by the detection areas of the respective surface potential detection sensors 24. It is preferable that the entire lower surface 111 of the substrate 100 is covered.
  • the support part 22 of the robot hand 21 is provided with a plurality of discharge holes 25a and 25b, respectively.
  • the plurality of discharge holes 25 a and 25 b are portions for spraying ionized gas toward the lower surface 111 of the substrate 100 supported by the robot hand 21.
  • Each of the discharge holes 25 a and 25 b is formed on the robot hand 21. It is connected to an ionizer 33 and a compressor 34 (see FIG. 4), which will be described later, through a ventilation path provided inside.
  • the discharge holes 25a and 25b are directed toward the substrate 100 by discharging the ionized gas generated and sent out by driving the ionizer 33 and the compressor 34 from the discharge holes 25a and 25b to the outside. And spray.
  • each of the support portions 22 of the robot hand 21 includes an upper surface 22a, a pair of side surfaces 22b, and one of the upper surface 22a and the pair of side surfaces 22b.
  • the upper surface 22a and a pair of inclined surfaces 22c that are continuous with the one side surface 22b.
  • the plurality of discharge holes 25a described above are provided in the upper surface 22a, and the discharge holes 25a face the support portion 22 of the supported substrate 100 in a state where the substrate 100 is supported by the robot hand 21.
  • the ionized gas is released vertically upward toward the portion to be moved.
  • the plurality of discharge holes 25b described above are provided in the pair of inclined surfaces 22c, and the discharge holes 25b of the substrate 100 supported by the robot hand 21 are supported. A gas ionized obliquely upward is released toward a portion located between the adjacent support portions 22.
  • the substrate transfer apparatus 20 includes a control unit 30 in addition to the robot hand 21, the suction pad 23 provided on the robot hand 21, the surface potential detection sensor 24, and the discharge holes 25 a and 25 b. And a robot hand drive mechanism 31, a pump 32, an ionizer 33, a compressor 34, and a storage unit 35.
  • the control unit 30 is a part for controlling the operation of the substrate transfer apparatus 20 as a whole by controlling the driving of each functional block included in the substrate transfer apparatus 20.
  • the robot hand drive mechanism 31 is a part for moving the robot hand 21 described above, and its drive is controlled by the control unit 30. Specifically, the robot hand drive mechanism 31 moves the robot hand 21 to an arbitrary position in the horizontal plane, and moves the robot hand 21 to an arbitrary position along the vertical direction. A robot hand raising / lowering mechanism capable of rotating the robot hand 21 and a robot hand turning mechanism capable of rotating the robot hand 21. Thereby, the robot hand drive mechanism 31 moves the robot hand 21 to an arbitrary position three-dimensionally in an arbitrary direction based on a control signal input from the control unit 30.
  • the robot hand drive mechanism 31 is configured so that the control unit 30 can variably control the moving speed (including the ascending speed and / or the descending speed) of the robot hand 21 for each substrate to be transported. .
  • the pump 32 is a part for generating a negative pressure in the above-described suction pad 23, and its drive is controlled by the control unit 30. Specifically, the pump 32 is connected to the suction pad 23 via the communication path provided in the robot hand 21 described above. Here, an electromagnetic valve for maintaining negative pressure and an electromagnetic valve for exhaust (not shown) are disposed between the pump 32 and the suction pad 23, and these solenoid valves are operated by the control unit 30. Be controlled. The pump 32 opens the negative pressure maintaining electromagnetic valve and causes the pump 32 and the suction pad 23 to communicate with each other, thereby generating a negative pressure on the suction surface of the suction pad 23, whereby the substrate 100 is sucked.
  • the negative pressure maintaining electromagnetic valve is closed and the pump 32 and the suction pad 23 are not communicated with each other, so that the negative pressure is maintained and the state where the substrate 100 is sucked is maintained.
  • the exhaust solenoid valve is opened, the negative pressure generated on the suction surface of the suction pad 23 disappears, whereby the suction of the substrate 100 is released.
  • the substrate 100 placed on the robot hand 21 is supported and released.
  • the ionizer 33 and the compressor 34 generate positive ions and / or negative ions, and send the generated positive ions or / and negative ions on an air stream, thereby sending positive ions or / and / or from the discharge holes 25a and 25b described above. It corresponds to an ion sending unit for releasing ionized gas containing negative ions, and the driving of each is controlled by the control unit 30.
  • the compressor 34 is connected to the discharge holes 25a and 25b via a ventilation path (for example, see the ventilation path 25c shown in FIG. 3) provided in the robot hand 21 described above.
  • an electromagnetic valve (not shown) is disposed between the compressor 34 and the discharge holes 25 a and 25 b, and the operation of the electromagnetic valve is controlled by the control unit 30.
  • the compressor 34 releases the compressed gas outward from the discharge holes 25a and 25b by opening the electromagnetic valve and communicating the compressor 34 with the discharge holes 25a and 25b.
  • the electromagnetic valve is closed and the compressor 34 and the discharge holes 25a and 25b are not communicated with each other, the discharge of the compressed gas from the discharge holes 25a and 25b is stopped.
  • the ionizer 33 is provided in the middle of the above-described ventilation path, and generates positive ions and / or negative ions by driving.
  • the ionized gas is released from the discharge holes 25a and 25b toward the substrate 100 based on the control signal input from the control unit 30, and the discharge is stopped, and the discharge is performed from the discharge holes 25a and 25b.
  • the flow rate of the ionized gas and / or the amount of positive ions and / or negative ions contained in the ionized gas are variably adjusted. It is preferable that the ionizer 33 and the compressor 34 are always driven. If controlled in this way, the ionized gas can be immediately blown toward the substrate 100 immediately after the electromagnetic valve is opened. . In the state where the solenoid valve is closed, the ionizer 33 and the compressor 34 may be operated at a low speed.
  • a dust-proof filter such as a HEPA filter (High Efficiency Particulate Air Filter) is attached to the intake port of the compressor 34, dust can be effectively prevented from entering the ventilation path and released.
  • a dust-proof filter such as a HEPA filter (High Efficiency Particulate Air Filter)
  • HEPA filter High Efficiency Particulate Air Filter
  • the storage unit 35 is a part in which a program for causing the substrate transfer apparatus 20 to execute various operations is stored in advance, and the control unit 30 reads the program and controls each functional block based on the program. Thereby, the substrate transfer device 20 performs an operation according to the situation.
  • the storage unit 35 temporarily stores information detected by the surface potential detection sensor 24 when the substrate 100 described later is lifted on and lifted off, or the ion sending unit of the substrate 100 when the substrate 100 is lifted on and lifted off. It is also a part for storing operating conditions and the rising speed or / and the lowering speed of the substrate 100.
  • the control unit 30 includes a calculation unit for performing various calculation processes based on information detected by the surface potential detection sensor 24, a determination unit for performing various determination processes based on calculation results in the calculation unit, and the like. It is out.
  • calculation unit and the determination unit for example, calculation processing and determination processing in a control flow shown in FIG.
  • control unit 30 is electrically connected to each functional block, and controls the operation of the substrate transfer apparatus 20 as a whole. Specifically, as described above, the control unit 30 receives a signal output from the surface potential detection sensor 24, or includes a robot hand drive mechanism 31, a pump 32, an ionizer 33, a compressor 34, an electromagnetic valve (not shown), and the like. Generate and output various signals for driving, read and execute programs stored in the storage unit 35, and store various types of information in the storage unit 35, thereby transferring the substrate. 20 operations are controlled as a whole.
  • the substrate transfer apparatus 20 further displays a map, histogram data, and the like indicating the operation state of the substrate transfer apparatus 20, the average tact during the substrate transfer, and the distribution of the charge amount in the substrate surface.
  • a display unit 36 and an operation unit 37 for performing various operations such as surface potential specification setting.
  • the display unit 36 and the operation unit 37 are both electrically connected to the control unit 30, the display operation of each is controlled by the control unit 30, user commands, information input by the user, and the like to the control unit 30. Or output.
  • FIGS. 5A to 5C are schematic diagrams for explaining the lift-off operation of the substrate using the substrate transfer apparatus in the present embodiment. Next, a substrate lift-off operation using the substrate transfer apparatus in the present embodiment will be described with reference to FIGS. 5A to 5C.
  • the support portion 22 of the robot hand 21 is inserted into the groove portion 12 provided on the mounting surface 11 of the stage 10, and in this state, the electromagnetic valve connected to the pump 32 is opened. As a result, the substrate 100 is sucked and held by the suction pad 23, and the substrate 100 is stably supported by the robot hand 21.
  • the discharge hole 25a is formed on the upper surface 22a of the support portion 22 of the robot hand 21, and the discharge hole is formed on each of the pair of inclined surfaces 22c. 25b are provided. Accordingly, when the substrate 100 is lifted off, before the lift-off operation or simultaneously with the lift-off operation, the release of the ionized gas from the discharge holes 25a and 25b is started, so that the portion facing the support portion 22 of the substrate 100 is The charge of the lower surface 111 of the substrate 100 in the portion is neutralized by the ionized gas mainly discharged from the discharge hole 25a, and the charge is neutralized. In the portion located between the adjacent support portions 22 of the substrate 100, the discharge is mainly performed.
  • the ionized gas discharged from the hole 25b neutralizes the charge on the lower surface 111 of the substrate 100 in the portion, and the charge is removed (see FIG. 3 and FIGS. 5A to 5C, etc. Note that in FIG. If the ionized gas contains both positive and negative ions It represents schematically).
  • the ionized gas discharged from the discharge hole 25 b is discharged obliquely upward from the inclined surface 22 c of the support portion 22, whereby the placement surface of the stage 10. 11 enters the space between the stage 10 and the substrate 100 through a gap formed between the lower surface 111 of the substrate 100 and flows along the gap, so that a portion located between the adjacent support portions 22 of the substrate 100 is directly applied. Be sprayed. Therefore, the released ionized gas reaches the region A which is a substantially central portion between the adjacent support portions 22 of the substrate 100 shown in FIG. 5C, and is effective over the entire lower surface 111 of the substrate 100. In this case, the charge is removed.
  • substrate 100 is a large sized board
  • a bending will arise in the part located between the adjacent support parts 22 of the board
  • the accumulation of electric charges on the lower surface 111 of the substrate 100 is concentrated in the range of the portion that continues to contact the stage (finally, the region A) as the substrate 100 rises. It is likely to occur in the region A of the substrate 100 that is released from the stage 10 latest or in the vicinity thereof.
  • the portion already detached from the stage 10 is used. While the ionized gas is sprayed, the ionized gas is also sprayed through a gap between the stage 10 and the substrate 100 even on a portion that has not yet separated from the stage 10. Therefore, the ionized gas sufficiently reaches the region A of the substrate 100, and the charge is surely removed even in the region A or in the vicinity thereof, so that the charge on the lower surface 111 of the substrate 100 is accumulated. As a whole, it becomes possible to greatly suppress.
  • the substrate transfer apparatus 20 and the substrate processing system 1 including the substrate transfer apparatus As described above, by using the substrate transfer apparatus 20 and the substrate processing system 1 including the substrate transfer apparatus according to the present embodiment, it is possible to effectively neutralize the entire surface of the lower surface 111 of the substrate 100 when the substrate 100 is lifted off. Therefore, electrostatic discharge can be prevented more reliably and effectively.
  • the substrate transfer apparatus 20 is provided with a plurality of surface potential detection sensors 24 as surface potential detection units. There is no need to provide these separately, and the apparatus configuration can be greatly simplified and downsized. Therefore, by using the substrate processing system 1 in the present embodiment, the manufacturing equipment is not complicated and enlarged, and the manufacturing cost can be reduced.
  • the charge amount and the polarity of the charge on the lower surface 111 of the substrate 100 vary depending on the type of processing performed in the substrate processing apparatus in which the stage 10 is installed, the shape, size, composition, etc. of the substrate 100, As long as the same type of substrate (substrate having the same shape, size, composition, etc.) is processed in one substrate processing apparatus, the same is obtained. Therefore, in the substrate processing system 1 as in the present embodiment, the charge amount and the polarity of charges generated on the lower surface 111 of the substrate 100 when the substrate 100 is lifted off are different for each of a plurality of different types of substrate processing apparatuses ( That is, it becomes the same for every 1st substrate processing apparatus 3, the 2nd substrate processing apparatus 4, and the 3rd substrate processing apparatus 5.
  • the rising speed of the substrate 100 is deeply related to whether or not electrostatic discharge occurs.
  • whether or not electrostatic discharge occurs depends on the distance between the lower surface 111 of the substrate 100 and the mounting surface 11 of the stage 10 and the lower surface 111 of the substrate 100 and the mounting surface 11 of the stage 10 at the distance.
  • the potential difference between the two is related to the rising speed of the substrate 100, and when the rising speed of the substrate 100 is set relatively high, the potential difference that changes as the substrate 100 moves increases extremely. In other words, when the rising speed of the substrate 100 is set to be relatively slow, an increase in the potential difference that changes with the movement of the substrate 100 can be suppressed.
  • FIG. 6 is a diagram illustrating a control flow of the control unit of the substrate transfer apparatus according to the present embodiment
  • FIG. 7 is a graph illustrating changes in the surface potential of the lower surface of the substrate during lift-off.
  • the control flow shown in FIG. 6 shows only specific control related to the lift-off operation performed by the control unit for one substrate processing apparatus and is shown as a control flow.
  • the surface potential detection sensor 24 is provided in the substrate transfer device 20, and electrostatic discharge is generated between the substrate 100 and the stage 10 in the control unit 30 based on the output of the surface potential detection sensor 24 at the time of lift-off. Based on the determination result, the controller 30 determines the subsequent rising speed of the other substrate 100 of the same type, thereby preventing the occurrence of electrostatic discharge and improving the production efficiency. We are trying to prevent the decline.
  • the control unit 30 first reads the ascending speed stored in the storage unit 35, and sets this as the ascending speed of the substrate in the first lift-off operation (step S1).
  • the rising speed stored in advance in the storage unit 35 is preferably a slightly higher speed than the speed at which electrostatic discharge is determined to occur empirically.
  • step S2 determines whether there is a substrate to be lifted off (step S2).
  • the control unit 30 proceeds to step S3 described later.
  • the series of operations is terminated. Whether or not there is a substrate to be lifted off can be detected by using a substrate detection sensor or the like provided at an appropriate position.
  • step S3 the control unit 30 performs a lift-off operation by driving the robot hand lifting mechanism. At that time, the control unit 30 raises the substrate 100 at the set ascending speed, acquires information input from the surface potential detection sensor 24 described above, and temporarily stores it in the storage unit 35 as time-series data.
  • the control unit 30 raises the substrate 100 at the set ascending speed, acquires information input from the surface potential detection sensor 24 described above, and temporarily stores it in the storage unit 35 as time-series data.
  • control unit 30 controls the driving of the ionizer 33 and the compressor 34 which are ion delivery units based on the information input from the surface potential detection sensor 24, and the solenoid valve connected to the ionizer 33 and the compressor 34 is controlled.
  • the control unit 30 controls the driving of the ionizer 33 and the compressor 34 which are ion delivery units based on the information input from the surface potential detection sensor 24, and the solenoid valve connected to the ionizer 33 and the compressor 34 is controlled.
  • To optimize the flow rate of ionized gas discharged from the discharge holes 25a and 25b by controlling the drive and / or variably adjusting the amount of positive ions and / or negative ions contained in the ionized gas. It is good. By doing so, it becomes possible to neutralize the charge on the lower surface 111 of the substrate 100 and eliminate the charge more reliably.
  • control unit 30 reads the time-series data temporarily stored in the storage unit 35 at the time when the lift-off operation is completed, and whether there was an electrostatic discharge at the time of lift-off based on the read time-series data. It is determined whether or not (step S4).
  • a determination method of the control unit 30 at that time for example, the following method can be used.
  • the surface potential of the lower surface 111 of the substrate 100 greatly increases from the lift-off start time t0 of the substrate 100 to the time t1 A when the electrostatic discharge occurs, during subsequent to lift-off the end time t2 a, the surface potential of the lower surface 111 of the substrate 100 is lowered.
  • time t1 A when the electrostatic discharge has occurred a characteristic change is seen in which the surface potential of the lower surface 111 of the substrate 100 drops significantly in a very short time thereafter. This is because charge transfer occurs between the substrate 100 and the stage 10 due to the occurrence of electrostatic discharge.
  • the decrease in the surface potential is caused by the subsequent decrease in the surface potential and the decrease rate (change rate). It can be distinguished sufficiently.
  • the control unit 30 calculates the reduction rate (change rate) by differentiating the time series data acquired by using the plurality of surface potential detection sensors 24 with respect to time, and the predetermined reduction rate (change rate) is obtained. Whether there was electrostatic discharge during lift-off by performing arithmetic processing and comparison processing such as comparing the threshold (the threshold may be set empirically) and the actually calculated decrease rate (change rate) It becomes possible to determine whether or not. In general, electrostatic discharge often occurs locally, and in the above determination, all the time-series data acquired by the plurality of surface potential detection sensors 24 are determined, and one of them is selected. It may be determined that there has been electrostatic discharge when data indicating that there has been electrostatic discharge is included.
  • step S5 when it is determined in step S4 that there has been electrostatic discharge (in the case of YES in step S4), the control unit 30 resets the substrate rising speed in the lift-off operation ( Step S5).
  • the control part 30 memorize
  • the rising speed of the substrate to be reset may be a speed slower than the rising speed of the substrate in the previous lift-off operation, for example, 90% of the rising speed of the substrate in the previous lift-off operation, How late the resetting may be determined as appropriate.
  • the deceleration of the ascending speed is determined by a program stored in the storage unit 35, and can be freely set by appropriately changing the program.
  • control unit 30 does not reset the substrate rising speed in the lift-off operation, and does not reset the substrate in the previous lift-off operation.
  • the rising speed is maintained (step S6), and then the process returns to step S2.
  • control unit 30 maintains the substrate rising speed reset in step S5 or maintained in step S6 in the second and subsequent lift-off operations (step S3) except for the first time. Any one of the rising speeds of the substrate is read from the storage unit 35, and this is set as the rising speed of the substrate in the lift-off operation.
  • the control unit 30 causes the lower surface of the one substrate to be generated when the one substrate is raised at a predetermined rising speed, which is detected by the surface potential detection sensor 24. Based on the change in surface potential, the rising speed of another substrate of the same type to be subsequently raised is determined. More specifically, the control unit 30 is based on a change in the surface potential of the lower surface of the one substrate that is detected when the one substrate is raised at a predetermined rising speed, which is detected by the surface potential detection sensor 24. In the meantime, the presence or absence of electrostatic discharge is determined.
  • the rising speed of another substrate of the same type to be raised next is reduced, and when it is determined that there is no electrostatic discharge, the next increase Control is performed so that the rising speed of another substrate of the same type to be maintained is maintained at the predetermined rising speed.
  • the first several substrates may be electrostatically discharged, but the substrates that are subsequently lifted off may be within a range in which electrostatic discharge does not occur and electrostatic discharge does not occur.
  • the substrate can be lifted off as fast as possible. Therefore, by employing the substrate processing system 1 and the substrate transfer apparatus 20 provided in the present embodiment, it is possible to reduce the tact required for lift-off while minimizing the deterioration of the yield. Thus, a substrate transfer apparatus and a substrate processing system including the substrate transfer apparatus that can more reliably and effectively prevent electrostatic discharge can be provided.
  • the control unit 30 variably adjusts the rising speed of the substrate 100 individually for each of the plurality of substrate processing apparatuses included in the substrate processing system 1. Therefore, it is possible to perform processing while optimizing the rising speed of the substrate 100 for each of the plurality of substrate processing apparatuses. Further, in the substrate processing system 1 according to the present embodiment described above, it is possible to variably adjust the rising speed of the substrate 100 individually for each of the plurality of substrate processing apparatuses as described above. If the substrate charge amount during the lift-off operation is assumed to be approximately the same for each of these substrate processing apparatuses, the substrate rising speed of one of the plurality of substrate processing apparatuses is adjusted and optimized. The substrate ascending speed after the optimization may be applied to all the substrate processing apparatuses including other substrate processing apparatuses.
  • the present invention is not limited to this.
  • the peak value V B of the surface potential of the lower surface 111 of the substrate 100 when it is first determined that there is no electrostatic discharge is a threshold value.
  • the presence or absence of electrostatic discharge may be determined by comparing the peak value of the surface potential detected when the substrate is lifted off with the threshold value.
  • 90% of the peak value V B may be used as a threshold value in order to provide a margin.
  • the threshold is set to an arbitrary value and can be fine-tuned manually, it is easy to use. You can also
  • the rising speed in the previous lift-off operation is maintained without resetting the substrate rising speed in the lift-off operation in step S6 is exemplified.
  • the rising speed is set to be 90% of the rising speed of the substrate in the previous lift-off operation in step S6 only immediately after it is first determined that there is no electrostatic discharge in step S5. It may be reset.
  • the rising speed is set to a speed that is slightly higher than the speed at which electrostatic discharge is determined to occur in advance, and the rising speed is optimized by gradually lowering this speed.
  • a control flow different from this can be adopted.
  • it is possible to optimize the ascending speed by setting the ascending speed to a speed slightly slower than the speed at which it is determined that electrostatic discharge does not occur in advance. It is.
  • the tact cannot be sufficiently shortened in the stage of optimization of the rising speed, it is possible to limit the number of substrates that cause electrostatic discharge during optimization to one and to reliably prevent the yield from being lowered. Can do.
  • the present invention is applied to the lift-off operation of the substrate has been described as an example, but the present invention can naturally be applied to the lift-on operation of the substrate.
  • the robot hand 21 descends, the ionized gas discharged from the discharge hole 25b is discharged obliquely upward from the inclined surface 22c of the support portion 22, and thus the stage 10 is mounted.
  • a portion located between the adjacent support portions 22 of the substrate 100 by entering between the stage 10 and the substrate 100 through a gap generated between the mounting surface 11 and the lower surface 111 of the substrate 100 and flowing along the gap.
  • the change in the surface potential of the lower surface of the one substrate, which occurs when the control unit 30 lowers the one substrate at a predetermined lowering speed, which is detected by the surface potential detection sensor 24 It is preferable to determine the descending speed of another substrate of the same type to be subsequently lowered based on the above. More specifically, based on the change in the surface potential of the lower surface of the one substrate that occurs when the control unit 30 lowers the one substrate at a predetermined lowering speed detected by the surface potential detection sensor 24. In the meantime, the presence or absence of electrostatic discharge is determined.
  • the descending speed of the other board of the same type to be lowered next is lowered, and when it is determined that there is no electrostatic discharge, the next descending It is preferable to maintain the descending speed of another substrate of the same type to be the predetermined descending speed or to set the descending speed obtained by adding a predetermined margin to the predetermined descending speed.
  • the inclined surface 22c is provided in the support portion 22 of the robot hand 21, and the discharge hole 25b is provided in the inclined surface 22c.
  • the configuration of the discharge hole 25b and the support portion 22 provided with the discharge hole 25b is not limited to the above configuration. That is, since the ionized gas is directly blown toward the portion located between the adjacent support portions of the substrate supported by the robot hand through the discharge hole provided in the robot hand. If there is any configuration, the configuration of the discharge hole and the support portion provided with the discharge hole may be any configuration.
  • FIG. 8 is a schematic cross-sectional view of the support portion of the robot hand of the substrate transfer apparatus according to the modification of the embodiment of the present invention described above.
  • the support portion 22 does not have an inclined surface, and has only an upper surface 22a and a pair of side surfaces 22b continuous to the upper surface 22a. Yes.
  • a discharge hole 25b is provided in each of the pair of side surfaces 22b, and a portion of the ventilation passage 25c continuous to the discharge hole 25b is inclined, the discharge is naturally performed.
  • the discharge direction of the ionized gas discharged from the hole 25b is obliquely upward.
  • the ionized gas is discharged from the discharge hole provided in the robot hand. It is possible to configure such that the substrate is directly sprayed toward a portion located between adjacent support portions of the substrate supported by the robot hand. Further, although illustration thereof is omitted, if a Bernoulli-type suction pad is used as the suction pad 23, an air system for generating a negative pressure on the suction surface and an ionized gas are released. It is also possible to share the air system, and in that case, the ionized gas released from the combined air system is directed to the part located between the adjacent support parts of the substrate supported by the robot hand. Can be configured to be sprayed directly.
  • the substrate transfer apparatus in the embodiment of the present invention described above and its modification example can be used not only in newly installed manufacturing equipment but also in existing manufacturing equipment. It is possible. In particular, if a self-propelled substrate transfer device is used, it can be used in any place of manufacturing equipment regardless of whether it is new or old, and can be highly versatile.
  • the substrate transfer apparatus according to the embodiment of the present invention and the modification thereof described above is incorporated into a manufacturing facility, at what timing (in which process) the substrate (which step) It is also possible to investigate whether or not charging is likely to occur at a location). Therefore, even if some ESD countermeasures are taken after the investigation, whether or not the countermeasures are effective by using the substrate transfer apparatus in the embodiment of the present invention and the modification thereof described above. Can be diagnosed.
  • the substrate transfer apparatus it is possible to variably adjust the transport speed of each substrate, so that it can be transported. More preferably, the substrate transfer apparatus is preferably provided with a function of automatically calculating an average tact required for each transfer process. If comprised in this way, it will become possible to confirm productivity for every conveyance process.
  • Substrate processing system 2. Substrate transport cassette, 3. First substrate processing apparatus, 4. Second substrate processing apparatus, 5. Third substrate processing apparatus, 10. Stage, 11. Placement surface, 12. Groove, 20.
  • Substrate transfer apparatus 21.
  • Robot Hand 22 support part, 22a upper surface, 22b side surface, 22c inclined surface, 23 suction pad, 24 surface potential detection sensor, 25a, 25b discharge hole, 25c ventilation path, 30 control part, 31 robot hand drive mechanism, 32 pump, 33 Ionizer, 34 compressor, 35 storage unit, 36 display unit, 37 operation unit, 100 substrate, 111 lower surface.

Abstract

A substrate transfer device is provided with: a robot hand (21) that has a multiple support sections (22) positioned in parallel to each other, and is capable of supporting substrates by being inserted below the substrates; a robot hand raising/lowering mechanism for raising and lowering the robot hand (21); and an ion transmission unit that generates positive ions and/or negative ions, and transmits the generated positive ions and/or negative ions on an air stream. The support sections (22) are provided with discharge holes (25b) for directly blowing the air current containing the positive ions and/or the negative ions transmitted by the ion transmission unit toward the area positioned between adjacent support sections (22), which support the substrates, when the substrates are being supported by the robot hand (21).

Description

基板移載装置およびこれを備えた基板処理システムSubstrate transfer apparatus and substrate processing system provided with the same
 本発明は、ロボットハンドを使用して基板を移載する基板移載装置に関し、また当該基板移載装置と複数の基板処理装置とを備えた基板処理システムに関する。 The present invention relates to a substrate transfer apparatus that transfers a substrate using a robot hand, and also relates to a substrate processing system including the substrate transfer apparatus and a plurality of substrate processing apparatuses.
 液晶パネルや太陽電池モジュール、半導体装置等の製造過程においては、ワークである基板(ガラス基板や半導体基板等)に対して各種の処理を施すために、様々な種類の基板処理装置が基板に対して順次使用される。通常、基板処理装置に対する基板の搬入および搬出には、ロボットハンドを具備した基板移載装置が利用され、当該基板移載装置に具備されたロボットハンドを用いて基板のリフトオフやリフトオン、移送等が行なわれることにより、基板処理装置に対する基板の搬入および搬出が行なわれる。近年においては、製造設備の簡素化や小型化等の観点から、複数の基板処理装置に対する基板の搬入および搬出が一の基板移載装置にて賄われるように構成された基板処理システムが一般化しつつある。 In the manufacturing process of liquid crystal panels, solar cell modules, semiconductor devices, etc., various types of substrate processing apparatuses are applied to substrates in order to perform various types of processing on substrates (glass substrates, semiconductor substrates, etc.) that are workpieces. Are used sequentially. Usually, a substrate transfer apparatus equipped with a robot hand is used for loading and unloading a substrate to and from the substrate processing apparatus, and the substrate can be lifted off, lifted on, transferred, etc. using the robot hand equipped in the substrate transfer apparatus. As a result, the substrate is carried into and out of the substrate processing apparatus. In recent years, from the viewpoint of simplification and downsizing of manufacturing equipment, a substrate processing system configured to cover and carry in and out of a plurality of substrate processing apparatuses with a single substrate transfer apparatus has become common. It's getting on.
 通常、ロボットハンドを具備した基板移載装置を用いて基板を移載する場合には、静電気放電(ESD)が発生することを防止するための対策が講じられていることが求められる。静電気放電は、物体に蓄積された電荷が非接触状態にある他の物体に放電を伴って移動する物理的現象のことであり、一般に帯電した物体が他の物体に近接配置された場合に生じるものである。 Usually, when a substrate is transferred using a substrate transfer apparatus equipped with a robot hand, it is required to take measures to prevent the occurrence of electrostatic discharge (ESD). Electrostatic discharge is a physical phenomenon in which the charge accumulated in an object moves with other objects in a non-contact state, and generally occurs when a charged object is placed close to another object. Is.
 上述したロボットハンドを用いての基板の移載に際しては、特に基板のリフトオフ時およびリフトオン時に基板処理装置に設けられたステージと基板とが近接配置された状態になるため、基板およびステージのいずれかまたはその両方が帯電している場合に静電気放電が発生するおそれがある。ここで、静電気放電が発生した場合には、基板上に形成された導体パターンや絶縁膜といった回路構成要素が損傷を受けたり破壊されたりするおそれがあり、その結果、製造後の製品において必要な電気的特性が得られない問題が生じてしまう。特に、基板のリフトオフ時には、剥離帯電と称される物理的現象が発生し易く、この剥離帯電によって基板とステージとの間に高い電位差が生じ、何ら手当てを行なわなかった場合には、上述した静電気放電が高い頻度で発生してしまうことになる。 When transferring a substrate using the robot hand described above, especially when the substrate is lifted off and when the substrate is lifted on, the stage provided in the substrate processing apparatus and the substrate are placed close to each other. Alternatively, electrostatic discharge may occur when both are charged. Here, when electrostatic discharge occurs, circuit components such as conductor patterns and insulating films formed on the substrate may be damaged or destroyed, and as a result, it is necessary for products after manufacture. The problem that electrical characteristics cannot be obtained arises. In particular, when the substrate is lifted off, a physical phenomenon called peeling charging is likely to occur, and this peeling charging causes a high potential difference between the substrate and the stage. Discharging occurs frequently.
 上述した静電気放電に対する対策が講じられた基板処理装置や基板移載装置として、たとえば特開平8-97121号公報(特許文献1)や特開2000-216228号公報(特許文献2)、特開2000-82732号公報(特許文献3)に開示のもの等がある。 As a substrate processing apparatus and a substrate transfer apparatus in which measures against the electrostatic discharge described above are taken, for example, Japanese Patent Application Laid-Open No. 8-97121 (Patent Document 1), Japanese Patent Application Laid-Open No. 2000-216228 (Patent Document 2), and -82732 (Patent Document 3) discloses the above.
 上記特開平8-97121号公報に開示の基板処理装置にあっては、基板が載置されるステージの上方に表面電位計およびイオナイザを配置し、ステージ上に載置された基板の上面の表面電位を表面電位計を用いて検出し、その検出結果に基づいて基板の上面にイオン化された気体をイオナイザを用いて吹き付けることで基板上面の帯電を中和して除電することとし、これにより基板のリフトオフ時に静電気放電が発生することを防止している。 In the substrate processing apparatus disclosed in the above-mentioned JP-A-8-97121, a surface electrometer and an ionizer are arranged above a stage on which a substrate is placed, and the surface of the upper surface of the substrate placed on the stage The electric potential is detected using a surface electrometer, and the ionized gas is sprayed onto the upper surface of the substrate using an ionizer based on the detection result to neutralize the charge on the upper surface of the substrate, thereby eliminating the charge. Prevents electrostatic discharge from occurring during lift-off.
 また、上記特開2000-216228号公報に開示の基板処理装置にあっては、基板が載置されるステージの上方に表面電位計を配置するとともに、当該ステージにイオン化された気体を放出するための放出孔を設け、ステージ上に載置された基板の上面の表面電位を表面電位計を用いて検出し、その検出結果に基づいて上記放出孔を介して基板の下面に向けてイオン化された気体を吹き付けることで基板下面の帯電を中和して除電することとし、これにより基板のリフトオフ時に静電気放電が発生することを防止している。 Further, in the substrate processing apparatus disclosed in the above Japanese Patent Laid-Open No. 2000-216228, a surface electrometer is disposed above the stage on which the substrate is placed, and ionized gas is released to the stage. The surface potential of the upper surface of the substrate placed on the stage was detected using a surface potentiometer, and ionized toward the lower surface of the substrate through the discharge hole based on the detection result By discharging the gas, the charge on the lower surface of the substrate is neutralized and the charge is eliminated, thereby preventing electrostatic discharge from occurring when the substrate is lifted off.
 また、上記特開2000-82732号公報に開示の基板移載装置にあっては、当該基板移載装置に具備されたロボットハンドにイオン化された気体を放出するための放出孔を設け、ロボットハンドによる基板の支持に先立って上記放出孔を介して基板に向けてイオン化された気体を吹き付けることで基板表面の帯電を中和して除電することとし、これにより基板のリフトオフ時に静電気放電が発生することを防止している。 Further, in the substrate transfer apparatus disclosed in the above Japanese Patent Laid-Open No. 2000-82732, the robot hand provided in the substrate transfer apparatus is provided with a discharge hole for discharging ionized gas, and the robot hand Prior to supporting the substrate, the ionized gas is blown toward the substrate through the discharge hole to neutralize the charge on the surface of the substrate, thereby removing static electricity. This causes electrostatic discharge when the substrate is lifted off. To prevent that.
特開平8-97121号公報JP-A-8-97121 特開2000-216228号公報JP 2000-216228 A 特開2000-82732号公報Japanese Patent Laid-Open No. 2000-82732
 しかしながら、上記特開平8-97121号公報および特開2000-216228号公報に開示される如くの基板処理装置を含む基板処理システムとした場合には、製造過程において使用される複数の基板処理装置の各々に表面電位計やイオナイザあるいはイオン化された気体を放出するための放出孔を設けることが必要になり、製造設備が複雑化したり大型化したりすることによって製造コストが大幅に嵩んでしまう問題が生じる。特に、近年においては、基板の大型化が飛躍的に進んでおり、製造過程において使用される複数の基板処理装置の各々にこれら表面電位計やイオナイザあるいはイオン化された気体を放出するための放出孔を設けることとした場合には、製造コストの増大は非常に顕著なものとなってしまう。 However, in the case of a substrate processing system including a substrate processing apparatus as disclosed in the above Japanese Patent Application Laid-Open No. 8-97121 and Japanese Patent Application Laid-Open No. 2000-216228, a plurality of substrate processing apparatuses used in the manufacturing process are used. It is necessary to provide a surface electrometer, ionizer, or discharge hole for discharging ionized gas in each of them, resulting in a problem that the manufacturing cost is greatly increased due to complicated and large manufacturing facilities. . In particular, in recent years, the size of the substrate has been dramatically increased, and a discharge hole for discharging the surface potential meter, ionizer, or ionized gas to each of a plurality of substrate processing apparatuses used in the manufacturing process. If it is decided to provide, the increase in manufacturing cost becomes very remarkable.
 また、上記特開平8-97121号公報および特開2000-216228号公報に開示される基板処理装置にあっては、ステージの上方に表面電位計が配置される構成が採用されているため、表面電位計によって検出される基板の表面電位は、基板の上面の表面電位となる。しかしながら、静電気放電は、対向配置された基板の下面とステージ表面との間の電位差に起因して発生する物理的現象であるため、当該構成を採用したのでは必ずしも基板の下面の表面電位を正確に検出したことにはならず、そのため静電気放電をより確実にかつ効果的に防止するためには、なおその改善が必要である。 Further, in the substrate processing apparatus disclosed in the above-mentioned JP-A-8-97121 and JP-A-2000-216228, a configuration in which a surface electrometer is disposed above the stage is adopted. The surface potential of the substrate detected by the electrometer is the surface potential of the upper surface of the substrate. However, since electrostatic discharge is a physical phenomenon that occurs due to a potential difference between the lower surface of the substrate and the stage surface that are opposed to each other, the surface potential of the lower surface of the substrate is not always accurately determined by adopting this configuration. Therefore, in order to prevent electrostatic discharge more reliably and effectively, the improvement is still necessary.
 一方、上記特開2000-82732号公報に開示される如くの基板移載装置を含む基板処理システムとした場合には、ロボットハンドにイオン化された気体を放出するための放出孔が設けられているため、製造過程において使用される複数の基板処理装置の各々にイオナイザ等を具備させる必要がなく、装置構成が簡素化できる点においてメリットが得られる。しかしながら、当該特開2000-82732号公報に開示の基板移載装置にあっては、基板に対するイオン化された気体の吹き付け箇所が基板のロボットハンドの上面に対向する部分に限定されてしまうため、必ずしも基板の全面にわたって十分な除電効果が得られず、結果として静電気放電の発生が十分に防止できないという問題があった。特に、近年においては、基板の大型化が飛躍的に進んでおり、基板に対するイオン化された気体の吹き付け箇所が上述したように基板のロボットハンドの上面に対向する部分に限定されてしまった場合には、除電効果が実質的に殆ど得られない状況にまで陥ってしまう。 On the other hand, in the case of a substrate processing system including a substrate transfer apparatus as disclosed in the above Japanese Patent Laid-Open No. 2000-82732, the robot hand is provided with a discharge hole for discharging ionized gas. Therefore, it is not necessary to provide each of a plurality of substrate processing apparatuses used in the manufacturing process with an ionizer or the like, and an advantage is obtained in that the apparatus configuration can be simplified. However, in the substrate transfer apparatus disclosed in the Japanese Patent Laid-Open No. 2000-82732, the location of the ionized gas sprayed onto the substrate is limited to the portion of the substrate facing the upper surface of the robot hand. There was a problem that a sufficient charge removal effect could not be obtained over the entire surface of the substrate, and as a result, the occurrence of electrostatic discharge could not be sufficiently prevented. In particular, in recent years, the size of the substrate has been greatly increased, and when the ionized gas sprayed portion on the substrate is limited to the portion of the substrate facing the upper surface of the robot hand as described above. Falls into a situation in which the charge eliminating effect is substantially not obtained.
 また、上記特開2000-82732号公報に開示される如くの基板移載装置を含む基板処理システムとした場合には、表面電位計が具備されていない構成であるため、基板に吹き付けるべきイオン化された気体の量や極性等を最適化することができず、かえって基板を帯電させてしまう問題を生じかねない。これを防止するためには、上記特開平8-97121号公報および特開2000-216228号公報に開示の如く、基板処理装置のステージの上方に表面電位計を配置し、当該表面電位計と基板移載装置に具備されたイオナイザとを連動させることが考えられるが、その場合には、製造過程において使用される複数の基板処理装置の各々に表面電位計を別途設けることが必要になり、やはり製造設備が複雑化したり大型化したりすることによって製造コストが大幅に嵩んでしまう問題が生じてしまう。 Further, in the case of a substrate processing system including a substrate transfer apparatus as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2000-82732, since the surface potential meter is not provided, the ionization to be sprayed on the substrate is performed. In other words, the amount of gas, polarity, and the like cannot be optimized, which may cause a problem of charging the substrate. In order to prevent this, as disclosed in the above-mentioned JP-A-8-97121 and JP-A-2000-216228, a surface electrometer is disposed above the stage of the substrate processing apparatus. It is conceivable to link the ionizer provided in the transfer apparatus, but in that case, it is necessary to separately provide a surface electrometer in each of a plurality of substrate processing apparatuses used in the manufacturing process. A problem that the manufacturing cost increases significantly as the manufacturing equipment becomes complicated or large-sized.
 したがって、本発明は、上述した問題点を解決すべくなされたものであり、静電気放電をより確実にかつ効果的に防止することができるとともに、製造設備の簡素化および小型化が可能な基板移載装置およびこれを備えた基板処理システムを提供することを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and can prevent the electrostatic discharge more reliably and effectively, and can transfer the substrate that can simplify and downsize the manufacturing equipment. It is an object to provide a mounting apparatus and a substrate processing system including the same.
 本発明に基づく基板移載装置は、複数の基板を順次上昇および下降させることでこれら基板を順次移載するものであって、互いに並行して位置する複数の支持部を有し、基板の下方に挿入されることで基板を支持可能なロボットハンドと、上記ロボットハンドを昇降させるためのロボットハンド昇降機構と、正イオンまたは/および負イオンを生成し、生成した正イオンまたは/および負イオンを気流に乗せて送出するイオン送出部とを備えている。上記支持部には、上記ロボットハンドにて基板を支持した状態において、上記イオン送出部によって送出された正イオンまたは/および負イオンを含む気流を、支持した基板の隣り合う上記支持部間に位置する部分に向けて直接吹き付けるための放出孔が設けられている。 A substrate transfer apparatus according to the present invention sequentially transfers a plurality of substrates by sequentially raising and lowering the plurality of substrates, and has a plurality of support portions positioned in parallel with each other, below the substrate. A robot hand that can support the substrate by being inserted into the robot hand, a robot hand lifting mechanism for lifting and lowering the robot hand, and generating positive ions and / or negative ions, and generating the generated positive ions and / or negative ions And an ion sending part that sends the air on an air current. In the state where the substrate is supported by the robot hand, the support unit is configured to place an air flow including positive ions and / or negative ions sent by the ion sending unit between the support units adjacent to each other. A discharge hole is provided for direct spraying toward the portion to be performed.
 上記本発明に基づく基板移載装置にあっては、支持した基板の隣り合う上記支持部間に位置する部分に対向するように、上記放出孔が上記支持部に傾斜して設けられていることが好ましい。 In the substrate transfer device according to the present invention, the discharge hole is provided in an inclined manner in the support portion so as to face a portion located between the adjacent support portions of the supported substrate. Is preferred.
 上記本発明に基づく基板移載装置にあっては、上記支持部が、上面および側面に連続する傾斜面を有していてもよく、その場合には、上記放出孔が、上記傾斜面に設けられていることが好ましい。 In the substrate transfer apparatus according to the present invention, the support portion may have an inclined surface that is continuous with an upper surface and a side surface. In that case, the discharge hole is provided in the inclined surface. It is preferable that
 上記本発明に基づく基板移載装置は、上記ロボットハンドに設けられ、上記ロボットハンドにて基板を支持した状態において支持した基板の下面の表面電位を検出可能な表面電位検出部と、上記イオン送出部の駆動を制御することで送出される気流の流量を可変に調節可能な制御部とをさらに備えていることが好ましい。その場合には、上記制御部が、上記表面電位検出部にて検出された基板の下面の表面電位の情報に基づいて上記イオン送出部の駆動を制御することが好ましい。 The substrate transfer device according to the present invention is provided in the robot hand, and is capable of detecting the surface potential of the lower surface of the substrate supported in a state where the substrate is supported by the robot hand; It is preferable to further include a control unit capable of variably adjusting the flow rate of the air flow sent out by controlling the drive of the unit. In that case, it is preferable that the control unit controls the driving of the ion sending unit based on information on the surface potential of the lower surface of the substrate detected by the surface potential detection unit.
 上記本発明に基づく基板移載装置にあっては、上記制御部が、上記ロボットハンド昇降機構の駆動を制御することで基板の上昇速度または/および下降速度を可変に調節可能であることが好ましい。その場合には、上記制御部が、上記表面電位検出部にて検出された、一の基板を所定の上昇速度または/および下降速度にて上昇または/および下降させた場合に生じる当該一の基板の下面の表面電位の変化に基づき、その後に上昇または/および下降させる同種の他の基板の上昇速度または/および下降速度を決定することが好ましい。 In the substrate transfer apparatus according to the present invention, it is preferable that the control unit can variably adjust the ascending speed and / or the descending speed of the substrate by controlling the driving of the robot hand lifting mechanism. . In that case, the one substrate generated when the control unit raises or / and lowers the one substrate detected by the surface potential detection unit at a predetermined ascent rate or / and descending rate. It is preferable to determine a rising speed and / or a lowering speed of another substrate of the same type to be subsequently raised or / and lowered based on a change in the surface potential of the lower surface of the substrate.
 本発明に基づく基板処理システムは、上述した本発明に基づく基板移載装置と、基板を処理するための複数の基板処理装置とを備え、上記基板移載装置が、上記複数の基板処理装置に基板を順次搬入および搬出するための部位として構成されてなるものである。 The substrate processing system based on this invention is equipped with the substrate transfer apparatus based on this invention mentioned above, and the several substrate processing apparatus for processing a board | substrate, The said substrate transfer apparatus is set to the said several substrate processing apparatus. It is comprised as a site | part for carrying in and carrying out a board | substrate sequentially.
 本発明によれば、静電気放電をより確実にかつ効果的に防止することができるとともに、製造設備の簡素化および小型化が可能な基板移載装置およびこれを備えた基板処理システムとすることができる。 ADVANTAGE OF THE INVENTION According to this invention, while being able to prevent an electrostatic discharge more reliably and effectively, it can be set as the board | substrate transfer apparatus which can simplify and reduce a manufacturing facility, and can be set as a substrate processing system provided with the same. it can.
本発明の実施の形態における基板処理システムの概要を示す平面図である。It is a top view which shows the outline | summary of the substrate processing system in embodiment of this invention. 本発明の実施の形態における基板移載装置のロボットハンドの概略斜視図である。It is a schematic perspective view of the robot hand of the substrate transfer apparatus in the embodiment of the present invention. 図2に示すロボットハンドの支持部の模式断面図である。It is a schematic cross section of the support part of the robot hand shown in FIG. 本発明の実施の形態における基板移載装置の機能ブロックの構成を示す図である。It is a figure which shows the structure of the functional block of the board | substrate transfer apparatus in embodiment of this invention. 本発明の実施の形態における基板移載装置を用いた基板のリフトオフ動作を説明するための模式図である。It is a schematic diagram for demonstrating the lift-off operation | movement of the board | substrate using the board | substrate transfer apparatus in embodiment of this invention. 本発明の実施の形態における基板移載装置を用いた基板のリフトオフ動作を説明するための模式図である。It is a schematic diagram for demonstrating the lift-off operation | movement of the board | substrate using the board | substrate transfer apparatus in embodiment of this invention. 本発明の実施の形態における基板移載装置を用いた基板のリフトオフ動作を説明するための模式図である。It is a schematic diagram for demonstrating the lift-off operation | movement of the board | substrate using the board | substrate transfer apparatus in embodiment of this invention. 本発明の実施の形態における基板移載装置の制御部の制御フローを示す図である。It is a figure which shows the control flow of the control part of the board | substrate transfer apparatus in embodiment of this invention. リフトオフ時における基板の下面の表面電位の変化を示すグラフである。It is a graph which shows the change of the surface potential of the lower surface of a board | substrate at the time of lift-off. 変形例に係る基板移載装置のロボットハンドの支持部の模式断面図である。It is a schematic cross section of the support part of the robot hand of the board | substrate transfer apparatus which concerns on a modification.
 以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態およびその変形例においては、同等または共通部分について図中同一の符号を付し、その説明は個々には繰り返さないこととする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments and modifications thereof, the same or common parts are denoted by the same reference numerals in the drawings, and description thereof will not be repeated individually.
 図1は、本発明の実施の形態における基板処理システムの概要を示す平面図である。図2は、図1に示す基板移載装置のロボットハンドの概略斜視図であり、図3は、図2に示すロボットハンドの支持部の模式断面図である。また、図4は、図1に示す基板移載装置の機能ブロックの構成を示す図である。まず、これら図1ないし図4を参照して、本実施の形態における基板処理システムおよびこれに具備される基板移載装置の構成について説明する。 FIG. 1 is a plan view showing an outline of a substrate processing system in an embodiment of the present invention. 2 is a schematic perspective view of the robot hand of the substrate transfer apparatus shown in FIG. 1, and FIG. 3 is a schematic cross-sectional view of a support portion of the robot hand shown in FIG. FIG. 4 is a diagram showing a functional block configuration of the substrate transfer apparatus shown in FIG. First, with reference to these FIG. 1 thru | or FIG. 4, the structure of the substrate processing system in this Embodiment and the substrate transfer apparatus with which this is provided is demonstrated.
 図1に示すように、本実施の形態における基板処理システム1は、第1基板処理装置3、第2基板処理装置4および第3基板処理装置5からなる3つの基板処理装置と、1つの基板移載装置20とを主として備えている。第1基板処理装置3、第2基板処理装置4および第3基板処理装置5の各々は、ワークである基板100に対して所定の処理を行なうための装置である。一方、基板移載装置20は、上記3つの基板処理装置に基板100を個別に順次搬入および搬出するための装置である。 As shown in FIG. 1, the substrate processing system 1 according to the present embodiment includes three substrate processing apparatuses including a first substrate processing apparatus 3, a second substrate processing apparatus 4, and a third substrate processing apparatus 5, and one substrate. The transfer apparatus 20 is mainly provided. Each of the first substrate processing apparatus 3, the second substrate processing apparatus 4, and the third substrate processing apparatus 5 is an apparatus for performing a predetermined process on the substrate 100 that is a workpiece. On the other hand, the substrate transfer apparatus 20 is an apparatus for sequentially carrying the substrates 100 in and out of the three substrate processing apparatuses.
 本実施の形態における基板処理システム1においては、基板搬送カセット2に収容された基板100が、基板移載装置20によって第1基板処理装置3に搬入される。第1基板処理装置3に搬入されて所定の処理が施された後の基板100は、基板移載装置20によって第1基板処理装置3から搬出されて第2基板処理装置4に搬入される。また、第2基板処理装置4に搬入されて所定の処理が施された後の基板100は、基板移載装置20によって第2基板処理装置4から搬出されて第3基板処理装置5に搬入される。さらに、第3基板処理装置5に搬入されて所定の処理が施された後の基板100は、基板移載装置20によって第3基板処理装置5から搬出されて基板搬送カセット2に搬入される。ここで、本実施の形態における基板処理システム1においては、基板搬送カセット2に収容された複数の基板100が、基板移載装置20によって順次移載されることにより、複数の基板100に対して個別に一連の処理が順次実施されることになる。 In the substrate processing system 1 in the present embodiment, the substrate 100 accommodated in the substrate transport cassette 2 is carried into the first substrate processing apparatus 3 by the substrate transfer apparatus 20. The substrate 100 after being loaded into the first substrate processing apparatus 3 and subjected to a predetermined process is unloaded from the first substrate processing apparatus 3 by the substrate transfer apparatus 20 and loaded into the second substrate processing apparatus 4. Further, the substrate 100 after being loaded into the second substrate processing apparatus 4 and subjected to a predetermined process is unloaded from the second substrate processing apparatus 4 by the substrate transfer apparatus 20 and loaded into the third substrate processing apparatus 5. The Further, the substrate 100 after being loaded into the third substrate processing apparatus 5 and subjected to a predetermined process is unloaded from the third substrate processing apparatus 5 by the substrate transfer apparatus 20 and loaded into the substrate transport cassette 2. Here, in the substrate processing system 1 according to the present embodiment, the plurality of substrates 100 accommodated in the substrate transport cassette 2 are sequentially transferred by the substrate transfer device 20, so that the plurality of substrates 100 are transferred. A series of processes are sequentially performed individually.
 図1に示すように、基板移載装置20は、ロボットハンド21を有している。当該ロボットハンド21は、基板100の下方に挿入されることで基板100を支持可能なフォーク状の部材からなり、互いに並行して設けられた複数の支持部22を有している(図2参照)。ロボットハンド21は、後述するロボットハンド駆動機構31(図4参照)によってその位置が任意に調節可能となるように移動可能に支持されている。 As shown in FIG. 1, the substrate transfer device 20 has a robot hand 21. The robot hand 21 is made of a fork-like member that can support the substrate 100 by being inserted below the substrate 100, and has a plurality of support portions 22 provided in parallel to each other (see FIG. 2). ). The robot hand 21 is supported by a robot hand drive mechanism 31 (see FIG. 4), which will be described later, so that the position thereof can be adjusted arbitrarily.
 一方、第1基板処理装置3、第2基板処理装置4および第3基板処理装置5の各々は、そのチャンバ内に基板100を載置するためのステージ10をそれぞれ有している。当該ステージ10は、基板100に対して処理を行なう間、当該基板100を支持するための台である。ここで、ステージ10の上面である載置面11(図5Aないし図5C等参照)には、基板移載装置20のロボットハンド21の支持部22が挿入可能な溝部12が複数並行して設けられている。 On the other hand, each of the first substrate processing apparatus 3, the second substrate processing apparatus 4 and the third substrate processing apparatus 5 has a stage 10 for placing the substrate 100 in the chamber. The stage 10 is a stage for supporting the substrate 100 while processing the substrate 100. Here, a plurality of groove portions 12 into which the support portion 22 of the robot hand 21 of the substrate transfer apparatus 20 can be inserted are provided in parallel on the mounting surface 11 (see FIGS. 5A to 5C) which is the upper surface of the stage 10. It has been.
 ここで、第1基板処理装置3、第2基板処理装置4および第3基板処理装置5は、いずれも基板100に対して何らかの処理を施すものであればよく、たとえば熱処理装置、成膜装置、露光装置、現像装置、洗浄装置、不純物導入装置等がこれらに該当する。 Here, any of the first substrate processing apparatus 3, the second substrate processing apparatus 4, and the third substrate processing apparatus 5 may perform any processing on the substrate 100. For example, a heat treatment apparatus, a film forming apparatus, An exposure apparatus, a developing apparatus, a cleaning apparatus, an impurity introduction apparatus, and the like correspond to these.
 本実施の形態においては、基板処理システムが3つの基板処理装置を備えている場合を例示しているが、基板処理装置の数は特に制限されるものではなく、基板処理システムが少なくとも1つ以上、好ましくは2つ以上の基板処理装置を備えていればよい。また、本実施の形態においては、基板処理システムが1つの基板移載装置を備えている場合を例示しているが、基板移載装置の数は特に制限されるものではなく、基板処理システムが2つ以上の基板移載装置を備えていてもよい。 In the present embodiment, the case where the substrate processing system includes three substrate processing apparatuses is illustrated, but the number of substrate processing apparatuses is not particularly limited, and at least one substrate processing system is provided. Preferably, two or more substrate processing apparatuses may be provided. Further, in the present embodiment, the case where the substrate processing system includes one substrate transfer device is illustrated, but the number of substrate transfer devices is not particularly limited, and the substrate processing system is not limited. Two or more substrate transfer apparatuses may be provided.
 図2に示すように、ロボットハンド21の支持部22の上面には、それぞれ複数の吸着パッド23が設けられている。これら吸着パッド23は、基板100をロボットハンド21にて安定的に吸着保持するための部材であり、各々の吸着パッド23は、ロボットハンド21の内部に設けられた連通路を介して後述するポンプ32(図4参照)に接続されている。吸着パッド23は、ポンプ32が駆動されることでその表面において負圧を発生し、当該負圧を利用して支持部22上に配置された基板100を吸着保持する。なお、吸着パッド23としては、一般的な円筒状の吸着パッドやベロー式の吸着パッド、ベルヌーイ式の吸着パッド等、様々な形式のものが利用可能である。 As shown in FIG. 2, a plurality of suction pads 23 are provided on the upper surface of the support portion 22 of the robot hand 21, respectively. These suction pads 23 are members for stably sucking and holding the substrate 100 by the robot hand 21, and each suction pad 23 is a pump which will be described later via a communication path provided inside the robot hand 21. 32 (see FIG. 4). The suction pad 23 generates a negative pressure on the surface thereof when the pump 32 is driven, and sucks and holds the substrate 100 disposed on the support portion 22 using the negative pressure. As the suction pad 23, various types such as a general cylindrical suction pad, a bellows type suction pad, and a Bernoulli type suction pad can be used.
 また、ロボットハンド21の支持部22の上面には、それぞれ複数の表面電位検出センサ24が設けられている。これら表面電位検出センサ24は、ロボットハンド21によって支持された基板100の下面111(図5Aないし図5C等参照)の表面電位を検出するための表面電位検出部に相当し、各々の表面電位検出センサ24の検出方向は、いずれもロボットハンド21の上方を向くように配置されている。なお、表面電位検出センサ24は、ロボットハンド21の上面上において可能な限り均等に配置されるようにレイアウトされていることが好ましく、それぞれの表面電位検出センサ24の検出エリアによってロボットハンド21によって支持された基板100の下面111の全面がカバーされていることが好ましい。 Further, a plurality of surface potential detection sensors 24 are provided on the upper surface of the support portion 22 of the robot hand 21. These surface potential detection sensors 24 correspond to a surface potential detection unit for detecting the surface potential of the lower surface 111 (see FIGS. 5A to 5C, etc.) of the substrate 100 supported by the robot hand 21. The detection directions of the sensors 24 are all arranged so as to face the robot hand 21. The surface potential detection sensors 24 are preferably laid out as evenly as possible on the upper surface of the robot hand 21 and supported by the robot hand 21 by the detection areas of the respective surface potential detection sensors 24. It is preferable that the entire lower surface 111 of the substrate 100 is covered.
 また、ロボットハンド21の支持部22には、それぞれ複数の放出孔25a,25bが設けられている。これら複数の放出孔25a,25bは、ロボットハンド21によって支持された基板100の下面111に向けてイオン化された気体を吹き付けるための部位であり、各々の放出孔25a,25bは、ロボットハンド21の内部に設けられた通風路を介して後述するイオナイザ33およびコンプレッサ34(図4参照)に接続されている。放出孔25a,25bは、イオナイザ33およびコンプレッサ34が駆動されることで生成されて送出されるイオン化された気体を当該放出孔25a,25bから外部に向けて放出することでこれを基板100に向けて吹き付ける。 Moreover, the support part 22 of the robot hand 21 is provided with a plurality of discharge holes 25a and 25b, respectively. The plurality of discharge holes 25 a and 25 b are portions for spraying ionized gas toward the lower surface 111 of the substrate 100 supported by the robot hand 21. Each of the discharge holes 25 a and 25 b is formed on the robot hand 21. It is connected to an ionizer 33 and a compressor 34 (see FIG. 4), which will be described later, through a ventilation path provided inside. The discharge holes 25a and 25b are directed toward the substrate 100 by discharging the ionized gas generated and sent out by driving the ionizer 33 and the compressor 34 from the discharge holes 25a and 25b to the outside. And spray.
 ここで、図2および図3に示すように、ロボットハンド21の支持部22のそれぞれは、上面22aと、一対の側面22bと、これら上面22aおよび一対の側面22bのうちの一方との間に位置し、これら上面22aおよび当該一方の側面22bに連続する一対の傾斜面22cとを有している。上述した複数の放出孔25aは、このうちの上面22aに設けられており、当該放出孔25aは、ロボットハンド21によって基板100が支持された状態において、支持された基板100の支持部22に対向する部分に向けて鉛直上方にイオン化された気体を放出する。一方、上述した複数の放出孔25bは、このうちの一対の傾斜面22cに設けられており、当該放出孔25bは、ロボットハンド21によって基板100が支持された状態において、支持された基板100の隣り合う支持部22間に位置する部分に向けて斜め上方にイオン化された気体を放出する。 Here, as shown in FIGS. 2 and 3, each of the support portions 22 of the robot hand 21 includes an upper surface 22a, a pair of side surfaces 22b, and one of the upper surface 22a and the pair of side surfaces 22b. The upper surface 22a and a pair of inclined surfaces 22c that are continuous with the one side surface 22b. The plurality of discharge holes 25a described above are provided in the upper surface 22a, and the discharge holes 25a face the support portion 22 of the supported substrate 100 in a state where the substrate 100 is supported by the robot hand 21. The ionized gas is released vertically upward toward the portion to be moved. On the other hand, the plurality of discharge holes 25b described above are provided in the pair of inclined surfaces 22c, and the discharge holes 25b of the substrate 100 supported by the robot hand 21 are supported. A gas ionized obliquely upward is released toward a portion located between the adjacent support portions 22.
 図4に示すように、基板移載装置20は、上述したロボットハンド21、当該ロボットハンド21に設けられた吸着パッド23、表面電位検出センサ24および放出孔25a,25bに加え、さらに制御部30と、ロボットハンド駆動機構31と、ポンプ32と、イオナイザ33と、コンプレッサ34と、記憶部35とを有している。ここで、制御部30は、基板移載装置20に含まれる各機能ブロックの駆動を制御することで基板移載装置20の動作を全体として制御するための部位である。 As shown in FIG. 4, the substrate transfer apparatus 20 includes a control unit 30 in addition to the robot hand 21, the suction pad 23 provided on the robot hand 21, the surface potential detection sensor 24, and the discharge holes 25 a and 25 b. And a robot hand drive mechanism 31, a pump 32, an ionizer 33, a compressor 34, and a storage unit 35. Here, the control unit 30 is a part for controlling the operation of the substrate transfer apparatus 20 as a whole by controlling the driving of each functional block included in the substrate transfer apparatus 20.
 ロボットハンド駆動機構31は、上述したロボットハンド21を移動させるための部位であり、制御部30によってその駆動が制御される。具体的には、ロボットハンド駆動機構31は、ロボットハンド21を水平面内において任意の位置に移動させることが可能なロボットハンド水平移動機構と、ロボットハンド21を鉛直方向に沿って任意の位置に移動させることが可能なロボットハンド昇降機構と、ロボットハンド21を旋回させることが可能なロボットハンド旋回機構とを少なくとも含んでいる。これにより、ロボットハンド駆動機構31は、制御部30から入力される制御信号に基づいてロボットハンド21を任意の向きで3次元的に任意の位置に移動させる。なお、ロボットハンド駆動機構31は、制御部30によって、ロボットハンド21の移動速度(上昇速度または/および下降速度を含む)が搬送する基板1枚毎に可変に制御され得るように構成されている。 The robot hand drive mechanism 31 is a part for moving the robot hand 21 described above, and its drive is controlled by the control unit 30. Specifically, the robot hand drive mechanism 31 moves the robot hand 21 to an arbitrary position in the horizontal plane, and moves the robot hand 21 to an arbitrary position along the vertical direction. A robot hand raising / lowering mechanism capable of rotating the robot hand 21 and a robot hand turning mechanism capable of rotating the robot hand 21. Thereby, the robot hand drive mechanism 31 moves the robot hand 21 to an arbitrary position three-dimensionally in an arbitrary direction based on a control signal input from the control unit 30. The robot hand drive mechanism 31 is configured so that the control unit 30 can variably control the moving speed (including the ascending speed and / or the descending speed) of the robot hand 21 for each substrate to be transported. .
 ポンプ32は、上述した吸着パッド23に負圧を生じさせるための部位であり、制御部30によってその駆動が制御される。具体的には、ポンプ32は、上述したロボットハンド21に設けられた連通路を介して吸着パッド23に接続されている。ここで、ポンプ32と吸着パッド23との間には、図示しない負圧維持用の電磁弁と排気用の電磁弁とが配設されており、これら電磁弁は、制御部30によってその動作が制御される。ポンプ32は、負圧維持用の電磁弁が開放されてポンプ32と吸着パッド23とが連通されることで吸着パッド23の吸着面に負圧を生じさせ、これにより基板100が吸着される。また、負圧維持用の電磁弁が閉塞されてポンプ32と吸着パッド23とが非連通とされることで当該負圧が維持され、基板100を吸着した状態が維持される。一方、排気用の電磁弁が開放されることで吸着パッド23の吸着面において生じていた上記負圧が消滅し、これにより基板100の吸着が解除される。これにより、制御部30から入力される制御信号に基づいて、ロボットハンド21上に載置された基板100の支持および支持の解除が行なわれる。 The pump 32 is a part for generating a negative pressure in the above-described suction pad 23, and its drive is controlled by the control unit 30. Specifically, the pump 32 is connected to the suction pad 23 via the communication path provided in the robot hand 21 described above. Here, an electromagnetic valve for maintaining negative pressure and an electromagnetic valve for exhaust (not shown) are disposed between the pump 32 and the suction pad 23, and these solenoid valves are operated by the control unit 30. Be controlled. The pump 32 opens the negative pressure maintaining electromagnetic valve and causes the pump 32 and the suction pad 23 to communicate with each other, thereby generating a negative pressure on the suction surface of the suction pad 23, whereby the substrate 100 is sucked. Further, the negative pressure maintaining electromagnetic valve is closed and the pump 32 and the suction pad 23 are not communicated with each other, so that the negative pressure is maintained and the state where the substrate 100 is sucked is maintained. On the other hand, when the exhaust solenoid valve is opened, the negative pressure generated on the suction surface of the suction pad 23 disappears, whereby the suction of the substrate 100 is released. Thereby, based on the control signal input from the control unit 30, the substrate 100 placed on the robot hand 21 is supported and released.
 イオナイザ33およびコンプレッサ34は、正イオンまたは/および負イオンを生成し、生成した正イオンまたは/および負イオンを気流に乗せて送出することにより、上述した放出孔25a,25bから正イオンまたは/および負イオンを含むイオン化された気体を放出させるためのイオン送出部に相当し、いずれも制御部30によってその駆動が制御される。具体的には、コンプレッサ34は、上述したロボットハンド21に設けられた通風路(たとえば図3に示す通風路25c参照)を介して放出孔25a,25bに接続されている。ここで、コンプレッサ34と放出孔25a,25bとの間には、図示しない電磁弁が配設されており、当該電磁弁は、制御部30によってその動作が制御される。 The ionizer 33 and the compressor 34 generate positive ions and / or negative ions, and send the generated positive ions or / and negative ions on an air stream, thereby sending positive ions or / and / or from the discharge holes 25a and 25b described above. It corresponds to an ion sending unit for releasing ionized gas containing negative ions, and the driving of each is controlled by the control unit 30. Specifically, the compressor 34 is connected to the discharge holes 25a and 25b via a ventilation path (for example, see the ventilation path 25c shown in FIG. 3) provided in the robot hand 21 described above. Here, an electromagnetic valve (not shown) is disposed between the compressor 34 and the discharge holes 25 a and 25 b, and the operation of the electromagnetic valve is controlled by the control unit 30.
 コンプレッサ34は、電磁弁が開放されてコンプレッサ34と放出孔25a,25bとが連通されることで放出孔25a,25bから外部に向けて圧縮気体を放出させる。一方、電磁弁が閉塞されてコンプレッサ34と放出孔25a,25bとが非連通とされることにより、放出孔25a,25bからの圧縮気体の放出が停止される。イオナイザ33は、上述した通風路の途中位置に設けられており、駆動することで正イオンまたは/および負イオンを生成する。これにより、制御部30から入力される制御信号に基づいて、放出孔25a,25bから基板100に向けてのイオン化された気体の放出および放出の停止が行なわれるとともに、放出孔25a,25bから放出されるイオン化された気体の流量および/またはイオン化された気体に含まれる正イオンまたは/および負イオンの量が可変に調節される。なお、イオナイザ33およびコンプレッサ34は、常時駆動した状態とされることが好ましく、そのように制御すれば、電磁弁の開放直後においてイオン化された気体を直ちに基板100に向けて吹き付けることが可能になる。なお、電磁弁が閉塞された状態においては、イオナイザ33およびコンプレッサ34を低速運転としてもよい。 The compressor 34 releases the compressed gas outward from the discharge holes 25a and 25b by opening the electromagnetic valve and communicating the compressor 34 with the discharge holes 25a and 25b. On the other hand, when the electromagnetic valve is closed and the compressor 34 and the discharge holes 25a and 25b are not communicated with each other, the discharge of the compressed gas from the discharge holes 25a and 25b is stopped. The ionizer 33 is provided in the middle of the above-described ventilation path, and generates positive ions and / or negative ions by driving. Thus, the ionized gas is released from the discharge holes 25a and 25b toward the substrate 100 based on the control signal input from the control unit 30, and the discharge is stopped, and the discharge is performed from the discharge holes 25a and 25b. The flow rate of the ionized gas and / or the amount of positive ions and / or negative ions contained in the ionized gas are variably adjusted. It is preferable that the ionizer 33 and the compressor 34 are always driven. If controlled in this way, the ionized gas can be immediately blown toward the substrate 100 immediately after the electromagnetic valve is opened. . In the state where the solenoid valve is closed, the ionizer 33 and the compressor 34 may be operated at a low speed.
 なお、コンプレッサ34の吸気口にHEPAフィルタ(High Efficiency Particulate Air Filter)等に代表される防塵フィルタを取付けることとすれば、通風路内への塵埃の進入を効果的に抑制することができ、放出孔25a,25bから放出されるイオン化された気体に塵埃が含まれることで基板100に当該塵埃が異物として付着してしまうことが防止できることになる。 If a dust-proof filter such as a HEPA filter (High Efficiency Particulate Air Filter) is attached to the intake port of the compressor 34, dust can be effectively prevented from entering the ventilation path and released. By including dust in the ionized gas discharged from the holes 25a and 25b, it is possible to prevent the dust from adhering to the substrate 100 as a foreign substance.
 記憶部35は、基板移載装置20に各種の動作を実行させるためのプログラムが予め記憶された部位であり、制御部30は、当該プログラムを読み出してこれに基づいて各機能ブロックを制御する。これにより、基板移載装置20は、状況に応じた動作を実行することになる。また、記憶部35は、後述する基板100のリフトオン時およびリフトオフ時において表面電位検出センサ24によって検出された情報を一時的に記憶したり、当該基板100のリフトオン時およびリフトオフ時におけるイオン送出部の動作条件や基板100の上昇速度または/および下降速度を記憶したりする部位でもある。 The storage unit 35 is a part in which a program for causing the substrate transfer apparatus 20 to execute various operations is stored in advance, and the control unit 30 reads the program and controls each functional block based on the program. Thereby, the substrate transfer device 20 performs an operation according to the situation. In addition, the storage unit 35 temporarily stores information detected by the surface potential detection sensor 24 when the substrate 100 described later is lifted on and lifted off, or the ion sending unit of the substrate 100 when the substrate 100 is lifted on and lifted off. It is also a part for storing operating conditions and the rising speed or / and the lowering speed of the substrate 100.
 制御部30は、表面電位検出センサ24によって検出された情報に基づいて各種の演算処理を行なうための演算部や、当該演算部における演算結果に基づいて各種の判断処理を行なう判断部等を含んでいる。当該演算部および判断部においては、たとえば後述する図6に示す制御フローにおける演算処理や判断処理が実行される。 The control unit 30 includes a calculation unit for performing various calculation processes based on information detected by the surface potential detection sensor 24, a determination unit for performing various determination processes based on calculation results in the calculation unit, and the like. It is out. In the calculation unit and the determination unit, for example, calculation processing and determination processing in a control flow shown in FIG.
 上述したように、制御部30は、各機能ブロックに電気的に接続されており、基板移載装置20の動作を全体として制御する。具体的には、制御部30は、上述したように、表面電位検出センサ24から出力される信号を受け付けたり、ロボットハンド駆動機構31、ポンプ32、イオナイザ33、コンプレッサ34、図示しない電磁弁等を駆動させるための各種信号を生成してこれを出力したり、記憶部35に記憶されたプログラムを読み出して実行したり、各種情報を記憶部に35に記憶させたりすることで、基板移載装置20の動作を全体として制御する。 As described above, the control unit 30 is electrically connected to each functional block, and controls the operation of the substrate transfer apparatus 20 as a whole. Specifically, as described above, the control unit 30 receives a signal output from the surface potential detection sensor 24, or includes a robot hand drive mechanism 31, a pump 32, an ionizer 33, a compressor 34, an electromagnetic valve (not shown), and the like. Generate and output various signals for driving, read and execute programs stored in the storage unit 35, and store various types of information in the storage unit 35, thereby transferring the substrate. 20 operations are controlled as a whole.
 なお、図4に示すように、基板移載装置20は、さらに基板移載装置20の動作状態や基板搬送時の平均タクト、基板面内における帯電量の分布を示すマップやヒストグラムデータ等の表示を行なう表示部36と、表面電位のスペック設定等の各種の操作を行なうための操作部37とをさらに備えている。これら表示部36および操作部37は、いずれも制御部30に電気的に接続され、それぞれ制御部30によってその表示動作が制御されたり、ユーザの命令やユーザが入力した情報等を制御部30に出力したりする。 As shown in FIG. 4, the substrate transfer apparatus 20 further displays a map, histogram data, and the like indicating the operation state of the substrate transfer apparatus 20, the average tact during the substrate transfer, and the distribution of the charge amount in the substrate surface. Is further provided with a display unit 36 and an operation unit 37 for performing various operations such as surface potential specification setting. The display unit 36 and the operation unit 37 are both electrically connected to the control unit 30, the display operation of each is controlled by the control unit 30, user commands, information input by the user, and the like to the control unit 30. Or output.
 図5Aないし図5Cは、本実施の形態における基板移載装置を用いた基板のリフトオフ動作を説明するための模式図である。次に、これら図5Aないし図5Cを参照して、本実施の形態における基板移載装置を用いた基板のリフトオフ動作について説明する。 FIGS. 5A to 5C are schematic diagrams for explaining the lift-off operation of the substrate using the substrate transfer apparatus in the present embodiment. Next, a substrate lift-off operation using the substrate transfer apparatus in the present embodiment will be described with reference to FIGS. 5A to 5C.
 図5Aに示すように、基板100がステージ10上に載置された状態においては、基板100の下面111の大部分がステージ10の載置面11に接触した状態にある。この状態において、基板100をリフトオフするためには、以下の手順が採られる。 As shown in FIG. 5A, when the substrate 100 is placed on the stage 10, most of the lower surface 111 of the substrate 100 is in contact with the placement surface 11 of the stage 10. In this state, in order to lift off the substrate 100, the following procedure is employed.
 まず、図5Bに示すように、ステージ10の載置面11に設けられた溝部12にロボットハンド21の支持部22が挿入され、この状態においてポンプ32に接続された電磁弁が開放される。これにより、基板100が吸着パッド23によって吸着保持され、基板100がロボットハンド21によって安定的に支持されることになる。 First, as shown in FIG. 5B, the support portion 22 of the robot hand 21 is inserted into the groove portion 12 provided on the mounting surface 11 of the stage 10, and in this state, the electromagnetic valve connected to the pump 32 is opened. As a result, the substrate 100 is sucked and held by the suction pad 23, and the substrate 100 is stably supported by the robot hand 21.
 次に、図5Cに示すように、ロボットハンド昇降機構が駆動されることによってロボットハンド21が図中矢印Z方向に沿って鉛直上方に移動させられる。これにより、基板100がステージ10から離脱して上昇することになり、当該動作に伴って基板100がステージ10からリフトオフされることになる。 Next, as shown in FIG. 5C, when the robot hand lifting mechanism is driven, the robot hand 21 is moved vertically upward along the arrow Z direction in the figure. As a result, the substrate 100 separates from the stage 10 and rises, and the substrate 100 is lifted off from the stage 10 in accordance with the operation.
 このとき、基板100の下面111には、剥離帯電に起因して電荷が帯電することになり、これに伴ってステージ10の載置面11には、基板100の下面111に帯電した電荷とは異なる極性の電荷が帯電することになる。その際、基板100の下面111の電荷の帯電量が、基板100の下面111とステージ10の載置面11との間の距離の関係においてある値を超えた場合(すなわち、基板100の下面111とステージ10の載置面11との間の電位差が所定の電位差以上となった場合)には、静電気放電が生じてしまうことになる。なお、基板100の下面111およびステージ10の載置面11のうちのいずれにプラスの電荷が帯電し、またいずれにマイナスの電荷が帯電するかは、ステージの材質等に代表される周囲環境条件によって変化する。 At this time, charges are charged on the lower surface 111 of the substrate 100 due to peeling charging, and accordingly, the charge charged on the lower surface 111 of the substrate 100 on the mounting surface 11 of the stage 10. Charges of different polarities will be charged. At that time, when the charge amount of the lower surface 111 of the substrate 100 exceeds a certain value in relation to the distance between the lower surface 111 of the substrate 100 and the mounting surface 11 of the stage 10 (that is, the lower surface 111 of the substrate 100). When the potential difference between the stage 10 and the mounting surface 11 of the stage 10 is equal to or greater than a predetermined potential difference), electrostatic discharge will occur. Note that which of the lower surface 111 of the substrate 100 and the mounting surface 11 of the stage 10 is charged with a positive charge and which is charged with a negative charge depends on the ambient environmental conditions represented by the material of the stage and the like. It depends on.
 ここで、本実施の形態における基板移載装置20にあっては、上述したように、ロボットハンド21の支持部22の上面22aに放出孔25aが、また一対の傾斜面22cの各々に放出孔25bが、それぞれ設けられている。したがって、基板100のリフトオフに際して、リフトオフ動作に先立ってあるいはリフトオフ動作と同時に、当該放出孔25a,25bからイオン化された気体の放出を開始することにより、基板100の支持部22と対向する部分においては、主として放出孔25aから放出されたイオン化された気体によって当該部分における基板100の下面111の帯電が中和されて除電され、基板100の隣り合う支持部22間に位置する部分においては、主として放出孔25bから放出されたイオン化された気体によって当該部分における基板100の下面111の帯電が中和されて除電される(図3および図5Aないし図5C等参照。なお、図3においては、放出されるイオン化された気体に正イオンおよび負イオンの両方が含まれている場合を模式的に表わしている)。 Here, in the substrate transfer apparatus 20 in the present embodiment, as described above, the discharge hole 25a is formed on the upper surface 22a of the support portion 22 of the robot hand 21, and the discharge hole is formed on each of the pair of inclined surfaces 22c. 25b are provided. Accordingly, when the substrate 100 is lifted off, before the lift-off operation or simultaneously with the lift-off operation, the release of the ionized gas from the discharge holes 25a and 25b is started, so that the portion facing the support portion 22 of the substrate 100 is The charge of the lower surface 111 of the substrate 100 in the portion is neutralized by the ionized gas mainly discharged from the discharge hole 25a, and the charge is neutralized. In the portion located between the adjacent support portions 22 of the substrate 100, the discharge is mainly performed. The ionized gas discharged from the hole 25b neutralizes the charge on the lower surface 111 of the substrate 100 in the portion, and the charge is removed (see FIG. 3 and FIGS. 5A to 5C, etc. Note that in FIG. If the ionized gas contains both positive and negative ions It represents schematically).
 その際、ロボットハンド21が上昇することにより、放出孔25bから放出されるイオン化された気体は、支持部22の傾斜面22cより斜め上方に向けて放出されることにより、ステージ10の載置面11と基板100の下面111との間に生じる隙間からステージ10と基板100との間に入り込み、当該隙間に沿って流動することで、基板100の隣り合う支持部22間に位置する部分に直接吹き付けられる。そのため、放出されたイオン化された気体は、図5C中において示す基板100の隣り合う支持部22間の略中央部である領域Aにまで達することになり、基板100の下面111の全面にわたって効果的に除電が行なわれることになる。 At that time, when the robot hand 21 is raised, the ionized gas discharged from the discharge hole 25 b is discharged obliquely upward from the inclined surface 22 c of the support portion 22, whereby the placement surface of the stage 10. 11 enters the space between the stage 10 and the substrate 100 through a gap formed between the lower surface 111 of the substrate 100 and flows along the gap, so that a portion located between the adjacent support portions 22 of the substrate 100 is directly applied. Be sprayed. Therefore, the released ionized gas reaches the region A which is a substantially central portion between the adjacent support portions 22 of the substrate 100 shown in FIG. 5C, and is effective over the entire lower surface 111 of the substrate 100. In this case, the charge is removed.
 なお、基板100が大型基板である場合には、基板100の隣り合う支持部22間に位置する部分に撓みが生じることになり、上述した基板100の上記領域A(図5C参照)が最も遅くステージ10から離脱することになる。ここで、基板100の下面111における電荷の蓄積は、基板100の上昇に従って、ステージに接触し続けている部分(最終的には上記領域A)の範囲内に集中し、その結果、静電気放電は、最も遅くステージ10から離脱する基板100の上記領域Aまたはその近傍において発生し易くなることになる。 In addition, when the board | substrate 100 is a large sized board | substrate, a bending will arise in the part located between the adjacent support parts 22 of the board | substrate 100, and the said area | region A (refer FIG. 5C) of the board | substrate 100 mentioned above is the slowest. It will leave the stage 10. Here, the accumulation of electric charges on the lower surface 111 of the substrate 100 is concentrated in the range of the portion that continues to contact the stage (finally, the region A) as the substrate 100 rises. It is likely to occur in the region A of the substrate 100 that is released from the stage 10 latest or in the vicinity thereof.
 しかしながら、上述したように、本実施の形態における基板移載装置20の如くの構成を採用することにより、基板100がステージ10から完全に離脱するまでの間において、既にステージ10から離脱した部分にイオン化された気体が吹き付けられるとともに、未だステージ10から離脱していない部分にもイオン化された気体がステージ10と基板100との間の隙間を介して吹き付けられることになる。したがって、基板100の上記領域Aにまでイオン化された気体が十分に行き渡ることになり、当該領域Aまたはその近傍においても確実に除電が行なわれることになり、基板100の下面111の電荷の蓄積を全体として大幅に抑制することが可能になる。 However, as described above, by adopting a configuration like the substrate transfer apparatus 20 in the present embodiment, until the substrate 100 is completely detached from the stage 10, the portion already detached from the stage 10 is used. While the ionized gas is sprayed, the ionized gas is also sprayed through a gap between the stage 10 and the substrate 100 even on a portion that has not yet separated from the stage 10. Therefore, the ionized gas sufficiently reaches the region A of the substrate 100, and the charge is surely removed even in the region A or in the vicinity thereof, so that the charge on the lower surface 111 of the substrate 100 is accumulated. As a whole, it becomes possible to greatly suppress.
 以上において説明したように、本実施の形態における基板移載装置20およびこれを備えた基板処理システム1とすることにより、基板100をリフトオフする際に基板100の下面111の全面にわたって効果的に除電が行なえることになるため、静電気放電をより確実にかつ効果的に防止することが可能になる。 As described above, by using the substrate transfer apparatus 20 and the substrate processing system 1 including the substrate transfer apparatus according to the present embodiment, it is possible to effectively neutralize the entire surface of the lower surface 111 of the substrate 100 when the substrate 100 is lifted off. Therefore, electrostatic discharge can be prevented more reliably and effectively.
 また、上述した本実施の形態における基板処理システム1にあっては、基板移載装置20に表面電位検出部としての複数の表面電位検出センサ24が設けられているため、基板処理装置の各々に別途これらを設ける必要がなく、装置構成を大幅に簡素化および小型化することができる。したがって、本実施の形態における基板処理システム1とすることにより、製造設備が複雑化および大型化することがなく、製造コストの低減が図られることになる。 Further, in the substrate processing system 1 according to the present embodiment described above, the substrate transfer apparatus 20 is provided with a plurality of surface potential detection sensors 24 as surface potential detection units. There is no need to provide these separately, and the apparatus configuration can be greatly simplified and downsized. Therefore, by using the substrate processing system 1 in the present embodiment, the manufacturing equipment is not complicated and enlarged, and the manufacturing cost can be reduced.
 ここで、基板100の下面111における電荷の帯電量およびその極性は、当該ステージ10が設置された基板処理装置において実施される処理の種類や、基板100の形状、サイズ、組成等によって異なるものの、一の基板処理装置において同種の基板(形状やサイズ、組成等が同じ基板)が処理される限りにおいては、ほぼ同じになる。したがって、本実施の形態の如くの基板処理システム1においては、基板100のリフトオフ時における基板100の下面111に生じる電荷の帯電量およびその極性は、それぞれ種類の異なる複数の基板処理装置毎に(すなわち、第1基板処理装置3、第2基板処理装置4および第3基板処理装置5毎に)同じになることになる。 Here, although the charge amount and the polarity of the charge on the lower surface 111 of the substrate 100 vary depending on the type of processing performed in the substrate processing apparatus in which the stage 10 is installed, the shape, size, composition, etc. of the substrate 100, As long as the same type of substrate (substrate having the same shape, size, composition, etc.) is processed in one substrate processing apparatus, the same is obtained. Therefore, in the substrate processing system 1 as in the present embodiment, the charge amount and the polarity of charges generated on the lower surface 111 of the substrate 100 when the substrate 100 is lifted off are different for each of a plurality of different types of substrate processing apparatuses ( That is, it becomes the same for every 1st substrate processing apparatus 3, the 2nd substrate processing apparatus 4, and the 3rd substrate processing apparatus 5.
 一方で、静電気放電が生じるか否かについて、基板100の上昇速度が深く関係することが知られている。上述したように、静電気放電が生じるか否かは、基板100の下面111とステージ10の載置面11との間の距離と、当該距離における基板100の下面111とステージ10の載置面11との間の電位差とによって決まる。ここで、この距離と電位差の関係に基板100の上昇速度が関係し、基板100の上昇速度を比較的速く設定した場合には、基板100の移動とともに変化する上記電位差が極端に増加してしまうことになり、基板100の上昇速度を比較的遅く設定した場合には、基板100の移動とともに変化する上記電位差の増加が抑制できることになる。 On the other hand, it is known that the rising speed of the substrate 100 is deeply related to whether or not electrostatic discharge occurs. As described above, whether or not electrostatic discharge occurs depends on the distance between the lower surface 111 of the substrate 100 and the mounting surface 11 of the stage 10 and the lower surface 111 of the substrate 100 and the mounting surface 11 of the stage 10 at the distance. And the potential difference between the two. Here, the relationship between the distance and the potential difference is related to the rising speed of the substrate 100, and when the rising speed of the substrate 100 is set relatively high, the potential difference that changes as the substrate 100 moves increases extremely. In other words, when the rising speed of the substrate 100 is set to be relatively slow, an increase in the potential difference that changes with the movement of the substrate 100 can be suppressed.
 当該観点に照らせば、基板100の上昇速度を十分に遅くすれば静電気放電の発生を確実に防止することができることになるものの、その反面、リフトオフに要するタクトが必要以上に長くなってしまい、生産効率の大幅な低下を招来してしまうことになる。そこで、本実施の形態における基板処理システム1およびこれに具備される基板移載装置20においては、後述する制御を行なうことにより、静電気放電の発生を防止しつつ生産効率の低下の防止を図っている。以下においては、この点について、図6および図7を参照して詳細に説明する。 In light of this point of view, if the rising speed of the substrate 100 is sufficiently slowed, the occurrence of electrostatic discharge can be surely prevented, but on the other hand, the tact required for lift-off becomes longer than necessary, and production This will cause a significant decrease in efficiency. In view of this, in the substrate processing system 1 and the substrate transfer apparatus 20 included in the substrate processing system 1 according to the present embodiment, the control described later is performed to prevent the production efficiency from being lowered while preventing the occurrence of electrostatic discharge. Yes. Hereinafter, this point will be described in detail with reference to FIGS. 6 and 7.
 図6は、本実施の形態における基板移載装置の制御部の制御フローを示す図であり、図7は、リフトオフ時における基板の下面の表面電位の変化を示すグラフである。なお、図6に示す制御フローは、一の基板処理装置について制御部が行なうリフトオフ動作に関する具体的な制御のみを抜き出してこれを制御フローとして図示したものである。 FIG. 6 is a diagram illustrating a control flow of the control unit of the substrate transfer apparatus according to the present embodiment, and FIG. 7 is a graph illustrating changes in the surface potential of the lower surface of the substrate during lift-off. The control flow shown in FIG. 6 shows only specific control related to the lift-off operation performed by the control unit for one substrate processing apparatus and is shown as a control flow.
 本実施の形態においては、表面電位検出センサ24を基板移載装置20に設け、リフトオフ時における表面電位検出センサ24の出力に基づいて、制御部30において基板100とステージ10との間に静電気放電が生じたか否かを判断し、この判断結果に基づいてその後に行なう同種の他の基板100の上昇速度を制御部30が決定するようにし、これにより静電気放電の発生を防止しつつ生産効率の低下の防止を図っている。 In the present embodiment, the surface potential detection sensor 24 is provided in the substrate transfer device 20, and electrostatic discharge is generated between the substrate 100 and the stage 10 in the control unit 30 based on the output of the surface potential detection sensor 24 at the time of lift-off. Based on the determination result, the controller 30 determines the subsequent rising speed of the other substrate 100 of the same type, thereby preventing the occurrence of electrostatic discharge and improving the production efficiency. We are trying to prevent the decline.
 具体的には、図6に示すように、制御部30は、まず記憶部35に記憶された上昇速度を読み出し、これを初回のリフトオフ動作における基板の上昇速度に設定する(ステップS1)。ここで、記憶部35に予め記憶された上昇速度としては、好ましくは経験的に静電気放電が生じると判断される速度よりも、僅かに早い速度とする。 Specifically, as shown in FIG. 6, the control unit 30 first reads the ascending speed stored in the storage unit 35, and sets this as the ascending speed of the substrate in the first lift-off operation (step S1). Here, the rising speed stored in advance in the storage unit 35 is preferably a slightly higher speed than the speed at which electrostatic discharge is determined to occur empirically.
 次に、制御部30は、リフトオフすべき基板が有るか否かを判断し(ステップS2)、リフトオフすべき基板が有ると判断した場合(ステップS2においてYESの場合)に、後述するステップS3に移行し、リフトオフすべき基板が無いと判断した場合(ステップS2においてNOの場合)に、一連の動作を終了する。なお、リフトオフすべき基板が有るか否かについては、適宜の位置に設けた基板検出センサ等を用いれば、その検出が可能である。 Next, the control unit 30 determines whether there is a substrate to be lifted off (step S2). When it is determined that there is a substrate to be lifted off (in the case of YES in step S2), the control unit 30 proceeds to step S3 described later. When it is determined that there is no substrate to be lifted off (NO in step S2), the series of operations is terminated. Whether or not there is a substrate to be lifted off can be detected by using a substrate detection sensor or the like provided at an appropriate position.
 ステップS3において、制御部30は、ロボットハンド昇降機構を駆動することでリフトオフ動作を行なう。その際、制御部30は、設定した上昇速度にて基板100を上昇させるとともに、上述した表面電位検出センサ24から入力される情報を取得し、これを時系列データとして記憶部35に一時的に記憶する。 In step S3, the control unit 30 performs a lift-off operation by driving the robot hand lifting mechanism. At that time, the control unit 30 raises the substrate 100 at the set ascending speed, acquires information input from the surface potential detection sensor 24 described above, and temporarily stores it in the storage unit 35 as time-series data. Remember.
 このとき、制御部30が、表面電位検出センサ24から入力される情報に基づいてイオン送出部であるイオナイザ33およびコンプレッサ34の駆動を制御するとともに、イオナイザ33およびコンプレッサ34に接続された電磁弁の駆動を制御して放出孔25a,25bから放出されるイオン化された気体の流量をおよび/またはイオン化された気体に含まれる正イオンまたは/および負イオンの量を可変に調節して最適化することとしてもよい。そのようにすれば、より確実に基板100の下面111の帯電を中和して除電することが可能になる。 At this time, the control unit 30 controls the driving of the ionizer 33 and the compressor 34 which are ion delivery units based on the information input from the surface potential detection sensor 24, and the solenoid valve connected to the ionizer 33 and the compressor 34 is controlled. To optimize the flow rate of ionized gas discharged from the discharge holes 25a and 25b by controlling the drive and / or variably adjusting the amount of positive ions and / or negative ions contained in the ionized gas. It is good. By doing so, it becomes possible to neutralize the charge on the lower surface 111 of the substrate 100 and eliminate the charge more reliably.
 次に、制御部30は、リフトオフ動作が完了した時点で記憶部35に一時的に記憶していた時系列データの読み込みを行い、読み込んだ時系列データに基づいてリフトオフ時に静電気放電が有ったか否かを判断する(ステップS4)。その際の制御部30の判断手法としては、たとえば以下の手法が利用できる。 Next, the control unit 30 reads the time-series data temporarily stored in the storage unit 35 at the time when the lift-off operation is completed, and whether there was an electrostatic discharge at the time of lift-off based on the read time-series data. It is determined whether or not (step S4). As a determination method of the control unit 30 at that time, for example, the following method can be used.
 図6に示すように、静電気放電が有った場合には、基板100のリフトオフ開始時刻t0から静電気放電が発生する時刻t1Aまでの間、基板100の下面111の表面電位は大きく上昇し、その後リフトオフ終了時刻t2Aまでの間、基板100の下面111の表面電位は下降する。ここで、静電気放電が発生した時刻t1A以降においては、その後極短時間の間に基板100の下面111の表面電位が大幅に下降する特徴的な変化が見られる。これは、静電気放電が発生することによって基板100とステージ10との間で電荷の移動が生じたためであり、当該表面電位の下降は、その後の表面電位の下降とその減少率(変化率)において十分に区別できるものである。 As shown in FIG. 6, when there is electrostatic discharge, the surface potential of the lower surface 111 of the substrate 100 greatly increases from the lift-off start time t0 of the substrate 100 to the time t1 A when the electrostatic discharge occurs, during subsequent to lift-off the end time t2 a, the surface potential of the lower surface 111 of the substrate 100 is lowered. Here, after time t1 A when the electrostatic discharge has occurred, a characteristic change is seen in which the surface potential of the lower surface 111 of the substrate 100 drops significantly in a very short time thereafter. This is because charge transfer occurs between the substrate 100 and the stage 10 due to the occurrence of electrostatic discharge. The decrease in the surface potential is caused by the subsequent decrease in the surface potential and the decrease rate (change rate). It can be distinguished sufficiently.
 一方、静電気放電が無かった場合には、基板100のリフトオフ開始時刻t0からリフトオフ終了時刻t2Bまでの間、基板100の下面111の表面電位は、静電気放電が有った場合に比べてなだらかに上昇してその後なだらかに下降する。ここで、基板100の下面111の表面電位のピーク時(時刻t1B)の直後においても、静電気放電が有った場合の如くの上述した表面電位の特徴的な変化は見られず、その減少率(変化率)の急激な変化は見られない。 On the other hand, when the electrostatic discharge was not, during the lift-off start time t0 of the substrate 100 to lift off the end time t2 B, the surface potential of the lower surface 111 of the substrate 100, gently as compared with the case where there is electrostatic discharge It rises and then falls gently. Here, immediately after the peak of the surface potential of the lower surface 111 of the substrate 100 (time t1 B ), the above-described characteristic change of the surface potential as in the case of electrostatic discharge is not observed, and the decrease There is no sudden change in rate (rate of change).
 したがって、制御部30において、複数の表面電位検出センサ24を用いて取得した時系列データをそれぞれ時間で微分することで減少率(変化率)を算出し、予め定めた減少率(変化率)の閾値(当該閾値は経験的に設定すればよい)と実際に算出された減少率(変化率)とを比較する等の演算処理および比較処理を行なうことにより、リフトオフ時において静電気放電が有ったか否かを判断することが可能になる。なお、静電気放電は、一般的に局所的に発生する場合が多く、上記判断においては、複数の表面電位検出センサ24によって取得された時系列データのすべてについての判断を行い、そのうちのいずれか1つに静電気放電が有ったことを示すデータが含まれている場合に静電気放電があったと判断すればよい。 Therefore, the control unit 30 calculates the reduction rate (change rate) by differentiating the time series data acquired by using the plurality of surface potential detection sensors 24 with respect to time, and the predetermined reduction rate (change rate) is obtained. Whether there was electrostatic discharge during lift-off by performing arithmetic processing and comparison processing such as comparing the threshold (the threshold may be set empirically) and the actually calculated decrease rate (change rate) It becomes possible to determine whether or not. In general, electrostatic discharge often occurs locally, and in the above determination, all the time-series data acquired by the plurality of surface potential detection sensors 24 are determined, and one of them is selected. It may be determined that there has been electrostatic discharge when data indicating that there has been electrostatic discharge is included.
 次に、図6に示すように、ステップS4において静電気放電が有ったと判断した場合(ステップS4においてYESの場合)には、制御部30は、リフトオフ動作における基板の上昇速度を再設定する(ステップS5)。その際、制御部30は、再設定した上昇速度を記憶部35に記憶させ、その後ステップS2に戻る。ここで、再設定する基板の上昇速度としては、前回のリフトオフ動作における基板の上昇速度よりも遅い速度とすればよく、たとえば前回のリフトオフ動作における基板の上昇速度の9割の速度にする等、どの程度遅く再設定するかは適宜決定すればよい。なお、当該上昇速度の減速については、記憶部35に記憶されたプログラムによって決定され、当該プログラムを適宜変更することで自由にその設定が可能となる。 Next, as shown in FIG. 6, when it is determined in step S4 that there has been electrostatic discharge (in the case of YES in step S4), the control unit 30 resets the substrate rising speed in the lift-off operation ( Step S5). In that case, the control part 30 memorize | stores the reset ascending speed in the memory | storage part 35, and returns to step S2 after that. Here, the rising speed of the substrate to be reset may be a speed slower than the rising speed of the substrate in the previous lift-off operation, for example, 90% of the rising speed of the substrate in the previous lift-off operation, How late the resetting may be determined as appropriate. The deceleration of the ascending speed is determined by a program stored in the storage unit 35, and can be freely set by appropriately changing the program.
 一方、ステップS4において静電気放電が無かったと判断した場合(ステップS4においてNOの場合)には、制御部30は、リフトオフ動作における基板の上昇速度の再設定を行なうことなく前回のリフトオフ動作における基板の上昇速度を維持し(ステップS6)、その後ステップS2に戻る。 On the other hand, if it is determined in step S4 that there is no electrostatic discharge (NO in step S4), control unit 30 does not reset the substrate rising speed in the lift-off operation, and does not reset the substrate in the previous lift-off operation. The rising speed is maintained (step S6), and then the process returns to step S2.
 なお、上記制御フローとすることにより、制御部30は、初回を除く2回目以降のリフトオフ動作(ステップS3)において、ステップS5において再設定された基板の上昇速度か、あるいはステップS6において維持された基板の上昇速度のいずれかを記憶部35から読み出してこれを当該リフトオフ動作の際の基板の上昇速度に設定することになる。 By using the control flow described above, the control unit 30 maintains the substrate rising speed reset in step S5 or maintained in step S6 in the second and subsequent lift-off operations (step S3) except for the first time. Any one of the rising speeds of the substrate is read from the storage unit 35, and this is set as the rising speed of the substrate in the lift-off operation.
 以上において説明した制御フローを採用することにより、制御部30は、表面電位検出センサ24にて検出された、一の基板を所定の上昇速度にて上昇させた場合に生じる当該一の基板の下面の表面電位の変化に基づき、その後に上昇させる同種の他の基板の上昇速度を決定することになる。より詳細には、制御部30は、表面電位検出センサ24にて検出された、一の基板を所定の上昇速度にて上昇させた場合に生じる当該一の基板の下面の表面電位の変化に基づいてその間における静電気放電の有無を判断し、静電気放電が有ったと判断した場合に、次に上昇させる同種の他の基板の上昇速度を下げ、静電気放電が無かったと判断した場合に、次に上昇させる同種の他の基板の上昇速度を上記所定の上昇速度に維持するように制御することになる。 By adopting the control flow described above, the control unit 30 causes the lower surface of the one substrate to be generated when the one substrate is raised at a predetermined rising speed, which is detected by the surface potential detection sensor 24. Based on the change in surface potential, the rising speed of another substrate of the same type to be subsequently raised is determined. More specifically, the control unit 30 is based on a change in the surface potential of the lower surface of the one substrate that is detected when the one substrate is raised at a predetermined rising speed, which is detected by the surface potential detection sensor 24. In the meantime, the presence or absence of electrostatic discharge is determined. When it is determined that there is electrostatic discharge, the rising speed of another substrate of the same type to be raised next is reduced, and when it is determined that there is no electrostatic discharge, the next increase Control is performed so that the rising speed of another substrate of the same type to be maintained is maintained at the predetermined rising speed.
 したがって、複数の基板100を順次リフトオフする場合において、最初の幾つかの基板については、静電気放電が生じるものの、その後にリフトオフする基板については、静電気放電が生じずかつ静電気放電が生じない範囲で可能な限り早い速度での基板のリフトオフが可能になる。そのため、本実施の形態における基板処理システム1およびこれに具備される基板移載装置20を採用することにより、歩留まりの悪化を最小限に抑制しつつリフトオフに要するタクトを短縮することが可能になり、静電気放電をより確実にかつ効果的に防止できる基板移載装置およびこれを備えた基板処理システムとすることができる。 Therefore, in the case where the plurality of substrates 100 are lifted off sequentially, the first several substrates may be electrostatically discharged, but the substrates that are subsequently lifted off may be within a range in which electrostatic discharge does not occur and electrostatic discharge does not occur. The substrate can be lifted off as fast as possible. Therefore, by employing the substrate processing system 1 and the substrate transfer apparatus 20 provided in the present embodiment, it is possible to reduce the tact required for lift-off while minimizing the deterioration of the yield. Thus, a substrate transfer apparatus and a substrate processing system including the substrate transfer apparatus that can more reliably and effectively prevent electrostatic discharge can be provided.
 加えて、上述した本実施の形態における基板処理システム1にあっては、制御部30が当該基板処理システム1に含まれる複数の基板処理装置のそれぞれについて個別に基板100の上昇速度を可変に調節可能であるため、複数の基板処理装置のそれぞれについて基板100の上昇速度を最適化して処理を行なうことが可能になる。また、上述した本実施の形態における基板処理システム1にあっては、上記のように複数の基板処理装置のそれぞれについて個別に基板100の上昇速度を可変に調節するこが可能ではあるが、複数の基板処理装置の各々についてリフトオフ動作時における基板の帯電量がほぼ同じと想定される場合には、複数の基板処理装置のうちの一の基板処理装置について基板の上昇速度を調節して最適化し、他の基板処理装置を含むすべての基板処理装置について当該最適化後の基板の上昇速度を適用するように構成してもよい。 In addition, in the substrate processing system 1 according to the present embodiment described above, the control unit 30 variably adjusts the rising speed of the substrate 100 individually for each of the plurality of substrate processing apparatuses included in the substrate processing system 1. Therefore, it is possible to perform processing while optimizing the rising speed of the substrate 100 for each of the plurality of substrate processing apparatuses. Further, in the substrate processing system 1 according to the present embodiment described above, it is possible to variably adjust the rising speed of the substrate 100 individually for each of the plurality of substrate processing apparatuses as described above. If the substrate charge amount during the lift-off operation is assumed to be approximately the same for each of these substrate processing apparatuses, the substrate rising speed of one of the plurality of substrate processing apparatuses is adjusted and optimized. The substrate ascending speed after the optimization may be applied to all the substrate processing apparatuses including other substrate processing apparatuses.
 なお、制御部30による静電気放電が有ったか否かの具体的な判断手法については、上記において例示した判断手法以外にも様々な手法の適用が考えられ、これに限定されるものではない。たとえば、図7に示すように、基板100の上昇速度を徐々に下げていく過程において、静電気放電が無かったと最初に判断された際の基板100の下面111の表面電位のピーク値VBを閾値として採用し、その後に上昇させる同種の他の基板について、当該基板のリフトオフ時に検出される表面電位のピーク値と当該閾値とを比較することで静電気放電の有無を判断することとしてもよい。また、静電気放電の発生をより確実に防止するためには、マージンを与えるべく、たとえば上記ピーク値VBの9割の値を閾値として採用することとしてもよい。なお、時によっては、僅かな表面電位の差で静電気放電の有無が決まる場合も想定されるため、任意の値に閾値をマニュアル設定で微調整可能に構成しておけば、使い勝手のよい装置とすることもできる。 Note that various methods other than the above-described determination method can be applied to the specific determination method for determining whether or not there has been electrostatic discharge by the control unit 30, and the present invention is not limited to this. For example, as shown in FIG. 7, in the process of gradually decreasing the rising speed of the substrate 100, the peak value V B of the surface potential of the lower surface 111 of the substrate 100 when it is first determined that there is no electrostatic discharge is a threshold value. As for other substrates of the same type that are adopted and then raised, the presence or absence of electrostatic discharge may be determined by comparing the peak value of the surface potential detected when the substrate is lifted off with the threshold value. In order to more reliably prevent the occurrence of electrostatic discharge, for example, 90% of the peak value V B may be used as a threshold value in order to provide a margin. In some cases, it is assumed that the presence or absence of electrostatic discharge is determined by a slight difference in surface potential.Therefore, if the threshold is set to an arbitrary value and can be fine-tuned manually, it is easy to use. You can also
 また、上述した図6に示す制御フローにおいては、ステップS6において、リフトオフ動作における基板の上昇速度の再設定を行なうことなく前回のリフトオフ動作における基板の上昇速度を維持することとした場合を例示したが、マージンを与えるべく、ステップS5において最初に静電気放電が無いと判断された直後においてのみ、ステップS6において、たとえば前回のリフトオフ動作における基板の上昇速度の9割の速度にする等、上昇速度を再設定することとしてもよい。 In the control flow shown in FIG. 6 described above, the case where the substrate rising speed in the previous lift-off operation is maintained without resetting the substrate rising speed in the lift-off operation in step S6 is exemplified. However, in order to give a margin, the rising speed is set to be 90% of the rising speed of the substrate in the previous lift-off operation in step S6 only immediately after it is first determined that there is no electrostatic discharge in step S5. It may be reset.
 また、上述した図6に示す制御フローは、予め上昇速度を静電気放電が生じると判断される速度よりも、僅かに早い速度に設定しておき、これを徐々に下げることで上昇速度の最適化を図るように構成した場合のものであるが、これとは異なる制御フローを採用することも可能である。具体的には、たとえば予め上昇速度を静電気放電が生じないと判断される速度よりも、僅かに遅い速度に設定しておき、これを徐々に上げることで上昇速度の最適化を図ることも可能である。この場合には、上昇速度の最適化の段階においてタクトが十分に短縮できないものの、最適化に際して静電気放電が生じてしまう基板を1つに限定することができ、歩留まりの低下を確実に防止することができる。 In the control flow shown in FIG. 6 described above, the rising speed is set to a speed that is slightly higher than the speed at which electrostatic discharge is determined to occur in advance, and the rising speed is optimized by gradually lowering this speed. However, a control flow different from this can be adopted. Specifically, for example, it is possible to optimize the ascending speed by setting the ascending speed to a speed slightly slower than the speed at which it is determined that electrostatic discharge does not occur in advance. It is. In this case, although the tact cannot be sufficiently shortened in the stage of optimization of the rising speed, it is possible to limit the number of substrates that cause electrostatic discharge during optimization to one and to reliably prevent the yield from being lowered. Can do.
 加えて、上記においては、基板のリフトオフ動作に本発明を適用した場合を例示して説明を行なったが、基板のリフトオン動作にも当然に本発明を適用することが可能である。その場合にも、ロボットハンド21が下降する際に、放出孔25bから放出されるイオン化された気体が、支持部22の傾斜面22cより斜め上方に向けて放出されることにより、ステージ10の載置面11と基板100の下面111との間に生じる隙間からステージ10と基板100との間に入り込み、当該隙間に沿って流動することで、基板100の隣り合う支持部22間に位置する部分および当該基板100に対向して位置するステージ10の載置面11に直接吹き付けられ、基板100の下面111の全面とステージ10の載置面11の全面とにわたって効果的に除電が行なわれることになり、静電気放電の発生を抑制することが可能になる。 In addition, in the above description, the case where the present invention is applied to the lift-off operation of the substrate has been described as an example, but the present invention can naturally be applied to the lift-on operation of the substrate. Also in this case, when the robot hand 21 descends, the ionized gas discharged from the discharge hole 25b is discharged obliquely upward from the inclined surface 22c of the support portion 22, and thus the stage 10 is mounted. A portion located between the adjacent support portions 22 of the substrate 100 by entering between the stage 10 and the substrate 100 through a gap generated between the mounting surface 11 and the lower surface 111 of the substrate 100 and flowing along the gap. In addition, it is directly sprayed on the mounting surface 11 of the stage 10 located opposite to the substrate 100, and the static elimination is effectively performed over the entire lower surface 111 of the substrate 100 and the entire mounting surface 11 of the stage 10. Thus, the occurrence of electrostatic discharge can be suppressed.
 また、その場合には、制御部30が、表面電位検出センサ24にて検出された、一の基板を所定の下降速度にて下降させた場合に生じる当該一の基板の下面の表面電位の変化に基づき、その後に下降させる同種の他の基板の下降速度を決定することが好ましい。より詳細には、制御部30が、表面電位検出センサ24にて検出された、一の基板を所定の下降速度にて下降させた場合に生じる当該一の基板の下面の表面電位の変化に基づいてその間における静電気放電の有無を判断し、静電気放電が有ったと判断した場合に、次に下降させる同種の他の基板の下降速度を下げ、静電気放電が無かったと判断した場合に、次に下降させる同種の他の基板の下降速度を上記所定の下降速度に維持するか、あるいは上記所定の下降速度に所定のマージンが付与された下降速度に設定することが好ましい。 In that case, the change in the surface potential of the lower surface of the one substrate, which occurs when the control unit 30 lowers the one substrate at a predetermined lowering speed, which is detected by the surface potential detection sensor 24. It is preferable to determine the descending speed of another substrate of the same type to be subsequently lowered based on the above. More specifically, based on the change in the surface potential of the lower surface of the one substrate that occurs when the control unit 30 lowers the one substrate at a predetermined lowering speed detected by the surface potential detection sensor 24. In the meantime, the presence or absence of electrostatic discharge is determined. When it is determined that there is electrostatic discharge, the descending speed of the other board of the same type to be lowered next is lowered, and when it is determined that there is no electrostatic discharge, the next descending It is preferable to maintain the descending speed of another substrate of the same type to be the predetermined descending speed or to set the descending speed obtained by adding a predetermined margin to the predetermined descending speed.
 上述した本実施の形態においては、図2および図3に示すように、ロボットハンド21の支持部22に傾斜面22cを設けて当該傾斜面22cに放出孔25bを設けることにより、斜め上方に向けてイオン化された気体が放出されるように構成した場合を例示して説明を行なったが、放出孔25bおよびこれが設けられる支持部22の構成は、当該構成に限定されるものではない。すなわち、イオン化された気体が、ロボットハンドに設けられた放出孔を介して、ロボットハンドによって支持された基板の隣り合う支持部間に位置する部分に向けて直接吹き付けられるように構成されているのであれば、当該放出孔およびこれが設けられる支持部の構成は、どのような構成とされていてもよい。 In the above-described embodiment, as shown in FIGS. 2 and 3, the inclined surface 22c is provided in the support portion 22 of the robot hand 21, and the discharge hole 25b is provided in the inclined surface 22c. However, the configuration of the discharge hole 25b and the support portion 22 provided with the discharge hole 25b is not limited to the above configuration. That is, since the ionized gas is directly blown toward the portion located between the adjacent support portions of the substrate supported by the robot hand through the discharge hole provided in the robot hand. If there is any configuration, the configuration of the discharge hole and the support portion provided with the discharge hole may be any configuration.
 図8は、上述した本発明の実施の形態の変形例に係る基板移載装置のロボットハンドの支持部の模式断面図である。図8に示す変形例に係る基板移載装置のロボットハンド21においては、支持部22が傾斜面を有しておらず、上面22aおよび当該上面22aに連続する一対の側面22bのみを有している。この場合にも、たとえば図8に示すように、一対の側面22bのそれぞれに放出孔25bを設け、当該放出孔25bに連続する部分の通風路25cを傾斜配置することとすれば、当然に放出孔25bから放出されるイオン化された気体の放出方向が斜め上方となる。 FIG. 8 is a schematic cross-sectional view of the support portion of the robot hand of the substrate transfer apparatus according to the modification of the embodiment of the present invention described above. In the robot hand 21 of the substrate transfer apparatus according to the modification shown in FIG. 8, the support portion 22 does not have an inclined surface, and has only an upper surface 22a and a pair of side surfaces 22b continuous to the upper surface 22a. Yes. Also in this case, for example, as shown in FIG. 8, if a discharge hole 25b is provided in each of the pair of side surfaces 22b, and a portion of the ventilation passage 25c continuous to the discharge hole 25b is inclined, the discharge is naturally performed. The discharge direction of the ionized gas discharged from the hole 25b is obliquely upward.
 また、その図示は省略するが、ロボットハンドの支持部からイオン化された気体が旋回流として放出されるように構成した場合にも、イオン化された気体が、ロボットハンドに設けられた放出孔から、ロボットハンドによって支持された基板の隣り合う支持部間に位置する部分に向けて直接吹き付けられるように構成することが可能である。さらには、その図示は省略するが、吸着パッド23としてベルヌーイ式の吸着パッドを利用することとすれば、吸着面に負圧を生じさせるためのエア系と、イオン化された気体を放出させるためのエア系とを兼用させることも可能であり、その場合にも兼用させたエア系から放出されるイオン化された気体が、ロボットハンドによって支持された基板の隣り合う支持部間に位置する部分に向けて直接吹き付けられるように構成することが可能である。 Although illustration thereof is omitted, even when the ionized gas is discharged from the support portion of the robot hand as a swirling flow, the ionized gas is discharged from the discharge hole provided in the robot hand. It is possible to configure such that the substrate is directly sprayed toward a portion located between adjacent support portions of the substrate supported by the robot hand. Further, although illustration thereof is omitted, if a Bernoulli-type suction pad is used as the suction pad 23, an air system for generating a negative pressure on the suction surface and an ionized gas are released. It is also possible to share the air system, and in that case, the ionized gas released from the combined air system is directed to the part located between the adjacent support parts of the substrate supported by the robot hand. Can be configured to be sprayed directly.
 このように、イオン化された気体がロボットハンドによって支持された基板の隣り合う支持部間に位置する部分に向けて直接吹き付けられることを可能にする具体的な構成としては、様々な構成が想定され、上述した本発明の実施の形態における構成に限定されるものではない。 As described above, various configurations are assumed as the specific configuration that allows the ionized gas to be directly sprayed toward the portion located between the adjacent support portions of the substrate supported by the robot hand. The configuration in the embodiment of the present invention described above is not limited.
 なお、以上において説明した本発明の実施の形態およびその変形例における基板移載装置は、新規に設置される製造設備でその利用が可能になるばかりではなく、既存の製造設備においてもその利用が可能なものである。特に、自走式の基板移載装置とすれば、新旧を問わず製造設備のあらゆる場所においてその利用が可能となり、汎用性の高いものとすることができる。 Note that the substrate transfer apparatus in the embodiment of the present invention described above and its modification example can be used not only in newly installed manufacturing equipment but also in existing manufacturing equipment. It is possible. In particular, if a self-propelled substrate transfer device is used, it can be used in any place of manufacturing equipment regardless of whether it is new or old, and can be highly versatile.
 また、以上において説明した本発明の実施の形態およびその変形例における基板移載装置を製造設備に組み込むこととすれば、当該製造設備において基板にどのタイミングで(どの工程において)基板のどの部分(箇所)に帯電が生じやすいか、そのポイントを調査することも可能になる。したがって、当該調査を行なった後に何らかのESD対策を施した場合にも、上述した本発明の実施の形態およびその変形例における基板移載装置を利用することにより、当該対策が有効であるか否かの診断を行なうことができる。 Further, if the substrate transfer apparatus according to the embodiment of the present invention and the modification thereof described above is incorporated into a manufacturing facility, at what timing (in which process) the substrate (which step) It is also possible to investigate whether or not charging is likely to occur at a location). Therefore, even if some ESD countermeasures are taken after the investigation, whether or not the countermeasures are effective by using the substrate transfer apparatus in the embodiment of the present invention and the modification thereof described above. Can be diagnosed.
 また、以上において説明した本発明の実施の形態およびその変形例における基板移載装置にあっては、基板を1枚毎にその搬送速度を可変に調節して搬送することが可能になるため、より好ましくは、当該基板移載装置に各搬送工程に要する平均タクト等を自動的に算出する機能をあわせ持たせることが好ましい。このように構成すれば、搬送工程毎に生産性を確認することが可能になる。 Further, in the substrate transfer apparatus according to the embodiment of the present invention and the modification thereof described above, it is possible to variably adjust the transport speed of each substrate, so that it can be transported. More preferably, the substrate transfer apparatus is preferably provided with a function of automatically calculating an average tact required for each transfer process. If comprised in this way, it will become possible to confirm productivity for every conveyance process.
 このように、今回開示した上記実施の形態およびその変形例はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は請求の範囲によって画定され、また請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 As described above, the above-described embodiment and modifications thereof disclosed herein are illustrative in all respects and are not restrictive. The technical scope of the present invention is defined by the scope of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 基板処理システム、2 基板搬送カセット、3 第1基板処理装置、4 第2基板処理装置、5 第3基板処理装置、10 ステージ、11 載置面、12 溝部、20 基板移載装置、21 ロボットハンド、22 支持部、22a 上面、22b 側面、22c 傾斜面、23 吸着パッド、24 表面電位検出センサ、25a,25b 放出孔、25c 通風路、30 制御部、31 ロボットハンド駆動機構、32 ポンプ、33 イオナイザ、34 コンプレッサ、35 記憶部、36 表示部、37 操作部、100 基板、111 下面。 1. Substrate processing system, 2. Substrate transport cassette, 3. First substrate processing apparatus, 4. Second substrate processing apparatus, 5. Third substrate processing apparatus, 10. Stage, 11. Placement surface, 12. Groove, 20. Substrate transfer apparatus, 21. Robot Hand, 22 support part, 22a upper surface, 22b side surface, 22c inclined surface, 23 suction pad, 24 surface potential detection sensor, 25a, 25b discharge hole, 25c ventilation path, 30 control part, 31 robot hand drive mechanism, 32 pump, 33 Ionizer, 34 compressor, 35 storage unit, 36 display unit, 37 operation unit, 100 substrate, 111 lower surface.

Claims (6)

  1.  複数の基板を順次上昇および下降させることでこれら基板を順次移載する基板移載装置であって、
     互いに並行して位置する複数の支持部(22)を有し、基板の下方に挿入されることで基板を支持可能なロボットハンド(21)と、
     前記ロボットハンド(21)を昇降させるためのロボットハンド昇降機構(31)と、
     正イオンまたは/および負イオンを生成し、生成した正イオンまたは/および負イオンを気流に乗せて送出するイオン送出部(33,34)とを備え、
     前記支持部(22)には、前記ロボットハンド(21)にて基板を支持した状態において、前記イオン送出部(33,34)によって送出された正イオンまたは/および負イオンを含む気流を、支持した基板の隣り合う前記支持部(22)間に位置する部分に向けて直接吹き付けるための放出孔(25b)が設けられている、基板移載装置。
    A substrate transfer apparatus that sequentially transfers a plurality of substrates by raising and lowering a plurality of substrates,
    A robot hand (21) having a plurality of support portions (22) positioned in parallel to each other and capable of supporting the substrate by being inserted below the substrate;
    A robot hand lifting mechanism (31) for lifting and lowering the robot hand (21);
    An ion sending part (33, 34) for generating positive ions and / or negative ions and sending the generated positive ions and / or negative ions on an air stream;
    In the state where the substrate is supported by the robot hand (21), the support part (22) supports an air flow containing positive ions and / or negative ions sent out by the ion sending part (33, 34). A substrate transfer apparatus provided with a discharge hole (25b) for direct spraying toward a portion located between the support portions (22) adjacent to each other.
  2.  支持した基板の隣り合う前記支持部(22)間に位置する部分に対向するように、前記放出孔(25b)が前記支持部(22)に傾斜して設けられている、請求項1に記載の基板移載装置。 The said discharge | release hole (25b) is inclined and provided in the said support part (22) so that it may oppose the part located between the said support parts (22) adjacent to the supported board | substrate. Substrate transfer device.
  3.  前記支持部(22)は、上面および側面に連続する傾斜面(22c)を有し、
     前記放出孔(25b)が、前記傾斜面(22c)に設けられている、請求項2に記載の基板移載装置。
    The support portion (22) has an inclined surface (22c) continuous to the upper surface and the side surface,
    The substrate transfer apparatus according to claim 2, wherein the discharge hole (25b) is provided in the inclined surface (22c).
  4.  前記ロボットハンド(21)に設けられ、前記ロボットハンド(21)にて基板を支持した状態において支持した基板の下面の表面電位を検出可能な表面電位検出部(24)と、
     前記イオン送出部(33,34)の駆動を制御することで送出される気流の流量を可変に調節可能な制御部(30)とをさらに備え、
     前記制御部(30)が、前記表面電位検出部(24)にて検出された基板の下面の表面電位の情報に基づいて前記イオン送出部(33,34)の駆動を制御する、請求項1から3のいずれかに記載の基板移載装置。
    A surface potential detector (24) provided in the robot hand (21) and capable of detecting the surface potential of the lower surface of the substrate supported in a state where the substrate is supported by the robot hand (21);
    A control unit (30) that can variably adjust the flow rate of the airflow sent by controlling the driving of the ion sending unit (33, 34),
    The said control part (30) controls the drive of the said ion sending part (33,34) based on the information of the surface potential of the lower surface of the board | substrate detected by the said surface potential detection part (24). 4. The substrate transfer apparatus according to any one of items 1 to 3.
  5.  前記制御部(30)が、前記ロボットハンド昇降機構(31)の駆動を制御することで基板の上昇速度または/および下降速度を可変に調節可能であり、前記表面電位検出部(24)にて検出された、一の基板を所定の上昇速度または/および下降速度にて上昇または/および下降させた場合に生じる当該一の基板の下面の表面電位の変化に基づき、その後に上昇または/および下降させる同種の他の基板の上昇速度または/および下降速度を決定する、請求項1から4のいずれかに記載の基板移載装置。 The controller (30) can variably adjust the ascending speed and / or descending speed of the substrate by controlling the driving of the robot hand lifting mechanism (31), and the surface potential detector (24) Based on the detected change in the surface potential of the lower surface of the one substrate that occurs when the one substrate is raised or lowered at a predetermined rising speed and / or lowering speed, it is subsequently raised or / and lowered The substrate transfer apparatus according to claim 1, wherein an ascending speed and / or a descending speed of another substrate of the same type is determined.
  6.  請求項1から5のいずれかに記載の基板移載装置(20)と、
     基板を処理するための複数の基板処理装置(3,4,5)とを備え、
     前記基板移載装置(20)が、前記複数の基板処理装置(3,4,5)に基板を順次搬入および搬出するための部位として構成されている、基板処理システム。
    The substrate transfer device (20) according to any one of claims 1 to 5,
    A plurality of substrate processing apparatuses (3, 4, 5) for processing a substrate;
    The substrate processing system, wherein the substrate transfer device (20) is configured as a part for sequentially loading and unloading substrates to and from the plurality of substrate processing devices (3, 4, 5).
PCT/JP2011/074137 2010-10-27 2011-10-20 Substrate transfer device and substrate processing system provided with same WO2012056985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-240523 2010-10-27
JP2010240523 2010-10-27

Publications (1)

Publication Number Publication Date
WO2012056985A1 true WO2012056985A1 (en) 2012-05-03

Family

ID=45993697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074137 WO2012056985A1 (en) 2010-10-27 2011-10-20 Substrate transfer device and substrate processing system provided with same

Country Status (1)

Country Link
WO (1) WO2012056985A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104108605A (en) * 2014-07-08 2014-10-22 深圳市华星光电技术有限公司 Glass substrate taking and placing device
CN106507572A (en) * 2016-10-31 2017-03-15 京东方科技集团股份有限公司 A kind of baseplate carrier and base plate processing device
CN109755169A (en) * 2017-11-08 2019-05-14 台湾积体电路制造股份有限公司 Chip carries fork, system for manufacturing semiconductor device and chip transportation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213445A (en) * 1995-02-03 1996-08-20 Hitachi Ltd Method and apparatus for receiving articles
JP2001060609A (en) * 1999-08-20 2001-03-06 Tokyo Electron Ltd Substrate transfer device and substrate treating system
JP2002026110A (en) * 2000-07-07 2002-01-25 Dainippon Printing Co Ltd Substrate-carrying arm with destaticizing function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213445A (en) * 1995-02-03 1996-08-20 Hitachi Ltd Method and apparatus for receiving articles
JP2001060609A (en) * 1999-08-20 2001-03-06 Tokyo Electron Ltd Substrate transfer device and substrate treating system
JP2002026110A (en) * 2000-07-07 2002-01-25 Dainippon Printing Co Ltd Substrate-carrying arm with destaticizing function

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104108605A (en) * 2014-07-08 2014-10-22 深圳市华星光电技术有限公司 Glass substrate taking and placing device
US9452536B2 (en) 2014-07-08 2016-09-27 Shenzhen China Star Optoelectronics Technology Co., Ltd. Pick-and-place device for glass substrate
CN106507572A (en) * 2016-10-31 2017-03-15 京东方科技集团股份有限公司 A kind of baseplate carrier and base plate processing device
CN106507572B (en) * 2016-10-31 2018-06-08 京东方科技集团股份有限公司 A kind of baseplate carrier and base plate processing device
CN109755169A (en) * 2017-11-08 2019-05-14 台湾积体电路制造股份有限公司 Chip carries fork, system for manufacturing semiconductor device and chip transportation method
CN109755169B (en) * 2017-11-08 2022-11-22 台湾积体电路制造股份有限公司 Chip carrying fork, semiconductor device manufacturing system and chip conveying method

Similar Documents

Publication Publication Date Title
TWI457987B (en) Transport chamber and particle attachment prevention method
JP4896112B2 (en) Substrate transfer device
KR20120109413A (en) Lid opening and closing device
CN107622935A (en) Focusing ring replacing options
WO2012056985A1 (en) Substrate transfer device and substrate processing system provided with same
CN111599715B (en) Wafer transmission control method
JP2007149960A (en) Plasma processor
CN107230656B (en) Substrate transfer apparatus and substrate transfer method
CN108122809A (en) Base plate processing system
JP5485056B2 (en) Ion supply apparatus and processing system for target object provided with the same
WO2012056984A1 (en) Substrate transfer device and substrate processing system provided with same
JP2004207279A (en) Sheet-shaped object manufacturing facility
KR101853376B1 (en) substrate processing apparatus
JP2002353086A (en) Apparatus and method for manufacturing semiconductor
US20150340260A1 (en) Wafer transport system and method for operating the same
KR101849839B1 (en) Substrate transporting device, substrate treating apparatus, and substrate transporting method
JP4924520B2 (en) Atmosphere cleaning device
JP2015109355A (en) Local cleaning transfer apparatus
US20030196888A1 (en) Method for preventing electrostatic discharge in a clean room
KR102457336B1 (en) Substrate processing apparatus
JP2007180074A (en) Static electricity detection device, and substrate inspection device
KR20180078886A (en) Substrate unloading method of substrate processing apparatus
TW201620809A (en) Non-contact type wafer handling apparatus
JP2013084798A (en) Substrate inspection device and substrate carrying method
JP2008269896A (en) Static eliminator, semiconductor manufacturing device, and carrier device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836121

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP