WO2012056933A1 - Oxide semiconductor device and method for manufacturing same - Google Patents

Oxide semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2012056933A1
WO2012056933A1 PCT/JP2011/073879 JP2011073879W WO2012056933A1 WO 2012056933 A1 WO2012056933 A1 WO 2012056933A1 JP 2011073879 W JP2011073879 W JP 2011073879W WO 2012056933 A1 WO2012056933 A1 WO 2012056933A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide semiconductor
semiconductor layer
amorphous oxide
layer
semiconductor device
Prior art date
Application number
PCT/JP2011/073879
Other languages
French (fr)
Japanese (ja)
Inventor
裕紀 若菜
哲史 河村
内山 博幸
藤井 邦治
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2012540783A priority Critical patent/JP5666616B2/en
Publication of WO2012056933A1 publication Critical patent/WO2012056933A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous

Definitions

  • the present invention relates to a semiconductor device having a thin film transistor (TFT: Thin Film Transistor) using an oxide semiconductor material for a channel layer, and a technology effective when applied to the manufacture thereof.
  • TFT Thin Film Transistor
  • TFTs Thin film transistors
  • a processing temperature is 350 ° C. or higher, and thus a usable substrate material is limited.
  • glass substrates and flexible resin substrates often have a heat-resistant temperature of 350 ° C. or lower, and it is difficult to form thin film transistors on these substrates using a conventional semiconductor device manufacturing process.
  • a thin film transistor using an oxide semiconductor material that can be formed at a low temperature as a channel layer is underway.
  • this oxide semiconductor film is used for a channel layer
  • a thin film transistor can be formed over a glass substrate or a flexible resin substrate, so that a novel device that is not conventionally used can be manufactured at low cost.
  • a device can be formed using the transparency of the oxide semiconductor material, and the thin film transistor can be applied to an RFID (Radio Frequency Identification) tag or the like.
  • RFID Radio Frequency Identification
  • Patent Document 1 A method of sandwiching layers (Patent Document 1) and a method of forming low-resistance crystal grains having a composition different from that of the oxide semiconductor layer in the oxide semiconductor layer below the source and drain electrodes are proposed (Patent Document 2). Has been.
  • Patent Document 1 in which a low-resistance layer is sandwiched between an oxide semiconductor layer and source and drain electrodes, the low-resistance layer has a lower oxygen concentration in the film than the oxide semiconductor layer and includes crystal fine particles. It has been reported that a good contact can be formed by using a semiconductor layer. However, since it is difficult to form the oxide semiconductor layer and the low resistance layer at the same time in this method, an increase in manufacturing cost accompanying an increase in the number of manufacturing steps is a problem.
  • Patent Document 2 in which low-resistance crystal grains are formed in an oxide semiconductor layer, for example, in an oxide semiconductor layer made of In (indium) -Zn (zinc) -Ga (gallium) -O (oxygen). It has been reported that contact resistance is reduced by forming metal crystal grains having a diameter of about 20 nm. However, in the case of this method, a threshold voltage shift or an on-current (Ion) due to a larger number of crystal grains in the oxide semiconductor layer being formed in the vicinity of the gate insulating film than in the vicinity of the source and drain electrodes. / Reduction of off-current (Ioff) ratio is a problem.
  • An object of the present invention is to reduce a contact resistance between an oxide semiconductor layer and a source / drain electrode without causing a problem as in the prior art in a thin film transistor using an oxide semiconductor material for a channel layer. It is to provide a technology that can be used.
  • An oxide semiconductor device which is a preferable embodiment of the present invention includes a thin film transistor in which a gate electrode, a gate insulating film, an amorphous oxide semiconductor layer constituting a channel layer, a source, and a drain electrode are stacked in this order on an upper surface of a substrate. And the amorphous oxide semiconductor layer in the vicinity of the interface with the source and drain electrodes has crystal grains containing the constituent elements of the amorphous oxide semiconductor layer.
  • the crystal grains are formed by using energy of accelerated particles incident on the amorphous oxide semiconductor layer when depositing conductive films for source and drain electrodes on the amorphous oxide semiconductor layer.
  • a thin film transistor with low contact resistance between the oxide semiconductor layer and the source and drain electrodes can be realized.
  • the contact resistance between the oxide semiconductor layer and the source and drain electrodes can be reduced without increasing the number of manufacturing steps of the thin film transistor.
  • FIG. 3 is a cross-sectional view showing a method for manufacturing the thin film transistor continued from FIG. 2.
  • FIG. 4 is a cross-sectional view showing a method for manufacturing the thin film transistor following FIG. 3.
  • FIG. 5 is a cross-sectional view showing a method for manufacturing the thin film transistor continued from FIG. 4.
  • FIG. 6 is a cross-sectional view showing a method for manufacturing the thin film transistor continued from FIG. 5.
  • FIG. 7 is an enlarged view of FIG. 6.
  • FIG. 7 is a cross-sectional view showing a method for manufacturing the thin film transistor following FIG. 6.
  • FIG. 14 is a cross-sectional view showing a method for manufacturing the thin film transistor continued from FIG. 13.
  • FIG. 20 is a schematic diagram of an active matrix liquid crystal display device to which the array shown in FIG. 19 is applied.
  • the bottom gate means a structure in which the gate electrode is arranged below the channel layer (oxide semiconductor layer), and the top contact means that the source electrode and the drain electrode are arranged above the channel layer. Means the structure.
  • the bottom gate / top contact type thin film transistor of this embodiment is manufactured by the following method.
  • an insulating substrate 10 is prepared.
  • the material of the substrate 10 include Si (silicon), sapphire, quartz, glass, and a flexible plastic film.
  • the plastic film material include polyethylene terephthalate, polyethylene naphthalate, polyetherimide, polyacrylate, polyimide, polycarbonate, cellulose triacetate, and cellulose acetate propionate.
  • what provided the insulating coating layer on the surface of the above-mentioned material as needed can also be used.
  • a gate electrode 11 is formed by depositing a conductive film on the upper surface of the substrate 10 and then patterning the conductive film.
  • the conductive film constituting the gate electrode 11 Mo (molybdenum), Cr (chromium), W (tungsten), Al (aluminum), Cu (copper), Ti (titanium), Ni (nickel), Ta (tantalum)
  • a single layer film of metal such as Ag (silver), Co (cobalt), Zn, Au (gold), and Pt (platinum), an alloy film containing two or more of these metals, and a laminated film of these metals can do.
  • conductive metal oxide films such as ZnO (zinc oxide) to which ITO (In—Sn—O: indium tin oxide), Al, Ga, In, or B (boron) is added, and their conductivity
  • ITO In—Sn—O: indium tin oxide
  • Al Al
  • Ga In
  • B boron
  • a laminated film of a metal oxide and the metal can also be used.
  • a single layer film of conductive metal nitride such as TiN (titanium nitride), a laminated film of the conductive metal nitride and the metal, or the like can also be used.
  • a gate insulating film 12 is formed on the upper surface of the substrate 10 on which the gate electrode 11 is formed.
  • the insulating film constituting the gate insulating film 12 includes a silicon oxide film, a silicon nitride film, an aluminum oxide film, an aluminum nitride film, a Y 2 O 3 (yttrium oxide) film, an HfO 2 (hafnium oxide) film, and a YSZ (yttria stable). Zirconia) film, organic polymer insulating film, and the like.
  • Materials for organic polymer insulating films include polyimide derivatives, benzocyclobutene derivatives, photoacryl derivatives, polystyrene derivatives, polyvinyl phenol derivatives, polyester derivatives, polycarbonate derivatives, polyester derivatives, polyvinyl acetate derivatives, polyurethane derivatives, polysulfone derivatives. Acrylate resin, acrylic resin, epoxy resin, parylene and the like. These insulating films are deposited by a CVD method, a sputtering method, a vapor deposition method, a coating method, or the like.
  • the amorphous oxide semiconductor layer 13 is a semiconductor layer that constitutes a channel layer of the thin film transistor, and includes In, Zn, Cd (cadmium), Al, Ga, Si, Sn, Ce (cerium), Ge (germanium), and Hf.
  • An oxide in which one or more elements are combined with oxygen can be exemplified.
  • the oxide film constituting the amorphous oxide semiconductor layer 13 is deposited by sputtering, CVD, pulsed laser deposition (PLD), coating, printing, co-evaporation, or the like. The thickness is about 25 nm to 100 nm.
  • impurities may be doped as necessary, or the substrate 10 may be annealed. Further, the patterning of the oxide film is performed by dry etching or wet etching using a photoresist film as a mask.
  • a multi-source sputtering apparatus capable of simultaneously depositing Zn, Sn, and O is used, the gas pressure is set to 0.5 Pa (Ar (argon) + 10% O 2 ), the RC power is set to 50 W, and the room temperature is set.
  • an amorphous Zn—Sn—O (zinc tin oxide) film having a thickness of 50 nm was deposited on the gate insulating film 12.
  • the Zn—Sn—O film is patterned by wet etching using a photoresist film as a mask, and the Zn—Sn—O film is left in the region above the gate electrode 11 and the region in the vicinity thereof.
  • An oxide semiconductor layer 13 was formed.
  • an insulating film is deposited on the amorphous oxide semiconductor layer 13, and then the insulating film is patterned to thereby form a channel layer region (region above the gate electrode 11).
  • a barrier layer 15 is formed on the top.
  • Examples of the insulating film constituting the barrier layer 15 include inorganic insulating films such as a silicon oxide film, a silicon nitride film, and an alumina film, and organic insulating films such as a parylene film. These insulating films are deposited by a CVD method, a sputtering method, a coating method, or the like. The insulating film is patterned by dry etching or wet etching using a photoresist film as a mask.
  • a conductive film 14 is deposited on the amorphous oxide semiconductor layer 13 and the barrier layer 15.
  • Examples of the conductive film 14 include various conductive films that constitute the gate electrode 11 described above.
  • the conductive film 14 is deposited by electron beam evaporation, sputtering, or the like.
  • the conductive film 14 made of Al is deposited by using an electron beam evaporation apparatus and setting the acceleration voltage of the electron beam to a value higher than usual (for example, 10 kV).
  • a source electrode 14s and a drain electrode 14d are formed by removing the conductive film 14 above the gate electrode 11 by dry etching using a photoresist film as a mask.
  • a photoresist film as a mask.
  • a solid line A in FIG. 9 is a graph showing the relationship between the gate voltage (Vg) and the drain current (Id) of the thin film transistor manufactured by the above-described method.
  • a broken line B in the figure shows the relationship between the threshold gate voltage (Vg) and the drain current (Id) of the thin film transistor (comparative example) in which the conductive film 14 is deposited with the electron beam acceleration voltage set to 5 kV. It is a graph.
  • the channel length of the two types of thin film transistors was 0.1 mm, and the channel width was 2 mm.
  • the thin film transistor of this embodiment in which the conductive film 14 is deposited with the acceleration voltage of the electron beam set to 10 kV is 2 in comparison with the thin film transistor of the comparative example in which the acceleration voltage of the electron beam is set to 5 kV.
  • the on-current (Ion) was doubled or more.
  • FIG. 10 is a cross-sectional TEM photograph of the vicinity of the interface between the drain electrode 14d and the amorphous oxide semiconductor layer 13 in the thin film transistor of the present embodiment. As shown in FIG. 10, it was confirmed that the crystal grains 13cg were present in almost one row in the crystal grain existence region (Tcg) within a depth of 10 nm from the interface with the drain electrode 14d. On the other hand, the presence of the crystal grains 13cg could not be confirmed from the cross-sectional TEM photograph of the thin film transistor of the comparative example.
  • the deposition conditions of the conductive film (Al film) 14 constituting the source electrode 14s and the drain electrode 14d and the annealing conditions after the deposition was changed to change the grain size of the crystal grains 13cg and the crystal grain existence region (Tcg).
  • the on-current (Ion) was improved when the grain size of the crystal grain 13cg was about 15 nm and the crystal grain existence region (Tcg) was within 20 nm from the surface of the amorphous oxide semiconductor layer 13.
  • the grain size of the crystal grain 13cg exceeds 20 nm, the crystal grain 13cg starts to grow in a columnar shape, the surface roughness of the amorphous oxide semiconductor layer 13 occurs, and the contact resistance increases.
  • the grain size of the crystal grains 13cg is preferably 15 nm or less. Further, the crystal grain existence region (Tcg) is preferably within 20 nm from the surface of the amorphous oxide semiconductor layer 13, more preferably within 10 nm.
  • the contact resistance between the amorphous oxide semiconductor layer 13, the source electrode 14s, and the drain electrode 14d can be reduced. Accordingly, an on-current (Ion) is improved and field effect mobility is improved, so that a high-performance thin film transistor can be provided. Thereby, for example, an RFID tag that operates in a 13.56 MHz band can be realized.
  • the crystal grains 13cg are formed in the amorphous oxide semiconductor layer 13 only by setting the acceleration voltage of the electron beam to a value higher than usual. Since it forms, the special process and apparatus for forming the crystal grain 13cg are unnecessary.
  • the thin film transistor can also be manufactured by the following method. First, as shown in FIG. 12, the gate electrode 11, the gate insulating film 12, and the amorphous oxide semiconductor layer 13 are formed in this order on the upper surface of the insulating substrate 10. The steps so far are the same as the steps shown in FIGS. 1 to 4 of the first embodiment.
  • a conductive film 14 is deposited on the amorphous oxide semiconductor layer 13.
  • the conductive film 14 include various conductive films that constitute the gate electrode 11 described above.
  • the conductive film (Al film) 14 is deposited using a sputtering apparatus with the voltage applied between the substrate 10 and the conductive film material (target) set to a value higher than usual.
  • assist ions for example, Ar +
  • the assist ions collide with the surface of the amorphous oxide semiconductor layer 13 at a high speed.
  • the crystal grains 13cg can also be formed.
  • the surface of the amorphous oxide semiconductor layer 13 is irradiated with a high-energy laser beam.
  • the crystal grains 13cg can be formed.
  • the crystal grain 13cg preferably has a particle size of 15 nm or less. Further, the crystal grain existence region (Tcg) is preferably within 20 nm from the surface of the oxide semiconductor layer 13, and more preferably within 10 nm.
  • the source electrode 14s and the drain electrode 14d are formed by removing the conductive film 14 above the gate electrode 11 by dry etching using the photoresist film 16 as a mask.
  • the amorphous oxide semiconductor layer 13 therebelow is over-etched to remove the crystal grains 13cg formed near the surface of the channel layer region.
  • the bottom gate / top contact type thin film transistor of this embodiment is completed through the steps so far.
  • the thin film transistor has a channel length of 0.1 mm and a channel width of 2 mm.
  • the thin film transistor of this embodiment exhibited an on-current (Ion) that is twice or more that of the thin film transistor of the comparative example.
  • the constituent element of the crystal grain 13cg is not only the same as the constituent element of the amorphous oxide semiconductor layer 13, but may be at least a part of the constituent element of the amorphous oxide semiconductor layer 13.
  • the present embodiment it is possible to provide a high-performance thin film transistor, as in the first embodiment. Further, in this embodiment, the step of forming the barrier layer 15 on the channel layer region of the amorphous oxide semiconductor layer 13 is not necessary, so that a high-performance thin film transistor can be manufactured with fewer steps.
  • the amorphous oxide semiconductor layer 13 below the conductive film 14 is over-etched so that the surface of the channel layer region is near the surface. Crystal grains 13cg were removed. However, at this time, if the amount of overetching of the amorphous oxide semiconductor layer 13 varies, the film thickness of the channel layer varies, and the characteristics of the thin film transistor may vary.
  • the amorphous oxide semiconductor layer 13 has a stacked structure of a first oxide semiconductor layer 13 ⁇ / b> A and a second oxide semiconductor layer 13 ⁇ / b> B.
  • the layer 13A is made of an oxide of an element that can use s-orbital electrons as carriers, such as In or Sn.
  • the upper second oxide semiconductor layer 13B to be over-etched is made of a high resistance oxide having an oxygen concentration higher than that of the oxide constituting the lower first oxide semiconductor layer 13A.
  • the lower first oxide semiconductor layer 13A is made of SnOx
  • the upper second oxide semiconductor layer 13B is made of ZnSnOx.
  • the lower first oxide semiconductor layer 13A having a lower electrical resistance than the upper second oxide semiconductor layer 13B substantially functions as a channel layer, so that the upper second oxide semiconductor layer 13B Even if the amount of overetching varies, variation in characteristics of the thin film transistor can be suppressed.
  • FIG. 16 is a cross-sectional view illustrating the thin film transistor of this embodiment.
  • the thin film transistor of this embodiment is characterized in that crystal grains 13cg are formed not only in the vicinity of the interface between the source electrode 14s and the drain electrode 14d but also in the channel layer of the amorphous oxide semiconductor layer 13.
  • the manufacturing method of the thin film transistor of this embodiment is almost the same as the manufacturing method of Embodiment 2 described above.
  • the conductive film 14 for the source and drain electrodes is patterned by dry etching, the amorphous structure under the conductive film 14 is formed.
  • the only difference is that the oxide semiconductor layer 13 is not over-etched.
  • FIG. 17 is a graph showing the relationship between the threshold gate voltage (Vg) and the drain current (Id) of the thin film transistor of this embodiment.
  • the solid line C is obtained when the film thickness (tch) of the amorphous oxide semiconductor layer 13 is 10 nm or less (here, 6 nm), and the broken line D is the film thickness (tch) of the amorphous oxide semiconductor layer 13. ) Is thicker than 10 nm.
  • the film thickness (tch) of the amorphous oxide semiconductor layer 13 is 10 nm or less, a good on-current (Ion) value is shown, and compared with a conventional thin film transistor that does not form crystal grains 13 cg in the amorphous oxide semiconductor layer 13.
  • the on-current (Ion) more than twice. Further, when a cross-sectional TEM photograph in the vicinity of the channel layer of this thin film transistor was observed, crystal grains 13cg having a grain size of 5 nm or less were confirmed.
  • the film thickness (tch) of the amorphous oxide semiconductor layer 13 is greater than 10 nm, the amorphous oxide semiconductor layer 13 cannot be turned off even when the gate voltage is ⁇ 50 V, and behaves like a conductive film.
  • the film thickness (tch) of the amorphous oxide semiconductor layer 13 is 10 nm or less, even when the crystal grain 13cg is formed in the channel layer, the on-current (Ion) is improved, and the field effect It can be seen that the mobility is improved.
  • FIG. 18 shows a schematic configuration of an RFID tag 20 in which an antenna resonance circuit 21, a rectifier 22, a modulator 23, a digital circuit 24, and the like are configured using the thin film transistor of the present invention.
  • the RFID tag 20 can communicate with an external reader / writer 25 wirelessly using a high frequency of 13.56 MHz, for example. Further, since the oxide semiconductor layer constituting the channel layer of the thin film transistor is a transparent material, an almost transparent circuit can be formed in the IC chip.
  • a transparent wireless IC tag that transmits and receives at a high frequency (RF) of 13.56 MHz, for example, by configuring electrodes and wiring of an IC chip with a transparent conductive film such as ITO and circuit elements with the thin film transistor of the present invention.
  • RF high frequency
  • Such a wireless IC tag is different from a conventional RFID tag in that an IC chip and an antenna are almost transparent. Therefore, when the wireless IC tag is attached to a film or a card, the design printed on the film or the card is not damaged. .
  • FIG. 19 is a circuit block diagram showing an example of an array configuration of a semiconductor device using the thin film transistor of the present invention.
  • the semiconductor device of this embodiment has a configuration in which elements including the thin film transistor of the present invention are arranged on a substrate 30 in an array.
  • the thin film transistor is used as a switching transistor or a driving transistor for each element in the array, as well as a gate line driving circuit 32 for sending a signal to the gate wiring 31 connected to the gate electrode (11) of the thin film transistor, You may use for the transistor which comprises the data line drive circuit 34 which sends a signal to the data wiring 33 connected with a source electrode and a drain electrode.
  • the thin film transistor of each element and the thin film transistor in the gate line driving circuit 32 or the data line driving circuit 34 can be formed in parallel.
  • each element has a configuration as shown in FIG. 20, for example.
  • a scanning signal is supplied to the gate wiring 31 extending in the x direction in the figure, the thin film transistor 35 is turned on, and the image from the data wiring 33 extending in the y direction in the figure through the turned on thin film transistor 35.
  • a signal is supplied to the pixel electrode 36.
  • the gate lines 31 are arranged in parallel in the y direction in the figure, and the data lines 33 are arranged in parallel in the x direction in the figure and are surrounded by a pair of adjacent gate lines 31 and a pair of adjacent data lines 33.
  • a pixel electrode 36 is arranged in the area (pixel area).
  • the data line 33 is electrically connected to the source electrode
  • the pixel electrode 36 is electrically connected to the drain electrode.
  • the data wiring 33 may also serve as the source electrode.
  • the above-described array may be applied not only to the liquid crystal display device but also to an organic EL display device or the like. In this case, a thin film transistor is applied to a transistor included in the pixel circuit. Furthermore, the above-described array may be applied to the memory element, and a thin film transistor may be applied to the selection transistor.
  • the present invention can be applied to a semiconductor device having a thin film transistor using an oxide semiconductor material for a channel layer.

Abstract

To reduce the contact resistance between an oxide semiconductor layer and a source/drain electrode in a thin film transistor that uses an oxide semiconductor material for a channel layer. A thin film transistor, wherein a gate electrode (11), a gate insulating film (12), an amorphous oxide semiconductor layer (13) that constitutes a channel layer, a source electrode (14s) and a drain electrode (14d) are sequentially laminated in this order, is formed on the upper surface of a substrate (10). Crystal grains (13cg), which contain a constituent element of the amorphous oxide semiconductor layer (13), are formed within the amorphous oxide semiconductor layer (13) in the vicinity of the interfaces with the source electrode (14s) and the drain electrode (14d). The crystal grains (13cg) are formed by utilizing the energy of accelerated particles that are incident on the amorphous oxide semiconductor layer (13) when a conductive film that constitutes the source electrode (14s) and the drain electrode (14d) is deposited.

Description

酸化物半導体装置およびその製造方法Oxide semiconductor device and manufacturing method thereof
 本発明は、酸化物半導体材料をチャネル層に用いた薄膜トランジスタ(TFT:Thin Film Transistor)を有する半導体装置およびその製造に適用して有効な技術に関するものである。 The present invention relates to a semiconductor device having a thin film transistor (TFT: Thin Film Transistor) using an oxide semiconductor material for a channel layer, and a technology effective when applied to the manufacture thereof.
 薄膜トランジスタ(TFT)は、素子面積が小さく、省スペースであることから、携帯電話、ノートパソコン、PDAといった各種携帯電子装置における表示装置駆動用トランジスタとして使用されている。 Thin film transistors (TFTs) are used as display device driving transistors in various portable electronic devices such as mobile phones, notebook personal computers, and PDAs because they have a small element area and save space.
 従来、薄膜トランジスタの大部分は、アモルファスシリコンや多結晶シリコンに代表されるシリコン系半導体材料により作製されていた。これは、従来の半導体装置の製造工程・製造技術を用いて薄膜トランジスタを作製できるメリットがあるためである。 Conventionally, most of thin film transistors have been made of silicon-based semiconductor materials typified by amorphous silicon and polycrystalline silicon. This is because there is a merit that a thin film transistor can be manufactured using a manufacturing process and manufacturing technology of a conventional semiconductor device.
 しかしながら、従来の半導体装置の製造工程を用いて薄膜トランジスタを作製する場合は、処理温度が350℃以上になるため、利用できる基板材料に制約が生じる。特に、ガラス基板やフレキシブルな樹脂基板は、耐熱温度が350℃以下のものが多いため、従来の半導体装置の製造工程を用いてこれらの基板上に薄膜トランジスタを形成することは困難である。 However, when a thin film transistor is manufactured using a conventional manufacturing process of a semiconductor device, a processing temperature is 350 ° C. or higher, and thus a usable substrate material is limited. In particular, glass substrates and flexible resin substrates often have a heat-resistant temperature of 350 ° C. or lower, and it is difficult to form thin film transistors on these substrates using a conventional semiconductor device manufacturing process.
 そこで、最近では、低温で成膜が可能な酸化物半導体材料をチャネル層に用いた薄膜トランジスタの研究開発が進められている。この酸化物半導体膜をチャネル層に用いた場合は、ガラス基板やフレキシブルな樹脂基板上に薄膜トランジスタを形成することができるため、従来に無い新規なデバイスを安価に作製することが可能となる。また、酸化物半導体材料の透明性を利用したデバイス形成が可能となり、この薄膜トランジスタをRFID(Radio Frequency Identification)タグなどに適用することも可能である。 Therefore, recently, research and development of a thin film transistor using an oxide semiconductor material that can be formed at a low temperature as a channel layer is underway. In the case where this oxide semiconductor film is used for a channel layer, a thin film transistor can be formed over a glass substrate or a flexible resin substrate, so that a novel device that is not conventionally used can be manufactured at low cost. In addition, a device can be formed using the transparency of the oxide semiconductor material, and the thin film transistor can be applied to an RFID (Radio Frequency Identification) tag or the like.
 上記した酸化物半導体材料をチャネル層に用いた薄膜トランジスタの信頼性やデバイス性能を向上させるためには、酸化物半導体層とソース、ドレイン電極とのコンタクト抵抗を低減することが課題となる。 In order to improve the reliability and device performance of a thin film transistor using the above-described oxide semiconductor material for a channel layer, it is a problem to reduce contact resistance between the oxide semiconductor layer and the source and drain electrodes.
 従来、酸化物半導体層とソース、ドレイン電極のコンタクト抵抗を低減する方法として、酸化物半導体層とソース、ドレイン電極との間に異種の金属材料層や酸素欠乏酸化物半導体層のような低抵抗層を挟み込む手法(特許文献1)や、ソース、ドレイン電極の下方の酸化物半導体層内に、酸化物半導体層とは組成が異なる低抵抗結晶粒を形成する手法(特許文献2)などが提案されている。 Conventionally, as a method for reducing contact resistance between an oxide semiconductor layer and a source / drain electrode, a low resistance such as a dissimilar metal material layer or an oxygen-deficient oxide semiconductor layer is provided between the oxide semiconductor layer and the source / drain electrode. A method of sandwiching layers (Patent Document 1) and a method of forming low-resistance crystal grains having a composition different from that of the oxide semiconductor layer in the oxide semiconductor layer below the source and drain electrodes are proposed (Patent Document 2). Has been.
特開2010-080952号公報JP 2010-080952 A 特開2009-141001号公報JP 2009-14001 A
 酸化物半導体層とソース、ドレイン電極との間に低抵抗層を挟み込む特許文献1においては、低抵抗層として、酸化物半導体層に比べて膜中の酸素濃度が低く、かつ結晶微粒子を含んだ半導体層を用いることで、良好なコンタクトが形成されることが報告されている。しかしながら、この手法は、酸化物半導体層と低抵抗層を同時に形成することが困難であるため、製造工程数の増加に伴う製造コストの増大が課題となっている。 In Patent Document 1 in which a low-resistance layer is sandwiched between an oxide semiconductor layer and source and drain electrodes, the low-resistance layer has a lower oxygen concentration in the film than the oxide semiconductor layer and includes crystal fine particles. It has been reported that a good contact can be formed by using a semiconductor layer. However, since it is difficult to form the oxide semiconductor layer and the low resistance layer at the same time in this method, an increase in manufacturing cost accompanying an increase in the number of manufacturing steps is a problem.
 また、酸化物半導体層内に低抵抗結晶粒を形成する特許文献2の手法では、例えばIn(インジウム)-Zn(亜鉛)-Ga(ガリウム)-O(酸素)からなる酸化物半導体層内に直径20nm程度の金属結晶粒を形成することでコンタクト抵抗が低減することが報告されている。しかしながら、この手法の場合は、酸化物半導体層内の結晶粒がソース、ドレイン電極の近傍よりもゲート絶縁膜の近傍に多く形成されることによるしきい値電圧のシフトや、オン電流(Ion)/オフ電流(Ioff)比の低下が課題となっている。 Further, in the method of Patent Document 2 in which low-resistance crystal grains are formed in an oxide semiconductor layer, for example, in an oxide semiconductor layer made of In (indium) -Zn (zinc) -Ga (gallium) -O (oxygen). It has been reported that contact resistance is reduced by forming metal crystal grains having a diameter of about 20 nm. However, in the case of this method, a threshold voltage shift or an on-current (Ion) due to a larger number of crystal grains in the oxide semiconductor layer being formed in the vicinity of the gate insulating film than in the vicinity of the source and drain electrodes. / Reduction of off-current (Ioff) ratio is a problem.
 なお、特許文献2の手法において、酸化物半導体層内に低抵抗結晶粒が形成されるメカニズムは不明であるが、ソース、ドレイン電極を構成する金属材料が酸化物半導体層内に拡散することなどが関係しているものと考えられている。 Note that in the method of Patent Document 2, the mechanism by which low-resistance crystal grains are formed in the oxide semiconductor layer is unknown, but the metal material constituting the source and drain electrodes diffuses into the oxide semiconductor layer. Are considered to be related.
 本発明の目的は、酸化物半導体材料をチャネル層に用いた薄膜トランジスタにおいて、上記従来技術のような課題を生じさせることなく、酸化物半導体層とソース、ドレイン電極とのコンタクト抵抗を低減することのできる技術を提供することにある。 An object of the present invention is to reduce a contact resistance between an oxide semiconductor layer and a source / drain electrode without causing a problem as in the prior art in a thin film transistor using an oxide semiconductor material for a channel layer. It is to provide a technology that can be used.
 本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
 本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the inventions disclosed in this application, the outline of typical ones will be briefly described as follows.
 本発明の好ましい一態様である酸化物半導体装置は、基板の上面に、ゲート電極、ゲート絶縁膜、チャネル層を構成するアモルファス酸化物半導体層、ソース、ドレイン電極がこの順に積層されてなる薄膜トランジスタを備え、前記ソース、ドレイン電極との界面近傍の前記アモルファス酸化物半導体層内に、前記アモルファス酸化物半導体層の構成元素を含む結晶粒を有している。 An oxide semiconductor device which is a preferable embodiment of the present invention includes a thin film transistor in which a gate electrode, a gate insulating film, an amorphous oxide semiconductor layer constituting a channel layer, a source, and a drain electrode are stacked in this order on an upper surface of a substrate. And the amorphous oxide semiconductor layer in the vicinity of the interface with the source and drain electrodes has crystal grains containing the constituent elements of the amorphous oxide semiconductor layer.
 前記結晶粒は、前記アモルファス酸化物半導体層の上部にソース、ドレイン電極用の導電膜を堆積する際、前記アモルファス酸化物半導体層に入射する加速粒子のエネルギーを利用して形成する。 The crystal grains are formed by using energy of accelerated particles incident on the amorphous oxide semiconductor layer when depositing conductive films for source and drain electrodes on the amorphous oxide semiconductor layer.
 本願において開示される発明のうち、代表的なものによって得られる効果を簡単に説明すれば以下の通りである。 Among the inventions disclosed in the present application, effects obtained by typical ones will be briefly described as follows.
 酸化物半導体層とソース、ドレイン電極とのコンタクト抵抗が低い薄膜トランジスタを実現することができる。 A thin film transistor with low contact resistance between the oxide semiconductor layer and the source and drain electrodes can be realized.
 また、薄膜トランジスタの製造工程を増やすことなく、酸化物半導体層とソース、ドレイン電極とのコンタクト抵抗を低減することができる。 Further, the contact resistance between the oxide semiconductor layer and the source and drain electrodes can be reduced without increasing the number of manufacturing steps of the thin film transistor.
本発明の実施の形態1である薄膜トランジスタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the thin-film transistor which is Embodiment 1 of this invention. 図1に続く薄膜トランジスタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the thin-film transistor following FIG. 図2に続く薄膜トランジスタの製造方法を示す断面図である。FIG. 3 is a cross-sectional view showing a method for manufacturing the thin film transistor continued from FIG. 2. 図3に続く薄膜トランジスタの製造方法を示す断面図である。FIG. 4 is a cross-sectional view showing a method for manufacturing the thin film transistor following FIG. 3. 図4に続く薄膜トランジスタの製造方法を示す断面図である。FIG. 5 is a cross-sectional view showing a method for manufacturing the thin film transistor continued from FIG. 4. 図5に続く薄膜トランジスタの製造方法を示す断面図である。FIG. 6 is a cross-sectional view showing a method for manufacturing the thin film transistor continued from FIG. 5. 図6の拡大図である。FIG. 7 is an enlarged view of FIG. 6. 図6に続く薄膜トランジスタの製造方法を示す断面図である。FIG. 7 is a cross-sectional view showing a method for manufacturing the thin film transistor following FIG. 6. 実施の形態1および比較例の薄膜トランジスタのゲート電圧(Vg)とドレイン電流(Id)との関係を示すグラフである。It is a graph which shows the relationship between the gate voltage (Vg) and drain current (Id) of the thin-film transistor of Embodiment 1 and a comparative example. 実施の形態1の薄膜トランジスタにおけるドレイン電極と酸化物半導体層との界面近傍の断面TEM写真である。4 is a cross-sectional TEM photograph of the vicinity of an interface between a drain electrode and an oxide semiconductor layer in the thin film transistor of Embodiment 1. 図10のTEM像からFFT回折によって調べた結晶粒13cgの結晶構造の写真である。It is the photograph of the crystal structure of the crystal grain 13cg investigated by FFT diffraction from the TEM image of FIG. 本発明の実施の形態2である薄膜トランジスタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the thin-film transistor which is Embodiment 2 of this invention. 図12に続く薄膜トランジスタの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the thin-film transistor following FIG. 図13に続く薄膜トランジスタの製造方法を示す断面図である。FIG. 14 is a cross-sectional view showing a method for manufacturing the thin film transistor continued from FIG. 13. 本発明の薄膜トランジスタの別例を示す断面図である。It is sectional drawing which shows another example of the thin-film transistor of this invention. 本発明の実施の形態3である薄膜トランジスタの断面図である。It is sectional drawing of the thin-film transistor which is Embodiment 3 of this invention. 実施の形態3の薄膜トランジスタのゲート電圧(Vg)とドレイン電流(Id)との関係を示すグラフである。10 is a graph showing the relationship between the gate voltage (Vg) and the drain current (Id) of the thin film transistor of the third embodiment. 本発明の薄膜トランジスタを使用したRFIDタグの概略構成を示す図である。It is a figure which shows schematic structure of the RFID tag using the thin-film transistor of this invention. 本発明の薄膜トランジスタを使用した半導体装置のアレイ構成の一例を示す回路ブロック図である。It is a circuit block diagram which shows an example of the array structure of the semiconductor device using the thin-film transistor of this invention. 図19に示すアレイを適用したアクティブマトリクス型液晶表示装置の概略図である。FIG. 20 is a schematic diagram of an active matrix liquid crystal display device to which the array shown in FIG. 19 is applied.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。また、実施の形態では、特に必要なときを除き、同一または同様な部分の説明を原則として繰り返さない。さらに、実施の形態を説明する図面においては、構成を分かり易くするために、平面図であってもハッチングを付す場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted. In the embodiments, the description of the same or similar parts will not be repeated in principle unless particularly necessary. Further, in the drawings describing the embodiments, hatching may be given even in plan views in order to make the configuration easy to understand.
 (実施の形態1)
 本実施の形態は、ボトムゲート/トップコンタクト型薄膜トランジスタに適用したものである。ここで、ボトムゲートとは、ゲート電極がチャネル層(酸化物半導体層)よりも下層に配置される構造を意味し、トップコンタクトとは、ソース電極およびドレイン電極がチャネル層よりも上層に配置される構造を意味している。
(Embodiment 1)
This embodiment is applied to a bottom gate / top contact thin film transistor. Here, the bottom gate means a structure in which the gate electrode is arranged below the channel layer (oxide semiconductor layer), and the top contact means that the source electrode and the drain electrode are arranged above the channel layer. Means the structure.
 本実施の形態のボトムゲート/トップコンタクト型薄膜トランジスタは、以下の方法によって製造される。 The bottom gate / top contact type thin film transistor of this embodiment is manufactured by the following method.
 まず、図1に示すように、絶縁性の基板10を用意する。基板10の材料としては、Si(シリコン)、サファイア、石英、ガラス、フレキシブルなプラスチックフィルムなどを例示することができる。プラスチックフィルムの材料としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルイミド、ポリアクリレート、ポリイミド、ポリカーボネート、セルローストリアセテート、セルロースアセテートプロピオネートなどを例示することができる。また、必要に応じて上記した材料の表面に絶縁コーティング層を設けたものを使用することもできる。 First, as shown in FIG. 1, an insulating substrate 10 is prepared. Examples of the material of the substrate 10 include Si (silicon), sapphire, quartz, glass, and a flexible plastic film. Examples of the plastic film material include polyethylene terephthalate, polyethylene naphthalate, polyetherimide, polyacrylate, polyimide, polycarbonate, cellulose triacetate, and cellulose acetate propionate. Moreover, what provided the insulating coating layer on the surface of the above-mentioned material as needed can also be used.
 次に、図2に示すように、基板10の上面に導電膜を堆積し、続いてこの導電膜をパターニングすることによって、ゲート電極11を形成する。ゲート電極11を構成する導電膜としては、Mo(モリブデン)、Cr(クロム)、W(タングステン)、Al(アルミニウム)、Cu(銅)、Ti(チタン)、Ni(ニッケル)、Ta(タンタル)、Ag(銀)、Co(コバルト)、Zn、Au(金)、Pt(白金)などような金属の単層膜、これらの金属を2種以上含む合金膜、これらの金属の積層膜を例示することができる。また、ITO(In-Sn-O:インジウム錫酸化物)、Al、Ga、InまたはB(ボロン)などを添加したZnO(酸化亜鉛)のような導電性金属酸化物膜や、これらの導電性金属酸化物と前記金属との積層膜を使用することもできる。さらに、TiN(窒化チタン)のような導電性金属窒化物の単層膜、導電性金属窒化物と前記金属との積層膜などを使用することもできる。 Next, as shown in FIG. 2, a gate electrode 11 is formed by depositing a conductive film on the upper surface of the substrate 10 and then patterning the conductive film. As the conductive film constituting the gate electrode 11, Mo (molybdenum), Cr (chromium), W (tungsten), Al (aluminum), Cu (copper), Ti (titanium), Ni (nickel), Ta (tantalum) A single layer film of metal such as Ag (silver), Co (cobalt), Zn, Au (gold), and Pt (platinum), an alloy film containing two or more of these metals, and a laminated film of these metals can do. In addition, conductive metal oxide films such as ZnO (zinc oxide) to which ITO (In—Sn—O: indium tin oxide), Al, Ga, In, or B (boron) is added, and their conductivity A laminated film of a metal oxide and the metal can also be used. Furthermore, a single layer film of conductive metal nitride such as TiN (titanium nitride), a laminated film of the conductive metal nitride and the metal, or the like can also be used.
 上記した各種導電膜の堆積は、CVD法、スパッタリング法、蒸着法などにより行い、パターニングは、フォトレジスト膜をマスクに用いたドライエッチングまたはウェットエッチングにより行う。 The above-described various conductive films are deposited by CVD, sputtering, vapor deposition or the like, and patterning is performed by dry etching or wet etching using a photoresist film as a mask.
 次に、図3に示すように、上記ゲート電極11が形成された基板10の上面にゲート絶縁膜12を形成する。 Next, as shown in FIG. 3, a gate insulating film 12 is formed on the upper surface of the substrate 10 on which the gate electrode 11 is formed.
 ゲート絶縁膜12を構成する絶縁膜としては、酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜、Y(酸化イットリウム)膜、HfO(酸化ハフニウム)膜、YSZ(イットリア安定化ジルコニア)膜、有機系高分子絶縁膜などを例示することができる。有機系高分子絶縁膜の材料としては、ポリイミド誘導体、ベンゾシクロブテン誘導体、フォトアクリル誘導体、ポリスチレン誘導体、ポリビニルフェノール誘導体、ポリエステル誘導体、ポリカーボネート誘導体、ポリエステル誘導体、ポリ酢酸ビニル誘導体、ポリウレタン誘導体、ポリスルフォン誘導体、アクリレート樹脂、アクリル樹脂、エポキシ樹脂、パリレンなどを例示することができる。また、これらの絶縁膜の堆積は、CVD法、スパッタリング法、蒸着法、塗布法などにより行う。 The insulating film constituting the gate insulating film 12 includes a silicon oxide film, a silicon nitride film, an aluminum oxide film, an aluminum nitride film, a Y 2 O 3 (yttrium oxide) film, an HfO 2 (hafnium oxide) film, and a YSZ (yttria stable). Zirconia) film, organic polymer insulating film, and the like. Materials for organic polymer insulating films include polyimide derivatives, benzocyclobutene derivatives, photoacryl derivatives, polystyrene derivatives, polyvinyl phenol derivatives, polyester derivatives, polycarbonate derivatives, polyester derivatives, polyvinyl acetate derivatives, polyurethane derivatives, polysulfone derivatives. Acrylate resin, acrylic resin, epoxy resin, parylene and the like. These insulating films are deposited by a CVD method, a sputtering method, a vapor deposition method, a coating method, or the like.
 次に、図4に示すように、上記ゲート絶縁膜12の上部にアモルファス酸化物半導体層13を形成する。アモルファス酸化物半導体層13は、薄膜トランジスタのチャネル層を構成する半導体層であり、In、Zn、Cd(カドミウム)、Al、Ga、Si、Sn、Ce(セリウム)、Ge(ゲルマニウム)、Hfのうち、いずれか一種以上の元素が酸素と結合した酸化物を例示することができる。アモルファス酸化物半導体層13を構成する酸化物膜の堆積は、スパッタリング法、CVD法、パルスレーザーデポジション(Pulsed Laser Deposition:PLD)法、塗布法、印刷法、共蒸着法などにより行い、その膜厚は25nm~100nm程度とする。また、アモルファス酸化物半導体層13を形成した後、必要に応じて不純物をドーピングしたり、基板10にアニール処理を施したりしてもよい。さらに、上記酸化物膜のパターニングは、フォトレジスト膜をマスクに用いたドライエッチングまたはウェットエッチングにより行う。 Next, as shown in FIG. 4, an amorphous oxide semiconductor layer 13 is formed on the gate insulating film 12. The amorphous oxide semiconductor layer 13 is a semiconductor layer that constitutes a channel layer of the thin film transistor, and includes In, Zn, Cd (cadmium), Al, Ga, Si, Sn, Ce (cerium), Ge (germanium), and Hf. An oxide in which one or more elements are combined with oxygen can be exemplified. The oxide film constituting the amorphous oxide semiconductor layer 13 is deposited by sputtering, CVD, pulsed laser deposition (PLD), coating, printing, co-evaporation, or the like. The thickness is about 25 nm to 100 nm. Further, after the amorphous oxide semiconductor layer 13 is formed, impurities may be doped as necessary, or the substrate 10 may be annealed. Further, the patterning of the oxide film is performed by dry etching or wet etching using a photoresist film as a mask.
 本実施の形態では、まず、Zn、Sn、Oを同時に成膜できる多元スパッタリング装置を用い、ガス圧を0.5Pa(Ar(アルゴン)+10%O)、RC電力を50Wに設定し、室温下でゲート絶縁膜12の上部に膜厚50nmのアモルファス状Zn-Sn-O(亜鉛錫酸化物)膜を堆積した。次に、フォトレジスト膜をマスクに用いたウェットエッチングでこのZn-Sn-O膜をパターニングし、ゲート電極11の上方の領域とその近傍の領域にZn-Sn-O膜を残すことによって、アモルファス酸化物半導体層13を形成した。 In this embodiment, first, a multi-source sputtering apparatus capable of simultaneously depositing Zn, Sn, and O is used, the gas pressure is set to 0.5 Pa (Ar (argon) + 10% O 2 ), the RC power is set to 50 W, and the room temperature is set. Below, an amorphous Zn—Sn—O (zinc tin oxide) film having a thickness of 50 nm was deposited on the gate insulating film 12. Next, the Zn—Sn—O film is patterned by wet etching using a photoresist film as a mask, and the Zn—Sn—O film is left in the region above the gate electrode 11 and the region in the vicinity thereof. An oxide semiconductor layer 13 was formed.
 次に、図5に示すように、上記アモルファス酸化物半導体層13の上部に絶縁膜を堆積し、続いてこの絶縁膜をパターニングすることによって、チャネル層領域(ゲート電極11の上方の領域)の上部にバリア層15を形成する。 Next, as shown in FIG. 5, an insulating film is deposited on the amorphous oxide semiconductor layer 13, and then the insulating film is patterned to thereby form a channel layer region (region above the gate electrode 11). A barrier layer 15 is formed on the top.
 バリア層15を構成する絶縁膜としては、酸化シリコン膜、窒化シリコン膜、アルミナ膜などの無機系絶縁膜や、パリレン膜などの有機系絶縁膜を例示することができる。これらの絶縁膜の堆積は、CVD法、スパッタリング法、塗布法などにより行う。また、絶縁膜のパターニングは、フォトレジスト膜をマスクに用いたドライエッチングまたはウェットエッチングにより行う。 Examples of the insulating film constituting the barrier layer 15 include inorganic insulating films such as a silicon oxide film, a silicon nitride film, and an alumina film, and organic insulating films such as a parylene film. These insulating films are deposited by a CVD method, a sputtering method, a coating method, or the like. The insulating film is patterned by dry etching or wet etching using a photoresist film as a mask.
 次に、図6に示すように、アモルファス酸化物半導体層13およびバリア層15の上部に導電膜14を堆積する。導電膜14としては、前述したゲート電極11を構成する各種導電膜を例示することができる。また、導電膜14の堆積は、電子ビーム蒸着法、スパッタリング法などにより行う。本実施の形態では、電子ビーム蒸着装置を用い、電子ビームの加速電圧を通常よりも高い値(例えば10kV)に設定してAlからなる導電膜14を堆積した。 Next, as shown in FIG. 6, a conductive film 14 is deposited on the amorphous oxide semiconductor layer 13 and the barrier layer 15. Examples of the conductive film 14 include various conductive films that constitute the gate electrode 11 described above. The conductive film 14 is deposited by electron beam evaporation, sputtering, or the like. In the present embodiment, the conductive film 14 made of Al is deposited by using an electron beam evaporation apparatus and setting the acceleration voltage of the electron beam to a value higher than usual (for example, 10 kV).
 電子ビームの加速電圧を通常よりも高い値に設定してアモルファス酸化物半導体層13の上部に導電膜14を堆積すると、図7に示すように、アモルファス酸化物半導体層13の表面近傍に結晶粒13cgが生成する。これは、電子ビーム蒸着装置内に設置された導電膜原料に高電圧で加速された電子ビームを照射すると、蒸発した導電膜原料がアモルファス酸化物半導体層13の表面に高速で衝突し、アモルファス酸化物半導体層13を構成する酸化物(本実施の形態ではZn-Sn-O)の一部がそのエネルギーによって結晶化されるためである。このとき、アモルファス酸化物半導体層13のチャネル層領域(ゲート電極11の上方の領域)はバリア層15で覆われているので、この領域に結晶粒13cgが形成されることはない。 When the conductive film 14 is deposited on the amorphous oxide semiconductor layer 13 with the acceleration voltage of the electron beam set to a higher value than usual, crystal grains are formed in the vicinity of the surface of the amorphous oxide semiconductor layer 13 as shown in FIG. 13cg is generated. This is because when the conductive film material installed in the electron beam evaporation apparatus is irradiated with an electron beam accelerated at a high voltage, the evaporated conductive film material collides with the surface of the amorphous oxide semiconductor layer 13 at a high speed, and amorphous oxide This is because part of the oxide (Zn—Sn—O in this embodiment) included in the physical semiconductor layer 13 is crystallized by its energy. At this time, since the channel layer region (region above the gate electrode 11) of the amorphous oxide semiconductor layer 13 is covered with the barrier layer 15, the crystal grain 13cg is not formed in this region.
 次に、図8に示すように、フォトレジスト膜をマスクに用いたドライエッチングでゲート電極11の上方の導電膜14を除去することにより、ソース電極14sおよびドレイン電極14dを形成する。ここまでの工程により、本実施の形態のボトムゲート/トップコンタクト型薄膜トランジスタが完成する。 Next, as shown in FIG. 8, a source electrode 14s and a drain electrode 14d are formed by removing the conductive film 14 above the gate electrode 11 by dry etching using a photoresist film as a mask. Through the steps so far, the bottom-gate / top-contact thin film transistor of this embodiment is completed.
 図9の実線Aは、上述した方法で作製した薄膜トランジスタのゲート電圧(Vg)とドレイン電流(Id)との関係を示すグラフである。また、同図の破線Bは、電子ビームの加速電圧を5kVに設定して導電膜14を堆積した薄膜トランジスタ(比較例)のしきいゲート電圧(Vg)とドレイン電流(Id)との関係を示すグラフである。2種の薄膜トランジスタのチャネル長は0.1mmとし、チャネル幅は2mmとした。 A solid line A in FIG. 9 is a graph showing the relationship between the gate voltage (Vg) and the drain current (Id) of the thin film transistor manufactured by the above-described method. A broken line B in the figure shows the relationship between the threshold gate voltage (Vg) and the drain current (Id) of the thin film transistor (comparative example) in which the conductive film 14 is deposited with the electron beam acceleration voltage set to 5 kV. It is a graph. The channel length of the two types of thin film transistors was 0.1 mm, and the channel width was 2 mm.
 図9に示すように、電子ビームの加速電圧を10kVに設定して導電膜14を堆積した本実施の形態の薄膜トランジスタは、電子ビームの加速電圧を5kVに設定した比較例の薄膜トランジスタに比べて2倍以上のオン電流(Ion)を示した。 As shown in FIG. 9, the thin film transistor of this embodiment in which the conductive film 14 is deposited with the acceleration voltage of the electron beam set to 10 kV is 2 in comparison with the thin film transistor of the comparative example in which the acceleration voltage of the electron beam is set to 5 kV. The on-current (Ion) was doubled or more.
 これは、本実施の形態の薄膜トランジスタでは、アモルファス酸化物半導体層13の表面近傍が結晶化したことにより、この領域においてアモルファス酸化物半導体層13の構成元素(Zn-Sn-O)の配列が密になり、キャリアである電子が流れ易くなった結果、アモルファス酸化物半導体層13とソース電極14sおよびドレイン電極14dとのコンタクト抵抗が低減したのに対し、比較例の薄膜トランジスタでは、アモルファス酸化物半導体層13中に結晶粒13cgが生成しなかったためである。 This is because in the thin film transistor of this embodiment, since the vicinity of the surface of the amorphous oxide semiconductor layer 13 is crystallized, the arrangement of the constituent elements (Zn—Sn—O) of the amorphous oxide semiconductor layer 13 is dense in this region. As a result, the electron which is a carrier easily flows. As a result, the contact resistance between the amorphous oxide semiconductor layer 13 and the source electrode 14s and the drain electrode 14d is reduced, whereas in the thin film transistor of the comparative example, the amorphous oxide semiconductor layer This is because crystal grains 13 cg were not generated in 13.
 図10は、本実施の形態の薄膜トランジスタにおけるドレイン電極14dとアモルファス酸化物半導体層13との界面近傍の断面TEM写真である。図10に示すように、ドレイン電極14dとの界面から深さ10nm以内の結晶粒存在領域(Tcg)内に結晶粒13cgがほぼ一列に並んで存在していることが確認できた。一方、比較例の薄膜トランジスタの断面TEM写真からは、結晶粒13cgの存在を確認することができなかった。 FIG. 10 is a cross-sectional TEM photograph of the vicinity of the interface between the drain electrode 14d and the amorphous oxide semiconductor layer 13 in the thin film transistor of the present embodiment. As shown in FIG. 10, it was confirmed that the crystal grains 13cg were present in almost one row in the crystal grain existence region (Tcg) within a depth of 10 nm from the interface with the drain electrode 14d. On the other hand, the presence of the crystal grains 13cg could not be confirmed from the cross-sectional TEM photograph of the thin film transistor of the comparative example.
 上記結晶粒13cgのTEM像からFFT回折によって結晶構造を調べたところ、図11に示すようなZnSnOの存在を確認した。また、結晶粒13cgが形成された領域以外の領域はアモルファス状態であることも同時に確認した。 When the crystal structure was examined by FFT diffraction from the TEM image of the crystal grain 13cg, the presence of ZnSnO 3 as shown in FIG. 11 was confirmed. It was also confirmed at the same time that the region other than the region where the crystal grains 13cg were formed was in an amorphous state.
 次に、結晶粒13cgの粒径と結晶粒存在領域(Tcg)との関係を調べるため、ソース電極14sおよびドレイン電極14dを構成する導電膜(Al膜)14の堆積条件や堆積後のアニール条件を変えることによって、結晶粒13cgの粒径および結晶粒存在領域(Tcg)を変化させた。その結果、結晶粒13cgの粒径が15nm程度で、かつ結晶粒存在領域(Tcg)がアモルファス酸化物半導体層13の表面から20nm以内のとき、オン電流(Ion)の向上が確認された。これに対し、結晶粒13cgの粒径が20nmを超えると、結晶粒13cgが柱状成長し始め、アモルファス酸化物半導体層13の表面荒れが生じてコンタクト抵抗が増加することを確認した。 Next, in order to investigate the relationship between the grain size of the crystal grain 13cg and the crystal grain existence region (Tcg), the deposition conditions of the conductive film (Al film) 14 constituting the source electrode 14s and the drain electrode 14d and the annealing conditions after the deposition Was changed to change the grain size of the crystal grains 13cg and the crystal grain existence region (Tcg). As a result, it was confirmed that the on-current (Ion) was improved when the grain size of the crystal grain 13cg was about 15 nm and the crystal grain existence region (Tcg) was within 20 nm from the surface of the amorphous oxide semiconductor layer 13. In contrast, it was confirmed that when the grain size of the crystal grain 13cg exceeds 20 nm, the crystal grain 13cg starts to grow in a columnar shape, the surface roughness of the amorphous oxide semiconductor layer 13 occurs, and the contact resistance increases.
 以上の結果から、結晶粒13cgの粒径は15nm以下であることが好ましい。また、結晶粒存在領域(Tcg)は、アモルファス酸化物半導体層13の表面から20nm以内であることが好ましく、より好ましくは10nm以内である。 From the above results, the grain size of the crystal grains 13cg is preferably 15 nm or less. Further, the crystal grain existence region (Tcg) is preferably within 20 nm from the surface of the amorphous oxide semiconductor layer 13, more preferably within 10 nm.
 このように、本実施の形態の薄膜トランジスタによれば、アモルファス酸化物半導体層13とソース電極14sおよびドレイン電極14dとのコンタクト抵抗を低減することができる。これにより、オン電流(Ion)が向上し、電界効果移動度が向上することから、高性能な薄膜トランジスタを提供することが可能となる。これにより、例えば13.56MHz帯で動作するRFIDタグ等が実現可能となる。 Thus, according to the thin film transistor of this embodiment, the contact resistance between the amorphous oxide semiconductor layer 13, the source electrode 14s, and the drain electrode 14d can be reduced. Accordingly, an on-current (Ion) is improved and field effect mobility is improved, so that a high-performance thin film transistor can be provided. Thereby, for example, an RFID tag that operates in a 13.56 MHz band can be realized.
 また、本実施の形態では、電子ビーム蒸着法で導電膜14を堆積する際に、電子ビームの加速電圧を通常よりも高い値に設定するだけでアモルファス酸化物半導体層13内に結晶粒13cgを形成するので、結晶粒13cgを形成するための特別の工程や装置は不要である。 In this embodiment, when the conductive film 14 is deposited by the electron beam evaporation method, the crystal grains 13cg are formed in the amorphous oxide semiconductor layer 13 only by setting the acceleration voltage of the electron beam to a value higher than usual. Since it forms, the special process and apparatus for forming the crystal grain 13cg are unnecessary.
 (実施の形態2)
 薄膜トランジスタは、以下のような方法によって製造することもできる。まず、図12に示すように、絶縁性の基板10の上面にゲート電極11、ゲート絶縁膜12およびアモルファス酸化物半導体層13をこの順に形成する。ここまでの工程は、前記実施の形態1の図1~図4に示した工程と同一である。
(Embodiment 2)
The thin film transistor can also be manufactured by the following method. First, as shown in FIG. 12, the gate electrode 11, the gate insulating film 12, and the amorphous oxide semiconductor layer 13 are formed in this order on the upper surface of the insulating substrate 10. The steps so far are the same as the steps shown in FIGS. 1 to 4 of the first embodiment.
 次に、図13に示すように、アモルファス酸化物半導体層13の上部に導電膜14を堆積する。導電膜14としては、前述したゲート電極11を構成する各種導電膜を例示することができる。本実施の形態では、スパッタリング装置を用い、基板10と導電膜材料(ターゲット)との間に印加する電圧を通常よりも高い値に設定して導電膜(Al膜)14を堆積する。 Next, as shown in FIG. 13, a conductive film 14 is deposited on the amorphous oxide semiconductor layer 13. Examples of the conductive film 14 include various conductive films that constitute the gate electrode 11 described above. In the present embodiment, the conductive film (Al film) 14 is deposited using a sputtering apparatus with the voltage applied between the substrate 10 and the conductive film material (target) set to a value higher than usual.
 このようにすると、加速されたイオンや電子が通常よりも高速でターゲットに衝突し、ターゲット粒子がアモルファス酸化物半導体層13の表面に高エネルギーで衝突する結果、アモルファス酸化物半導体層13を構成する酸化物の一部がそのエネルギーによって結晶化され、結晶粒13cgが生成する。また、本実施の形態では、アモルファス酸化物半導体層13のチャネル層領域(ゲート電極11の上方の領域)をバリア層15(図5参照)で覆わないので、チャネル層領域の表面近傍にも結晶粒13cgが形成される。 In this way, accelerated ions and electrons collide with the target at a higher speed than usual, and the target particles collide with the surface of the amorphous oxide semiconductor layer 13 with high energy, thereby forming the amorphous oxide semiconductor layer 13. A part of the oxide is crystallized by the energy to generate crystal grains 13cg. In this embodiment, since the channel layer region (region above the gate electrode 11) of the amorphous oxide semiconductor layer 13 is not covered with the barrier layer 15 (see FIG. 5), the crystal is also formed near the surface of the channel layer region. Grains 13cg are formed.
 スパッタリング法を用いて導電膜14を堆積する際は、スパッタリング装置のチャンバ内にアシストイオン(例えばAr)を添加し、このアシストイオンを高速でアモルファス酸化物半導体層13の表面に衝突させることによって、結晶粒13cgを形成することもできる。また、電子ビーム蒸着法(実施の形態1)やスパッタリング法(実施の形態2)で導電膜14を堆積する工程に先立ち、アモルファス酸化物半導体層13の表面に高エネルギーのレーザビームを照射することによって、結晶粒13cgを形成することもできる。 When depositing the conductive film 14 using the sputtering method, assist ions (for example, Ar + ) are added into the chamber of the sputtering apparatus, and the assist ions collide with the surface of the amorphous oxide semiconductor layer 13 at a high speed. The crystal grains 13cg can also be formed. Prior to the step of depositing the conductive film 14 by the electron beam evaporation method (Embodiment 1) or the sputtering method (Embodiment 2), the surface of the amorphous oxide semiconductor layer 13 is irradiated with a high-energy laser beam. Thus, the crystal grains 13cg can be formed.
 前記実施の形態1と同様、結晶粒13cgの粒径は15nm以下であることが好ましい。また、結晶粒存在領域(Tcg)は、酸化物半導体層13の表面から20nm以内であることが好ましく、より好ましくは10nm以内である。 As in the first embodiment, the crystal grain 13cg preferably has a particle size of 15 nm or less. Further, the crystal grain existence region (Tcg) is preferably within 20 nm from the surface of the oxide semiconductor layer 13, and more preferably within 10 nm.
 次に、図14に示すように、フォトレジスト膜16をマスクに用いたドライエッチングでゲート電極11の上方の導電膜14を除去することにより、ソース電極14sおよびドレイン電極14dを形成する。このとき、本実施の形態では、導電膜14の除去に続いてその下部のアモルファス酸化物半導体層13をオーバーエッチングすることにより、チャネル層領域の表面近傍に形成された結晶粒13cgを除去する。 Next, as shown in FIG. 14, the source electrode 14s and the drain electrode 14d are formed by removing the conductive film 14 above the gate electrode 11 by dry etching using the photoresist film 16 as a mask. At this time, in this embodiment, following removal of the conductive film 14, the amorphous oxide semiconductor layer 13 therebelow is over-etched to remove the crystal grains 13cg formed near the surface of the channel layer region.
 ここまでの工程により、本実施の形態のボトムゲート/トップコンタクト型薄膜トランジスタが完成する。この薄膜トランジスタのチャネル長は0.1mmであり、チャネル幅は2mmである。 The bottom gate / top contact type thin film transistor of this embodiment is completed through the steps so far. The thin film transistor has a channel length of 0.1 mm and a channel width of 2 mm.
 次に、基板10と導電膜材料(ターゲット)との間に印加する電圧を通常通りに設定して導電膜(Al膜)14を堆積した薄膜トランジスタを作製し、オン電流(Ion)を比較したところ、本実施の形態の薄膜トランジスタは、比較例の薄膜トランジスタに比べて2倍以上のオン電流(Ion)を示した。 Next, when a voltage applied between the substrate 10 and the conductive film material (target) was set as usual, a thin film transistor in which the conductive film (Al film) 14 was deposited was produced, and the on-current (Ion) was compared. The thin film transistor of this embodiment exhibited an on-current (Ion) that is twice or more that of the thin film transistor of the comparative example.
 また、本実施の形態の薄膜トランジスタにおけるドレイン電極14dとアモルファス酸化物半導体層13との界面近傍の断面TEM写真を観察したところ、ドレイン電極14dとの界面から深さ10nm以内の結晶粒存在領域(Tcg)に結晶粒13cgが一列に並んで存在していることが確認できた。また、結晶粒13cgが形成された領域以外の領域は、アモルファス状態であることも同時に確認した。一方、上記比較例の薄膜トランジスタの断面TEM写真からは、結晶粒13cgの存在を確認することができなかった。 Further, when a cross-sectional TEM photograph in the vicinity of the interface between the drain electrode 14d and the amorphous oxide semiconductor layer 13 in the thin film transistor of this embodiment was observed, a crystal grain existence region (Tcg) within a depth of 10 nm from the interface with the drain electrode 14d was observed. It was confirmed that the crystal grains 13cg were present in a line. It was also confirmed at the same time that the region other than the region where the crystal grains 13cg were formed was in an amorphous state. On the other hand, the presence of the crystal grains 13cg could not be confirmed from the cross-sectional TEM photograph of the thin film transistor of the comparative example.
 上記結晶粒13cgのTEM像からFFT回折によって結晶構造を調べたところ、選択したアモルファス酸化物半導体層13の構成元素により異なるが、ZnSnOおよびInを主成分とし、一部の構成元素が他の構成元素で置換された結晶構造を有していることが確認された。このように、結晶粒13cgの構成元素は、アモルファス酸化物半導体層13の構成元素と同一である場合だけでなく、アモルファス酸化物半導体層13の構成元素の少なくとも一部である場合もある。 When the crystal structure was examined by FFT diffraction from the TEM image of the crystal grain 13cg, it was different depending on the constituent elements of the selected amorphous oxide semiconductor layer 13, but some constituent elements were mainly composed of ZnSnO 3 and In 2 O 3. Was confirmed to have a crystal structure substituted with other constituent elements. Thus, the constituent element of the crystal grain 13cg is not only the same as the constituent element of the amorphous oxide semiconductor layer 13, but may be at least a part of the constituent element of the amorphous oxide semiconductor layer 13.
 本実施の形態によれば、前記実施の形態1と同様、高性能な薄膜トランジスタを提供することが可能となる。また、本実施の形態では、アモルファス酸化物半導体層13のチャネル層領域の上部にバリア層15を形成する工程が不要となるので、より少ない工程で高性能な薄膜トランジスタを製造することができる。 According to the present embodiment, it is possible to provide a high-performance thin film transistor, as in the first embodiment. Further, in this embodiment, the step of forming the barrier layer 15 on the channel layer region of the amorphous oxide semiconductor layer 13 is not necessary, so that a high-performance thin film transistor can be manufactured with fewer steps.
 本実施の形態の製造方法では、ソース、ドレイン電極用の導電膜14をドライエッチングでパターニングする際、導電膜14の下部のアモルファス酸化物半導体層13をオーバーエッチングし、チャネル層領域の表面近傍の結晶粒13cgを除去した。しかし、このとき、アモルファス酸化物半導体層13のオーバーエッチング量が変動すると、チャネル層の膜厚にばらつきが生じるため、薄膜トランジスタの特性もばらつく可能性がある。 In the manufacturing method of the present embodiment, when the conductive film 14 for the source and drain electrodes is patterned by dry etching, the amorphous oxide semiconductor layer 13 below the conductive film 14 is over-etched so that the surface of the channel layer region is near the surface. Crystal grains 13cg were removed. However, at this time, if the amount of overetching of the amorphous oxide semiconductor layer 13 varies, the film thickness of the channel layer varies, and the characteristics of the thin film transistor may vary.
 上記の問題を防ぐ対策としては、図15に示すように、アモルファス酸化物半導体層13を第1酸化物半導体層13Aと第2酸化物半導体層13Bの積層構造とし、下層の第1酸化物半導体層13Aは、例えばInやSnのように、s軌道の電子をキャリアとして使用できる元素の酸化物で構成する。さらに、オーバーエッチングされる上層の第2酸化物半導体層13Bは、下層の第1酸化物半導体層13Aを構成する酸化物よりも酸素濃度を高くした高抵抗の酸化物で構成することが考えられる。具体的な例を挙げると、下層の第1酸化物半導体層13AをSnOxで構成し、上層の第2酸化物半導体層13BをZnSnOxで構成する。 As a measure for preventing the above problem, as shown in FIG. 15, the amorphous oxide semiconductor layer 13 has a stacked structure of a first oxide semiconductor layer 13 </ b> A and a second oxide semiconductor layer 13 </ b> B. The layer 13A is made of an oxide of an element that can use s-orbital electrons as carriers, such as In or Sn. Further, it is considered that the upper second oxide semiconductor layer 13B to be over-etched is made of a high resistance oxide having an oxygen concentration higher than that of the oxide constituting the lower first oxide semiconductor layer 13A. . As a specific example, the lower first oxide semiconductor layer 13A is made of SnOx, and the upper second oxide semiconductor layer 13B is made of ZnSnOx.
 このようにすると、上層の第2酸化物半導体層13Bよりも電気抵抗の小さい下層の第1酸化物半導体層13Aが実質的にチャネル層として機能するので、上層の第2酸化物半導体層13Bのオーバーエッチング量が変動しても、薄膜トランジスタの特性のばらつきを抑制することができる。 In this way, the lower first oxide semiconductor layer 13A having a lower electrical resistance than the upper second oxide semiconductor layer 13B substantially functions as a channel layer, so that the upper second oxide semiconductor layer 13B Even if the amount of overetching varies, variation in characteristics of the thin film transistor can be suppressed.
 (実施の形態3)
 図16は、本実施の形態の薄膜トランジスタを示す断面図である。本実施の形態の薄膜トランジスタの特徴は、ソース電極14sおよびドレイン電極14dとの界面近傍だけでなく、アモルファス酸化物半導体層13のチャネル層にも結晶粒13cgを形成したことにある。
(Embodiment 3)
FIG. 16 is a cross-sectional view illustrating the thin film transistor of this embodiment. The thin film transistor of this embodiment is characterized in that crystal grains 13cg are formed not only in the vicinity of the interface between the source electrode 14s and the drain electrode 14d but also in the channel layer of the amorphous oxide semiconductor layer 13.
 本実施の形態の薄膜トランジスタの製造方法は、前述した実施の形態2の製造方法とほぼ同じであり、ソース、ドレイン電極用の導電膜14をドライエッチングでパターニングする際、導電膜14の下部のアモルファス酸化物半導体層13をオーバーエッチングしない点のみが異なっている。 The manufacturing method of the thin film transistor of this embodiment is almost the same as the manufacturing method of Embodiment 2 described above. When the conductive film 14 for the source and drain electrodes is patterned by dry etching, the amorphous structure under the conductive film 14 is formed. The only difference is that the oxide semiconductor layer 13 is not over-etched.
 本実施の形態の薄膜トランジスタにおけるドレイン電極14dとアモルファス酸化物半導体層13との界面近傍の断面TEM写真を観察したところ、ドレイン電極14dとの界面から深さ10nm以内の結晶粒存在領域(Tcg)に結晶粒13cgが一列に並んで存在していることが確認できた。 When a cross-sectional TEM photograph in the vicinity of the interface between the drain electrode 14d and the amorphous oxide semiconductor layer 13 in the thin film transistor of this embodiment is observed, a crystal grain existing region (Tcg) within a depth of 10 nm from the interface with the drain electrode 14d is observed. It was confirmed that the crystal grains 13cg existed in a line.
 図17は、本実施の形態の薄膜トランジスタのしきいゲート電圧(Vg)とドレイン電流(Id)との関係を示すグラフである。ここで、実線Cは、アモルファス酸化物半導体層13の膜厚(tch)を10nm以下(ここでは6nm)にしたときのものであり、破線Dは、アモルファス酸化物半導体層13の膜厚(tch)を10nmより厚くしたときのものである。 FIG. 17 is a graph showing the relationship between the threshold gate voltage (Vg) and the drain current (Id) of the thin film transistor of this embodiment. Here, the solid line C is obtained when the film thickness (tch) of the amorphous oxide semiconductor layer 13 is 10 nm or less (here, 6 nm), and the broken line D is the film thickness (tch) of the amorphous oxide semiconductor layer 13. ) Is thicker than 10 nm.
 アモルファス酸化物半導体層13の膜厚(tch)を10nm以下にした場合は、良好なオン電流(Ion)値を示し、アモルファス酸化物半導体層13内に結晶粒13cgを形成しない従来の薄膜トランジスタに比べて2倍以上のオン電流(Ion)を示した。また、この薄膜トランジスタのチャネル層近傍の断面TEM写真を観察したところ、粒径5nm以下の結晶粒13cgが確認できた。他方、アモルファス酸化物半導体層13の膜厚(tch)を10nmより厚くした場合は、ゲート電圧を-50Vにしてもオフすることができず、導電膜のような振る舞いを示した。 When the film thickness (tch) of the amorphous oxide semiconductor layer 13 is 10 nm or less, a good on-current (Ion) value is shown, and compared with a conventional thin film transistor that does not form crystal grains 13 cg in the amorphous oxide semiconductor layer 13. The on-current (Ion) more than twice. Further, when a cross-sectional TEM photograph in the vicinity of the channel layer of this thin film transistor was observed, crystal grains 13cg having a grain size of 5 nm or less were confirmed. On the other hand, when the film thickness (tch) of the amorphous oxide semiconductor layer 13 is greater than 10 nm, the amorphous oxide semiconductor layer 13 cannot be turned off even when the gate voltage is −50 V, and behaves like a conductive film.
 以上のことから、アモルファス酸化物半導体層13の膜厚(tch)を10nm以下にした薄膜トランジスタでは、チャネル層に結晶粒13cgが形成されている場合でも、オン電流(Ion)が向上し、電界効果移動度が向上することが分かる。 From the above, in the thin film transistor in which the film thickness (tch) of the amorphous oxide semiconductor layer 13 is 10 nm or less, even when the crystal grain 13cg is formed in the channel layer, the on-current (Ion) is improved, and the field effect It can be seen that the mobility is improved.
 (実施の形態4)
 図18は、本発明の薄膜トランジスタを使用してアンテナ共振回路21、整流器22、変調器23、デジタル回路24などを構成したRFIDタグ20の概略構成を示している。
(Embodiment 4)
FIG. 18 shows a schematic configuration of an RFID tag 20 in which an antenna resonance circuit 21, a rectifier 22, a modulator 23, a digital circuit 24, and the like are configured using the thin film transistor of the present invention.
 RFIDタグ20は、例えば13.56MHzの高周波を使って外部のリーダ/ライタ25と無線で通信を行うことができるようになっている。また、薄膜トランジスタのチャネル層を構成する酸化物半導体層は、透明材料であることから、ICチップ内にほとんど透明な回路を形成することができる。 The RFID tag 20 can communicate with an external reader / writer 25 wirelessly using a high frequency of 13.56 MHz, for example. Further, since the oxide semiconductor layer constituting the channel layer of the thin film transistor is a transparent material, an almost transparent circuit can be formed in the IC chip.
 例えば、ICチップの電極および配線をITOなどの透明導電膜で構成し、回路素子を本発明の薄膜トランジスタで構成することにより、例えば13.56MHzの高周波(RF)で送受信を行う透明な無線ICタグを作製することができる。このような無線ICタグは、従来のRFIDタグとは異なり、ICチップやアンテナがほぼ透明であることから、フィルムやカードに取り付けた場合、フィルムやカードにあらかじめ印刷された意匠を損なうことがない。 For example, a transparent wireless IC tag that transmits and receives at a high frequency (RF) of 13.56 MHz, for example, by configuring electrodes and wiring of an IC chip with a transparent conductive film such as ITO and circuit elements with the thin film transistor of the present invention. Can be produced. Such a wireless IC tag is different from a conventional RFID tag in that an IC chip and an antenna are almost transparent. Therefore, when the wireless IC tag is attached to a film or a card, the design printed on the film or the card is not damaged. .
 (実施の形態5)
 図19は、本発明の薄膜トランジスタを使用した半導体装置のアレイ構成の一例を示す回路ブロック図である。本実施の形態の半導体装置は、本発明の薄膜トランジスタを含む素子を基板30上にアレイ状に配置した構成になっている。上記薄膜トランジスタをアレイ内の各素子のスイッチングトランジスタや駆動用トランジスタに用いることはもちろん、この薄膜トランジスタのゲート電極(11)と接続されるゲート配線31に信号を送るゲート線駆動回路32や、この薄膜トランジスタのソース電極およびドレイン電極と接続されるデータ配線33に信号を送るデータ線駆動回路34を構成するトランジスタに用いてもよい。この場合、各素子の薄膜トランジスタとゲート線駆動回路32あるいはデータ線駆動回路34内の薄膜トランジスタを並行して形成することができる。
(Embodiment 5)
FIG. 19 is a circuit block diagram showing an example of an array configuration of a semiconductor device using the thin film transistor of the present invention. The semiconductor device of this embodiment has a configuration in which elements including the thin film transistor of the present invention are arranged on a substrate 30 in an array. Of course, the thin film transistor is used as a switching transistor or a driving transistor for each element in the array, as well as a gate line driving circuit 32 for sending a signal to the gate wiring 31 connected to the gate electrode (11) of the thin film transistor, You may use for the transistor which comprises the data line drive circuit 34 which sends a signal to the data wiring 33 connected with a source electrode and a drain electrode. In this case, the thin film transistor of each element and the thin film transistor in the gate line driving circuit 32 or the data line driving circuit 34 can be formed in parallel.
 アクティブマトリクス型液晶表示装置に上述したアレイを適用する場合、各素子は、例えば、図20に示すような構成になる。図中のx方向に延在するゲート配線31に走査信号が供給されると、薄膜トランジスタ35がオンし、このオンされた薄膜トランジスタ35を通して、図中のy方向に延在するデータ配線33からの映像信号が画素電極36に供給される。 When the above-described array is applied to an active matrix liquid crystal display device, each element has a configuration as shown in FIG. 20, for example. When a scanning signal is supplied to the gate wiring 31 extending in the x direction in the figure, the thin film transistor 35 is turned on, and the image from the data wiring 33 extending in the y direction in the figure through the turned on thin film transistor 35. A signal is supplied to the pixel electrode 36.
 なお、ゲート配線31は、図中のy方向に並設され、データ配線33は、図中のx方向に並設され、隣接する一対のゲート配線31と隣接する一対のデータ配線33とで囲まれた領域(画素領域)に画素電極36が配置されている。この場合、例えば、データ配線33がソース電極と電気的に接続され、画素電極36がドレイン電極と電気的に接続される。あるいは、データ配線33がソース電極を兼ねてもよい。また、液晶表示装置に限らず、有機EL表示装置などに上述したアレイを適用してもよい。この場合、画素回路を構成するトランジスタに薄膜トランジスタを適用する。さらには、上述したアレイを記憶素子に適用し、選択トランジスタに薄膜トランジスタを適用してもよい。 The gate lines 31 are arranged in parallel in the y direction in the figure, and the data lines 33 are arranged in parallel in the x direction in the figure and are surrounded by a pair of adjacent gate lines 31 and a pair of adjacent data lines 33. A pixel electrode 36 is arranged in the area (pixel area). In this case, for example, the data line 33 is electrically connected to the source electrode, and the pixel electrode 36 is electrically connected to the drain electrode. Alternatively, the data wiring 33 may also serve as the source electrode. Further, the above-described array may be applied not only to the liquid crystal display device but also to an organic EL display device or the like. In this case, a thin film transistor is applied to a transistor included in the pixel circuit. Furthermore, the above-described array may be applied to the memory element, and a thin film transistor may be applied to the selection transistor.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 本発明は、酸化物半導体材料をチャネル層に用いた薄膜トランジスタを有する半導体装置に適用することができる。 The present invention can be applied to a semiconductor device having a thin film transistor using an oxide semiconductor material for a channel layer.
10 基板
11 ゲート電極
12 ゲート絶縁膜
13 アモルファス酸化物半導体層
13A 第1酸化物半導体層
13B 第2酸化物半導体層
13cg 結晶粒
14 導電膜
14d ドレイン電極
14s ソース電極
15 バリア層
16 フォトレジスト膜
20 RFIDタグ
21 アンテナ共振回路
22 整流器
23 変調器
24 デジタル回路
25 リーダ/ライタ
30 基板
31 ゲート配線
32 ゲート線駆動回路
33 データ配線
34 データ線駆動回路
35 薄膜トランジスタ
36 画素電極
10 substrate 11 gate electrode 12 gate insulating film 13 amorphous oxide semiconductor layer 13A first oxide semiconductor layer 13B second oxide semiconductor layer 13cg crystal grain 14 conductive film 14d drain electrode 14s source electrode 15 barrier layer 16 photoresist film 20 RFID Tag 21 Antenna resonance circuit 22 Rectifier 23 Modulator 24 Digital circuit 25 Reader / writer 30 Substrate 31 Gate wiring 32 Gate line driving circuit 33 Data wiring 34 Data line driving circuit 35 Thin film transistor 36 Pixel electrode

Claims (12)

  1.  基板の上面に、ゲート電極、ゲート絶縁膜、チャネル層を構成するアモルファス酸化物半導体層、ソース、ドレイン電極がこの順に積層されてなる薄膜トランジスタを備え、
     前記ソース、ドレイン電極との界面近傍の前記アモルファス酸化物半導体層内に、前記アモルファス酸化物半導体層の構成元素を含む結晶粒を有することを特徴とする酸化物半導体装置。
    Provided with a thin film transistor in which a gate electrode, a gate insulating film, an amorphous oxide semiconductor layer constituting a channel layer, a source and a drain electrode are laminated in this order on the upper surface of the substrate,
    An oxide semiconductor device comprising crystal grains containing constituent elements of the amorphous oxide semiconductor layer in the amorphous oxide semiconductor layer in the vicinity of the interface with the source and drain electrodes.
  2.  前記アモルファス酸化物半導体層は、In、Zn、Cd、Al、Ga、Si、Sn、Ce、Ge、Hfのうち、いずれか一種以上の元素が酸素と結合した酸化物からなることを特徴とする請求項1記載の酸化物半導体装置。 The amorphous oxide semiconductor layer is made of an oxide in which any one or more elements of In, Zn, Cd, Al, Ga, Si, Sn, Ce, Ge, and Hf are combined with oxygen. The oxide semiconductor device according to claim 1.
  3.  前記アモルファス酸化物半導体層の膜厚は、25nm以上であり、前記結晶粒は、前記アモルファス酸化物半導体層の表面から深さ20nmまでの領域内に存在することを特徴とする請求項1記載の酸化物半導体装置。 The film thickness of the amorphous oxide semiconductor layer is 25 nm or more, and the crystal grains exist in a region from the surface of the amorphous oxide semiconductor layer to a depth of 20 nm. Oxide semiconductor device.
  4.  前記結晶粒の粒径は、15nm以下であることを特徴とする請求項3記載の酸化物半導体装置。 4. The oxide semiconductor device according to claim 3, wherein a grain size of the crystal grains is 15 nm or less.
  5.  前記アモルファス酸化物半導体層の膜厚は、10nm以下であり、前記結晶粒は、前記アモルファス酸化物半導体層のチャネル層にも存在することを特徴とする請求項1記載の酸化物半導体装置。 2. The oxide semiconductor device according to claim 1, wherein a film thickness of the amorphous oxide semiconductor layer is 10 nm or less, and the crystal grains are also present in a channel layer of the amorphous oxide semiconductor layer.
  6.  前記アモルファス酸化物半導体層は、第1酸化物からなる第1アモルファス酸化物半導体層と、前記第1アモルファス酸化物半導体層の上部に形成され、前記第1酸化物よりも酸素濃度の低い第2酸化物からなる第2アモルファス酸化物半導体層との積層構造を有することを特徴とする請求項1記載の酸化物半導体装置。 The amorphous oxide semiconductor layer includes a first amorphous oxide semiconductor layer made of a first oxide, and a second oxygen concentration lower than that of the first oxide, formed on the first amorphous oxide semiconductor layer. The oxide semiconductor device according to claim 1, wherein the oxide semiconductor device has a stacked structure with a second amorphous oxide semiconductor layer made of an oxide.
  7.  酸化物半導体材料をチャネル層に用いた薄膜トランジスタを有する酸化物半導体装置の製造方法であって、
    (a)基板の上面にゲート電極を形成する工程と、
    (b)前記ゲート電極の上部にゲート絶縁膜を形成する工程と、
    (c)前記ゲート絶縁膜の上部にアモルファス酸化物半導体層を形成する工程と、
    (d)前記アモルファス酸化物半導体層のチャネル層領域の上部にバリア層を形成する工程と、
    (e)前記アモルファス酸化物半導体層および前記バリア層の上部に導電膜を形成する工程と、
    (f)前記チャネル層領域の上方の前記導電膜を除去することにより、前記チャネル層領域の両側の前記アモルファス酸化物半導体層上に前記導電膜からなるソース、ドレイン電極を形成する工程と、
    を有し、
     前記(e)工程で前記導電膜を堆積する際、前記アモルファス酸化物半導体層に入射する加速粒子のエネルギーを利用し、前記ソース、ドレイン電極との界面近傍の前記アモルファス酸化物半導体層内に、前記アモルファス酸化物半導体層の構成元素を含む結晶粒を形成することを特徴とする酸化物半導体装置の製造方法。
    A method for manufacturing an oxide semiconductor device having a thin film transistor using an oxide semiconductor material for a channel layer,
    (A) forming a gate electrode on the upper surface of the substrate;
    (B) forming a gate insulating film on the gate electrode;
    (C) forming an amorphous oxide semiconductor layer on the gate insulating film;
    (D) forming a barrier layer on the channel layer region of the amorphous oxide semiconductor layer;
    (E) forming a conductive film on the amorphous oxide semiconductor layer and the barrier layer;
    (F) forming the source and drain electrodes made of the conductive film on the amorphous oxide semiconductor layer on both sides of the channel layer region by removing the conductive film above the channel layer region;
    Have
    When depositing the conductive film in the step (e), using the energy of accelerated particles incident on the amorphous oxide semiconductor layer, in the amorphous oxide semiconductor layer in the vicinity of the interface with the source and drain electrodes, A method for manufacturing an oxide semiconductor device, comprising forming a crystal grain containing a constituent element of the amorphous oxide semiconductor layer.
  8.  酸化物半導体材料をチャネル層に用いた薄膜トランジスタを有する酸化物半導体装置の製造方法であって、
    (a)基板の上面にゲート電極を形成する工程と、
    (b)前記ゲート電極の上部にゲート絶縁膜を形成する工程と、
    (c)前記ゲート絶縁膜の上部にアモルファス酸化物半導体層を形成する工程と、
    (d)前記アモルファス酸化物半導体層の上部に導電膜を形成する工程と、
    (e)前記ゲート電極の上方の前記導電膜をエッチングで除去することにより、チャネル層領域の両側の前記アモルファス酸化物半導体層上に前記導電膜からなるソース、ドレイン電極を形成する工程と、
    を有し、
     前記(d)工程で前記導電膜を堆積する際、前記アモルファス酸化物半導体層に入射する加速粒子のエネルギーを利用し、前記ソース、ドレイン電極との界面近傍の前記アモルファス酸化物半導体層内に、前記アモルファス酸化物半導体層の構成元素を含む結晶粒を形成し、
     前記(e)工程で前記導電膜をエッチングする際、前記アモルファス酸化物半導体層の表面近傍をオーバーエッチングすることにより、前記チャネル層領域に形成された前記結晶粒を除去することを特徴とする酸化物半導体装置の製造方法。
    A method for manufacturing an oxide semiconductor device having a thin film transistor using an oxide semiconductor material for a channel layer,
    (A) forming a gate electrode on the upper surface of the substrate;
    (B) forming a gate insulating film on the gate electrode;
    (C) forming an amorphous oxide semiconductor layer on the gate insulating film;
    (D) forming a conductive film on the amorphous oxide semiconductor layer;
    (E) forming the source and drain electrodes made of the conductive film on the amorphous oxide semiconductor layer on both sides of the channel layer region by removing the conductive film above the gate electrode by etching;
    Have
    When depositing the conductive film in the step (d), using the energy of accelerated particles incident on the amorphous oxide semiconductor layer, the amorphous oxide semiconductor layer in the vicinity of the interface with the source and drain electrodes, Forming crystal grains containing the constituent elements of the amorphous oxide semiconductor layer;
    When etching the conductive film in the step (e), the crystal grains formed in the channel layer region are removed by over-etching the vicinity of the surface of the amorphous oxide semiconductor layer. For manufacturing a semiconductor device.
  9.  前記アモルファス酸化物半導体層は、In、Zn、Cd、Al、Ga、Si、Sn、Ce、Ge、Hfのうち、いずれか一種以上の元素が酸素と結合した酸化物からなることを特徴とする請求項7記載の酸化物半導体装置の製造方法。 The amorphous oxide semiconductor layer is made of an oxide in which any one or more elements of In, Zn, Cd, Al, Ga, Si, Sn, Ce, Ge, and Hf are combined with oxygen. A method for manufacturing an oxide semiconductor device according to claim 7.
  10.  前記導電膜は、電子ビーム蒸着法またはスパッタリング法により堆積することを特徴とする請求項7記載の酸化物半導体装置の製造方法。 8. The method of manufacturing an oxide semiconductor device according to claim 7, wherein the conductive film is deposited by an electron beam evaporation method or a sputtering method.
  11.  前記アモルファス酸化物半導体層の膜厚は、25nm以上であり、前記結晶粒は、前記アモルファス酸化物半導体層の表面から深さ20nmまでの領域内に存在することを特徴とする請求項7記載の酸化物半導体装置の製造方法。 The film thickness of the amorphous oxide semiconductor layer is 25 nm or more, and the crystal grains exist in a region from the surface of the amorphous oxide semiconductor layer to a depth of 20 nm. Manufacturing method of oxide semiconductor device.
  12.  前記結晶粒の粒径は、15nm以下であることを特徴とする請求項7記載の酸化物半導体装置の製造方法。 The method for manufacturing an oxide semiconductor device according to claim 7, wherein the crystal grains have a particle size of 15 nm or less.
PCT/JP2011/073879 2010-10-25 2011-10-18 Oxide semiconductor device and method for manufacturing same WO2012056933A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012540783A JP5666616B2 (en) 2010-10-25 2011-10-18 Manufacturing method of oxide semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010238152 2010-10-25
JP2010-238152 2010-10-25

Publications (1)

Publication Number Publication Date
WO2012056933A1 true WO2012056933A1 (en) 2012-05-03

Family

ID=45993647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073879 WO2012056933A1 (en) 2010-10-25 2011-10-18 Oxide semiconductor device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP5666616B2 (en)
WO (1) WO2012056933A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178439A (en) * 2011-02-25 2012-09-13 Nippon Hoso Kyokai <Nhk> Semiconductor device and manufacturing method thereof
JP2018078339A (en) * 2012-11-30 2018-05-17 株式会社半導体エネルギー研究所 Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710609A (en) * 2020-06-24 2020-09-25 中国科学院微电子研究所 Doping method of indium gallium zinc oxide thin film transistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153828A (en) * 2008-11-21 2010-07-08 Semiconductor Energy Lab Co Ltd Semiconductor device, and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5213421B2 (en) * 2007-12-04 2013-06-19 キヤノン株式会社 Oxide semiconductor thin film transistor
JP2010153802A (en) * 2008-11-20 2010-07-08 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
JP5509659B2 (en) * 2008-11-21 2014-06-04 凸版印刷株式会社 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND IMAGE DISPLAY DEVICE
JP5538797B2 (en) * 2008-12-12 2014-07-02 キヤノン株式会社 Field effect transistor and display device
JP5657878B2 (en) * 2009-11-20 2015-01-21 株式会社半導体エネルギー研究所 Method for manufacturing transistor
KR20120107079A (en) * 2009-11-20 2012-09-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Thin film transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153828A (en) * 2008-11-21 2010-07-08 Semiconductor Energy Lab Co Ltd Semiconductor device, and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178439A (en) * 2011-02-25 2012-09-13 Nippon Hoso Kyokai <Nhk> Semiconductor device and manufacturing method thereof
JP2018078339A (en) * 2012-11-30 2018-05-17 株式会社半導体エネルギー研究所 Semiconductor device

Also Published As

Publication number Publication date
JP5666616B2 (en) 2015-02-12
JPWO2012056933A1 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
JP5666567B2 (en) Semiconductor device, RFID tag using the same, and display device
JP5503667B2 (en) Field effect transistor and method of manufacturing field effect transistor
JP5624628B2 (en) Semiconductor device
US9276129B2 (en) Semiconductor device in which oxygen deficiency in semiconductor is reduced and method for manufacturing the same
JP5983163B2 (en) Oxide semiconductor target, oxide semiconductor material, and semiconductor device manufacturing method using the same
US8558323B2 (en) Thin film transistors having multi-layer channel
US8748879B2 (en) Semiconductor device, thin film transistor and a method for producing the same
US8932903B2 (en) Method for forming wiring, semiconductor device, and method for manufacturing semiconductor device
EP1981085A1 (en) Tft substrate, reflective tft substrate and method for manufacturing such substrates
JP2011054812A (en) Thin film transistor, and method for manufacturing the same
US20130095606A1 (en) Fabrication Method for ZnO Thin Film Transistors Using Etch-stop Layer
JP5815178B2 (en) Method for manufacturing semiconductor device
JP2023133618A (en) Semiconductor device
JP2010123913A (en) Thin-film transistor and method of manufacturing the same
US7968368B2 (en) Method of manufacturing a field effect transistor having an oxide semiconductor
JP5666616B2 (en) Manufacturing method of oxide semiconductor device
US10079311B2 (en) Thin film transistor substrate and method for making same
US20150194530A1 (en) Thin film transistor and method of manufacturing the same
JP6209918B2 (en) THIN FILM TRANSISTOR AND METHOD FOR MANUFACTURING THIN FILM TRANSISTOR
JP6264015B2 (en) THIN FILM TRANSISTOR AND METHOD FOR PRODUCING THIN FILM TRANSISTOR
JP2010073880A (en) Thin-film field effect transistor and method for manufacturing the same
JP2014157907A (en) Thin film transistor and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012540783

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836069

Country of ref document: EP

Kind code of ref document: A1