WO2012056850A1 - Curable composition - Google Patents

Curable composition Download PDF

Info

Publication number
WO2012056850A1
WO2012056850A1 PCT/JP2011/072531 JP2011072531W WO2012056850A1 WO 2012056850 A1 WO2012056850 A1 WO 2012056850A1 JP 2011072531 W JP2011072531 W JP 2011072531W WO 2012056850 A1 WO2012056850 A1 WO 2012056850A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
curable composition
synthesis example
silane compound
Prior art date
Application number
PCT/JP2011/072531
Other languages
French (fr)
Japanese (ja)
Inventor
担 渡辺
岡村 直実
齋藤 敦
裕仁 水野
Original Assignee
セメダイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セメダイン株式会社 filed Critical セメダイン株式会社
Priority to KR1020137010589A priority Critical patent/KR101554248B1/en
Priority to CN201180048962.9A priority patent/CN103168080B/en
Publication of WO2012056850A1 publication Critical patent/WO2012056850A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J143/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Adhesives based on derivatives of such polymers
    • C09J143/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane

Definitions

  • the present invention relates to an organic polymer having a silicon-containing group (hereinafter also referred to as “crosslinkable silicon group”) having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond. It relates to the curable composition containing this.
  • crosslinkable silicon group a silicon-containing group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond. It relates to the curable composition containing this.
  • An organic polymer containing at least one crosslinkable silicon group in the molecule is crosslinked at room temperature by the formation of a siloxane bond accompanied by a hydrolysis reaction of a reactive silicon group due to moisture or the like. It is known to have the property of being obtained.
  • organic polymers having a crosslinkable silicon group organic polymers whose main chain skeleton is a polyoxyalkylene polymer or a (meth) acrylate polymer are used for sealing materials, adhesives, paints, etc. Widely used.
  • the curable composition used for sealing materials, adhesives, paints, etc. and the rubber-like cured product obtained by curing have various properties such as curability, adhesiveness, storage stability, mechanical properties such as modulus, strength, and elongation. Properties are required, and many studies have been made on organic polymers containing crosslinkable silicon groups.
  • curable compositions containing an organic polymer having a crosslinkable silicon group are cured using a silanol condensation catalyst.
  • organic tin-based catalysts such as dibutyltin bis (acetylacetonate) are widely used. in use.
  • toxicity of organotin compounds has been pointed out, and development of non-organotin catalysts has been demanded.
  • a dealcohol-free silicone composition using a titanium catalyst is already on the market and is widely used for many applications (for example, Patent Documents 1 to 3).
  • Patent Documents 1 to 3 there are relatively few examples of adding a titanium catalyst to an organic polymer containing a crosslinkable silicon group, which are disclosed in Patent Documents 4 to 21 and the like.
  • the curable compositions using these titanium catalysts have a problem that the curing rate is slow, and the curing rate is lowered and the viscosity is increased after storage.
  • a curable composition containing an organic polymer containing a crosslinkable silicon group is often used as an adhesive or a sealing material, and in that case, adhesion to various types of substrates is required.
  • so-called aminosilane having a primary amino group and an alkoxy group in the molecule is usually used.
  • an organic polymer containing a crosslinkable silicon group and a titanium catalyst are used to prepare a one-component curable composition by adding aminosilane, the composition is good after storage for a certain period, although the adhesiveness is good. If the viscosity of the product is improved and it is severe, it may harden in the container and cannot be used. Sealing materials and adhesives are not always used immediately after production, but are often stored for several months in warehouses or stores, and it is desired that their curability and viscosity be constant before and after storage. Yes.
  • An object of the present invention is to provide a curable composition that is excellent in curability, adhesion, and storage stability, and that does not require an organic tin catalyst and has excellent safety.
  • the present inventors have conducted intensive research and have identified, as a curing catalyst, an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule.
  • a silane compound obtained by reacting an epoxy silane compound with a specific aminosilane compound and a titanium chelate coordinated with a ⁇ -ketoester, it has excellent curability, adhesion and storage stability, and It has been found that a room temperature moisture-curable curable composition that does not require an organotin catalyst and is excellent in safety can be obtained.
  • the curable composition of the present invention is (A) an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule and the main chain is not polysiloxane, (B) An epoxysilane compound represented by (1) and an aminosilane compound represented by the following formula (2) are reacted with 1 mol of the aminosilane compound in a range of 1.5 to 10 mol.
  • a curable composition comprising a silane compound, and (C) one or more titanium catalysts selected from the group consisting of a titanium chelate represented by the following formula (3) and a titanium chelate represented by the following formula (4): And (B) 0.1 to 40 parts by mass of the (B) silane compound and 0.1 to 40 parts by mass of the (C) titanium catalyst with respect to 100 parts by mass of the (A) organic polymer.
  • R 1 to R 3 are each a hydrogen atom or an alkyl group
  • R 4 is an alkylene group or an alkyleneoxyalkylene group
  • R 5 is a monovalent hydrocarbon group
  • R 6 is An alkyl group
  • a is 0, 1 or 2.
  • R 7 to R 12 are each a hydrogen atom or an alkyl group, R 13 is a monovalent hydrocarbon group, R 14 is an alkyl group, and b is 0 or 1.
  • n R 21 s are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms
  • 4-n R 22 s are each independently a hydrogen atom.
  • 4-n R 23 and 4-n R 24 are independently substituted or unsubstituted carbon atoms having 1 to 20 carbon atoms.
  • n is 0, 1, 2 or 3.
  • R 25 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms
  • the two R 26 are each independently a hydrogen atom or substituted or unsubstituted.
  • the two R 27 and the two R 28 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • the (B) silane compound is preferably a silane compound obtained by reacting the epoxysilane compound and the aminosilane compound at a reaction temperature of 40 to 100 ° C.
  • the (A) organic polymer is a polyoxyalkylene polymer containing 0.8 or more crosslinkable silicon groups on average per molecule, and 0.8 or more crosslinks on average per molecule. Selected from the group consisting of a saturated hydrocarbon polymer containing a functional silicon group and a (meth) acrylic acid ester polymer containing an average of 0.8 or more crosslinkable silicon groups in one molecule. One or more are preferable.
  • the crosslinkable silicon group contains a trimethoxysilyl group.
  • the curable composition of the present invention preferably further contains (D) a silane compound having one hydrolyzable silicon group and one primary amino group in one molecule.
  • the (D) silane compound is preferably a compound represented by the following formula (12).
  • R 41 is a methyl group or an ethyl group, and when a plurality of R 41 are present, they may be the same or different, and R 42 is a methyl group or An ethyl group, and when there are a plurality of R 42 , they may be the same or different, R 43 is a hydrocarbon group having 1 to 10 carbon atoms, and m is 2 or 3 and n is 0 or 1.
  • the curable composition of the present invention preferably further contains (E) a filler.
  • the filler (E) is at least one selected from the group consisting of surface-treated calcium carbonate, amorphous silica having a particle size of 0.01 to 300 ⁇ m, and polymer powder having a particle size of 0.01 to 300 ⁇ m. It is preferable.
  • the difference in refractive index between the liquid phase component (A) containing the organic polymer as a main component and the refractive index of the polymer powder is made to be equal to or less than 0.1.
  • a curable composition having excellent transparency can be obtained.
  • the difference between the refractive index of the liquid phase component mainly composed of the (A) organic polymer and the refractive index of the polymer powder is 0.1. The following is preferable.
  • the polymer powder polymerizes a monomer selected from the group consisting of (meth) acrylic acid ester, vinyl acetate, ethylene and vinyl chloride alone, or the monomer and one or more vinyl monomers
  • the polymer powder is preferably a polymer powder obtained from a polymer obtained by copolymerization, and is at least one selected from the group consisting of an acrylic polymer powder and a vinyl polymer powder. More preferred.
  • the curable composition of the present invention preferably further contains (F) a diluent.
  • the curable composition of the present invention preferably further contains a metal hydroxide. It is preferable that the metal hydroxide is aluminum hydroxide.
  • the present invention it is possible to provide a curable composition that is excellent in curability, adhesion, and storage stability, and that does not require an organic tin catalyst and has excellent safety. Moreover, according to this invention, the curable composition excellent in transparency can also be obtained.
  • the curable composition of the present invention comprises (A) an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule and whose main chain is not polysiloxane, (B) the above formula (1) ) And an aminosilane compound represented by the above formula (2) are reacted with 1 mol of the aminosilane compound in a range of 1.5 to 10 mol of the epoxysilane compound. And (C) a curable composition comprising at least one titanium catalyst selected from the group consisting of a titanium chelate represented by the formula (3) and a titanium chelate represented by the formula (4). And (B) 0.1 to 40 parts by mass of the (B) silane compound and 0.1 to 40 parts by mass of the (C) titanium catalyst with respect to 100 parts by mass of the (A) organic polymer. To do.
  • the (A) organic polymer is an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule and the main chain is not polysiloxane, and various main chain bones excluding polysiloxane. You can use one with a rating.
  • polyoxyalkylene heavy polymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, polyoxypropylene-polyoxybutylene copolymer, etc.
  • Copolymer ethylene-propylene copolymer, polyisobutylene, copolymer of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene or copolymer of butadiene and acrylonitrile and / or styrene, polybutadiene, isoprene or butadiene Copolymers of acrylonitrile and styrene, etc., hydrocarbon polymers such as hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers; dibasic acids such as adipic acid and glycols A polyester polymer obtained by condensation of lactones or ring-opening polymerization of lactones; a (meth) acrylic acid ester polymer obtained by radical polymerization of monomers such as ethyl (meth) acrylate and butyl (meth) acrylate; (Meth) acrylic acid ester monomer, vinyl polymer obtained by
  • saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene polymers, and (meth) acrylic acid ester polymers can be obtained with a relatively low glass transition temperature.
  • the cured product is preferable because it is excellent in cold resistance.
  • Polyoxyalkylene polymers and (meth) acrylic acid ester polymers are particularly preferred because of their high moisture permeability and excellent deep-part curability when made into one-component compositions.
  • the crosslinkable silicon group of the (A) organic polymer used in the present invention is a group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond.
  • a group represented by the following general formula (5) is preferable.
  • R 31 represents an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or R 31 3 represents a triorganosiloxy group represented by SiO— (R 31 is the same as above), and when two or more R 31 are present, they may be the same or different.
  • X represents a hydroxyl group or a hydrolyzable group, and when two or more X exist, they may be the same or different.
  • d represents 0, 1, 2, or 3
  • e represents 0, 1, or 2, respectively.
  • p in the following general formula (6) need not be the same. p represents an integer of 0 to 19. However, d + (sum of e) ⁇ 1 is satisfied.
  • the hydrolyzable group or hydroxyl group can be bonded to one silicon atom in the range of 1 to 3, and d + (sum of e) is preferably in the range of 1 to 5.
  • d + (sum of e) is preferably in the range of 1 to 5.
  • two or more hydrolyzable groups or hydroxyl groups are bonded to the crosslinkable silicon group, they may be the same or different.
  • the number of silicon atoms forming the crosslinkable silicon group may be one or two or more, but in the case of silicon atoms linked by a siloxane bond or the like, there may be about 20 silicon atoms.
  • crosslinkable silicon group a crosslinkable silicon group represented by the following general formula (7) is preferable because it is easily available.
  • R 31 and X are the same as those described above, and d is an integer of 1, 2 or 3.
  • a in the formula (7) is preferably 2 or more, and more preferably 3.
  • R 31 examples include an alkyl group such as a methyl group and an ethyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, an aralkyl group such as a benzyl group, and R 31 3 SiO—. And triorganosiloxy group. Of these, a methyl group is preferred.
  • the hydrolyzable group represented by X is not particularly limited as long as it is a conventionally known hydrolyzable group.
  • Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group.
  • a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable, and an alkoxy group, an amide group, and an aminooxy group are more preferable.
  • An alkoxy group is particularly preferred from the viewpoint of mild hydrolysis and easy handling.
  • the alkoxy groups those having a smaller number of carbon atoms have higher reactivity, and the reactivity increases as the number of carbon atoms increases in the order of methoxy group> ethoxy group> propoxy group.
  • a methoxy group or an ethoxy group is usually used.
  • crosslinkable silicon group examples include trialkoxysilyl groups [—Si (OR) 3 ] such as trimethoxysilyl group and triethoxysilyl group, dialkoxy such as methyldimethoxysilyl group and methyldiethoxysilyl group.
  • a silyl group [—SiR 1 (OR) 2 ], and a trimethoxysilyl group is more preferable.
  • R is an alkyl group such as a methyl group or an ethyl group.
  • crosslinkable silicon group may be used alone or in combination of two or more.
  • the crosslinkable silicon group can be present in the main chain, the side chain, or both.
  • the number of silicon atoms forming the crosslinkable silicon group is one or more, but in the case of silicon atoms linked by a siloxane bond or the like, it is preferably 20 or less.
  • the organic polymer having a crosslinkable silicon group may be linear or branched, and its number average molecular weight is about 500 to 100,000 in terms of polystyrene in GPC, more preferably 1,000 to 50,000. Particularly preferred is 3,000 to 30,000. If the number average molecular weight is less than 500, the cured product tends to be disadvantageous in terms of elongation characteristics, and if it exceeds 100,000, the viscosity tends to be inconvenient because of high viscosity.
  • the average number of crosslinkable silicon groups contained in the organic polymer is 0.8 or more in one molecule of the polymer. 1.1 to 5 may be present. If the number of crosslinkable silicon groups contained in the molecule is less than 0.8 on average, the curability becomes insufficient and it becomes difficult to develop good rubber elastic behavior.
  • the crosslinkable silicon group may be at the end of the main chain or the side chain of the organic polymer molecular chain, or at both ends.
  • the crosslinkable silicon group is only at the end of the main chain of the molecular chain, so that the effective network length of the organic polymer component contained in the finally formed cured product is increased, so that the strength and elongation are high. It becomes easy to obtain a rubber-like cured product exhibiting a low elastic modulus.
  • the polyoxyalkylene polymer is essentially a polymer having a repeating unit represented by the following general formula (8). -R 32 -O- (8)
  • R 32 is a linear or branched alkylene group having 1 to 14 carbon atoms, preferably a linear or branched alkylene group having 1 to 14 carbon atoms, and more preferably 2 to 4 carbon atoms. .
  • repeating unit represented by the general formula (8) examples include -CH 2 O -, - CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (C 2 H 5) O -, - CH 2 C (CH 3) 2 O-, —CH 2 CH 2 CH 2 CH 2 O— Etc.
  • the main chain skeleton of the polyoxyalkylene polymer may be composed of only one type of repeating unit, or may be composed of two or more types of repeating units.
  • a polymer comprising a propylene oxide polymer as a main component is preferable because it is amorphous or has a relatively low viscosity.
  • a polymerization method using an alkali catalyst such as KOH for example, JP-A Nos. 61-197631, 61-215622, 61-215623, and 61-215623 can be used.
  • Examples of the polymerization method using a catalyst include, but are not limited to, a polymerization method.
  • a polyoxyalkylene system having a high molecular weight with a number average molecular weight of 6,000 or more and Mw / Mn of 1.6 or less and a narrow molecular weight distribution according to a polymerization method using an organic aluminum-porphyrin complex catalyst or a polymerization method using a double metal cyanide complex catalyst A polymer can be obtained.
  • the main chain skeleton of the polyoxyalkylene polymer may contain other components such as a urethane bond component.
  • a urethane bond component examples include aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate; aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate, and polyoxyalkylene heavy compounds having a hydroxyl group.
  • lifted The thing obtained from reaction with coalescence can be mention
  • the introduction of a crosslinkable silicon group into a polyoxyalkylene polymer can be performed on a polyoxyalkylene polymer having a functional group such as an unsaturated group, a hydroxyl group, an epoxy group or an isocyanate group in the molecule.
  • the reaction can be carried out by reacting a compound having a reactive functional group and a crosslinkable silicon group (hereinafter referred to as a polymer reaction method).
  • a hydrosilane or mercapto compound obtained by allowing a hydrosilane having a crosslinkable silicon group or a mercapto compound having a crosslinkable silicon group to act on an unsaturated group-containing polyoxyalkylene polymer to form a crosslinkable silicon group
  • the method of obtaining the polyoxyalkylene type polymer which has this can be mention
  • An unsaturated group-containing polyoxyalkylene polymer is obtained by reacting an organic polymer having a functional group such as a hydroxyl group with an organic compound having an active group and an unsaturated group that are reactive with the functional group, A polyoxyalkylene polymer containing can be obtained.
  • polymer reaction method examples include a method of reacting a polyoxyalkylene polymer having a hydroxyl group at a terminal with a compound having an isocyanate group and a crosslinkable silicon group, or a polyoxyalkylene system having an isocyanate group at a terminal.
  • examples thereof include a method of reacting a polymer with a compound having an active hydrogen group such as a hydroxyl group or an amino group and a crosslinkable silicon group.
  • an isocyanate compound is used, a polyoxyalkylene polymer having a crosslinkable silicon group can be easily obtained.
  • polyoxyalkylene polymer having a crosslinkable silicon group examples include JP-B Nos. 45-36319, 46-12154, JP-A Nos. 50-156599, 54-6096, and 55-13767.
  • No. 57-164123 Japanese Patent Publication No. 3-2450, Japanese Patent Application Laid-Open No. 2005-213446, No. 2005-306891, International Publication No. WO 2007-040143, US Pat. No. 3,632,557, No. 4,345,053,
  • the ones proposed in the publications such as 4,960,844 can be listed.
  • the above polyoxyalkylene polymers having a crosslinkable silicon group may be used alone or in combination of two or more.
  • the saturated hydrocarbon polymer is a polymer that does not substantially contain a carbon-carbon unsaturated bond other than an aromatic ring, and the polymer constituting the skeleton thereof is (1) ethylene, propylene, 1-butene, isobutylene, etc.
  • Diene compounds such as butadiene and isoprene are homopolymerized or copolymerized with the above olefin compounds. After that, it can be obtained by a method such as hydrogenation.
  • isobutylene polymers and hydrogenated polybutadiene polymers are easy to introduce functional groups at the terminals, control the molecular weight, and the number of terminal functional groups. Therefore, an isobutylene polymer is particularly preferable.
  • Those whose main chain skeleton is a saturated hydrocarbon polymer have characteristics of excellent heat resistance, weather resistance, durability, and moisture barrier properties.
  • all of the monomer units may be formed from isobutylene units, or may be a copolymer with other monomers, but the repeating unit derived from isobutylene is 50 from the viewpoint of rubber properties. Those containing at least mass% are preferred, those containing at least 80 mass% are more preferred, and those containing from 90 to 99 mass% are particularly preferred.
  • Examples of the method for producing a saturated hydrocarbon polymer having a crosslinkable silicon group include, for example, JP-B-4-69659, JP-B-7-108928, JP-A-62-254149, JP-A-62-2904, Although described in each specification of Kaihei 1-197509, Japanese Patent Publication No. 2539445, Japanese Patent Publication No. 2873395, and Japanese Patent Application Laid-Open No. 7-53882, it is not particularly limited thereto.
  • the above saturated hydrocarbon polymer having a crosslinkable silicon group may be used alone or in combination of two or more.
  • the (meth) acrylic acid ester monomer constituting the main chain of the (meth) acrylic acid ester polymer is not particularly limited, and various types can be used. Examples include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, Isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-heptyl (meth) acrylate, N-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth)
  • the following vinyl monomers can be copolymerized together with the (meth) acrylic acid ester monomer.
  • the vinyl monomers include styrene monomers such as styrene, vinyl toluene, ⁇ -methyl styrene, chlorostyrene, styrene sulfonic acid, and salts thereof; fluorine-containing vinyl monomers such as perfluoroethylene, perfluoropropylene, and vinylidene fluoride.
  • Silicon-containing vinyl monomers such as vinyltrimethoxysilane and vinyltriethoxysilane; maleic anhydride, maleic acid, monoalkyl and dialkyl esters of maleic acid; fumaric acid, monoalkyl and dialkyl esters of fumaric acid; maleimide, Methyl maleimide, ethyl maleimide, propyl maleimide, butyl maleimide, hexyl maleimide, octyl maleimide, dodecyl maleimide, stearyl maleimide, phenyl maleimide, cyclohexyl Maleimide monomers such as maleimide; Nitrile group-containing vinyl monomers such as acrylonitrile and methacrylonitrile; Amide group-containing vinyl monomers such as acrylamide and methacrylamide; Vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate, cinnamon Examples thereof include vinyl esters such as vinyl acid; alkenes such as ethylene and prop
  • the polymer which consists of a styrene-type monomer and a (meth) acrylic-acid type monomer from the physical property of a product etc. is preferable. More preferred is a (meth) acrylic polymer comprising an acrylate monomer and a methacrylic acid ester monomer, and particularly preferred is an acrylic polymer comprising an acrylate monomer.
  • a butyl acrylate monomer is more preferred from the viewpoint that physical properties such as low viscosity of the blend, low modulus of the cured product, high elongation, weather resistance, and heat resistance are required.
  • copolymers based on ethyl acrylate are more preferred.
  • This polymer mainly composed of ethyl acrylate is excellent in oil resistance but tends to be slightly inferior in low temperature characteristics (cold resistance). Therefore, in order to improve the low temperature characteristics, a part of ethyl acrylate is converted into butyl acrylate. It is also possible to replace it.
  • the ratio of butyl acrylate is increased, its good oil resistance is impaired. Therefore, for applications requiring oil resistance, the ratio is preferably 40% or less, and more preferably 30% or less. More preferably.
  • the ratio is preferably 40% or less. In accordance with various uses and required purposes, it is possible to obtain suitable polymers by changing the ratio in consideration of required physical properties such as oil resistance, heat resistance and low temperature characteristics.
  • examples of excellent balance of physical properties such as oil resistance, heat resistance, and low-temperature characteristics include ethyl acrylate / butyl acrylate / -2-methoxyethyl acrylate (40-50 / 20 by mass ratio). To 30/30 to 20).
  • these preferable monomers may be copolymerized with other monomers, and further block copolymerized, and in this case, it is preferable that these preferable monomers are contained in a mass ratio of 40% or more.
  • (meth) acrylic acid represents acrylic acid and / or methacrylic acid.
  • the method for obtaining the (meth) acrylic acid ester polymer is not particularly limited, and known polymerization methods (for example, JP-A-63-112642, JP-A-2007-230947, JP-A-2001-40037). And a synthesis method described in JP-A-2003-313397), and a radical polymerization method using a radical polymerization reaction is preferable.
  • the radical polymerization method a radical polymerization method (free radical polymerization method) in which a predetermined monomer unit is copolymerized using a polymerization initiator or a reactive silyl group is introduced at a controlled position such as a terminal. Possible controlled radical polymerization methods are mentioned.
  • a polymer obtained by a normal free radical polymerization method using an azo compound or a peroxide as a polymerization initiator has a problem that the molecular weight distribution is generally as large as 2 or more and the viscosity is increased. Yes. Therefore, in order to obtain a (meth) acrylate polymer having a narrow molecular weight distribution and a low viscosity and having a crosslinkable functional group at the molecular chain terminal at a high ratio. It is preferable to use a controlled radical polymerization method.
  • Examples of the controlled radical polymerization method include free radical polymerization method and living radical polymerization method using a chain transfer agent having a specific functional group, such as an addition-cleavage transfer reaction (RAFT) polymerization method, Living radical polymerization methods such as a radical polymerization method using a transition metal complex (Transition-Metal-Mediated Living Radical Polymerization) are more preferable.
  • a reaction using a thiol compound having a reactive silyl group and a reaction using a thiol compound having a reactive silyl group and a metallocene compound Japanese Patent Laid-Open No. 2001-40037 are also suitable.
  • the above (meth) acrylic acid ester-based polymer having a crosslinkable silicon group may be used alone or in combination of two or more.
  • organic polymers having a crosslinkable silicon group may be used alone or in combination of two or more. Specifically, it comprises a polyoxyalkylene polymer having a crosslinkable silicon group, a saturated hydrocarbon polymer having a crosslinkable silicon group, and a (meth) acrylic acid ester polymer having a crosslinkable silicon group.
  • An organic polymer obtained by blending two or more selected from the group can also be used.
  • a method for producing an organic polymer obtained by blending a polyoxyalkylene polymer having a crosslinkable silicon group and a (meth) acrylic acid ester polymer having a crosslinkable silicon group is disclosed in JP-A-59-122541.
  • Japanese Laid-Open Patent Publication No. 63-112642 Japanese Laid-Open Patent Publication No. 6-172631, and Japanese Laid-Open Patent Publication No. 11-116763
  • the invention is not particularly limited thereto.
  • Preferable specific examples include a crosslinkable silicon group and a molecular chain substantially having the following general formula (9): —CH 2 —C (R 35 ) (COOR 36 ) — (9) (Wherein R 35 represents a hydrogen atom or a methyl group, and R 36 represents an alkyl group having 1 to 8 carbon atoms) (meth) acrylic acid ester monomer having an alkyl group having 1 to 8 carbon atoms Unit and the following general formula (10): —CH 2 —C (R 35 ) (COOR 37 ) — (10) (Wherein R 35 is the same as described above, and R 37 represents an alkyl group having 10 or more carbon atoms) and is a copolymer comprising a (meth) acrylic acid ester monomer unit having an alkyl group having 10 or more carbon atoms.
  • a polymer is blended with a polyoxyalkylene polymer having a crosslinkable silicon group.
  • R 36 in the general formula (9) is, for example, a methyl group, an ethyl group, a propyl group, an n-butyl group, a t-butyl group, a 2-ethylhexyl group, etc., having 1 to 8, preferably 1 to 4, More preferred are 1 to 2 alkyl groups.
  • the alkyl group of R 36 may alone, or may be a mixture of two or more.
  • R 37 in the general formula (10) is, for example, a long-chain alkyl having 10 or more carbon atoms such as lauryl group, tridecyl group, cetyl group, stearyl group, behenyl group, etc., usually 10-30, preferably 10-20. Group.
  • the alkyl group for R 37 is the R 36, alone may be, or may be a mixture of two or more.
  • the molecular chain of the (meth) acrylic acid ester copolymer is substantially composed of monomer units of the formula (9) and the formula (10), and the term “substantially” here means the copolymer. It means that the total of the monomer units of the formula (9) and the formula (10) present therein exceeds 50% by mass. The total of the monomer units of the formula (9) and the formula (10) is preferably 70% by mass or more.
  • the abundance ratio of the monomer unit of formula (9) and the monomer unit of formula (10) is preferably 95: 5 to 40:60, more preferably 90:10 to 60:40, in terms of mass ratio.
  • Examples of monomer units other than the formulas (9) and (10) that may be contained in the copolymer include ⁇ such as acrylic acid and methacrylic acid. , ⁇ -unsaturated carboxylic acids; amide groups such as acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, epoxy groups such as glycidyl acrylate, glycidyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, aminoethyl vinyl ether, etc. And other monomer units derived from acrylonitrile, styrene, ⁇ -methylstyrene, alkyl vinyl ether, vinyl chloride, vinyl acetate, vinyl propionate, ethylene and the like.
  • crosslinkable silicon group used in a method for producing an organic polymer obtained by blending a polyoxyalkylene polymer having a crosslinkable silicon group and a (meth) acrylic acid ester polymer having a crosslinkable silicon group (meta )
  • acrylate polymer include, for example, (a1) a methyl (meth) acrylate monomer unit as disclosed in JP-A-2008-44975, and (a2) An acrylic polymer having a crosslinkable silicon group containing a (meth) acrylic acid alkyl ester monomer unit having an alkyl group having 8 carbon atoms.
  • the molecular chain of the acrylic copolymer preferably contains a total of 50% by mass or more of the monomer unit (a1) and the monomer unit (a2). It is more preferable that the total of the monomer units is 70% by mass or more.
  • the acrylic copolymer may contain monomer units other than (a1) and (a2). As the monomer unit other than (a1) and (a2), for example, the other monomer units described above in the description of the (meth) acrylic acid ester-based copolymer can be used in the same manner.
  • the number average molecular weight of the acrylic copolymer is preferably 600 to 5000, more preferably 1000 to 4500. By setting the number average molecular weight within this range, compatibility with the polyoxyalkylene polymer having a crosslinkable silicon group can be improved.
  • the acrylic copolymer is preferably used in an amount of 5 to 900 parts by mass with respect to 100 parts by mass of the polyoxyalkylene polymer having a crosslinkable silicon group. These acrylic copolymers may be used alone or in combination of two or more.
  • a method for producing an organic polymer obtained by blending a (meth) acrylic acid ester-based copolymer having a crosslinkable silicon group, in the presence of an organic polymer having a crosslinkable silicon group (A method of polymerizing a meth) acrylate monomer can be used. This production method is specifically disclosed in JP-A-59-78223, JP-A-59-168014, JP-A-60-228516, JP-A-60-228517, etc. It is not limited to these.
  • a saturated hydrocarbon polymer having a crosslinkable silicon group and / or a crosslink with respect to 100 parts by mass of the polyoxyalkylene polymer having a crosslinkable silicon group is preferably used in an amount of 10 to 200 parts by weight, more preferably 20 to 80 parts by weight.
  • the (B) silane compound comprises an epoxy silane compound represented by the following formula (1) and an amino silane compound represented by the following formula (2): It is a silane compound obtained by reacting in the range of 10 mol.
  • R 1 to R 3 are each a hydrogen atom or an alkyl group, preferably a hydrogen atom, a methyl group, an ethyl group, or a propyl group, and more preferably a hydrogen atom.
  • R 4 is an alkylene group or an alkyleneoxyalkylene group, and is a methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, methyleneoxyethylene group, methyleneoxypropylene group, methyleneoxybutylene.
  • R 5 is a monovalent hydrocarbon group, preferably an alkyl group such as a methyl group, an ethyl group or a propyl group; an alkenyl group such as a vinyl group, an allyl group or a butenyl group; an aryl group such as a phenyl group or a tolyl group; Groups are more preferred.
  • R 5 may be the same or different.
  • R 6 is an alkyl group, preferably a methyl group, an ethyl group, or a propyl group, and more preferably a methyl group or an ethyl group. When a plurality of R 6 are present, they may be the same or different. a is 0, 1 or 2, and 0 is preferable.
  • R 7 to R 12 are each a hydrogen atom or an alkyl group, preferably a hydrogen atom, a methyl group, an ethyl group, or a propyl group, and more preferably a hydrogen atom.
  • R 13 is a monovalent hydrocarbon group, preferably an alkyl group or an alkoxy group, more preferably a methyl group, an ethyl group, a propyl group, a methoxy group, an ethoxy group, or a propoxy group, and even more preferably a methoxy group or an ethoxy group.
  • R 14 is an alkyl group, preferably a methyl group, an ethyl group, or a propyl group, and more preferably a methyl group or an ethyl group.
  • b is 0 or 1.
  • (3-b) R 14 may be the same or different.
  • epoxysilane compound examples include 4-oxiranylbutyltrimethoxysilane, 8-oxiranyloctyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Glycidoxypropyltriethoxysilane and the like.
  • aminosilane compound examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, and the like.
  • the reaction condition between the epoxysilane compound and the aminosilane compound is that the primary amino group of the aminosilane compound reacts with the epoxysilane compound, the primary amino group becomes a secondary amino group or a tertiary amino group, What is necessary is just to make it react so that a primary amino group may not remain
  • the aminosilane compound and the epoxysilane compound are mixed in the presence or absence of a solvent, and 25 ° C to 100 ° C, preferably 30 ° C to 90 ° C, more preferably 40 ° C. It is preferable to carry out the reaction at a reaction temperature of from 0 ° C to 80 ° C.
  • reaction temperature By setting the reaction temperature within the above range, the reaction can proceed stably without causing runaway.
  • the reaction temperature is less than 25 ° C., the activity is low, the time required to achieve a sufficient reaction is lengthened, and the efficiency is poor.
  • the reaction time can be appropriately set in consideration of the reaction temperature and the like. For example, under the above conditions, the reaction time is usually set in the range of 1 to 336 hours, preferably 24 to 72 hours. Is preferred.
  • the reaction ratio (molar ratio) between the epoxysilane compound and the aminosilane compound is 1.5 to 10 mol, preferably 1.6 to 5.0 mol, more preferably 1.7 mol of the epoxysilane compound with respect to 1 mol of the aminosilane compound. The reaction is carried out to give ⁇ 2.4 mol.
  • the epoxy silane compound and the amino silane compound are heated and reacted at a reaction temperature of preferably 40 ° C. or higher, more preferably 40 to 100 ° C., and still more preferably 40 to 80 ° C. Is cleaved and cyclized by an alcohol exchange reaction between the hydroxyl group produced by this reaction and the alkoxy group in the aminosilane compound, whereby a carbacyltolane derivative represented by the following formula (11) can be obtained.
  • the carbacyltolane derivative represented by the following formula (11) is a compound having a peak from ⁇ 60 ppm to ⁇ 70 ppm in 29 Si-NMR.
  • R 1 to R 6 and a are the same as in Formula (1)
  • R 7 to R 12 are the same as in Formula (2)
  • b in Formula (2) is When 0, R 15 is the same as OR 14 in the formula (2), and when b in the formula (2) is 1, R 15 is the same as R 13 in the formula (2).
  • the alkoxy group bonded to the silicon atom may be partially substituted by an alcohol exchange reaction.
  • the silicon atom-bonded alkoxy group of the raw material and the silicon atom-bonded alkoxy group in the carbacyltran derivative generated by the reaction May not be the same.
  • the blending ratio of the (B) silane compound is such that 0.1 to 40 parts by weight of the (B) silane compound is blended with respect to 100 parts by weight of the (A) organic polymer. It is preferable to mix part by mass, and more preferably 0.5 to 20 parts by mass.
  • the (B) silane compound may be used alone or in combination of two or more.
  • the (C) titanium catalyst is at least one selected from the group consisting of a titanium chelate represented by the following formula (3) and a titanium chelate represented by the following formula (4).
  • n R 21 s are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms
  • 4-n R 22 s are each independently a hydrogen atom or A substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms
  • 4-n R 23 and 4-n R 24 are each independently substituted or unsubstituted C 1-20 carbon atoms.
  • a hydrocarbon group and n is 0, 1, 2 or 3;
  • R 25 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms
  • the two R 26 are independently a hydrogen atom or a substituted or unsubstituted group. It is a hydrocarbon group having 1 to 20 carbon atoms
  • two R 27 and two R 28 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
  • titanium chelate represented by the formula (3) or the formula (4) examples include titanium dimethoxide bis (ethyl acetoacetate), titanium diethoxide bis (ethyl acetoacetate), and titanium diisopropoxide bis (ethyl).
  • titanium diisopropoxide bis (methyl acetoacetate), titanium diisopropoxide bis (t-butyl acetoacetate), titanium diisopropoxide bis (methyl-3-oxo-4,4-dimethylhexano) Eth), titanium diisopropoxide bis (ethyl-3-oxo-4,4,4-trifluorobutanoate), titanium di-n-butoxide bis (ethyl acetoacetate), titanium diisobutoxide bis (ethyl acetoacetate) ) Titanium di-t-butoxide bis (ethyl acetoacetate), Titanium di-2-ethylhexoxide bis (ethyl acetoacetate), Titanium bis (1-methoxy-2-propoxide) bis (ethyl acetoacetate), Titanium bis (3-oxo-2-butoxide) bis (ethylacetoacetate), titanium bis (3-diethylaminopropoxide) bis
  • titanium diethoxide bis (ethyl acetoacetate), titanium diisopropoxide bis (ethyl acetoacetate), titanium dibutoxide bis (ethyl acetoacetate) and the like, titanium diisopropoxide bis (ethyl acetoacetate) ) Is more preferable.
  • Examples of the chelating reagent capable of forming the chelate ligand of the titanium chelate include, for example, methyl acetoacetate, ethyl acetoacetate, t-butyl acetoacetate, allyl acetoacetate, acetoacetate (2-methacryloxyethyl), 3-oxo Examples include ⁇ -ketoesters such as methyl -4,4-dimethylhexanoate and ethyl 3-oxo-4,4,4-trifluorobutanoate, preferably methyl acetoacetate and ethyl acetoacetate, more preferably ethyl acetoacetate . When two or more chelate ligands are present, each chelate ligand may be the same or different.
  • the blending ratio of the (C) titanium catalyst is such that 0.1 to 40 parts by weight of the (C) titanium catalyst is blended with respect to 100 parts by weight of the (A) organic polymer. It is preferable to mix, and it is more preferable to add 1 to 20 parts by mass.
  • the (C) titanium catalyst may be used alone or in combination of two or more.
  • a titanium compound capable of reacting with a chelating reagent such as titanium tetraisopropoxide or titanium dichloride diisopropoxide, and acetoacetic acid
  • a method may be used in which a chelating reagent such as ethyl is added to the composition of the present invention and chelated in the composition.
  • the curable composition of the present invention uses the (C) titanium catalyst as a curing catalyst, but other curing catalysts can be used in combination to such an extent that the effects of the present invention are not reduced.
  • other curing catalysts include organometallic compounds and amines, and it is particularly preferable to use a silanol condensation catalyst.
  • silanol condensation catalyst examples include stannous octoate, dibutyltin dioctoate, dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, dibutyltin diacetylacetonate, dibutyltin oxide, dibutyltin bistriethoxysilicate, dibutyltin distearate.
  • Titanates such as tetrabutyl titanate and tetrapropyl titanate; aluminum trisacetylacetonate, aluminum trisethylate Organoaluminum compounds such as acetoacetate and diisopropoxyaluminum ethylacetoacetate; Chelate compounds such as zirconium tetraacetylacetonate and titanium tetraacetylacetonate; Organic acid lead such as lead octylate and lead naphthenate; Bismuth octylate Organic acid bismuth such as bismuth neodecanoate and bismuth rosinate; other acidic catalysts and basic catalysts known as silanol condensation catalysts.
  • the toxicity of the resulting curable composition may increase depending on the amount of the organotin compound added.
  • the curable composition of the present invention further includes (D) a silane compound having one hydrolyzable silicon group and one primary amino group in one molecule.
  • D By adding a silane compound, storage stability and tensile physical properties can be further improved.
  • the (D) silane compound known silane compounds having one hydrolyzable silicon group and a primary amino group in one molecule can be widely used.
  • a known hydrolyzable group excluding a primary amino group can be used, but an alkoxyl group is preferable.
  • the hydrolyzable silicon group is preferably a trialkoxysilyl group or a dialkoxysilyl group, and more preferably a trialkoxysilyl group.
  • (D) silane compound a compound represented by the following formula (12) is more preferably used.
  • R 41 is a methyl group or an ethyl group, and when a plurality of R 41 are present, they may be the same or different.
  • R 42 is a methyl group or an ethyl group, and when a plurality of R 42 are present, they may be the same or different.
  • R 43 is a hydrocarbon group having 1 to 10 carbon atoms. m is 2 or 3, and 3 is more preferable. n is 0 or 1.
  • (D) silane compound examples include phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, triphenylmethoxysilane, 2-carboxyethylphenylbis (2-methoxyethoxy) silane, and N-phenyl.
  • Examples of the compound represented by the formula (12) include dialkoxysilanes such as dimethyldimethoxysilane and dimethyldiethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and hexyltrimethoxysilane.
  • Alkyltrialkoxysilanes such as decyltrimethoxysilane; alkoxysilanes containing phenyl groups such as phenyltrimethoxysilane and phenyltriethoxysilane; vinyl-type unsaturated groups such as vinyltrimethoxysilane and vinyltriethoxysilane Alkoxysilanes; alkoxysilanes containing epoxy groups such as 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane, etc. Shishiran is more preferable.
  • the blending ratio of the (D) silane compound is not particularly limited, but it is preferable to blend 0.1 to 20 parts by mass of the (D) silane compound with respect to 100 parts by mass of the (A) organic polymer. More preferably, 0.3 to 20 parts by mass is added, and 0.5 to 10 parts by mass is more preferable.
  • the (D) silane compound may be used alone or in combination of two or more.
  • the curable composition of the present invention preferably further contains (E) a filler.
  • cured material can be reinforced by mix
  • known fillers can be widely used and are not particularly limited.
  • glass beads silica beads, alumina beads, carbon beads, styrene beads, phenol beads, acrylic beads, porous silica, shirasu balloons, glass balloons, silica balloons, saran balloons, acrylic balloons, etc.
  • an acrylic balloon is more preferable from the viewpoint that the decrease in elongation after curing of the composition is small.
  • any of heavy calcium carbonate, light calcium carbonate, colloidal calcium carbonate, ground calcium carbonate and the like can be used, but colloidal calcium carbonate is more preferable. These calcium carbonates may be used alone or in combination of two or more.
  • the primary particle diameter of the calcium carbonate is preferably 0.5 ⁇ m or less, more preferably 0.01 to 0.1 ⁇ m. By using such fine powdered calcium carbonate having a small particle diameter, thixotropy can be imparted to the curable composition.
  • surface-treated calcium carbonate is preferable from the viewpoint of imparting thixotropy and reinforcing effect on a cured product (cured film), and surface-treated fine calcium carbonate is more preferable.
  • surface-treated fine powdered calcium carbonate is used in combination with other calcium carbonates such as heavy calcium carbonate that has not been surface-treated and has a large particle size, or surface-treated calcium carbonate with a large particle size. May be.
  • the ratio (mass ratio) between the surface-treated fine calcium carbonate and the other calcium carbonate is preferably 1: 9 to 9: 1. 3: 7 ⁇ 7: 3 is more preferred.
  • the surface treatment agent used is not particularly limited, and a wide variety of known surface treatment agents can be used.
  • the surface treatment agent include higher fatty acid compounds, resin acid compounds, aromatic carboxylic acid esters, anionic surfactants, cationic surfactants, nonionic surfactants, paraffin, and titanate couplings. And higher fatty acid compounds and paraffin are more preferable. These surface treatment agents may be used alone or in combination of two or more.
  • Examples of the higher fatty acid compounds include higher fatty acid alkali metal salts having 10 or more carbon atoms such as sodium stearate.
  • Examples of the resin acid compound include abietic acid, neoabietic acid, d-pimalic acid, id-pimalic acid, bodocarpic acid, benzoic acid, and cinnamic acid.
  • Examples of the aromatic carboxylic acid ester include phthalic acid octyl alcohol, butyl alcohol, isobutyl alcohol and the like, naphthic acid lower alcohol ester, rosin acid lower alcohol ester, and aromatic dicarboxylic acid or rosin acid malee.
  • Examples thereof include partially esterified products of aromatic polycarboxylic acids such as acid adducts, and different alcohol esterified products.
  • the anionic surfactant include a sulfate ester type such as sodium dodecyl sulfate, or a sulfonic acid type anionic surfactant such as sodium dodecylbenzene sulfonate, sodium lauryl sulfonate, and dodecyl benzene sulfonic acid. Is mentioned.
  • known surface-treated calcium carbonate can be widely used and is not particularly limited.
  • Vigot 15 manufactured by Shiroishi Calcium Co., Ltd., light carbonate surface-treated with fatty acid
  • Surface treatment light calcium carbonate such as calcium, primary particle diameter 0.15 ⁇ m
  • Vigot 10 manufactured by Shiroishi Calcium Co., Ltd., colloidal calcium carbonate surface treated with fatty acid, primary particle diameter 0.10 ⁇ m
  • white sinter flower DD Shiraishi calcium Colloidal calcium carbonate surface-treated with resin acid, primary particle size 0.05 ⁇ m
  • Carlex 300 manufactured by Maruo Calcium Co., Ltd., colloidal calcium carbonate surface-treated with fatty acid, primary particle size 0.
  • Neolite SS manufactured by Takehara Chemical Co., Ltd.
  • Neolite GP-20 manufactured by Takehara Chemical Industry Co., Ltd., colloidal calcium carbonate surface-treated with resin acid, average particle size 0.03 ⁇ m
  • P Korean Chemical Industry
  • Surface-treated colloidal calcium carbonate such as colloidal calcium carbonate surface-treated with fatty acid manufactured by Co., Ltd .
  • MC Coat P1 manufactured by Maruo Calcium Co., Ltd., heavy carbonate surface-treated with paraffin) Calcium, primary particle size 3.3 ⁇ m
  • AFF-95 manufactured by Pfematech Co., Ltd., heavy calcium carbonate surfaced with a cationic polymer, primary particle size 0.9 ⁇ m
  • AFF-Z manufactured by Pmatech
  • Surface treatment heavy such as heavy calcium carbonate surfaced with cationic polymer and
  • the surface-treated calcium carbonate is preferably added in an amount of 0 to 500 parts by weight, more preferably 10 to 300 parts by weight, and more preferably 15 to 100 parts by weight with respect to 100 parts by weight of the (A) organic polymer. More preferably.
  • the said surface treatment calcium carbonate may be used by 1 type, and may be used in combination of 2 or more type. Moreover, you may use together the surface treatment calcium carbonate and the calcium carbonate which has not surface-treated.
  • the amorphous silica known amorphous silica can be widely used, and is not particularly limited.
  • the particle size is preferably 0.01 to 300 ⁇ m, more preferably 0.1 to 100 ⁇ m. 1 to 30 ⁇ m is more preferable.
  • the difference between the refractive index of the organic polymer (A) and the refractive index of the amorphous silica is 0.1 or less, the transparency can be further improved.
  • the difference between the refractive index of the organic polymer (A) and the refractive index of the amorphous silica is preferably 0.1 or less, more preferably 0.05 or less, and even more preferably 0.03 or less.
  • the amorphous silica is preferably blended in an amount of 0 to 500 parts by weight, more preferably 1 to 200 parts by weight, and more preferably 5 to 50 parts by weight with respect to 100 parts by weight of the (A) organic polymer. More preferably.
  • the amorphous silica may be used alone or in combination of two or more. In addition to amorphous silica having a particle size of 0.01 to 300 ⁇ m, amorphous silica or crystalline silica having a particle size different from the above may be used in combination.
  • the polymer powder known polymer powders can be widely used, and are not particularly limited.
  • the particle size is preferably 0.01 to 300 ⁇ m, more preferably 0.1 to 100 ⁇ m. 1 to 30 ⁇ m is more preferable.
  • the polymer powder for example, a monomer selected from the group consisting of (meth) acrylic acid ester, vinyl acetate, ethylene and vinyl chloride is polymerized alone, or the monomer and one or more vinyl monomers are used.
  • a polymer powder made from a polymer obtained by copolymerizing the polymer is preferably used, an acrylic polymer powder or a vinyl polymer powder is more preferable, and an acrylic polymer powder is further preferable.
  • the difference between the refractive index of the liquid phase component containing (A) the organic polymer as the main component and the refractive index of the polymer powder is 0.1.
  • it is preferably 0.05 or less, more preferably 0.03 or less.
  • the method for setting the difference between the refractive index of the liquid phase component containing (A) the organic polymer as the main component and the refractive index of the polymer powder to 0.1 or less is not particularly limited, but (1) high (A) a method of matching the refractive index of the liquid phase component containing an organic polymer as a main component with the refractive index of the molecular powder, and (2) (A) the refractive index of the polymer powder with the refractive index of the organic polymer. And the like.
  • (A) a method of adjusting a refractive index of a liquid phase component by blending a necessary amount of a compatible refractive index adjusting agent with a liquid phase component mainly composed of an organic polymer.
  • the refractive index of the organic polymer is about 1.46 to 1.48 and the refractive index of the polymer powder is higher, it is higher than (A) the organic polymer.
  • Refractive index adjusting agent having a refractive index ⁇ for example, epoxy resin [Example: Epicoat 828 (Bisphenol A, manufactured by Yuka Shell Epoxy Co., Ltd., refractive index 1.57)], petroleum resin [Example: FTR6100 (of C5 and C9 Copolymer, Mitsui Petrochemical Co., Ltd., refractive index 1.56)], terpene phenol resin [Example: Polystar T145 (Yasuhara Chemical Co., Ltd., refractive index 1.59)] ⁇
  • epoxy resin Example: Epicoat 828 (Bisphenol A, manufactured by Yuka Shell Epoxy Co., Ltd., refractive index 1.57)
  • petroleum resin Example: FTR6100 (of C5 and C9 Copolymer, Mitsui Petrochemical Co., Ltd., refractive index 1.56)
  • terpene phenol resin Example: Polystar T145 (Yasuhara Chemical Co., Ltd., refractive index 1.59)
  • Examples of the method (2) include a method of appropriately changing the monomer composition of the polymer powder.
  • the refractive index of the organic polymer (A) is about 1.46 to 1.48 and acrylic polymer powder is used as the polymer powder
  • the refractive index of the polymer powder is As a method for increasing the viscosity, for example, a monomer such as vinyl chloride [refractive index 1.53 (polymer)] and allylonitrile [refractive index 1.52 (polymer)] is used as a single monomer of (meth) acrylate.
  • the method of copolymerizing to a body is mentioned.
  • the method (E4) for reducing the refractive index of the polymer powder includes, for example, lauryl methacrylate [refractive index 1.44 (monomer)], allyl methacrylate [refractive index 1.44 (single Monomer)], and a monomer such as 2 (2-ethoxyethoxy) ethyl acrylate [refractive index of 1.43 (monomer)] is copolymerized with a meth) acrylate monomer.
  • the polymer powder is preferably blended in an amount of 0 to 500 parts by weight, more preferably 0.5 to 100 parts by weight, based on 100 parts by weight of the organic polymer (A). It is more preferable to blend.
  • the polymer powder may be used alone or in combination of two or more.
  • the blending ratio of the (E) filler is not particularly limited, but the (E) filler is 0 to 500 parts by mass with respect to 100 parts by mass of the (A) organic polymer. It is preferably blended in an amount of 2 to 250 parts by weight, more preferably 5 to 125 parts by weight.
  • the (E) filler may be used alone or in combination of two or more.
  • the curable composition of the present invention preferably further contains (F) a diluent.
  • a diluent a well-known diluent can be widely used and there is no restriction
  • ⁇ -olefin derivatives represented by the following formula (I), aromatic hydrocarbon solvents such as toluene and xylene, alcohols such as ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, and diacetone alcohol
  • aromatic hydrocarbon solvents such as toluene and xylene
  • alcohols such as ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol
  • diacetone alcohol Various solvents such as solvents, ester solvents such as ethyl acetate, butyl acetate, amyl acetate and cellosolve, citric acid ester solvents such as acetyltriethyl citrate, and ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone can be used.
  • R 51 -ZR 52 (I) (In the formula (I), R 51 and R 52 each independently represents a linear alkyl group having 2 to 20 carbon atoms, and Z is represented by any one of the following formulas (Ia) to (Ic): Represents a valent group.)
  • R 53 represents a hydrogen atom or a linear or branched alkyl group having 1 to 40 carbon atoms.
  • the flash point of the diluent (F) is not particularly limited, but in view of the safety of the resulting curable composition, it is desirable that the curable composition has a high flash point. Volatile substances from the curable composition Is preferably less. Therefore, the flash point of the (F) diluent is preferably 60 ° C. or higher, and more preferably 70 ° C. or higher. When two or more (F) diluents are mixed and used, the flash point of the mixed diluent is preferably 70 ° C. or higher. However, generally, a diluent having a high flash point tends to have a low dilution effect on the curable composition, and therefore, the flash point is preferably 250 ° C. or lower.
  • a saturated hydrocarbon solvent is preferable as the diluent, and normal paraffin and isoparaffin are more preferable.
  • Normal paraffin and isoparaffin preferably have 10 to 16 carbon atoms. Specifically, N-11 (normal paraffin, manufactured by JX Nippon Oil & Energy Corporation, carbon number 11, flash point 68 ° C.), N-12 (normal paraffin, manufactured by JX Nippon Oil & Energy Corporation, carbon number) 12, flash point 85 ° C.), IP solvent 2028 (isoparaffin, manufactured by Idemitsu Kosan Co., Ltd., carbon number 10 to 16, flash point 86 ° C.) and the like.
  • the blending ratio of the (F) diluent is not particularly limited, but it is preferable to blend 0 to 50 parts by weight of the (F) diluent with respect to 100 parts by weight of the (A) organic polymer. 1 to 30 parts by mass is more preferable, and 0.1 to 15 parts by mass is even more preferable.
  • the said (F) diluent may be used by 1 type, and may be used in combination of 2 or more type.
  • the curable composition of the present invention preferably further contains a metal hydroxide.
  • a flame retardance can be provided, workability
  • the metal hydroxide also has an effect of higher safety than other flame retardants such as halogen flame retardants.
  • a metal hydroxide and surface-treated calcium carbonate in combination, workability (thixotropic properties) can be further improved and flame retardancy can be imparted.
  • the metal hydroxide may be a metal hydroxide surface-treated with a surface treatment agent. Examples of the metal hydroxide include aluminum hydroxide and magnesium hydroxide, and aluminum hydroxide is more preferable.
  • the blending ratio of the metal hydroxide is not particularly limited, but 0 to 500 parts by weight of the metal hydroxide is preferably blended with respect to 100 parts by weight of the (A) organic polymer. More preferably, 5 to 125 parts by mass is added.
  • the said metal hydroxide may be used independently and may be used together 2 or more types. Moreover, you may use together another well-known flame retardant.
  • the curable composition of the present invention includes an ultraviolet absorber, an antioxidant, an anti-aging agent, an adhesiveness imparting agent, a physical property modifier, a plasticizer, a thixotropic agent, and a dehydration agent as necessary. You may mix substances such as additives (storage stability improvers), flame retardants, tackifiers, anti-sagging agents, colorants, radical polymerization initiators, and blend with other compatible polymers. Good.
  • the antioxidant is used to prevent oxidation of the curable composition to improve weather resistance and heat resistance, and examples thereof include hindered amine-based and hindered phenol-based antioxidants. It is done.
  • the hindered amine antioxidant include N, N ′, N ′′, N ′′ ′-tetrakis- (4,6-bis (butyl- (N-methyl-2,2,6,6-tetramethylpiperidine- 4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10-diamine, dibutylamine 1,3,5-triazine N, N'-bis- (2,2,6 , 6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine ⁇ N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate, poly [ ⁇ 6- (1, 1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4
  • hindered phenolic antioxidants include penta Erythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], thiodiethylene-bis [3- (3,5-di-ter t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenylpropioamide), benzenepropanoic acid 3,5-bis (1,1-dimethylethyl) -4-hydroxy C7-C9 side chain alkyl ester, 2,4 -Dimethyl-6- (1-methylpentadecyl) phenol, diethyl [[3,5-bis (1,1-dimethylethyl)
  • the ultraviolet absorber is used to improve the weather resistance by preventing photodegradation of the curable composition, for example, ultraviolet absorption of benzotriazole, triazine, benzophenone, benzoate, etc. Agents and the like.
  • the ultraviolet absorber include 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol and 2- (2H-benzotriazol-2-yl) -4,6- Di-tert-pentylphenol, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol, methyl 3- (3- (2H-benzotriazole-2) -Il) -5-tert-butyl-4-hydroxyphenyl) propionate / polyethylene glycol 300 reaction product, 2- (2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4 -Benzotriazole ultraviolet absorbers such as
  • the anti-aging agent is used for preventing heat deterioration of the curable composition and improving the heat resistance.
  • an anti-aging agent such as an amine-ketone type or an aromatic secondary amine type is used.
  • Antiaging agents, benzimidazole type antiaging agents, thiourea type antiaging agents, phosphorous acid type antiaging agents and the like can be mentioned.
  • amine-ketone-based anti-aging agent examples include 2,2,4-trimethyl-1,2-dihydroquinoline polymer, 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline.
  • amine-ketones such as a reaction product of diphenylamine and acetone, but are not limited thereto.
  • aromatic secondary amine-based antiaging agent examples include N-phenyl-1-naphthylamine, alkylated diphenylamine, octylated diphenylamine, 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, p- (P-toluenesulfonylamide) diphenylamine, N, N′-di-2-naphthyl-p-phenylenediamine, N, N′-diphenyl-p-phenylenediamine, N-phenyl-N′-isopropyl-p-phenylenediamine N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine, N-phenyl-N ′-(3-methacryloyloxy-2-hydroxypropyl) -p-phenylenediamine, etc. Secondary amines and the like can be mentioned, but the invention
  • benzimidazole antioxidant examples include benzimidazoles such as 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, zinc salt of 2-mercaptobenzimidazole, and the like, but are not limited thereto. is not.
  • thiourea antioxidant examples include, but are not limited to, thiourea such as 1,3-bis (dimethylaminopropyl) -2-thiourea and tributylthiourea.
  • Examples of the phosphorous acid-based antioxidant include, but are not limited to, a phosphorous acid-based material such as tris (nonylphenyl) phosphite.
  • the amount of the anti-aging agent is not particularly limited, but the anti-aging agent is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the (A) organic polymer. More preferably, it is used in the range of 0.2 to 5 parts by mass.
  • the physical property modifier is added for the purpose of improving physical properties of the curable composition such as tensile physical properties.
  • a silicon compound having one silanol group and one primary amino group in one molecule is preferably used.
  • the silicon compound include triphenylsilanol, trialkylsilanol, dialkylphenylsilanol, diphenylalkylsilanol and the like.
  • the plasticizer is added for the purpose of enhancing the stretched physical properties after curing or enabling low modulus.
  • the type of the plasticizer is not particularly limited.
  • phthalates such as dioctyl phthalate, dibutyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, diisoundecyl phthalate; dioctyl adipate, isodecyl succinate, sebacine Aliphatic dibasic acid esters such as dioctyl acid and dibutyl adipate; Glycol esters such as diethylene glycol dibenzoate, dipropylene glycol dibenzoate and pentaerythritol ester; Aliphatics such as butyl oleate and methyl acetylricinoleate Esters; Phosphate esters such as tricresyl phosphate, trioctyl phosphate, octyl diphenyl phosphat
  • triethylene glycol diethyl ether triethylene glycol ethyl methyl ether
  • triethylene glycol diethyl ether triethylene glycol diethyl ether
  • tetraethylene glycol 4 repeats such as diethyl ether, tetraethylene glycol ethyl methyl ether, tetraethylene glycol diethyl ether, etc.
  • Polyoxyethylene alkyl ethers such as polyoxyethylene dimethyl ether, which are repeated further; polystyrenes such as poly- ⁇ -methylstyrene and polystyrene; polybutadiene, butadiene-acrylonitrile copolymer, polychloroprene, polyisoprene, polybutene, water Hydrocarbon oligomers such as hydrogenated polybutadiene, hydrogenated polyisoprene, and process oil; chlorinated paraffins; acrylics such as UP-1080 (manufactured by Toagosei Co., Ltd.) and UP-1061 (manufactured by Toagosei Co., Ltd.) Hydroxyl group-containing acrylic plasticizers such as UP-2000 (manufactured by Toagosei Co., Ltd.), UHE-2012 (manufactured by Toagosei Co., Ltd.); UC-3510 (manufactured by Toagosei
  • thixotropic agent examples include inorganic thixotropic agents such as colloidal silica and asbestos powder, organic thixotropic agents such as organic bentonite, modified polyester polyol, and fatty acid amide, hydrogenated castor oil derivative, fatty acid amide wax, and aluminum stearylate. And barium stearylate.
  • the dehydrating agent is added for the purpose of removing moisture during storage.
  • Examples of the dehydrating agent include zeolite, calcium oxide, magnesium oxide, and zinc oxide.
  • the flame retardant examples include phosphorus flame retardants such as red phosphorus and ammonium polyphosphate; metal oxide flame retardants such as antimony trioxide; bromine flame retardants; chlorine flame retardants and the like.
  • the curable composition of the present invention can be made into a one-component type or a two-component type as required, and can be suitably used particularly as a one-component type.
  • the curable composition of the present invention can be cured at normal temperature by moisture in the atmosphere, and is suitably used as a normal temperature moisture-curable curable composition, but if necessary, curing is accelerated by heating as appropriate. You may let them.
  • the method for producing the curable composition of the present invention is not particularly limited. For example, a predetermined amount of the components (A) to (C) is blended, and other blending substances are blended as necessary, followed by deaeration and stirring. Can be manufactured.
  • the reaction between the epoxysilane compound and the aminosilane compound in the (B) silane compound is carried out using the (B) silane compound obtained by reacting the epoxysilane compound and the aminosilane compound in advance.
  • other compounding materials may be blended to prepare a curable composition, or a mixture in which some or all of the epoxysilane compound, aminosilane compound, and other compounding materials are mixed is prepared in the mixture.
  • the curable composition may be prepared by reacting an epoxysilane compound and an aminosilane compound.
  • the order of mixing the components (A) to (C) is not particularly limited, but the components (B) and (C) are mixed in advance to obtain a mixture containing the components (B) and (C), and then the mixture And a component (A) are preferably blended, and a curing catalyst obtained by aging a mixture containing the components (B) and (C) at a predetermined temperature is more preferably blended with the component (A).
  • aging means transesterification of a part of the alkoxy group of the (C) titanium catalyst and a part of the alkoxy group of the (B) silane compound and / or the moisture contained in the air ( B) This means that a part of the silane compound is hydrolyzed with the titanium catalyst (C) and oligomerized. It is preferable to reach the state of chemical equilibrium by the aging.
  • the mixing ratio of the (B) silane compound and the (C) titanium catalyst is 1 mol of the (C) titanium catalyst.
  • the (B) silane compound is preferably in the range of 0.1 to 30 mol, more preferably in the range of 0.5 to 5.0 mol, and still more preferably in the range of 0.5 to 3.0 mol.
  • the (C) titanium catalyst and the (B) silane compound may be used singly or in combination of two or more.
  • the method of obtaining the mixture of the (B) silane compound and the (C) titanium catalyst is obtained by using the (B) silane compound obtained by reacting an epoxy silane compound and an aminosilane compound in advance.
  • the compound and (C) titanium catalyst may be mixed to obtain a mixture, or an epoxy silane compound, an amino silane compound, and (C) a mixture of titanium catalyst are prepared, and the epoxy silane compound and amino silane compound in the mixture And (B) a mixture of a silane compound and (C) a titanium catalyst may be obtained.
  • the reaction temperature condition for aging the mixture containing the (B) silane compound and the (C) titanium catalyst is not particularly limited, but the (B) silane compound and the (C) titanium catalyst are heated at 30 ° C. to 100 ° C.
  • the reaction is preferably carried out, more preferably from 30 ° C to 90 ° C, and even more preferably from 40 ° C to 80 ° C.
  • the reaction time can be appropriately set in consideration of the reaction temperature and the like, but it is desirable to carry out the reaction until at least an equilibrium state is reached.
  • the reaction time is usually 1 to 336 hours under the above conditions, preferably Is preferably set within a range of 72 to 168 hours.
  • the mixture may be obtained by mixing other compounding substances together with the components (B) and (C).
  • the components (B) and (C) After blending one of the above and the other blending substance, the other of components (B) and (C) may be blended to obtain a mixture, and other blends may be added to the mixture containing components (B) and (C). Substances may be added.
  • the component (D) is blended as another blending substance
  • the mixture and the components (A) and (D) is obtained, for example, by blending B) or obtaining a mixture in which components (B) to (D) are premixed and then blending the mixture and component (A). After that, it is preferable to blend the remaining compounding substances.
  • the mixing ratio of the (C) titanium catalyst and the (D) silane compound is 1 mol of the (C) titanium catalyst.
  • the (D) silane compound is preferably in the range of 0.1 to 30 mol, more preferably in the range of 0.5 to 5.0 mol, and still more preferably in the range of 0.5 to 3.0 mol.
  • the (C) titanium catalyst and the (D) silane compound may be used singly or in combination of two or more.
  • a curing catalyst obtained by aging a mixture containing the components (C) and (D) at a predetermined temperature may be blended with the remaining compounding substances.
  • aging means transesterification of a part of the alkoxy group of the (C) titanium catalyst and a part of the alkoxy group of the (D) silane compound and / or moisture contained in the air ( D) It means that a part of the silane compound is hydrolyzed with the titanium catalyst (C) and oligomerized. It is preferable to reach the state of chemical equilibrium by the aging.
  • the reaction temperature condition for aging the mixture containing the (C) titanium catalyst and the (D) silane compound is not particularly limited, but the (C) titanium catalyst and the (D) silane compound are heated at 30 ° C. to 100 ° C.
  • the reaction is preferably carried out, more preferably from 30 ° C to 90 ° C, and even more preferably from 40 ° C to 80 ° C.
  • the reaction time can be appropriately set in consideration of the reaction temperature and the like, but it is desirable to carry out the reaction until at least an equilibrium state is reached.
  • the reaction time is usually 1 to 336 hours under the above conditions, preferably Is preferably set within a range of 72 to 168 hours.
  • the ripening of the components (B) and (C) and the ripening of the components (C) and (D) may or may not be performed, but at least one of the aging is performed. It is preferable to perform both aging.
  • the order of aging is not limited, but since the manufacturing process is simplified, from the viewpoint of workability, aging is simultaneously performed at a predetermined temperature for the mixture in which components (B) to (D) are mixed.
  • component (E) When the component (E) is blended as another blending substance, there is no particular limitation on the blending order, and it may be determined as appropriate. When the components (B) and (C) are aged and the components (C) and (D) are aged, it is preferable to add the component (E) after the aging step.
  • component (F) When component (F) is blended as another blending substance, there is no particular restriction on the blending order, but in addition to one or both of components (B) and (D) and component (C), component (F) It is preferable to age the mixture at a predetermined temperature.
  • the mixture containing one or both of the components (B) and (D), the component (C), and the component (F) may be simultaneously aged at a predetermined temperature.
  • a mixture containing one or both of D) and the component (C) is aged at a predetermined temperature at the same time, and then the component (F) is blended in the mixture and aged again at a predetermined temperature, for example, a plurality of times.
  • An aging step may be performed.
  • the rate of change in the curing time after storage can be reduced, which is more preferable.
  • the storage stability can be further improved.
  • the curable composition of the present invention can be used as an adhesive, a sealing material, an adhesive material, a coating material, a potting material, a paint, a putty material, a primer, and the like. Since the curable composition of the present invention is excellent in adhesiveness, storage stability, and curability, it is particularly preferable to use it as an adhesive, but for various other buildings, automobiles, civil engineering, electric / electronics. It can be used for fields.
  • THF solvent measuring device / analyzer Alliance (manufactured by Waters), 2410 type differential refraction detector (manufactured by Waters), 996 type multi-wavelength detector (manufactured by Waters), Millenium data processing device (manufactured by Waters) Column: Plgel GUARD + 5 ⁇ mMixed-C ⁇ 3 (50 ⁇ 7.5 mm, 300 ⁇ 7.5 mm: manufactured by Polymer Lab) ⁇ Flow rate: 1 mL / min ⁇ Converted polymer: Polyethylene glycol ⁇ Measurement temperature: 40 ° C.
  • FT-NMR measuring device JNM-ECA500 (500 MHz) manufactured by JEOL Ltd.
  • FT-IR measuring device FT-IR460Plus manufactured by JASCO Corporation
  • Viscosity, curing time, and structural viscosity index (SVI value) immediately after blending the curable composition were measured.
  • the conditions were referred to as initial, and the measured viscosity, curing time, and SVI value were defined as initial viscosity, initial TFT, and initial SVI value, respectively.
  • the viscosity is measured with a BS rotational viscometer (rotor No. 7-10 rpm) when the viscosity of the curable composition is 160 Pa ⁇ s or more, and when the viscosity of the curable composition is less than 160 Pa ⁇ s, the BH type. It was measured with a rotational viscometer (rotor No. 7-20 rpm) (measurement temperature 23 ° C.). As for the curing time, the touch drying time (TFT) was measured in an environment of RH 50% at 23 ° C. according to JIS A 1439 5.19 tack-free test.
  • TFT touch drying time
  • the SVI value is calculated by dividing the viscosity at 1 rpm by the viscosity at 10 rpm using a BS type rotational viscometer (rotor No. 7) when the viscosity of the curable composition is 160 Pa ⁇ s or more.
  • a BS type rotational viscometer rotor No. 7
  • the obtained SVI value was used as an index indicating thixotropy.
  • the curable composition in the sealed glass container was left in an atmosphere of 50 ° C. for 1, 2 or 4 weeks, and the viscosity, the curing time, and the SVI value were measured.
  • the measured viscosity, curing time, and SVI value were the viscosity after storage, the TFT after storage, and the SVI value after storage, respectively.
  • the viscosity increase ratio was calculated by dividing the viscosity after storage by the initial viscosity.
  • the thickening rate after 1 week storage was evaluated according to the following evaluation criteria. A: 0.90 to 1.40, O: 1.41 to 1.50, ⁇ : 1.51 to 1.60, x: 1.61 to 0.89.
  • the rate of change was calculated by dividing the TFT after storage by the initial TFT.
  • the rate of change after storage for 1 week was evaluated according to the following evaluation criteria.
  • x 1.41 or more or 0.69 or less.
  • a cured product of a curable composition having a size of 100 mm ⁇ 100 mm ⁇ 3 mm was prepared by leaving it in an environment of 23 ° C. and RH 50% for 7 days, and judged by finger touch.
  • the evaluation criteria are as follows. A: Not sticky at all, ⁇ : Not sticky, ⁇ : Sticky, ⁇ : Very sticky.
  • Adhesion test 0.2 g of the curable composition was uniformly applied on the adherend, and immediately bonded in an area of 25 mm ⁇ 25 mm. After bonding, the adhesive strength was measured according to the tensile shear adhesive strength test method of a rigid adherend immediately after pressing with a small eyeball clip for 7 days in an atmosphere of 23 ° C. and RH 50%.
  • adherend hard PVC (PVC), polycarbonate (PC), polystyrene (PS), ABS resin (ABS), acrylic resin (PMMA), nylon 6 (6-Ny), cold rolled steel plate (SPCC), Alternatively, anodized aluminum (Al) was used. Further, the fracture state of the adhesive surface was evaluated according to the following evaluation criteria.
  • C10A90 to C90A10 The area of the fracture state of CF and AF is expressed as an approximate percentage.
  • CnA (100-n) is CFn%, AF (100-n)% It means the destruction state.
  • the polyoxyalkylene polymer M1 is reacted with allyl chloride at the blending ratio shown in Table 1 to remove unreacted allyl chloride and purified to obtain a polyoxyalkylene polymer having an allyl group at the terminal. Coalescence was obtained.
  • This polyoxyalkylene polymer having an allyl group at the end is reacted with trimethoxysilane, which is a silicon hydride compound, by adding 150 ppm of a platinum vinylsiloxane complex isopropanol solution having a platinum content of 3 wt%, and trimethoxysilyl at the end.
  • a polyoxyalkylene polymer A1 having a group was obtained.
  • the peak top molecular weight was 25,000 and the molecular weight distribution was 1.3.
  • the number of terminal trimethoxysilyl groups was 1.7 per molecule.
  • the polyoxyalkylene polymer M2 is reacted with allyl chloride at the blending ratio shown in Table 1 to remove unreacted allyl chloride, and purified to obtain a polyoxyalkylene polymer having an allyl group at the terminal. Coalescence was obtained.
  • This polyoxyalkylene polymer having an allyl group at the end is reacted with trimethoxysilane, which is a silicon hydride compound, by adding 150 ppm of a platinum vinylsiloxane complex isopropanol solution having a platinum content of 3 wt%, and trimethoxysilyl at the end.
  • a polyoxyalkylene polymer A2 having a group was obtained.
  • the polyoxyalkylene polymers M1 and M2 are the polyoxyalkylene polymers M1 and M2 obtained in Synthesis Examples 1 and 2, respectively.
  • the peak top molecular weight was 3000 and the molecular weight distribution was 1.6.
  • the number of trimethoxysilyl groups contained by H 1 -NMR measurement was 2.00 per molecule.
  • an organic polymer A5 having a trimethoxysilyl group which is a mixture of a polyoxyalkylene polymer, a polyoxyalkylene polymer and a vinyl polymer.
  • the peak top molecular weight was 4000 and the molecular weight distribution was 1.6.
  • the number of terminal trimethoxysilyl groups was 2.35 per molecule.
  • the polyoxyalkylene polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively.
  • the disappearance of the peak due to the epoxy group near 910 cm ⁇ 1 was confirmed by FT-IR, the peak of the secondary amine near 1140 cm ⁇ 1 was confirmed, and 29 Si-NMR Furthermore, the appearance of a new peak was confirmed from -60 ppm to -70 ppm.
  • silane compound B2 disappearance of a peak due to an epoxy group near 910 cm ⁇ 1 was confirmed by FT-IR, and a peak of a secondary amine near 1140 cm ⁇ 1 was confirmed. In addition, no peak was observed from ⁇ 60 ppm to ⁇ 70 ppm from 29 Si-NMR.
  • the disappearance of the peak due to the epoxy group near 910 cm ⁇ 1 was confirmed by FT-IR, the peak of the secondary amine near 1140 cm ⁇ 1 was confirmed, and 29 Si-NMR Furthermore, the appearance of a new peak was confirmed from -60 ppm to -70 ppm.
  • the disappearance of the peak due to the epoxy group near 910 cm ⁇ 1 was confirmed by FT-IR, the peak of the secondary amine near 1140 cm ⁇ 1 was confirmed, and 29 Si-NMR Furthermore, the appearance of a new peak was confirmed from -60 ppm to -70 ppm.
  • silane compound X1 1410 cm -1 in FT-IR, to confirm the disappearance of a peak attributable to the amino groups in the vicinity of 1,120 cm -1, to confirm the disappearance of the peak due to the epoxy group in the vicinity of 910 cm -1 .
  • no peak was observed from ⁇ 60 ppm to ⁇ 70 ppm from 29 Si-NMR.
  • the disappearance of the peak due to the epoxy group near 910 cm ⁇ 1 was confirmed by FT-IR, the peak of the secondary amine near 1140 cm ⁇ 1 was confirmed, and 29 Si-NMR Furthermore, the appearance of a new peak was confirmed from -60 ppm to -70 ppm.
  • Synthesis Example 11 As shown in Table 5, 100 g of the silane compound B1 obtained in Synthesis Example 7 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgatrix TC-750. 63.1 g of [trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.] was added and aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst G1. With respect to the obtained titanium catalyst G1, the change in peak was confirmed by 29 Si-NMR.
  • Synthesis Example 12 As shown in Table 5, 100 g of the silane compound B1 obtained in Synthesis Example 7 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgatrix TC-750. Was aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst G2. With respect to the obtained titanium catalyst G2, change in peak was confirmed by 29 Si-NMR.
  • Silane compounds B1 to B4 are silane compounds B1 to B4 obtained in Synthesis Examples 7 to 10, respectively.
  • Titanium catalysts C1 to C3 are titanium catalysts C1 to C3 obtained in Synthesis Examples 13 to 15, respectively.
  • ORGATICS TC-750 trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Vinyltrimethoxysilane Trade name: KBM1003, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Silane compound B1 is silane compound B1 obtained in Synthesis Example 7, and details of other compounding substances are as follows.
  • ORGATICS TC-750 trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Phenyltrimethoxysilane Trade name: KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Vinyltrimethoxysilane Trade name: KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Methyltrimethoxysilane Trade name: KBM-13, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 1 As shown in Table 7, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A4 obtained in Synthesis Example 4 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomer and m-xylene contained in the vinyl polymer A4, and cooled to room temperature.
  • Example 2 As shown in Table 7, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature.
  • Example 3 As shown in Table 7, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature.
  • Example 4 As shown in Table 7, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature.
  • Example 5 As shown in Table 7, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature.
  • Example 6 As shown in Table 7, 100 g of the polymer A5 obtained in Synthesis Example 5 was added to a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, and (E) surface-treated calcium carbonate.
  • Table 8 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 7 As shown in Table 7, 100 g of the polymer A5 obtained in Synthesis Example 5 and titanium obtained in Synthesis Example 17 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10.0 g of catalyst G7 was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 8 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 8 As shown in Table 7, 100 g of the polymer A5 obtained in Synthesis Example 5 and titanium obtained in Synthesis Example 18 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 9.0 g of catalyst G8 was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 8 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • Example 9 As shown in Table 7, 100 g of the polymer A5 obtained in Synthesis Example 5 and titanium obtained in Synthesis Example 19 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 9.0 g of catalyst G9 was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 8 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
  • the compounding quantity of each compounding substance is shown by g
  • polymer A3 and A4 are shown by the compounding quantity of solid content conversion.
  • the polymers A1 to A2 are the polyoxyalkylene polymers A1 to A2 obtained in Synthesis Examples 1 and 2, respectively, and the polymers A3 to A4 are the vinyl polymers A3 to A4 obtained in Synthesis Examples 3 to 4, respectively.
  • the polymer A5 is the organic polymer A5 obtained in Synthesis Example 5, and the titanium catalysts G1 to G9 are the titanium catalysts G1 to G9 obtained in Synthesis Examples 11 to 19, respectively. Details of other compounding substances are as follows.
  • MC coat P-1 trade name manufactured by Shiroishi Kogyo Co., Ltd., colloidal calcium carbonate, surface paraffin wax treatment.
  • Disparon # 6500 trade name, amide wax, manufactured by Enomoto Kasei Co., Ltd.
  • NOCRACK CD trade name, 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, manufactured by Ouchi Shinko Co., Ltd.
  • Acetyltriethyl citrate manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 10 As shown in Table 9, 100 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 7 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 6 g of the silane compound B1 obtained in the above and 4 g of ORGATICS TC-750 were added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 10 shows the results of the storage stability test, curability test, surface curability test, and adhesion test of the curable composition.
  • Example 11 As shown in Table 9, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature.
  • Example 12 As shown in Table 9, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature.
  • the compounding amount of each compounding substance is indicated by g
  • the polymer A3 is indicated by the compounding amount in terms of solid content.
  • Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively.
  • Polymer A3 is the vinyl polymer A3 obtained in Synthesis Example 3 and silane compounds B1 and B2.
  • silane compounds B1 and B2 obtained in Synthesis Examples 7 to 8, respectively
  • ORGATICS TC-750 is a trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
  • the compounding quantity of each compounding substance is shown by g
  • polymer A3 is shown by the compounding quantity of solid content conversion.
  • the polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively, and the polymer A3 is the vinyl polymer A3 obtained in Synthesis Example 3 and the silane compounds X1 to X3.
  • silane compounds X1 to X3 obtained in Comparative Synthesis Examples 1 to 3, respectively, and details of other compounding substances are as follows.
  • QS-20 trade name, manufactured by Tokuyama Corporation, primary dry particle size of 5 to 50 ⁇ m, surface-untreated hydrophilic dry silica.
  • Ryton A-5 trade name manufactured by Shiroishi Kogyo Co., Ltd., ground calcium carbonate, surface fatty acid treatment.
  • ORGATICS TC-750 trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Example 13 As shown in Table 13, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 45 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 20 g of the polyoxyalkylene polymer A2 obtained in the above and 35 g of vinyl polymer A6 obtained in Synthesis Example 6 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature.
  • Example 14 A curable composition was prepared in the same manner as in Example 13 except that the blending ratio of the blended materials was changed as shown in Table 13. Table 14 shows the results of the storage stability test, the curability test, and the surface curability test of the curable composition.
  • Example 15 As shown in Table 13, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 45 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 20 g of the polyoxyalkylene polymer A2 obtained in the above and 35 g of vinyl polymer A6 obtained in Synthesis Example 6 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature.
  • Example 16 As shown in Table 13, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 45 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 20 g of the polyoxyalkylene polymer A2 obtained in the above and 35 g of vinyl polymer A6 obtained in Synthesis Example 6 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature.
  • Example 17 to 19 A curable composition was prepared in the same manner as in Example 16 except that (D) the silane compound was changed as shown in Table 13. Table 14 shows the results of the storage stability test, the curability test, and the surface curability test of the curable composition.
  • the compounding quantity of each compounding substance is shown by g
  • the polymer A6 is shown by the compounding quantity of solid content conversion.
  • Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively.
  • Polymer A6 is the vinyl polymer A6 obtained in Synthesis Example 6, and silane compound B1 is synthesized. It is the silane compound B1 obtained in Example 7, the titanium catalyst G10 is the titanium catalyst G10 obtained in Synthesis Example 20, and details of other compounding materials are as follows.
  • ORGATICS TC-750 trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Phenyltrimethoxysilane Trade name: KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd. Vinyltrimethoxysilane: Trade name: KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd. Decyltrimethoxysilane: Trade name: KBM-3013C, manufactured by Shin-Etsu Chemical Co., Ltd. Tetraethoxysilane: Trade name: KBE-04, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Example 20 As shown in Table 15, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of vinyl polymer A6 obtained in Synthesis Example 6 were mixed in terms of solid content. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature.
  • Examples 21 to 27 As shown in Table 15, curable compositions were prepared in the same manner as in Example 20, except that the titanium catalysts G12 to G18 were used instead of the titanium catalyst G11. Tables 16 and 17 show the results of the storage stability test, the curability test, and the adhesion test of the curable composition.
  • polymer A6 is shown by the compounding quantity of solid content conversion.
  • Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively.
  • Polymer A6 is the vinyl polymer A6 obtained in Synthesis Example 6, and titanium catalysts G11 to G18. Are titanium catalysts G11 to G18 obtained in Synthesis Examples 21 to 28, and details of other compounding materials are as follows.
  • Whiteon SB Shiraishi Calcium Co., Ltd., heavy calcium carbonate, average particle size 2.2 ⁇ m.
  • Carlex 300 manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.05 ⁇ m.
  • Normal paraffin Trade name: N-11, manufactured by JX Nippon Oil & Energy Corporation.
  • Example 28 As shown in Table 18, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 45 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 20 g of the polyoxyalkylene polymer A2 obtained in the above and 35 g of vinyl polymer A6 obtained in Synthesis Example 6 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature.
  • Examples 29 to 33 As shown in Table 18, a curable composition was prepared in the same manner as in Example 28 except that (E) the filler was changed. Tables 19 and 20 show the results of the storage stability test, the curability test, and the adhesion test of the curable composition.
  • polymer A6 is shown by the compounding quantity of solid content conversion.
  • Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively.
  • Polymer A6 is the vinyl polymer A6 obtained in Synthesis Example 6, and silane compound B1 is synthesized.
  • the details of the other compounding materials are as follows in the silane compound B1 obtained in Example 7.
  • ORGATICS TC-750 trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
  • Phenyltrimethoxysilane Trade name: KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Whiteon SB trade name, heavy calcium carbonate, manufactured by Shiraishi Calcium Co., Ltd., average particle size 2.2 ⁇ m.
  • Carlex 300 trade name manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.05 ⁇ m.
  • Calfine 200 trade name manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.07 ⁇ m.
  • ViscoExcel-30 trade name manufactured by Shiroishi Kogyo Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle size (electron microscope) 0.03 ⁇ m.
  • MS-100M trade name manufactured by Maruo Calcium Co., Ltd., fatty acid / resin acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.05 ⁇ m.
  • MC coat P-1 trade name manufactured by Shiroishi Kogyo Co., Ltd., colloidal calcium carbonate, surface paraffin wax treatment, average particle size 3.0 ⁇ m.
  • Example 34 As shown in Table 21, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of vinyl polymer A6 obtained in Synthesis Example 6 were mixed in terms of solid content. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature.
  • Example 35 As shown in Table 21, a curable composition was prepared in the same manner as in Example 34 except that the titanium catalyst G19 was used instead of the titanium catalyst G20. Table 22 shows the results of the curability test and the storage stability test of the curable composition.
  • Example 36 As shown in Table 21, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of vinyl polymer A6 obtained in Synthesis Example 6 were mixed in terms of solid content. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature.
  • the compounding quantity of each compounding substance is shown by g
  • the polymer A6 is shown by the compounding quantity of solid content conversion.
  • the polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively.
  • the polymer A6 is the vinyl polymer A6 obtained in Synthesis Example 6, and the titanium catalysts G19 to G21. Are titanium catalysts G19 to G21 obtained in Synthesis Examples 29 to 31, respectively, and details of other compounding materials are as follows.
  • Vinyltrimethoxysilane Trade name: KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd.
  • Whiteon SB trade name, heavy calcium carbonate, manufactured by Shiraishi Calcium Co., Ltd., average particle size 2.2 ⁇ m.
  • Carlex 300 trade name manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.05 ⁇ m.
  • Armorix B316 trade name, aluminum hydroxide, average particle diameter of 18 ⁇ m, manufactured by Armorix Co., Ltd.
  • Isopar M trade name, isoparaffin, manufactured by ExxonMobil Co., Ltd.
  • NOCRACK CD trade name, 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, manufactured by Ouchi Shinko Co., Ltd.
  • Example 37 As shown in Table 24, 100 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was added to a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser, (E) 40 g of Furex (registered trademark) E-2 [manufactured by Tatsumori Co., Ltd., amorphous silica having an average particle size of 6 ⁇ m] was added as amorphous silica, mixed at 100 ° C. and 10 mmHg for 1 hour, and then heated to 20 ° C.
  • Furex (registered trademark) E-2 manufactured by Tatsumori Co., Ltd., amorphous silica having an average particle size of 6 ⁇ m
  • Example 38 As shown in Table 24, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube, and a water-cooled condenser. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of vinyl polymer A6 obtained in Synthesis Example 6 were mixed in terms of solid content. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature.
  • the compounding quantity of FTR8100 is determined by the following method. First, FTR8100 serving as a refractive index adjusting agent is heated and melted to the component (A) at an appropriate ratio, and the refractive index is measured with an Abbe refractometer at 20 ° C. An XY plot of FTR8100 compounding ratio and refractive index is taken. The FTR8100 blending amount that matches the refractive index of the powder serving as the main filler is the blending amount.
  • Table 25 shows the results of the storage stability test, curability test, surface curability test, adhesion test and transparency test of the curable composition.
  • Example 39 As shown in Table 24, a curable composition was prepared in the same manner as in Example 38 except that the compounding substances were changed. Table 25 shows the results of the storage stability test, the curability test, the surface curability test, the adhesion test and the transparency test of the curable composition.
  • the compounding quantity of each compounding substance is shown by g
  • the polymer A6 is shown by the compounding quantity of solid content conversion.
  • Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively, Polymer A6 is the vinyl polymer A6 obtained in Synthesis Example 6, and titanium catalyst G14 is synthesized.
  • the titanium catalyst G14 obtained in Example 24 and details of other compounding materials are as follows.
  • MR13G trade name manufactured by Soken Chemical Co., Ltd., methacrylic acid ester polymer powder, average particle size of about 1 ⁇ m.
  • Fuselex (registered trademark) E-2 trade name, manufactured by Tatsumori Co., Ltd., amorphous silica, average particle size (50% weight average when measuring particle size distribution by laser method): 6 ⁇ m.
  • FTR8100 trade name of Mitsui Oil Co., Ltd., C5 and C9 copolymer petroleum resin.
  • the curable composition of the present invention exhibited sufficient adhesion, storage stability and curability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Abstract

Provided is a curable composition which exhibits excellent curability, adhesiveness and storage stability and which does not necessitate an organotin-type catalyst and is therefore highly safe. A curable composition comprising (A) an organic polymer which contains on average 0.8 or more crosslinking silicon group in one molecule and in which the main chain is not a polysiloxane, (B) a silane compound obtained by reacting a specific epoxysilane compound with a specific aminosilane compound at a ratio such that the amount of the epoxysilane compound is 1.5 to 10mol relative to one mol of the aminosilane compound, and (C) a specific titanium catalyst, with the amounts of the silane compound (B) and the titanium catalyst (C) being 0.1 to 40 parts by mass and 0.1 to 40 parts by mass respectively relative to 100 parts by mass of the organic polymer (A).

Description

硬化性組成物Curable composition
 本発明は、ケイ素原子に結合した水酸基または加水分解性基を有し、シロキサン結合を形成することにより架橋し得るケイ素含有基(以下、「架橋性珪素基」ともいう。)を有する有機重合体を含有する硬化性組成物に関する。 The present invention relates to an organic polymer having a silicon-containing group (hereinafter also referred to as “crosslinkable silicon group”) having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond. It relates to the curable composition containing this.
 分子中に少なくとも1個の架橋性珪素基を含有する有機重合体は、室温においても湿分等による反応性ケイ素基の加水分解反応等を伴うシロキサン結合の形成によって架橋し、ゴム状硬化物が得られるという性質を有することが知られている。これらの架橋性珪素基を有する重合体中で、主鎖骨格がポリオキシアルキレン系重合体または(メタ)アクリル酸エステル系重合体である有機重合体は、シーリング材、接着剤、塗料などの用途に広く使用されている。 An organic polymer containing at least one crosslinkable silicon group in the molecule is crosslinked at room temperature by the formation of a siloxane bond accompanied by a hydrolysis reaction of a reactive silicon group due to moisture or the like. It is known to have the property of being obtained. Among these polymers having a crosslinkable silicon group, organic polymers whose main chain skeleton is a polyoxyalkylene polymer or a (meth) acrylate polymer are used for sealing materials, adhesives, paints, etc. Widely used.
 シーリング材、接着剤、塗料などに用いられる硬化性組成物および硬化によって得られるゴム状硬化物には、硬化性、接着性、貯蔵安定性、モジュラス・強度・伸び等の機械特性等の種々の特性が要求されており、架橋性珪素基を含有する有機重合体に関しても、これまでに多くの検討がなされている。 The curable composition used for sealing materials, adhesives, paints, etc. and the rubber-like cured product obtained by curing have various properties such as curability, adhesiveness, storage stability, mechanical properties such as modulus, strength, and elongation. Properties are required, and many studies have been made on organic polymers containing crosslinkable silicon groups.
 これらの架橋性珪素基を有する有機重合体を含有する硬化性組成物は、シラノール縮合触媒を用いて硬化させており、通常、ジブチル錫ビス(アセチルアセトナート)などの、有機錫系触媒が広く使用されている。しかしながら、近年、有機錫系化合物はその毒性が指摘されており、非有機錫系触媒の開発が求められている。 These curable compositions containing an organic polymer having a crosslinkable silicon group are cured using a silanol condensation catalyst. Usually, organic tin-based catalysts such as dibutyltin bis (acetylacetonate) are widely used. in use. However, in recent years, toxicity of organotin compounds has been pointed out, and development of non-organotin catalysts has been demanded.
 この非有機錫系触媒として、チタン触媒を使用する脱アルコール型シリコーン組成物は既に市販されており、多くの用途に広く使用されている(例えば、特許文献1~3等)。
 しかし、架橋性珪素基を含有する有機重合体に、チタン触媒を添加した例は比較的少なく、特許文献4~21等に開示されている。これらのチタン触媒を用いた硬化性組成物は硬化速度が遅く、また貯蔵後に硬化速度が低下すると共に粘度が増加するといった問題があった。
As this non-organotin-based catalyst, a dealcohol-free silicone composition using a titanium catalyst is already on the market and is widely used for many applications (for example, Patent Documents 1 to 3).
However, there are relatively few examples of adding a titanium catalyst to an organic polymer containing a crosslinkable silicon group, which are disclosed in Patent Documents 4 to 21 and the like. The curable compositions using these titanium catalysts have a problem that the curing rate is slow, and the curing rate is lowered and the viscosity is increased after storage.
 また、架橋性珪素基を含有する有機重合体を含む硬化性組成物は、接着剤やシーリング材として使用されることが多く、その場合にさまざまな種類の基材への接着が求められる。この接着性を確保するために、分子内に1級のアミノ基とアルコキシ基を有する、いわゆるアミノシランが通常用いられる。しかし、架橋性珪素基を含有する有機重合体とチタン触媒を用いて、アミノシランを添加して1液型硬化性組成物を作製した場合、接着性は良好なものの、一定期間貯蔵した後では組成物の粘度が向上し、ひどい場合には容器内で硬化し、使用できないことがある。シーリング材や接着剤は、製造してすぐに使用されるとは限らず、倉庫や店頭で数ヶ月間保管されることが多く、硬化性や粘度が貯蔵前後において一定であることが望まれている。 Further, a curable composition containing an organic polymer containing a crosslinkable silicon group is often used as an adhesive or a sealing material, and in that case, adhesion to various types of substrates is required. In order to ensure this adhesion, so-called aminosilane having a primary amino group and an alkoxy group in the molecule is usually used. However, when an organic polymer containing a crosslinkable silicon group and a titanium catalyst are used to prepare a one-component curable composition by adding aminosilane, the composition is good after storage for a certain period, although the adhesiveness is good. If the viscosity of the product is improved and it is severe, it may harden in the container and cannot be used. Sealing materials and adhesives are not always used immediately after production, but are often stored for several months in warehouses or stores, and it is desired that their curability and viscosity be constant before and after storage. Yes.
特公昭39-27643号公報Japanese Examined Patent Publication No. 39-27643 米国特許第3175993号US Pat. No. 3,175,993 米国特許第3334067号US Pat. No. 3,334,067 特開昭58-17154号公報JP 58-17154 A 特開平11-209538号公報JP-A-11-209538 特開平5-311063号公報JP-A-5-311063 特開2001-302929号公報JP 2001-302929 A 特開2001-302930号公報JP 2001-302930 A 特開2001-302931号公報JP 2001-302931 A 特開2001-302934号公報JP 2001-302934 A 特開2001-348528号公報JP 2001-348528 A 特開2002-249672号公報JP 2002-249672 A 特開2003-165916号公報JP 2003-165916 A 特開2003-147220号公報JP 2003-147220 A 特開2005-325314号公報JP 2005-325314 A WO2005/108492WO2005 / 108492 WO2005/108498WO2005 / 108498 WO2005/108494WO2005 / 108494 WO2005/108499WO2005 / 108499 WO2007/037368WO2007 / 037368 特開2008-280434号公報JP 2008-280434 A
 本発明は、硬化性、接着性及び貯蔵安定性に優れ、且つ有機錫系触媒を必要とせず安全性に優れた硬化性組成物を提供することを目的とする。 An object of the present invention is to provide a curable composition that is excellent in curability, adhesion, and storage stability, and that does not require an organic tin catalyst and has excellent safety.
 上記課題を解決するために、本発明者らは鋭意研究を重ねた結果、1分子中に平均して0.8個以上の架橋性珪素基を含有する有機重合体に、硬化触媒として、特定のエポキシシラン化合物と特定のアミノシラン化合物を反応させてなるシラン化合物と、β-ケトエステルを配位させたチタニウムキレートとを併用して用いることにより、硬化性、接着性及び貯蔵安定性に優れ、且つ有機錫系触媒を必要とせず安全性に優れた常温湿気硬化型硬化性組成物を得ることができることを見出した。 In order to solve the above-mentioned problems, the present inventors have conducted intensive research and have identified, as a curing catalyst, an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule. In combination with a silane compound obtained by reacting an epoxy silane compound with a specific aminosilane compound and a titanium chelate coordinated with a β-ketoester, it has excellent curability, adhesion and storage stability, and It has been found that a room temperature moisture-curable curable composition that does not require an organotin catalyst and is excellent in safety can be obtained.
 即ち、本発明の硬化性組成物は、(A)1分子中に平均して0.8個以上の架橋性珪素基を含有し且つ主鎖がポリシロキサンでない有機重合体、(B)下記式(1)で示されるエポキシシラン化合物と、下記式(2)で示されるアミノシラン化合物とを、該アミノシラン化合物1モルに対して該エポキシシラン化合物を1.5~10モルの範囲で反応させてなるシラン化合物、及び(C)下記式(3)で示されるチタニウムキレート及び下記式(4)で表されるチタニウムキレートからなる群から選択される1種以上のチタン触媒、を含む硬化性組成物であって、前記(A)有機重合体100質量部に対して、前記(B)シラン化合物を0.1~40質量部、前記(C)チタン触媒を0.1~40質量部配合することを特徴とする。 That is, the curable composition of the present invention is (A) an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule and the main chain is not polysiloxane, (B) An epoxysilane compound represented by (1) and an aminosilane compound represented by the following formula (2) are reacted with 1 mol of the aminosilane compound in a range of 1.5 to 10 mol. A curable composition comprising a silane compound, and (C) one or more titanium catalysts selected from the group consisting of a titanium chelate represented by the following formula (3) and a titanium chelate represented by the following formula (4): And (B) 0.1 to 40 parts by mass of the (B) silane compound and 0.1 to 40 parts by mass of the (C) titanium catalyst with respect to 100 parts by mass of the (A) organic polymer. Features.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(前記式(1)において、R~Rはそれぞれ水素原子又はアルキル基であり、Rはアルキレン基またはアルキレンオキシアルキレン基であり、Rは一価炭化水素基であり、Rはアルキル基であり、aは0、1又は2である。) (In the formula (1), R 1 to R 3 are each a hydrogen atom or an alkyl group, R 4 is an alkylene group or an alkyleneoxyalkylene group, R 5 is a monovalent hydrocarbon group, and R 6 is An alkyl group, and a is 0, 1 or 2.)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(前記式(2)において、R~R12はそれぞれ水素原子又はアルキル基であり、R13は一価炭化水素基であり、R14はアルキル基であり、bは0又は1である。) (In the formula (2), R 7 to R 12 are each a hydrogen atom or an alkyl group, R 13 is a monovalent hydrocarbon group, R 14 is an alkyl group, and b is 0 or 1. )
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(前記式(3)において、n個のR21は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR22は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR23および4-n個のR24は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、nは0、1、2又は3である。) (In the formula (3), n R 21 s are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, and 4-n R 22 s are each independently a hydrogen atom. Or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, wherein 4-n R 23 and 4-n R 24 are independently substituted or unsubstituted carbon atoms having 1 to 20 carbon atoms. And n is 0, 1, 2 or 3.)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(前記式(4)において、R25は、置換あるいは非置換の2価の炭素原子数1~20の炭化水素基であり、2個のR26は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、2個のR27および2個のR28は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基である。) (In the formula (4), R 25 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms, and the two R 26 are each independently a hydrogen atom or substituted or unsubstituted. The two R 27 and the two R 28 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.)
 前記(B)シラン化合物が、前記エポキシシラン化合物と前記アミノシラン化合物とを40~100℃の反応温度で反応させてなるシラン化合物であることが好適である。 The (B) silane compound is preferably a silane compound obtained by reacting the epoxysilane compound and the aminosilane compound at a reaction temperature of 40 to 100 ° C.
 前記(A)有機重合体が、1分子中に平均して0.8個以上の架橋性珪素基を含有するポリオキシアルキレン系重合体、1分子中に平均して0.8個以上の架橋性珪素基を含有する飽和炭化水素系重合体、及び1分子中に平均して0.8個以上の架橋性珪素基を含有する(メタ)アクリル酸エステル系重合体からなる群から選択される1種以上であることが好ましい。 The (A) organic polymer is a polyoxyalkylene polymer containing 0.8 or more crosslinkable silicon groups on average per molecule, and 0.8 or more crosslinks on average per molecule. Selected from the group consisting of a saturated hydrocarbon polymer containing a functional silicon group and a (meth) acrylic acid ester polymer containing an average of 0.8 or more crosslinkable silicon groups in one molecule. One or more are preferable.
 前記架橋性珪素基がトリメトキシシリル基を含むことが好適である。 It is preferable that the crosslinkable silicon group contains a trimethoxysilyl group.
 本発明の硬化性組成物は、(D)1分子中に加水分解性珪素基を1個有し且つ第1級アミノ基を有なさいシラン化合物をさらに含有することが好ましい。前記(D)シラン化合物が、下記式(12)で示される化合物であることが好適である。 The curable composition of the present invention preferably further contains (D) a silane compound having one hydrolyzable silicon group and one primary amino group in one molecule. The (D) silane compound is preferably a compound represented by the following formula (12).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 前記式(12)において、R41はメチル基又はエチル基であり、R41が複数存在する場合、それらは同一であってもよく、異なっていてもよいものであり、R42はメチル基又はエチル基であり、R42が複数存在する場合、それらは同一であってもよく、異なっていてもよいものであり、R43は炭素数1~10の炭化水素基であり、mは2又は3であり、nは0又は1である。 In the formula (12), R 41 is a methyl group or an ethyl group, and when a plurality of R 41 are present, they may be the same or different, and R 42 is a methyl group or An ethyl group, and when there are a plurality of R 42 , they may be the same or different, R 43 is a hydrocarbon group having 1 to 10 carbon atoms, and m is 2 or 3 and n is 0 or 1.
 本発明の硬化性組成物は、(E)充填剤をさらに含有することが好適である。前記(E)充填剤が、表面処理炭酸カルシウム、粒径0.01~300μmの非晶質シリカ及び粒径0.01~300μmの高分子粉体からなる群から選択される1種以上であることが好ましい。 The curable composition of the present invention preferably further contains (E) a filler. The filler (E) is at least one selected from the group consisting of surface-treated calcium carbonate, amorphous silica having a particle size of 0.01 to 300 μm, and polymer powder having a particle size of 0.01 to 300 μm. It is preferable.
 前記(A)有機重合体の屈折率と前記非晶質シリカの屈折率の差が0.1以下であるようにそれらの屈折率の差を一致させることにより、透明性に優れた硬化性組成物を得ることができる。 A curable composition excellent in transparency by matching the difference in refractive index so that the difference between the refractive index of the organic polymer (A) and the refractive index of the amorphous silica is 0.1 or less. You can get things.
 また、前記(A)有機重合体を主成分とする液相成分の屈折率と前記高分子粉体の屈折率の差が0.1以下であるようにそれらの屈折率の差を一致させることにより、透明性に優れた硬化性組成物を得ることができる。
 前記(A)有機重合体に屈折率調整剤を加えることにより、前記(A)有機重合体を主成分とする液相成分の屈折率と前記高分子粉体の屈折率の差を0.1以下とすることが好適である。
Further, the difference in refractive index between the liquid phase component (A) containing the organic polymer as a main component and the refractive index of the polymer powder is made to be equal to or less than 0.1. Thus, a curable composition having excellent transparency can be obtained.
By adding a refractive index adjusting agent to the (A) organic polymer, the difference between the refractive index of the liquid phase component mainly composed of the (A) organic polymer and the refractive index of the polymer powder is 0.1. The following is preferable.
 前記高分子粉体が、(メタ)アクリル酸エステル、酢酸ビニル、エチレン及び塩化ビニルからなる群から選択されたモノマーを単独で重合するか、もしくは、該モノマーと1種以上のビニル系モノマーとを共重合することによって得られる重合体を原料とした高分子粉体であることが好ましく、アクリル系高分子粉体及びビニル系高分子粉体からなる群から選択される1種以上であることがより好ましい。 The polymer powder polymerizes a monomer selected from the group consisting of (meth) acrylic acid ester, vinyl acetate, ethylene and vinyl chloride alone, or the monomer and one or more vinyl monomers The polymer powder is preferably a polymer powder obtained from a polymer obtained by copolymerization, and is at least one selected from the group consisting of an acrylic polymer powder and a vinyl polymer powder. More preferred.
 本発明の硬化性組成物は、(F)希釈剤をさらに含有することが好適である。 The curable composition of the present invention preferably further contains (F) a diluent.
 本発明の硬化性組成物は、金属水酸化物をさらに含有することが好ましい。前記金属水酸化物が水酸化アルミニウムであることが好適である。 The curable composition of the present invention preferably further contains a metal hydroxide. It is preferable that the metal hydroxide is aluminum hydroxide.
 本発明によれば、硬化性、接着性及び貯蔵安定性に優れ、且つ有機錫系触媒を必要とせず安全性に優れた硬化性組成物を提供することができる。また、本発明によれば、透明性に優れた硬化性組成物を得ることもできる。 According to the present invention, it is possible to provide a curable composition that is excellent in curability, adhesion, and storage stability, and that does not require an organic tin catalyst and has excellent safety. Moreover, according to this invention, the curable composition excellent in transparency can also be obtained.
 以下に本発明の実施の形態を説明するが、これらは例示的に示されるもので、本発明の技術思想から逸脱しない限り種々の変形が可能なことはいうまでもない。 Embodiments of the present invention will be described below, but these are exemplarily shown, and it goes without saying that various modifications are possible without departing from the technical idea of the present invention.
 本発明の硬化性組成物は、(A)1分子中に平均して0.8個以上の架橋性珪素基を含有し且つ主鎖がポリシロキサンでない有機重合体、(B)前記式(1)で示されるエポキシシラン化合物と、前記式(2)で示されるアミノシラン化合物とを、該アミノシラン化合物1モルに対して該エポキシシラン化合物を1.5~10モルの範囲で反応させてなるシラン化合物、及び(C)前記式(3)で示されるチタニウムキレート及び前記式(4)で表されるチタニウムキレートからなる群から選択される1種以上のチタン触媒、を含む硬化性組成物であって、前記(A)有機重合体100質量部に対して、前記(B)シラン化合物を0.1~40質量部、前記(C)チタン触媒を0.1~40質量部配合することを特徴とする。 The curable composition of the present invention comprises (A) an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule and whose main chain is not polysiloxane, (B) the above formula (1) ) And an aminosilane compound represented by the above formula (2) are reacted with 1 mol of the aminosilane compound in a range of 1.5 to 10 mol of the epoxysilane compound. And (C) a curable composition comprising at least one titanium catalyst selected from the group consisting of a titanium chelate represented by the formula (3) and a titanium chelate represented by the formula (4). And (B) 0.1 to 40 parts by mass of the (B) silane compound and 0.1 to 40 parts by mass of the (C) titanium catalyst with respect to 100 parts by mass of the (A) organic polymer. To do.
 前記(A)有機重合体は、1分子中に平均して0.8個以上の架橋性珪素基を含有し且つ主鎖がポリシロキサンでない有機重合体であり、ポリシロキサンを除く各種の主鎖骨格を持つものを使用することができる。 The (A) organic polymer is an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule and the main chain is not polysiloxane, and various main chain bones excluding polysiloxane. You can use one with a rating.
 具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体、ポリオキシプロピレン-ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレン等との共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリル及びスチレン等との共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、または、ラクトン類の開環重合で得られるポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のモノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系モノマー、酢酸ビニル、アクリロニトリル、スチレン等のモノマーをラジカル重合して得られるビニル系重合体;前記有機重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ε-カプロラクタムの開環重合によるナイロン6、ヘキサメチレンジアミンとアジピン酸の縮重合によるナイロン6・6、ヘキサメチレンジアミンとセバシン酸の縮重合によるナイロン6・10、ε-アミノウンデカン酸の縮重合によるナイロン11、ε-アミノラウロラクタムの開環重合によるナイロン12、上記のナイロンのうち2成分以上の成分を有する共重合ナイロン等のポリアミド系重合体;たとえばビスフェノールAと塩化カルボニルより縮重合して製造されるポリカーボネート系重合体、ジアリルフタレート系重合体等が例示される。 Specifically, polyoxyalkylene heavy polymers such as polyoxyethylene, polyoxypropylene, polyoxybutylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, polyoxypropylene-polyoxybutylene copolymer, etc. Copolymer; ethylene-propylene copolymer, polyisobutylene, copolymer of isobutylene and isoprene, polychloroprene, polyisoprene, isoprene or copolymer of butadiene and acrylonitrile and / or styrene, polybutadiene, isoprene or butadiene Copolymers of acrylonitrile and styrene, etc., hydrocarbon polymers such as hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers; dibasic acids such as adipic acid and glycols A polyester polymer obtained by condensation of lactones or ring-opening polymerization of lactones; a (meth) acrylic acid ester polymer obtained by radical polymerization of monomers such as ethyl (meth) acrylate and butyl (meth) acrylate; (Meth) acrylic acid ester monomer, vinyl polymer obtained by radical polymerization of monomers such as vinyl acetate, acrylonitrile, styrene; graft polymer obtained by polymerizing vinyl monomer in the organic polymer; polysulfide Polymer: Nylon 6 by ring-opening polymerization of ε-caprolactam, Nylon 6.6 by condensation polymerization of hexamethylenediamine and adipic acid, Nylon 6.10 by condensation polymerization of hexamethylenediamine and sebacic acid, ε-aminoundecanoic acid Nylon 11, ε-aminolaurolac by condensation polymerization of A polyamide polymer such as nylon 12 produced by ring-opening polymerization of a copolymer, a copolymer nylon having two or more components of the above-mentioned nylon; a polycarbonate polymer produced by condensation polymerization of bisphenol A and carbonyl chloride, for example; Examples include diallyl phthalate polymers.
 さらに、ポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水素系重合体や、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体は比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れることから好ましい。また、ポリオキシアルキレン系重合体および(メタ)アクリル酸エステル系重合体は、透湿性が高く1液型組成物にした場合に深部硬化性に優れることから特に好ましい。 Furthermore, saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene, and hydrogenated polybutadiene, polyoxyalkylene polymers, and (meth) acrylic acid ester polymers can be obtained with a relatively low glass transition temperature. The cured product is preferable because it is excellent in cold resistance. Polyoxyalkylene polymers and (meth) acrylic acid ester polymers are particularly preferred because of their high moisture permeability and excellent deep-part curability when made into one-component compositions.
 本発明に用いる(A)有機系重合体の架橋性珪素基は、珪素原子に結合した水酸基又は加水分解性基を有し、シロキサン結合を形成することにより架橋しうる基である。前記架橋性珪素基としては、例えば、下記一般式(5)で示される基が好適である。 The crosslinkable silicon group of the (A) organic polymer used in the present invention is a group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond. As the crosslinkable silicon group, for example, a group represented by the following general formula (5) is preferable.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 前記式(5)中、R31は、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基またはR31 SiO-(R31は、前記と同じ)で示されるトリオルガノシロキシ基を示し、R31が2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Xは水酸基または加水分解性基を示し、Xが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。dは0、1、2または3を、eは0、1または2を、それぞれ示す。またp個の下記一般式(6)におけるeは同一である必要はない。pは0~19の整数を示す。但し、d+(eの和)≧1を満足するものとする。 In the formula (5), R 31 represents an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or R 31 3 represents a triorganosiloxy group represented by SiO— (R 31 is the same as above), and when two or more R 31 are present, they may be the same or different. X represents a hydroxyl group or a hydrolyzable group, and when two or more X exist, they may be the same or different. d represents 0, 1, 2, or 3, and e represents 0, 1, or 2, respectively. Further, p in the following general formula (6) need not be the same. p represents an integer of 0 to 19. However, d + (sum of e) ≧ 1 is satisfied.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 該加水分解性基や水酸基は1個の珪素原子に1~3個の範囲で結合することができ、d+(eの和)は1~5の範囲が好ましい。加水分解性基や水酸基が架橋性珪素基中に2個以上結合する場合には、それらは同一であってもよく、異なっていてもよい。
 架橋性珪素基を形成する珪素原子は1個でもよく、2個以上であってもよいが、シロキサン結合等により連結された珪素原子の場合には、20個程度あってもよい。
The hydrolyzable group or hydroxyl group can be bonded to one silicon atom in the range of 1 to 3, and d + (sum of e) is preferably in the range of 1 to 5. When two or more hydrolyzable groups or hydroxyl groups are bonded to the crosslinkable silicon group, they may be the same or different.
The number of silicon atoms forming the crosslinkable silicon group may be one or two or more, but in the case of silicon atoms linked by a siloxane bond or the like, there may be about 20 silicon atoms.
 前記架橋性珪素基としては、下記一般式(7)で示される架橋性珪素基が、入手が容易である点から好ましい。 As the crosslinkable silicon group, a crosslinkable silicon group represented by the following general formula (7) is preferable because it is easily available.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 前記式(7)中、R31、Xは前記におなじ、dは1、2又は3の整数である。硬化性を考慮し、十分な硬化速度を有する硬化性組成物を得るには、前記式(7)においてaは2以上が好ましく、3がより好ましい。 In the formula (7), R 31 and X are the same as those described above, and d is an integer of 1, 2 or 3. In view of curability, in order to obtain a curable composition having a sufficient curing rate, a in the formula (7) is preferably 2 or more, and more preferably 3.
 上記R31の具体例としては、たとえばメチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、R31 SiO-で示されるトリオルガノシロキシ基等があげられる。これらの中ではメチル基が好ましい。 Specific examples of R 31 include an alkyl group such as a methyl group and an ethyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, an aralkyl group such as a benzyl group, and R 31 3 SiO—. And triorganosiloxy group. Of these, a methyl group is preferred.
 上記Xで示される加水分解性基としては、特に限定されず、従来公知の加水分解性基であればよい。具体的には、たとえば水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等があげられる。これらの中では、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、アミノオキシ基、メルカプト基およびアルケニルオキシ基が好ましく、アルコキシ基、アミド基、アミノオキシ基がさらに好ましい。加水分解性が穏やかで取扱やすいという観点からアルコキシ基が特に好ましい。アルコキシ基の中では炭素数の少ないものの方が反応性が高く、メトキシ基>エトキシ基>プロポキシ基の順のように炭素数が多くなるほどに反応性が低くなる。目的や用途に応じて選択できるが通常メトキシ基やエトキシ基が使用される。 The hydrolyzable group represented by X is not particularly limited as long as it is a conventionally known hydrolyzable group. Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group. Among these, a hydrogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an aminooxy group, a mercapto group, and an alkenyloxy group are preferable, and an alkoxy group, an amide group, and an aminooxy group are more preferable. An alkoxy group is particularly preferred from the viewpoint of mild hydrolysis and easy handling. Among the alkoxy groups, those having a smaller number of carbon atoms have higher reactivity, and the reactivity increases as the number of carbon atoms increases in the order of methoxy group> ethoxy group> propoxy group. Although it can be selected according to the purpose and use, a methoxy group or an ethoxy group is usually used.
 架橋性珪素基の具体的な構造としては、トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基[-Si(OR)]、メチルジメトキシシリル基、メチルジエトキシシリル基等のジアルコキシシリル基[-SiR(OR)]、があげられ、トリメトキシシリル基がより好適である。ここでRはメチル基やエチル基のようなアルキル基である。 Specific examples of the crosslinkable silicon group include trialkoxysilyl groups [—Si (OR) 3 ] such as trimethoxysilyl group and triethoxysilyl group, dialkoxy such as methyldimethoxysilyl group and methyldiethoxysilyl group. A silyl group [—SiR 1 (OR) 2 ], and a trimethoxysilyl group is more preferable. Here, R is an alkyl group such as a methyl group or an ethyl group.
 また、架橋性珪素基は1種で使用しても良く、2種以上併用してもかまわない。架橋性珪素基は、主鎖または側鎖あるいはいずれにも存在しうる。 Moreover, the crosslinkable silicon group may be used alone or in combination of two or more. The crosslinkable silicon group can be present in the main chain, the side chain, or both.
 架橋性珪素基を形成する珪素原子は1個以上であるが、シロキサン結合などにより連結された珪素原子の場合には、20個以下であることが好ましい。 The number of silicon atoms forming the crosslinkable silicon group is one or more, but in the case of silicon atoms linked by a siloxane bond or the like, it is preferably 20 or less.
 架橋性珪素基を有する有機重合体は直鎖状、または分岐を有してもよく、その数平均分子量はGPCにおけるポリスチレン換算において500~100,000程度、より好ましくは1,000~50,000であり、特に好ましくは3,000~30,000である。数平均分子量が500未満では、硬化物の伸び特性の点で不都合な傾向があり、100,000を越えると、高粘度となる為に作業性の点で不都合な傾向がある。 The organic polymer having a crosslinkable silicon group may be linear or branched, and its number average molecular weight is about 500 to 100,000 in terms of polystyrene in GPC, more preferably 1,000 to 50,000. Particularly preferred is 3,000 to 30,000. If the number average molecular weight is less than 500, the cured product tends to be disadvantageous in terms of elongation characteristics, and if it exceeds 100,000, the viscosity tends to be inconvenient because of high viscosity.
 高強度、高伸びで、低弾性率を示すゴム状硬化物を得るためには、有機重合体に含有される架橋性珪素基は重合体1分子中に平均して0.8個以上、好ましくは1.1~5個存在するのがよい。分子中に含まれる架橋性珪素基の数が平均して0.8個未満になると、硬化性が不充分になり、良好なゴム弾性挙動を発現しにくくなる。架橋性珪素基は、有機重合体分子鎖の主鎖の末端あるいは側鎖の末端にあってもよいし、また、両方にあってもよい。特に、架橋性珪素基が分子鎖の主鎖の末端にのみあるときは、最終的に形成される硬化物に含まれる有機重合体成分の有効網目長が長くなるため、高強度、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなる。 In order to obtain a rubber-like cured product having high strength, high elongation, and low elastic modulus, the average number of crosslinkable silicon groups contained in the organic polymer is 0.8 or more in one molecule of the polymer. 1.1 to 5 may be present. If the number of crosslinkable silicon groups contained in the molecule is less than 0.8 on average, the curability becomes insufficient and it becomes difficult to develop good rubber elastic behavior. The crosslinkable silicon group may be at the end of the main chain or the side chain of the organic polymer molecular chain, or at both ends. In particular, when the crosslinkable silicon group is only at the end of the main chain of the molecular chain, the effective network length of the organic polymer component contained in the finally formed cured product is increased, so that the strength and elongation are high. It becomes easy to obtain a rubber-like cured product exhibiting a low elastic modulus.
 前記ポリオキシアルキレン系重合体は、本質的に下記一般式(8)で示される繰り返し単位を有する重合体である。
 -R32-O- ・・・(8)
 前記一般式(8)中、R32は炭素数1~14の直鎖状もしくは分岐アルキレン基であり、炭素数1~14の、さらには2~4の、直鎖状もしくは分岐アルキレン基が好ましい。
The polyoxyalkylene polymer is essentially a polymer having a repeating unit represented by the following general formula (8).
-R 32 -O- (8)
In the general formula (8), R 32 is a linear or branched alkylene group having 1 to 14 carbon atoms, preferably a linear or branched alkylene group having 1 to 14 carbon atoms, and more preferably 2 to 4 carbon atoms. .
 一般式(8)で示される繰り返し単位の具体例としては、
-CHO-、-CHCHO-、-CHCH(CH)O-、-CHCH(C)O-、-CHC(CHO-、-CHCHCHCHO-
等が挙げられる。ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。特にシーリング材等に使用される場合には、プロピレンオキシド重合体を主成分とする重合体から成るものが非晶質であることや比較的低粘度である点から好ましい。
Specific examples of the repeating unit represented by the general formula (8) include
-CH 2 O -, - CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (C 2 H 5) O -, - CH 2 C (CH 3) 2 O-, —CH 2 CH 2 CH 2 CH 2 O—
Etc. The main chain skeleton of the polyoxyalkylene polymer may be composed of only one type of repeating unit, or may be composed of two or more types of repeating units. In particular, when used as a sealant or the like, a polymer comprising a propylene oxide polymer as a main component is preferable because it is amorphous or has a relatively low viscosity.
 ポリオキシアルキレン系重合体の合成法としては、たとえばKOHのようなアルカリ触媒による重合法、たとえば特開昭61-197631号、同61-215622号、同61-215623号、同61-215623号に示されるような有機アルミニウム化合物とポルフィリンとを反応させて得られる、有機アルミ-ポルフィリン錯体触媒による重合法、たとえば特公昭46-27250号および特公昭59-15336号などに示される複金属シアン化物錯体触媒による重合法等があげられるが、特に限定されるものではない。有機アルミ-ポルフィリン錯体触媒による重合法や複金属シアン化物錯体触媒による重合法によれば数平均分子量6,000以上、Mw/Mnが1.6以下の高分子量で分子量分布が狭いポリオキシアルキレン系重合体を得ることができる。 As a method for synthesizing a polyoxyalkylene polymer, for example, a polymerization method using an alkali catalyst such as KOH, for example, JP-A Nos. 61-197631, 61-215622, 61-215623, and 61-215623 can be used. Polymerization methods using an organoaluminum-porphyrin complex catalyst obtained by reacting an organoaluminum compound with porphyrin as shown, for example, double metal cyanide complexes shown in JP-B-46-27250 and JP-B-59-15336 Examples of the polymerization method using a catalyst include, but are not limited to, a polymerization method. A polyoxyalkylene system having a high molecular weight with a number average molecular weight of 6,000 or more and Mw / Mn of 1.6 or less and a narrow molecular weight distribution according to a polymerization method using an organic aluminum-porphyrin complex catalyst or a polymerization method using a double metal cyanide complex catalyst A polymer can be obtained.
 上記ポリオキシアルキレン系重合体の主鎖骨格中にはウレタン結合成分等の他の成分を含んでいてもよい。ウレタン結合成分としては、たとえばトルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネートと水酸基を有するポリオキシアルキレン系重合体との反応から得られるものをあげることができる。 The main chain skeleton of the polyoxyalkylene polymer may contain other components such as a urethane bond component. Examples of the urethane bond component include aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate; aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate, and polyoxyalkylene heavy compounds having a hydroxyl group. The thing obtained from reaction with coalescence can be mention | raise | lifted.
 ポリオキシアルキレン系重合体への架橋性珪素基の導入は、分子中に不飽和基、水酸基、エポキシ基やイソシアネート基等の官能基を有するポリオキシアルキレン系重合体に、この官能基に対して反応性を示す官能基および架橋性珪素基を有する化合物を反応させることにより行うことができる(以下、高分子反応法という)。 The introduction of a crosslinkable silicon group into a polyoxyalkylene polymer can be performed on a polyoxyalkylene polymer having a functional group such as an unsaturated group, a hydroxyl group, an epoxy group or an isocyanate group in the molecule. The reaction can be carried out by reacting a compound having a reactive functional group and a crosslinkable silicon group (hereinafter referred to as a polymer reaction method).
 高分子反応法の具体例として、不飽和基含有ポリオキシアルキレン系重合体に架橋性珪素基を有するヒドロシランや架橋性珪素基を有するメルカプト化合物を作用させてヒドロシリル化やメルカプト化し、架橋性珪素基を有するポリオキシアルキレン系重合体を得る方法をあげることができる。不飽和基含有ポリオキシアルキレン系重合体は水酸基等の官能基を有する有機重合体に、この官能基に対して反応性を示す活性基および不飽和基を有する有機化合物を反応させ、不飽和基を含有するポリオキシアルキレン系重合体を得ることができる。 As a specific example of the polymer reaction method, a hydrosilane or mercapto compound obtained by allowing a hydrosilane having a crosslinkable silicon group or a mercapto compound having a crosslinkable silicon group to act on an unsaturated group-containing polyoxyalkylene polymer to form a crosslinkable silicon group The method of obtaining the polyoxyalkylene type polymer which has this can be mention | raise | lifted. An unsaturated group-containing polyoxyalkylene polymer is obtained by reacting an organic polymer having a functional group such as a hydroxyl group with an organic compound having an active group and an unsaturated group that are reactive with the functional group, A polyoxyalkylene polymer containing can be obtained.
 また、高分子反応法の他の具体例として、末端に水酸基を有するポリオキシアルキレン系重合体とイソシアネート基および架橋性珪素基を有する化合物を反応させる方法や末端にイソシアネート基を有するポリオキシアルキレン系重合体と水酸基やアミノ基等の活性水素基および架橋性珪素基を有する化合物を反応させる方法をあげることができる。イソシアネート化合物を使用すると、容易に架橋性珪素基を有するポリオキシアルキレン系重合体を得ることができる。 Other specific examples of the polymer reaction method include a method of reacting a polyoxyalkylene polymer having a hydroxyl group at a terminal with a compound having an isocyanate group and a crosslinkable silicon group, or a polyoxyalkylene system having an isocyanate group at a terminal. Examples thereof include a method of reacting a polymer with a compound having an active hydrogen group such as a hydroxyl group or an amino group and a crosslinkable silicon group. When an isocyanate compound is used, a polyoxyalkylene polymer having a crosslinkable silicon group can be easily obtained.
 架橋性珪素基を有するポリオキシアルキレン系重合体の具体例としては、特公昭45-36319号、同46-12154号、特開昭50-156599号、同54-6096号、同55-13767号、同57-164123号、特公平3-2450号、特開2005-213446号、同2005-306891号、国際公開特許WO2007-040143号、米国特許3,632,557、同4,345,053、同4,960,844等の各公報に提案されているものをあげることができる。 Specific examples of the polyoxyalkylene polymer having a crosslinkable silicon group include JP-B Nos. 45-36319, 46-12154, JP-A Nos. 50-156599, 54-6096, and 55-13767. No. 57-164123, Japanese Patent Publication No. 3-2450, Japanese Patent Application Laid-Open No. 2005-213446, No. 2005-306891, International Publication No. WO 2007-040143, US Pat. No. 3,632,557, No. 4,345,053, The ones proposed in the publications such as 4,960,844 can be listed.
 上記の架橋性珪素基を有するポリオキシアルキレン系重合体は、単独で使用してもよく、2種以上併用してもよい。 The above polyoxyalkylene polymers having a crosslinkable silicon group may be used alone or in combination of two or more.
 前記飽和炭化水素系重合体は芳香環以外の炭素-炭素不飽和結合を実質的に含有しない重合体であり、その骨格をなす重合体は、(1)エチレン、プロピレン、1-ブテン、イソブチレンなどのような炭素数2~6のオレフィン系化合物を主モノマーとして重合させるか、(2)ブタジエン、イソプレンなどのようなジエン系化合物を単独重合させ、あるいは、上記オレフィン系化合物とを共重合させた後、水素添加するなどの方法により得ることができるが、イソブチレン系重合体や水添ポリブタジエン系重合体は、末端に官能基を導入しやすく、分子量を制御しやすく、また、末端官能基の数を多くすることができるので好ましく、イソブチレン系重合体が特に好ましい。 The saturated hydrocarbon polymer is a polymer that does not substantially contain a carbon-carbon unsaturated bond other than an aromatic ring, and the polymer constituting the skeleton thereof is (1) ethylene, propylene, 1-butene, isobutylene, etc. (2) Diene compounds such as butadiene and isoprene are homopolymerized or copolymerized with the above olefin compounds. After that, it can be obtained by a method such as hydrogenation. However, isobutylene polymers and hydrogenated polybutadiene polymers are easy to introduce functional groups at the terminals, control the molecular weight, and the number of terminal functional groups. Therefore, an isobutylene polymer is particularly preferable.
 主鎖骨格が飽和炭化水素系重合体であるものは、耐熱性、耐候性、耐久性、及び湿気遮断性に優れる特徴を有する。 Those whose main chain skeleton is a saturated hydrocarbon polymer have characteristics of excellent heat resistance, weather resistance, durability, and moisture barrier properties.
 イソブチレン系重合体は、単量体単位のすべてがイソブチレン単位から形成されていてもよいし、他単量体との共重合体でもよいが、ゴム特性の面からイソブチレンに由来する繰り返し単位を50質量%以上含有するものが好ましく、80質量%以上含有するものがより好ましく、90~99質量%含有するものが特に好ましい。 In the isobutylene-based polymer, all of the monomer units may be formed from isobutylene units, or may be a copolymer with other monomers, but the repeating unit derived from isobutylene is 50 from the viewpoint of rubber properties. Those containing at least mass% are preferred, those containing at least 80 mass% are more preferred, and those containing from 90 to 99 mass% are particularly preferred.
 飽和炭化水素系重合体の合成法としては、従来、各種重合方法が報告されているが、特に近年多くのいわゆるリビング重合が開発されている。飽和炭化水素系重合体、特にイソブチレン系重合体の場合、Kennedyらによって見出されたイニファー重合(J. P. Kennedyら、J. Polymer Sci., Polymer Chem. Ed. 1997年、15巻、2843頁)を用いることにより容易に製造することが可能であり、分子量500~100,000程度を、分子量分布1.5以下で重合でき、分子末端に各種官能基を導入できることが知られている。 As a method for synthesizing a saturated hydrocarbon polymer, various polymerization methods have been reported so far, but many so-called living polymerizations have been developed in recent years. In the case of saturated hydrocarbon polymers, particularly isobutylene polymers, the inifer polymerization found by Kennedy et al. (J. P. Kennedy et al., J. Polymer Sci., Polymer Chem. Ed. 1997, 15, 2843). It is known that a polymer having a molecular weight of about 500 to 100,000 can be polymerized with a molecular weight distribution of 1.5 or less, and various functional groups can be introduced at the molecular ends.
 架橋性珪素基を有する飽和炭化水素系重合体の製法としては、たとえば、特公平4-69659号、特公平7-108928号、特開昭63-254149号、特開昭64-22904号、特開平1-197509号、特許公報第2539445号、特許公報第2873395号、特開平7-53882号の各明細書などに記載されているが、特にこれらに限定されるものではない。 Examples of the method for producing a saturated hydrocarbon polymer having a crosslinkable silicon group include, for example, JP-B-4-69659, JP-B-7-108928, JP-A-62-254149, JP-A-62-2904, Although described in each specification of Kaihei 1-197509, Japanese Patent Publication No. 2539445, Japanese Patent Publication No. 2873395, and Japanese Patent Application Laid-Open No. 7-53882, it is not particularly limited thereto.
 上記の架橋性珪素基を有する飽和炭化水素系重合体は、単独で使用してもよいし2種以上併用してもよい。 The above saturated hydrocarbon polymer having a crosslinkable silicon group may be used alone or in combination of two or more.
 前記(メタ)アクリル酸エステル系重合体の主鎖を構成する(メタ)アクリル酸エステル系モノマーとしては特に限定されず、各種のものを用いることができる。例示するならば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2-アミノエチル、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、γ-(メタクリロイルオキシプロピル)ジメトキシメチルシラン、メタクリロイルオキシメチルトリメトキシシラン、メタクリロイルオキシメチルトリエトキシシラン、メタクリロイルオキシメチルジメトキシメチルシラン、メタクリロイルオキシメチルジエトキシメチルシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2-トリフルオロメチルエチル、(メタ)アクリル酸2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸ビス(トリフルオロメチル)メチル、(メタ)アクリル酸2-トリフルオロメチル-2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロヘキシルエチル、(メタ)アクリル酸2-パーフルオロデシルエチル、(メタ)アクリル酸2-パーフルオロヘキサデシルエチル等の(メタ)アクリル酸系モノマーが挙げられる。 The (meth) acrylic acid ester monomer constituting the main chain of the (meth) acrylic acid ester polymer is not particularly limited, and various types can be used. Examples include (meth) acrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, Isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-heptyl (meth) acrylate, N-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, phenyl (meth) acrylate, (meth) acrylic Acid toluyl, benzyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, (meth) acrylic 3-methoxybutyl, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, stearyl (meth) acrylate, glycidyl (meth) acrylate, 2-aminoethyl (meth) acrylate, γ -(Methacryloyloxypropyl) trimethoxysilane, γ- (methacryloyloxypropyl) dimethoxymethylsilane, methacryloyloxymethyltrimethoxysilane, methacryloyloxymethyltriethoxysilane, methacryloyloxymethyldimethoxymethylsilane, methacryloyloxymethyldiethoxymethylsilane, Ethylene oxide adduct of (meth) acrylic acid, trifluoromethylmethyl (meth) acrylate, 2-trifluoromethylethyl (meth) acrylate, 2- (meth) acrylic acid 2- -Fluoroethyl ethyl, 2-perfluoroethyl-2-perfluorobutylethyl (meth) acrylate, perfluoroethyl (meth) acrylate, trifluoromethyl (meth) acrylate, bis (trifluoro) (meth) acrylate Methyl) methyl, 2-trifluoromethyl-2-perfluoroethylethyl (meth) acrylate, 2-perfluorohexylethyl (meth) acrylate, 2-perfluorodecylethyl (meth) acrylate, (meth) acrylic And (meth) acrylic acid monomers such as 2-perfluorohexadecyl ethyl acid.
 前記(メタ)アクリル酸エステル系重合体では、(メタ)アクリル酸エステル系モノマーとともに、以下のビニル系モノマーを共重合することもできる。該ビニル系モノマーを例示すると、スチレン、ビニルトルエン、α-メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩等のスチレン系モノマー;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニルモノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等の珪素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル;フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。 In the (meth) acrylic acid ester polymer, the following vinyl monomers can be copolymerized together with the (meth) acrylic acid ester monomer. Examples of the vinyl monomers include styrene monomers such as styrene, vinyl toluene, α-methyl styrene, chlorostyrene, styrene sulfonic acid, and salts thereof; fluorine-containing vinyl monomers such as perfluoroethylene, perfluoropropylene, and vinylidene fluoride. Silicon-containing vinyl monomers such as vinyltrimethoxysilane and vinyltriethoxysilane; maleic anhydride, maleic acid, monoalkyl and dialkyl esters of maleic acid; fumaric acid, monoalkyl and dialkyl esters of fumaric acid; maleimide, Methyl maleimide, ethyl maleimide, propyl maleimide, butyl maleimide, hexyl maleimide, octyl maleimide, dodecyl maleimide, stearyl maleimide, phenyl maleimide, cyclohexyl Maleimide monomers such as maleimide; Nitrile group-containing vinyl monomers such as acrylonitrile and methacrylonitrile; Amide group-containing vinyl monomers such as acrylamide and methacrylamide; Vinyl acetate, vinyl propionate, vinyl pivalate, vinyl benzoate, cinnamon Examples thereof include vinyl esters such as vinyl acid; alkenes such as ethylene and propylene; conjugated dienes such as butadiene and isoprene; vinyl chloride, vinylidene chloride, allyl chloride, and allyl alcohol.
 これらは、単独で用いても良いし、複数を共重合させても構わない。なかでも、生成物の物性等から、スチレン系モノマー及び(メタ)アクリル酸系モノマーからなる重合体が好ましい。より好ましくは、アクリル酸エステルモノマー及びメタクリル酸エステルモノマーからなる(メタ)アクリル系重合体であり、特に好ましくはアクリル酸エステルモノマーからなるアクリル系重合体である。一般建築用等の用途においては配合物の低粘度、硬化物の低モジュラス、高伸び、耐候、耐熱性等の物性が要求される点から、アクリル酸ブチル系モノマーが更に好ましい。一方、自動車用途等の耐油性等が要求される用途においては、アクリル酸エチルを主とした共重合体が更に好ましい。このアクリル酸エチルを主とした重合体は耐油性に優れるが低温特性(耐寒性)にやや劣る傾向があるため、その低温特性を向上させるために、アクリル酸エチルの一部をアクリル酸ブチルに置き換えることも可能である。ただし、アクリル酸ブチルの比率を増やすに伴いその良好な耐油性が損なわれていくので、耐油性を要求される用途にはその比率は40%以下にするのが好ましく、更には30%以下にするのがより好ましい。また、耐油性を損なわずに低温特性等を改善するために側鎖のアルキル基に酸素が導入されたアクリル酸-2-メトキシエチルやアクリル酸-2-エトキシエチル等を用いるのも好ましい。ただし、側鎖にエーテル結合を持つアルコキシ基の導入により耐熱性が劣る傾向にあるので、耐熱性が要求されるときには、その比率は40%以下にするのが好ましい。各種用途や要求される目的に応じて、必要とされる耐油性や耐熱性、低温特性等の物性を考慮し、その比率を変化させ、適した重合体を得ることが可能である。例えば、限定はされないが耐油性や耐熱性、低温特性等の物性バランスに優れている例としては、アクリル酸エチル/アクリル酸ブチル/アクリル酸-2-メトキシエチル(質量比で40~50/20~30/30~20)の共重合体が挙げられる。本発明においては、これらの好ましいモノマーを他のモノマーと共重合、更にはブロック共重合させても構わなく、その際は、これらの好ましいモノマーが質量比で40%以上含まれていることが好ましい。なお上記表現形式で例えば(メタ)アクリル酸とは、アクリル酸および/あるいはメタクリル酸を表す。 These may be used alone or a plurality of them may be copolymerized. Especially, the polymer which consists of a styrene-type monomer and a (meth) acrylic-acid type monomer from the physical property of a product etc. is preferable. More preferred is a (meth) acrylic polymer comprising an acrylate monomer and a methacrylic acid ester monomer, and particularly preferred is an acrylic polymer comprising an acrylate monomer. In applications such as general construction, a butyl acrylate monomer is more preferred from the viewpoint that physical properties such as low viscosity of the blend, low modulus of the cured product, high elongation, weather resistance, and heat resistance are required. On the other hand, in applications that require oil resistance, such as automobile applications, copolymers based on ethyl acrylate are more preferred. This polymer mainly composed of ethyl acrylate is excellent in oil resistance but tends to be slightly inferior in low temperature characteristics (cold resistance). Therefore, in order to improve the low temperature characteristics, a part of ethyl acrylate is converted into butyl acrylate. It is also possible to replace it. However, as the ratio of butyl acrylate is increased, its good oil resistance is impaired. Therefore, for applications requiring oil resistance, the ratio is preferably 40% or less, and more preferably 30% or less. More preferably. It is also preferable to use 2-methoxyethyl acrylate or 2-ethoxyethyl acrylate in which oxygen is introduced into the alkyl group in the side chain in order to improve low temperature characteristics and the like without impairing oil resistance. However, since heat resistance tends to be inferior due to the introduction of an alkoxy group having an ether bond in the side chain, when heat resistance is required, the ratio is preferably 40% or less. In accordance with various uses and required purposes, it is possible to obtain suitable polymers by changing the ratio in consideration of required physical properties such as oil resistance, heat resistance and low temperature characteristics. For example, although not limited, examples of excellent balance of physical properties such as oil resistance, heat resistance, and low-temperature characteristics include ethyl acrylate / butyl acrylate / -2-methoxyethyl acrylate (40-50 / 20 by mass ratio). To 30/30 to 20). In the present invention, these preferable monomers may be copolymerized with other monomers, and further block copolymerized, and in this case, it is preferable that these preferable monomers are contained in a mass ratio of 40% or more. . In the above expression format, for example, (meth) acrylic acid represents acrylic acid and / or methacrylic acid.
 本発明において、(メタ)アクリル酸エステル重合体を得る方法は、特に限定されず、公知の重合法(例えば、特開昭63-112642号、特開2007-230947号、特開2001-40037号、特開2003-313397号等の記載の合成法)を利用することができ、ラジカル重合反応を用いたラジカル重合法が好ましい。ラジカル重合法としては、重合開始剤を用いて所定の単量体単位を共重合させるラジカル重合法(フリーラジカル重合法)や、末端などの制御された位置に反応性シリル基を導入することが可能な制御ラジカル重合法が挙げられる。但し、重合開始剤としてアゾ系化合物、過酸化物などを用いる通常のフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に2以上と大きく、粘度が高くなるという問題を有している。従って、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系重合体を得るためには、制御ラジカル重合法を用いることが好適である。 In the present invention, the method for obtaining the (meth) acrylic acid ester polymer is not particularly limited, and known polymerization methods (for example, JP-A-63-112642, JP-A-2007-230947, JP-A-2001-40037). And a synthesis method described in JP-A-2003-313397), and a radical polymerization method using a radical polymerization reaction is preferable. As the radical polymerization method, a radical polymerization method (free radical polymerization method) in which a predetermined monomer unit is copolymerized using a polymerization initiator or a reactive silyl group is introduced at a controlled position such as a terminal. Possible controlled radical polymerization methods are mentioned. However, a polymer obtained by a normal free radical polymerization method using an azo compound or a peroxide as a polymerization initiator has a problem that the molecular weight distribution is generally as large as 2 or more and the viscosity is increased. Yes. Therefore, in order to obtain a (meth) acrylate polymer having a narrow molecular weight distribution and a low viscosity and having a crosslinkable functional group at the molecular chain terminal at a high ratio. It is preferable to use a controlled radical polymerization method.
 制御ラジカル重合法としては、特定の官能基を有する連鎖移動剤を用いたフリーラジカル重合法やリビングラジカル重合法が挙げられ、付加-開裂移動反応(Reversible Addition-Fragmentation chain Transfer;RAFT)重合法、遷移金属錯体を用いたラジカル重合法(Transition-Metal-Mediated Living Radical Polymerization)等のリビングラジカル重合法がより好ましい。また、反応性シリル基を有するチオール化合物を用いた反応や、反応性シリル基を有するチオール化合物及びメタロセン化合物を用いた反応(特開2001-40037号公報)も好適である。 Examples of the controlled radical polymerization method include free radical polymerization method and living radical polymerization method using a chain transfer agent having a specific functional group, such as an addition-cleavage transfer reaction (RAFT) polymerization method, Living radical polymerization methods such as a radical polymerization method using a transition metal complex (Transition-Metal-Mediated Living Radical Polymerization) are more preferable. A reaction using a thiol compound having a reactive silyl group and a reaction using a thiol compound having a reactive silyl group and a metallocene compound (Japanese Patent Laid-Open No. 2001-40037) are also suitable.
 上記の架橋性珪素基を有する(メタ)アクリル酸エステル系重合体は、単独で使用してもよいし2種以上併用してもよい。 The above (meth) acrylic acid ester-based polymer having a crosslinkable silicon group may be used alone or in combination of two or more.
 これらの架橋性珪素基を有する有機重合体は、単独で使用してもよいし2種以上併用してもよい。具体的には、架橋性珪素基を有するポリオキシアルキレン系重合体、架橋性珪素基を有する飽和炭化水素系重合体、及び架橋性珪素基を有する(メタ)アクリル酸エステル系重合体、からなる群から選択される2種以上をブレンドしてなる有機重合体も使用できる。 These organic polymers having a crosslinkable silicon group may be used alone or in combination of two or more. Specifically, it comprises a polyoxyalkylene polymer having a crosslinkable silicon group, a saturated hydrocarbon polymer having a crosslinkable silicon group, and a (meth) acrylic acid ester polymer having a crosslinkable silicon group. An organic polymer obtained by blending two or more selected from the group can also be used.
 架橋性珪素基を有するポリオキシアルキレン系重合体と架橋性珪素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法は、特開昭59-122541号、特開昭63-112642号、特開平6-172631号、特開平11-116763号公報等に提案されているが、特にこれらに限定されるものではない。
 好ましい具体例は、架橋性珪素基を有し分子鎖が実質的に、下記一般式(9):
 -CH-C(R35)(COOR36)- ・・・(9)
(式中、R35は水素原子またはメチル基、R36は炭素数1~8のアルキル基を示す)で表される炭素数1~8のアルキル基を有する(メタ)アクリル酸エステル単量体単位と、下記一般式(10):
 -CH-C(R35)(COOR37)- ・・・(10)
(式中、R35は前記に同じ、R37は炭素数10以上のアルキル基を示す)で表される炭素数10以上のアルキル基を有する(メタ)アクリル酸エステル単量体単位からなる共重合体に、架橋性珪素基を有するポリオキシアルキレン系重合体をブレンドして製造する方法である。
A method for producing an organic polymer obtained by blending a polyoxyalkylene polymer having a crosslinkable silicon group and a (meth) acrylic acid ester polymer having a crosslinkable silicon group is disclosed in JP-A-59-122541. Although proposed in Japanese Laid-Open Patent Publication No. 63-112642, Japanese Laid-Open Patent Publication No. 6-172631, and Japanese Laid-Open Patent Publication No. 11-116763, the invention is not particularly limited thereto.
Preferable specific examples include a crosslinkable silicon group and a molecular chain substantially having the following general formula (9):
—CH 2 —C (R 35 ) (COOR 36 ) — (9)
(Wherein R 35 represents a hydrogen atom or a methyl group, and R 36 represents an alkyl group having 1 to 8 carbon atoms) (meth) acrylic acid ester monomer having an alkyl group having 1 to 8 carbon atoms Unit and the following general formula (10):
—CH 2 —C (R 35 ) (COOR 37 ) — (10)
(Wherein R 35 is the same as described above, and R 37 represents an alkyl group having 10 or more carbon atoms) and is a copolymer comprising a (meth) acrylic acid ester monomer unit having an alkyl group having 10 or more carbon atoms. In this method, a polymer is blended with a polyoxyalkylene polymer having a crosslinkable silicon group.
 前記一般式(9)のR36としては、たとえばメチル基、エチル基、プロピル基、n-ブチル基、t-ブチル基、2-エチルヘキシル基等の炭素数1~8、好ましくは1~4、さらに好ましくは1~2のアルキル基があげられる。なお、R36のアルキル基は単独でもよく、2種以上混合していてもよい。 R 36 in the general formula (9) is, for example, a methyl group, an ethyl group, a propyl group, an n-butyl group, a t-butyl group, a 2-ethylhexyl group, etc., having 1 to 8, preferably 1 to 4, More preferred are 1 to 2 alkyl groups. The alkyl group of R 36 may alone, or may be a mixture of two or more.
 前記一般式(10)のR37としては、たとえばラウリル基、トリデシル基、セチル基、ステアリル基、ベヘニル基等の炭素数10以上、通常は10~30、好ましくは10~20の長鎖のアルキル基があげられる。なお、R37のアルキル基はR36の場合と同様、単独でもよく、2種以上混合したものであってもよい。 R 37 in the general formula (10) is, for example, a long-chain alkyl having 10 or more carbon atoms such as lauryl group, tridecyl group, cetyl group, stearyl group, behenyl group, etc., usually 10-30, preferably 10-20. Group. Incidentally, as with the alkyl group for R 37 is the R 36, alone may be, or may be a mixture of two or more.
 該(メタ)アクリル酸エステル系共重合体の分子鎖は実質的に式(9)及び式(10)の単量体単位からなるが、ここでいう「実質的に」とは該共重合体中に存在する式(9)及び式(10)の単量体単位の合計が50質量%をこえることを意味する。式(9)及び式(10)の単量体単位の合計は好ましくは70質量%以上である。 The molecular chain of the (meth) acrylic acid ester copolymer is substantially composed of monomer units of the formula (9) and the formula (10), and the term “substantially” here means the copolymer. It means that the total of the monomer units of the formula (9) and the formula (10) present therein exceeds 50% by mass. The total of the monomer units of the formula (9) and the formula (10) is preferably 70% by mass or more.
 また式(9)の単量体単位と式(10)の単量体単位の存在比は、質量比で95:5~40:60が好ましく、90:10~60:40がさらに好ましい。 The abundance ratio of the monomer unit of formula (9) and the monomer unit of formula (10) is preferably 95: 5 to 40:60, more preferably 90:10 to 60:40, in terms of mass ratio.
 該共重合体に含有されていてもよい式(9)及び式(10)以外の単量体単位(以下、他の単量体単位とも称する)としては、たとえばアクリル酸、メタクリル酸等のα,β-不飽和カルボン酸;アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド等のアミド基、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート、アミノエチルビニルエーテル等のアミノ基を含む単量体;その他アクリロニトリル、スチレン、α-メチルスチレン、アルキルビニルエーテル、塩化ビニル、酢酸ビニル、プロピオン酸ビニル、エチレン等に起因する単量体単位があげられる。 Examples of monomer units other than the formulas (9) and (10) that may be contained in the copolymer (hereinafter also referred to as other monomer units) include α such as acrylic acid and methacrylic acid. , Β-unsaturated carboxylic acids; amide groups such as acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, epoxy groups such as glycidyl acrylate, glycidyl methacrylate, diethylaminoethyl acrylate, diethylaminoethyl methacrylate, aminoethyl vinyl ether, etc. And other monomer units derived from acrylonitrile, styrene, α-methylstyrene, alkyl vinyl ether, vinyl chloride, vinyl acetate, vinyl propionate, ethylene and the like.
 架橋性珪素基を有するポリオキシアルキレン系重合体と架橋性珪素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法に用いられる架橋性珪素基を有する(メタ)アクリル酸エステル系重合体の他の好ましい具体例としては、例えば、特開2008-44975号に開示されているような、(a1)(メタ)アクリル酸メチル単量体単位と、(a2)アルキル基の炭素数が8である(メタ)アクリル酸アルキルエステル単量体単位と、を含む架橋性珪素基を有するアクリル系重合体が挙げられる。 Having a crosslinkable silicon group used in a method for producing an organic polymer obtained by blending a polyoxyalkylene polymer having a crosslinkable silicon group and a (meth) acrylic acid ester polymer having a crosslinkable silicon group (meta ) Other preferred specific examples of the acrylate polymer include, for example, (a1) a methyl (meth) acrylate monomer unit as disclosed in JP-A-2008-44975, and (a2) An acrylic polymer having a crosslinkable silicon group containing a (meth) acrylic acid alkyl ester monomer unit having an alkyl group having 8 carbon atoms.
 前記アクリル系共重合体の分子鎖は、前記(a1)単量体単位及び前記(a2)単量体単位を、合計50質量%以上含むものが好ましく、前記(a1)及び(a2)の単量体単位の合計が70質量%以上であることがより好ましい。前記(a1)と前記(a2)の存在比は質量比で(a1)/(a2)=90/10~20/80であることが好ましく、70/30~30/70がより好ましい。(a1)/(a2)の質量比が90/10~20/80の範囲とすることにより、透明性を向上させることができる。
 前記アクリル系共重合体は、前記(a1)及び(a2)以外の単量体単位が含まれていてもよい。(a1)及び(a2)以外の単量体単位としては、たとえば、前記(メタ)アクリル酸エステル系共重合体の説明において前述した他の単量体単位を同様に用いることができる。
The molecular chain of the acrylic copolymer preferably contains a total of 50% by mass or more of the monomer unit (a1) and the monomer unit (a2). It is more preferable that the total of the monomer units is 70% by mass or more. The abundance ratio of the (a1) and the (a2) is preferably (a1) / (a2) = 90/10 to 20/80, more preferably 70/30 to 30/70 in terms of mass ratio. When the mass ratio of (a1) / (a2) is in the range of 90/10 to 20/80, the transparency can be improved.
The acrylic copolymer may contain monomer units other than (a1) and (a2). As the monomer unit other than (a1) and (a2), for example, the other monomer units described above in the description of the (meth) acrylic acid ester-based copolymer can be used in the same manner.
 前記アクリル系共重合体の数平均分子量は、600~5000が好ましく、1000~4500がより好ましい。数平均分子量を該範囲とすることにより、架橋性珪素基を有するポリオキシアルキレン系重合体との相溶性を向上させることができる。
 前記アクリル系共重合体は、架橋性珪素基を有するポリオキシアルキレン系重合体100質量部に対して、5~900質量部用いることが好ましい。これらアクリル系共重合体は、単独で使用しても良く、2種以上併用しても良い。
The number average molecular weight of the acrylic copolymer is preferably 600 to 5000, more preferably 1000 to 4500. By setting the number average molecular weight within this range, compatibility with the polyoxyalkylene polymer having a crosslinkable silicon group can be improved.
The acrylic copolymer is preferably used in an amount of 5 to 900 parts by mass with respect to 100 parts by mass of the polyoxyalkylene polymer having a crosslinkable silicon group. These acrylic copolymers may be used alone or in combination of two or more.
 架橋性珪素基を有する飽和炭化水素系重合体と架橋性珪素基を有する(メタ)アクリル酸エステル系共重合体をブレンドしてなる有機重合体は、特開平1-168764号、特開2000-186176号公報等に提案されているが、特にこれらに限定されるものではない。 Organic polymers obtained by blending a saturated hydrocarbon polymer having a crosslinkable silicon group and a (meth) acrylic acid ester copolymer having a crosslinkable silicon group are disclosed in JP-A-1-168774 and 2000-2000. Although it is proposed in Japanese Patent No. 186176, etc., it is not particularly limited thereto.
 さらに、架橋性珪素基を有する(メタ)アクリル酸エステル系共重合体をブレンドしてなる有機重合体の製造方法としては、他にも、架橋性珪素基を有する有機重合体の存在下で(メタ)アクリル酸エステル系単量体の重合を行う方法が利用できる。この製造方法は、特開昭59-78223号、特開昭59-168014号、特開昭60-228516号、特開昭60-228517号等の各公報に具体的に開示されているが、これらに限定されるものではない。 Furthermore, as a method for producing an organic polymer obtained by blending a (meth) acrylic acid ester-based copolymer having a crosslinkable silicon group, in the presence of an organic polymer having a crosslinkable silicon group ( A method of polymerizing a meth) acrylate monomer can be used. This production method is specifically disclosed in JP-A-59-78223, JP-A-59-168014, JP-A-60-228516, JP-A-60-228517, etc. It is not limited to these.
 2種以上の重合体をブレンドして使用するときは、架橋性珪素基を有するポリオキシアルキレン系重合体100質量部に対し、架橋性珪素基を有する飽和炭化水素系重合体、及び/又は架橋性珪素基を有する(メタ)アクリル酸エステル系重合体を10~200質量部使用することが好ましく、20~80質量部使用することがさらに好ましい。 When two or more kinds of polymers are blended and used, a saturated hydrocarbon polymer having a crosslinkable silicon group and / or a crosslink with respect to 100 parts by mass of the polyoxyalkylene polymer having a crosslinkable silicon group. The (meth) acrylic acid ester-based polymer having a functional silicon group is preferably used in an amount of 10 to 200 parts by weight, more preferably 20 to 80 parts by weight.
 前記(B)シラン化合物は、下記式(1)で示されるエポキシシラン化合物と下記式(2)で示されるアミノシラン化合物とを、該アミノシラン化合物1モルに対して該エポキシシラン化合物を1.5~10モルの範囲で反応させてなるシラン化合物である。 The (B) silane compound comprises an epoxy silane compound represented by the following formula (1) and an amino silane compound represented by the following formula (2): It is a silane compound obtained by reacting in the range of 10 mol.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 前記式(1)において、R~Rはそれぞれ水素原子又はアルキル基であり、水素原子、メチル基、エチル基、プロピル基が好ましく、水素原子がより好ましい。Rはアルキレン基またはアルキレンオキシアルキレン基であり、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、メチレンオキシエチレン基、メチレンオキシプロピレン基、メチレンオキシブチレン基、エチレンオキシエチレン基、エチレンオキシプロピレン基が好ましく、ブチレン基、オクチレン基、メチレンオキシプロピレン基がより好ましい。Rは一価炭化水素基であり、メチル基、エチル基、プロピル基等のアルキル基;ビニル基、アリル基、ブテニル基等のアルケニル基;フェニル基、トリル基等のアリール基が好ましく、メチル基がより好ましい。Rが複数存在する場合、それらは同じであっても異なっていてもよい。Rはアルキル基であり、メチル基、エチル基、プロピル基が好ましく、メチル基、エチル基がより好ましい。Rが複数存在する場合、それらは同じであっても異なっていてもよい。aは0、1又は2であり、0が好ましい。 In the formula (1), R 1 to R 3 are each a hydrogen atom or an alkyl group, preferably a hydrogen atom, a methyl group, an ethyl group, or a propyl group, and more preferably a hydrogen atom. R 4 is an alkylene group or an alkyleneoxyalkylene group, and is a methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, methyleneoxyethylene group, methyleneoxypropylene group, methyleneoxybutylene. Group, ethyleneoxyethylene group and ethyleneoxypropylene group are preferable, butylene group, octylene group and methyleneoxypropylene group are more preferable. R 5 is a monovalent hydrocarbon group, preferably an alkyl group such as a methyl group, an ethyl group or a propyl group; an alkenyl group such as a vinyl group, an allyl group or a butenyl group; an aryl group such as a phenyl group or a tolyl group; Groups are more preferred. When a plurality of R 5 are present, they may be the same or different. R 6 is an alkyl group, preferably a methyl group, an ethyl group, or a propyl group, and more preferably a methyl group or an ethyl group. When a plurality of R 6 are present, they may be the same or different. a is 0, 1 or 2, and 0 is preferable.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 前記式(2)において、R~R12はそれぞれ水素原子又はアルキル基であり、水素原子、メチル基、エチル基、プロピル基が好ましく、水素原子がより好ましい。R13は一価炭化水素基であり、アルキル基またはアルコキシ基が好ましく、メチル基、エチル基、プロピル基、メトキシ基、エトキシ基、プロポキシ基がより好ましく、メトキシ基、エトキシ基がさらに好ましい。R14はアルキル基であり、メチル基、エチル基、プロピル基が好ましく、メチル基、エチル基がより好ましい。bは0又は1である。(3-b)個のR14は同じであっても異なっていてもよい。 In the formula (2), R 7 to R 12 are each a hydrogen atom or an alkyl group, preferably a hydrogen atom, a methyl group, an ethyl group, or a propyl group, and more preferably a hydrogen atom. R 13 is a monovalent hydrocarbon group, preferably an alkyl group or an alkoxy group, more preferably a methyl group, an ethyl group, a propyl group, a methoxy group, an ethoxy group, or a propoxy group, and even more preferably a methoxy group or an ethoxy group. R 14 is an alkyl group, preferably a methyl group, an ethyl group, or a propyl group, and more preferably a methyl group or an ethyl group. b is 0 or 1. (3-b) R 14 may be the same or different.
 前記エポキシシラン化合物としては、例えば、4-オキシラニルブチルトリメトキシシラン、8-オキシラニルオクチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等が挙げられる。 Examples of the epoxysilane compound include 4-oxiranylbutyltrimethoxysilane, 8-oxiranyloctyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Glycidoxypropyltriethoxysilane and the like.
 前記アミノシラン化合物としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン等が挙げられる。 Examples of the aminosilane compound include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, and the like.
 前記エポキシシラン化合物と前記アミノシラン化合物との反応条件は、前記アミノシラン化合物の1級アミノ基が前記エポキシシラン化合物と反応し、該1級アミノ基が2級アミノ基もしくは3級アミノ基となり、該1級アミノ基が残存しないように反応させればよい。
 そのための反応条件としては、例えば、溶媒の存在下あるいは非存在下で、前記アミノシラン化合物と前記エポキシシラン化合物とを混合し、25℃~100℃、好ましくは30℃~90℃、より好ましくは40℃~80℃の反応温度で反応させることが好適である。反応温度を上記範囲内に設定することにより、反応を暴走させることなく安定に進行させることができる。反応温度を25℃未満とした場合、活性が低くなり、充分な反応達成に必要な時間が長くなり、効率が悪い。反応時間は、反応温度等を考慮して適宜設定することができるが、例えば上記のような条件では反応時間は、通常は1~336時間、好ましくは24~72時間の範囲内に設定することが好適である。
 エポキシシラン化合物とアミノシラン化合物の反応比(モル比)は、アミノシラン化合物1モルに対してエポキシシラン化合物を1.5~10モル、好ましくは1.6~5.0モル、より好ましくは1.7~2.4モル、となるように反応させる。
The reaction condition between the epoxysilane compound and the aminosilane compound is that the primary amino group of the aminosilane compound reacts with the epoxysilane compound, the primary amino group becomes a secondary amino group or a tertiary amino group, What is necessary is just to make it react so that a primary amino group may not remain | survive.
As the reaction conditions for that purpose, for example, the aminosilane compound and the epoxysilane compound are mixed in the presence or absence of a solvent, and 25 ° C to 100 ° C, preferably 30 ° C to 90 ° C, more preferably 40 ° C. It is preferable to carry out the reaction at a reaction temperature of from 0 ° C to 80 ° C. By setting the reaction temperature within the above range, the reaction can proceed stably without causing runaway. When the reaction temperature is less than 25 ° C., the activity is low, the time required to achieve a sufficient reaction is lengthened, and the efficiency is poor. The reaction time can be appropriately set in consideration of the reaction temperature and the like. For example, under the above conditions, the reaction time is usually set in the range of 1 to 336 hours, preferably 24 to 72 hours. Is preferred.
The reaction ratio (molar ratio) between the epoxysilane compound and the aminosilane compound is 1.5 to 10 mol, preferably 1.6 to 5.0 mol, more preferably 1.7 mol of the epoxysilane compound with respect to 1 mol of the aminosilane compound. The reaction is carried out to give ~ 2.4 mol.
 前記エポキシシラン化合物と前記アミノシラン化合物を、加熱反応、好ましくは40℃以上、より好ましくは40~100℃、さらに好ましくは40~80℃の反応温度で加熱反応させることにより、エポキシシラン化合物のエポキシ環が開裂し、この反応により生成した水酸基と該アミノシラン化合物中のアルコキシ基とのアルコール交換反応により環化し、下記式(11)で示されるカルバシラトラン誘導体を得ることができる。下記式(11)で示されるカルバシラトラン誘導体は29Si-NMRにて-60ppmから-70ppmにピークを有する化合物である。 The epoxy silane compound and the amino silane compound are heated and reacted at a reaction temperature of preferably 40 ° C. or higher, more preferably 40 to 100 ° C., and still more preferably 40 to 80 ° C. Is cleaved and cyclized by an alcohol exchange reaction between the hydroxyl group produced by this reaction and the alkoxy group in the aminosilane compound, whereby a carbacyltolane derivative represented by the following formula (11) can be obtained. The carbacyltolane derivative represented by the following formula (11) is a compound having a peak from −60 ppm to −70 ppm in 29 Si-NMR.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 前記式(11)において、R~R及びaはそれぞれ前記式(1)と同じであり、R~R12は前記式(2)と同じであり、前記式(2)のbが0の場合、R15は前記式(2)のOR14と同じであり、前記式(2)のbが1の場合、R15は前記式(2)のR13と同じである。なお、珪素原子に結合しているアルコキシ基はアルコール交換反応により、一部置換される場合があり、原料の珪素原子結合アルコキシ基と、反応により生成するカルバシラトラン誘導体中の珪素原子結合アルコキシ基が同じでない場合もある。 In Formula (11), R 1 to R 6 and a are the same as in Formula (1), R 7 to R 12 are the same as in Formula (2), and b in Formula (2) is When 0, R 15 is the same as OR 14 in the formula (2), and when b in the formula (2) is 1, R 15 is the same as R 13 in the formula (2). The alkoxy group bonded to the silicon atom may be partially substituted by an alcohol exchange reaction. The silicon atom-bonded alkoxy group of the raw material and the silicon atom-bonded alkoxy group in the carbacyltran derivative generated by the reaction May not be the same.
 前記(B)シラン化合物の配合割合は、前記(A)有機重合体100質量部に対して、前記(B)シラン化合物を0.1~40質量部配合するものであり、0.3~30質量部配合することが好ましく、0.5~20質量部配合することがより好ましい。前記(B)シラン化合物は1種で用いてもよく、2種以上組み合わせて用いてもよい。 The blending ratio of the (B) silane compound is such that 0.1 to 40 parts by weight of the (B) silane compound is blended with respect to 100 parts by weight of the (A) organic polymer. It is preferable to mix part by mass, and more preferably 0.5 to 20 parts by mass. The (B) silane compound may be used alone or in combination of two or more.
 前記(C)チタン触媒は、下記式(3)で示されるチタニウムキレート及び下記式(4)で表されるチタニウムキレートからなる群から選択される1種以上である。 The (C) titanium catalyst is at least one selected from the group consisting of a titanium chelate represented by the following formula (3) and a titanium chelate represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 前記式(3)において、n個のR21は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR22は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR23および4-n個のR24は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、nは0、1、2又は3である。 In the formula (3), n R 21 s are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, and 4-n R 22 s are each independently a hydrogen atom or A substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, wherein 4-n R 23 and 4-n R 24 are each independently substituted or unsubstituted C 1-20 carbon atoms. A hydrocarbon group and n is 0, 1, 2 or 3;
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 前記式(4)において、R25は、置換あるいは非置換の2価の炭素原子数1~20の炭化水素基であり、2個のR26は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、2個のR27および2個のR28は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基である。 In the formula (4), R 25 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms, and the two R 26 are independently a hydrogen atom or a substituted or unsubstituted group. It is a hydrocarbon group having 1 to 20 carbon atoms, and two R 27 and two R 28 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.
 前記式(3)又は前記式(4)で示されるチタニウムキレートとしては、例えば、チタニウムジメトキシドビス(エチルアセトアセテート)、チタニウムジエトキシドビス(エチルアセトアセテート)、チタニウムジイソプロポキシドビス(エチルアセトアセテート)、チタニウムジイソプロポキシドビス(メチルアセトアセテート)、チタニウムジイソプロポキシドビス(t-ブチルアセトアセテート)、チタニウムジイソプロポキシドビス(メチル-3-オキソ-4,4-ジメチルヘキサノエート)、チタニウムジイソプロポキシドビス(エチル-3-オキソ-4,4,4-トリフルオロブタノエート)、チタニウムジ-n-ブトキシドビス(エチルアセトアセテート)、チタニウムジイソブトキシドビス(エチルアセトアセテート)、チタニウムジ-t-ブトキシドビス(エチルアセトアセテート)、チタニウムジ-2-エチルヘキソキシドビス(エチルアセトアセテート)、チタニウムビス(1-メトキシ-2-プロポキシド)ビス(エチルアセトアセテート)、チタニウムビス(3-オキソ-2-ブトキシド)ビス(エチルアセトアセテート)、チタニウムビス(3-ジエチルアミノプロポキシド)ビス(エチルアセトアセテート)、チタニウムトリイソプロポキシド(エチルアセトアセテート)、チタニウムトリイソプロポキシド(アリルアセトアセテート)、チタニウムトリイソプロポキシド(メタクリロキシエチルアセトアセテート)、1,2-ジオキシエタンチタニウムビス(エチルアセトアセテート)、1,3-ジオキシプロパンチタニウムビス(エチルアセトアセテート)、2,4-ジオキシペンタンチタニウムビス(エチルアセトアセテート)、2,4-ジメチル-2,4-ジオキシペンタンチタニウムビス(エチルアセトアセテート)、チタニウムテトラキス(エチルアセトアセテート)、チタニウムビス(トリメチルシロキシ)ビス(エチルアセトアセテート)、チタニウムビス(トリメチルシロキシ)ビス(アセチルアセトナート)、などが挙げられる。これらの中でもチタニウムジエトキシドビス(エチルアセトアセテート)、チタニウムジイソプロポキシドビス(エチルアセトアセテート)、チタニウムジブトキシドビス(エチルアセトアセテート)等が挙げられ、チタニウムジイソプロポキシドビス(エチルアセトアセテート)がより好適である。 Examples of the titanium chelate represented by the formula (3) or the formula (4) include titanium dimethoxide bis (ethyl acetoacetate), titanium diethoxide bis (ethyl acetoacetate), and titanium diisopropoxide bis (ethyl). Acetoacetate), titanium diisopropoxide bis (methyl acetoacetate), titanium diisopropoxide bis (t-butyl acetoacetate), titanium diisopropoxide bis (methyl-3-oxo-4,4-dimethylhexano) Eth), titanium diisopropoxide bis (ethyl-3-oxo-4,4,4-trifluorobutanoate), titanium di-n-butoxide bis (ethyl acetoacetate), titanium diisobutoxide bis (ethyl acetoacetate) ) Titanium di-t-butoxide bis (ethyl acetoacetate), Titanium di-2-ethylhexoxide bis (ethyl acetoacetate), Titanium bis (1-methoxy-2-propoxide) bis (ethyl acetoacetate), Titanium bis (3-oxo-2-butoxide) bis (ethylacetoacetate), titanium bis (3-diethylaminopropoxide) bis (ethylacetoacetate), titanium triisopropoxide (ethylacetoacetate), titanium triisopropoxide (allyl) Acetoacetate), titanium triisopropoxide (methacryloxyethyl acetoacetate), 1,2-dioxyethane titanium bis (ethyl acetoacetate), 1,3-dioxypropane titanium bis (ethyl acetate) Toacetate), 2,4-dioxypentane titanium bis (ethyl acetoacetate), 2,4-dimethyl-2,4-dioxypentane titanium bis (ethyl acetoacetate), titanium tetrakis (ethyl acetoacetate), titanium bis (Trimethylsiloxy) bis (ethylacetoacetate), titanium bis (trimethylsiloxy) bis (acetylacetonate), and the like. Among these, titanium diethoxide bis (ethyl acetoacetate), titanium diisopropoxide bis (ethyl acetoacetate), titanium dibutoxide bis (ethyl acetoacetate) and the like, titanium diisopropoxide bis (ethyl acetoacetate) ) Is more preferable.
 前記チタニウムキレートのキレート配位子を形成し得るキレート試薬としては、例えば、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸t-ブチル、アセト酢酸アリル、アセト酢酸(2-メタクリロキシエチル)、3-オキソ-4,4-ジメチルヘキサン酸メチル、3-オキソ-4,4,4-トリフルオロブタン酸エチルなどのβ-ケトエステルが挙げられ、アセト酢酸メチル、アセト酢酸エチルが好ましく、アセト酢酸エチルがより好ましい。また、キレート配位子が2個以上存在する場合、それぞれのキレート配位子は同一であっても異なっていてもよい。 Examples of the chelating reagent capable of forming the chelate ligand of the titanium chelate include, for example, methyl acetoacetate, ethyl acetoacetate, t-butyl acetoacetate, allyl acetoacetate, acetoacetate (2-methacryloxyethyl), 3-oxo Examples include β-ketoesters such as methyl -4,4-dimethylhexanoate and ethyl 3-oxo-4,4,4-trifluorobutanoate, preferably methyl acetoacetate and ethyl acetoacetate, more preferably ethyl acetoacetate . When two or more chelate ligands are present, each chelate ligand may be the same or different.
 前記(C)チタン触媒の配合割合は、前記(A)有機重合体100質量部に対して、前記(C)チタン触媒を0.1~40質量部配合するものであり、1~30質量部配合することが好ましく、1~20質量部配合することがより好ましい。前記(C)チタン触媒は1種で用いてもよく、2種以上組み合わせて用いてもよい。前記(C)チタン触媒を添加する方法としては、前述したチタニウムキレートを直接添加する以外に、チタニウムテトライソプロポキシドやチタニウムジクロライドジイソプロポキシドなどのキレート試薬と反応し得るチタン化合物と、アセト酢酸エチルなどのキレート試薬を、本発明の組成物にそれぞれ添加し、組成物中にてキレート化させる方法を用いても良い。 The blending ratio of the (C) titanium catalyst is such that 0.1 to 40 parts by weight of the (C) titanium catalyst is blended with respect to 100 parts by weight of the (A) organic polymer. It is preferable to mix, and it is more preferable to add 1 to 20 parts by mass. The (C) titanium catalyst may be used alone or in combination of two or more. As the method for adding the (C) titanium catalyst, in addition to adding the titanium chelate described above directly, a titanium compound capable of reacting with a chelating reagent such as titanium tetraisopropoxide or titanium dichloride diisopropoxide, and acetoacetic acid A method may be used in which a chelating reagent such as ethyl is added to the composition of the present invention and chelated in the composition.
 本発明の硬化性組成物は、硬化触媒として前記(C)チタン触媒を使用するが、本発明の効果を低下させない程度に他の硬化触媒を併用することもできる。他の硬化触媒としては、例えば、有機金属化合物やアミン類等が挙げられ、特にシラノール縮合触媒を用いることが好ましい。前記シラノール縮合触媒としては、例えば、スタナスオクトエート、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫マレエート、ジブチル錫ジアセテート、ジブチル錫ジアセチルアセトナート、ジブチル錫オキサイド、ジブチル錫ビストリエトキシシリケート、ジブチル錫ジステアレート、ジオクチル錫ジラウレート、ジオクチル錫ジバーサテート、オクチル酸錫及びナフテン酸錫等の有機錫化合物;ジメチルスズオキサイド、ジブチルスズオキサイド、ジオクチルスズオキサイド等のジアルキルスズオキサイド;ジブチル錫オキサイドとフタル酸エステルとの反応物等;テトラブチルチタネート、テトラプロピルチタネート等のチタン酸エステル類;アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジイソプロポキシアルミニウムエチルアセトアセテート等の有機アルミニウム化合物類;ジルコニウムテトラアセチルアセトナート、チタンテトラアセチルアセトナート等のキレート化合物類;オクチル酸鉛及びナフテン酸鉛等の有機酸鉛;オクチル酸ビスマス、ネオデカン酸ビスマス及びロジン酸ビスマス等の有機酸ビスマス;シラノール縮合触媒として公知のその他の酸性触媒及び塩基性触媒等が挙げられる。しかしながら、有機錫化合物は添加量に応じて、得られる硬化性組成物の毒性が強くなる場合がある。 The curable composition of the present invention uses the (C) titanium catalyst as a curing catalyst, but other curing catalysts can be used in combination to such an extent that the effects of the present invention are not reduced. Examples of other curing catalysts include organometallic compounds and amines, and it is particularly preferable to use a silanol condensation catalyst. Examples of the silanol condensation catalyst include stannous octoate, dibutyltin dioctoate, dibutyltin dilaurate, dibutyltin maleate, dibutyltin diacetate, dibutyltin diacetylacetonate, dibutyltin oxide, dibutyltin bistriethoxysilicate, dibutyltin distearate. , Dioctyltin dilaurate, dioctyltin diversate, organotin compounds such as tin octylate and tin naphthenate; dialkyltin oxides such as dimethyltin oxide, dibutyltin oxide and dioctyltin oxide; reaction products of dibutyltin oxide and phthalate, etc. ; Titanates such as tetrabutyl titanate and tetrapropyl titanate; aluminum trisacetylacetonate, aluminum trisethylate Organoaluminum compounds such as acetoacetate and diisopropoxyaluminum ethylacetoacetate; Chelate compounds such as zirconium tetraacetylacetonate and titanium tetraacetylacetonate; Organic acid lead such as lead octylate and lead naphthenate; Bismuth octylate Organic acid bismuth such as bismuth neodecanoate and bismuth rosinate; other acidic catalysts and basic catalysts known as silanol condensation catalysts. However, the toxicity of the resulting curable composition may increase depending on the amount of the organotin compound added.
 本発明の硬化性組成物は、(D)1分子中に加水分解性珪素基を1個有し且つ第1級アミノ基を有なさいシラン化合物をさらに含有することが好適である。(D)シラン化合物を配合することにより、貯蔵安定性及び引張り物性をより改善することができる。 It is preferable that the curable composition of the present invention further includes (D) a silane compound having one hydrolyzable silicon group and one primary amino group in one molecule. (D) By adding a silane compound, storage stability and tensile physical properties can be further improved.
 前記(D)シラン化合物としては、1分子中に加水分解性珪素基を1個有し且つ第1級アミノ基を有なさい公知のシラン化合物を広く使用することができる。該シラン化合物(D)の加水分解珪素基において、珪素原子に結合する加水分解性基としては第1級アミノ基を除く公知の加水分解性基を用いることができるが、アルコキシル基が好ましい。前記(D)成分は、貯蔵安定性及び引張り物性を考慮すると加水分解性ケイ素基がトリアルコキシシリル基、又はジアルコキシシリル基であることが好ましく、トリアルコキシシリル基であることがより好ましい。 As the (D) silane compound, known silane compounds having one hydrolyzable silicon group and a primary amino group in one molecule can be widely used. In the hydrolyzed silicon group of the silane compound (D), as the hydrolyzable group bonded to the silicon atom, a known hydrolyzable group excluding a primary amino group can be used, but an alkoxyl group is preferable. In the component (D), in consideration of storage stability and tensile physical properties, the hydrolyzable silicon group is preferably a trialkoxysilyl group or a dialkoxysilyl group, and more preferably a trialkoxysilyl group.
 前記(D)シラン化合物としては、下記式(12)で示される化合物がより好適に用いられる。 As the (D) silane compound, a compound represented by the following formula (12) is more preferably used.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 前記式(12)において、R41はメチル基又はエチル基であり、R41が複数存在する場合、それらは同一であってもよく、異なっていてもよい。R42はメチル基又はエチル基であり、R42が複数存在する場合、それらは同一であってもよく、異なっていてもよい。R43は炭素数1~10の炭化水素基である。mは2又は3であり、3がより好ましい。nは0又は1である。 In the formula (12), R 41 is a methyl group or an ethyl group, and when a plurality of R 41 are present, they may be the same or different. R 42 is a methyl group or an ethyl group, and when a plurality of R 42 are present, they may be the same or different. R 43 is a hydrocarbon group having 1 to 10 carbon atoms. m is 2 or 3, and 3 is more preferable. n is 0 or 1.
 前記(D)シラン化合物としては、具体的には、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジフェニルジメトキシシラン、トリフェニルメトキシシラン、2-カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニルアミノメチルトリメトキシシラン等のフェニル基を含有するアルコキシシラン;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基を含有するアルコキシシラン;3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルメチルジエトキシシラン、3-イソシアネートプロピルメチルジメトキシシラン、(イソシアネートメチル)トリメトキシシラン、(イソシアネートメチル)ジメトキシメチルシラン、(イソシアネートメチル)トリエトキシシラン、(イソシアネートメチル)ジエトキシメチルシラン等のイソシアネート基を含有するアルコキシシラン;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン等のメルカプト基を含有するアルコキシシラン;2-カルボキシエチルトリエトキシシラン、N-2-(カルボキシメチル)アミノエチル-3-アミノプロピルトリメトキシシラン等のカルボキシシラン;ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロイルオキシプロピルメチルジメトキシシラン、3-アクリロイルオキシプロピルトリエトキシシラン、メタクリロイルオキシメチルトリメトキシシラン等のビニル型不飽和基を含有するアルコキシシラン;3-クロロプロピルトリメトキシシラン等のハロゲンを含有するアルコキシシラン;トリス(3-トリメトキシシリルプロピル)イソシアヌレート等のイソシアヌレートシラン;N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ビニルベンジル-3-アミノプロピルトリエトキシシラン、N-シクロヘキシルアミノメチルトリエトキシシラン、N-シクロヘキシルアミノメチルジエトキシメチルシラン、N,N’-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、ビス(3-トリメトキシシリルプロピル)アミン、N-エチル-3-アミノイソブチルトリメトキシシラン等の2級アミノ基及び/又は3級アミノ基を含有するアルコキシシラン;N-(1,3-ジメチルブチリデン)-3-(トリエトキシシリル)-1-プロパンアミン、N-(1,3-ジメチルブチリデン)-3-(トリメトキシシリル)-1-プロパンアミン等のケチミン型シラン;テトラメトキシシラン、テトラエトキシシラン、エトキシトリメトキシシラン、ジメトキシジエトキシシラン、メトキシトリエトキシシラン、テトラ-n-プロポキシシラン、テトラ-i-プロポキシシラン、テトラ-n-ブトキシシラン、テトラ-i-ブトキシシラン、テトラ-t-ブトキシシランなどのテトラアルコキシシラン(テトラアルキルシリケート);メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリフェノキシシラン、エチルトリメトキシシラン、ブチルトリメトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、トリフルオロプロピルトリメトキシシランなどのトリアルコキシシラン;ジメチルジメトキシシラン、ジエチルジメトキシシランなどのジアルコキシシラン;トリメチルメトキシシラン、トリメチルエトキシシランなどのモノアルコキシシラン;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシランなどのアルキルイソプロペノキシシラン;等を挙げることができる。 Specific examples of the (D) silane compound include phenyltrimethoxysilane, phenyltriethoxysilane, diphenyldimethoxysilane, triphenylmethoxysilane, 2-carboxyethylphenylbis (2-methoxyethoxy) silane, and N-phenyl. -3-alkoxysilanes containing phenyl groups such as aminopropyltrimethoxysilane and N-phenylaminomethyltrimethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidyl Alkoxysilanes containing epoxy groups such as sidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane; Socyanate propyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-isocyanatopropylmethyldiethoxysilane, 3-isocyanatopropylmethyldimethoxysilane, (isocyanatemethyl) trimethoxysilane, (isocyanatemethyl) dimethoxymethylsilane, (isocyanate) Alkoxysilanes containing isocyanate groups such as (methyl) triethoxysilane, (isocyanatemethyl) diethoxymethylsilane; 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3- Mercaptopropylmethyldiethoxysilane, mercaptomethyltriethoxysilane, mercaptomethyltrimethoxysilane, Alkoxysilanes containing mercapto groups such as lucaptomethyltriethoxysilane; carboxysilanes such as 2-carboxyethyltriethoxysilane, N-2- (carboxymethyl) aminoethyl-3-aminopropyltrimethoxysilane; vinyltrimethoxy Alkoxysilanes containing vinyl unsaturated groups such as silane, vinyltriethoxysilane, 3-methacryloyloxypropylmethyldimethoxysilane, 3-acryloyloxypropyltriethoxysilane, methacryloyloxymethyltrimethoxysilane; 3-chloropropyltrimethoxy Alkoxysilane containing halogen such as silane; isocyanurate silane such as tris (3-trimethoxysilylpropyl) isocyanurate; N-benzyl-3-aminopropyltrimeth Xisilane, N-vinylbenzyl-3-aminopropyltriethoxysilane, N-cyclohexylaminomethyltriethoxysilane, N-cyclohexylaminomethyldiethoxymethylsilane, N, N′-bis [3- (trimethoxysilyl) propyl] Alkoxysilanes containing secondary amino groups and / or tertiary amino groups such as ethylenediamine, bis (3-trimethoxysilylpropyl) amine, N-ethyl-3-aminoisobutyltrimethoxysilane; N- (1,3- Ketimine type silanes such as dimethylbutylidene) -3- (triethoxysilyl) -1-propanamine, N- (1,3-dimethylbutylidene) -3- (trimethoxysilyl) -1-propanamine; Silane, tetraethoxysilane, ethoxytrimethoxysilane, Tetraalkoxysilanes such as methoxydiethoxysilane, methoxytriethoxysilane, tetra-n-propoxysilane, tetra-i-propoxysilane, tetra-n-butoxysilane, tetra-i-butoxysilane, tetra-t-butoxysilane ( Tetraalkyl silicate); methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltriphenoxysilane, ethyltrimethoxysilane, butyltrimethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, trifluoropropyltri Trialkoxysilanes such as methoxysilane; dialkoxysilanes such as dimethyldimethoxysilane and diethyldimethoxysilane; trimethylmethoxysilane and trimethylethoxysilane What monoalkoxysilanes; and the like can be given; dimethyl isopropenoxysilane silane, alkyl isopropenoxysilane silane such as methyltrimethoxysilane isopropenoxysilane silane.
 前記式(12)で示される化合物としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン等のジアルコキシシラン;メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン等のアルキルトリアルコキシシラン;フェニルトリメトキシシラン、フェニルトリエトキシシラン等のフェニル基を含有するアルコキシシラン;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のビニル型不飽和基を含有するアルコキシシラン;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシ基を含有するアルコキシシラン等が挙げられ、フェニル基を含有するアルコキシシランがより好ましい。 Examples of the compound represented by the formula (12) include dialkoxysilanes such as dimethyldimethoxysilane and dimethyldiethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, and hexyltrimethoxysilane. Alkyltrialkoxysilanes such as decyltrimethoxysilane; alkoxysilanes containing phenyl groups such as phenyltrimethoxysilane and phenyltriethoxysilane; vinyl-type unsaturated groups such as vinyltrimethoxysilane and vinyltriethoxysilane Alkoxysilanes; alkoxysilanes containing epoxy groups such as 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyltriethoxysilane, etc. Shishiran is more preferable.
 前記(D)シラン化合物の配合割合は特に制限はないが、前記(A)有機重合体100質量部に対して、前記(D)シラン化合物を0.1~20質量部配合することが好ましく、0.3~20質量部配合することがより好ましく、0.5~10質量部配合することがさらに好ましい。前記(D)シラン化合物は1種で用いてもよく、2種以上組み合わせて用いてもよい。 The blending ratio of the (D) silane compound is not particularly limited, but it is preferable to blend 0.1 to 20 parts by mass of the (D) silane compound with respect to 100 parts by mass of the (A) organic polymer. More preferably, 0.3 to 20 parts by mass is added, and 0.5 to 10 parts by mass is more preferable. The (D) silane compound may be used alone or in combination of two or more.
 本発明の硬化性組成物は、(E)充填剤をさらに含有することが好適である。(E)充填剤を配合することにより、硬化物を補強することができる。
 前記(E)充填剤としては、公知の充填剤を広く用いることができ、特に制限はないが、例えば、炭酸カルシウム、炭酸マグネシウム、珪藻土含水ケイ酸、含水けい酸、無水ケイ酸、ケイ酸カルシウム、微粉末シリカ、二酸化チタン、クレー、タルク、カーボンブラック、スレート粉、マイカ、カオリン、ゼオライト、高分子粉体等が挙げられ、炭酸カルシウム、微粉末シリカ及び高分子粉体が好ましく、表面処理炭酸カルシウム、粒径0.01~300μmの非晶質シリカ及び粒径0.01~300μmの高分子粉体からなる群から選択される1種以上がより好ましい。また、ガラスビーズ、シリカビーズ、アルミナビーズ、カーボンビーズ、スチレンビーズ、フェノールビーズ、アクリルビーズ、多孔質シリカ、シラスバルーン、ガラスバルーン、シリカバルーン、サランバルーン、アクリルバルーン等を用いることもでき、これらの中で、組成物の硬化後の伸びの低下が少ない点からアクリルバルーンがより好ましい。
The curable composition of the present invention preferably further contains (E) a filler. (E) A hardened | cured material can be reinforced by mix | blending a filler.
As the (E) filler, known fillers can be widely used and are not particularly limited. For example, calcium carbonate, magnesium carbonate, diatomaceous earth hydrous silicic acid, hydrous silicic acid, anhydrous silicic acid, calcium silicate , Fine powder silica, titanium dioxide, clay, talc, carbon black, slate powder, mica, kaolin, zeolite, polymer powder, etc., calcium carbonate, fine powder silica and polymer powder are preferred, surface treated carbonic acid One or more selected from the group consisting of calcium, amorphous silica having a particle size of 0.01 to 300 μm, and polymer powder having a particle size of 0.01 to 300 μm are more preferable. In addition, glass beads, silica beads, alumina beads, carbon beads, styrene beads, phenol beads, acrylic beads, porous silica, shirasu balloons, glass balloons, silica balloons, saran balloons, acrylic balloons, etc. can be used. Among them, an acrylic balloon is more preferable from the viewpoint that the decrease in elongation after curing of the composition is small.
 前記炭酸カルシウムとしては、重質炭酸カルシウム、軽質炭酸カルシウム、コロイダル炭酸カルシウム、粉砕炭酸カルシウム等、いずれも使用可能であるが、コロイダル炭酸カルシウムがより好適である。これら炭酸カルシウムは単独で用いてもよく、2種以上併用してもよい。
 前記炭酸カルシウムの一次粒径が0.5μm以下であることが好ましく、0.01~0.1μmであることがより好ましい。このような粒径の小さい微粉炭酸カルシウムを使用することにより、硬化性組成物にチキソ性を付与することができる。
As the calcium carbonate, any of heavy calcium carbonate, light calcium carbonate, colloidal calcium carbonate, ground calcium carbonate and the like can be used, but colloidal calcium carbonate is more preferable. These calcium carbonates may be used alone or in combination of two or more.
The primary particle diameter of the calcium carbonate is preferably 0.5 μm or less, more preferably 0.01 to 0.1 μm. By using such fine powdered calcium carbonate having a small particle diameter, thixotropy can be imparted to the curable composition.
 また、炭酸カルシウムの中でも、チキソ性の付与、硬化物(硬化皮膜)に対する補強効果の観点から、表面処理炭酸カルシウムが好ましく、表面処理した微粉炭酸カルシウムがより好ましい。さらに、表面処理した微粉炭酸カルシウムに、他の炭酸カルシウム、例えば、表面処理されていない、粒径の大きな炭酸カルシウムである重質炭酸カルシウムや、表面処理した粒径の大きい炭酸カルシウム等を併用してもよい。表面処理した微粉炭酸カルシウムと他の炭酸カルシウムを併用するときは、表面処理した微粉炭酸カルシウムと、その他の炭酸カルシウムの比率(質量比)は、1:9~9:1が好ましく、3:7~7:3がより好ましい。 Also, among calcium carbonates, surface-treated calcium carbonate is preferable from the viewpoint of imparting thixotropy and reinforcing effect on a cured product (cured film), and surface-treated fine calcium carbonate is more preferable. Furthermore, surface-treated fine powdered calcium carbonate is used in combination with other calcium carbonates such as heavy calcium carbonate that has not been surface-treated and has a large particle size, or surface-treated calcium carbonate with a large particle size. May be. When the surface-treated fine calcium carbonate and other calcium carbonate are used in combination, the ratio (mass ratio) between the surface-treated fine calcium carbonate and the other calcium carbonate is preferably 1: 9 to 9: 1. 3: 7 ~ 7: 3 is more preferred.
 前記表面処理炭酸カルシウムにおいて、用いられる表面処理剤に特に制限はなく、公知の表面処理剤を広く使用可能である。該表面処理剤としては、例えば、高級脂肪酸系化合物、樹脂酸系化合物、芳香族カルボン酸エステル、陰イオン系界面活性剤、陽イオン系界面活性剤、ノニオン系界面活性剤、パラフィン、チタネートカップリング剤及びシランカップリング剤等が挙げられ、高級脂肪酸系化合物及びパラフィンがより好ましい。これら表面処理剤は単独で用いてもよく、2種以上併用してもよい。 In the surface-treated calcium carbonate, the surface treatment agent used is not particularly limited, and a wide variety of known surface treatment agents can be used. Examples of the surface treatment agent include higher fatty acid compounds, resin acid compounds, aromatic carboxylic acid esters, anionic surfactants, cationic surfactants, nonionic surfactants, paraffin, and titanate couplings. And higher fatty acid compounds and paraffin are more preferable. These surface treatment agents may be used alone or in combination of two or more.
 前記高級脂肪酸系化合物としては、例えば、ステアリン酸ナトリウムのような炭素数が10以上の高級脂肪酸系のアルカリ金属塩等が挙げられる。
 前記樹脂酸系化合物としては、例えば、アビエチン酸、ネオアビエチン酸、d-ピマル酸、i-d-ピマル酸、ボドカルプ酸、安息香酸、ケイ皮酸等が挙げられる。
 前記芳香族カルボン酸エステルとしては、例えば、フタル酸のオクチルアルコール、ブチルアルコール、イソブチルアルコールなどとのエステル、ナフト酸の低級アルコールエステル、ロジン酸の低級アルコールエステル及び芳香族ジカルボン酸またはロジン酸のマレイン酸付加物のような芳香族ポリカルボン酸の部分エステル化物または異種アルコールエステル化物等が挙げられる。
 前記陰イオン系界面活性剤としては、例えば、ドデシル硫酸ナトリウムのような硫酸エステル型、またはドデシルベンゼンスルホン酸ナトリウム、ラウリルスルホン酸ナトリウム、ドデシルベンゼンスルホン酸などのスルホン酸型の陰イオン系界面活性剤が挙げられる。
Examples of the higher fatty acid compounds include higher fatty acid alkali metal salts having 10 or more carbon atoms such as sodium stearate.
Examples of the resin acid compound include abietic acid, neoabietic acid, d-pimalic acid, id-pimalic acid, bodocarpic acid, benzoic acid, and cinnamic acid.
Examples of the aromatic carboxylic acid ester include phthalic acid octyl alcohol, butyl alcohol, isobutyl alcohol and the like, naphthic acid lower alcohol ester, rosin acid lower alcohol ester, and aromatic dicarboxylic acid or rosin acid malee. Examples thereof include partially esterified products of aromatic polycarboxylic acids such as acid adducts, and different alcohol esterified products.
Examples of the anionic surfactant include a sulfate ester type such as sodium dodecyl sulfate, or a sulfonic acid type anionic surfactant such as sodium dodecylbenzene sulfonate, sodium lauryl sulfonate, and dodecyl benzene sulfonic acid. Is mentioned.
 前記表面処理炭酸カルシウムとしては、公知の表面処理された炭酸カルシウムを広く使用することができ、特に制限はないが、例えば、Vigot 15(白石カルシウム(株)製、脂肪酸で表面処理された軽質炭酸カルシウム、一次粒子径0.15μm)等の表面処理軽質炭酸カルシウム;Vigot 10(白石カルシウム(株)製、脂肪酸で表面処理されたコロイダル炭酸カルシウム、一次粒子径0.10μm)、白艶華DD(白石カルシウム(株)製、樹脂酸で表面処理されたコロイダル炭酸カルシウム、一次粒子径0.05μm)、カーレックス300(丸尾カルシウム(株)製、脂肪酸で表面処理されたコロイダル炭酸カルシウム、一次粒子径0.05μm)、ネオライトSS(竹原化学工業(株)製、脂肪酸で表面処理されたコロイダル炭酸カルシウム、平均粒子径0.04μm)、ネオライトGP-20(竹原化学工業(株)製、樹脂酸で表面処理されたコロイダル炭酸カルシウム、平均粒子径0.03μm)、カルシーズP(神島化学工業(株)製、脂肪酸で表面処理されたコロイダル炭酸カルシウム、平均粒子径0.15μm)等の表面処理コロイダル炭酸カルシウム;MCコートP1(丸尾カルシウム(株)製、パラフィンで表面処理された重質炭酸カルシウム、一次粒子径3.3μm)、AFF-95((株)ファイマテック製、カチオンポリマーで表面された重質炭酸カルシウム、一次粒子径0.9μm)、AFF-Z((株)ファイマテック製、カチオンポリマー及び帯電防止剤で表面された重質炭酸カルシウム、一次粒子径1.0μm)等の表面処理重質炭酸カルシウムが挙げられる。 As the surface-treated calcium carbonate, known surface-treated calcium carbonate can be widely used and is not particularly limited. For example, Vigot 15 (manufactured by Shiroishi Calcium Co., Ltd., light carbonate surface-treated with fatty acid) Surface treatment light calcium carbonate such as calcium, primary particle diameter 0.15 μm; Vigot 10 (manufactured by Shiroishi Calcium Co., Ltd., colloidal calcium carbonate surface treated with fatty acid, primary particle diameter 0.10 μm), white sinter flower DD (Shiraishi calcium Colloidal calcium carbonate surface-treated with resin acid, primary particle size 0.05 μm, Carlex 300 (manufactured by Maruo Calcium Co., Ltd., colloidal calcium carbonate surface-treated with fatty acid, primary particle size 0. 05μm), Neolite SS (manufactured by Takehara Chemical Co., Ltd.), surface treated with fatty acid Loyal calcium carbonate, average particle size 0.04μm), Neolite GP-20 (manufactured by Takehara Chemical Industry Co., Ltd., colloidal calcium carbonate surface-treated with resin acid, average particle size 0.03μm), Calsees P (Kamishima Chemical Industry) Surface-treated colloidal calcium carbonate such as colloidal calcium carbonate surface-treated with fatty acid manufactured by Co., Ltd .; MC Coat P1 (manufactured by Maruo Calcium Co., Ltd., heavy carbonate surface-treated with paraffin) Calcium, primary particle size 3.3 μm), AFF-95 (manufactured by Pfematech Co., Ltd., heavy calcium carbonate surfaced with a cationic polymer, primary particle size 0.9 μm), AFF-Z (manufactured by Pmatech) Surface treatment heavy such as heavy calcium carbonate surfaced with cationic polymer and antistatic agent, primary particle diameter 1.0 μm) An example is calcium carbonate.
 前記表面処理炭酸カルシウムは、前記(A)有機重合体100質量部に対して、0~500質量部配合することが好ましく、10~300質量部配合することがより好ましく、15~100質量部配合することがさらに好ましい。前記表面処理炭酸カルシウムは1種で用いてもよく、2種以上組み合わせて用いてもよい。また、表面処理炭酸カルシウムと表面処理を行っていない炭酸カルシウムを併用してもよい。 The surface-treated calcium carbonate is preferably added in an amount of 0 to 500 parts by weight, more preferably 10 to 300 parts by weight, and more preferably 15 to 100 parts by weight with respect to 100 parts by weight of the (A) organic polymer. More preferably. The said surface treatment calcium carbonate may be used by 1 type, and may be used in combination of 2 or more type. Moreover, you may use together the surface treatment calcium carbonate and the calcium carbonate which has not surface-treated.
 前記非晶質シリカとしては、公知の非晶質シリカを広く使用可能であり、特に制限はないが、その粒径が0.01~300μmであることが好ましく、0.1~100μmがより好ましく、1~30μmがさらに好ましい。
 前記(A)有機重合体の屈折率と前記非晶質シリカの屈折率の差が0.1以下である非晶質シリカを用いることにより、透明性をより向上させることができる。前記(A)有機重合体の屈折率と前記非晶質シリカの屈折率の差は、0.1以下が好ましく、0.05以下がより好ましく、0.03以下がさらに好ましい。
As the amorphous silica, known amorphous silica can be widely used, and is not particularly limited. However, the particle size is preferably 0.01 to 300 μm, more preferably 0.1 to 100 μm. 1 to 30 μm is more preferable.
By using amorphous silica in which the difference between the refractive index of the organic polymer (A) and the refractive index of the amorphous silica is 0.1 or less, the transparency can be further improved. The difference between the refractive index of the organic polymer (A) and the refractive index of the amorphous silica is preferably 0.1 or less, more preferably 0.05 or less, and even more preferably 0.03 or less.
 前記非晶質シリカは、前記(A)有機重合体100質量部に対して、0~500質量部配合することが好ましく、1~200質量部配合することがより好ましく、5~50質量部配合することがさらに好ましい。前記非晶質シリカは1種で用いてもよく、2種以上組み合わせて用いてもよい。また、粒径が0.01~300μmである非晶質シリカとともに、粒径範囲が上記と異なる非晶質シリカや結晶質シリカを併用してもよい。 The amorphous silica is preferably blended in an amount of 0 to 500 parts by weight, more preferably 1 to 200 parts by weight, and more preferably 5 to 50 parts by weight with respect to 100 parts by weight of the (A) organic polymer. More preferably. The amorphous silica may be used alone or in combination of two or more. In addition to amorphous silica having a particle size of 0.01 to 300 μm, amorphous silica or crystalline silica having a particle size different from the above may be used in combination.
 前記高分子粉体としては、公知の高分子粉体を広く使用可能であり、特に制限はないが、その粒径が0.01~300μmであることが好ましく、0.1~100μmがより好ましく、1~30μmがさらに好ましい。 As the polymer powder, known polymer powders can be widely used, and are not particularly limited. However, the particle size is preferably 0.01 to 300 μm, more preferably 0.1 to 100 μm. 1 to 30 μm is more preferable.
 前記高分子紛体としては、例えば、(メタ)アクリル酸エステル、酢酸ビニル、エチレン及び塩化ビニルからなる群から選択されたモノマーを単独で重合するか、もしくは、該モノマーと1種以上のビニル系モノマーとを共重合することによって得られる重合体を原料とした高分子粉体が好適に用いられ、アクリル系高分子粉体やビニル系高分子粉体がより好ましく、アクリル系高分子粉体がさらに好ましい。 As the polymer powder, for example, a monomer selected from the group consisting of (meth) acrylic acid ester, vinyl acetate, ethylene and vinyl chloride is polymerized alone, or the monomer and one or more vinyl monomers are used. A polymer powder made from a polymer obtained by copolymerizing the polymer is preferably used, an acrylic polymer powder or a vinyl polymer powder is more preferable, and an acrylic polymer powder is further preferable.
 本発明の硬化性組成物の透明性をより向上させるために、前記(A)有機重合体を主成分とする液相成分の屈折率と前記高分子粉体の屈折率の差を0.1以下とすることが好ましく、0.05以下がより好ましく、0.03以下がさらに好ましい。
 前記(A)有機重合体を主成分とする液相成分の屈折率と前記高分子粉体の屈折率の差を0.1以下とする方法としては、特に制限はないが、(1)高分子粉体の屈折率に、(A)有機重合体を主成分とする液相成分の屈折率を合わせる方法、及び(2)(A)有機重合体の屈折率に高分子粉体の屈折率を合わせる方法等が挙げられる。
In order to further improve the transparency of the curable composition of the present invention, the difference between the refractive index of the liquid phase component containing (A) the organic polymer as the main component and the refractive index of the polymer powder is 0.1. Preferably, it is preferably 0.05 or less, more preferably 0.03 or less.
The method for setting the difference between the refractive index of the liquid phase component containing (A) the organic polymer as the main component and the refractive index of the polymer powder to 0.1 or less is not particularly limited, but (1) high (A) a method of matching the refractive index of the liquid phase component containing an organic polymer as a main component with the refractive index of the molecular powder, and (2) (A) the refractive index of the polymer powder with the refractive index of the organic polymer. And the like.
 前記(1)の方法としては、例えば、(A)有機重合体を主成分とする液相成分に、相溶する屈折率調整剤を必要量配合し、液相成分の屈折率を調整する方法が挙げられる。具体的には、(A)有機重合体の屈折率が1.46~1.48程度であり、高分子粉体の屈折率の方が高い態様においては、(A)有機重合体よりも高い屈折率を有する屈折率調整剤{例えば、エポキシ樹脂〔例:エピコート828(ビスフェノールA、油化シェルエポキシ(株)製、屈折率1.57)〕、石油樹脂〔例:FTR6100(C5とC9の共重合物、三井石油化学(株)製、屈折率1.56)〕、テルペンフェノール樹脂〔例:ポリスターT145(ヤスハラケミカル(株)製、屈折率1.59)〕}を、(A)有機重合体に加熱溶融する方法が挙げられる。 As the method of (1), for example, (A) a method of adjusting a refractive index of a liquid phase component by blending a necessary amount of a compatible refractive index adjusting agent with a liquid phase component mainly composed of an organic polymer. Is mentioned. Specifically, in an embodiment where (A) the refractive index of the organic polymer is about 1.46 to 1.48 and the refractive index of the polymer powder is higher, it is higher than (A) the organic polymer. Refractive index adjusting agent having a refractive index {for example, epoxy resin [Example: Epicoat 828 (Bisphenol A, manufactured by Yuka Shell Epoxy Co., Ltd., refractive index 1.57)], petroleum resin [Example: FTR6100 (of C5 and C9 Copolymer, Mitsui Petrochemical Co., Ltd., refractive index 1.56)], terpene phenol resin [Example: Polystar T145 (Yasuhara Chemical Co., Ltd., refractive index 1.59)]} There is a method of heating and melting the coalescence.
 前記(2)の方法としては、例えば、高分子粉体のモノマー配合を適宜変更する方法が挙げられる。具体的には、(A)有機重合体の屈折率が1.46~1.48程度であり、高分子粉体としてアクリル系高分子粉体を用いる態様において、高分子粉体の屈折率を高くする方法としては、例えば、塩化ビニル〔屈折率1.53(重合体)〕、アルリロニトリル〔屈折率1.52(重合体)〕等の単量体を(メタ)アクリル酸エステル単量体に共重合する方法が挙げられる。また、該態様において、(E4)高分子粉体の屈折率を低くする方法としては、例えば、ラウリルメタクリレート〔屈折率1.44(単量体)〕、アリルメタクリレート〔屈折率1.44(単量体)〕、2(2-エトキシエトキシ)エチルアクリレート〔屈折率1.43(単量体)〕等の単量体をメタ)アクリル酸エステル単量体に共重合する方法が挙げられる。 Examples of the method (2) include a method of appropriately changing the monomer composition of the polymer powder. Specifically, in the embodiment where the refractive index of the organic polymer (A) is about 1.46 to 1.48 and acrylic polymer powder is used as the polymer powder, the refractive index of the polymer powder is As a method for increasing the viscosity, for example, a monomer such as vinyl chloride [refractive index 1.53 (polymer)] and allylonitrile [refractive index 1.52 (polymer)] is used as a single monomer of (meth) acrylate. The method of copolymerizing to a body is mentioned. In this embodiment, the method (E4) for reducing the refractive index of the polymer powder includes, for example, lauryl methacrylate [refractive index 1.44 (monomer)], allyl methacrylate [refractive index 1.44 (single Monomer)], and a monomer such as 2 (2-ethoxyethoxy) ethyl acrylate [refractive index of 1.43 (monomer)] is copolymerized with a meth) acrylate monomer.
 前記高分子紛体は、前記(A)有機重合体100質量部に対して、0~500質量部配合することが好ましく、0.5~100質量部配合することがより好ましく、1~50質量部配合することがさらに好ましい。前記高分子紛体は1種で用いてもよく、2種以上組み合わせて用いてもよい。 The polymer powder is preferably blended in an amount of 0 to 500 parts by weight, more preferably 0.5 to 100 parts by weight, based on 100 parts by weight of the organic polymer (A). It is more preferable to blend. The polymer powder may be used alone or in combination of two or more.
 本発明の硬化性組成物において、前記(E)充填剤の配合割合は特に制限はないが、前記(A)有機重合体100質量部に対して、前記(E)充填剤を0~500質量部配合することが好ましく、2~250質量部配合することがより好ましく、5~125質量部配合することがさらに好ましい。前記(E)充填剤は1種で用いてもよく、2種以上組み合わせて用いてもよい。 In the curable composition of the present invention, the blending ratio of the (E) filler is not particularly limited, but the (E) filler is 0 to 500 parts by mass with respect to 100 parts by mass of the (A) organic polymer. It is preferably blended in an amount of 2 to 250 parts by weight, more preferably 5 to 125 parts by weight. The (E) filler may be used alone or in combination of two or more.
 本発明の硬化性組成物は、(F)希釈剤をさらに含有することが好適である。(F)希釈剤を配合することにより、粘度等の物性を調整することができる。
 (F)希釈剤としては、公知の希釈剤を広く用いることができ、特に制限はないが、例えば、ノルマルパラフィン、イソパラフィン等の飽和炭化水素系溶剤,リニアレンダイマー(出光興産株式会社商品名)等の下記式(I)で表されるα-オレフィン誘導体,トルエン、キシレン等の芳香族炭化水素系溶剤,エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノール、デカノール、ダイアセトンアルコール等のアルコール系溶剤、酢酸エチル、酢酸ブチル、酢酸アミル、酢酸セロソルブ等のエステル系溶剤,クエン酸アセチルトリエチル等のクエン酸エステル系溶剤,メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤等の各種溶剤が挙げられる。
 R51-Z-R52 ・・・(I)
(前記式(I)において、R51、R52はそれぞれ独立に炭素数2~20の直鎖状アルキル基を表し、Zは下記式(Ia)~(Ic)のいずれかで表される2価基を表わす。)
The curable composition of the present invention preferably further contains (F) a diluent. (F) Physical properties, such as a viscosity, can be adjusted by mix | blending a diluent.
(F) As a diluent, a well-known diluent can be widely used and there is no restriction | limiting in particular, For example, saturated hydrocarbon type solvents, such as normal paraffin and isoparaffin, a linearlen dimer (Idemitsu Kosan Co., Ltd. brand name) Α-olefin derivatives represented by the following formula (I), aromatic hydrocarbon solvents such as toluene and xylene, alcohols such as ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, and diacetone alcohol Various solvents such as solvents, ester solvents such as ethyl acetate, butyl acetate, amyl acetate and cellosolve, citric acid ester solvents such as acetyltriethyl citrate, and ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone can be used.
R 51 -ZR 52 (I)
(In the formula (I), R 51 and R 52 each independently represents a linear alkyl group having 2 to 20 carbon atoms, and Z is represented by any one of the following formulas (Ia) to (Ic): Represents a valent group.)
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(式(Ib)中、R53は水素原子もしくは炭素数1~40の直鎖状または分岐状のアルキル基を表す。) (In the formula (Ib), R 53 represents a hydrogen atom or a linear or branched alkyl group having 1 to 40 carbon atoms.)
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 前記(F)希釈剤の引火点には特に制限はないが、得られる硬化性組成物の安全性を考慮すると硬化性組成物の引火点は高い方が望ましく、硬化性組成物からの揮発物質は少ない方が好ましい。
 そのため、前記(F)希釈剤の引火点は60℃以上であることが好ましく、70℃以上であることがより好ましい。2以上の(F)希釈剤を混合して使用するときは、混合した希釈剤の引火点が70℃以上であることが好ましい。しかし、一般的に引火点が高い希釈剤は硬化性組成物に対する希釈効果が低くなる傾向が見られるため、引火点は250℃以下であることが好適である。
The flash point of the diluent (F) is not particularly limited, but in view of the safety of the resulting curable composition, it is desirable that the curable composition has a high flash point. Volatile substances from the curable composition Is preferably less.
Therefore, the flash point of the (F) diluent is preferably 60 ° C. or higher, and more preferably 70 ° C. or higher. When two or more (F) diluents are mixed and used, the flash point of the mixed diluent is preferably 70 ° C. or higher. However, generally, a diluent having a high flash point tends to have a low dilution effect on the curable composition, and therefore, the flash point is preferably 250 ° C. or lower.
 本発明の硬化性組成物の安全性、希釈効果の双方を考慮すると、(F)希釈剤としては飽和炭化水素系溶剤が好適であり、ノルマルパラフィン、イソパラフィンがより好適である。ノルマルパラフィン、イソパラフィンの炭素数は10~16であることが好ましい。具体的にはN-11(ノルマルパラフィン、JX日鉱日石エネルギー(株)製、炭素数11、引火点68℃)、N-12(ノルマルパラフィン、JX日鉱日石エネルギー(株)製、炭素数12、引火点85℃)、IPソルベント2028(イソパラフィン、出光興産(株)製、炭素数10から16、引火点86℃)等が挙げられる。 Considering both safety and dilution effect of the curable composition of the present invention, (F) a saturated hydrocarbon solvent is preferable as the diluent, and normal paraffin and isoparaffin are more preferable. Normal paraffin and isoparaffin preferably have 10 to 16 carbon atoms. Specifically, N-11 (normal paraffin, manufactured by JX Nippon Oil & Energy Corporation, carbon number 11, flash point 68 ° C.), N-12 (normal paraffin, manufactured by JX Nippon Oil & Energy Corporation, carbon number) 12, flash point 85 ° C.), IP solvent 2028 (isoparaffin, manufactured by Idemitsu Kosan Co., Ltd., carbon number 10 to 16, flash point 86 ° C.) and the like.
 前記(F)希釈剤の配合割合は特に制限はないが、前記(A)有機重合体100質量部に対して、前記(F)希釈剤を0~50質量部配合することが好ましく、0.1~30質量部配合することがより好ましく、0.1~15質量部配合することがさらに好ましい。前記(F)希釈剤は1種で用いてもよく、2種以上組み合わせて用いてもよい。 The blending ratio of the (F) diluent is not particularly limited, but it is preferable to blend 0 to 50 parts by weight of the (F) diluent with respect to 100 parts by weight of the (A) organic polymer. 1 to 30 parts by mass is more preferable, and 0.1 to 15 parts by mass is even more preferable. The said (F) diluent may be used by 1 type, and may be used in combination of 2 or more type.
 本発明の硬化性組成物は、金属水酸化物をさらに含有することが好適である。前記金属水酸化物を配合することにより、難燃性を付与し、作業性を向上させることができると共に、硬化物を補強することができる。さらに、金属水酸化物はハロゲン系難燃剤等の他の難燃剤に比べて、安全性が高いという効果も奏する。特に、金属水酸化物と表面処理炭酸カルシウムを併用することにより、作業性(チキソ性)をより向上させることができ、且つ難燃性を付与することができる。前記金属水酸化物は表面処理剤で表面処理された金属水酸化物を使用してもよい。
 前記金属水酸化物としては、例えば、水酸化アルミニウム、水酸化マグネシウム等が挙げられ、水酸化アルミニウムがより好適である。
The curable composition of the present invention preferably further contains a metal hydroxide. By mix | blending the said metal hydroxide, a flame retardance can be provided, workability | operativity can be improved, and hardened | cured material can be reinforced. Furthermore, the metal hydroxide also has an effect of higher safety than other flame retardants such as halogen flame retardants. In particular, by using a metal hydroxide and surface-treated calcium carbonate in combination, workability (thixotropic properties) can be further improved and flame retardancy can be imparted. The metal hydroxide may be a metal hydroxide surface-treated with a surface treatment agent.
Examples of the metal hydroxide include aluminum hydroxide and magnesium hydroxide, and aluminum hydroxide is more preferable.
 前記金属水酸化物の配合割合は特に制限はないが、前記(A)有機重合体100質量部に対して、前記金属水酸化物を0~500質量部配合することが好ましく、2~250質量部配合することがより好ましく、5~125質量部配合することがさらに好ましい。前記金属水酸化物は単独で用いてもよく2種以上併用してもよい。また、他の公知の難燃剤を併用してもよい。 The blending ratio of the metal hydroxide is not particularly limited, but 0 to 500 parts by weight of the metal hydroxide is preferably blended with respect to 100 parts by weight of the (A) organic polymer. More preferably, 5 to 125 parts by mass is added. The said metal hydroxide may be used independently and may be used together 2 or more types. Moreover, you may use together another well-known flame retardant.
 本発明の硬化性組成物は、前記した成分に加えて、必要に応じて、紫外線吸収剤、酸化防止剤、老化防止剤、接着性付与剤、物性調整剤、可塑剤、揺変剤、脱水剤(保存安定性改良剤)、難燃剤、粘着付与剤、垂れ防止剤、着色剤、ラジカル重合開始剤などの物質を配合してもよく、また相溶する他の重合体をブレンドしてもよい。 In addition to the above-described components, the curable composition of the present invention includes an ultraviolet absorber, an antioxidant, an anti-aging agent, an adhesiveness imparting agent, a physical property modifier, a plasticizer, a thixotropic agent, and a dehydration agent as necessary. You may mix substances such as additives (storage stability improvers), flame retardants, tackifiers, anti-sagging agents, colorants, radical polymerization initiators, and blend with other compatible polymers. Good.
 前記酸化防止剤は、硬化性組成物の酸化を防止して、耐候性、耐熱性を改善するために使用されるものであり、例えば、ヒンダードアミン系やヒンダードフェノール系の酸化防止剤等が挙げられる。ヒンダードアミン系酸化防止剤としては、例えば、N,N′,N″,N″′-テトラキス-(4,6-ビス(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N′-ビス-(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミン・N-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合体、[デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジル)エステル、1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物(70%)]-ポリプロピレン(30%)、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネート、メチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケ-ト、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケ-ト、1-[2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ[4.5]デカン-2,4-ジオンなどが挙げられるが、これらに限定されるものではない。ヒンダードフェノール系酸化防止剤としては、例えば、ペンタエリストール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、チオジエチレン-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N′-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルプロピオアミド]、ベンゼンプロパン酸3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシC7-C9側鎖アルキルエステル、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、ジエチル[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスホネート、3,3′,3″,5,5′,5″-ヘキサン-tert-ブチル-4-a,a′,a″-(メシチレン-2,4,6-トリル)トリ-p-クレゾール、カルシウムジエチルビス[[[3,5-ビス-(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスホネート]、4,6-ビス(オクチルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート]、ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン、N-フェニルベンゼンアミンと2,4,4-トリメチルペンテンとの反応生成物、2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノールなどが挙げられるが、これらに限定されるものではない。前記酸化防止剤は単独で使用しても良く、または、2種類以上を併用しても良い。 The antioxidant is used to prevent oxidation of the curable composition to improve weather resistance and heat resistance, and examples thereof include hindered amine-based and hindered phenol-based antioxidants. It is done. Examples of the hindered amine antioxidant include N, N ′, N ″, N ″ ′-tetrakis- (4,6-bis (butyl- (N-methyl-2,2,6,6-tetramethylpiperidine- 4-yl) amino) -triazin-2-yl) -4,7-diazadecane-1,10-diamine, dibutylamine 1,3,5-triazine N, N'-bis- (2,2,6 , 6-tetramethyl-4-piperidyl-1,6-hexamethylenediamine · N- (2,2,6,6-tetramethyl-4-piperidyl) butylamine polycondensate, poly [{6- (1, 1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2 , 2,6,6-tetramethyl-4- Peridyl) imino}], dimethyl succinate and 4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol, [bis (2,2,6,6-tetramethyl-decanedioic acid) 1 (octyloxy) -4-piperidyl) ester, reaction product of 1,1-dimethylethyl hydroperoxide and octane (70%)]-polypropylene (30%), bis (1,2,2,6,6- Pentamethyl-4-piperidyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate, methyl 1,2,2,6,6-pentamethyl-4-piperidyl seba Kate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate 1- [2- [3- (3,5-Di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 8-acetyl-3-dodecyl-7,7,9,9- Examples include, but are not limited to, tetramethyl-1,3,8-triazaspiro [4.5] decane-2,4-dione, etc. Examples of hindered phenolic antioxidants include penta Erythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], thiodiethylene-bis [3- (3,5-di-ter t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexane-1,6-diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenylpropioamide), benzenepropanoic acid 3,5-bis (1,1-dimethylethyl) -4-hydroxy C7-C9 side chain alkyl ester, 2,4 -Dimethyl-6- (1-methylpentadecyl) phenol, diethyl [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] phosphonate, 3,3 ', 3 ", 5, 5 ′, 5 ″ -hexane-tert-butyl-4-a, a ′, a ″-(mesitylene-2,4,6-tolyl) tri-p-cresol, calci Mudiethylbis [[[3,5-bis- (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] phosphonate], 4,6-bis (octylthiomethyl) -o-cresol, ethylenebis (oxyethylene) Bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate], hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3 , 5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -trione, N-phenylbenzenamine Product of 2,4,4-trimethylpentene with 2,6-di-tert-butyl-4- (4,6-bis (octylthio) -1,3,5 Triazin-2-ylamino) phenol and the like, but not limited thereto. The antioxidants may be used alone or in combination of two or more.
 前記紫外線吸収剤は、硬化性組成物の光劣化を防止して、耐候性を改善するために使用されるものであり、例えば、ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系、ベンゾエート系等の紫外線吸収剤等が挙げられる。紫外線吸収剤としては、例えば、2,4-ジ-tert-ブチル-6-(5-クロロベンゾトリアゾール-2-イル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネート/ポリエチレングリコール300の反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-(直鎖及び側鎖ドデシル)-4-メチルフェノール等のベンゾトリアゾール系紫外線吸収剤、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール等のトリアジン系紫外線吸収剤、オクタベンゾン等のベンゾフェノン系紫外線吸収剤、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系紫外線吸収剤などが挙げられるが、これらに限定されるものではない。前記紫外線吸収剤は単独で使用してもよく、又は、2種類以上を併用しても良い。 The ultraviolet absorber is used to improve the weather resistance by preventing photodegradation of the curable composition, for example, ultraviolet absorption of benzotriazole, triazine, benzophenone, benzoate, etc. Agents and the like. Examples of the ultraviolet absorber include 2,4-di-tert-butyl-6- (5-chlorobenzotriazol-2-yl) phenol and 2- (2H-benzotriazol-2-yl) -4,6- Di-tert-pentylphenol, 2- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol, methyl 3- (3- (2H-benzotriazole-2) -Il) -5-tert-butyl-4-hydroxyphenyl) propionate / polyethylene glycol 300 reaction product, 2- (2H-benzotriazol-2-yl) -6- (linear and side chain dodecyl) -4 -Benzotriazole ultraviolet absorbers such as methylphenol, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(he Sil) oxy] -phenol and other triazine ultraviolet absorbers, benzophenone ultraviolet absorbers such as octabenzone, 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate, etc. Examples include, but are not limited to, benzoate ultraviolet absorbers. The said ultraviolet absorber may be used independently or may use 2 or more types together.
 老化防止剤は、硬化性組成物の熱劣化を防止して、耐熱性を改善するために使用されるものであり、例えば、アミン-ケトン系等の老化防止剤、芳香族第二級アミン系老化防止剤、ベンズイミダゾール系老化防止剤、チオウレア系老化防止剤、亜リン酸系老化防止剤等が挙げられる。 The anti-aging agent is used for preventing heat deterioration of the curable composition and improving the heat resistance. For example, an anti-aging agent such as an amine-ketone type or an aromatic secondary amine type is used. Antiaging agents, benzimidazole type antiaging agents, thiourea type antiaging agents, phosphorous acid type antiaging agents and the like can be mentioned.
 前記アミン-ケトン系等の老化防止剤としては、例えば、2,2,4-トリメチル-1,2-ジヒドロキノリン重合体、6-エトキシ-1,2-ジヒドロ-2,2,4-トリメチルキノリン、ジフェニルアミンとアセトンの反応物等のアミン-ケトン系などが挙げられるが、これらに限定されるものではない。 Examples of the amine-ketone-based anti-aging agent include 2,2,4-trimethyl-1,2-dihydroquinoline polymer, 6-ethoxy-1,2-dihydro-2,2,4-trimethylquinoline. And amine-ketones such as a reaction product of diphenylamine and acetone, but are not limited thereto.
 前記芳香族第二級アミン系老化防止剤としては、例えば、N-フェニル-1-ナフチルアミン、アルキル化ジフェニルアミン、オクチル化ジフェニルアミン、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン、p-(p-トルエンスルホニルアミド)ジフェニルアミン、N,N'-ジ-2-ナフチル-p-フェニレンジアミン、N,N'-ジフェニル-p-フェニレンジアミン、N-フェニル-N'-イソプロピル-p-フェニレンジアミン、N-フェニル-N'-(1,3-ジメチルブチル)-p-フェニレンジアミン、N-フェニル-N’-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)-p-フェニレンジアミン等の芳香族第二級アミン系などが挙げられるが、これらに限定されるものではない。 Examples of the aromatic secondary amine-based antiaging agent include N-phenyl-1-naphthylamine, alkylated diphenylamine, octylated diphenylamine, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine, p- (P-toluenesulfonylamide) diphenylamine, N, N′-di-2-naphthyl-p-phenylenediamine, N, N′-diphenyl-p-phenylenediamine, N-phenyl-N′-isopropyl-p-phenylenediamine N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine, N-phenyl-N ′-(3-methacryloyloxy-2-hydroxypropyl) -p-phenylenediamine, etc. Secondary amines and the like can be mentioned, but the invention is not limited to these.
 前記ベンズイミダゾール系老化防止剤としては、例えば、2-メルカプトベンズイミダゾール、2-メルカプトメチルベンズイミダゾール、2-メルカプトベンズイミダゾールの亜鉛塩等のベンズイミダゾール系などが挙げられるが、これらに限定されるものではない。 Examples of the benzimidazole antioxidant include benzimidazoles such as 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, zinc salt of 2-mercaptobenzimidazole, and the like, but are not limited thereto. is not.
 前記チオウレア系老化防止剤としては、例えば、1,3-ビス(ジメチルアミノプロピル)-2-チオ尿素、トリブチルチオ尿素等のチオウレア系などが挙げられるが、これらに限定されるものではない。 Examples of the thiourea antioxidant include, but are not limited to, thiourea such as 1,3-bis (dimethylaminopropyl) -2-thiourea and tributylthiourea.
 前記亜リン酸系老化防止剤としては、例えば、トリス(ノニルフェニル)ホスファイト等の亜リン酸系などが挙げられるが、これらに限定されるものではない。 Examples of the phosphorous acid-based antioxidant include, but are not limited to, a phosphorous acid-based material such as tris (nonylphenyl) phosphite.
 老化防止剤の使用量は特に制限はないが、前記(A)有機重合体100質量部に対して老化防止剤を好ましくは0.1~20質量部、より好ましくは0.2~10質量部、さらに好ましくは0.2~5質量部の範囲で使用するのが好適である。 The amount of the anti-aging agent is not particularly limited, but the anti-aging agent is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the (A) organic polymer. More preferably, it is used in the range of 0.2 to 5 parts by mass.
 前記物性調整剤は引っ張り物性等の硬化性組成物の物性を改善する目的で添加される。前記物性調整剤の例としては、例えば、1分子中にシラノール基を1個有し且つ第1級アミノ基を有なさいシリコン化合物が好適に用いられる。該シリコン化合物としては、例えば、トリフェニルシラノール、トリアルキルシラノール、ジアルキルフェニルシラノール、ジフェニルアルキルシラノール等が挙げられる。 The physical property modifier is added for the purpose of improving physical properties of the curable composition such as tensile physical properties. As an example of the physical property adjusting agent, for example, a silicon compound having one silanol group and one primary amino group in one molecule is preferably used. Examples of the silicon compound include triphenylsilanol, trialkylsilanol, dialkylphenylsilanol, diphenylalkylsilanol and the like.
 前記可塑剤は硬化後の伸び物性を高めたり、低モジュラス化を可能とする目的で添加される。前記可塑剤としては、その種類は特に限定されないが、例えば、ジオクチルフタレート、ジブチルフタレート、ブチルベンジルフタレート、ジイソデシルフタレート、ジイソウンデシルフタレートなどの如きフタル酸エステル類;アジピン酸ジオクチル、コハク酸イソデシル、セバシン酸ジオクチル、アジピン酸ジブチルなどの如き脂肪族二塩基酸エステル類;ジエチレングリコールジベンゾエート、ジプロピレングリコールジベンゾエート、ペンタエリスリトールエステルなどの如きグリコールエステル類;オレイン酸ブチル、アセチルリシノール酸メチルなどの如き脂肪族エステル類;リン酸トリクレジル、リン酸トリオクチル、リン酸オクチルジフェニル、リン酸トリブチル、リン酸トリクレジルなどの如きリン酸エステル類;エポキシ化大豆油、エポキシ化アマニ油、エポキシステアリン酸ベンジルなどの如きエポキシ可塑剤類;二塩基酸と2価アルコールとのポリエステル類などのポリエステル系可塑剤;ポリプロピレングリコールやポリエチレングリコールの誘導体などのポリエーテル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールジエチルエーテル等の繰返しが2のもの、トリエチレングリコールジエチルエーテル、トリエチレングリコールエチルメチルエーテル、トリエチレングリコールジエチルエーテル等の繰返しが3のもの、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールエチルメチルエーテル、テトラエチレングリコールジエチルエーテル等の繰り返しが4のもの、繰り返しがそれ以上のポリオキシエチレンジメチルエーテルなどのポリオキシエチレンアルキルエーテル類;ポリ-α-メチルスチレン、ポリスチレンなどのポリスチレン類;ポリブタジエン、ブタジエン-アクリロニトリル共重合体、ポリクロロプレン、ポリイソプレン、ポリブテン、水添ポリブタジエン、水添ポリイソプレン、プロセスオイルなどの炭化水素系オリゴマー類;塩素化パラフィン類;UP-1080(東亞合成(株)製)やUP-1061(東亞合成(株)製)などの如きアクリル系可塑剤類;UP-2000(東亞合成(株)製)、UHE-2012(東亞合成(株)製)などの如き水酸基含有アクリル系可塑剤類;UC-3510(東亞合成(株)製)などの如きカルボキシル基含有アクリルポリマー類;UG-4000(東亞合成(株)製)などの如きエポキシ基含有アクリルポリマー類;US-6110(東亞合成(株)製)、US-6120(東亞合成(株)製)などの如き0.8個未満、好ましくは0.4個未満のシリル基含有アクリルポリマー類;0.8個未満、好ましくは0.4個未満のシリル基を含有するオキシアルキレン樹脂などが例示される。 The plasticizer is added for the purpose of enhancing the stretched physical properties after curing or enabling low modulus. The type of the plasticizer is not particularly limited. For example, phthalates such as dioctyl phthalate, dibutyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, diisoundecyl phthalate; dioctyl adipate, isodecyl succinate, sebacine Aliphatic dibasic acid esters such as dioctyl acid and dibutyl adipate; Glycol esters such as diethylene glycol dibenzoate, dipropylene glycol dibenzoate and pentaerythritol ester; Aliphatics such as butyl oleate and methyl acetylricinoleate Esters; Phosphate esters such as tricresyl phosphate, trioctyl phosphate, octyl diphenyl phosphate, tributyl phosphate, tricresyl phosphate; Epoxy plasticizers such as modified soybean oil, epoxidized linseed oil, and epoxy benzyl stearate; Polyester plasticizers such as polyesters of dibasic acids and dihydric alcohols; Polyethers such as polypropylene glycol and polyethylene glycol derivatives Diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, etc. with 2 repetitions, triethylene glycol diethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol diethyl ether, etc. with 3 repetitions, tetraethylene glycol 4 repeats such as diethyl ether, tetraethylene glycol ethyl methyl ether, tetraethylene glycol diethyl ether, etc. , Polyoxyethylene alkyl ethers such as polyoxyethylene dimethyl ether, which are repeated further; polystyrenes such as poly-α-methylstyrene and polystyrene; polybutadiene, butadiene-acrylonitrile copolymer, polychloroprene, polyisoprene, polybutene, water Hydrocarbon oligomers such as hydrogenated polybutadiene, hydrogenated polyisoprene, and process oil; chlorinated paraffins; acrylics such as UP-1080 (manufactured by Toagosei Co., Ltd.) and UP-1061 (manufactured by Toagosei Co., Ltd.) Hydroxyl group-containing acrylic plasticizers such as UP-2000 (manufactured by Toagosei Co., Ltd.), UHE-2012 (manufactured by Toagosei Co., Ltd.); UC-3510 (manufactured by Toagosei Co., Ltd.) Carboxyl group-containing acrylic polymers such as UG-4 Epoxy group-containing acrylic polymers such as 00 (manufactured by Toagosei Co., Ltd.); less than 0.8 such as US-6110 (manufactured by Toagosei Co., Ltd.), US-6120 (manufactured by Toagosei Co., Ltd.) , Preferably less than 0.4 silyl group-containing acrylic polymers; oxyalkylene resins containing less than 0.8, preferably less than 0.4 silyl groups are exemplified.
 前記揺変剤としては、例えば、コロイダルシリカ、石綿粉等の無機揺変剤、有機ベントナイト、変性ポリエステルポリオール、脂肪酸アマイド等の有機揺変剤、水添ヒマシ油誘導体、脂肪酸アマイドワックス、ステアリル酸アルミニウム、ステアリル酸バリウム等が挙げられる。 Examples of the thixotropic agent include inorganic thixotropic agents such as colloidal silica and asbestos powder, organic thixotropic agents such as organic bentonite, modified polyester polyol, and fatty acid amide, hydrogenated castor oil derivative, fatty acid amide wax, and aluminum stearylate. And barium stearylate.
 前記脱水剤は保存中における水分を除去する目的で添加される。前記脱水剤として、例えば、ゼオライト、酸化カルシウム、酸化マグネシウム、酸化亜鉛等が挙げられる。 The dehydrating agent is added for the purpose of removing moisture during storage. Examples of the dehydrating agent include zeolite, calcium oxide, magnesium oxide, and zinc oxide.
 前記難燃剤としては、例えば、赤リン、ポリリン酸アンモニウム等のリン系難燃剤;三酸化アンチモン等の金属酸化物系難燃剤;臭素系難燃剤;塩素系難燃剤等が挙げられる。 Examples of the flame retardant include phosphorus flame retardants such as red phosphorus and ammonium polyphosphate; metal oxide flame retardants such as antimony trioxide; bromine flame retardants; chlorine flame retardants and the like.
 本発明の硬化性組成物は、必要に応じて1液型とすることもできるし、2液型とすることもできるが、特に1液型として好適に用いることができる。本発明の硬化性組成物は大気中の湿気により常温で硬化することが可能であり、常温湿気硬化型硬化性組成物として好適に用いられるが、必要に応じて、適宜、加熱により硬化を促進させてもよい。 The curable composition of the present invention can be made into a one-component type or a two-component type as required, and can be suitably used particularly as a one-component type. The curable composition of the present invention can be cured at normal temperature by moisture in the atmosphere, and is suitably used as a normal temperature moisture-curable curable composition, but if necessary, curing is accelerated by heating as appropriate. You may let them.
 本発明の硬化性組成物の製造方法は特に制限はなく、例えば、前記成分(A)~(C)を所定量配合し、また必要に応じて他の配合物質を配合し、脱気攪拌することにより製造することができる。また、前記(B)シラン化合物におけるエポキシシラン化合物とアミノシラン化合物との反応は、予めエポキシシラン化合物とアミノシラン化合物とを反応させて得られた(B)シラン化合物を用いて、該(B)シラン化合物と他の配合物質を配合し、硬化性組成物を調製してもよく、又はエポキシシラン化合物、アミノシラン化合物、及び他の配合物質の一部又は全てを混合した混合物を作製し、該混合物中でエポキシシラン化合物とアミノシラン化合物とを反応させ、硬化性組成物を調製してもよい。 The method for producing the curable composition of the present invention is not particularly limited. For example, a predetermined amount of the components (A) to (C) is blended, and other blending substances are blended as necessary, followed by deaeration and stirring. Can be manufactured. In addition, the reaction between the epoxysilane compound and the aminosilane compound in the (B) silane compound is carried out using the (B) silane compound obtained by reacting the epoxysilane compound and the aminosilane compound in advance. And other compounding materials may be blended to prepare a curable composition, or a mixture in which some or all of the epoxysilane compound, aminosilane compound, and other compounding materials are mixed is prepared in the mixture. The curable composition may be prepared by reacting an epoxysilane compound and an aminosilane compound.
 前記成分(A)~(C)の配合順は特に制限はないが、成分(B)及び(C)を予め混合し、成分(B)及び(C)を含む混合物を得た後、該混合物と成分(A)を配合することが好ましく、成分(B)及び(C)を含む混合物を所定温度で熟成させてなる硬化触媒を、成分(A)と配合することがより好ましい。ここで熟成とは、前記(C)チタン触媒のアルコキシ基の一部と前記(B)シラン化合物のアルコキシ基の一部をエステル交換反応させること及び/又は空気中等に含まれる水分にて前記(B)シラン化合物の一部を前記(C)チタン触媒にて加水分解させ、オリゴマー化させることを意味する。上記熟成により、化学平衡の状態に達することが好適である。 The order of mixing the components (A) to (C) is not particularly limited, but the components (B) and (C) are mixed in advance to obtain a mixture containing the components (B) and (C), and then the mixture And a component (A) are preferably blended, and a curing catalyst obtained by aging a mixture containing the components (B) and (C) at a predetermined temperature is more preferably blended with the component (A). Here, aging means transesterification of a part of the alkoxy group of the (C) titanium catalyst and a part of the alkoxy group of the (B) silane compound and / or the moisture contained in the air ( B) This means that a part of the silane compound is hydrolyzed with the titanium catalyst (C) and oligomerized. It is preferable to reach the state of chemical equilibrium by the aging.
 前記(B)シラン化合物と前記(C)チタン触媒を予め混合した混合物を用いる場合は、前記(B)シラン化合物と前記(C)チタン触媒の混合割合は、前記(C)チタン触媒1モルに対して前記(B)シラン化合物を0.1~30モルの範囲が好ましく、0.5~5.0モルの範囲がより好ましく、0.5~3.0モルの範囲がさらに好ましい。前記(C)チタン触媒及び前記(B)シラン化合物は、それぞれ1種で用いてもよく、2種以上組み合わせて用いてもよい。 When a mixture in which the (B) silane compound and the (C) titanium catalyst are mixed in advance is used, the mixing ratio of the (B) silane compound and the (C) titanium catalyst is 1 mol of the (C) titanium catalyst. On the other hand, the (B) silane compound is preferably in the range of 0.1 to 30 mol, more preferably in the range of 0.5 to 5.0 mol, and still more preferably in the range of 0.5 to 3.0 mol. The (C) titanium catalyst and the (B) silane compound may be used singly or in combination of two or more.
 前記(B)シラン化合物と前記(C)チタン触媒との混合物を得る方法は、予めエポキシシラン化合物とアミノシラン化合物とを反応させて得られた(B)シラン化合物を用いて、該(B)シラン化合物と(C)チタン触媒を混合し、混合物を得てもよく、又はエポキシシラン化合物、アミノシラン化合物、及び(C)チタン触媒を混合した混合物を作製し、該混合物中でエポキシシラン化合物とアミノシラン化合物とを反応させ、(B)シラン化合物と(C)チタン触媒との混合物を得てもよい。 The method of obtaining the mixture of the (B) silane compound and the (C) titanium catalyst is obtained by using the (B) silane compound obtained by reacting an epoxy silane compound and an aminosilane compound in advance. The compound and (C) titanium catalyst may be mixed to obtain a mixture, or an epoxy silane compound, an amino silane compound, and (C) a mixture of titanium catalyst are prepared, and the epoxy silane compound and amino silane compound in the mixture And (B) a mixture of a silane compound and (C) a titanium catalyst may be obtained.
 前記(B)シラン化合物及び前記(C)チタン触媒を含む混合物を熟成させる反応温度条件は特に制限はないが、前記(B)シラン化合物と前記(C)チタン触媒とを30℃~100℃で反応させることが好ましく、30℃~90℃がより好ましく、40℃~80℃がさらに好ましい。反応温度を上記範囲内に設定することにより、反応を暴走させることなく安定に進行させることができる。反応温度を30℃未満とした場合、活性が低くなり、充分な反応達成に必要な時間が長くなり、効率が悪い。反応時間は、反応温度等を考慮して適宜設定することができるが、少なくとも平衡状態に達するまで反応させることが望ましく、例えば上記のような条件では反応時間は、通常は1~336時間、好ましくは72~168時間の範囲内に設定することが好適である。 The reaction temperature condition for aging the mixture containing the (B) silane compound and the (C) titanium catalyst is not particularly limited, but the (B) silane compound and the (C) titanium catalyst are heated at 30 ° C. to 100 ° C. The reaction is preferably carried out, more preferably from 30 ° C to 90 ° C, and even more preferably from 40 ° C to 80 ° C. By setting the reaction temperature within the above range, the reaction can proceed stably without causing runaway. When the reaction temperature is less than 30 ° C., the activity is low, the time required to achieve a sufficient reaction is lengthened, and the efficiency is poor. The reaction time can be appropriately set in consideration of the reaction temperature and the like, but it is desirable to carry out the reaction until at least an equilibrium state is reached. For example, the reaction time is usually 1 to 336 hours under the above conditions, preferably Is preferably set within a range of 72 to 168 hours.
 成分(A)~(C)以外の他の配合物質の配合順も特に制限はなく、適宜決定すればよい。成分(B)と(C)を予め混合した混合物を用いる場合は、成分(B)、(C)と共に他の配合物質を混合し、混合物を得てもよく、成分(B)及び(C)の一方と他の配合物質を配合した後、成分(B)及び(C)の他方を配合し、混合物を得てもよく、また、成分(B)及び(C)を含む混合物に他の配合物質を添加してもよい。成分(B)及び(C)を含む混合物を熟成させた硬化触媒を用いる場合は、熟成工程前に他の配合物質を添加し、成分(B)、(C)及び他の配合物質を含む混合物に対して熟成工程を行ってもよく、熟成工程後に他の配合物質を添加してもよく、熟成工程後に他の配合物質を添加し、さらに所定温度で熟成させてもよい。また、全ての配合物質を配合した組成物に対してさらに所定温度で熟成させてもよい。 There are no particular restrictions on the order of compounding substances other than components (A) to (C), and the order may be determined as appropriate. When using a mixture in which the components (B) and (C) are mixed in advance, the mixture may be obtained by mixing other compounding substances together with the components (B) and (C). The components (B) and (C) After blending one of the above and the other blending substance, the other of components (B) and (C) may be blended to obtain a mixture, and other blends may be added to the mixture containing components (B) and (C). Substances may be added. In the case of using a curing catalyst obtained by aging a mixture containing components (B) and (C), other compounding substances are added before the aging step, and the mixture contains components (B), (C) and other compounding substances. A ripening step may be performed, or other compounding substances may be added after the aging process, or other compounding substances may be added after the aging process and further ripened at a predetermined temperature. Moreover, you may age | cure | ripen at the predetermined temperature further with respect to the composition which mix | blended all the compounding substances.
 他の配合物質として成分(D)を配合する場合は、配合順に特に制限はないが、成分(C)と(D)を予め混合した混合物を得た後、該混合物と成分(A)及び(B)を配合する、又は成分(B)~(D)を予め混合した混合物を得た後、該混合物と成分(A)を配合する等、成分(C)及び(D)を含む混合物を得た後、残りの配合物質を配合することが好ましい。 When the component (D) is blended as another blending substance, there is no particular limitation in the blending order, but after obtaining a mixture in which the components (C) and (D) are mixed in advance, the mixture and the components (A) and ( A mixture containing components (C) and (D) is obtained, for example, by blending B) or obtaining a mixture in which components (B) to (D) are premixed and then blending the mixture and component (A). After that, it is preferable to blend the remaining compounding substances.
 前記(C)チタン触媒と前記(D)シラン化合物を予め混合した混合物を用いる場合は、前記(C)チタン触媒と前記(D)シラン化合物の混合割合は、前記(C)チタン触媒1モルに対して前記(D)シラン化合物を0.1~30モルの範囲が好ましく、0.5~5.0モルの範囲がより好ましく、0.5~3.0モルの範囲がさらに好ましい。前記(C)チタン触媒及び前記(D)シラン化合物は、それぞれ1種で用いてもよく、2種以上組み合わせて用いてもよい。 When a mixture in which the (C) titanium catalyst and the (D) silane compound are mixed in advance is used, the mixing ratio of the (C) titanium catalyst and the (D) silane compound is 1 mol of the (C) titanium catalyst. On the other hand, the (D) silane compound is preferably in the range of 0.1 to 30 mol, more preferably in the range of 0.5 to 5.0 mol, and still more preferably in the range of 0.5 to 3.0 mol. The (C) titanium catalyst and the (D) silane compound may be used singly or in combination of two or more.
 成分(D)としてアルコキシシリル基を有するシラン化合物を用いる場合は、成分(C)及び(D)を含む混合物を所定温度で熟成させてなる硬化触媒を、残りの配合物質と配合することがより好ましい。ここで熟成とは、前記(C)チタン触媒のアルコキシ基の一部と前記(D)シラン化合物のアルコキシ基の一部をエステル交換反応させること及び/又は空気中等に含まれる水分にて前記(D)シラン化合物の一部を前記(C)チタン触媒にて加水分解させ、オリゴマー化させることを意味する。上記熟成により、化学平衡の状態に達することが好適である。 When a silane compound having an alkoxysilyl group is used as the component (D), a curing catalyst obtained by aging a mixture containing the components (C) and (D) at a predetermined temperature may be blended with the remaining compounding substances. preferable. Here, aging means transesterification of a part of the alkoxy group of the (C) titanium catalyst and a part of the alkoxy group of the (D) silane compound and / or moisture contained in the air ( D) It means that a part of the silane compound is hydrolyzed with the titanium catalyst (C) and oligomerized. It is preferable to reach the state of chemical equilibrium by the aging.
 前記(C)チタン触媒及び前記(D)シラン化合物を含む混合物を熟成させる反応温度条件は特に制限はないが、前記(C)チタン触媒と前記(D)シラン化合物とを30℃~100℃で反応させることが好ましく、30℃~90℃がより好ましく、40℃~80℃がさらに好ましい。反応温度を上記範囲内に設定することにより、反応を暴走させることなく安定に進行させることができる。反応温度を30℃未満とした場合、活性が低くなり、充分な反応達成に必要な時間が長くなり、効率が悪い。反応時間は、反応温度等を考慮して適宜設定することができるが、少なくとも平衡状態に達するまで反応させることが望ましく、例えば上記のような条件では反応時間は、通常は1~336時間、好ましくは72~168時間の範囲内に設定することが好適である。 The reaction temperature condition for aging the mixture containing the (C) titanium catalyst and the (D) silane compound is not particularly limited, but the (C) titanium catalyst and the (D) silane compound are heated at 30 ° C. to 100 ° C. The reaction is preferably carried out, more preferably from 30 ° C to 90 ° C, and even more preferably from 40 ° C to 80 ° C. By setting the reaction temperature within the above range, the reaction can proceed stably without causing runaway. When the reaction temperature is less than 30 ° C., the activity is low, the time required to achieve a sufficient reaction is lengthened, and the efficiency is poor. The reaction time can be appropriately set in consideration of the reaction temperature and the like, but it is desirable to carry out the reaction until at least an equilibrium state is reached. For example, the reaction time is usually 1 to 336 hours under the above conditions, preferably Is preferably set within a range of 72 to 168 hours.
 本発明において、前述した成分(B)と(C)の熟成、及び成分(C)と(D)の熟成は、行ってもよく行わなくてもよいが、少なくともいずれか一方の熟成を行うことが好ましく、両方の熟成を行うことがより好ましい。熟成を行う場合は熟成の順序に制限はないが、製造工程が簡素化される為、作業性の点からは、成分(B)~(D)を混合した混合物に対して所定温度で同時に熟成させることが好ましく、また、貯蔵安定性及び硬化時間の変化率等の点からは、成分(B)及び(D)の一方と成分(C)を含む混合物を所定温度で熟成させた後、成分(B)及び(D)の他方を配合し、必要に応じて再度所定温度で熟成させる方法や、成分(B)と成分(C)を熟成させたものと、成分(B)と成分(D)を熟成させたものを混合し、必要に応じてさらに該混合した混合物を熟成させる方法が好ましい。該熟成工程を行うことにより、貯蔵安定性をさらに改善することができる。 In the present invention, the ripening of the components (B) and (C) and the ripening of the components (C) and (D) may or may not be performed, but at least one of the aging is performed. It is preferable to perform both aging. In the case of aging, the order of aging is not limited, but since the manufacturing process is simplified, from the viewpoint of workability, aging is simultaneously performed at a predetermined temperature for the mixture in which components (B) to (D) are mixed. In view of storage stability, rate of change in curing time, and the like, after aging a mixture containing one of components (B) and (D) and component (C) at a predetermined temperature, A method in which the other of (B) and (D) is blended and aged again at a predetermined temperature as necessary, a component (B) and a component (C) are aged, a component (B) and a component (D ) Is preferably mixed, and if necessary, the mixed mixture is further aged. By performing the aging step, the storage stability can be further improved.
 他の配合物質として成分(E)を配合する場合は、配合順に特に制限はなく、適宜決定すればよい。前述した成分(B)と(C)の熟成や成分(C)と(D)の熟成を行う場合は、熟成工程後に成分(E)を配合することが好適である。 When the component (E) is blended as another blending substance, there is no particular limitation on the blending order, and it may be determined as appropriate. When the components (B) and (C) are aged and the components (C) and (D) are aged, it is preferable to add the component (E) after the aging step.
 他の配合物質として成分(F)を配合する場合は、配合順に特に制限はないが、成分(B)及び(D)の一方又は両方、及び成分(C)に加えて、成分(F)を含む混合物に対して所定温度で熟成させることが好ましい。この場合、成分(B)及び(D)の一方又は両方と、成分(C)と、成分(F)とを含む混合物に対して所定温度で同時に熟成させてもよく、成分(B)及び(D)の一方又は両方、及び成分(C)を含む混合物に対して所定温度で同時に熟成させた後、該混合物に成分(F)を配合し、再度、所定温度で熟成させる等、複数回、熟成工程を行ってもよい。特に、成分(B)~(D)の熟成工程後に成分(F)を配合し、さらに熟成工程を行うことにより、貯蔵後の硬化時間の変化率を低くすることができ、より好ましい。該熟成工程を行うことにより、貯蔵安定性をさらに改善することができる。 When component (F) is blended as another blending substance, there is no particular restriction on the blending order, but in addition to one or both of components (B) and (D) and component (C), component (F) It is preferable to age the mixture at a predetermined temperature. In this case, the mixture containing one or both of the components (B) and (D), the component (C), and the component (F) may be simultaneously aged at a predetermined temperature. A mixture containing one or both of D) and the component (C) is aged at a predetermined temperature at the same time, and then the component (F) is blended in the mixture and aged again at a predetermined temperature, for example, a plurality of times. An aging step may be performed. In particular, by blending the component (F) after the aging step of the components (B) to (D) and further performing the aging step, the rate of change in the curing time after storage can be reduced, which is more preferable. By performing the aging step, the storage stability can be further improved.
 本発明の硬化性組成物は、接着剤、シーリング材、粘着材、コーティング材、ポッティング材、塗料、パテ材及びプライマー等として用いることができる。本発明の硬化性組成物は、接着性、貯蔵安定性、硬化性に優れているため、特に、接着剤に用いることが好ましいが、その他各種建築物用、自動車用、土木用、電気・電子分野用等に使用することができる。 The curable composition of the present invention can be used as an adhesive, a sealing material, an adhesive material, a coating material, a potting material, a paint, a putty material, a primer, and the like. Since the curable composition of the present invention is excellent in adhesiveness, storage stability, and curability, it is particularly preferable to use it as an adhesive, but for various other buildings, automobiles, civil engineering, electric / electronics. It can be used for fields.
 以下に実施例をあげて本発明をさらに具体的に説明するが、これらの実施例は例示的に示されるもので限定的に解釈されるべきでないことはいうまでもない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, it is needless to say that these examples are shown by way of example and should not be interpreted in a limited manner.
 合成例、実施例および比較例における分析、測定は以下の方法に従って行った。
1)数平均分子量の測定
 ゲルパーミエーションクロマトグラフィー(GPC)により下記条件で測定した。本発明において、該測定条件でGPCにより測定し、標準ポリエチレングリコールで換算した最大頻度の分子量を数平均分子量と称する。
 THF溶媒測定装置
・分析装置:Alliance(Waters社製)、2410型示差屈折検出器(Waters社製)、996型多波長検出器(Waters社製)、Milleniamデータ処理装置(Waters社製)
・カラム:Plgel GUARD+5μmMixed-C×3本(50×7.5mm,300×7.5mm:PolymerLab社製)
・流速:1mL/分
・換算したポリマー:ポリエチレングリコール
・測定温度:40℃
 FT-NMR測定装置:日本電子(株)製JNM-ECA500(500MHz)
 FT-IR測定装置:日本分光(株)製FT-IR460Plus
Analysis and measurement in Synthesis Examples, Examples and Comparative Examples were performed according to the following methods.
1) Measurement of number average molecular weight It measured on the following conditions by the gel permeation chromatography (GPC). In the present invention, the maximum frequency molecular weight measured by GPC under the measurement conditions and converted with standard polyethylene glycol is referred to as the number average molecular weight.
THF solvent measuring device / analyzer: Alliance (manufactured by Waters), 2410 type differential refraction detector (manufactured by Waters), 996 type multi-wavelength detector (manufactured by Waters), Millenium data processing device (manufactured by Waters)
Column: Plgel GUARD + 5 μmMixed-C × 3 (50 × 7.5 mm, 300 × 7.5 mm: manufactured by Polymer Lab)
・ Flow rate: 1 mL / min ・ Converted polymer: Polyethylene glycol ・ Measurement temperature: 40 ° C.
FT-NMR measuring device: JNM-ECA500 (500 MHz) manufactured by JEOL Ltd.
FT-IR measuring device: FT-IR460Plus manufactured by JASCO Corporation
2)貯蔵安定性試験、硬化性(TFT)試験及びチクソトロピー性試験
 硬化性組成物配合直後の粘度、硬化時間及び構造粘性指数(SVI値)を測定した。該条件を初期と称し、該測定された粘度、硬化時間及びSVI値をそれぞれ初期粘度、初期TFT及び初期SVI値とした。
2) Storage stability test, curability (TFT) test, and thixotropy test Viscosity, curing time, and structural viscosity index (SVI value) immediately after blending the curable composition were measured. The conditions were referred to as initial, and the measured viscosity, curing time, and SVI value were defined as initial viscosity, initial TFT, and initial SVI value, respectively.
 粘度は、硬化性組成物の粘度が160Pa・s以上の時はBS型回転粘度計(ローターNo.7-10rpm)により測定し、硬化性組成物の粘度が160Pa・s未満の時はBH型回転粘度計(ローターNo.7-20rpm)により測定した(測定温度23℃)。
 硬化時間は、JIS A 1439 5.19 タックフリー試験に準じて、23℃RH50%の環境下にて指触乾燥時間(TFT)を測定した。
 SVI値は、硬化性組成物の粘度が160Pa・s以上の時はBS型回転粘度計(ローターNo.7)を用いて、1rpmの粘度を10rpmの粘度で割ることにより算出し、硬化性組成物の粘度が160Pa・s未満の時はBH型回転粘度計(ローターNo.7)を用いて、2rpmの粘度を20rpmの粘度で割ることにより算出した(測定温度23℃)。上記求められたSVI値をチクソトロピー性を示す指標として用いた。
The viscosity is measured with a BS rotational viscometer (rotor No. 7-10 rpm) when the viscosity of the curable composition is 160 Pa · s or more, and when the viscosity of the curable composition is less than 160 Pa · s, the BH type. It was measured with a rotational viscometer (rotor No. 7-20 rpm) (measurement temperature 23 ° C.).
As for the curing time, the touch drying time (TFT) was measured in an environment of RH 50% at 23 ° C. according to JIS A 1439 5.19 tack-free test.
The SVI value is calculated by dividing the viscosity at 1 rpm by the viscosity at 10 rpm using a BS type rotational viscometer (rotor No. 7) when the viscosity of the curable composition is 160 Pa · s or more. When the viscosity of the product was less than 160 Pa · s, it was calculated by dividing the viscosity at 2 rpm by the viscosity at 20 rpm using a BH type rotational viscometer (rotor No. 7) (measurement temperature 23 ° C.). The obtained SVI value was used as an index indicating thixotropy.
 次に密封ガラス容器内の硬化性組成物を50℃雰囲気下にて1、2又は4週間放置し、粘度、硬化時間及びSVI値を測定した。該測定された粘度、硬化時時間及びSVI値をそれぞれ貯蔵後の粘度、貯蔵後のTFT及び貯蔵後のSVI値とした。
 貯蔵後の粘度を初期粘度にて割ることにより増粘率を算出した。また、1週間貯蔵後の増粘率を下記評価基準にて評価した。
 ◎:0.90以上1.40以下、○:1.41以上1.50以下、△:1.51以上1.60以下、×:1.61以上もしくは0.89以下。
 また、貯蔵後のTFTを初期TFTにて割ることにより変化率を算出した。また、1週間貯蔵後の変化率を下記評価基準にて評価した。
 ◎:0.90以上1.10以下、○:0.80以上0.89以下もしくは、1.11以上1.30以下、△:1.31以上1.40以下もしくは0.70以上0.79以下、×:1.41以上もしくは0.69以下。
Next, the curable composition in the sealed glass container was left in an atmosphere of 50 ° C. for 1, 2 or 4 weeks, and the viscosity, the curing time, and the SVI value were measured. The measured viscosity, curing time, and SVI value were the viscosity after storage, the TFT after storage, and the SVI value after storage, respectively.
The viscosity increase ratio was calculated by dividing the viscosity after storage by the initial viscosity. Moreover, the thickening rate after 1 week storage was evaluated according to the following evaluation criteria.
A: 0.90 to 1.40, O: 1.41 to 1.50, Δ: 1.51 to 1.60, x: 1.61 to 0.89.
The rate of change was calculated by dividing the TFT after storage by the initial TFT. The rate of change after storage for 1 week was evaluated according to the following evaluation criteria.
A: 0.90 to 1.10, B: 0.80 to 0.89, or 1.11 to 1.30, Δ: 1.31 to 1.40, or 0.70 to 0.79 Hereinafter, x: 1.41 or more or 0.69 or less.
3)表面硬化性試験
 23℃RH50%の環境下にて7日間放置して、100mm×100mm×3mmの大きさの硬化性組成物の硬化物を作製し、指触にて判断した。評価基準は下記の通りである。
 ◎:まったくベタつかない、○:ベタつかない、△:ベタつく、×:非常にベタつく。
3) Surface Curability Test A cured product of a curable composition having a size of 100 mm × 100 mm × 3 mm was prepared by leaving it in an environment of 23 ° C. and RH 50% for 7 days, and judged by finger touch. The evaluation criteria are as follows.
A: Not sticky at all, ○: Not sticky, △: Sticky, ×: Very sticky.
4)接着性試験
 被着材の上に0.2gの硬化性組成物を均一に塗布し、25mm×25mmの面積で直ちに貼り合わせた。貼り合わせ後、23℃RH50%の雰囲気下で7日間、目玉クリップ小により圧締した直後にJIS K 6850 剛性被着材の引張りせん断接着強さ試験方法に準じて接着強度を測定した。被着材としては、硬質塩ビ(PVC)、ポリカーボネート(PC)、ポリスチレン(PS)、ABS樹脂(ABS)、アクリル樹脂(PMMA)、ナイロン6(6-Ny)、冷間圧延鋼板(SPCC)、又はアルマイトアルミ(Al)を使用した。また、接着面の破壊状態について、下記評価基準にて評価した。
 CF:凝集破壊、AF:接着破壊、C10A90~C90A10:CF及びAFの破壊状態の面積をおおよその百分率で表したものであり、CnA(100-n)はCFn%、AF(100-n)%の破壊状態を意味する。
4) Adhesion test 0.2 g of the curable composition was uniformly applied on the adherend, and immediately bonded in an area of 25 mm × 25 mm. After bonding, the adhesive strength was measured according to the tensile shear adhesive strength test method of a rigid adherend immediately after pressing with a small eyeball clip for 7 days in an atmosphere of 23 ° C. and RH 50%. As the adherend, hard PVC (PVC), polycarbonate (PC), polystyrene (PS), ABS resin (ABS), acrylic resin (PMMA), nylon 6 (6-Ny), cold rolled steel plate (SPCC), Alternatively, anodized aluminum (Al) was used. Further, the fracture state of the adhesive surface was evaluated according to the following evaluation criteria.
CF: cohesive failure, AF: adhesion failure, C10A90 to C90A10: The area of the fracture state of CF and AF is expressed as an approximate percentage. CnA (100-n) is CFn%, AF (100-n)% It means the destruction state.
5)透明性試験
 厚さ2mmのアクリル板間に3mmのスペーサを用いて硬化性組成物を伸ばし、その透明性を目視にて観察し、下記評価基準にて評価した。
 ◎:無色透明、○:無色で少し白濁、×:白濁状態。
5) Transparency test The curable composition was stretched using a 3 mm spacer between acrylic plates having a thickness of 2 mm, and the transparency was visually observed and evaluated according to the following evaluation criteria.
◎: colorless and transparent, ○: colorless and slightly cloudy, ×: cloudy.
(合成例1)
 攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、エチレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテート-グライム錯体触媒の存在下、プロピレンオキシドを反応させて得られた水酸基価換算分子量24000、かつ分子量分布1.3のポリオキシプロピレントリオールを得た。得られたポリオキシプロピレンジオールにナトリウムメトキシドのメタノール溶液を添加し、加熱減圧下メタノールを留去してポリオキシプロピレントリオールの末端水酸基をナトリウムアルコキシドに変換し、ポリオキシアルキレン系重合体M1を得た。
(Synthesis Example 1)
Hydroxyl value obtained by reacting propylene oxide in a flask equipped with a stirrer, nitrogen gas inlet tube, thermometer and reflux condenser in the presence of ethylene glycol as an initiator and zinc hexacyanocobaltate-glyme complex catalyst A polyoxypropylene triol having a reduced molecular weight of 24,000 and a molecular weight distribution of 1.3 was obtained. A methanol solution of sodium methoxide is added to the obtained polyoxypropylene diol, and methanol is distilled off under reduced pressure by heating to convert the terminal hydroxyl group of the polyoxypropylene triol into sodium alkoxide to obtain a polyoxyalkylene polymer M1. It was.
 次に表1に示す配合割合にて、ポリオキシアルキレン系重合体M1に塩化アリルを反応させて、未反応の塩化アリルを除去し、精製して、末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、水素化ケイ素化合物であるトリメトキシシランを白金含量3wt%の白金ビニルシロキサン錯体イソプロパノール溶液150ppmを添加して反応させ、末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A1を得た。
 得られた末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A1の分子量をGPCにより測定した結果、ピークトップ分子量は25000、分子量分布1.3であった。H-NMR測定により末端のトリメトキシシリル基は1分子あたり1.7個であった。
Next, the polyoxyalkylene polymer M1 is reacted with allyl chloride at the blending ratio shown in Table 1 to remove unreacted allyl chloride and purified to obtain a polyoxyalkylene polymer having an allyl group at the terminal. Coalescence was obtained. This polyoxyalkylene polymer having an allyl group at the end is reacted with trimethoxysilane, which is a silicon hydride compound, by adding 150 ppm of a platinum vinylsiloxane complex isopropanol solution having a platinum content of 3 wt%, and trimethoxysilyl at the end. A polyoxyalkylene polymer A1 having a group was obtained.
As a result of measuring the molecular weight of the obtained polyoxyalkylene polymer A1 having a trimethoxysilyl group by GPC, the peak top molecular weight was 25,000 and the molecular weight distribution was 1.3. According to H 1 -NMR measurement, the number of terminal trimethoxysilyl groups was 1.7 per molecule.
(合成例2)
 攪拌装置、窒素ガス導入管、温度計および環流冷却器を備えたフラスコに、エチレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテート-グライム錯体触媒の存在下、プロピレンオキシドを反応させて得られた水酸基価換算分子量11000、かつ分子量分布1.3のポリオキシプロピレンジオールを得た。得られたポリオキシプロピレントリオールにナトリウムメトキシドのメタノール溶液を添加し、加熱減圧下メタノールを留去してポリオキシプロピレントリオールの末端水酸基をナトリウムアルコキシドに変換し、ポリオキシアルキレン系重合体M2を得た。
(Synthesis Example 2)
Hydroxyl value obtained by reacting propylene oxide in a flask equipped with a stirrer, nitrogen gas inlet tube, thermometer and reflux condenser in the presence of ethylene glycol as an initiator and zinc hexacyanocobaltate-glyme complex catalyst A polyoxypropylene diol having a converted molecular weight of 11000 and a molecular weight distribution of 1.3 was obtained. A methanol solution of sodium methoxide is added to the obtained polyoxypropylene triol, methanol is distilled off under heating and reduced pressure, and the terminal hydroxyl group of the polyoxypropylene triol is converted to sodium alkoxide to obtain a polyoxyalkylene polymer M2. It was.
 次に表1に示す配合割合にて、ポリオキシアルキレン系重合体M2に塩化アリルを反応させて、未反応の塩化アリルを除去し、精製して、末端にアリル基を有するポリオキシアルキレン系重合体を得た。この末端にアリル基を有するポリオキシアルキレン系重合体に対し、水素化ケイ素化合物であるトリメトキシシランを白金含量3wt%の白金ビニルシロキサン錯体イソプロパノール溶液150ppmを添加して反応させ、末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A2を得た。
 得られた末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A2の分子量をGPCにより測定した結果、ピークトップ分子量は12000、分子量分布1.3であった。H-NMR測定により末端のトリメトキシシリル基は1分子あたり1.7個であった。
Next, the polyoxyalkylene polymer M2 is reacted with allyl chloride at the blending ratio shown in Table 1 to remove unreacted allyl chloride, and purified to obtain a polyoxyalkylene polymer having an allyl group at the terminal. Coalescence was obtained. This polyoxyalkylene polymer having an allyl group at the end is reacted with trimethoxysilane, which is a silicon hydride compound, by adding 150 ppm of a platinum vinylsiloxane complex isopropanol solution having a platinum content of 3 wt%, and trimethoxysilyl at the end. A polyoxyalkylene polymer A2 having a group was obtained.
As a result of measuring the molecular weight of the obtained polyoxyalkylene polymer A2 having a trimethoxysilyl group by GPC, the peak top molecular weight was 12,000 and the molecular weight distribution was 1.3. According to H 1 -NMR measurement, the number of terminal trimethoxysilyl groups was 1.7 per molecule.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 表1において、各配合物質の配合量はgで示される。ポリオキシアルキレン系重合体M1~M2はそれぞれ合成例1~2で得られたポリオキシアルキレン系重合体M1~M2である。 In Table 1, the compounding amount of each compounding substance is indicated by g. The polyoxyalkylene polymers M1 and M2 are the polyoxyalkylene polymers M1 and M2 obtained in Synthesis Examples 1 and 2, respectively.
(合成例3)
 表2に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、酢酸エチル(和光純薬工業(株)製)184g入れ、70℃に加温した。別の容器にメチルメタクリレート247g、n-ブチルアクリレート23g、ラウリルメタクリレート(商品名:ライトエステルL、共栄社(株)製)56g、3-アクリロキシプロピルトリメトキシシラン(商品名:KBM5103、信越化学工業(株)製)58.64g、3-メルカプトプロピルトリメトキシシラン26.21g、AIBN15.73gを混合し、撹拌後、滴下装置に充填し3時間かけて滴下した。滴下終了後、さらに3時間反応させ、トリメトキシシリル基を有するビニル系重合体A3を得た。
 得られたビニル系重合体A3の分子量をGPCにより測定した結果、ピークトップ分子量は3000、分子量分布は1.6であった。H-NMR測定により含有されるトリメトキシシリル基は1分子あたり2.00個であった。
(Synthesis Example 3)
As shown in Table 2, 184 g of ethyl acetate (manufactured by Wako Pure Chemical Industries, Ltd.) was put into a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser, and heated to 70 ° C. did. In another container, 247 g of methyl methacrylate, 23 g of n-butyl acrylate, 56 g of lauryl methacrylate (trade name: Light Ester L, manufactured by Kyoeisha), 3-acryloxypropyltrimethoxysilane (trade name: KBM5103, Shin-Etsu Chemical Co., Ltd.) 58.64 g), 3-mercaptopropyltrimethoxysilane 26.21 g, and AIBN 15.73 g were mixed, stirred, filled into a dropping device, and dropped over 3 hours. After completion of dropping, the reaction was further continued for 3 hours to obtain a vinyl polymer A3 having a trimethoxysilyl group.
As a result of measuring the molecular weight of the obtained vinyl polymer A3 by GPC, the peak top molecular weight was 3000 and the molecular weight distribution was 1.6. The number of trimethoxysilyl groups contained by H 1 -NMR measurement was 2.00 per molecule.
(合成例4)
 表2に示すように、撹拌装置、窒素ガス導入管、温度計および還流冷却管を備えたフラスコに、m-キシレン43.00g、メチルメタクリレート80.00g、2-エチルヘキシルメタクリレート(東京化成工業(株)製)20.00g、アクリロキシメチルトリメトキシシラン(Gelest社製)20.00g、及び金属触媒としてジルコノセンジクロライド0.10gを仕込みフラスコ内に窒素ガスを導入しながらフラスコの内容物を80℃に加熱した。ついで、充分に窒素ガス置換したメルカプトメチルトリメトキシシラン3.65gを撹拌下にフラスコ内に一気に添加した。メルカプトメチルトリメトキシシラン3.65gを添加後、撹拌中のフラスコ内の内容物の温度が80℃に維持できるように、加熱及び冷却を4時間行った。さらに、充分に窒素ガス置換したメルカプトメチルトリメトキシシラン3.65gを撹拌下に5分かけてフラスコ内に追加添加した。メルカプトメチルトリメトキシシラン3.65g全量を追加添加後、撹拌中のフラスコ内の内容物の温度が90℃に維持できるように、さらに冷却及び加温を行いながら、反応を4時間行った。合計で8時間5分間の反応後、反応物の温度を室温に戻し、反応物にベンゾキノン溶液(95%THF溶液)を20.00g添加して重合を停止し、トリメトキシシリル基を有するビニル系重合体A4を得た。
 得られたビニル系重合体A4の分子量をGPCにより測定した結果、ピークトップ分子量は4000、分子量分布は1.6であった。H-NMR測定により含有されるトリメトキシシリル基は1分子あたり2.00個であった。
(Synthesis Example 4)
As shown in Table 2, in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser, m-xylene 43.00 g, methyl methacrylate 80.00 g, 2-ethylhexyl methacrylate (Tokyo Chemical Industry Co., Ltd.) )) 20.00 g, acryloxymethyltrimethoxysilane (manufactured by Gelest) 20.00 g, and 0.10 g of zirconocene dichloride as a metal catalyst were charged, and the contents of the flask were brought to 80 ° C. while introducing nitrogen gas into the flask. Heated. Next, 3.65 g of mercaptomethyltrimethoxysilane sufficiently substituted with nitrogen gas was added all at once to the flask with stirring. After adding 3.65 g of mercaptomethyltrimethoxysilane, heating and cooling were performed for 4 hours so that the temperature of the contents in the stirring flask could be maintained at 80 ° C. Further, 3.65 g of mercaptomethyltrimethoxysilane sufficiently substituted with nitrogen gas was added to the flask over 5 minutes with stirring. After the addition of 3.65 g of the total amount of mercaptomethyltrimethoxysilane, the reaction was carried out for 4 hours while further cooling and heating so that the temperature of the contents in the stirring flask could be maintained at 90 ° C. After a total of 8 hours and 5 minutes of reaction, the temperature of the reaction product was returned to room temperature, 20.00 g of a benzoquinone solution (95% THF solution) was added to the reaction product to stop the polymerization, and a vinyl system having a trimethoxysilyl group A polymer A4 was obtained.
As a result of measuring the molecular weight of the obtained vinyl polymer A4 by GPC, the peak top molecular weight was 4000, and the molecular weight distribution was 1.6. The number of trimethoxysilyl groups contained by H 1 -NMR measurement was 2.00 per molecule.
(合成例5)
 表2に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例1で得た末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A1を400g、合成例2で得た末端にトリメトキシシリル基を有するポリオキシアルキレン系重合体A2を200g加え、80℃に加温した。別の容器にメチルメタクリレート(商品名:ライトエステルM、共栄社(株)製)247g、n-ブチルアクリレート23g、ステアリルメタクリレート(商品名:ライトエステルS、共栄社(株)製)49g、3-メタクリロキシプロピルトリメトキシシラン(商品名:KBM503、信越化学工業(株)製)45g、3-メルカプトプロピルトリメトキシシラン23.77g、AIBN10.56gを混合し、撹拌後、滴下装置に充填し3時間かけて滴下した。滴下終了後、さらに3時間反応させ、ポリオキシアルキレン系重合体とポリオキシアルキレン系重合体とビニル系重合体の混合物であるトリメトキシシリル基を有する有機重合体A5を得た。
 得られたトリメトキシシリル基を有する有機重合体A5の分子量をGPCにより測定した結果、ピークトップ分子量は4000、分子量分布は1.6であった。H-NMR測定により末端のトリメトキシシリル基は1分子あたり2.35個であった。
(Synthesis Example 5)
As shown in Table 2, a polyoxyalkylene polymer having a trimethoxysilyl group at the terminal obtained in Synthesis Example 1 in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser. 400 g of A1 and 200 g of polyoxyalkylene polymer A2 having a trimethoxysilyl group at the terminal obtained in Synthesis Example 2 were added and heated to 80 ° C. In another container, 247 g of methyl methacrylate (trade name: Light Ester M, manufactured by Kyoeisha Co., Ltd.), 23 g of n-butyl acrylate, 49 g of stearyl methacrylate (trade name: Light Ester S, manufactured by Kyoeisha Co., Ltd.), 3-methacryloxy 45 g of propyltrimethoxysilane (trade name: KBM503, manufactured by Shin-Etsu Chemical Co., Ltd.), 23.77 g of 3-mercaptopropyltrimethoxysilane and 10.56 g of AIBN are mixed, and after stirring, filled in a dropping device over 3 hours. It was dripped. After completion of the dropping, the reaction was further continued for 3 hours to obtain an organic polymer A5 having a trimethoxysilyl group, which is a mixture of a polyoxyalkylene polymer, a polyoxyalkylene polymer and a vinyl polymer.
As a result of measuring the molecular weight of the obtained organic polymer A5 having a trimethoxysilyl group by GPC, the peak top molecular weight was 4000 and the molecular weight distribution was 1.6. According to H 1 -NMR measurement, the number of terminal trimethoxysilyl groups was 2.35 per molecule.
(合成例6)
 表2に示すように、撹拌装置、窒素ガス導入管、温度計および還流冷却管を備えたフラスコに、酢酸エチルを40.00g、メチルメタクリレート70.00g、2-エチルヘキシルメタクリレート(東京化成工業(株)製)30.00g、3-メタクリロキシプロピルトリメトキシシラン(商品名:KBM503、信越化学工業(株)製)12.00g、及び金属触媒としてチタノセンジクライド0.10gを仕込みフラスコ内に窒素ガスを導入しながらフラスコの内容物を80℃に加熱した。ついで、充分に窒素ガス置換した3-メルカプトプロピルトリメトキシシラン4.30gを撹拌下にフラスコ内に一気に添加した。3-メルカプトプロピルトリメトキシシラン4.30gを添加後、撹拌中のフラスコ内の内容物の温度が80℃に維持できるように、加熱及び冷却を4時間行った。さらに、充分に窒素ガス置換した3-メルカプトプロピルトリメトキシシラン4.30gを撹拌下に5分かけてフラスコ内に追加添加した。3-メルカプトプロピルトリメトキシシラン4.30g全量を追加添加後、撹拌中のフラスコ内の内容物の温度が90℃に維持できるように、さらに冷却及び加温を行いながら、反応を4時間行った。合計で8時間5分間の反応後、反応物の温度を室温に戻し、反応物にベンゾキノン溶液(95%THF溶液)を20.00g添加して重合を停止し、トリメトキシシリル基を有するビニル系重合体A6を得た。ピークトップ分子量は4000、分子量分布は2.4であった。H-NMR測定により含有されるトリメトキシシリル基は1分子あたり2.00個であった。
(Synthesis Example 6)
As shown in Table 2, 40.00 g of ethyl acetate, 70.00 g of methyl methacrylate, 2-ethylhexyl methacrylate (Tokyo Chemical Industry Co., Ltd.) were placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer and a reflux condenser. )) 30.00 g, 3-methacryloxypropyltrimethoxysilane (trade name: KBM503, manufactured by Shin-Etsu Chemical Co., Ltd.) 12.00 g, and titanocene diclyde 0.10 g as a metal catalyst were charged in a flask with nitrogen gas The contents of the flask were heated to 80 ° C. while introducing. Next, 4.30 g of 3-mercaptopropyltrimethoxysilane sufficiently purged with nitrogen gas was added into the flask all at once with stirring. After adding 4.30 g of 3-mercaptopropyltrimethoxysilane, heating and cooling were performed for 4 hours so that the temperature of the contents in the flask under stirring could be maintained at 80 ° C. Further, 4.30 g of 3-mercaptopropyltrimethoxysilane sufficiently substituted with nitrogen gas was added to the flask over 5 minutes with stirring. After an additional amount of 4.30 g of 3-mercaptopropyltrimethoxysilane was added, the reaction was performed for 4 hours while further cooling and heating so that the temperature of the contents in the stirring flask could be maintained at 90 ° C. . After a total of 8 hours and 5 minutes of reaction, the temperature of the reaction product was returned to room temperature, 20.00 g of a benzoquinone solution (95% THF solution) was added to the reaction product to stop the polymerization, and a vinyl system having a trimethoxysilyl group Polymer A6 was obtained. The peak top molecular weight was 4000, and the molecular weight distribution was 2.4. The number of trimethoxysilyl groups contained by H 1 -NMR measurement was 2.00 per molecule.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表2において、各配合物質の配合量はgで示される。ポリオキシアルキレン系重合体A1及びA2はそれぞれ合成例1及び2で得られたポリオキシアルキレン系重合体A1及びA2である。 In Table 2, the compounding amount of each compounding substance is indicated by g. The polyoxyalkylene polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively.
(合成例7)
 表3に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、3-アミノプロピルトリメトキシシラン(商品名:Z-6610、東レ・ダウコーニング・シリコーン(株)製)100g、3-グリシドキシプロピルトリメトキシシラン(商品名:Z-6040、東レ・ダウコーニング・シリコーン(株)製)276g加え、50℃にて72時間撹拌し、シラン化合物B1を得た。
 得られたシラン化合物B1について、FT-IRにて910cm-1付近のエポキシ基に起因するピークの消失を確認し、1140cm-1付近の2級アミンのピークを確認し、また、29Si-NMRより-60ppmから-70ppmに新たなピークの出現が確認できた。
(Synthesis Example 7)
As shown in Table 3, 3-aminopropyltrimethoxysilane (trade name: Z-6610, Toray Dow Corning, Ltd.) was added to a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser. 100 g of Silicone Co., Ltd., 276 g of 3-glycidoxypropyltrimethoxysilane (trade name: Z-6040, manufactured by Toray Dow Corning Silicone Co., Ltd.), and stirred at 50 ° C. for 72 hours to give a silane compound B1 was obtained.
With respect to the obtained silane compound B1, the disappearance of the peak due to the epoxy group near 910 cm −1 was confirmed by FT-IR, the peak of the secondary amine near 1140 cm −1 was confirmed, and 29 Si-NMR Furthermore, the appearance of a new peak was confirmed from -60 ppm to -70 ppm.
(合成例8)
 表3に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、3-アミノプロピルトリメトキシシラン(商品名:Z-6610、東レ・ダウコーニング・シリコーン(株)製)100g、3-グリシドキシプロピルトリメトキシシラン(商品名:Z-6040、東レ・ダウコーニング・シリコーン(株)製)276g加え、23℃にて168時間撹拌し、シラン化合物B2を得た。
 得られたシラン化合物B2について、FT-IRにて910cm-1付近のエポキシ基に起因するピークの消失を確認し、1140cm-1付近の2級アミンのピークを確認した。また、29Si-NMRより-60ppmから-70ppmにピークは観察されなかった。
(Synthesis Example 8)
As shown in Table 3, 3-aminopropyltrimethoxysilane (trade name: Z-6610, Toray Dow Corning, Ltd.) was added to a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser. Silicone Co., Ltd. (100 g), 3-glycidoxypropyltrimethoxysilane (trade name: Z-6040, Toray Dow Corning Silicone Co., Ltd.) 276 g was added, and the mixture was stirred at 23 ° C. for 168 hours. B2 was obtained.
With respect to the obtained silane compound B2, disappearance of a peak due to an epoxy group near 910 cm −1 was confirmed by FT-IR, and a peak of a secondary amine near 1140 cm −1 was confirmed. In addition, no peak was observed from −60 ppm to −70 ppm from 29 Si-NMR.
(合成例9)
 表3に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、3-アミノプロピルトリメトキシシラン(商品名:Z-6610、東レ・ダウコーニング・シリコーン(株)製)44.62g、3-グリシドキシプロピルトリメトキシシラン(商品名:Z-6040、東レ・ダウコーニング・シリコーン(株)製)100g加え、50℃にて72時間撹拌し、シラン化合物B3を得た。
 得られたシラン化合物B3について、FT-IRにて910cm-1付近のエポキシ基に起因するピークの消失を確認し、1140cm-1付近の2級アミンのピークを確認し、また、29Si-NMRより-60ppmから-70ppmに新たなピークの出現が確認できた。
(Synthesis Example 9)
As shown in Table 3, 3-aminopropyltrimethoxysilane (trade name: Z-6610, Toray Dow Corning, Ltd.) was added to a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser. Silicone Co., Ltd.) 44.62 g, 3-glycidoxypropyltrimethoxysilane (trade name: Z-6040, Toray Dow Corning Silicone Co., Ltd.) 100 g was added and stirred at 50 ° C. for 72 hours. Silane compound B3 was obtained.
With respect to the obtained silane compound B3, the disappearance of the peak due to the epoxy group near 910 cm −1 was confirmed by FT-IR, the peak of the secondary amine near 1140 cm −1 was confirmed, and 29 Si-NMR Furthermore, the appearance of a new peak was confirmed from -60 ppm to -70 ppm.
(合成例10)
 表3に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、3-アミノプロピルトリメトキシシラン(商品名:Z-6610、東レ・ダウコーニング・シリコーン(株)製)31.61g、3-グリシドキシプロピルトリメトキシシラン(商品名:Z-6040、東レ・ダウコーニング・シリコーン(株)製)100g加え、50℃にて72時間撹拌し、シラン化合物B4を得た。
 得られたシラン化合物B4について、FT-IRにて910cm-1付近のエポキシ基に起因するピークの消失を確認し、1140cm-1付近の2級アミンのピークを確認し、また、29Si-NMRより-60ppmから-70ppmに新たなピークの出現が確認できた。
(Synthesis Example 10)
As shown in Table 3, 3-aminopropyltrimethoxysilane (trade name: Z-6610, Toray Dow Corning, Ltd.) was added to a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser. Silicone Co., Ltd. (311.61 g), 3-glycidoxypropyltrimethoxysilane (trade name: Z-6040, Toray Dow Corning Silicone Co., Ltd.) 100 g was added, and the mixture was stirred at 50 ° C. for 72 hours. Silane compound B4 was obtained.
With respect to the obtained silane compound B4, the disappearance of the peak due to the epoxy group near 910 cm −1 was confirmed by FT-IR, the peak of the secondary amine near 1140 cm −1 was confirmed, and 29 Si-NMR Furthermore, the appearance of a new peak was confirmed from -60 ppm to -70 ppm.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表3において、各配合物質の配合量はgで示される。 In Table 3, the compounding amount of each compounding substance is indicated by g.
(比較合成例1)
 表4に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン(商品名:KBM603、信越化学工業(株)製)50.00g、3-グリシドキシプロピルトリメトキシシラン127.5g加え50℃にて72時間撹拌し、シラン化合物X1を得た。
 得られたシラン化合物X1について、FT-IRにて1410cm-1、1120cm-1付近のアミノ基に起因するピークの消失を確認し、910cm-1付近のエポキシ基に起因するピークの消失を確認した。また、29Si-NMRより-60ppmから-70ppmにピークは観察されなかった。
(Comparative Synthesis Example 1)
As shown in Table 4, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane (trade name: product name) was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser. KBM603 (manufactured by Shin-Etsu Chemical Co., Ltd.) 50.00 g and 3-glycidoxypropyltrimethoxysilane 127.5 g were added and stirred at 50 ° C. for 72 hours to obtain silane compound X1.
The obtained silane compound X1, 1410 cm -1 in FT-IR, to confirm the disappearance of a peak attributable to the amino groups in the vicinity of 1,120 cm -1, to confirm the disappearance of the peak due to the epoxy group in the vicinity of 910 cm -1 . In addition, no peak was observed from −60 ppm to −70 ppm from 29 Si-NMR.
(比較合成例2)
 表4に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、3-アミノプロピルトリメトキシシラン(商品名:Z-6610、東レ・ダウコーニング・シリコーン(株)製)10.00g、3-グリシドキシプロピルトリメトキシシラン(商品名:Z-6040、東レ・ダウコーニング・シリコーン(株)製)15.82g加え、50℃にて72時間撹拌し、シラン化合物X2を得た。
 得られたシラン化合物X2について、FT-IRにて910cm-1付近のエポキシ基に起因するピークの消失を確認し、1140cm-1付近の2級アミンのピークを確認し、また、29Si-NMRより-60ppmから-70ppmに新たなピークの出現が確認できた。
(Comparative Synthesis Example 2)
As shown in Table 4, 3-aminopropyltrimethoxysilane (trade name: Z-6610, Toray Dow Corning, Ltd.) was added to a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser. Silicone Co., Ltd. (10.00 g), 3-glycidoxypropyltrimethoxysilane (trade name: Z-6040, Toray Dow Corning Silicone Co., Ltd.) (15.82 g) was added, and the mixture was stirred at 50 ° C. for 72 hours. Silane compound X2 was obtained.
With respect to the obtained silane compound X2, the disappearance of the peak due to the epoxy group near 910 cm −1 was confirmed by FT-IR, the peak of the secondary amine near 1140 cm −1 was confirmed, and 29 Si-NMR Furthermore, the appearance of a new peak was confirmed from -60 ppm to -70 ppm.
(比較合成例3)
 表4に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、3-アミノプロピルトリメトキシシラン(商品名:Z-6610、東レ・ダウコーニング・シリコーン(株)製)10.00g、3-グリシドキシプロピルトリメトキシシラン(商品名:Z-6040、東レ・ダウコーニング・シリコーン(株)製)158.20g加え、50℃にて72時間撹拌し、シラン化合物X3を得た。
 得られたシラン化合物X3について、FT-IRにて910cm-1付近のエポキシ基に起因するピークの消失を確認し、1140cm-1付近の2級アミンのピークを確認し、また、29Si-NMRより-60ppmから-70ppmに新たなピークの出現が確認できた。
(Comparative Synthesis Example 3)
As shown in Table 4, 3-aminopropyltrimethoxysilane (trade name: Z-6610, Toray Dow Corning, Ltd.) was added to a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device and a reflux condenser. Silicone Co., Ltd. (10.00 g), 3-glycidoxypropyltrimethoxysilane (trade name: Z-6040, Toray Dow Corning Silicone Co., Ltd.) 158.20 g was added, and the mixture was stirred at 50 ° C. for 72 hours. Silane compound X3 was obtained.
With respect to the obtained silane compound X3, the disappearance of the peak due to the epoxy group near 910 cm −1 was confirmed by FT-IR, and the peak of the secondary amine near 1140 cm −1 was confirmed. 29 Si-NMR Furthermore, the appearance of a new peak was confirmed from -60 ppm to -70 ppm.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表4において、各配合物質の配合量はgで示される。 In Table 4, the compounding amount of each compounding substance is indicated by g.
(合成例11)
 表5に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例7で得たシラン化合物B1を100g入れ、続いてオルガチックス TC-750[マツモトファインケミカル(株)製の商品名、チタニウムジイソプロポキシビス(エチルアセトアセテート)]を63.1g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒G1を得た。得られたチタン触媒G1について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 11)
As shown in Table 5, 100 g of the silane compound B1 obtained in Synthesis Example 7 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgatrix TC-750. 63.1 g of [trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.] was added and aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst G1. With respect to the obtained titanium catalyst G1, the change in peak was confirmed by 29 Si-NMR.
(合成例12)
 表5に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例7で得たシラン化合物B1を100g入れ、続いてオルガチックス TC-750を126.2g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒G2を得た。得られたチタン触媒G2について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 12)
As shown in Table 5, 100 g of the silane compound B1 obtained in Synthesis Example 7 was placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, followed by Olgatrix TC-750. Was aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst G2. With respect to the obtained titanium catalyst G2, change in peak was confirmed by 29 Si-NMR.
(合成例13)
 攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、トリエチルアミン23.47g、チタニウムテトラクロライド10g、続いてt-ブチルアルコールを17.19g入れた。室温で2時間撹拌し、沈殿物を濾過し、蒸留精製し、チタニウムテトラt-ブトキサイドを得た。得られたチタニウムテトラt-ブトキサイドを10g、エチルアセトアセテート(日本合成(株)製)を7.65g入れ、室温にて2時間撹拌しその後、70℃にて2時間撹拌した。反応終了後、減圧下にて未反応物等を取り除き、チタン触媒C1を得た。
(Synthesis Example 13)
A flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser was charged with 23.47 g of triethylamine, 10 g of titanium tetrachloride, and then 17.19 g of t-butyl alcohol. The mixture was stirred at room temperature for 2 hours, and the precipitate was filtered and purified by distillation to obtain titanium tetra-t-butoxide. 10 g of the obtained titanium tetra-t-butoxide and 7.65 g of ethyl acetoacetate (manufactured by Nippon Gosei Co., Ltd.) were added and stirred at room temperature for 2 hours, and then stirred at 70 ° C. for 2 hours. After completion of the reaction, unreacted substances and the like were removed under reduced pressure to obtain a titanium catalyst C1.
 続いて、表5に示すように、得られたチタン触媒C1 14.12gに、合成例7で得たシラン化合物B1を19.85g入れ、50℃にて72時間加熱撹拌することにより熟成し、チタン触媒G3を得た。得られたチタン触媒G3について、29Si-NMRよりピークの変化を確認した。 Subsequently, as shown in Table 5, 19.85 g of the silane compound B1 obtained in Synthesis Example 7 was added to 14.12 g of the obtained titanium catalyst C1 and aged by heating and stirring at 50 ° C. for 72 hours. A titanium catalyst G3 was obtained. With respect to the obtained titanium catalyst G3, the change in peak was confirmed by 29 Si-NMR.
(合成例14)
 攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、チタニウムテトライソプロポキシド(商品名:オルガチックス TA-10、マツモトファインケミカル(株)製)を50g、メチルアセトアセテート(日本合成(株)製)を40.85g入れ、室温にて2時間撹拌した後、70℃にて2時間撹拌した。反応終了後、減圧下にて未反応物等を取り除き、チタン触媒C2を得た。
(Synthesis Example 14)
In a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, 50 g of titanium tetraisopropoxide (trade name: Olgatyx TA-10, manufactured by Matsumoto Fine Chemical Co., Ltd.), methylacetate 40.85 g of acetate (manufactured by Nippon Gosei Co., Ltd.) was added, stirred at room temperature for 2 hours, and then stirred at 70 ° C. for 2 hours. After completion of the reaction, unreacted substances and the like were removed under reduced pressure to obtain a titanium catalyst C2.
 続いて、表5に示すように、得られたチタン触媒C2 69.71gに、合成例7で得たシラン化合物B1を106.96g入れ、60℃にて168時間加熱撹拌することにより熟成し、チタン触媒G4を得た。得られたチタン触媒G4について、29Si-NMRよりピークの変化を確認した。 Subsequently, as shown in Table 5, 106.96 g of the silane compound B1 obtained in Synthesis Example 7 was added to 69.71 g of the obtained titanium catalyst C2, and the mixture was aged by heating and stirring at 60 ° C. for 168 hours. A titanium catalyst G4 was obtained. With respect to the obtained titanium catalyst G4, the change in peak was confirmed by 29 Si-NMR.
(合成例15)
 攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、チタニウムテトライソプロポキサイドを50g、イソプロピルアセトアセテート(日本合成(株)製)を50.72g入れ、室温にて2時間撹拌した後、70℃にて2時間撹拌した。反応終了後、減圧下にて未反応物等を取り除き、チタン触媒C3を得た。
(Synthesis Example 15)
50 g of titanium tetraisopropoxide and 50.72 g of isopropyl acetoacetate (manufactured by Nihon Gosei Co., Ltd.) are placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dripping device, and a reflux condenser. The mixture was stirred for 2 hours and then stirred at 70 ° C. for 2 hours. After completion of the reaction, unreacted substances and the like were removed under reduced pressure to obtain a titanium catalyst C3.
 続いて、表5に示すように、得られたチタン触媒C3 79.58gに、合成例7で得たシラン化合物B1を118.85g入れ70℃にて72時間加熱撹拌することにより熟成し、チタン触媒G5を得た。得られたチタン触媒G5について、29Si-NMRよりピークの変化を確認した。 Subsequently, as shown in Table 5, 79.58 g of the obtained titanium catalyst C3 was charged with 118.85 g of the silane compound B1 obtained in Synthesis Example 7, and aged by heating and stirring at 70 ° C. for 72 hours. Catalyst G5 was obtained. With respect to the obtained titanium catalyst G5, the change in peak was confirmed by 29 Si-NMR.
(合成例16)
 表5に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例8で得たシラン化合物B2を118.85g、ビニルトリメトキシシラン(商品名:KBM1003、信越化学工業(株)製)を3.8g、オルガチックス TC-750を78.88g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒G6を得た。得られたチタン触媒G6について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 16)
As shown in Table 5, 118.85 g of the silane compound B2 obtained in Synthesis Example 8 was added to a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser. Name: KBM1003, manufactured by Shin-Etsu Chemical Co., Ltd.) (3.8 g) and ORGATICS TC-750 (78.88 g) were added and aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst G6. With respect to the obtained titanium catalyst G6, the change in peak was confirmed by 29 Si-NMR.
(合成例17)
 表5に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例8で得たシラン化合物B2を184.28g、オルガチックス TC-750を100.00g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒G7を得た。得られたチタン触媒G7について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 17)
As shown in Table 5, 184.28 g of the silane compound B2 obtained in Synthesis Example 8 and ORGATICS TC-750 were placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser. 100.00 g was added and aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst G7. With respect to the obtained titanium catalyst G7, the change in peak was confirmed by 29 Si-NMR.
(合成例18)
 表5に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例9で得たシラン化合物B3を126.93g、オルガチックス TC-750を100.00g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒G8を得た。得られたチタン触媒G8について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 18)
As shown in Table 5, 126.93 g of the silane compound B3 obtained in Synthesis Example 9 and ORGATICS TC-750 were placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser. 100.00 g was added and aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst G8. With respect to the obtained titanium catalyst G8, the change in peak was confirmed by 29 Si-NMR.
(合成例19)
 表5に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例10で得たシラン化合物B4を156.37g、オルガチックス TC-750を100.00g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒G9を得た。得られたチタン触媒G9について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 19)
As shown in Table 5, 156.37 g of the silane compound B4 obtained in Synthesis Example 10 and Olgax TC-750 were placed in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser. 100.00 g was added and matured by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst G9. With respect to the obtained titanium catalyst G9, the change in peak was confirmed by 29 Si-NMR.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表5において、各配合物質の配合量はgで示される。シラン化合物B1~B4はそれぞれ合成例7~10で得たシラン化合物B1~B4であり、チタン触媒C1~C3はそれぞれ合成例13~15で得たチタン触媒C1~C3であり、その他の配合物質の詳細は下記の通りである。
 オルガチックス TC-750:マツモトファインケミカル(株)製の商品名、チタニウムジイソプロポキシビス(エチルアセトアセテート)。
 ビニルトリメトキシシラン:商品名:KBM1003、信越化学工業(株)製。
In Table 5, the compounding quantity of each compounding substance is shown by g. Silane compounds B1 to B4 are silane compounds B1 to B4 obtained in Synthesis Examples 7 to 10, respectively. Titanium catalysts C1 to C3 are titanium catalysts C1 to C3 obtained in Synthesis Examples 13 to 15, respectively. The details are as follows.
ORGATICS TC-750: trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
Vinyltrimethoxysilane: Trade name: KBM1003, manufactured by Shin-Etsu Chemical Co., Ltd.
(合成例20)
 表6に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例7で得たシラン化合物B1を10g、オルガチックス TC-750を40g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒G10を得た。得られたチタン触媒G10について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 20)
As shown in Table 6, in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, 10 g of the silane compound B1 obtained in Synthesis Example 7 and 40 g of Olgatics TC-750 were placed. The mixture was aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst G10. With respect to the obtained titanium catalyst G10, the change in peak was confirmed by 29 Si-NMR.
(合成例21)
 表6に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例7で得たシラン化合物B1を60g、オルガチックス TC-750を40g入れ、70℃にて144時間加熱撹拌することにより熟成した後、ノルマルパラフィン(商品名:N-11、JX日鉱日石エネルギー(株)製)を100g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒G11を得た。得られたチタン触媒G11について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 21)
As shown in Table 6, in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, 60 g of the silane compound B1 obtained in Synthesis Example 7 and 40 g of Olgax TC-750 were placed. After maturing by heating and stirring at 70 ° C. for 144 hours, 100 g of normal paraffin (trade name: N-11, manufactured by JX Nippon Oil & Energy Corporation) is added and stirring is performed at 70 ° C. for 144 hours. To obtain a titanium catalyst G11. With respect to the obtained titanium catalyst G11, the change in peak was confirmed by 29 Si-NMR.
(合成例22)
 表6に示すように配合物質の配合割合を変更した以外は合成例21と同様の方法によりチタン触媒G12を得た。得られたチタン触媒G12について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 22)
As shown in Table 6, a titanium catalyst G12 was obtained by the same method as in Synthesis Example 21 except that the blending ratio of the blended materials was changed. With respect to the obtained titanium catalyst G12, the change in peak was confirmed by 29 Si-NMR.
(合成例23)
 表6に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例7で得たシラン化合物B1を10g、(D)シラン化合物としてフェニルトリメトキシシラン(商品名:KBM103、信越化学工業(株)製)を50g、オルガチックス TC-750を40g、ノルマルパラフィンを100g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒G13を得た。得られたチタン触媒G13について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 23)
As shown in Table 6, 10 g of the silane compound B1 obtained in Synthesis Example 7 was added to a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, and (D) 50 g of methoxysilane (trade name: KBM103, manufactured by Shin-Etsu Chemical Co., Ltd.), 40 g of Organics TC-750 and 100 g of normal paraffin were added and matured by heating and stirring at 70 ° C. for 144 hours, and titanium catalyst G13 Got. With respect to the obtained titanium catalyst G13, the change in peak was confirmed by 29 Si-NMR.
(合成例24)
 表6に示すように配合物質の配合割合を変更した以外は合成例23と同様の方法によりチタン触媒G14を得た。得られたチタン触媒G14について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 24)
As shown in Table 6, a titanium catalyst G14 was obtained by the same method as in Synthesis Example 23, except that the blending ratio of the blended materials was changed. With respect to the obtained titanium catalyst G14, the change in peak was confirmed by 29 Si-NMR.
(合成例25~28)
 表6に示すように(D)シラン化合物を変更した以外は合成例24と同様の方法によりチタン触媒G15~G18を得た。得られたチタン触媒G15~G18について、29Si-NMRよりピークの変化を確認した。
(Synthesis Examples 25 to 28)
As shown in Table 6, titanium catalysts G15 to G18 were obtained in the same manner as in Synthesis Example 24 except that (D) the silane compound was changed. With respect to the obtained titanium catalysts G15 to G18, change in peak was confirmed by 29 Si-NMR.
(合成例29)
 表6に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例7で得たシラン化合物B1を10g、(D)シラン化合物としてフェニルトリメトキシシラン(商品名:KBM103、信越化学工業(株)製)を50g入れ、続いてオルガチックス TC-750を40g入れ、70℃にて144時間加熱撹拌することにより熟成した後、ノルマルパラフィンを100g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒G19を得た。得られたチタン触媒G19について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 29)
As shown in Table 6, 10 g of the silane compound B1 obtained in Synthesis Example 7 was added to a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, and (D) 50 g of methoxysilane (trade name: KBM103, manufactured by Shin-Etsu Chemical Co., Ltd.) is added, followed by 40 g of ORGATICS TC-750, aging by heating and stirring at 70 ° C. for 144 hours, and then 100 g of normal paraffin. The mixture was aged by heating and stirring at 70 ° C. for 144 hours to obtain a titanium catalyst G19. With respect to the obtained titanium catalyst G19, the change in peak was confirmed by 29 Si-NMR.
(合成例30)
 表6に示すように、攪拌装置、窒素ガス導入管、温度計、滴下装置および環流冷却器を備えたフラスコに、合成例7で得たシラン化合物B1を10g、オルガチックス TC-750を40g入れ、70℃にて144時間加熱撹拌することにより熟成した後、(D)シラン化合物としてフェニルトリメトキシシラン(商品名:KBM103、信越化学工業(株)製)を50g、ノルマルパラフィンを100g入れ、70℃にて144時間加熱撹拌することにより熟成し、チタン触媒G20を得た。得られたチタン触媒G20について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 30)
As shown in Table 6, in a flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, a dropping device, and a reflux condenser, 10 g of the silane compound B1 obtained in Synthesis Example 7 and 40 g of Olgatics TC-750 were placed. The mixture was aged by heating and stirring at 70 ° C. for 144 hours, and (D) 50 g of phenyltrimethoxysilane (trade name: KBM103, manufactured by Shin-Etsu Chemical Co., Ltd.) as a silane compound and 100 g of normal paraffin were added. The mixture was aged by heating and stirring at 144 ° C. for 144 hours to obtain a titanium catalyst G20. With respect to the obtained titanium catalyst G20, the change in peak was confirmed by 29 Si-NMR.
(合成例31)
 表6に示すように配合物質の配合割合を変更した以外は合成例29と同様の方法によりチタン触媒G21を得た。得られたチタン触媒G21について、29Si-NMRよりピークの変化を確認した。
(Synthesis Example 31)
As shown in Table 6, a titanium catalyst G21 was obtained in the same manner as in Synthesis Example 29 except that the blending ratio of the blended materials was changed. With respect to the obtained titanium catalyst G21, the change in peak was confirmed by 29 Si-NMR.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表6において、各配合物質の配合量はgで示される。シラン化合物B1は合成例7で得たシラン化合物B1であり、その他の配合物質の詳細は下記の通りである。
 オルガチックス TC-750:マツモトファインケミカル(株)製の商品名、チタニウムジイソプロポキシビス(エチルアセトアセテート)。
 フェニルトリメトキシシラン:商品名:KBM-103、信越化学工業(株)製。
 ビニルトリメトキシシラン:商品名:KBM-1003、信越化学工業(株)製。
 メチルトリメトキシシラン:商品名:KBM-13、信越化学工業(株)製。
 3-グリシドキシプロピルトリメトキシシラン:商品名:KBM-403、信越化学工業(株)製。
 デシルトリメトキシシラン:商品名:KBM-3013C、信越化学工業(株)製。
In Table 6, the compounding quantity of each compounding substance is shown by g. Silane compound B1 is silane compound B1 obtained in Synthesis Example 7, and details of other compounding substances are as follows.
ORGATICS TC-750: trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
Phenyltrimethoxysilane: Trade name: KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd.
Vinyltrimethoxysilane: Trade name: KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd.
Methyltrimethoxysilane: Trade name: KBM-13, manufactured by Shin-Etsu Chemical Co., Ltd.
3-Glycidoxypropyltrimethoxysilane: Trade name: KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.
Decyltrimethoxysilane: Trade name: KBM-3013C, manufactured by Shin-Etsu Chemical Co., Ltd.
(実施例1)
 表7に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例4で得たビニル系重合体A4固形分換算で40gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A4に含まれる残存モノマーおよびm-キシレンの除去を行い、室温まで冷却した。その後、合成例12で得たチタン触媒G2を16.5g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表8に示した。
Example 1
As shown in Table 7, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A4 obtained in Synthesis Example 4 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomer and m-xylene contained in the vinyl polymer A4, and cooled to room temperature. Thereafter, 16.5 g of the titanium catalyst G2 obtained in Synthesis Example 12 was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 8 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例2)
 表7に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例3で得たビニル系重合体A3固形分換算で40gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A3に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、合成例13で得たチタン触媒G3を11.0g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表8に示した。
(Example 2)
As shown in Table 7, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature. Thereafter, 11.0 g of the titanium catalyst G3 obtained in Synthesis Example 13 was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 8 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例3)
 表7に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例3で得たビニル系重合体A3固形分換算で40gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A3に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、合成例14で得たチタン触媒G4を9.0g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表8に示した。
(Example 3)
As shown in Table 7, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature. Thereafter, 9.0 g of the titanium catalyst G4 obtained in Synthesis Example 14 was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 8 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例4)
 表7に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例3で得たビニル系重合体A3固形分換算で40gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A3に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、合成例15で得たチタン触媒G5を11.0g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表8に示した。
Example 4
As shown in Table 7, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature. Thereafter, 11.0 g of the titanium catalyst G5 obtained in Synthesis Example 15 was added, and degassed and stirred at 25 ° C. to obtain a curable composition. Table 8 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例5)
 表7に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例3で得たビニル系重合体A3固形分換算で40gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A3に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、合成例16で得たチタン触媒G6を9.0g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表8に示した。
(Example 5)
As shown in Table 7, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature. Thereafter, 9.0 g of the titanium catalyst G6 obtained in Synthesis Example 16 was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 8 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例6)
 表7に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例5で得た重合体A5を100g、(E)表面処理炭酸カルシウムとしてMCコートP-1を50g、揺変剤としてディスパロン#6500を1g、老化防止剤としてノクラックCDを1g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温(25℃)まで戻し、(F)希釈剤としてクエン酸アセチルトリエチルを5gと、合成例11で得たチタン触媒G1を10g入れ、さらに脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表8に示した。
(Example 6)
As shown in Table 7, 100 g of the polymer A5 obtained in Synthesis Example 5 was added to a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, and (E) surface-treated calcium carbonate. MC coating P-1 50g, Dispalon # 6500 1g as a thixotropic agent, 1g NOCLACK CD 1% as an anti-aging agent, heated (100 ° C), degassed and stirred for 1 hour until room temperature (25 ° C) Then, 5 g of acetyltriethyl citrate as a diluent (F) and 10 g of the titanium catalyst G1 obtained in Synthesis Example 11 were added and further deaerated and stirred to obtain a curable composition. Table 8 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例7)
 表7に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例5で得た重合体A5を100gと合成例17で得たチタン触媒G7を10.0g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表8に示した。
(Example 7)
As shown in Table 7, 100 g of the polymer A5 obtained in Synthesis Example 5 and titanium obtained in Synthesis Example 17 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 10.0 g of catalyst G7 was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 8 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例8)
 表7に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例5で得た重合体A5を100gと合成例18で得たチタン触媒G8を9.0g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表8に示した。
(Example 8)
As shown in Table 7, 100 g of the polymer A5 obtained in Synthesis Example 5 and titanium obtained in Synthesis Example 18 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 9.0 g of catalyst G8 was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 8 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(実施例9)
 表7に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例5で得た重合体A5を100gと合成例19で得たチタン触媒G9を9.0g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表8に示した。
Example 9
As shown in Table 7, 100 g of the polymer A5 obtained in Synthesis Example 5 and titanium obtained in Synthesis Example 19 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 9.0 g of catalyst G9 was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 8 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表7において、各配合物質の配合量はgで示され、重合体A3及びA4は固形分換算の配合量で示される。重合体A1~A2はそれぞれ合成例1~2で得たポリオキシアルキレン系重合体A1~A2であり、重合体A3~A4はそれぞれ合成例3~4で得たビニル系重合体A3~A4であり、重合体A5は合成例5で得た有機重合体A5であり、チタン触媒G1~G9はそれぞれ合成例11~19で得たチタン触媒G1~G9である。その他の配合物質の詳細は下記の通りである。
 MCコートP-1:白石工業(株)製の商品名、コロイド炭酸カルシウム、表面パラフィンワックス処理。
 ディスパロン#6500:楠本化成(株)製の商品名、アマイドワックス。
 ノクラックCD:大内振興(株)製の商品名、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン。
 クエン酸アセチルトリエチル:東京化成工業(株)製。
In Table 7, the compounding quantity of each compounding substance is shown by g, and polymer A3 and A4 are shown by the compounding quantity of solid content conversion. The polymers A1 to A2 are the polyoxyalkylene polymers A1 to A2 obtained in Synthesis Examples 1 and 2, respectively, and the polymers A3 to A4 are the vinyl polymers A3 to A4 obtained in Synthesis Examples 3 to 4, respectively. The polymer A5 is the organic polymer A5 obtained in Synthesis Example 5, and the titanium catalysts G1 to G9 are the titanium catalysts G1 to G9 obtained in Synthesis Examples 11 to 19, respectively. Details of other compounding substances are as follows.
MC coat P-1: trade name manufactured by Shiroishi Kogyo Co., Ltd., colloidal calcium carbonate, surface paraffin wax treatment.
Disparon # 6500: trade name, amide wax, manufactured by Enomoto Kasei Co., Ltd.
NOCRACK CD: trade name, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine, manufactured by Ouchi Shinko Co., Ltd.
Acetyltriethyl citrate: manufactured by Tokyo Chemical Industry Co., Ltd.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
(実施例10)
 表9に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を100gと合成例7で得たシラン化合物B1を6g、オルガチックス TC-750を4g入れ、25℃で脱気撹拌し、硬化性組成物を得た。該硬化性組成物の貯蔵安定性試験、硬化性試験、表面硬化性試験及び接着性試験の結果を表10に示した。
(Example 10)
As shown in Table 9, 100 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 7 were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser. 6 g of the silane compound B1 obtained in the above and 4 g of ORGATICS TC-750 were added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 10 shows the results of the storage stability test, curability test, surface curability test, and adhesion test of the curable composition.
(実施例11)
 表9に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例3で得たビニル系重合体A3固形分換算で40gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A3に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、合成例7で得たシラン化合物B1を6g、オルガチックス TC-750を4g入れ、25℃で脱気撹拌し、硬化性組成物を得た。該硬化性組成物の貯蔵安定性試験、硬化性試験、表面硬化性試験及び接着性試験の結果を表10に示した。
(Example 11)
As shown in Table 9, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature. Thereafter, 6 g of the silane compound B1 obtained in Synthesis Example 7 and 4 g of ORGATICS TC-750 were added, and degassed and stirred at 25 ° C. to obtain a curable composition. Table 10 shows the results of the storage stability test, curability test, surface curability test, and adhesion test of the curable composition.
(実施例12)
 表9に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例3で得たビニル系重合体A3固形分換算で40gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A3に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、合成例8で得たシラン化合物B2を6g、オルガチックス TC-750を4g入れ、25℃で脱気撹拌し、硬化性組成物を得た。該硬化性組成物の貯蔵安定性試験、硬化性試験、表面硬化性試験及び接着性試験の結果を表10に示した。
(Example 12)
As shown in Table 9, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature. Thereafter, 6 g of the silane compound B2 obtained in Synthesis Example 8 and 4 g of ORGATICS TC-750 were added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 10 shows the results of the storage stability test, curability test, surface curability test, and adhesion test of the curable composition.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表9において、各配合物質の配合量はgで示され、重合体A3は固形分換算の配合量で示される。重合体A1~A2はそれぞれ合成例1~2で得たポリオキシアルキレン系重合体A1~A2であり、重合体A3は合成例3で得たビニル系重合体A3であり、シラン化合物B1~B2はそれぞれ合成例7~8で得たシラン化合物B1~B2であり、オルガチックス TC-750はマツモトファインケミカル(株)製の商品名、チタニウムジイソプロポキシビス(エチルアセトアセテート)である。 In Table 9, the compounding amount of each compounding substance is indicated by g, and the polymer A3 is indicated by the compounding amount in terms of solid content. Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively. Polymer A3 is the vinyl polymer A3 obtained in Synthesis Example 3 and silane compounds B1 and B2. Are silane compounds B1 and B2 obtained in Synthesis Examples 7 to 8, respectively, and ORGATICS TC-750 is a trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
(比較例1)
 表11に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を100gとオルガチックス TC-750を4g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表12に示した。
(Comparative Example 1)
As shown in Table 11, 100 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Olgax TC were placed in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube and water-cooled condenser. 4g of -750 was added and degassed and stirred at 25 ° C to obtain a curable composition. Table 12 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
 (比較例2)
 表11に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例3で得たビニル系重合体A3固形分換算で40gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A3に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、3-グリシドキシプロピルトリメトキシシランを3g、オルガチックス TC-750を4g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表12に示した。
(Comparative Example 2)
As shown in Table 11, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube, and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature. Thereafter, 3 g of 3-glycidoxypropyltrimethoxysilane and 4 g of ORGATIC TC-750 were added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 12 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(比較例3)
 表11に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例3で得たビニル系重合体A3固形分換算で40gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A3に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、QS-20を5g入れ、100℃で加熱脱気撹拌し、室温(25℃)まで戻し、3-グリシドキシプロピルトリメトキシシラン3g、オルガチックス TC-750を4g入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表12に示した。
(Comparative Example 3)
As shown in Table 11, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube, and a water-cooled condenser. 10 g of the polyoxyalkylene polymer A2 obtained in the above and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature. Thereafter, 5 g of QS-20 was added, heated and degassed and stirred at 100 ° C., and returned to room temperature (25 ° C.). Then, 3 g of 3-glycidoxypropyltrimethoxysilane and 4 g of Olgatics TC-750 were added and dehydrated at 25 ° C. Air-stirred to obtain a curable composition. Table 12 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(比較例4)
 表11に示すように攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例3で得たビニル系重合体A3固形分換算で40gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A3に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、ライトンA-5を50g入れ、100℃で加熱脱気撹拌をした。室温(25℃)まで戻し比較合成例1で得たシラン化合物X1を6g、オルガチックス TC-750を4gに入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表12に示した。
(Comparative Example 4)
As shown in Table 11, in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube, and a water-cooled condenser, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was used in Synthesis Example 2. 10 g of the obtained polyoxyalkylene polymer A2 and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature. Thereafter, 50 g of Ryton A-5 was added and heated and deaerated and stirred at 100 ° C. The mixture was returned to room temperature (25 ° C.), 6 g of the silane compound X1 obtained in Comparative Synthesis Example 1 and 4 g of ORGATIC TC-750 were added, and degassed and stirred at 25 ° C. to obtain a curable composition. Table 12 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(比較例5)
 表11に示すように攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例3で得たビニル系重合体A3固形分換算で40gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A3に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、比較合成例2で得たシラン化合物X2を6g、オルガチックス TC-750を4gに入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表12に示した。
(Comparative Example 5)
As shown in Table 11, in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube, and a water-cooled condenser, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was used in Synthesis Example 2. 10 g of the obtained polyoxyalkylene polymer A2 and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature. Thereafter, 6 g of the silane compound X2 obtained in Comparative Synthesis Example 2 and 4 g of ORGATICS TC-750 were put into 4 g, and deaerated and stirred at 25 ° C. to obtain a curable composition. Table 12 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
(比較例6)
 表11に示すように攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を50gと合成例2で得たポリオキシアルキレン系重合体A2を10gと合成例3で得たビニル系重合体A3固形分換算で40gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A3に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、入れ、100℃で加熱脱気撹拌をした。室温(25℃)まで戻し比較合成例3で得たシラン化合物X3を6g、オルガチックス TC-750を4gに入れ、25℃で脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験、貯蔵安定性試験、表面硬化性試験及び接着性試験の結果を表12に示した。
(Comparative Example 6)
As shown in Table 11, in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube, and a water-cooled condenser, 50 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was used in Synthesis Example 2. 10 g of the obtained polyoxyalkylene polymer A2 and 40 g of vinyl polymer A3 obtained in Synthesis Example 3 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A3, and cooled to room temperature. Then, it put in and heated and degassed and stirred at 100 ° C. The mixture was returned to room temperature (25 ° C.), 6 g of the silane compound X3 obtained in Comparative Synthesis Example 3 and 4 g of Orgatics TC-750 were added, and degassed and stirred at 25 ° C. to obtain a curable composition. Table 12 shows the results of the curability test, the storage stability test, the surface curability test, and the adhesion test of the curable composition.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 表11において、各配合物質の配合量はgで示され、重合体A3は固形分換算の配合量で示される。重合体A1~A2はそれぞれ合成例1~2で得たポリオキシアルキレン系重合体A1~A2であり、重合体A3は合成例3で得たビニル系重合体A3であり、シラン化合物X1~X3はそれぞれ比較合成例1~3で得たシラン化合物X1~X3であり、その他の配合物質の詳細は下記の通りである。
 QS-20:(株)トクヤマ製の商品名、一次粒径5~50μm、表面無処理の親水性乾式シリカ。
 ライトンA-5:白石工業(株)製の商品名、粉砕炭酸カルシウム、表面脂肪酸処理。
 オルガチックス TC-750:マツモトファインケミカル(株)製の商品名、チタニウムジイソプロポキシビス(エチルアセトアセテート)。
In Table 11, the compounding quantity of each compounding substance is shown by g, and polymer A3 is shown by the compounding quantity of solid content conversion. The polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively, and the polymer A3 is the vinyl polymer A3 obtained in Synthesis Example 3 and the silane compounds X1 to X3. Are silane compounds X1 to X3 obtained in Comparative Synthesis Examples 1 to 3, respectively, and details of other compounding substances are as follows.
QS-20: trade name, manufactured by Tokuyama Corporation, primary dry particle size of 5 to 50 μm, surface-untreated hydrophilic dry silica.
Ryton A-5: trade name manufactured by Shiroishi Kogyo Co., Ltd., ground calcium carbonate, surface fatty acid treatment.
ORGATICS TC-750: trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
(実施例13)
 表13に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を45gと合成例2で得たポリオキシアルキレン系重合体A2を20gと合成例6で得たビニル系重合体A6固形分換算で35gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A6に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、合成例7で得たシラン化合物B1を1g、オルガチックス TC-750を4g入れ、25℃で脱気撹拌し、硬化性組成物を得た。該硬化性組成物の貯蔵安定性試験、硬化性試験及び表面硬化性試験の結果を表14に示した。
(Example 13)
As shown in Table 13, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 45 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 20 g of the polyoxyalkylene polymer A2 obtained in the above and 35 g of vinyl polymer A6 obtained in Synthesis Example 6 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature. Thereafter, 1 g of the silane compound B1 obtained in Synthesis Example 7 and 4 g of ORGATIC TC-750 were added and deaerated and stirred at 25 ° C. to obtain a curable composition. Table 14 shows the results of the storage stability test, the curability test, and the surface curability test of the curable composition.
(実施例14)
 表13に示す如く配合物質の配合割合を変更した以外は実施例13と同様の方法で硬化性組成物を調製した。該硬化性組成物の貯蔵安定性試験、硬化性試験及び表面硬化性試験の結果を表14に示した。
(Example 14)
A curable composition was prepared in the same manner as in Example 13 except that the blending ratio of the blended materials was changed as shown in Table 13. Table 14 shows the results of the storage stability test, the curability test, and the surface curability test of the curable composition.
(実施例15)
 表13に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を45gと合成例2で得たポリオキシアルキレン系重合体A2を20gと合成例6で得たビニル系重合体A6固形分換算で35gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A6に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、合成例20で得たチタン触媒G10を5g入れ、25℃で脱気撹拌し、硬化性組成物を得た。該硬化性組成物の貯蔵安定性試験、硬化性試験及び表面硬化性試験の結果を表14に示した。
(Example 15)
As shown in Table 13, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 45 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 20 g of the polyoxyalkylene polymer A2 obtained in the above and 35 g of vinyl polymer A6 obtained in Synthesis Example 6 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature. Thereafter, 5 g of the titanium catalyst G10 obtained in Synthesis Example 20 was added and degassed and stirred at 25 ° C. to obtain a curable composition. Table 14 shows the results of the storage stability test, the curability test, and the surface curability test of the curable composition.
(実施例16)
 表13に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を45gと合成例2で得たポリオキシアルキレン系重合体A2を20gと合成例6で得たビニル系重合体A6固形分換算で35gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A6に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、合成例20で得たチタン触媒G10を5g、フェニルトリメトキシシランを5g入れ、25℃で脱気撹拌し、硬化性組成物を得た。該硬化性組成物の貯蔵安定性試験、硬化性試験及び表面硬化性試験の結果を表14に示した。
(Example 16)
As shown in Table 13, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 45 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 20 g of the polyoxyalkylene polymer A2 obtained in the above and 35 g of vinyl polymer A6 obtained in Synthesis Example 6 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature. Thereafter, 5 g of the titanium catalyst G10 obtained in Synthesis Example 20 and 5 g of phenyltrimethoxysilane were added, and the mixture was deaerated and stirred at 25 ° C. to obtain a curable composition. Table 14 shows the results of the storage stability test, the curability test, and the surface curability test of the curable composition.
(実施例17~19)
 表13に示す如く(D)シラン化合物を変更した以外は実施例16と同様の方法で硬化性組成物を調製した。該硬化性組成物の貯蔵安定性試験、硬化性試験及び表面硬化性試験の結果を表14に示した。
(Examples 17 to 19)
A curable composition was prepared in the same manner as in Example 16 except that (D) the silane compound was changed as shown in Table 13. Table 14 shows the results of the storage stability test, the curability test, and the surface curability test of the curable composition.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
 表13において、各配合物質の配合量はgで示され、重合体A6は固形分換算の配合量で示される。重合体A1~A2はそれぞれ合成例1~2で得たポリオキシアルキレン系重合体A1~A2であり、重合体A6は合成例6で得たビニル系重合体A6であり、シラン化合物B1は合成例7で得たシラン化合物B1であり、チタン触媒G10は合成例20で得たチタン触媒G10であり、その他の配合物質の詳細は下記の通りである。
 オルガチックス TC-750:マツモトファインケミカル(株)製の商品名、チタニウムジイソプロポキシビス(エチルアセトアセテート)。
 フェニルトリメトキシシラン:商品名:KBM-103、信越化学工業(株)製。
 ビニルトリメトキシシラン:商品名:KBM-1003、信越化学工業(株)製。
 デシルトリメトキシシラン:商品名:KBM-3013C、信越化学工業(株)製。
 テトラエトキシシラン:商品名:KBE-04、信越化学工業(株)製。
In Table 13, the compounding quantity of each compounding substance is shown by g, and the polymer A6 is shown by the compounding quantity of solid content conversion. Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively. Polymer A6 is the vinyl polymer A6 obtained in Synthesis Example 6, and silane compound B1 is synthesized. It is the silane compound B1 obtained in Example 7, the titanium catalyst G10 is the titanium catalyst G10 obtained in Synthesis Example 20, and details of other compounding materials are as follows.
ORGATICS TC-750: trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
Phenyltrimethoxysilane: Trade name: KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd.
Vinyltrimethoxysilane: Trade name: KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd.
Decyltrimethoxysilane: Trade name: KBM-3013C, manufactured by Shin-Etsu Chemical Co., Ltd.
Tetraethoxysilane: Trade name: KBE-04, manufactured by Shin-Etsu Chemical Co., Ltd.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
(実施例20)
 表15に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を27gと合成例2で得たポリオキシアルキレン系重合体A2を52gと合成例6で得たビニル系重合体A6固形分換算で21gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A6に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、ホワイトンSB(白石カルシウム(株)製、重質炭酸カルシウム、平均粒子径2.2μm)を40g、カーレックス300(丸尾カルシウム(株)製、脂肪酸表面処理炭酸カルシウム、一次粒子径(電子顕微鏡)0.05μm)を20g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温まで戻し、合成例21で得たチタン触媒G11を20g入れ、25℃で脱気撹拌し、硬化性組成物を得た。該硬化性組成物の貯蔵安定性試験、硬化性試験及び接着性試験の結果を表16及び17に示した。
(Example 20)
As shown in Table 15, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of vinyl polymer A6 obtained in Synthesis Example 6 were mixed in terms of solid content. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature. Thereafter, 40 g of Whiten SB (manufactured by Shiraishi Calcium Co., Ltd., heavy calcium carbonate, average particle size 2.2 μm), Carlex 300 (manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle size (electronic) (Microscope) 0.05 μm) was added, heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature, 20 g of the titanium catalyst G11 obtained in Synthesis Example 21 was charged, degassed and stirred at 25 ° C., A curable composition was obtained. Tables 16 and 17 show the results of the storage stability test, the curability test, and the adhesion test of the curable composition.
(実施例21~27)
 表15に示す如く、チタン触媒G11の代わりにチタン触媒G12~G18を用いた以外は実施例20と同様の方法で硬化性組成物を調製した。該硬化性組成物の貯蔵安定性試験、硬化性試験及び接着性試験の結果を表16及び17に示した。
(Examples 21 to 27)
As shown in Table 15, curable compositions were prepared in the same manner as in Example 20, except that the titanium catalysts G12 to G18 were used instead of the titanium catalyst G11. Tables 16 and 17 show the results of the storage stability test, the curability test, and the adhesion test of the curable composition.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 表15において、各配合物質の配合量はgで示され、重合体A6は固形分換算の配合量で示される。重合体A1~A2はそれぞれ合成例1~2で得たポリオキシアルキレン系重合体A1~A2であり、重合体A6は合成例6で得たビニル系重合体A6であり、チタン触媒G11~G18は合成例21~28で得たチタン触媒G11~G18であり、その他の配合物質の詳細は下記の通りである。
 ホワイトンSB:白石カルシウム(株)製、重質炭酸カルシウム、平均粒子径2.2μm。
 カーレックス300:丸尾カルシウム(株)製、脂肪酸表面処理炭酸カルシウム、一次粒子径(電子顕微鏡)0.05μm。
 ノルマルパラフィン:商品名:N-11、JX日鉱日石エネルギー(株)製。
In Table 15, the compounding quantity of each compounding substance is shown by g, and polymer A6 is shown by the compounding quantity of solid content conversion. Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively. Polymer A6 is the vinyl polymer A6 obtained in Synthesis Example 6, and titanium catalysts G11 to G18. Are titanium catalysts G11 to G18 obtained in Synthesis Examples 21 to 28, and details of other compounding materials are as follows.
Whiteon SB: Shiraishi Calcium Co., Ltd., heavy calcium carbonate, average particle size 2.2 μm.
Carlex 300: manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.05 μm.
Normal paraffin: Trade name: N-11, manufactured by JX Nippon Oil & Energy Corporation.
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
(実施例28)
 表18に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を45gと合成例2で得たポリオキシアルキレン系重合体A2を20gと合成例6で得たビニル系重合体A6固形分換算で35gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A6に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、(E)充填剤としてホワイトンSBを40g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温まで戻し、合成例7で得たシラン化合物B1を1g、オルガチックス TC-750を4g入れ、25℃で脱気撹拌し、硬化性組成物を得た。該硬化性組成物の貯蔵安定性試験、硬化性試験及び接着性試験の結果を表19及び20に示した。
(Example 28)
As shown in Table 18, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 45 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 20 g of the polyoxyalkylene polymer A2 obtained in the above and 35 g of vinyl polymer A6 obtained in Synthesis Example 6 in terms of solid content were mixed. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature. Thereafter, (E) 40 g of whiten SB was added as a filler, heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature, 1 g of the silane compound B1 obtained in Synthesis Example 7, 4g of 750 was added and deaerated and stirred at 25 ° C to obtain a curable composition. Tables 19 and 20 show the results of the storage stability test, the curability test, and the adhesion test of the curable composition.
(実施例29~33)
 表18に示す如く、(E)充填剤を変更した以外は実施例28と同様の方法で硬化性組成物を調製した。該硬化性組成物の貯蔵安定性試験、硬化性試験及び接着性試験の結果を表19及び20に示した。
(Examples 29 to 33)
As shown in Table 18, a curable composition was prepared in the same manner as in Example 28 except that (E) the filler was changed. Tables 19 and 20 show the results of the storage stability test, the curability test, and the adhesion test of the curable composition.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
 表18において、各配合物質の配合量はgで示され、重合体A6は固形分換算の配合量で示される。重合体A1~A2はそれぞれ合成例1~2で得たポリオキシアルキレン系重合体A1~A2であり、重合体A6は合成例6で得たビニル系重合体A6であり、シラン化合物B1は合成例7で得たシラン化合物B1であり、その他の配合物質の詳細は下記の通りである。
 オルガチックス TC-750:マツモトファインケミカル(株)製の商品名、チタニウムジイソプロポキシビス(エチルアセトアセテート)。
 フェニルトリメトキシシラン:商品名:KBM-103、信越化学工業(株)製。
 ホワイトンSB:白石カルシウム(株)製の商品名、重質炭酸カルシウム、平均粒子径2.2μm。
 カーレックス300:丸尾カルシウム(株)製の商品名、脂肪酸表面処理炭酸カルシウム、一次粒子径(電子顕微鏡)0.05μm。
 カルファイン200:丸尾カルシウム(株)製の商品名、脂肪酸表面処理炭酸カルシウム、一次粒子径(電子顕微鏡)0.07μm。
 ビスコエクセル-30:白石工業(株)製の商品名、脂肪酸表面処理炭酸カルシウム、一次粒子径(電子顕微鏡)0.03μm。
 MS-100M:丸尾カルシウム(株)製の商品名、脂肪酸・樹脂酸表面処理炭酸カルシウム、一次粒子径(電子顕微鏡)0.05μm。
 MCコートP-1:白石工業(株)製の商品名、コロイド炭酸カルシウム、表面パラフィンワックス処理、平均粒子径3.0μm。
In Table 18, the compounding quantity of each compounding substance is shown by g, and polymer A6 is shown by the compounding quantity of solid content conversion. Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively. Polymer A6 is the vinyl polymer A6 obtained in Synthesis Example 6, and silane compound B1 is synthesized. The details of the other compounding materials are as follows in the silane compound B1 obtained in Example 7.
ORGATICS TC-750: trade name, titanium diisopropoxybis (ethyl acetoacetate) manufactured by Matsumoto Fine Chemical Co., Ltd.
Phenyltrimethoxysilane: Trade name: KBM-103, manufactured by Shin-Etsu Chemical Co., Ltd.
Whiteon SB: trade name, heavy calcium carbonate, manufactured by Shiraishi Calcium Co., Ltd., average particle size 2.2 μm.
Carlex 300: trade name manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.05 μm.
Calfine 200: trade name manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.07 μm.
ViscoExcel-30: trade name manufactured by Shiroishi Kogyo Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle size (electron microscope) 0.03 μm.
MS-100M: trade name manufactured by Maruo Calcium Co., Ltd., fatty acid / resin acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.05 μm.
MC coat P-1: trade name manufactured by Shiroishi Kogyo Co., Ltd., colloidal calcium carbonate, surface paraffin wax treatment, average particle size 3.0 μm.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
(実施例34)
 表21に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を27gと合成例2で得たポリオキシアルキレン系重合体A2を52gと合成例6で得たビニル系重合体A6固形分換算で21gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A6に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、(E)充填剤としてホワイトンSBを40g、表面処理炭酸カルシウムとしてカーレックス300を20g、老化防止剤としてノクラックCDを1g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温(25℃)まで戻し、合成例30で得たチタン触媒G20を10g入れ、さらに脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験及び貯蔵安定性試験の結果を表22に示した。
(Example 34)
As shown in Table 21, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of vinyl polymer A6 obtained in Synthesis Example 6 were mixed in terms of solid content. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature. Thereafter, (E) 40 g of whiten SB as the filler, 20 g of Carlex 300 as the surface-treated calcium carbonate, and 1 g of NOCRACK CD as the anti-aging agent are added, heated (100 ° C.), degassed and stirred for 1 hour. The temperature was returned to room temperature (25 ° C.), 10 g of the titanium catalyst G20 obtained in Synthesis Example 30 was added, and the mixture was further degassed and stirred to obtain a curable composition. Table 22 shows the results of the curability test and the storage stability test of the curable composition.
(実施例35)
 表21に示す如く、チタン触媒G20の代わりにチタン触媒G19を用いた以外は実施例34と同様の方法で硬化性組成物を調製した。該硬化性組成物の硬化性試験及び貯蔵安定性試験の結果を表22に示した。
(Example 35)
As shown in Table 21, a curable composition was prepared in the same manner as in Example 34 except that the titanium catalyst G19 was used instead of the titanium catalyst G20. Table 22 shows the results of the curability test and the storage stability test of the curable composition.
(実施例36)
 表21に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を27gと合成例2で得たポリオキシアルキレン系重合体A2を52gと合成例6で得たビニル系重合体A6固形分換算で21gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A6に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、水酸化アルミニウムとしてアルモリックスB316を150g、老化防止剤としてノクラックCDを5g入れ、加熱(100℃)、脱気、撹拌を1時間し、室温(25℃)まで戻し、(F)希釈剤としてアイソパーMを20g、(D)成分としてビニルトリメトキシシランを2.5gと合成例31で得たチタン触媒G21を9.2g入れ、さらに脱気撹拌し硬化性組成物を得た。該硬化性組成物の硬化性試験及び貯蔵安定性試験の結果を表22に、接着性試験の結果を表23に示した。
(Example 36)
As shown in Table 21, in a 300 mL flask equipped with a stirrer, thermometer, nitrogen inlet, monomer charging tube, and water-cooled condenser, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was synthesized. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of vinyl polymer A6 obtained in Synthesis Example 6 were mixed in terms of solid content. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature. Thereafter, 150 g of Almorix B316 as aluminum hydroxide and 5 g of NOCRACK CD as an anti-aging agent were added, heated (100 ° C.), degassed and stirred for 1 hour, returned to room temperature (25 ° C.), (F) Diluent As the component (D), 2.5 g of vinyltrimethoxysilane as the component (D) and 9.2 g of the titanium catalyst G21 obtained in Synthesis Example 31 were added and further deaerated and stirred to obtain a curable composition. Table 22 shows the results of the curability test and the storage stability test of the curable composition, and Table 23 shows the results of the adhesion test.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 表21において、各配合物質の配合量はgで示され、重合体A6は固形分換算の配合量で示される。重合体A1~A2はそれぞれ合成例1~2で得たポリオキシアルキレン系重合体A1~A2であり、重合体A6は合成例6で得たビニル系重合体A6であり、チタン触媒G19~G21はそれぞれ合成例29~31で得たチタン触媒G19~G21であり、その他の配合物質の詳細は下記の通りである。
 ビニルトリメトキシシラン:商品名:KBM-1003、信越化学工業(株)製。
 ホワイトンSB:白石カルシウム(株)製の商品名、重質炭酸カルシウム、平均粒子径2.2μm。
 カーレックス300:丸尾カルシウム(株)製の商品名、脂肪酸表面処理炭酸カルシウム、一次粒子径(電子顕微鏡)0.05μm。
 アルモリックスB316:アルモリックス(株)製の商品名、水酸化アルミニウム、平均粒子径18μm。
 アイソパーM:エクソンモービル有限会社製の商品名、イソパラフィン。
 ノクラックCD:大内振興(株)製の商品名、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン。
In Table 21, the compounding quantity of each compounding substance is shown by g, and the polymer A6 is shown by the compounding quantity of solid content conversion. The polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively. The polymer A6 is the vinyl polymer A6 obtained in Synthesis Example 6, and the titanium catalysts G19 to G21. Are titanium catalysts G19 to G21 obtained in Synthesis Examples 29 to 31, respectively, and details of other compounding materials are as follows.
Vinyltrimethoxysilane: Trade name: KBM-1003, manufactured by Shin-Etsu Chemical Co., Ltd.
Whiteon SB: trade name, heavy calcium carbonate, manufactured by Shiraishi Calcium Co., Ltd., average particle size 2.2 μm.
Carlex 300: trade name manufactured by Maruo Calcium Co., Ltd., fatty acid surface-treated calcium carbonate, primary particle diameter (electron microscope) 0.05 μm.
Armorix B316: trade name, aluminum hydroxide, average particle diameter of 18 μm, manufactured by Armorix Co., Ltd.
Isopar M: trade name, isoparaffin, manufactured by ExxonMobil Co., Ltd.
NOCRACK CD: trade name, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine, manufactured by Ouchi Shinko Co., Ltd.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
(実施例37)
 表24に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を100g、(E)非晶質シリカとしてヒューズレックス(登録商標)E-2[(株)龍森製、平均粒径6μmの非晶質シリカ]を40g入れ、100℃、10mmHgで1時間混合した後、20℃に冷却し、合成例24で得たチタン触媒G14を21.2g入れ、10分間真空混合して、硬化性組成物を得た。
 該硬化性組成物の貯蔵安定性試験、硬化性試験、表面硬化性試験、接着性試験及び透明性試験の結果を表25に示した。
(Example 37)
As shown in Table 24, 100 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 was added to a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube and a water-cooled condenser, (E) 40 g of Furex (registered trademark) E-2 [manufactured by Tatsumori Co., Ltd., amorphous silica having an average particle size of 6 μm] was added as amorphous silica, mixed at 100 ° C. and 10 mmHg for 1 hour, and then heated to 20 ° C. After cooling, 21.2 g of the titanium catalyst G14 obtained in Synthesis Example 24 was added and vacuum mixed for 10 minutes to obtain a curable composition.
Table 25 shows the results of the storage stability test, the curability test, the surface curability test, the adhesion test and the transparency test of the curable composition.
(実施例38)
 表24に示すように、攪拌機、温度計、窒素導入口、モノマー装入管および水冷コンデンサーを装着した300mLのフラスコに、合成例1で得たポリオキシアルキレン系重合体A1を27gと合成例2で得たポリオキシアルキレン系重合体A2を52gと合成例6で得たビニル系重合体A6固形分換算で21gを混合した。混合物を加熱(120℃)、減圧脱気し、ビニル系重合体A6に含まれる残存モノマーおよび酢酸エチルの除去を行い、室温まで冷却した。その後、(E)高分子粉体としてMR13G(綜研化学(株)製、メタクリル酸エステル重合体粉体、平均粒径約1μm)を20g、屈折率調整剤としてFTR8100(三井石油(株)製、C5とC9の共重合系石油樹脂)を17g入れ、100℃、10mmHgで1時間混合した後、20℃に冷却し、合成例24で得たチタン触媒G14を21.2g入れ、10分間真空混合して、硬化性組成物を得た。
(Example 38)
As shown in Table 24, 27 g of the polyoxyalkylene polymer A1 obtained in Synthesis Example 1 and Synthesis Example 2 were placed in a 300 mL flask equipped with a stirrer, a thermometer, a nitrogen inlet, a monomer charging tube, and a water-cooled condenser. 52 g of the polyoxyalkylene polymer A2 obtained in the above and 21 g of vinyl polymer A6 obtained in Synthesis Example 6 were mixed in terms of solid content. The mixture was heated (120 ° C.) and degassed under reduced pressure to remove residual monomers and ethyl acetate contained in the vinyl polymer A6, and cooled to room temperature. Thereafter, (E) 20 g of MR13G (manufactured by Soken Chemical Co., Ltd., methacrylic acid ester polymer powder, average particle size of about 1 μm) as the polymer powder, and FTR8100 (manufactured by Mitsui Oil Co., Ltd.) as the refractive index adjuster 17 g of C5 and C9 copolymer petroleum resin) was mixed at 100 ° C. and 10 mmHg for 1 hour, then cooled to 20 ° C., and 21.2 g of titanium catalyst G14 obtained in Synthesis Example 24 was added and vacuum mixed for 10 minutes. Thus, a curable composition was obtained.
 なお、FTR8100の配合量は次の方法で決定する。まず、(A)成分に屈折率調整剤となるFTR8100を適当な比で加熱溶融し、20℃でアッベ屈折計で屈折率を測定する。FTR8100配合比と屈折率のX-Yプロットをとる。主充填剤となる粉体の屈折率に一致するFTR8100配合量が求める配合量である。 In addition, the compounding quantity of FTR8100 is determined by the following method. First, FTR8100 serving as a refractive index adjusting agent is heated and melted to the component (A) at an appropriate ratio, and the refractive index is measured with an Abbe refractometer at 20 ° C. An XY plot of FTR8100 compounding ratio and refractive index is taken. The FTR8100 blending amount that matches the refractive index of the powder serving as the main filler is the blending amount.
 該硬化性組成物の貯蔵安定性試験、硬化性試験、表面硬化性試験、接着性試験及び透明性試験の結果を表25に示した。 Table 25 shows the results of the storage stability test, curability test, surface curability test, adhesion test and transparency test of the curable composition.
(実施例39)
 表24に示した如く、配合物質を変更した以外は実施例38と同様の方法で硬化性組成物を調製した。該硬化性組成物の貯蔵安定性試験、硬化性試験、表面硬化性試験、接着性試験及び透明性試験の結果を表25に示した。
(Example 39)
As shown in Table 24, a curable composition was prepared in the same manner as in Example 38 except that the compounding substances were changed. Table 25 shows the results of the storage stability test, the curability test, the surface curability test, the adhesion test and the transparency test of the curable composition.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
 表24において、各配合物質の配合量はgで示され、重合体A6は固形分換算の配合量で示される。重合体A1~A2はそれぞれ合成例1~2で得たポリオキシアルキレン系重合体A1~A2であり、重合体A6は合成例6で得たビニル系重合体A6であり、チタン触媒G14は合成例24で得たチタン触媒G14であり、その他の配合物質の詳細は下記の通りである。
 MR13G:綜研化学(株)製の商品名、メタクリル酸エステル重合体粉体、平均粒径約1μm。
 ヒューズレックス(登録商標)E-2:(株)龍森製の商品名、非晶質シリカ、平均粒径(レーザ法で粒度分布を測定した際の50%重量平均):6μm。
 FTR8100:三井石油(株)製の商品名、C5とC9の共重合系石油樹脂。
In Table 24, the compounding quantity of each compounding substance is shown by g, and the polymer A6 is shown by the compounding quantity of solid content conversion. Polymers A1 and A2 are the polyoxyalkylene polymers A1 and A2 obtained in Synthesis Examples 1 and 2, respectively, Polymer A6 is the vinyl polymer A6 obtained in Synthesis Example 6, and titanium catalyst G14 is synthesized. The titanium catalyst G14 obtained in Example 24 and details of other compounding materials are as follows.
MR13G: trade name manufactured by Soken Chemical Co., Ltd., methacrylic acid ester polymer powder, average particle size of about 1 μm.
Fuselex (registered trademark) E-2: trade name, manufactured by Tatsumori Co., Ltd., amorphous silica, average particle size (50% weight average when measuring particle size distribution by laser method): 6 μm.
FTR8100: trade name of Mitsui Oil Co., Ltd., C5 and C9 copolymer petroleum resin.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 表7~10及び13~25に示すように本発明の硬化性組成物は十分な接着性、貯蔵安定性及び硬化性を示した。 As shown in Tables 7 to 10 and 13 to 25, the curable composition of the present invention exhibited sufficient adhesion, storage stability and curability.

Claims (16)

  1.  (A)1分子中に平均して0.8個以上の架橋性珪素基を含有し且つ主鎖がポリシロキサンでない有機重合体、
     (B)下記式(1)で示されるエポキシシラン化合物と、下記式(2)で示されるアミノシラン化合物とを、該アミノシラン化合物1モルに対して該エポキシシラン化合物を1.5~10モルの範囲で反応させてなるシラン化合物、及び
     (C)下記式(3)で示されるチタニウムキレート及び下記式(4)で表されるチタニウムキレートからなる群から選択される1種以上のチタン触媒、
    を含む硬化性組成物であって、
     前記(A)有機重合体100質量部に対して、前記(B)シラン化合物を0.1~40質量部、前記(C)チタン触媒を0.1~40質量部配合することを特徴とする硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001

    (前記式(1)において、R~Rはそれぞれ水素原子又はアルキル基であり、Rはアルキレン基またはアルキレンオキシアルキレン基であり、Rは一価炭化水素基であり、Rはアルキル基であり、aは0、1又は2である。)
    Figure JPOXMLDOC01-appb-C000002

    (前記式(2)において、R~R12はそれぞれ水素原子又はアルキル基であり、R13は一価炭化水素基であり、R14はアルキル基であり、bは0又は1である。)
    Figure JPOXMLDOC01-appb-C000003

    (前記式(3)において、n個のR21は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR22は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、4-n個のR23および4-n個のR24は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基であり、nは0、1、2又は3である。)
    Figure JPOXMLDOC01-appb-C000004

    (前記式(4)において、R25は、置換あるいは非置換の2価の炭素原子数1~20の炭化水素基であり、2個のR26は、それぞれ独立に水素原子または置換あるいは非置換の炭素原子数1~20の炭化水素基であり、2個のR27および2個のR28は、それぞれ独立に置換あるいは非置換の炭素原子数1~20の炭化水素基である。)
    (A) an organic polymer containing 0.8 or more crosslinkable silicon groups on average in one molecule and the main chain is not polysiloxane;
    (B) An epoxysilane compound represented by the following formula (1) and an aminosilane compound represented by the following formula (2) in a range of 1.5 to 10 mol of the epoxysilane compound with respect to 1 mol of the aminosilane compound. (C) one or more titanium catalysts selected from the group consisting of a titanium chelate represented by the following formula (3) and a titanium chelate represented by the following formula (4),
    A curable composition comprising
    0.1 to 40 parts by mass of the (B) silane compound and 0.1 to 40 parts by mass of the (C) titanium catalyst are blended with 100 parts by mass of the (A) organic polymer. Curable composition.
    Figure JPOXMLDOC01-appb-C000001

    (In the formula (1), R 1 to R 3 are each a hydrogen atom or an alkyl group, R 4 is an alkylene group or an alkyleneoxyalkylene group, R 5 is a monovalent hydrocarbon group, and R 6 is An alkyl group, and a is 0, 1 or 2.)
    Figure JPOXMLDOC01-appb-C000002

    (In the formula (2), R 7 to R 12 are each a hydrogen atom or an alkyl group, R 13 is a monovalent hydrocarbon group, R 14 is an alkyl group, and b is 0 or 1. )
    Figure JPOXMLDOC01-appb-C000003

    (In the formula (3), n R 21 s are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, and 4-n R 22 s are each independently a hydrogen atom. Or a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms, wherein 4-n R 23 and 4-n R 24 are independently substituted or unsubstituted carbon atoms having 1 to 20 carbon atoms. And n is 0, 1, 2 or 3.)
    Figure JPOXMLDOC01-appb-C000004

    (In the formula (4), R 25 is a substituted or unsubstituted divalent hydrocarbon group having 1 to 20 carbon atoms, and the two R 26 are each independently a hydrogen atom or substituted or unsubstituted. The two R 27 and the two R 28 are each independently a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms.)
  2.  前記(B)シラン化合物が、前記エポキシシラン化合物と前記アミノシラン化合物とを40~100℃の反応温度で反応させてなるシラン化合物であることを特徴とする請求項1載の硬化性組成物。 The curable composition according to claim 1, wherein the (B) silane compound is a silane compound obtained by reacting the epoxysilane compound and the aminosilane compound at a reaction temperature of 40 to 100 ° C.
  3.  前記(A)有機重合体が、1分子中に平均して0.8個以上の架橋性珪素基を含有するポリオキシアルキレン系重合体、1分子中に平均して0.8個以上の架橋性珪素基を含有する飽和炭化水素系重合体、及び1分子中に平均して0.8個以上の架橋性珪素基を含有する(メタ)アクリル酸エステル系重合体からなる群から選択される1種以上であることを特徴とする請求項1又2記載の硬化性組成物。 The (A) organic polymer is a polyoxyalkylene polymer containing 0.8 or more crosslinkable silicon groups on average per molecule, and 0.8 or more crosslinks on average per molecule. Selected from the group consisting of a saturated hydrocarbon polymer containing a functional silicon group and a (meth) acrylic acid ester polymer containing an average of 0.8 or more crosslinkable silicon groups in one molecule. The curable composition according to claim 1 or 2, wherein the curable composition is one or more.
  4.  前記架橋性珪素基がトリメトキシシリル基を含むことを特徴とする請求項1~3のいずれか1項記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, wherein the crosslinkable silicon group contains a trimethoxysilyl group.
  5.  (D)1分子中に加水分解性珪素基を1個有し且つ第1級アミノ基を有なさいシラン化合物をさらに含有することを特徴とする請求項1~4のいずれか1項記載の硬化性組成物。 The curing according to any one of claims 1 to 4, further comprising (D) a silane compound having one hydrolyzable silicon group in one molecule and having a primary amino group. Sex composition.
  6.  前記(D)シラン化合物が、下記式(12)で示される化合物であることを特徴とする請求項5記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000005

    (前記式(12)において、R41はメチル基又はエチル基であり、R41が複数存在する場合、それらは同一であってもよく、異なっていてもよいものであり、R42はメチル基又はエチル基であり、R42が複数存在する場合、それらは同一であってもよく、異なっていてもよいものであり、R43は炭素数1~10の炭化水素基であり、mは2又は3であり、nは0又は1である。)
    The curable composition according to claim 5, wherein the (D) silane compound is a compound represented by the following formula (12).
    Figure JPOXMLDOC01-appb-C000005

    (In the formula (12), R 41 is a methyl group or an ethyl group, and when a plurality of R 41 are present, they may be the same or different, and R 42 is a methyl group. Or when there are a plurality of R 42 s , they may be the same or different, R 43 is a hydrocarbon group having 1 to 10 carbon atoms, and m is 2 Or 3 and n is 0 or 1.)
  7.  (E)充填剤をさらに含有することを特徴とする請求項1~6のいずれか1項記載の硬化性組成物。 The curable composition according to any one of claims 1 to 6, further comprising (E) a filler.
  8.  前記(E)充填剤が、表面処理炭酸カルシウム、粒径0.01~300μmの非晶質シリカ及び粒径0.01~300μmの高分子粉体からなる群から選択される1種以上であることを特徴とする請求項7記載の硬化性組成物。 The filler (E) is at least one selected from the group consisting of surface-treated calcium carbonate, amorphous silica having a particle size of 0.01 to 300 μm, and polymer powder having a particle size of 0.01 to 300 μm. The curable composition according to claim 7.
  9.  前記(A)有機重合体の屈折率と前記非晶質シリカの屈折率の差が0.1以下であることを特徴とする請求項8記載の硬化性組成物。 The curable composition according to claim 8, wherein the difference between the refractive index of the organic polymer (A) and the refractive index of the amorphous silica is 0.1 or less.
  10.  前記(A)有機重合体を主成分とする液相成分の屈折率と前記高分子粉体の屈折率の差が0.1以下であることを特徴とする請求項8又は9記載の硬化性組成物。 The curability according to claim 8 or 9, wherein the difference between the refractive index of the liquid phase component (A) containing the organic polymer as a main component and the refractive index of the polymer powder is 0.1 or less. Composition.
  11.  前記(A)有機重合体に屈折率調整剤を加えることにより、前記(A)有機重合体を主成分とする液相成分の屈折率と前記高分子粉体の屈折率の差を0.1以下とすることを特徴とする請求項10記載の硬化性組成物。 By adding a refractive index adjusting agent to the (A) organic polymer, the difference between the refractive index of the liquid phase component mainly composed of the (A) organic polymer and the refractive index of the polymer powder is 0.1. It is set as follows, The curable composition of Claim 10 characterized by the above-mentioned.
  12.  前記高分子粉体が、(メタ)アクリル酸エステル、酢酸ビニル、エチレン及び塩化ビニルからなる群から選択されたモノマーを単独で重合するか、もしくは、該モノマーと1種以上のビニル系モノマーとを共重合することによって得られる重合体を原料とした高分子粉体であることを特徴とする請求項8~11のいずれか1項記載の硬化性組成物。 The polymer powder polymerizes a monomer selected from the group consisting of (meth) acrylic acid ester, vinyl acetate, ethylene and vinyl chloride alone, or the monomer and one or more vinyl monomers The curable composition according to any one of claims 8 to 11, which is a polymer powder made from a polymer obtained by copolymerization.
  13.  前記高分子粉体が、アクリル系高分子粉体及びビニル系高分子粉体からなる群から選択される1種以上であることを特徴とする請求項12項記載の硬化性組成物。 13. The curable composition according to claim 12, wherein the polymer powder is at least one selected from the group consisting of acrylic polymer powder and vinyl polymer powder.
  14.  (F)希釈剤をさらに含有することを特徴とする請求項1~13のいずれか1項記載の硬化性組成物。 The curable composition according to any one of claims 1 to 13, further comprising (F) a diluent.
  15.  金属水酸化物をさらに含有することを特徴とする請求項1~14のいずれか1項記載の硬化性組成物。 The curable composition according to any one of claims 1 to 14, further comprising a metal hydroxide.
  16.  前記金属水酸化物が水酸化アルミニウムであることを特徴とする請求項15記載の硬化性組成物。 The curable composition according to claim 15, wherein the metal hydroxide is aluminum hydroxide.
PCT/JP2011/072531 2010-10-27 2011-09-30 Curable composition WO2012056850A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137010589A KR101554248B1 (en) 2010-10-27 2011-09-30 Curable compositions
CN201180048962.9A CN103168080B (en) 2010-10-27 2011-09-30 Solidification compound

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-240930 2010-10-27
JP2010240930 2010-10-27
JP2011062517 2011-03-22
JP2011-062517 2011-03-22
JP2011-204705 2011-09-20
JP2011204705A JP5887786B2 (en) 2010-10-27 2011-09-20 Curable composition

Publications (1)

Publication Number Publication Date
WO2012056850A1 true WO2012056850A1 (en) 2012-05-03

Family

ID=45993580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072531 WO2012056850A1 (en) 2010-10-27 2011-09-30 Curable composition

Country Status (5)

Country Link
JP (1) JP5887786B2 (en)
KR (1) KR101554248B1 (en)
CN (1) CN103168080B (en)
TW (1) TWI512029B (en)
WO (1) WO2012056850A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047823A1 (en) * 2011-09-30 2013-04-04 積水フーラー株式会社 Curable composition
WO2015155949A1 (en) * 2014-04-09 2015-10-15 東レ・ダウコーニング株式会社 Adhesion promoter and curable organopolysiloxane composition containing same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160083634A1 (en) * 2013-04-24 2016-03-24 Sekisui Fuller Company, Ltd. Curable composition and joint structure produced using same
JP2015025689A (en) * 2013-07-25 2015-02-05 セメダイン株式会社 Method for bonding radiation shielding material
JP6206025B2 (en) * 2013-09-17 2017-10-04 セメダイン株式会社 1-pack room temperature moisture curable adhesive composition for wood flooring
JP6265160B2 (en) * 2015-03-30 2018-01-24 セメダイン株式会社 One-component water-based adhesive composition
WO2024148574A1 (en) * 2023-01-12 2024-07-18 Henkel Ag & Co. Kgaa Adhesive compositions for low energy surfaces and adhesives therefrom
CN117380258B (en) * 2023-12-12 2024-02-27 河北华特汽车部件有限公司 Catalyst for treating automobile exhaust and its process

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528854B2 (en) * 1972-01-13 1977-03-11
JPS6323226B2 (en) * 1984-07-26 1988-05-16 Dau Kooningu Ltd
JPS6460656A (en) * 1987-08-28 1989-03-07 Toray Silicone Co Room temperature-curable organopolysiloxane composition
JPH10195085A (en) * 1996-11-18 1998-07-28 Toray Dow Corning Silicone Co Ltd Carbasilatrane derivative, its production, adhesion accelerator and hardenable silicone composition
JPH1171458A (en) * 1996-08-14 1999-03-16 Asahi Optical Co Ltd Transparent resin and composite with adhesiveness, ultraviolet-curable composition for coating film formation, anti-reflection glass with scattering prevention function, cushioning material, ultraviolet-cutting sheet, ultraviolet-cutting filter for television, filter for vdt, and high-refractive-index primer composition and production of lens with primer using the primer composition
JP2005248169A (en) * 2004-02-02 2005-09-15 Chisso Corp Silane coupling agent composition, surface-treating agent, inorganic filler, and synthetic resin molded article
JP2005290275A (en) * 2004-04-01 2005-10-20 Sekisui Chem Co Ltd Curable composition, sealing material and adhesive
WO2005108492A1 (en) * 2004-05-07 2005-11-17 Kaneka Corporation Curable composition
JP2005325314A (en) * 2004-05-17 2005-11-24 Kaneka Corp Curable composition
JP2006089619A (en) * 2004-09-24 2006-04-06 Shin Etsu Chem Co Ltd Room temperature curing organopolysiloxane composition
WO2007037368A1 (en) * 2005-09-30 2007-04-05 Kaneka Corporation One-pack type curable composition
JP2010215715A (en) * 2009-03-13 2010-09-30 Shin-Etsu Chemical Co Ltd Adhesion promoter and curable resin composition

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS528854B2 (en) * 1972-01-13 1977-03-11
JPS6323226B2 (en) * 1984-07-26 1988-05-16 Dau Kooningu Ltd
JPS6460656A (en) * 1987-08-28 1989-03-07 Toray Silicone Co Room temperature-curable organopolysiloxane composition
JPH1171458A (en) * 1996-08-14 1999-03-16 Asahi Optical Co Ltd Transparent resin and composite with adhesiveness, ultraviolet-curable composition for coating film formation, anti-reflection glass with scattering prevention function, cushioning material, ultraviolet-cutting sheet, ultraviolet-cutting filter for television, filter for vdt, and high-refractive-index primer composition and production of lens with primer using the primer composition
JPH10195085A (en) * 1996-11-18 1998-07-28 Toray Dow Corning Silicone Co Ltd Carbasilatrane derivative, its production, adhesion accelerator and hardenable silicone composition
JP2005248169A (en) * 2004-02-02 2005-09-15 Chisso Corp Silane coupling agent composition, surface-treating agent, inorganic filler, and synthetic resin molded article
JP2005290275A (en) * 2004-04-01 2005-10-20 Sekisui Chem Co Ltd Curable composition, sealing material and adhesive
WO2005108492A1 (en) * 2004-05-07 2005-11-17 Kaneka Corporation Curable composition
JP2005325314A (en) * 2004-05-17 2005-11-24 Kaneka Corp Curable composition
JP2006089619A (en) * 2004-09-24 2006-04-06 Shin Etsu Chem Co Ltd Room temperature curing organopolysiloxane composition
WO2007037368A1 (en) * 2005-09-30 2007-04-05 Kaneka Corporation One-pack type curable composition
JP2010215715A (en) * 2009-03-13 2010-09-30 Shin-Etsu Chemical Co Ltd Adhesion promoter and curable resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047823A1 (en) * 2011-09-30 2013-04-04 積水フーラー株式会社 Curable composition
WO2015155949A1 (en) * 2014-04-09 2015-10-15 東レ・ダウコーニング株式会社 Adhesion promoter and curable organopolysiloxane composition containing same
JPWO2015155949A1 (en) * 2014-04-09 2017-04-13 東レ・ダウコーニング株式会社 Adhesion promoter and curable organopolysiloxane composition containing the same
US10358542B2 (en) 2014-04-09 2019-07-23 Dow Toray Co., Ltd. Adhesion promoter and curable organopolysiloxane composition containing same

Also Published As

Publication number Publication date
KR20130060348A (en) 2013-06-07
JP5887786B2 (en) 2016-03-16
JP2012211299A (en) 2012-11-01
CN103168080A (en) 2013-06-19
TWI512029B (en) 2015-12-11
KR101554248B1 (en) 2015-09-18
TW201231536A (en) 2012-08-01
CN103168080B (en) 2015-10-21

Similar Documents

Publication Publication Date Title
JP6527589B2 (en) Curable composition
JP5887786B2 (en) Curable composition
JP6475615B2 (en) Curable composition and cured product thereof
JP5991523B2 (en) Room temperature moisture curable adhesive composition
JP6356123B2 (en) Curable composition
KR100709734B1 (en) Curing composition and method for producing curing composition
JP6108514B2 (en) Curable composition
JP6161103B2 (en) Method for producing curable composition
JP5971522B2 (en) Curable composition
JP2013241578A (en) Curable composition
CN116997610A (en) Curable composition and cured product thereof
JP2005082750A (en) Curable composition excellent in adhesive property
JP2016210879A (en) Curable composition
JP6052061B2 (en) Curable composition and curing catalyst
JP6425187B2 (en) Moisture curable type curable composition
JP6667125B2 (en) Curable composition with excellent thixotropic properties
JP5991056B2 (en) Curable composition and method for producing an adhesive structure with the curable composition interposed
JP5370369B2 (en) Curable composition
JP5311529B2 (en) Curable composition
JP2016047912A (en) Curable composition having excellent preservation stability
JP2013129754A (en) Method for manufacturing display device, and electric and electronic equipment, motorcycle and automobile each mounted with the display device
WO2023162664A1 (en) Curable composition and use of same
JP2023055495A (en) Moisture-curable adhesive composition
JP2010168596A (en) Curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137010589

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835990

Country of ref document: EP

Kind code of ref document: A1