WO2012056723A1 - 3d image display device and 3d image display method - Google Patents

3d image display device and 3d image display method Download PDF

Info

Publication number
WO2012056723A1
WO2012056723A1 PCT/JP2011/006070 JP2011006070W WO2012056723A1 WO 2012056723 A1 WO2012056723 A1 WO 2012056723A1 JP 2011006070 W JP2011006070 W JP 2011006070W WO 2012056723 A1 WO2012056723 A1 WO 2012056723A1
Authority
WO
WIPO (PCT)
Prior art keywords
stereoscopic
cursor
abnormal shadow
image
shadow candidate
Prior art date
Application number
PCT/JP2011/006070
Other languages
French (fr)
Japanese (ja)
Inventor
俊孝 阿賀野
孝夫 桑原
靖子 八尋
大田 恭義
玲 長谷川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012056723A1 publication Critical patent/WO2012056723A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/022Stereoscopic imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/502Clinical applications involving diagnosis of breast, i.e. mammography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/08Biomedical applications

Definitions

  • the present invention relates to a stereoscopic image display device that detects a radiographic image for each imaging direction by irradiating a subject with radiation from two different imaging directions, and displays a stereoscopic image using the two detected radiographic images.
  • the present invention relates to a stereoscopic image display method.
  • a stereoscopically viewable image (hereinafter referred to as a stereoscopic image or a stereo image) is generated based on a plurality of images with parallax obtained by photographing the same subject from different directions.
  • Such stereoscopic image generation is used not only in the fields of digital cameras and televisions but also in the field of radiographic imaging. That is, the patient is irradiated with radiation from different directions, the radiation transmitted through the subject is detected by a radiation image detector, and a plurality of radiation images having parallax are obtained, and these radiations are acquired.
  • a stereoscopic image is generated based on the image. By generating a stereoscopic image in this way, the observer can observe a radiological image with a sense of depth, which is more suitable for diagnosis. A radiographic image can be observed.
  • the density distribution feature and the morphological feature of the abnormal shadow are calculated using computer processing, as in the device that displays the two-dimensional radiation image.
  • Detection of abnormal shadow candidates in a radiographic image using computer aided diagnosis (CAD) that automatically detects abnormal shadow candidates based on the detection, and indicating the position of the detected abnormal shadow candidate The result is displayed on the display unit so as to be stereoscopically viewable.
  • CAD computer aided diagnosis
  • JP 2004-329742 A Japanese Patent Laid-Open No. 6-301863 JP-A-5-507568 JP-A-11-185058
  • a stereoscopic cursor for designating an abnormal shadow candidate is displayed in a subject image overlapping in the depth direction. It is extremely difficult to recognize and recognize the position of the stereoscopic cursor in the depth direction, and it is difficult for the observer to accurately match the position of the abnormal shadow candidate intended for the stereoscopic cursor.
  • Patent Documents 2 and 3 disclose a method of automatically moving a cursor on a graphic or a selected coordinate closest to the cursor in a two-dimensional CAD used in architectural design or mechanical design.
  • Patent Document 4 in order to select an object hidden inside a complex object accurately, a sub-window is displayed near the cursor to display all the hidden objects. A method for enabling is disclosed.
  • Patent Documents 2 to 4 are for CAD for designing to move a figure or the like, and the Patent Documents 2 to 4 disclose nothing about CAD for medical diagnosis. Absent. In addition, Patent Documents 2 and 3 do not disclose anything related to stereoscopic images.
  • the present invention has been made in view of the above circumstances, and provides a stereoscopic image display device and a stereoscopic image display method capable of accurately moving a stereoscopic cursor to a position of an abnormal shadow candidate intended by an observer. It is intended.
  • the stereoscopic image display device of the present invention includes a display unit that displays a stereoscopic image that can be stereoscopically viewed using a radiographic image for each imaging direction acquired by irradiating a subject with radiation from different imaging directions;
  • a stereoscopic cursor display control unit that causes the display unit to display a stereoscopic cursor that can move in the depth direction and the in-plane direction of the stereoscopic image displayed on the display unit;
  • An abnormal shadow candidate detecting unit for detecting an abnormal shadow candidate from each of the radiographic images for each imaging direction;
  • An abnormal shadow candidate display control unit that causes the display unit to display the position of the abnormal shadow candidate detected by the abnormal shadow candidate detection unit together with the stereoscopic image;
  • An input unit for inputting an instruction to move the three-dimensional cursor;
  • the stereoscopic cursor is moved based on the movement instruction of the stereoscopic cursor input by the input unit, and when the position of the abnormal shadow candidate is displayed on the display unit, the ster
  • the three-dimensional cursor position control unit moves the three-dimensional cursor to the position of the abnormal shadow candidate closest to the current position of the three-dimensional cursor.
  • the abnormal shadow candidate display control unit changes the display mode of the position of the abnormal shadow candidate second closest to the current position of the stereoscopic cursor to the display unit. It may be displayed.
  • the display mode may be blinking.
  • the stereoscopic image display method of the present invention includes a display unit that displays a stereoscopic image that can be stereoscopically viewed using a radiation image for each of the imaging directions acquired by irradiating the subject with radiation from different imaging directions;
  • a stereoscopic cursor display control unit that causes the display unit to display a stereoscopic cursor that can move in the depth direction and the in-plane direction of the stereoscopic image displayed on the display unit;
  • a stereoscopic image display method in a stereoscopic image display device comprising an input unit for inputting an instruction to move the stereoscopic cursor, Detecting abnormal shadow candidates from each of the radiographic images for each imaging direction; Displaying the position of the detected abnormal shadow candidate together with the stereoscopic image on the display unit;
  • the solid cursor is moved based on the movement instruction of the solid cursor input by the input unit, and the position of the abnormal shadow candidate is displayed on the display unit.
  • the solid cursor is moved to the position of the abnormal shadow
  • the solid cursor is moved to the position of the abnormal shadow candidate closest to the current position of the solid cursor.
  • the display mode of the position of the abnormal shadow candidate that is second closest to the current position of the stereoscopic cursor may be changed and displayed on the display unit.
  • the display mode may blink.
  • an abnormal shadow candidate is detected from each of the radiographic images for each photographing direction, and the position of the detected abnormal shadow candidate together with the stereoscopic image
  • the 3D cursor is moved based on the input movement instruction of the 3D cursor displayed on the display unit, and when the position of the abnormal shadow candidate is displayed on the display unit, the 3D cursor is determined in advance from the position of the abnormal shadow candidate. Since the stereoscopic cursor is moved to the position of the abnormal shadow candidate when it is located within the predetermined range, the observer intends even if it is difficult for the observer to recognize the depth direction position of the stereoscopic cursor. The stereoscopic cursor can be accurately moved to the position of the abnormal shadow candidate intended by the observer simply by moving the stereoscopic cursor to the vicinity of the abnormal shadow candidate.
  • FIG. 1 is a schematic configuration diagram of a breast image photographing display system using an embodiment of a stereoscopic image display device of the present invention.
  • the figure which looked at the arm part of the mammography display system shown in FIG. 1 from the right direction of FIG. 1 is a block diagram showing a schematic configuration inside a computer of the breast image capturing and displaying system shown in FIG.
  • FIG. 1 is a diagram showing a schematic configuration of the entire breast image photographing display system of the present embodiment.
  • a breast image radiographing display system 1 includes a mammography apparatus 10, a computer 2 connected to the mammography apparatus 10, a monitor 3 connected to the computer 2, and an input unit. 4 is provided.
  • the mammography apparatus 10 includes a base 11, a rotary shaft 12 that can move in the vertical direction (Z direction) with respect to the base 11, and can rotate.
  • the arm part 13 connected with the base 11 is provided.
  • FIG. 2 shows the arm 13 viewed from the right direction in FIG.
  • the arm section 13 has an alphabet C shape, and a radiation table 16 is attached to one end of the arm section 13 so as to face the imaging table 14 at the other end.
  • the rotation and vertical movement of the arm unit 13 are controlled by an arm controller 31 incorporated in the base 11.
  • a radiation image detector 15 such as a flat panel detector, and a detector controller 33 for controlling reading of a charge signal from the radiation image detector 15 are provided.
  • a charge amplifier that converts the charge signal read from the radiation image detector 15 into a voltage signal
  • a correlated double sampling circuit that samples the voltage signal output from the charge amplifier
  • a circuit board provided with an AD conversion unit for converting a voltage signal into a digital signal is also installed.
  • the photographing table 14 is configured to be rotatable with respect to the arm unit 13, and even when the arm unit 13 rotates with respect to the base 11, the direction of the photographing table 14 is fixed to the base 11. can do.
  • the radiation image detector 15 can repeatedly perform recording and reading of a radiation image, and may use a so-called direct type radiation image detector that directly receives radiation and generates charges. Alternatively, a so-called indirect radiation image detector that converts radiation once into visible light and converts the visible light into a charge signal may be used.
  • a radiation image signal readout method a radiation image signal is read out by turning on and off a TFT (thin film transistor) switch, or a radiation image is emitted by irradiating reading light. It is desirable to use a so-called optical readout system in which a signal is read out, but the present invention is not limited to this, and other systems may be used.
  • a radiation source 17 and a radiation source controller 32 are accommodated in the radiation irradiation unit 16.
  • the radiation source controller 32 controls the timing of radiation from the radiation source 17 and the radiation generation conditions (tube voltage, tube current time product, etc.) in the radiation source 17.
  • a compression plate 18 disposed above the imaging table 14 to press and compress the breast, a support portion 20 that supports the compression plate 18, and a support portion 20 in the vertical direction ( A moving mechanism 19 for moving in the Z direction) is provided.
  • the position of the compression plate 18 and the compression pressure are controlled by the compression plate controller 34.
  • the computer 2 includes a central processing unit (CPU) and a storage device such as a semiconductor memory, a hard disk, and an SSD, and the control unit 8a, the radiation image storage unit 8b, and the abnormality shown in FIG.
  • a shadow candidate detection unit 8c, a marker image generation unit 8d, a stereoscopic cursor movement control unit 8f, a stereoscopic cursor display control unit 8g, and a display control unit 8h are configured.
  • FIG. 3 is a block diagram showing a schematic configuration inside the computer of the breast image radiographing display system shown in FIG. 1
  • FIG. 4 is a flowchart for explaining the operation of the breast image radiographing display system shown in FIG. 3, and FIG. , the abnormal shadow A1, A2 in the right-eye radiographic image and the left eye radiographic image, and the right-eye marker image M1 and a left eye marker image M2, an example of the right-eye stereoscopic cursor image C R and the left-eye stereoscopic cursor image C L
  • FIG. 6 is a diagram schematically showing an example of a breast stereo image including an abnormal shadow, a marker image, and a three-dimensional cursor.
  • the control unit 8a outputs predetermined control signals to the various controllers 31 to 35 to control the entire system. A specific control method will be described in detail later.
  • the radiation image storage unit 8b stores in advance two radiation image signals detected by the radiation image detector 15 by photographing from two different photographing directions.
  • the abnormal shadow candidate detection unit 8c receives two radiation image signals stored in the radiation image storage unit 8b, and detects an abnormal shadow candidate for detecting abnormal shadow candidates for the two radiation image signals. Is to be applied. In the present embodiment, an area having a possibility of calcification or a mass is detected as an abnormal shadow candidate.
  • the detection method of the abnormal shadow candidate may be detected based on the density distribution characteristics and morphological characteristics of the abnormal shadow. Specifically, the iris filter processing suitable mainly for detecting the tumor shadow is used. Alternatively, abnormal shadow candidates may be detected mainly by using a morphology filter process suitable for detecting microcalcification shadows.
  • the detection result of the abnormal shadow candidate in the abnormal shadow candidate detection unit 8c is output to the marker image generation unit 8d.
  • the marker image generation unit 8d Based on the detection result output from the abnormal shadow candidate detection unit 8c, the marker image generation unit 8d detects the abnormal shadow candidates A1 and A2 detected in the right-eye radiographic image and the left-eye radiographic image, respectively, as shown in FIG.
  • the right eye marker image M1 and the left eye marker image M2 are generated so as to surround the abnormal shadow candidates A1 and A2.
  • the abnormal shadow candidate A1 and the abnormal shadow candidate A2 shown in FIG. 5 represent the same abnormal shadow candidate.
  • These marker images M1 and M2 constitute a stereoscopic marker image M3 that can be viewed stereoscopically by an observer as shown in FIG.
  • a right eye marker image and a left eye marker image are generated so that a box-shaped object such as a cube or a rectangular parallelepiped, a wire frame, a balloon, or the like is displayed as a stereoscopic marker image.
  • the right-eye marker image M1 and the left-eye marker image M2 have a cubic shape surrounding the abnormal shadow candidates A1 and A2. Therefore, the stereoscopic marker image M3 is a cube surrounding the abnormal shadow candidate A3 as shown in FIG. It becomes.
  • the abnormal shadow candidate A3 shown in FIG. 6 represents the same abnormal shadow candidate as the abnormal shadow candidates A1 and A2 shown in FIG.
  • the right-eye marker image M1 and the left-eye marker image M2 generated by the marker image generation unit 8d are output to the display control unit 8h.
  • the observer of the monitor 3 can confirm the position of the abnormal shadow candidate by viewing the stereoscopic marker image M3.
  • the position of the abnormal shadow candidate is displayed as a stereoscopic marker image that surrounds the abnormal shadow candidate and is stereoscopically displayed by being displayed on the monitor 3, but the present invention is not limited to this. If the position including the depth direction of the abnormal shadow candidate can be displayed, for example, a box-shaped object such as a cube or a rectangular parallelepiped, a wire frame, a balloon, or the like as the stereoscopic marker image may be displayed at the center of the abnormal shadow candidate area. It may be displayed.
  • the three-dimensional cursor movement control unit 8f can move the three-dimensional cursor displayed on the monitor 3 in the depth direction and the in-plane direction of the stereo image in response to an input from the input unit 4 by the observer.
  • the in-plane direction means an in-plane direction orthogonal to the depth direction.
  • the depth direction is the Z direction, it means the direction in the XY plane orthogonal to the Z direction.
  • the three-dimensional cursor movement control unit 8f changes the right and left shift amounts of the right-eye cursor image signal and the left-eye cursor image signal in accordance with the input from the input unit 4, thereby moving the three-dimensional cursor. Move in the depth direction. Further, the three-dimensional cursor movement control unit 8f maintains the relative left and right shift amounts of the right-eye cursor image signal and the left-eye cursor image signal in accordance with the input from the input unit 4, and sets these display positions.
  • the stereoscopic cursor is moved in the in-plane direction by changing in the horizontal direction and the vertical direction.
  • the stereoscopic cursor movement control unit 8f of the present embodiment is configured such that when the position of the abnormal shadow candidate, that is, the stereoscopic marker image M3 is displayed on the monitor 3, the stereoscopic cursor that has moved based on the movement instruction from the input unit 4 is displayed.
  • the stereoscopic cursor is moved onto the position of the abnormal shadow candidate, that is, the stereoscopic marker image M3 when the position is within a predetermined range from the position of the abnormal shadow candidate, that is, the stereoscopic marker image M3.
  • Stereoscopic cursor display control unit 8g generates a right-eye cursor image signals C R and the left eye cursor image signal C L which constitute the three-dimensional cursor as shown in FIG. 5, respectively these example, two monitors monitor 3
  • a stereoscopic cursor C that can be viewed stereoscopically is displayed as shown in FIG.
  • Stereoscopic cursor C in the present embodiment to those being constituted by a cube, as shown in FIG. 6, the right-eye cursor image signals C R and the left eye cursor image signal C L which constitute the three-dimensional cursor C is shown in FIG. 5
  • the cube shape is used.
  • the display control unit 8h performs a predetermined process on the two radiographic image signals read from the radiographic image storage unit 8b, and then displays a normal radiographic stereo image of the breast M on the monitor 3. . Further, after performing predetermined processing on the image signals of the right eye marker image M1 and the left eye marker image M2 generated in the marker image generation unit 8d together with the two radiation image signals, the monitor 3 has a stereo of the breast M. It also functions as a marker image display control unit that displays the stereoscopic marker image M3 together with the image, that is, an abnormal shadow candidate display control unit.
  • the input unit 4 accepts input of photographing conditions and observation conditions by the observer, input of operation instructions, and the like, and is configured by an input device such as a keyboard and a mouse, for example.
  • an input device such as a keyboard and a mouse, for example.
  • a general wheel mouse having a rotating wheel is used as the one that moves the position of the three-dimensional cursor C in the depth direction.
  • the position of the three-dimensional cursor C in the depth direction can be changed by rotating the rotating wheel by the observer.
  • the monitor 3 is configured to be able to display a stereo image using two radiation image signals output from the computer 2 at the time of photographing a stereo image.
  • a stereo image for example, a radiographic image based on two radiographic image signals is displayed using two screens, and one of the radiographic images is observed by using a half mirror or a polarizing glass. It is possible to adopt a configuration in which a stereo image is displayed by being incident on the right eye of the observer and the other radiation image is incident on the left eye of the observer.
  • two radiographic images may be displayed in a superimposed manner while being shifted by a predetermined amount of parallax, and this may be configured to generate a stereo image by observing with a polarizing glass, or a parallax barrier method and a lenticular method
  • a stereo image may be generated by displaying two radiation images on a stereoscopically viewable 3D liquid crystal.
  • FIG. 7 shows abnormal shadow candidates A1 and A2 in the right-eye radiographic image and the left-eye radiographic image, the right-eye marker image M1 and the left-eye marker image M2, the right-eye stereoscopic cursor image CR and the left-eye stereo after movement.
  • FIG. 10 schematically shows another example of a breast stereo image including a marker and a marker image
  • FIG. 10 schematically shows still another example of a breast stereo image and a marker image including an abnormal shadow candidate.
  • the patient's breast M is placed on the imaging table 14, and the breast M is compressed with a predetermined pressure by the compression plate 18 (S10).
  • the first radiographic image of the two radiographic images constituting the stereo image of the breast M is captured (S12).
  • the control unit 8 a reads a convergence angle ⁇ for photographing a preset stereo image, and outputs the read information on the convergence angle ⁇ to the arm controller 31.
  • ⁇ 2 ° is stored in advance as information on the convergence angle ⁇ at this time.
  • the present invention is not limited to this, and an arbitrary convergence angle is set by the photographer in the input unit 4. It can be set.
  • the arm controller 31 receives the information on the convergence angle ⁇ output from the control unit 8a.
  • the arm controller 31 captures the image of the arm unit 13 based on the information on the convergence angle ⁇ as shown in FIG.
  • a control signal is output so as to rotate + ⁇ ° with respect to a direction perpendicular to the table 14. That is, in the present embodiment, a control signal is output so that the arm unit 13 is rotated + 2 ° with respect to a direction perpendicular to the imaging table 14.
  • the control unit 8a applies radiation to the radiation source controller 32 and the detector controller 33 and the radiation.
  • a control signal is output so as to read out the image signal.
  • radiation is emitted from the radiation source 17
  • a radiation image obtained by photographing the breast from the + 2 ° direction is detected by the radiation image detector 15, and a radiation image signal is read by the detector controller 33.
  • the radiographic image signal is stored in the radiographic image storage unit 8 b of the computer 2.
  • the second radiographic image of the two radiographic images constituting the stereo image of the breast M is taken (S13).
  • the arm controller 31 outputs a control signal so as to rotate the arm unit 13 by ⁇ ° with respect to a direction perpendicular to the imaging table 14 as shown in FIG. That is, in the present embodiment, a control signal is output so that the arm unit 13 is rotated by ⁇ 2 ° with respect to a direction perpendicular to the imaging table 14.
  • the control unit 8 a applies radiation to the radiation source controller 32 and the detector controller 33, and the radiation.
  • a control signal is output so as to read out the image signal.
  • radiation is emitted from the radiation source 17
  • a radiation image obtained by imaging the breast from the ⁇ 2 ° direction is detected by the radiation image detector 15, and a radiation image signal is read by the detector controller 33.
  • predetermined signal processing is performed, it is stored in the radiation image storage unit 8b of the computer 2.
  • the two radiographic image signals stored in the radiographic image storage unit 8b as described above are input to the abnormal shadow candidate detection unit 8c, and an abnormal shadow candidate detection process is performed in the abnormal shadow candidate detection unit 8c.
  • an abnormal shadow candidate in the radiographic image signal is detected (S14), and the position information of the detected abnormal shadow candidate is input to the marker image generation unit 8d.
  • the marker image generation unit 8d based on the position information of the abnormal shadow candidate output from the abnormal shadow candidate detection unit 8c, the right-eye marker image M1 surrounding the abnormal shadow candidates A1 and A2 as shown in FIG. And a left-eye marker image M2 are generated (S15).
  • the image signals of the two radiation images stored in the radiation image storage unit 8b, the image signals of the right eye marker image M1 and the left eye marker image M2 generated by the marker image generation unit 8d, and the stereoscopic cursor display control unit image signal of the right-eye cursor image C R and the left eye cursor image C L are input to the display control unit 8f that is previously generated by 8 g, after predetermined processing is performed on these signals, the monitor 3
  • the monitor 3 displays a breast stereo image, a stereoscopic marker image M3, and a stereoscopic cursor C as shown in FIG. 6 (S16). Note that the display position of the three-dimensional cursor C here is determined according to the input from the input unit 4 by the observer.
  • the three-dimensional cursor movement control unit 8f determines whether or not there is an input of an instruction to move the three-dimensional cursor C from the input unit 4 (S17). If there is an input of a movement instruction (S17; YES), Based on the input of the movement instruction, the three-dimensional cursor C is moved as described above, and the three-dimensional cursor display control unit 8g displays the moved three-dimensional cursor C on the monitor 3 (S18).
  • step S17 when there is no input of the movement instruction of the three-dimensional cursor in S17 (S17; NO), the processes after step S17 are repeatedly performed until the movement instruction is input.
  • a stereoscopic cursor C for designating an abnormal shadow candidate A3 is displayed in a subject image overlapping in the depth direction. It is extremely difficult to recognize and recognize the position of the stereoscopic cursor C in the depth direction, and the observer can accurately match the position of the abnormal shadow candidate intended by the stereoscopic cursor C by the input unit 4, that is, the stereoscopic marker image M3. It is difficult.
  • the stereoscopic cursor C that the stereoscopic cursor movement control unit 8f next moves based on the movement instruction from the input unit 4 is determined in advance from the position of the abnormal shadow candidate, that is, the stereoscopic marker image M3. It is determined whether or not it is located within a predetermined range (S19). Note that the predetermined range can be set in advance by the observer using the input unit 4, but in the present embodiment, the predetermined range is set within the region of the stereoscopic marker image M ⁇ b> 3.
  • the stereoscopic cursor movement control unit 8f displays the stereoscopic cursor C as the abnormal shadow candidate as shown in FIG.
  • the stereoscopic cursor C is moved to the position of the stereoscopic marker image M3 (S20).
  • the stereoscopic cursor movement control unit 8f outputs a signal for moving the stereoscopic cursor C to the stereoscopic cursor display control unit 8g, and the stereoscopic cursor display control unit 8g configures the stereoscopic cursor C as shown in FIG. eye cursor image C R and the left eye cursor image C L which is, respectively to generate an image signal so as to be positioned in the region of the abnormal shadow candidate A1, position or the right-eye marker image M1 of A2 and left marker image M2 .
  • the display control unit 8h includes two radiographic image signals stored in the radiographic image storage unit 8b and image signals of the right eye marker image M1 and the left eye marker image M2 generated by the marker image generation unit 8d. and then output to the monitor 3 performs predetermined processing on the image signals of the three-dimensional cursor display control unit for the right eye cursor image after the movement of the three-dimensional cursor C generated by 8 g C R and the left eye cursor image C L, monitor 3, the breast stereo image, the stereoscopic marker image M3, and the stereoscopic cursor C after the movement are displayed as shown in FIG. 8 (S21).
  • step S17 If it is determined that the current position of the stereoscopic cursor C is not within the predetermined range from the abnormal shadow candidate (S19; NO), the current position of the stereoscopic cursor C is abnormally shaded by the stereoscopic cursor movement control unit 8f. The processes in and after step S17 are repeated until it is determined that the candidate is located within the predetermined range.
  • a plurality of abnormal shadow candidates are detected by the abnormal shadow candidate detecting unit 8c, and the positions of the plurality of abnormal shadow candidates A10, A11, A12, A13, that is, stereoscopic marker images M10, M11, M12 are displayed on the monitor 3 as shown in FIG. , M13 is displayed, the stereoscopic cursor C is moved onto the position of the abnormal shadow candidate A11 closest to the current stereoscopic cursor C position, that is, on the stereoscopic marker image M11. At this time, as shown in FIG.
  • the display mode of the abnormal shadow candidate A10 that is the second closest to the current stereoscopic cursor position, that is, the stereoscopic marker image M3, may be changed, for example, by blinking or by displaying it with a dotted line. .
  • the observer can confirm the position of the abnormal shadow candidate next to the stereoscopic cursor C moved by himself / herself, that is, near the stereoscopic marker image.
  • abnormal shadow candidates are detected from each of the radiographic images for each imaging direction, and the detected abnormal shadow candidates are detected.
  • the position, that is, the stereoscopic marker image is displayed on the monitor 8 together with the stereoscopic image, and the stereoscopic cursor C is moved based on the input movement instruction of the stereoscopic cursor C, and the position of the abnormal shadow candidate, that is, the stereoscopic marker image is displayed on the monitor 8.
  • the stereoscopic cursor C When the stereoscopic cursor C is positioned within a predetermined range from the position of the abnormal shadow candidate when the is displayed, the stereoscopic cursor is moved to the position of the abnormal shadow candidate, that is, the stereoscopic marker image. Even if it is difficult for the observer to recognize the position of the stereoscopic cursor C in the depth direction, the abnormal shadow candidate intended by the observer Only by moving the three-dimensional cursor C near, it is possible to accurately move the three-dimensional cursor C to the position of the intended prospective abnormal pattern of the observer.
  • one embodiment of the stereoscopic image display device of the present invention is applied to a breast image capturing and displaying system.
  • the subject of the present invention is not limited to the breast, and for example, a chest or a head.
  • the present invention can also be applied to a radiographic imaging display system that captures images and the like.

Abstract

[Problem] To make it possible to move a 3D cursor, with high precision, to the position of a candidate anomalous shadow to which a viewer intends to move said cursor. [Solution] A candidate anomalous shadow is detected from each of per-imaging-direction radiological images, the position of the detected candidate anomalous shadow is displayed on a display unit together with a 3D image, a 3D cursor is moved on the basis of a 3D-cursor movement instruction inputted via an input unit, and if the position of the 3D cursor falls within a predetermined range of the position of the candidate anomalous shadow when the position of the candidate anomalous shadow is displayed on the display unit, the 3D cursor is moved to the position of the candidate anomalous shadow.

Description

立体視画像表示装置および立体視画像表示方法Stereoscopic image display device and stereoscopic image display method
 本発明は、互いに異なる2つの撮影方向から放射線を被写体へ照射して撮影方向毎の放射線画像を検出し、その検出した2つの放射線画像を用いて立体視画像を表示する立体視画像表示装置及び立体視画像表示方法に関するものである。 The present invention relates to a stereoscopic image display device that detects a radiographic image for each imaging direction by irradiating a subject with radiation from two different imaging directions, and displays a stereoscopic image using the two detected radiographic images. The present invention relates to a stereoscopic image display method.
 従来、複数の画像を組み合わせて表示することにより、視差を利用して立体視できることが知られている。このような立体視できる画像(以下、立体視画像またはステレオ画像という)は、同一の被写体を異なる方向から撮影して取得された互いに視差のある複数の画像に基づいて生成されており、このような立体視画像の生成は、デジタルカメラやテレビなどの分野だけでなく、放射線画像撮影の分野においても利用されている。すなわち、被検者に対して互いに異なる方向から放射線を照射し、その被検者を透過した放射線を放射線画像検出器によりそれぞれ検出して互いに視差のある複数の放射線画像を取得し、これらの放射線画像に基づいて立体視画像を生成することが行われており、このように立体視画像を生成することによって観察者は奥行感のある放射線画像を観察することができて、より診断に適した放射線画像を観察することができる。 Conventionally, it is known that stereoscopic viewing can be performed using parallax by displaying a combination of a plurality of images. Such a stereoscopically viewable image (hereinafter referred to as a stereoscopic image or a stereo image) is generated based on a plurality of images with parallax obtained by photographing the same subject from different directions. Such stereoscopic image generation is used not only in the fields of digital cameras and televisions but also in the field of radiographic imaging. That is, the patient is irradiated with radiation from different directions, the radiation transmitted through the subject is detected by a radiation image detector, and a plurality of radiation images having parallax are obtained, and these radiations are acquired. A stereoscopic image is generated based on the image. By generating a stereoscopic image in this way, the observer can observe a radiological image with a sense of depth, which is more suitable for diagnosis. A radiographic image can be observed.
 そして上述したような立体視画像を表示する立体視画像表示装置においては、2次元の放射線画像を表示する装置と同様に、計算機処理を用いて異常陰影の濃度分布の特徴や形態的な特徴に基づいて異常陰影候補を自動的に検出するようにした計算機支援画像診断(CAD;computer aided diagnosis)を使用して放射線画像における異常陰影候補を検出し、検出された異常陰影候補の位置を示す検出結果を表示部に立体視可能に表示している。
また医療画像の読影においては、画像に含まれる異常陰影の鑑別は、同一の患者について過去に取得した画像を用いて異常陰影候補の変遷を比較することにより、精度良く診断を行うことができること等から、現在の画像上において異常陰影候補を指定すると、その異常陰影候補の領域に対応する部分画像を抽出するとともに、同一患者の過去画像において対応する領域の現在の画像との差分画像を抽出し、抽出した2つの画像を並べて表示することにより、診断を効率よく行う手法が提案されている(特許文献1)。
In the stereoscopic image display apparatus that displays the stereoscopic image as described above, the density distribution feature and the morphological feature of the abnormal shadow are calculated using computer processing, as in the device that displays the two-dimensional radiation image. Detection of abnormal shadow candidates in a radiographic image using computer aided diagnosis (CAD) that automatically detects abnormal shadow candidates based on the detection, and indicating the position of the detected abnormal shadow candidate The result is displayed on the display unit so as to be stereoscopically viewable.
In the interpretation of medical images, abnormal shadows included in images can be accurately diagnosed by comparing the transition of abnormal shadow candidates using images acquired in the past for the same patient, etc. When an abnormal shadow candidate is designated on the current image, a partial image corresponding to the region of the abnormal shadow candidate is extracted, and a difference image from the current image of the corresponding region in the past image of the same patient is extracted. A method has been proposed in which diagnosis is efficiently performed by displaying two extracted images side by side (Patent Document 1).
特開2004-329742号公報JP 2004-329742 A 特開平6-301763号公報Japanese Patent Laid-Open No. 6-301863 特開平5-507568号公報JP-A-5-507568 特開平11-185058号公報JP-A-11-185058
 しかしながら、立体視画像表示装置では、特に放射線画像のような透視画像においては、奥行方向に重なり合う被写体画像中に異常陰影候補を指定するための立体カーソルが表示されるため、立体カーソルを立体的に認識し、立体カーソルの奥行方向の位置を認識することは極めて困難であり、観察者が立体カーソルを意図する異常陰影候補の位置に精度良く合わせるのは困難である。 However, in the stereoscopic image display device, particularly in a fluoroscopic image such as a radiographic image, a stereoscopic cursor for designating an abnormal shadow candidate is displayed in a subject image overlapping in the depth direction. It is extremely difficult to recognize and recognize the position of the stereoscopic cursor in the depth direction, and it is difficult for the observer to accurately match the position of the abnormal shadow candidate intended for the stereoscopic cursor.
 特許文献2や特許文献3には、建築設計や機械設計などで使用する2次元CADにおいて、カーソルから最も近い図形又は選択した座標上にカーソルを自動的に移動させる方法が開示されている。また特許文献4には、複合的なオブジェクトの内部に隠れているオブジェクトを的確に選択可能にするために、カーソルの近傍にサブ・ウィンドウを表示させて上記隠れているオブジェクトを全て表示して選択可能にする方法が開示されている。 Patent Documents 2 and 3 disclose a method of automatically moving a cursor on a graphic or a selected coordinate closest to the cursor in a two-dimensional CAD used in architectural design or mechanical design. In Patent Document 4, in order to select an object hidden inside a complex object accurately, a sub-window is displayed near the cursor to display all the hidden objects. A method for enabling is disclosed.
 しかしながら上記特許文献2~4に開示された方法は、図形を移動等させる設計用のCADためのものであり、上記特許文献2~4には医療診断用のCADに関することは何も開示されていない。また上記特許文献2,3は立体視画像に関することも何も開示されていない。 However, the methods disclosed in the above Patent Documents 2 to 4 are for CAD for designing to move a figure or the like, and the Patent Documents 2 to 4 disclose nothing about CAD for medical diagnosis. Absent. In addition, Patent Documents 2 and 3 do not disclose anything related to stereoscopic images.
 本発明は上記事情に鑑みてなされたものであり、観察者の意図する異常陰影候補の位置に立体カーソルを精度良く移動させることができる立体視画像表示装置及び立体視画像表示方法を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and provides a stereoscopic image display device and a stereoscopic image display method capable of accurately moving a stereoscopic cursor to a position of an abnormal shadow candidate intended by an observer. It is intended.
 本発明の立体視画像表示装置は、互いに異なる撮影方向から被写体へ放射線を照射することにより取得された前記撮影方向毎の放射線画像を用いて立体視可能な立体視画像を表示する表示部と、
 該表示部に表示された前記立体視画像の奥行方向及び面内方向に移動可能な立体カーソルを前記表示部に表示させる立体カーソル表示制御部と、
 前記撮影方向毎の放射線画像の各々から異常陰影候補を検出する異常陰影候補検出部と、
該異常陰影候補検出部により検出された異常陰影候補の位置を前記立体視画像と共に前記表示部に表示させる異常陰影候補表示制御部と、
 前記立体カーソルの移動指示を入力する入力部と、
 該入力部により入力された前記立体カーソルの移動指示に基づいて前記立体カーソルを移動させると共に、前記表示部に前記異常陰影候補の位置が表示されたときに、前記立体カーソルが前記異常陰影候補の位置から予め定められた所定の範囲内に位置したとき前記異常陰影候補の位置に前記立体カーソルを移動させる立体カーソル位置制御部とを備えていることを特徴とするものである。
The stereoscopic image display device of the present invention includes a display unit that displays a stereoscopic image that can be stereoscopically viewed using a radiographic image for each imaging direction acquired by irradiating a subject with radiation from different imaging directions;
A stereoscopic cursor display control unit that causes the display unit to display a stereoscopic cursor that can move in the depth direction and the in-plane direction of the stereoscopic image displayed on the display unit;
An abnormal shadow candidate detecting unit for detecting an abnormal shadow candidate from each of the radiographic images for each imaging direction;
An abnormal shadow candidate display control unit that causes the display unit to display the position of the abnormal shadow candidate detected by the abnormal shadow candidate detection unit together with the stereoscopic image;
An input unit for inputting an instruction to move the three-dimensional cursor;
The stereoscopic cursor is moved based on the movement instruction of the stereoscopic cursor input by the input unit, and when the position of the abnormal shadow candidate is displayed on the display unit, the stereoscopic cursor becomes the abnormal shadow candidate. A stereoscopic cursor position control unit that moves the stereoscopic cursor to the position of the abnormal shadow candidate when positioned within a predetermined range from the position.
 なお本発明の立体視画像表示装置においては、前記異常陰影候補検出部により複数の前記異常陰影候補が検出されたときに、
 前記立体カーソル位置制御部が、前記立体カーソルの現在の位置から最も近い前記異常陰影候補の位置に前記立体カーソルを移動させるものであることが好ましい。
In the stereoscopic image display device of the present invention, when a plurality of abnormal shadow candidates are detected by the abnormal shadow candidate detection unit,
It is preferable that the three-dimensional cursor position control unit moves the three-dimensional cursor to the position of the abnormal shadow candidate closest to the current position of the three-dimensional cursor.
 また本発明の立体視画像表示装置においては、前記異常陰影候補表示制御部が、前記立体カーソルの現在の位置から2番目に近い前記異常陰影候補の位置の表示態様を変更して前記表示部に表示するものであってもよい。 In the stereoscopic image display apparatus of the present invention, the abnormal shadow candidate display control unit changes the display mode of the position of the abnormal shadow candidate second closest to the current position of the stereoscopic cursor to the display unit. It may be displayed.
 また本発明の立体視画像表示装置、前記表示態様が点滅するものであってもよい。 Also, the stereoscopic image display device of the present invention, the display mode may be blinking.
 本発明の立体視画像表示方法は、互いに異なる撮影方向から被写体へ放射線を照射することにより取得された前記撮影方向毎の放射線画像を用いて立体視可能な立体視画像を表示する表示部と、
 該表示部に表示された前記立体視画像の奥行方向及び面内方向に移動可能な立体カーソルを前記表示部に表示させる立体カーソル表示制御部と、
前記立体カーソルの移動指示を入力する入力部とを備えた立体視画像表示装置における立体視画像表示方法において、
 前記撮影方向毎の放射線画像の各々から異常陰影候補を検出し、
該検出された異常陰影候補の位置を前記立体視画像と共に前記表示部に表示させ、
 前記入力部により入力された前記立体カーソルの移動指示に基づいて前記立体カーソルを移動させると共に、前記表示部に前記異常陰影候補の位置が表示されたときに、前記立体カーソルが前記異常陰影候補の位置から予め定められた所定の範囲内に位置したとき前記異常陰影候補の位置に前記立体カーソルを移動させることを特徴とする。
The stereoscopic image display method of the present invention includes a display unit that displays a stereoscopic image that can be stereoscopically viewed using a radiation image for each of the imaging directions acquired by irradiating the subject with radiation from different imaging directions;
A stereoscopic cursor display control unit that causes the display unit to display a stereoscopic cursor that can move in the depth direction and the in-plane direction of the stereoscopic image displayed on the display unit;
In a stereoscopic image display method in a stereoscopic image display device comprising an input unit for inputting an instruction to move the stereoscopic cursor,
Detecting abnormal shadow candidates from each of the radiographic images for each imaging direction;
Displaying the position of the detected abnormal shadow candidate together with the stereoscopic image on the display unit;
The solid cursor is moved based on the movement instruction of the solid cursor input by the input unit, and the position of the abnormal shadow candidate is displayed on the display unit. The solid cursor is moved to the position of the abnormal shadow candidate when it is located within a predetermined range from the position.
 なお本発明の立体視画像表示方法においては、複数の前記異常陰影候補が検出されたときに、
 前記立体カーソルの現在の位置から最も近い前記異常陰影候補の位置に前記立体カーソルを移動させることが好ましい。
In the stereoscopic image display method of the present invention, when a plurality of the abnormal shadow candidates are detected,
It is preferable that the solid cursor is moved to the position of the abnormal shadow candidate closest to the current position of the solid cursor.
 また本発明の立体視画像表示方法は、前記立体カーソルの現在の位置から2番目に近い前記異常陰影候補の位置の表示態様を変更して前記表示部に表示してもよい。 In the stereoscopic image display method of the present invention, the display mode of the position of the abnormal shadow candidate that is second closest to the current position of the stereoscopic cursor may be changed and displayed on the display unit.
 また本発明の立体視画像表示方法は、前記表示態様が点滅するものであってもよい。 Further, in the stereoscopic image display method of the present invention, the display mode may blink.
 本発明の第1の立体視画像表示装置及び立体視画像表示方法によれば、撮影方向毎の放射線画像の各々から異常陰影候補を検出し、検出された異常陰影候補の位置を立体視画像と共に表示部に表示し、入力された立体カーソルの移動指示に基づいて立体カーソルを移動させると共に、表示部に異常陰影候補の位置が表示されたときに、立体カーソルが異常陰影候補の位置から予め定められた所定の範囲内に位置したとき異常陰影候補の位置に立体カーソルを移動させるようにしたので、観察者が立体カーソルの奥行方向の位置を認識することが困難であっても観察者が意図する異常陰影候補の近傍に立体カーソルを移動させるだけで、観察者の意図する異常陰影候補の位置に立体カーソルを精度良く移動させることができる。 According to the first stereoscopic image display apparatus and the stereoscopic image display method of the present invention, an abnormal shadow candidate is detected from each of the radiographic images for each photographing direction, and the position of the detected abnormal shadow candidate together with the stereoscopic image The 3D cursor is moved based on the input movement instruction of the 3D cursor displayed on the display unit, and when the position of the abnormal shadow candidate is displayed on the display unit, the 3D cursor is determined in advance from the position of the abnormal shadow candidate. Since the stereoscopic cursor is moved to the position of the abnormal shadow candidate when it is located within the predetermined range, the observer intends even if it is difficult for the observer to recognize the depth direction position of the stereoscopic cursor. The stereoscopic cursor can be accurately moved to the position of the abnormal shadow candidate intended by the observer simply by moving the stereoscopic cursor to the vicinity of the abnormal shadow candidate.
本発明の立体視画像表示装置の一実施形態を用いた乳房画像撮影表示システムの概略構成図1 is a schematic configuration diagram of a breast image photographing display system using an embodiment of a stereoscopic image display device of the present invention. 図1に示す乳房画像撮影表示システムのアーム部を図1の右方向から見た図The figure which looked at the arm part of the mammography display system shown in FIG. 1 from the right direction of FIG. 図1に示す乳房画像撮影表示システムのコンピュータ内部の概略構成を示すブロック図1 is a block diagram showing a schematic configuration inside a computer of the breast image capturing and displaying system shown in FIG. 図3に示す乳房画像撮影表示システムの作用を説明するためのフローチャートThe flowchart for demonstrating an effect | action of the breast image radiographing display system shown in FIG. 右目用放射線画像と左目用放射線画像とにおける異常陰影候補A1,A2と、右目用マーカー画像M1及び左目用マーカー画像M2と、右目用立体カーソル画像C及び左目用立体カーソル画像Cの一例を模式的に示した図And right-eye radiation image and the abnormal shadow candidate A1 in the left eye radiographic image, A2, and the right-eye marker image M1 and a left eye marker image M2, an example of the right-eye stereoscopic cursor image C R and the left-eye stereoscopic cursor image C L Schematic illustration 異常陰影候補を含む乳房のステレオ画像とマーカー画像と立体カーソルの一例を模式的に示す図The figure which shows typically an example of the stereo image of the breast containing an abnormal shadow candidate, a marker image, and a solid cursor 右目用放射線画像と左目用放射線画像とにおける異常陰影候補A1,A2と、右目用マーカー画像M1及び左目用マーカー画像M2と、移動後の右目用立体カーソル画像C及び左目用立体カーソル画像Cの一例を模式的に示した図Abnormal shadow candidates A1 and A2 in the right-eye radiation image and the left-eye radiation image, the right-eye marker image M1 and the left-eye marker image M2, the right-eye stereoscopic cursor image CR and the left-eye stereoscopic cursor image CL Figure schematically showing an example 異常陰影候補を含む乳房のステレオ画像とマーカー画像と移動後の立体カーソルの一例を模式的に示す図The figure which shows typically an example of the stereo image and marker image of a breast including an abnormal shadow candidate, and the moved solid cursor 異常陰影候補を含む乳房のステレオ画像とマーカー画像の他の一例を模式的に示す図The figure which shows typically another example of the stereo image and marker image of a breast containing an abnormal shadow candidate 異常陰影候補を含む乳房のステレオ画像とマーカー画像のさらに他の一例を模式的に示す図The figure which shows typically another example of the stereo image and marker image of a breast containing an abnormal shadow candidate
 以下、図面を参照して本発明の立体視画像表示装置の一実施形態を用いた乳房画像撮影表示システムについて説明する。図1は、本実施形態の乳房画像撮影表示システム全体の概略構成を示す図である。 Hereinafter, a breast image photographing display system using an embodiment of a stereoscopic image display apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of the entire breast image photographing display system of the present embodiment.
 本実施形態の乳房画像撮影表示システム1は、図1に示すように、乳房画像撮影装置10と、乳房画像撮影装置10に接続されたコンピュータ2と、コンピュータ2に接続されたモニタ3および入力部4とを備えている。 As shown in FIG. 1, a breast image radiographing display system 1 according to this embodiment includes a mammography apparatus 10, a computer 2 connected to the mammography apparatus 10, a monitor 3 connected to the computer 2, and an input unit. 4 is provided.
 そして、乳房画像撮影装置10は、図1に示すように、基台11と、基台11に対し上下方向(Z方向)に移動可能であり、かつ回転可能な回転軸12と、回転軸12により基台11と連結されたアーム部13を備えている。なお、図2には、図1の右方向から見たアーム部13を示している。 As shown in FIG. 1, the mammography apparatus 10 includes a base 11, a rotary shaft 12 that can move in the vertical direction (Z direction) with respect to the base 11, and can rotate. The arm part 13 connected with the base 11 is provided. FIG. 2 shows the arm 13 viewed from the right direction in FIG.
 アーム部13はアルファベットのCの形をしており、その一端には撮影台14が、その他端には撮影台14と対向するように放射線照射部16が取り付けられている。アーム部13の回転および上下方向の移動は、基台11に組み込まれたアームコントローラ31により制御される。 The arm section 13 has an alphabet C shape, and a radiation table 16 is attached to one end of the arm section 13 so as to face the imaging table 14 at the other end. The rotation and vertical movement of the arm unit 13 are controlled by an arm controller 31 incorporated in the base 11.
 撮影台14の内部には、フラットパネルディテクタ等の放射線画像検出器15と、放射線画像検出器15からの電荷信号の読み出しなどを制御する検出器コントローラ33が備えられている。 In the imaging table 14, a radiation image detector 15 such as a flat panel detector, and a detector controller 33 for controlling reading of a charge signal from the radiation image detector 15 are provided.
 また、撮影台14の内部には、放射線画像検出器15から読み出された電荷信号を電圧信号に変換するチャージアンプや、チャージアンプから出力された電圧信号をサンプリングする相関2重サンプリング回路や、電圧信号をデジタル信号に変換するAD変換部などが設けられた回路基板なども設置されている。 Further, inside the imaging table 14, a charge amplifier that converts the charge signal read from the radiation image detector 15 into a voltage signal, a correlated double sampling circuit that samples the voltage signal output from the charge amplifier, A circuit board provided with an AD conversion unit for converting a voltage signal into a digital signal is also installed.
 また、撮影台14はアーム部13に対し回転可能に構成されており、基台11に対してアーム部13が回転したときでも、撮影台14の向きは基台11に対し固定された向きとすることができる。 In addition, the photographing table 14 is configured to be rotatable with respect to the arm unit 13, and even when the arm unit 13 rotates with respect to the base 11, the direction of the photographing table 14 is fixed to the base 11. can do.
 放射線画像検出器15は、放射線画像の記録と読出しを繰り返して行うことができるものであり、放射線の照射を直接受けて電荷を発生する、いわゆる直接型の放射線画像検出器を用いてもよいし、放射線を一旦可視光に変換し、その可視光を電荷信号に変換する、いわゆる間接型の放射線画像検出器を用いるようにしてもよい。また、放射線画像信号の読出方式としては、TFT(thin film transistor)スイッチをオン・オフされることによって放射線画像信号が読み出される、いわゆるTFT読出方式のものや、読取光を照射することによって放射線画像信号が読み出される、いわゆる光読出方式のものを用いることが望ましいが、これに限らずその他のものを用いるようにしてもよい。 The radiation image detector 15 can repeatedly perform recording and reading of a radiation image, and may use a so-called direct type radiation image detector that directly receives radiation and generates charges. Alternatively, a so-called indirect radiation image detector that converts radiation once into visible light and converts the visible light into a charge signal may be used. As a radiation image signal readout method, a radiation image signal is read out by turning on and off a TFT (thin film transistor) switch, or a radiation image is emitted by irradiating reading light. It is desirable to use a so-called optical readout system in which a signal is read out, but the present invention is not limited to this, and other systems may be used.
 放射線照射部16の中には放射線源17と、放射線源コントローラ32が収納されている。放射線源コントローラ32は、放射線源17から放射線を照射するタイミングと、放射線源17における放射線発生条件(管電圧、管電流時間積等)を制御するものである。 A radiation source 17 and a radiation source controller 32 are accommodated in the radiation irradiation unit 16. The radiation source controller 32 controls the timing of radiation from the radiation source 17 and the radiation generation conditions (tube voltage, tube current time product, etc.) in the radiation source 17.
 また、アーム部13の中央部には、撮影台14の上方に配置されて乳房を押さえつけて圧迫する圧迫板18と、その圧迫板18を支持する支持部20と、支持部20を上下方向(Z方向)に移動させる移動機構19が設けられている。圧迫板18の位置、圧迫圧は、圧迫板コントローラ34により制御される。 Further, in the central portion of the arm portion 13, a compression plate 18 disposed above the imaging table 14 to press and compress the breast, a support portion 20 that supports the compression plate 18, and a support portion 20 in the vertical direction ( A moving mechanism 19 for moving in the Z direction) is provided. The position of the compression plate 18 and the compression pressure are controlled by the compression plate controller 34.
 コンピュータ2は、中央処理装置(CPU)および半導体メモリやハードディスクやSSD等のストレージデバイスなどを備えており、これらのハードウェアによって、図3に示すような制御部8a、放射線画像記憶部8b、異常陰影候補検出部8c、マーカー画像生成部8d、立体カーソル移動制御部8f、立体カーソル表示制御部8gおよび表示制御部8hが構成されている。 The computer 2 includes a central processing unit (CPU) and a storage device such as a semiconductor memory, a hard disk, and an SSD, and the control unit 8a, the radiation image storage unit 8b, and the abnormality shown in FIG. A shadow candidate detection unit 8c, a marker image generation unit 8d, a stereoscopic cursor movement control unit 8f, a stereoscopic cursor display control unit 8g, and a display control unit 8h are configured.
なお図3は図1に示す乳房画像撮影表示システムのコンピュータ内部の概略構成を示すブロック図であり、図4は図3に示す乳房画像撮影表示システムの作用を説明するためのフローチャート、図5は、右目用放射線画像と左目用放射線画像とにおける異常陰影A1,A2と、右目用マーカー画像M1及び左目用マーカー画像M2と、右目用立体カーソル画像C及び左目用立体カーソル画像Cの一例を模式的に示した図、図6は異常陰影を含む乳房のステレオ画像とマーカー画像と立体カーソルの一例を模式的に示す図である。 FIG. 3 is a block diagram showing a schematic configuration inside the computer of the breast image radiographing display system shown in FIG. 1, FIG. 4 is a flowchart for explaining the operation of the breast image radiographing display system shown in FIG. 3, and FIG. , the abnormal shadow A1, A2 in the right-eye radiographic image and the left eye radiographic image, and the right-eye marker image M1 and a left eye marker image M2, an example of the right-eye stereoscopic cursor image C R and the left-eye stereoscopic cursor image C L FIG. 6 is a diagram schematically showing an example of a breast stereo image including an abnormal shadow, a marker image, and a three-dimensional cursor.
 制御部8aは、各種のコントローラ31~35に対して所定の制御信号を出力し、システム全体の制御を行うものである。具体的な制御方法については後で詳述する。 The control unit 8a outputs predetermined control signals to the various controllers 31 to 35 to control the entire system. A specific control method will be described in detail later.
 放射線画像記憶部8bは、互いに異なる2つの撮影方向からの撮影によって放射線画像検出器15によって検出された2枚の放射線画像信号を予め記憶するものである。 The radiation image storage unit 8b stores in advance two radiation image signals detected by the radiation image detector 15 by photographing from two different photographing directions.
 異常陰影候補検出部8cは、放射線画像記憶部8bに記憶された2枚の放射線画像信号が入力され、その2枚の放射線画像信号に対して異常陰影候補を検出するための異常陰影候補検出処理を施すものである。本実施形態においては異常陰影候補として石灰化や腫瘤などの可能性のある領域を検出する。異常陰影候補の検出方法については、異常陰影の濃度分布の特徴や形態的な特徴に基づいて検出するようにすればよく、具体的には、主として腫瘤陰影を検出するのに適したアイリスフィルタ処理や、主として微小石灰化陰影を検出するのに適したモフォロジーフィルタ処理等を利用して異常陰影候補を検出するようにすればよい。異常陰影候補検出部8cにおける異常陰影候補の検出結果はマーカー画像生成部8dに出力される。 The abnormal shadow candidate detection unit 8c receives two radiation image signals stored in the radiation image storage unit 8b, and detects an abnormal shadow candidate for detecting abnormal shadow candidates for the two radiation image signals. Is to be applied. In the present embodiment, an area having a possibility of calcification or a mass is detected as an abnormal shadow candidate. The detection method of the abnormal shadow candidate may be detected based on the density distribution characteristics and morphological characteristics of the abnormal shadow. Specifically, the iris filter processing suitable mainly for detecting the tumor shadow is used. Alternatively, abnormal shadow candidates may be detected mainly by using a morphology filter process suitable for detecting microcalcification shadows. The detection result of the abnormal shadow candidate in the abnormal shadow candidate detection unit 8c is output to the marker image generation unit 8d.
 マーカー画像生成部8dは、異常陰影候補検出部8cから出力された検出結果に基づいて、図5に示すように右目用放射線画像と左目用放射線画像とでそれぞれ検出された異常陰影候補A1,A2の位置情報に基づいて、異常陰影候補A1,A2を囲むような右目用マーカー画像M1と左目用マーカー画像M2を生成するものである。なお、図5に示す異常陰影候補A1と異常陰影候補A2とは同一の異常陰影候補を表すものとする。これらのマーカー画像M1,M2は、モニタ3に表示されることによって図6に示すように観察者が立体視可能な立体視マーカー画像M3を構成している。 Based on the detection result output from the abnormal shadow candidate detection unit 8c, the marker image generation unit 8d detects the abnormal shadow candidates A1 and A2 detected in the right-eye radiographic image and the left-eye radiographic image, respectively, as shown in FIG. The right eye marker image M1 and the left eye marker image M2 are generated so as to surround the abnormal shadow candidates A1 and A2. Note that the abnormal shadow candidate A1 and the abnormal shadow candidate A2 shown in FIG. 5 represent the same abnormal shadow candidate. These marker images M1 and M2 constitute a stereoscopic marker image M3 that can be viewed stereoscopically by an observer as shown in FIG.
具体的には、たとえば、立方体や直方体などのボックス形状のものや、ワイヤーフレームや、バルーンなどが立体視マーカー画像として表示されるように右目用マーカー画像と左目用マーカー画像とが生成される。本実施形態においては、右目用マーカー画像M1と左目用マーカー画像M2は異常陰影候補A1,A2を囲む立方体形状としたため、立体視マーカー画像M3は図6に示すように異常陰影候補A3を囲む立方体となる。なお図6に示す異常陰影候補A3は図5に示す異常陰影候補A1,A2とは同一の異常陰影候補を表すものとする。 Specifically, for example, a right eye marker image and a left eye marker image are generated so that a box-shaped object such as a cube or a rectangular parallelepiped, a wire frame, a balloon, or the like is displayed as a stereoscopic marker image. In the present embodiment, the right-eye marker image M1 and the left-eye marker image M2 have a cubic shape surrounding the abnormal shadow candidates A1 and A2. Therefore, the stereoscopic marker image M3 is a cube surrounding the abnormal shadow candidate A3 as shown in FIG. It becomes. The abnormal shadow candidate A3 shown in FIG. 6 represents the same abnormal shadow candidate as the abnormal shadow candidates A1 and A2 shown in FIG.
 マーカー画像生成部8dにおいて生成された右目用マーカー画像M1と左目用マーカー画像M2とは表示制御部8hに出力される。モニタ3の観察者はこの立体視マーカー画像M3を見ることにより異常陰影候補の位置を確認することができる。なお本実施形態においては異常陰影候補の位置を、異常陰影候補を囲み、かつモニタ3に表示されることによって立体視される立体視マーカー画像で表示するようにしたが、本発明はこれに限られるものではなく、異常陰影候補の奥行方向を含む位置が表示できれば、例えば異常陰影候補の領域の中心に立方体や直方体等のボックス形状のものや、ワイヤーフレームや、バルーン等が立体視マーカー画像として表示されるようにしてもよい。 The right-eye marker image M1 and the left-eye marker image M2 generated by the marker image generation unit 8d are output to the display control unit 8h. The observer of the monitor 3 can confirm the position of the abnormal shadow candidate by viewing the stereoscopic marker image M3. In this embodiment, the position of the abnormal shadow candidate is displayed as a stereoscopic marker image that surrounds the abnormal shadow candidate and is stereoscopically displayed by being displayed on the monitor 3, but the present invention is not limited to this. If the position including the depth direction of the abnormal shadow candidate can be displayed, for example, a box-shaped object such as a cube or a rectangular parallelepiped, a wire frame, a balloon, or the like as the stereoscopic marker image may be displayed at the center of the abnormal shadow candidate area. It may be displayed.
立体カーソル移動制御部8fは、観察者による入力部4からの入力に応じてモニタ3に表示された立体カーソルをステレオ画像の奥行方向および面内方向に移動させることができる。ここで面内方向とは、奥行方向に対して直交する面内の方向のことをいう。奥行方向をZ方向とした場合、そのZ方向に直交するX-Y面内の方向のことをいう。 The three-dimensional cursor movement control unit 8f can move the three-dimensional cursor displayed on the monitor 3 in the depth direction and the in-plane direction of the stereo image in response to an input from the input unit 4 by the observer. Here, the in-plane direction means an in-plane direction orthogonal to the depth direction. When the depth direction is the Z direction, it means the direction in the XY plane orthogonal to the Z direction.
 具体的には、立体カーソル移動制御部8fは、入力部4からの入力に応じて右目用カーソル画像信号と左目用カーソル画像信号との相対的な左右のシフト量を変更することによって立体カーソルを奥行方向に移動させる。また、立体カーソル移動制御部8fは、入力部4からの入力に応じて右目用カーソル画像信号と左目用カーソル画像信号との相対的な左右のシフト量を維持した状態で、これらの表示位置を左右方向および上下方向に変更することによって立体カーソルを面内方向に移動させる。 Specifically, the three-dimensional cursor movement control unit 8f changes the right and left shift amounts of the right-eye cursor image signal and the left-eye cursor image signal in accordance with the input from the input unit 4, thereby moving the three-dimensional cursor. Move in the depth direction. Further, the three-dimensional cursor movement control unit 8f maintains the relative left and right shift amounts of the right-eye cursor image signal and the left-eye cursor image signal in accordance with the input from the input unit 4, and sets these display positions. The stereoscopic cursor is moved in the in-plane direction by changing in the horizontal direction and the vertical direction.
 そして本実施形態の立体カーソル移動制御部8fは、モニタ3に異常陰影候補の位置すなわち立体視マーカー画像M3が表示されたときに、入力部4にからの移動指示に基づいて移動した立体カーソルが、異常陰影候補の位置すなわち立体視マーカー画像M3から予め定められた所定の範囲内に位置したときに異常陰影候補の位置すなわち立体視マーカー画像M3上に立体カーソルを移動させる。 Then, the stereoscopic cursor movement control unit 8f of the present embodiment is configured such that when the position of the abnormal shadow candidate, that is, the stereoscopic marker image M3 is displayed on the monitor 3, the stereoscopic cursor that has moved based on the movement instruction from the input unit 4 is displayed. The stereoscopic cursor is moved onto the position of the abnormal shadow candidate, that is, the stereoscopic marker image M3 when the position is within a predetermined range from the position of the abnormal shadow candidate, that is, the stereoscopic marker image M3.
 立体カーソル表示制御部8gは、図5に示すように立体カーソルを構成する右目用カーソル画像信号Cと左目用カーソル画像信号Cとを生成し、これらをたとえばモニタ3の2つのモニタにそれぞれ表示させることによって図6に示すように立体視可能な立体カーソルCを表示させるものである。これらの右目用カーソル画像信号Cと左目用カーソル画像信号Cとは左右方向に相対的なシフト量をもつように生成されている。本実施形態において立体カーソルCは図6に示すように立方体で構成されるものするため、この立体カーソルCを構成する右目用カーソル画像信号Cと左目用カーソル画像信号Cは図5に示すように立方体形状とする。 Stereoscopic cursor display control unit 8g generates a right-eye cursor image signals C R and the left eye cursor image signal C L which constitute the three-dimensional cursor as shown in FIG. 5, respectively these example, two monitors monitor 3 By displaying, a stereoscopic cursor C that can be viewed stereoscopically is displayed as shown in FIG. These are the right-eye cursor image signals C R and the left eye cursor image signal C L is generated so as to have a relative shift amount in the horizontal direction. Stereoscopic cursor C in the present embodiment to those being constituted by a cube, as shown in FIG. 6, the right-eye cursor image signals C R and the left eye cursor image signal C L which constitute the three-dimensional cursor C is shown in FIG. 5 Thus, the cube shape is used.
 表示制御部8hは、放射線画像記憶部8bから読み出された2枚の放射線画像信号に対して所定の処理を施した後、モニタ3に乳房Mの通常撮影のステレオ画像を表示させるものである。また上記2枚の放射線画像信号とともにマーカー画像生成部8dにおいて生成された右目用マーカー画像M1と左目用マーカー画像M2の画像信号に対して所定の処理を施した後、モニタ3に乳房Mのステレオ画像と共に立体視マーカー画像M3を表示させるマーカー画像表示制御部すなわち異常陰影候補表示制御部としても機能する。 The display control unit 8h performs a predetermined process on the two radiographic image signals read from the radiographic image storage unit 8b, and then displays a normal radiographic stereo image of the breast M on the monitor 3. . Further, after performing predetermined processing on the image signals of the right eye marker image M1 and the left eye marker image M2 generated in the marker image generation unit 8d together with the two radiation image signals, the monitor 3 has a stereo of the breast M. It also functions as a marker image display control unit that displays the stereoscopic marker image M3 together with the image, that is, an abnormal shadow candidate display control unit.
 入力部4は、観察者による撮影条件や観察条件などの入力や操作指示の入力などを受け付けるものであり、たとえば、キーボードやマウスなどの入力デバイスによって構成されるものである。本実施形態においては、立体カーソルCの奥行方向の位置を移動させるものとして、回転ホイールを備えた一般的なホイールマウスが用いられる。回転ホイールを観察者が回転させることによって立体カーソルCの奥行方向の位置を変更することができる。 The input unit 4 accepts input of photographing conditions and observation conditions by the observer, input of operation instructions, and the like, and is configured by an input device such as a keyboard and a mouse, for example. In the present embodiment, a general wheel mouse having a rotating wheel is used as the one that moves the position of the three-dimensional cursor C in the depth direction. The position of the three-dimensional cursor C in the depth direction can be changed by rotating the rotating wheel by the observer.
 モニタ3は、ステレオ画像の撮影時においては、コンピュータ2から出力された2つの放射線画像信号を用いてステレオ画像を表示可能なように構成されたものである。ステレオ画像を表示する構成としては、たとえば、2つの画面を用いて2つの放射線画像信号に基づく放射線画像をそれぞれ表示させて、これらをハーフミラーや偏光グラスなどを用いることで一方の放射線画像は観察者の右目に入射させ、他方の放射線画像は観察者の左目に入射させることによってステレオ画像を表示する構成を採用することができる。または、たとえば、2つの放射線画像を所定の視差量だけずらして重ね合わせて表示し、これを偏光グラスで観察することでステレオ画像を生成する構成としてもよいし、もしくはパララックスバリア方式およびレンチキュラー方式のように、2つの放射線画像を立体視可能な3D液晶に表示することによってステレオ画像を生成する構成としてもよい。 The monitor 3 is configured to be able to display a stereo image using two radiation image signals output from the computer 2 at the time of photographing a stereo image. As a configuration for displaying a stereo image, for example, a radiographic image based on two radiographic image signals is displayed using two screens, and one of the radiographic images is observed by using a half mirror or a polarizing glass. It is possible to adopt a configuration in which a stereo image is displayed by being incident on the right eye of the observer and the other radiation image is incident on the left eye of the observer. Or, for example, two radiographic images may be displayed in a superimposed manner while being shifted by a predetermined amount of parallax, and this may be configured to generate a stereo image by observing with a polarizing glass, or a parallax barrier method and a lenticular method As described above, a stereo image may be generated by displaying two radiation images on a stereoscopically viewable 3D liquid crystal.
 次に、本実施形態の乳房画像撮影表示システムの作用について説明する、図4に示すフローチャートを参照しながら説明する。なお図7に右目用放射線画像と左目用放射線画像とにおける異常陰影候補A1,A2と、右目用マーカー画像M1及び左目用マーカー画像M2と、移動後の右目用立体カーソル画像C及び左目用立体カーソル画像Cの一例を模式的に示した図、図8に異常陰影候補を含む乳房のステレオ画像とマーカー画像と移動後の立体カーソルの一例を模式的に示す図、図9に異常陰影候補を含む乳房のステレオ画像とマーカー画像の他の一例を模式的に示す図、図10に異常陰影候補を含む乳房のステレオ画像とマーカー画像のさらに他の一例を模式的に示す図をそれぞれ示す。 Next, the operation of the breast image radiographing display system of this embodiment will be described with reference to the flowchart shown in FIG. FIG. 7 shows abnormal shadow candidates A1 and A2 in the right-eye radiographic image and the left-eye radiographic image, the right-eye marker image M1 and the left-eye marker image M2, the right-eye stereoscopic cursor image CR and the left-eye stereo after movement. shows schematically an example of the cursor image C L, diagram of an example schematically showing a three-dimensional cursor after the movement stereo image and the marker image of the breast including the abnormal shadow candidate in FIG. 8, the abnormal shadow candidate in FIG. 9 FIG. 10 schematically shows another example of a breast stereo image including a marker and a marker image, and FIG. 10 schematically shows still another example of a breast stereo image and a marker image including an abnormal shadow candidate.
 図4に示すように、まず、撮影台14の上に患者の乳房Mが設置され、圧迫板18により乳房Mが所定の圧力によって圧迫される(S10)。 As shown in FIG. 4, first, the patient's breast M is placed on the imaging table 14, and the breast M is compressed with a predetermined pressure by the compression plate 18 (S10).
 次に、入力部4おいて、撮影者によって種々の撮影条件が入力された後、撮影開始の指示が入力される(S11)。 Next, in the input unit 4, after various photographing conditions are inputted by the photographer, an instruction to start photographing is inputted (S11).
 そして、入力部4において撮影開始の指示があると、乳房Mのステレオ画像を構成する2枚の放射線画像のうちの1枚目の放射線画像の撮影が行われる(S12)。 Then, when there is an instruction to start imaging at the input unit 4, the first radiographic image of the two radiographic images constituting the stereo image of the breast M is captured (S12).
 具体的には、まず、制御部8aが、予め設定されたステレオ画像の撮影のための輻輳角θを読み出し、その読み出した輻輳角θの情報をアームコントローラ31に出力する。なお、本実施形態においては、このときの輻輳角θの情報としてθ=±2°が予め記憶されているものとするが、これに限らず、撮影者によって入力部4において任意の輻輳角を設定可能である。 Specifically, first, the control unit 8 a reads a convergence angle θ for photographing a preset stereo image, and outputs the read information on the convergence angle θ to the arm controller 31. In this embodiment, θ = ± 2 ° is stored in advance as information on the convergence angle θ at this time. However, the present invention is not limited to this, and an arbitrary convergence angle is set by the photographer in the input unit 4. It can be set.
 そして、アームコントローラ31において、制御部8aから出力された輻輳角θの情報が受け付けられ、アームコントローラ31は、この輻輳角θの情報に基づいて、図2に示すように、アーム部13が撮影台14に垂直な方向に対して+θ°回転するよう制御信号を出力する。すなわち、本実施形態においては、アーム部13を撮影台14に垂直な方向に対して+2°回転するよう制御信号を出力する。 Then, the arm controller 31 receives the information on the convergence angle θ output from the control unit 8a. The arm controller 31 captures the image of the arm unit 13 based on the information on the convergence angle θ as shown in FIG. A control signal is output so as to rotate + θ ° with respect to a direction perpendicular to the table 14. That is, in the present embodiment, a control signal is output so that the arm unit 13 is rotated + 2 ° with respect to a direction perpendicular to the imaging table 14.
 そして、このアームコントローラ31から出力された制御信号に応じてアーム部13が、+2°だけ回転した状態において、制御部8aは、放射線源コントローラ32および検出器コントローラ33に対して放射線の照射と放射線画像信号の読出しを行うよう制御信号を出力する。この制御信号に応じて、放射線源17から放射線が射出され、乳房を+2°方向から撮影した放射線画像が放射線画像検出器15によって検出され、検出器コントローラ33によって放射線画像信号が読み出され、その放射線画像信号に対して所定の信号処理が施された後、コンピュータ2の放射線画像記憶部8bに記憶される。 Then, in a state where the arm unit 13 is rotated by + 2 ° in accordance with the control signal output from the arm controller 31, the control unit 8a applies radiation to the radiation source controller 32 and the detector controller 33 and the radiation. A control signal is output so as to read out the image signal. In response to this control signal, radiation is emitted from the radiation source 17, a radiation image obtained by photographing the breast from the + 2 ° direction is detected by the radiation image detector 15, and a radiation image signal is read by the detector controller 33. After predetermined signal processing is performed on the radiographic image signal, the radiographic image signal is stored in the radiographic image storage unit 8 b of the computer 2.
 次に、乳房Mのステレオ画像を構成する2枚の放射線画像のうちの2枚目の放射線画像の撮影が行われる(S13)。具体的には、アームコントローラ31が、図2に示すように、アーム部13を撮影台14に垂直な方向に対して-θ°回転するよう制御信号を出力する。すなわち、本実施形態においては、アーム部13を撮影台14に垂直な方向に対して-2°回転するよう制御信号を出力する。 Next, the second radiographic image of the two radiographic images constituting the stereo image of the breast M is taken (S13). Specifically, the arm controller 31 outputs a control signal so as to rotate the arm unit 13 by −θ ° with respect to a direction perpendicular to the imaging table 14 as shown in FIG. That is, in the present embodiment, a control signal is output so that the arm unit 13 is rotated by −2 ° with respect to a direction perpendicular to the imaging table 14.
 そして、このアームコントローラ31から出力された制御信号に応じてアーム部13が-2°だけ回転した状態において、制御部8aは、放射線源コントローラ32および検出器コントローラ33に対して放射線の照射と放射線画像信号の読出しを行うよう制御信号を出力する。この制御信号に応じて、放射線源17から放射線が射出され、乳房を-2°方向から撮影した放射線画像が放射線画像検出器15によって検出され、検出器コントローラ33によって放射線画像信号が読み出され、所定の信号処理が施された後、コンピュータ2の放射線画像記憶部8bに記憶される。 Then, in a state where the arm unit 13 is rotated by −2 ° according to the control signal output from the arm controller 31, the control unit 8 a applies radiation to the radiation source controller 32 and the detector controller 33, and the radiation. A control signal is output so as to read out the image signal. In response to this control signal, radiation is emitted from the radiation source 17, a radiation image obtained by imaging the breast from the −2 ° direction is detected by the radiation image detector 15, and a radiation image signal is read by the detector controller 33. After predetermined signal processing is performed, it is stored in the radiation image storage unit 8b of the computer 2.
 次に、上述したようにして放射線画像記憶部8bに記憶された2枚の放射線画像信号は、異常陰影候補検出部8cに入力され、異常陰影候補検出部8cにおいて異常陰影候補検出処理が施されて放射線画像信号内の異常陰影候補が検出され(S14)、その検出された異常陰影候補の位置情報がマーカー画像生成部8dに入力される。 Next, the two radiographic image signals stored in the radiographic image storage unit 8b as described above are input to the abnormal shadow candidate detection unit 8c, and an abnormal shadow candidate detection process is performed in the abnormal shadow candidate detection unit 8c. Then, an abnormal shadow candidate in the radiographic image signal is detected (S14), and the position information of the detected abnormal shadow candidate is input to the marker image generation unit 8d.
 そして、マーカー画像生成部8dは、異常陰影候補検出部8cから出力された異常陰影候補の位置情報に基づいて、図5に示すように異常陰影候補A1,A2を囲むような右目用マーカー画像M1と左目用マーカー画像M2とをそれぞれ生成する(S15)。 Then, the marker image generation unit 8d, based on the position information of the abnormal shadow candidate output from the abnormal shadow candidate detection unit 8c, the right-eye marker image M1 surrounding the abnormal shadow candidates A1 and A2 as shown in FIG. And a left-eye marker image M2 are generated (S15).
 そして、放射線画像記憶部8bに記憶された2枚の放射線画像の画像信号とマーカー画像生成部8dによって生成された右目用マーカー画像M1と左目用マーカー画像M2の画像信号、及び立体カーソル表示制御部8gによって予め生成されている右目用カーソル画像Cと左目用カーソル画像Cの画像信号が表示制御部8fに入力され、これらの信号に対して所定の処理が施された後、モニタ3に出力され、モニタ3において、図6に示すように乳房のステレオ画像と立体視マーカー画像M3と立体カーソルCが表示される(S16)。なおここでの立体カーソルCの表示位置は、観察者による入力部4からの入力に応じて決定される。 Then, the image signals of the two radiation images stored in the radiation image storage unit 8b, the image signals of the right eye marker image M1 and the left eye marker image M2 generated by the marker image generation unit 8d, and the stereoscopic cursor display control unit image signal of the right-eye cursor image C R and the left eye cursor image C L are input to the display control unit 8f that is previously generated by 8 g, after predetermined processing is performed on these signals, the monitor 3 The monitor 3 displays a breast stereo image, a stereoscopic marker image M3, and a stereoscopic cursor C as shown in FIG. 6 (S16). Note that the display position of the three-dimensional cursor C here is determined according to the input from the input unit 4 by the observer.
 次に立体カーソル移動制御部8fが、入力部4からの立体カーソルCの移動指示の入力があるか否かを判別し(S17)、移動指示の入力がある場合には(S17;YES),移動指示の入力に基づいて上述したようにして立体カーソルCを移動させ、立体カーソル表示制御部8gが移動後の立体カーソルCをモニタ3に表示する(S18)。 Next, the three-dimensional cursor movement control unit 8f determines whether or not there is an input of an instruction to move the three-dimensional cursor C from the input unit 4 (S17). If there is an input of a movement instruction (S17; YES), Based on the input of the movement instruction, the three-dimensional cursor C is moved as described above, and the three-dimensional cursor display control unit 8g displays the moved three-dimensional cursor C on the monitor 3 (S18).
 一方、S17にて立体カーソルの移動指示の入力がない場合には(S17;NO)、移動指示の入力があるまでステップS17以降の処理を繰り返し行う。
図6に示すように特に放射線画像のような透視画像においては、奥行方向に重なり合う被写体画像中に異常陰影候補A3を指定するための立体カーソルCが表示されるため、立体カーソルCを立体的に認識し、立体カーソルCの奥行方向の位置を認識することは極めて困難であり、観察者が入力部4によって立体カーソルCを意図する異常陰影候補の位置すなわち立体視マーカー画像M3に精度良く合わせるのは困難である。
そこで本実施形態では、次に立体カーソル移動制御部8fが、入力部4にからの移動指示に基づいて移動した立体カーソルCが、異常陰影候補の位置すなわち立体視マーカー画像M3から予め定められた所定の範囲内に位置しているか否かを判別する(S19)。なお所定範囲は、予め観察者が入力部4によって任意の値を設定することができるものとするが、本実施形態においては立体視マーカー画像M3の領域内を設定する。
On the other hand, when there is no input of the movement instruction of the three-dimensional cursor in S17 (S17; NO), the processes after step S17 are repeatedly performed until the movement instruction is input.
As shown in FIG. 6, particularly in a fluoroscopic image such as a radiographic image, a stereoscopic cursor C for designating an abnormal shadow candidate A3 is displayed in a subject image overlapping in the depth direction. It is extremely difficult to recognize and recognize the position of the stereoscopic cursor C in the depth direction, and the observer can accurately match the position of the abnormal shadow candidate intended by the stereoscopic cursor C by the input unit 4, that is, the stereoscopic marker image M3. It is difficult.
Therefore, in the present embodiment, the stereoscopic cursor C that the stereoscopic cursor movement control unit 8f next moves based on the movement instruction from the input unit 4 is determined in advance from the position of the abnormal shadow candidate, that is, the stereoscopic marker image M3. It is determined whether or not it is located within a predetermined range (S19). Note that the predetermined range can be set in advance by the observer using the input unit 4, but in the present embodiment, the predetermined range is set within the region of the stereoscopic marker image M <b> 3.
 そして立体カーソルCが異常陰影候補から所定範囲内に位置していると判断された場合(S19;YES)は、立体カーソル移動制御部8fが、図8に示すように立体カーソルCを異常陰影候補の位置すなわち立体視マーカー画像M3上に立体カーソルCを移動させる(S20)。具体的には、立体カーソル移動制御部8fが立体カーソルCを移動させる信号を立体カーソル表示制御部8gに出力し、立体カーソル表示制御部8gが、図7に示すように、立体カーソルCを構成する右目用カーソル画像Cと左目用カーソル画像Cが、それぞれ異常陰影候補A1,A2の位置すなわち右目用マーカー画像M1と左目用マーカー画像M2の領域内に位置するように画像信号を生成する。 If it is determined that the stereoscopic cursor C is located within the predetermined range from the abnormal shadow candidate (S19; YES), the stereoscopic cursor movement control unit 8f displays the stereoscopic cursor C as the abnormal shadow candidate as shown in FIG. The stereoscopic cursor C is moved to the position of the stereoscopic marker image M3 (S20). Specifically, the stereoscopic cursor movement control unit 8f outputs a signal for moving the stereoscopic cursor C to the stereoscopic cursor display control unit 8g, and the stereoscopic cursor display control unit 8g configures the stereoscopic cursor C as shown in FIG. eye cursor image C R and the left eye cursor image C L which is, respectively to generate an image signal so as to be positioned in the region of the abnormal shadow candidate A1, position or the right-eye marker image M1 of A2 and left marker image M2 .
 次に表示制御部8hが、放射線画像記憶部8bに記憶された2枚の放射線画像の画像信号とマーカー画像生成部8dによって生成された右目用マーカー画像M1と左目用マーカー画像M2の画像信号、及び立体カーソル表示制御部8gによって生成された立体カーソルCの移動後の右目用カーソル画像Cと左目用カーソル画像Cの画像信号に対して所定の処理を施してモニタ3に出力し、モニタ3において、図8に示すように乳房のステレオ画像と立体視マーカー画像M3と移動後の立体カーソルCが表示される(S21)。 Next, the display control unit 8h includes two radiographic image signals stored in the radiographic image storage unit 8b and image signals of the right eye marker image M1 and the left eye marker image M2 generated by the marker image generation unit 8d. and then output to the monitor 3 performs predetermined processing on the image signals of the three-dimensional cursor display control unit for the right eye cursor image after the movement of the three-dimensional cursor C generated by 8 g C R and the left eye cursor image C L, monitor 3, the breast stereo image, the stereoscopic marker image M3, and the stereoscopic cursor C after the movement are displayed as shown in FIG. 8 (S21).
 なお立体カーソルCの現在の位置が異常陰影候補から所定範囲内に位置していないと判断された場合(S19;NO)は、立体カーソル移動制御部8fによって立体カーソルCの現在の位置が異常陰影候補から所定範囲内に位置していると判断されるまでステップS17以降の処理を繰り返し行う。 If it is determined that the current position of the stereoscopic cursor C is not within the predetermined range from the abnormal shadow candidate (S19; NO), the current position of the stereoscopic cursor C is abnormally shaded by the stereoscopic cursor movement control unit 8f. The processes in and after step S17 are repeated until it is determined that the candidate is located within the predetermined range.
また異常陰影候補検出部8cにより複数の異常陰影候補が検出され、図9に示すようにモニタ3に複数の異常陰影候補A10,A11,A12,A13の位置すなわち立体視マーカー画像M10,M11,M12,M13が表示されている場合には、現在の立体カーソルCの位置から最も近い異常陰影候補A11の位置すなわち立体視マーカー画像M11上に立体視カーソルCを移動させる。このとき図10に示すように現在の立体カーソルの位置から2番目に近い異常陰影候補A10すなわち立体視マーカー画像M3の表示態様を、例えば点滅させたり点線で示したり等して変更してもよい。これにより、観察者は自分が移動させた立体カーソルCが次にどの異常陰影候補の位置すなわち立体視マーカー画像の近くに位置しているのかを確認することができる。 A plurality of abnormal shadow candidates are detected by the abnormal shadow candidate detecting unit 8c, and the positions of the plurality of abnormal shadow candidates A10, A11, A12, A13, that is, stereoscopic marker images M10, M11, M12 are displayed on the monitor 3 as shown in FIG. , M13 is displayed, the stereoscopic cursor C is moved onto the position of the abnormal shadow candidate A11 closest to the current stereoscopic cursor C position, that is, on the stereoscopic marker image M11. At this time, as shown in FIG. 10, the display mode of the abnormal shadow candidate A10 that is the second closest to the current stereoscopic cursor position, that is, the stereoscopic marker image M3, may be changed, for example, by blinking or by displaying it with a dotted line. . Thereby, the observer can confirm the position of the abnormal shadow candidate next to the stereoscopic cursor C moved by himself / herself, that is, near the stereoscopic marker image.
このように本実施形態の乳房画像撮影表示システム及び乳房画像表示システムにおける乳房画像撮影表示方法によれば、撮影方向毎の放射線画像の各々から異常陰影候補を検出し、検出された異常陰影候補の位置すなわち立体視マーカー画像を立体視画像と共にモニタ8に表示し、入力された立体カーソルCの移動指示に基づいて立体カーソルCを移動させると共に、モニタ8に異常陰影候補の位置すなわち立体視マーカー画像が表示されたときに、立体カーソルCが異常陰影候補の位置から予め定められた所定の範囲内に位置したとき異常陰影候補の位置すなわち立体視マーカー画像に立体カーソルを移動させるようにしたので、観察者が立体カーソルCの奥行方向の位置を認識することが困難であっても観察者が意図する異常陰影候補の近傍に立体カーソルCを移動させるだけで、観察者の意図する異常陰影候補の位置に立体カーソルCを精度良く移動させることができる。 As described above, according to the breast image capturing / displaying system and the breast image capturing / displaying method in the breast image displaying system of the present embodiment, abnormal shadow candidates are detected from each of the radiographic images for each imaging direction, and the detected abnormal shadow candidates are detected. The position, that is, the stereoscopic marker image is displayed on the monitor 8 together with the stereoscopic image, and the stereoscopic cursor C is moved based on the input movement instruction of the stereoscopic cursor C, and the position of the abnormal shadow candidate, that is, the stereoscopic marker image is displayed on the monitor 8. When the stereoscopic cursor C is positioned within a predetermined range from the position of the abnormal shadow candidate when the is displayed, the stereoscopic cursor is moved to the position of the abnormal shadow candidate, that is, the stereoscopic marker image. Even if it is difficult for the observer to recognize the position of the stereoscopic cursor C in the depth direction, the abnormal shadow candidate intended by the observer Only by moving the three-dimensional cursor C near, it is possible to accurately move the three-dimensional cursor C to the position of the intended prospective abnormal pattern of the observer.
なお上述した実施形態は、本発明の立体視画像表示装置の一実施形態を乳房画像撮影表示システムに適用したものであるが、本発明の被写体としては乳房に限らず、たとえば、胸部や頭部などを撮影する放射線画像撮影表示システムにも本発明を適用することができる。 In the above-described embodiment, one embodiment of the stereoscopic image display device of the present invention is applied to a breast image capturing and displaying system. However, the subject of the present invention is not limited to the breast, and for example, a chest or a head. The present invention can also be applied to a radiographic imaging display system that captures images and the like.

Claims (8)

  1.  互いに異なる撮影方向から被写体へ放射線を照射することにより取得された前記撮影方向毎の放射線画像を用いて立体視可能な立体視画像を表示する表示部と、
     該表示部に表示された前記立体視画像の奥行方向及び面内方向に移動可能な立体カーソルを前記表示部に表示させる立体カーソル表示制御部と、
     前記撮影方向毎の放射線画像の各々から異常陰影候補を検出する異常陰影候補検出部と、
    該異常陰影候補検出部により検出された異常陰影候補の位置を前記立体視画像と共に前記表示部に表示させる異常陰影候補表示制御部と、
     前記立体カーソルの移動指示を入力する入力部と、
     該入力部により入力された前記立体カーソルの移動指示に基づいて前記立体カーソルを移動させると共に、前記表示部に前記異常陰影候補の位置が表示されたときに、前記立体カーソルが前記異常陰影候補の位置から予め定められた所定の範囲内に位置したとき前記異常陰影候補の位置に前記立体カーソルを移動させる立体カーソル位置制御部とを備えていることを特徴とする立体視画像表示装置。
    A display unit that displays a stereoscopic image that can be stereoscopically viewed using a radiographic image for each of the imaging directions acquired by irradiating the subject with radiation from different imaging directions;
    A stereoscopic cursor display control unit that causes the display unit to display a stereoscopic cursor that can move in the depth direction and the in-plane direction of the stereoscopic image displayed on the display unit;
    An abnormal shadow candidate detecting unit for detecting an abnormal shadow candidate from each of the radiographic images for each imaging direction;
    An abnormal shadow candidate display control unit that causes the display unit to display the position of the abnormal shadow candidate detected by the abnormal shadow candidate detection unit together with the stereoscopic image;
    An input unit for inputting an instruction to move the three-dimensional cursor;
    The stereoscopic cursor is moved based on the movement instruction of the stereoscopic cursor input by the input unit, and when the position of the abnormal shadow candidate is displayed on the display unit, the stereoscopic cursor becomes the abnormal shadow candidate. A stereoscopic image display apparatus, comprising: a stereoscopic cursor position control unit that moves the stereoscopic cursor to the position of the abnormal shadow candidate when positioned within a predetermined range from a position.
  2.  前記異常陰影候補検出部により複数の前記異常陰影候補が検出されたときに、
     前記立体カーソル位置制御部が、前記立体カーソルの現在の位置から最も近い前記異常陰影候補の位置に前記立体カーソルを移動させるものであることを特徴とする請求項1に記載の立体視画像表示装置。
    When the plurality of abnormal shadow candidates are detected by the abnormal shadow candidate detection unit,
    The stereoscopic image display apparatus according to claim 1, wherein the stereoscopic cursor position control unit moves the stereoscopic cursor to the position of the abnormal shadow candidate closest to the current position of the stereoscopic cursor. .
  3.  前記異常陰影候補表示制御部が、前記立体カーソルの現在の位置から2番目に近い前記異常陰影候補の位置の表示態様を変更して前記表示部に表示するものであることを特徴とする請求項2記載の立体視画像表示装置。 The abnormal shadow candidate display control unit changes the display mode of the position of the abnormal shadow candidate that is second closest to the current position of the three-dimensional cursor and displays it on the display unit. 3. The stereoscopic image display device according to 2.
  4.  前記表示態様が点滅するものであることを特徴とする請求項3記載の立体視画像表示装置。 4. The stereoscopic image display device according to claim 3, wherein the display mode blinks.
  5.  互いに異なる撮影方向から被写体へ放射線を照射することにより取得された前記撮影方向毎の放射線画像を用いて立体視可能な立体視画像を表示する表示部と、
     該表示部に表示された前記立体視画像の奥行方向及び面内方向に移動可能な立体カーソルを前記表示部に表示させる立体カーソル表示制御部と、
    前記立体カーソルの移動指示を入力する入力部とを備えた立体視画像表示装置における立体視画像表示方法において、
     前記撮影方向毎の放射線画像の各々から異常陰影候補を検出し、
    該検出された異常陰影候補の位置を前記立体視画像と共に前記表示部に表示させ、
     前記入力部により入力された前記立体カーソルの移動指示に基づいて前記立体カーソルを移動させると共に、前記表示部に前記異常陰影候補の位置が表示されたときに、前記立体カーソルが前記異常陰影候補の位置から予め定められた所定の範囲内に位置したとき前記異常陰影候補の位置に前記立体カーソルを移動させることを特徴とする立体視画像表示方法。
    A display unit that displays a stereoscopic image that can be stereoscopically viewed using a radiographic image for each of the imaging directions acquired by irradiating the subject with radiation from different imaging directions;
    A stereoscopic cursor display control unit that causes the display unit to display a stereoscopic cursor that can move in the depth direction and the in-plane direction of the stereoscopic image displayed on the display unit;
    In a stereoscopic image display method in a stereoscopic image display device comprising an input unit for inputting an instruction to move the stereoscopic cursor,
    Detecting abnormal shadow candidates from each of the radiographic images for each imaging direction;
    Displaying the position of the detected abnormal shadow candidate together with the stereoscopic image on the display unit;
    The solid cursor is moved based on the movement instruction of the solid cursor input by the input unit, and the position of the abnormal shadow candidate is displayed on the display unit. A stereoscopic image display method, comprising: moving the stereoscopic cursor to a position of the abnormal shadow candidate when the position is within a predetermined range from a position.
  6.  複数の前記異常陰影候補が検出されたときに、
     前記立体カーソルの現在の位置から最も近い前記異常陰影候補の位置に前記立体カーソルを移動させることを特徴とする請求項5に記載の立体視画像表示方法。
    When a plurality of the abnormal shadow candidates are detected,
    6. The stereoscopic image display method according to claim 5, wherein the stereoscopic cursor is moved to the position of the abnormal shadow candidate closest to the current position of the stereoscopic cursor.
  7.  前記立体カーソルの現在の位置から2番目に近い前記異常陰影候補の位置の表示態様を変更して前記表示部に表示することを特徴とする請求項6記載の立体視画像表示方法。 The stereoscopic image display method according to claim 6, wherein the display mode of the position of the abnormal shadow candidate closest to the current position of the stereoscopic cursor is changed and displayed on the display unit.
  8.  前記表示態様が点滅するものであることを特徴とする請求項7記載の立体視画像表示方法。 The stereoscopic image display method according to claim 7, wherein the display mode blinks.
PCT/JP2011/006070 2010-10-29 2011-10-28 3d image display device and 3d image display method WO2012056723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40822610P 2010-10-29 2010-10-29
US61/408,226 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012056723A1 true WO2012056723A1 (en) 2012-05-03

Family

ID=45993467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006070 WO2012056723A1 (en) 2010-10-29 2011-10-28 3d image display device and 3d image display method

Country Status (1)

Country Link
WO (1) WO2012056723A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416896A (en) * 1990-05-10 1992-01-21 Toshiba Corp Three-dimensional cursor and image display method using the same
JPH05266215A (en) * 1992-03-18 1993-10-15 Toshiba Corp Picture display device
JP2003093380A (en) * 2001-09-25 2003-04-02 Hitachi Medical Corp Reading support system
JP2009213721A (en) * 2008-03-11 2009-09-24 Sony Computer Entertainment Inc Game device, game control method and game control program
JP2010187916A (en) * 2009-02-18 2010-09-02 Fujifilm Corp Image processing device, image processing system, and program
JP2010200787A (en) * 2009-02-27 2010-09-16 Fujifilm Corp Radiation image displaying apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416896A (en) * 1990-05-10 1992-01-21 Toshiba Corp Three-dimensional cursor and image display method using the same
JPH05266215A (en) * 1992-03-18 1993-10-15 Toshiba Corp Picture display device
JP2003093380A (en) * 2001-09-25 2003-04-02 Hitachi Medical Corp Reading support system
JP2009213721A (en) * 2008-03-11 2009-09-24 Sony Computer Entertainment Inc Game device, game control method and game control program
JP2010187916A (en) * 2009-02-18 2010-09-02 Fujifilm Corp Image processing device, image processing system, and program
JP2010200787A (en) * 2009-02-27 2010-09-16 Fujifilm Corp Radiation image displaying apparatus

Similar Documents

Publication Publication Date Title
JP5486437B2 (en) Stereoscopic image display method and apparatus
JP2012061187A (en) Radiation ray image display device and method
JP2012029742A (en) Radiological image capturing and displaying method and apparatus
JP2011212218A (en) Image reconstruction apparatus
JP2012125453A (en) Display device
JP2012029759A (en) Radiological image radiographing and displaying method and apparatus
JP2012024519A (en) Radiological image radiographing and displaying method and apparatus
JP2012061188A (en) Radiation ray image photographing device and method
JP2012066049A (en) Radiation imaging apparatus and stereoscopic image display method
JP5658818B2 (en) Radiation breast image display method, radiation breast image display apparatus and program
JP2011200408A (en) Method and system for radiographing and displaying radiation image
JP5695524B2 (en) Stereoscopic image display apparatus and method, and program
WO2012056723A1 (en) 3d image display device and 3d image display method
WO2012066753A1 (en) Stereoscopic image display method and device
WO2012056695A1 (en) Three-dimensional image display device, method, and program
JP2012192137A (en) Device and method for displaying radiation image
JP2012095274A (en) Stereoscopic image display device and stereoscopic image display method
JP2012100246A (en) Stereoscopic image display device and stereoscopic image display method
US20120076261A1 (en) Radiological image displaying apparatus and method
WO2012105188A1 (en) Stereoscopic image display device and method, and program
WO2012056679A1 (en) 3d image display system and 3d image display device
US20120082298A1 (en) Radiological image displaying device and method
JP2012178626A (en) Stereoscopic radiation image display method and device
WO2012029726A1 (en) Method and apparatus for imaging/displaying breast image
JP2012066048A (en) Method and device for displaying stereoscopic image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP