WO2012056600A1 - Oscillator - Google Patents

Oscillator Download PDF

Info

Publication number
WO2012056600A1
WO2012056600A1 PCT/JP2011/000424 JP2011000424W WO2012056600A1 WO 2012056600 A1 WO2012056600 A1 WO 2012056600A1 JP 2011000424 W JP2011000424 W JP 2011000424W WO 2012056600 A1 WO2012056600 A1 WO 2012056600A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
negative resistance
parallel
oscillation units
transistors
Prior art date
Application number
PCT/JP2011/000424
Other languages
French (fr)
Japanese (ja)
Inventor
小森 浩
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012056600A1 publication Critical patent/WO2012056600A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1206Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification
    • H03B5/1212Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device using multiple transistors for amplification the amplifier comprising a pair of transistors, wherein an output terminal of each being connected to an input terminal of the other, e.g. a cross coupled pair
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B27/00Generation of oscillations providing a plurality of outputs of the same frequency but differing in phase, other than merely two anti-phase outputs
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1228Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more field effect transistors

Definitions

  • the present invention relates to an oscillator mounted on a semiconductor integrated circuit, and particularly to an oscillator excellent in low current consumption performance.
  • an oscillator (differential oscillator) requires a large operating current in order to realize high stability of oscillation and reduction of phase noise.
  • FIG. 5 is a circuit diagram showing a schematic configuration of an oscillator having a conventional CMOS configuration.
  • the CMOS oscillator includes a negative resistance generator 41 that generates a negative resistance by connecting the gate terminals and drain terminals of a pair of PMOS transistors 411 and 412 so as to cross each other, and a pair of NMOS transistors.
  • the negative resistance generator 42 that generates a negative resistance by connecting the gate terminals and the drain terminals of the transistors 421 and 422 so as to cross each other, an inductor 431, and a capacitive element 432 are connected in parallel.
  • a resonance circuit (tank circuit) 43 is a resonance circuit (tank circuit) 43.
  • the Q value (Quality Factor) of the tank circuit 43 is practically a finite value, and an alternating current flows to cause the inductor 431 and Loss due to the resistance component of the capacitor 432 occurs. For this reason, in order for oscillation in the tank circuit 43 to be performed stably, a negative resistance sufficient to compensate for the loss due to the resistance component is required. In the oscillator shown in FIG. 5, two negative resistance generators 41 and 42 are intended to generate this negative resistance.
  • drain terminals of a pair of PMOS transistors 411 and 412 and drain terminals of a pair of NMOS transistors 421 and 422 corresponding thereto are respectively connected (having a so-called vertically stacked structure). Since each is connected in series between the power supply and GND, the same current flows as an operating current in the negative resistance generators 41 and 42. In such a configuration having two negative resistance generators 41 and 42, the negative resistance obtained from the same operating current can be made larger than when only one negative resistance generator is used. . In other words, since the negative resistance changes depending on the flowing current, the operating current for obtaining the necessary negative resistance can be reduced by using the two negative resistance generators 41 and 42. Can be said.
  • Patent Document 1 As another example of the conventional differential oscillator, in Patent Document 1, instead of the PMOS negative resistance generator 41, a differential pair circuit including a pair of NMOS transistors connected to each other by connecting their gate and drain. An oscillator in which is inserted is disclosed. Since this differential pair circuit is connected to its own gate and drain, negative resistance does not occur and it functions as a simple load.
  • the two negative resistance generators 41 and 42 have the effect of obtaining a stronger negative resistance than when only one of them is used, but the mutual conductance of the PMOS transistor is NMOS. As compared with the negative resistance of the negative resistance generator 42 alone, it has only a slight effect. For this reason, in order to obtain the negative resistance necessary for the oscillator to operate stably, the configuration of FIG. 5 combined with the negative resistance generator 41 using the PMOS transistor has only a small effect of reducing the operating current. .
  • an object of the present invention is to provide an oscillator that can operate stably by obtaining a necessary negative resistance with a small current.
  • an oscillator includes a first wiring and a second wiring, and a capacitive element and an inductor arranged in parallel with each other between the first wiring and the second wiring.
  • a negative resistance generator having a resonance circuit, and a plurality of transistors arranged so as to generate a negative resistance between the first wiring and the second wiring to cancel a loss generated in the resonance circuit;
  • a first bias terminal connected to the first wiring and the second wiring through the inductor; a second bias terminal connected to the first wiring and the second wiring through the plurality of transistors;
  • Each said first bias The terminals and the second bias terminal are connected in series with each other, and the plurality of transistors in the plurality of oscillation units are configured to have the same conductivity type.
  • the plurality of oscillating units are electrically coupled to each other so that the plurality of negative resistance generators are equivalently connected in parallel and the load resistance is increased. Furthermore, by electrically coupling the plurality of oscillation units, the plurality of resonance circuits are equivalently connected in parallel, and the capacitive elements and inductors of the plurality of resonance circuits are connected in parallel to each other.
  • the combined capacitance increases in proportion to the number of connected capacitive elements, and the combined value of resistance components indicating the loss of the capacitive elements and inductors is inversely proportional to the number of connected capacitive elements and inductors. Then decrease.
  • the Q values of the plurality of resonance circuits as a whole are proportional to the combined value of the capacitive element and the combined value of the resistance component indicating the loss, but the increase in the combined capacitance and the decrease in the combined value of the resistance component indicating the loss are mutually By canceling out, the Q value of the resonance circuit does not change as a result. For this reason, it is possible to obtain a sufficient negative resistance enough to cancel the resistance component generated in the plurality of resonance circuits without negatively operating the current, and a stable oscillation operation can be obtained.
  • the coupling portion includes a first capacitive element provided in a first coupling wiring that connects the first wirings of the plurality of oscillation units and a second coupling that connects the second wirings of the plurality of oscillation units.
  • the first wiring and the second wiring of the plurality of oscillation units are electrically connected to each other via the first capacitive element and the second capacitive element, respectively.
  • the impedance of the first capacitive element and the second capacitive element can be regarded as substantially zero. Therefore, the resonance circuits can be equivalently connected in parallel while preventing the direct current component of the current flowing through the first wiring and the second wiring from flowing directly between the resonance circuits. Therefore, the operating current can be reduced more effectively.
  • the coupling unit includes induction coils provided between the first wiring and the second wiring of the plurality of oscillation units, and the induction coils (coils) corresponding to the plurality of oscillation units are inducted by the induction coil. You may arrange
  • the coupling unit may be configured such that the inductors of the plurality of oscillation units are arranged in parallel so that electromagnetic induction occurs between the inductors.
  • the resonance circuits are equivalently connected in parallel without separately using a configuration in which the first wiring and the second wiring are electrically coupled to each other. Can be made.
  • the plurality of transistors may be N-type MOS transistors.
  • the present invention is configured as described above, and has the effect of being able to operate stably by obtaining the necessary negative resistance with a small current.
  • FIG. 1 is a circuit diagram showing a schematic configuration of the oscillator according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a more detailed configuration of the oscillator shown in FIG.
  • FIG. 3 is a circuit diagram showing a schematic configuration of an oscillator according to the second embodiment of the present invention.
  • FIG. 4 is a circuit diagram showing a schematic configuration of the oscillator according to the third embodiment of the present invention.
  • FIG. 5 is a circuit diagram showing a schematic configuration of an oscillator having a conventional CMOS configuration.
  • FIG. 1 is a circuit diagram showing a schematic configuration of the oscillator according to the first embodiment of the present invention.
  • an oscillator 1A in the present embodiment includes a plurality (two in the present embodiment) of oscillation units 10 and 20 (hereinafter also referred to as a first oscillation unit 10 and a second oscillation unit 20).
  • a coupling portion 30A that electrically couples the oscillation portions 10 and 20; These structures are formed on a semiconductor substrate.
  • the first oscillation unit 10 includes a resonance circuit (tank circuit) 13 having a capacitive element and an inductor (described later) disposed between the first wiring 11 and the second wiring 12 in parallel with each other, and a first wiring. 11 and the second wiring 12, a negative resistance generator 14 having a plurality of transistors (described later) disposed so as to generate a negative resistance that cancels the loss of the resonance circuit 13. Operates as a dynamic oscillator.
  • the second oscillation unit 20 includes a resonance circuit 23 and a negative resistance generator 24 between the first wiring 21 and the second wiring 22. In the negative resistance generators 14 and 24, the transistors that generate the negative resistance are all of the same conductivity type.
  • the oscillation units 10 and 20 include first bias terminals 15 and 25 connected to the first wirings 11 and 21 and the second wirings 12 and 22 via inductors of the resonance circuit 13, respectively, and a plurality of transistors. And second bias terminals 16 and 26 connected to the first wirings 11 and 21 and the second wirings 12 and 22.
  • the oscillation units 10 and 20 are connected in series with each other at the first bias terminal and the second bias terminal.
  • the first oscillating unit 10 and the second oscillating unit 20 include a second bias terminal 16 of the negative resistance generator 14 of the first oscillating unit 10 and a first bias terminal 25 of the second oscillating unit 20. Are connected in series with each other.
  • the first bias terminal 15 of the first oscillating unit 10 is connected to the positive voltage source VDD, and the second bias terminal 26 of the second oscillating unit 20 is connected to the ground GND.
  • the second bias terminal 26 of the second oscillation unit 20 may be connected to a voltage source having a voltage lower than the positive voltage source VDD instead of being connected to the ground GND.
  • the coupling unit 30A electrically couples the first wiring 11 of the first oscillating unit 10 and the first wiring 21 of the second oscillating unit 20 and also the second wiring 12 of the first oscillating unit 10 and the second oscillating unit.
  • the 20 second wirings 22 are electrically coupled.
  • the first wirings 11 and 21 and the second wirings 12 and 22 are electrically coupled to each other, whereby the plurality of negative resistance generators 14 and 24 are equivalently connected in parallel. Load resistance increases.
  • the first wirings 11 and 21 and the second wirings 12 and 22 are electrically coupled to each other, whereby the plurality of resonance circuits 13 and 23 are tightly coupled and equivalently connected in parallel.
  • the resonance circuits 13 and 23 oscillate at the same resonance frequency.
  • the overall Q value of the plurality of resonance circuits 13 and 23 does not change (details will be described later). For this reason, it is possible to obtain a sufficient negative resistance enough to cancel the resistance component generated in the plurality of resonance circuits 13 and 23 without increasing the operating current, and to obtain a stable oscillation operation.
  • FIG. 2 is a circuit diagram showing a more detailed configuration of the oscillator shown in FIG.
  • the resonant circuit 13 includes an inductor 133 and a capacitive element connected in parallel between the first terminal 131 connected to the first wiring 11 and the second terminal 132 connected to the second wiring 12. 134.
  • the first bias terminal 15 is connected to the first wiring 11 and the second wiring 12 via the inductor 133.
  • the resonance circuit 23 includes an inductor 233 and a capacitive element 234 connected in parallel with each other between the first terminal 231 and the second terminal 232.
  • the first bias terminal 25 is connected to the first wiring 21 and the second wiring 22 via the inductor 233.
  • FIG. 2 shows a configuration in which the first bias terminals 15 and 25 are connected to the central node of the inductors 133 and 233, but the present invention is not limited to this.
  • a plurality of inductors are connected in series.
  • the first bias terminal may be connected to any location where the inductors are connected.
  • the negative resistance generator 14 has one of main terminals (for example, a drain terminal) connected to a first terminal 141 connected to the first wiring 11 and a second terminal 142 connected to the second wiring 12, respectively.
  • a pair of transistors 143 and 144 are connected to each other (for example, source terminals).
  • each of the pair of transistors 143 and 144 is configured by an NMOS transistor (N-type MOSFET).
  • the control terminal (eg, gate terminal) of the transistor 143 is connected to one of the main terminals (eg, drain terminal) of the transistor 144, and the control terminal (eg, gate terminal) of the transistor 144 is connected to one of the main terminals of the transistor 143 (eg, drain). Terminal).
  • the negative resistance generator 24 includes a pair of transistors 243 and 244 in which one of the main terminals is connected to the first terminal 241 and the second terminal 242 and the other of the main terminals is connected to each other.
  • Each of the pair of transistors 243 and 244 is configured by an NMOS transistor.
  • the control terminal of the transistor 243 is connected to one of the main terminals of the transistor 244, and the control terminal of the transistor 244 is connected to one of the main terminals of the transistor 243.
  • the negative resistance generators 14 and 24 may have any configuration as long as negative resistance is generated by a plurality of transistors. For example, a plurality of pairs of transistors may be provided.
  • the second bias terminals 16 and 26 are connected to the other of the main terminals of the pair of transistors 143 and 144 and 243 and 244 (sides connected to each other) of the negative resistance generators 14 and 24.
  • the first oscillator 10 and the second oscillator 20 are connected in series by being connected to the first bias terminal 25 of one oscillator 20 and the second bias terminal 16 of the other first oscillator 10. Yes.
  • the first bias terminal 15 connected to the inductor 133 of the resonance circuit 13 is connected to the positive voltage source VDD, and the other of the main terminals of the pair of transistors 243 and 244 of the negative resistance generator 24.
  • the second bias terminal 26 connected to (the sides connected to each other) is connected to the ground GND.
  • the oscillating units 10 and 20 have a vertically stacked structure and are connected in series between the positive voltage source VDD and the ground GND, and thus operate with the same bias current.
  • the coupling unit 30A includes a first capacitive element 34 provided in the first coupling wiring 32 that connects the first wirings 11 and 21 of the oscillation units 10 and 20, and the second wirings 12 and 22 of the oscillation units 10 and 20. And a second capacitive element 33 provided in the second coupling wiring 31 for connecting the two.
  • the impedance of the first and second capacitive elements 33 and 34 with respect to the high-frequency signal generated in the resonance circuits 13 and 23 is small and can be regarded as substantially zero. Therefore, the resonance circuits 13 and 23 are equivalently connected in parallel to the high-frequency signal by the coupling unit 30A. Accordingly, the resonance circuits are equivalently connected in parallel while preventing the direct current component of the current flowing through the first wirings 11 and 21 and the second wirings 12 and 22 from flowing directly between the resonance circuits 13 and 23. be able to. Therefore, the operating current can be reduced more effectively.
  • the inductors 133 and 233 and the capacitive elements 134 and 234 of the resonance circuits 13 and 23 have the same inductance L and capacitance value C, respectively. Further, it is ideal that the inductors 133 and 233 and the capacitive elements 134 and 234 have no resistance component, but actually there are resistance components.
  • the resistance component indicating the loss due to these elements can be regarded as equivalent to a resistance element having a resistance value R connected in parallel with these elements.
  • the Q values of the resonance circuits 13 and 23 are represented by ⁇ CR which are respectively proportional to the combined capacitance of the capacitive elements 134 and 234 and the combined value of the resistance components indicating the loss.
  • ⁇ CR the combined capacitance value of the capacitive elements 134 and 234
  • the resistance value indicating the overall loss of the resonance circuits 13 and 23 can be regarded as an equivalent resistance element indicating the loss of each of the resonance circuits 13 and 23 being connected in parallel.
  • the Q values of the plurality of resonance circuits as a whole are such that the increase in the combined capacitance and the decrease in the combined value of the resistance component indicating the loss cancel each other, and as a result, the Q value of the resonance circuit does not change.
  • the plurality of resonance circuits 13 and 23 of the present embodiment can be regarded as one resonance circuit with respect to the Q value indicating the loss.
  • the negative resistance generators 14, 24 have transistors (MOS transistors) 143, 144, 243, 244 having the same conductivity type (N type), respectively, and are connected in parallel to the resonance circuits 13, 23, respectively. Since they are connected, the negative resistance in the entire two oscillation units 10 and 20 is doubled. Moreover, the two oscillating units 10 and 20 are connected in series with each other, and the bias current for operating them does not increase. Therefore, the negative resistance can be increased without increasing the Q value indicating the loss of the entire two oscillation units 10 and 20. Thereby, without increasing the operating current, it is possible to obtain a sufficient negative resistance enough to cancel the resistance component generated in the plurality of resonance circuits 13 and 23, and to obtain a stable oscillation operation.
  • MOS transistors MOS transistors
  • FIG. 3 is a circuit diagram showing a schematic configuration of an oscillator according to the second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the difference of the oscillator 1B in the present embodiment from the first embodiment is that the coupling portion 30B is an induction coil provided between the first wirings 11 and 21 and the second wirings 12 and 22 of the plurality of oscillation units 10 and 20, respectively. 35, and the induction coils 35 and 36 are arranged in parallel so that electromagnetic induction occurs between the induction coils 35 and 36.
  • a high-frequency signal generated in the resonance circuits 13 and 23 due to electromagnetic induction by the induction coils 35 and 36 provided corresponding to each of the plurality of oscillation units 10 and 20 resonates through the induction coils 35 and 36. Transmission between the circuits 13 and 23 becomes possible. At this time, since the induction coils 35 and 36 are insulated, a direct current does not flow. Therefore, the resonance circuits 13 and 23 are equivalently connected in parallel while preventing the direct current component of the current flowing through the first wirings 11 and 21 and the second wirings 12 and 22 from flowing directly between the resonance circuits 13 and 23. Can be connected to. Therefore, the operating current can be reduced more effectively.
  • the first wirings 11 and 21 and the second wirings 12 and 22 of the plurality of oscillation units 10 and 20 are electrically coupled to each other as the first wirings 11 and 21.
  • the configuration is not limited to the configuration in which the second wirings 12 and 22 are connected to each other, and includes a configuration in which the first wirings 11 and 21 and the second wirings 12 and 22 are connected while being insulated.
  • FIG. 4 is a circuit diagram showing a schematic configuration of the oscillator according to the third embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the difference of the oscillator 1 ⁇ / b> C in the present embodiment from the first embodiment is that the coupling unit 30 ⁇ / b> C is arranged in parallel so that the inductors 133 and 233 of the plurality of oscillation units 10 and 20 generate electromagnetic induction between the inductors 133 and 233. Is configured.
  • FIG. 4 is a circuit diagram showing a schematic configuration of the oscillator according to the third embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the difference of the oscillator 1 ⁇ / b> C in the present embodiment from the first embodiment is that the coupling unit 30 ⁇ / b> C is arranged in parallel so that the induc
  • the coupling portion 30 ⁇ / b> C is shown by a broken line that connects the inductors 133 and 233.
  • the inductor 133 and the inductor 233 can be electromagnetically induced to each other. By being arranged in parallel, electrical coupling between the two is realized.
  • the induction coils 35 and 36 for electrically coupling the resonance circuits 13 and 23 are provided in addition to the inductors 133 and 233.
  • the inductor 133 and the induction coil 35 are connected in parallel. Since the inductor 233 and the induction coil 36 are connected in parallel, each can be equivalently composed of one inductor. That is, if the inductance of the inductor 133 is L1, and the inductance of the induction coil 35 is L2, the equivalent inductance value is L1 ⁇ L2 / (L1 + L2).
  • an inductor having such an inductance is used as the inductor 133 of the resonance circuit 13, and the inductors 133 and 233 of the plurality of resonance circuits 13 and 23 are inductively coupled (arranged so as to be capable of electromagnetic induction). is doing). Accordingly, the plurality of resonance circuits 13 and 23 are electrically coupled in the same manner as in the second embodiment without providing a separate coupling induction coil.
  • the first wirings 11 and 21 and the second wirings 12 and 22 are electrically coupled to each other by causing electromagnetic induction between the inductors 133 and 233 of the plurality of resonance circuits 13 and 23.
  • the resonance circuits 13 and 23 can be equivalently connected in parallel without using them. Thereby, the occupation area on the semiconductor substrate of the oscillator 1C can be reduced.
  • each resonance circuit and each negative resistance generator is not limited to the configuration illustrated in the above embodiment, and various configurations can be suitably applied.
  • an NMOS transistor is exemplified as a transistor constituting the negative resistance generator, but the present invention is not limited to this as long as a plurality of transistors used in the negative resistance generator have the same conductivity type.
  • an NPN transistor or a PNP transistor may be applied.
  • the capacitive element of the resonance circuit an element having a fixed capacitance is used as the capacitive element of the resonance circuit.
  • the present invention is not limited to this, and a variable capacitive element that can vary the capacitance according to the voltage may be used.
  • the oscillator can be configured as a voltage controlled oscillator (VCO) used in a phase locked loop (PLL) or the like.
  • the present invention is useful for operating the oscillator stably by obtaining a necessary negative resistance with a small current.

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

Provided is an oscillator capable of reliably operating by acquiring necessary negative resistance with less current. The present invention is provided with: a plurality of oscillation units (10 and 20) which are provided with resonant circuits (13 and 23) having capacitance elements (134 and 234) and inductors (133 and 233) which are disposed mutually in parallel, negative resistance generators (14 and 24) having a plurality of transistors disposed so that negative resistance which counteracts the loss from the resonant circuits (13 and 23) is generated, first bias terminals (15 and 25), and second bias terminals (16 and 26); and a coupling unit (30A) for electrically coupling the plurality of oscillation units (10 and 20) so that the resonant circuits (13 and 23) are each coupled to one another in parallel equivalently; wherein the plurality of oscillation units (10 and 20) are serially connected to one another in a first bias terminal (25) and a second bias terminal (16), respectively, thereof for each oscillation unit, and a plurality of transistors (143, 144, 243, and 244) in the plurality of oscillation units (10 and 20) are configured with mutually identical conductivity types.

Description

発振器Oscillator
 本発明は、半導体集積回路に搭載される発振器に関し、特に、低消費電流性能に優れた発振器に関する。 The present invention relates to an oscillator mounted on a semiconductor integrated circuit, and particularly to an oscillator excellent in low current consumption performance.
 近年、広く普及している移動体通信用無線機器において、低消費電流化への要求はますます高まってきている。送受信機能を実現する回路ブロックの中でも発振器(差動発振器)は、発振の高い安定性および位相雑音の低減を実現するため、大きな動作電流を必要とする。 In recent years, there has been an increasing demand for low current consumption in wireless devices for mobile communication that are widely used. Among circuit blocks that realize a transmission / reception function, an oscillator (differential oscillator) requires a large operating current in order to realize high stability of oscillation and reduction of phase noise.
 図5は従来のCMOS構成を有する発振器の概略構成を示す回路図である。図5において、CMOS発振器は、一対のPMOSトランジスタ411,412のゲート端子とドレイン端子とが互いにクロスするように接続されることにより負性抵抗を生じさせる負性抵抗発生器41と、一対のNMOSトランジスタ421,422のゲート端子とドレイン端子とが互いにクロスするように接続されることにより負性抵抗を生じさせる負性抵抗発生器42と、インダクタ(inductor)431および容量素子432が並列接続された共振回路(タンク(tank)回路)43とを備えている。 FIG. 5 is a circuit diagram showing a schematic configuration of an oscillator having a conventional CMOS configuration. In FIG. 5, the CMOS oscillator includes a negative resistance generator 41 that generates a negative resistance by connecting the gate terminals and drain terminals of a pair of PMOS transistors 411 and 412 so as to cross each other, and a pair of NMOS transistors. The negative resistance generator 42 that generates a negative resistance by connecting the gate terminals and the drain terminals of the transistors 421 and 422 so as to cross each other, an inductor 431, and a capacitive element 432 are connected in parallel. And a resonance circuit (tank circuit) 43.
 ここで、タンク回路43を構成するインダクタ431および容量素子432は抵抗成分を有するため、タンク回路43のQ値(Quality Factor)は現実的には有限値となり、交流電流が流れることでインダクタ431および容量素子432の抵抗成分による損失が発生する。このため、タンク回路43における発振が安定に行われるためには、抵抗成分による損失を補うだけの負性抵抗が必要となる。図5に示す発振器では、2つの負性抵抗発生器41,42でこの負性抵抗を生じさせるように意図されている。負性抵抗発生器41,42は一対のPMOSトランジスタ411,412のドレイン端子とこれらに対応する一対のNMOSトランジスタ421,422のドレイン端子とがそれぞれ接続され(いわゆる縦積み構造を有しており)、それぞれが電源とGNDとの間に直列に接続されているため、負性抵抗発生器41,42には同一の電流が動作電流として流れる。このような2つの負性抵抗発生器41,42を有する構成においては、負性抵抗発生器を1つだけ用いた場合に比べ、同じ動作電流から得られる負性抵抗をより大きくすることができる。逆に言えば、負性抵抗は流す電流に依存して変化することため、2つの負性抵抗発生器41,42を用いることにより、必要な負性抵抗を得るための動作電流を低減させることができるといえる。 Here, since the inductor 431 and the capacitive element 432 constituting the tank circuit 43 have resistance components, the Q value (Quality Factor) of the tank circuit 43 is practically a finite value, and an alternating current flows to cause the inductor 431 and Loss due to the resistance component of the capacitor 432 occurs. For this reason, in order for oscillation in the tank circuit 43 to be performed stably, a negative resistance sufficient to compensate for the loss due to the resistance component is required. In the oscillator shown in FIG. 5, two negative resistance generators 41 and 42 are intended to generate this negative resistance. In the negative resistance generators 41 and 42, drain terminals of a pair of PMOS transistors 411 and 412 and drain terminals of a pair of NMOS transistors 421 and 422 corresponding thereto are respectively connected (having a so-called vertically stacked structure). Since each is connected in series between the power supply and GND, the same current flows as an operating current in the negative resistance generators 41 and 42. In such a configuration having two negative resistance generators 41 and 42, the negative resistance obtained from the same operating current can be made larger than when only one negative resistance generator is used. . In other words, since the negative resistance changes depending on the flowing current, the operating current for obtaining the necessary negative resistance can be reduced by using the two negative resistance generators 41 and 42. Can be said.
 また、従来の差動発振器の別例として特許文献1では、PMOS負性抵抗発生器41の代わりに、自身のゲートとドレインとを繋いでダイオード接続された一対のNMOSトランジスタからなる差動対回路が挿入された発振器が開示されている。この差動対回路は自身のゲートとドレインとが繋がれているため負性抵抗が生じず、単なる負荷として働いている。 As another example of the conventional differential oscillator, in Patent Document 1, instead of the PMOS negative resistance generator 41, a differential pair circuit including a pair of NMOS transistors connected to each other by connecting their gate and drain. An oscillator in which is inserted is disclosed. Since this differential pair circuit is connected to its own gate and drain, negative resistance does not occur and it functions as a simple load.
特開2002-353736号公報JP 2002-353736 A
 図5に示したCMOS発振器では二つの負性抵抗発生器41,42の働きで、一方のみを用いた場合に比べより強い負性抵抗が得られる効果があるものの、PMOSトランジスタの相互コンダクタンスはNMOSのそれに比べ半分程度かそれ以下と小さいため、NMOSトランジスタで構成された負性抵抗発生器42単独の負性抵抗に比べ、わずかな効果しかなかった。このため、発振器が安定に動作するために必要な負性抵抗を得るためには、PMOSトランジスタによる負性抵抗発生器41を組み合わせた図5の構成においても動作電流の低減効果はわずかしかなかった。 In the CMOS oscillator shown in FIG. 5, the two negative resistance generators 41 and 42 have the effect of obtaining a stronger negative resistance than when only one of them is used, but the mutual conductance of the PMOS transistor is NMOS. As compared with the negative resistance of the negative resistance generator 42 alone, it has only a slight effect. For this reason, in order to obtain the negative resistance necessary for the oscillator to operate stably, the configuration of FIG. 5 combined with the negative resistance generator 41 using the PMOS transistor has only a small effect of reducing the operating current. .
 また、特許文献1に示した差動発振器においては、負荷として働く差動対回路が追加されるが、当該差動対回路においては負性抵抗が生じず、タンク回路に並列に抵抗性回路が付加されることとなるため、当該抵抗性回路で電力が消費されることとなり、動作電流が増大する問題がある。 In addition, in the differential oscillator shown in Patent Document 1, a differential pair circuit that acts as a load is added. However, in the differential pair circuit, a negative resistance is not generated, and a resistive circuit is provided in parallel with the tank circuit. Since this is added, power is consumed by the resistive circuit, and there is a problem that the operating current increases.
 そこで、本発明は上記の課題を解決するためになされたものであり、少ない電流で必要な負性抵抗が得られることにより、安定に動作することのできる発振器を提供することを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an oscillator that can operate stably by obtaining a necessary negative resistance with a small current.
 上記課題を解決するために、本発明に係る発振器は、第1配線および第2配線と、前記第1配線と前記第2配線との間に互いに並列に配設された容量素子およびインダクタを有する共振回路と、前記第1配線と前記第2配線との間に前記共振回路で生じた損失を打ち消す負性抵抗が生じるように配設された複数のトランジスタを有する負性抵抗発生器と、前記インダクタを介して第1配線及び第2配線に接続された第1バイアス(bias)端子と、前記複数のトランジスタを介して前記第1配線及び前記第2配線に接続された第2バイアス端子と、を備えた複数の発振部と、前記各共振回路が互いに等価的に並列に接続されるように、前記複数の発振部を電気的に結合する結合部と、を備え、前記複数の発振部は、それぞれの前記第1バイアス端子及び第2バイアス端子において互いに直列に接続され、前記複数の発振部における前記複数のトランジスタは、互いに同じ導電型で構成されている。 In order to solve the above problems, an oscillator according to the present invention includes a first wiring and a second wiring, and a capacitive element and an inductor arranged in parallel with each other between the first wiring and the second wiring. A negative resistance generator having a resonance circuit, and a plurality of transistors arranged so as to generate a negative resistance between the first wiring and the second wiring to cancel a loss generated in the resonance circuit; A first bias terminal connected to the first wiring and the second wiring through the inductor; a second bias terminal connected to the first wiring and the second wiring through the plurality of transistors; A plurality of oscillating units, and a coupling unit that electrically couples the plurality of oscillating units so that the respective resonance circuits are equivalently connected in parallel with each other. , Each said first bias The terminals and the second bias terminal are connected in series with each other, and the plurality of transistors in the plurality of oscillation units are configured to have the same conductivity type.
 上記構成によれば、複数の発振部が電気的に結合されることにより、複数の負性抵抗発生器が等価的に並列に接続され、負荷抵抗が増大する。さらに、複数の発振部が電気的に結合されることにより、複数の共振回路が等価的に並列に接続され、複数の共振回路の容量素子およびインダクタが互いに並列に接続される。容量素子が並列接続されると合成容量は接続される容量素子の数に比例して増大し、容量素子およびインダクタの損失を示す抵抗成分の合成値は接続される容量素子およびインダクタの数に反比例して減少する。複数の共振回路全体のQ値は、容量素子の合成容量および損失を示す抵抗成分の合成値にそれぞれ比例するが、合成容量の増大分と損失を示す抵抗成分の合成値の減少分とが互いに打ち消しあうことにより、結果として共振回路のQ値は変化しない。このため、動作電流を負やすことなく、複数の共振回路で生じる抵抗成分を打ち消すだけの十分な負性抵抗を得ることができ、安定な発振動作を得ることができる。 According to the above configuration, the plurality of oscillating units are electrically coupled to each other so that the plurality of negative resistance generators are equivalently connected in parallel and the load resistance is increased. Furthermore, by electrically coupling the plurality of oscillation units, the plurality of resonance circuits are equivalently connected in parallel, and the capacitive elements and inductors of the plurality of resonance circuits are connected in parallel to each other. When capacitive elements are connected in parallel, the combined capacitance increases in proportion to the number of connected capacitive elements, and the combined value of resistance components indicating the loss of the capacitive elements and inductors is inversely proportional to the number of connected capacitive elements and inductors. Then decrease. The Q values of the plurality of resonance circuits as a whole are proportional to the combined value of the capacitive element and the combined value of the resistance component indicating the loss, but the increase in the combined capacitance and the decrease in the combined value of the resistance component indicating the loss are mutually By canceling out, the Q value of the resonance circuit does not change as a result. For this reason, it is possible to obtain a sufficient negative resistance enough to cancel the resistance component generated in the plurality of resonance circuits without negatively operating the current, and a stable oscillation operation can be obtained.
 前記結合部は、前記複数の発振部の前記第1配線同士を接続する第1結合配線に設けられた第1容量素子と、前記複数の発振部の前記第2配線同士を接続する第2結合配線に設けられた第2容量素子とを有していてもよい。このような構成によれば、複数の発振部の第1配線および第2配線同士がそれぞれ第1容量素子および第2容量素子を介して電気的に接続されるため、共振回路で生じる高周波信号に対して第1容量素子および第2容量素子のインピーダンス(impedance)が略零とみなせる。したがって、第1配線および第2配線を流れる電流の直流成分が互いの共振回路間に直接流れ込むことを防止しつつ、共振回路同士を等価的に並列に接続させることができる。よって、より有効に動作電流を低減させることができる。 The coupling portion includes a first capacitive element provided in a first coupling wiring that connects the first wirings of the plurality of oscillation units and a second coupling that connects the second wirings of the plurality of oscillation units. You may have the 2nd capacitive element provided in wiring. According to such a configuration, the first wiring and the second wiring of the plurality of oscillation units are electrically connected to each other via the first capacitive element and the second capacitive element, respectively. On the other hand, the impedance of the first capacitive element and the second capacitive element can be regarded as substantially zero. Therefore, the resonance circuits can be equivalently connected in parallel while preventing the direct current component of the current flowing through the first wiring and the second wiring from flowing directly between the resonance circuits. Therefore, the operating current can be reduced more effectively.
 前記結合部は、前記複数の発振部の前記第1配線および前記第2配線間にそれぞれ設けられた誘導コイルを有し、前記複数の発振部に対応する前記誘導コイル(coil)同士が当該誘導コイル間で電磁誘導が生じるように並列配置されていてもよい。このような構成によれば、複数の発振部に対応する誘導コイルによる電磁誘導により共振回路で生じる高周波信号が共振回路間で伝達可能となる。したがって、第1配線および第2配線を流れる電流の直流成分が互いの共振回路間に直接流れ込むことを防止しつつ、共振回路同士を等価的に並列に接続されることができる。よって、より有効に動作電流を低減させることができる。 The coupling unit includes induction coils provided between the first wiring and the second wiring of the plurality of oscillation units, and the induction coils (coils) corresponding to the plurality of oscillation units are inducted by the induction coil. You may arrange | position in parallel so that electromagnetic induction may arise between coils. According to such a configuration, a high-frequency signal generated in the resonance circuit by electromagnetic induction by the induction coils corresponding to the plurality of oscillation units can be transmitted between the resonance circuits. Therefore, the resonance circuits can be equivalently connected in parallel while preventing the direct current component of the current flowing through the first wiring and the second wiring from flowing directly between the mutual resonance circuits. Therefore, the operating current can be reduced more effectively.
 前記結合部は、前記複数の発振部の前記インダクタ同士が当該インダクタ間で電磁誘導が生じるように並列配置されて構成されていてもよい。これにより、複数の共振回路のインダクタ間で電磁誘導を生じさせることにより、第1配線および第2配線同士を互いに電気的に結合する構成を別途用いることなく、共振回路同士を等価的に並列接続させることができる。 The coupling unit may be configured such that the inductors of the plurality of oscillation units are arranged in parallel so that electromagnetic induction occurs between the inductors. Thus, by causing electromagnetic induction between the inductors of the plurality of resonance circuits, the resonance circuits are equivalently connected in parallel without separately using a configuration in which the first wiring and the second wiring are electrically coupled to each other. Can be made.
 前記複数のトランジスタは、N型のMOSトランジスタであってもよい。 The plurality of transistors may be N-type MOS transistors.
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
 本発明は以上に説明したように構成され、少ない電流で必要な負性抵抗が得られることにより、安定に動作することができるという効果を奏する。 The present invention is configured as described above, and has the effect of being able to operate stably by obtaining the necessary negative resistance with a small current.
図1は本発明の第1実施形態に係る発振器の概略構成を示す回路図である。FIG. 1 is a circuit diagram showing a schematic configuration of the oscillator according to the first embodiment of the present invention. 図2は図1に示す発振器のより詳細な構成を示す回路図である。FIG. 2 is a circuit diagram showing a more detailed configuration of the oscillator shown in FIG. 図3は本発明の第2実施形態に係る発振器の概略構成を示す回路図である。FIG. 3 is a circuit diagram showing a schematic configuration of an oscillator according to the second embodiment of the present invention. 図4は本発明の第3実施形態に係る発振器の概略構成を示す回路図である。FIG. 4 is a circuit diagram showing a schematic configuration of the oscillator according to the third embodiment of the present invention. 図5は従来のCMOS構成を有する発振器の概略構成を示す回路図である。FIG. 5 is a circuit diagram showing a schematic configuration of an oscillator having a conventional CMOS configuration.
 以下に、本発明に係る発振器の実施形態について、図面を参照しながら説明する。なお、以下では全ての図を通じて同一または相当する要素には同一の参照符号を付して、その重複する説明を省略する。 Hereinafter, embodiments of an oscillator according to the present invention will be described with reference to the drawings. In the following description, the same or corresponding elements are denoted by the same reference symbols throughout all the drawings, and redundant description thereof is omitted.
 <第1実施形態>
 まず、本発明の第1実施形態における発振器について説明する。図1は本発明の第1実施形態に係る発振器の概略構成を示す回路図である。図1に示すように、本実施形態における発振器1Aは、複数(本実施形態においては2つ)の発振部10,20(以下、第1発振部10および第2発振部20とも称する)と、発振部10,20を電気的に結合する結合部30Aとを有している。これらの構成は、半導体基板上に形成される。
<First Embodiment>
First, the oscillator according to the first embodiment of the present invention will be described. FIG. 1 is a circuit diagram showing a schematic configuration of the oscillator according to the first embodiment of the present invention. As shown in FIG. 1, an oscillator 1A in the present embodiment includes a plurality (two in the present embodiment) of oscillation units 10 and 20 (hereinafter also referred to as a first oscillation unit 10 and a second oscillation unit 20). A coupling portion 30A that electrically couples the oscillation portions 10 and 20; These structures are formed on a semiconductor substrate.
 第1発振部10は、第1配線11と第2配線12との間に互いに並列に配設された容量素子およびインダクタ(inductor:後述)を有する共振回路(タンク回路)13と、第1配線11と第2配線12との間に共振回路13の損失を打ち消す負性抵抗が生じるように配設された複数のトランジスタ(後述)を有する負性抵抗発生器14とを有しており、差動発振器として動作する。同様に、第2発振部20は、第1配線21と第2配線22との間に共振回路23と、負性抵抗発生器24とを有している。負性抵抗発生器14,24において負性抵抗を生じさせるトランジスタは何れも同じ導電型で構成されている。 The first oscillation unit 10 includes a resonance circuit (tank circuit) 13 having a capacitive element and an inductor (described later) disposed between the first wiring 11 and the second wiring 12 in parallel with each other, and a first wiring. 11 and the second wiring 12, a negative resistance generator 14 having a plurality of transistors (described later) disposed so as to generate a negative resistance that cancels the loss of the resonance circuit 13. Operates as a dynamic oscillator. Similarly, the second oscillation unit 20 includes a resonance circuit 23 and a negative resistance generator 24 between the first wiring 21 and the second wiring 22. In the negative resistance generators 14 and 24, the transistors that generate the negative resistance are all of the same conductivity type.
 また、発振部10,20は、それぞれ、共振回路13のインダクタを介して第1配線11,21および第2配線12,22に接続された第1バイアス端子15,25と、複数のトランジスタを介して第1配線11,21および第2配線12,22に接続された第2バイアス端子16,26とを有している。そして、発振部10,20は、それぞれの第1バイアス端子および第2バイアス端子において互いに直列に接続されている。具体的には、第1発振部10と第2発振部20とは、第1発振部10の負性抵抗発生器14の第2バイアス端子16と第2発振部20の第1バイアス端子25とが接続されることにより、互いに直列に接続されている。また、第1発振部10の第1バイアス端子15は正電圧源VDDに接続され、第2発振部20の第2バイアス端子26はグランドGNDに接続されている。なお、第2発振部20の第2バイアス端子26は、グランドGNDに接続される代わりに、正電圧源VDDより低い電圧を有する電圧源に接続されてもよい。 The oscillation units 10 and 20 include first bias terminals 15 and 25 connected to the first wirings 11 and 21 and the second wirings 12 and 22 via inductors of the resonance circuit 13, respectively, and a plurality of transistors. And second bias terminals 16 and 26 connected to the first wirings 11 and 21 and the second wirings 12 and 22. The oscillation units 10 and 20 are connected in series with each other at the first bias terminal and the second bias terminal. Specifically, the first oscillating unit 10 and the second oscillating unit 20 include a second bias terminal 16 of the negative resistance generator 14 of the first oscillating unit 10 and a first bias terminal 25 of the second oscillating unit 20. Are connected in series with each other. The first bias terminal 15 of the first oscillating unit 10 is connected to the positive voltage source VDD, and the second bias terminal 26 of the second oscillating unit 20 is connected to the ground GND. Note that the second bias terminal 26 of the second oscillation unit 20 may be connected to a voltage source having a voltage lower than the positive voltage source VDD instead of being connected to the ground GND.
 結合部30Aは、第1発振部10の第1配線11と第2発振部20の第1配線21とを電気的に結合するとともに、第1発振部10の第2配線12と第2発振部20の第2配線22とを電気的に結合するよう構成されている。 The coupling unit 30A electrically couples the first wiring 11 of the first oscillating unit 10 and the first wiring 21 of the second oscillating unit 20 and also the second wiring 12 of the first oscillating unit 10 and the second oscillating unit. The 20 second wirings 22 are electrically coupled.
 上記構成によれば、第1配線11,21および第2配線12,22同士が互いに電気的に結合されることにより、複数の負性抵抗発生器14,24が等価的に並列に接続され、負荷抵抗が増大する。また、第1配線11,21および第2配線12,22同士が互いに電気的に結合されることにより、複数の共振回路13,23同士が密に結合され、等価的に並列に接続される。これにより、複数の共振回路13,23の容量素子およびインダクタが互いに並列に接続されるため、共振回路13,23が同一の共振周波数で発振する。このとき、複数の共振回路13,23全体のQ値は変化しない(詳しくは後述する)。このため、動作電流を増やすことなく、複数の共振回路13,23で生じる抵抗成分を打ち消すだけの十分な負性抵抗を得ることができ、安定な発振動作を得ることができる。 According to the above configuration, the first wirings 11 and 21 and the second wirings 12 and 22 are electrically coupled to each other, whereby the plurality of negative resistance generators 14 and 24 are equivalently connected in parallel. Load resistance increases. In addition, the first wirings 11 and 21 and the second wirings 12 and 22 are electrically coupled to each other, whereby the plurality of resonance circuits 13 and 23 are tightly coupled and equivalently connected in parallel. Thereby, since the capacitive elements and inductors of the plurality of resonance circuits 13 and 23 are connected in parallel to each other, the resonance circuits 13 and 23 oscillate at the same resonance frequency. At this time, the overall Q value of the plurality of resonance circuits 13 and 23 does not change (details will be described later). For this reason, it is possible to obtain a sufficient negative resistance enough to cancel the resistance component generated in the plurality of resonance circuits 13 and 23 without increasing the operating current, and to obtain a stable oscillation operation.
 以下、本実施形態のより具体的な構成について説明する。図2は図1に示す発振器のより詳細な構成を示す回路図である。本実施形態において、共振回路13は、第1配線11に接続される第1端子131と第2配線12に接続される第2端子132との間に互いに並列に接続されたインダクタ133と容量素子134とを有している。第1バイアス端子15は、インダクタ133を介して第1配線11および第2配線12に接続されている。同様に、共振回路23は、第1端子231と第2端子232との間に互いに並列に接続されたインダクタ233と容量素子234とを有している。第1バイアス端子25は、インダクタ233を介して第1配線21および第2配線22に接続されている。このように、互いに並列に接続されたインダクタ133,233と容量素子134,234とで構成され、第1バイアス端子15,25を介してインダクタ133,233に正電圧が印加されることにより、共振回路13,23は、並列共振する。なお、図2においては、第1バイアス端子15,25がインダクタ133,233の中央ノードに接続される構成が示されているが、本発明はこれに限られず、例えば複数のインダクタが直列接続された構成において、インダクタ同士が接続されているいずれかの箇所に第1バイアス端子が接続されることとしてもよい。 Hereinafter, a more specific configuration of the present embodiment will be described. FIG. 2 is a circuit diagram showing a more detailed configuration of the oscillator shown in FIG. In the present embodiment, the resonant circuit 13 includes an inductor 133 and a capacitive element connected in parallel between the first terminal 131 connected to the first wiring 11 and the second terminal 132 connected to the second wiring 12. 134. The first bias terminal 15 is connected to the first wiring 11 and the second wiring 12 via the inductor 133. Similarly, the resonance circuit 23 includes an inductor 233 and a capacitive element 234 connected in parallel with each other between the first terminal 231 and the second terminal 232. The first bias terminal 25 is connected to the first wiring 21 and the second wiring 22 via the inductor 233. In this way, the inductors 133 and 233 and the capacitive elements 134 and 234 connected in parallel to each other are configured, and a positive voltage is applied to the inductors 133 and 233 via the first bias terminals 15 and 25, thereby causing resonance. The circuits 13 and 23 resonate in parallel. FIG. 2 shows a configuration in which the first bias terminals 15 and 25 are connected to the central node of the inductors 133 and 233, but the present invention is not limited to this. For example, a plurality of inductors are connected in series. In this configuration, the first bias terminal may be connected to any location where the inductors are connected.
 負性抵抗発生器14は、第1配線11に接続される第1端子141および第2配線12に接続される第2端子142にそれぞれ主端子の一方(例えばドレイン端子)が接続され、主端子の他方(例えばソース端子)同士が接続された一対のトランジスタ143,144を有している。本実施形態において、一対のトランジスタ143,144は何れもNMOSトランジスタ(N型のMOSFET)により構成されている。トランジスタ143の制御端子(例えばゲート端子)は、トランジスタ144の主端子の一方(例えばドレイン端子)に接続され、トランジスタ144の制御端子(例えばゲート端子)は、トランジスタ143の主端子の一方(例えばドレイン端子)に接続されている。同様に、負性抵抗発生器24は、第1端子241および第2端子242にそれぞれ主端子の一方が接続され、主端子の他方同士が接続された一対のトランジスタ243,244を有している。一対のトランジスタ243,244は何れもNMOSトランジスタにより構成されている。トランジスタ243の制御端子は、トランジスタ244の主端子の一方に接続され、トランジスタ244の制御端子は、トランジスタ243の主端子の一方に接続されている。このように、一対のトランジスタ143,243および144,244の主端子の一方と制御端子とを互いにクロスさせるように接続することにより、負性抵抗発生器14,24は、負性抵抗を生じさせている。なお、負性抵抗発生器14,24の構成は、複数のトランジスタによって負性抵抗を生じさせる限りどのような構成を有しておいてもよい。例えば、一対のトランジスタが複数対設けられていてもよい。 The negative resistance generator 14 has one of main terminals (for example, a drain terminal) connected to a first terminal 141 connected to the first wiring 11 and a second terminal 142 connected to the second wiring 12, respectively. A pair of transistors 143 and 144 are connected to each other (for example, source terminals). In the present embodiment, each of the pair of transistors 143 and 144 is configured by an NMOS transistor (N-type MOSFET). The control terminal (eg, gate terminal) of the transistor 143 is connected to one of the main terminals (eg, drain terminal) of the transistor 144, and the control terminal (eg, gate terminal) of the transistor 144 is connected to one of the main terminals of the transistor 143 (eg, drain). Terminal). Similarly, the negative resistance generator 24 includes a pair of transistors 243 and 244 in which one of the main terminals is connected to the first terminal 241 and the second terminal 242 and the other of the main terminals is connected to each other. . Each of the pair of transistors 243 and 244 is configured by an NMOS transistor. The control terminal of the transistor 243 is connected to one of the main terminals of the transistor 244, and the control terminal of the transistor 244 is connected to one of the main terminals of the transistor 243. Thus, by connecting one of the main terminals of the pair of transistors 143, 243 and 144, 244 and the control terminal so as to cross each other, the negative resistance generators 14, 24 cause negative resistance. ing. The negative resistance generators 14 and 24 may have any configuration as long as negative resistance is generated by a plurality of transistors. For example, a plurality of pairs of transistors may be provided.
 また、負性抵抗発生器14,24の一対のトランジスタ143,144および243,244の主端子の他方(互いに接続されている側)には、第2バイアス端子16,26が接続されている。第1発振部10と第2発振部20とは、一方の発振部20の第1バイアス端子25と他方の第1発振部10の第2バイアス端子16と接続されることにより、直列接続されている。また、前述したように、共振回路13のインダクタ133に接続された第1バイアス端子15は、正電圧源VDDに接続され、負性抵抗発生器24の一対のトランジスタ243,244の主端子の他方(互いに接続されている側)に接続された第2バイアス端子26は、グランドGNDに接続されている。このように、発振部10,20は、縦積み構造を有し、正電圧源VDDとグランドGNDとの間に直列に接続されるため、同一のバイアス電流で動作する。 In addition, the second bias terminals 16 and 26 are connected to the other of the main terminals of the pair of transistors 143 and 144 and 243 and 244 (sides connected to each other) of the negative resistance generators 14 and 24. The first oscillator 10 and the second oscillator 20 are connected in series by being connected to the first bias terminal 25 of one oscillator 20 and the second bias terminal 16 of the other first oscillator 10. Yes. As described above, the first bias terminal 15 connected to the inductor 133 of the resonance circuit 13 is connected to the positive voltage source VDD, and the other of the main terminals of the pair of transistors 243 and 244 of the negative resistance generator 24. The second bias terminal 26 connected to (the sides connected to each other) is connected to the ground GND. As described above, the oscillating units 10 and 20 have a vertically stacked structure and are connected in series between the positive voltage source VDD and the ground GND, and thus operate with the same bias current.
 結合部30Aは、発振部10,20の第1配線11,21同士を接続する第1結合配線32に設けられた第1容量素子34と、発振部10,20の第2配線12,22同士を接続する第2結合配線31に設けられた第2容量素子33とを有している。 The coupling unit 30A includes a first capacitive element 34 provided in the first coupling wiring 32 that connects the first wirings 11 and 21 of the oscillation units 10 and 20, and the second wirings 12 and 22 of the oscillation units 10 and 20. And a second capacitive element 33 provided in the second coupling wiring 31 for connecting the two.
 共振回路13,23で発生した高周波信号に対して第1および第2容量素子33,34のインピーダンスは小さく略零とみなせる。従って、このような高周波信号に対して共振回路13,23は結合部30Aにより等価的に並列に接続されている。したがって、第1配線11,21および第2配線12,22を流れる電流の直流成分が互いの共振回路13,23間に直接流れ込むことを防止しつつ、共振回路同士を等価的に並列に接続させることができる。よって、より有効に動作電流を低減させることができる。 The impedance of the first and second capacitive elements 33 and 34 with respect to the high-frequency signal generated in the resonance circuits 13 and 23 is small and can be regarded as substantially zero. Therefore, the resonance circuits 13 and 23 are equivalently connected in parallel to the high-frequency signal by the coupling unit 30A. Accordingly, the resonance circuits are equivalently connected in parallel while preventing the direct current component of the current flowing through the first wirings 11 and 21 and the second wirings 12 and 22 from flowing directly between the resonance circuits 13 and 23. be able to. Therefore, the operating current can be reduced more effectively.
 ここで、等価的に並列に接続された共振回路13,23全体のQ値について説明する。まず、共振回路13,23のインダクタ133,233および容量素子134,234は、それぞれ同様のインダクタンスLおよび容量値Cを有している。また、インダクタ133,233および容量素子134,234は抵抗成分が存在しないことが理想であるが、実際には抵抗成分が存在する。これらの素子による損失を示す抵抗成分は、等価的にこれらの素子に並列に抵抗値Rの抵抗素子が接続されたものとみなせる。 Here, the overall Q value of the resonance circuits 13 and 23 connected in parallel will be described. First, the inductors 133 and 233 and the capacitive elements 134 and 234 of the resonance circuits 13 and 23 have the same inductance L and capacitance value C, respectively. Further, it is ideal that the inductors 133 and 233 and the capacitive elements 134 and 234 have no resistance component, but actually there are resistance components. The resistance component indicating the loss due to these elements can be regarded as equivalent to a resistance element having a resistance value R connected in parallel with these elements.
 このときの共振周波数をωとすると、共振回路13,23のQ値は容量素子134,234の合成容量および損失を示す抵抗成分の合成値にそれぞれ比例するそれぞれωCRで表される。この2つの共振回路13,23を並列に接続した場合、容量素子134,234の合成容量値は、容量素子が並列接続されることにより2倍(2C)となる。また、共振回路13,23の全体の損失を示す抵抗値は、各共振回路13,23の損失を示す等価的な抵抗素子が並列接続されたものとみなせるため、1/2倍(R/2)となる。したがって、2つの共振回路13,23全体のQ値はω(2C)(R/2)=ωCRとなり、各共振回路13,23単体のQ値と同じ値となる。すなわち、複数の共振回路全体のQ値は、合成容量の増大分と損失を示す抵抗成分の合成値の減少分とが互いに打ち消しあうことにより、結果として共振回路のQ値は変化しない。このように、本実施形態の複数の共振回路13,23は損失を示すQ値に関してあたかも1つの共振回路とみなすことができる。 Suppose that the resonance frequency at this time is ω, the Q values of the resonance circuits 13 and 23 are represented by ωCR which are respectively proportional to the combined capacitance of the capacitive elements 134 and 234 and the combined value of the resistance components indicating the loss. When the two resonance circuits 13 and 23 are connected in parallel, the combined capacitance value of the capacitive elements 134 and 234 is doubled (2C) by connecting the capacitive elements in parallel. Further, the resistance value indicating the overall loss of the resonance circuits 13 and 23 can be regarded as an equivalent resistance element indicating the loss of each of the resonance circuits 13 and 23 being connected in parallel. ) Therefore, the Q value of the entire two resonance circuits 13 and 23 is ω (2C) (R / 2) = ωCR, which is the same value as the Q value of each of the resonance circuits 13 and 23 alone. In other words, the Q values of the plurality of resonance circuits as a whole are such that the increase in the combined capacitance and the decrease in the combined value of the resistance component indicating the loss cancel each other, and as a result, the Q value of the resonance circuit does not change. Thus, the plurality of resonance circuits 13 and 23 of the present embodiment can be regarded as one resonance circuit with respect to the Q value indicating the loss.
 これに対し、負性抵抗発生器14,24は、それぞれ同じ導電型(N型)を有するトランジスタ(MOSトランジスタ)143,144,243,244を有し、各共振回路13,23にそれぞれ並列に接続されているため、2つの発振部10,20全体における負性抵抗が2倍となる。しかも、2つの発振部10,20は互いに直列に接続されており、これらを動作させるバイアス電流は、増大しない。したがって、2つの発振部10,20全体の損失を示すQ値を上げずに負性抵抗を上げることができる。これにより、動作電流を増やすことなく、複数の共振回路13,23で生じる抵抗成分を打ち消すだけの十分な負性抵抗を得ることができ、安定な発振動作を得ることができる。 On the other hand, the negative resistance generators 14, 24 have transistors (MOS transistors) 143, 144, 243, 244 having the same conductivity type (N type), respectively, and are connected in parallel to the resonance circuits 13, 23, respectively. Since they are connected, the negative resistance in the entire two oscillation units 10 and 20 is doubled. Moreover, the two oscillating units 10 and 20 are connected in series with each other, and the bias current for operating them does not increase. Therefore, the negative resistance can be increased without increasing the Q value indicating the loss of the entire two oscillation units 10 and 20. Thereby, without increasing the operating current, it is possible to obtain a sufficient negative resistance enough to cancel the resistance component generated in the plurality of resonance circuits 13 and 23, and to obtain a stable oscillation operation.
 <第2実施形態>
 次に、本発明の第2実施形態に係る発振器について説明する。図3は本発明の第2実施形態に係る発振器の概略構成を示す回路図である。本実施形態において第1実施形態と同様の構成については同じ符号を付し、説明を省略する。本実施形態における発振器1Bが第1実施形態と異なる点は、結合部30Bが、複数の発振部10,20の第1配線11,21および第2配線12,22間にそれぞれ設けられた誘導コイル35,36を有し、誘導コイル35,36同士が当該誘導コイル35,36間で電磁誘導が生じるように並列配置されていることである。
Second Embodiment
Next, an oscillator according to a second embodiment of the invention will be described. FIG. 3 is a circuit diagram showing a schematic configuration of an oscillator according to the second embodiment of the present invention. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The difference of the oscillator 1B in the present embodiment from the first embodiment is that the coupling portion 30B is an induction coil provided between the first wirings 11 and 21 and the second wirings 12 and 22 of the plurality of oscillation units 10 and 20, respectively. 35, and the induction coils 35 and 36 are arranged in parallel so that electromagnetic induction occurs between the induction coils 35 and 36.
 このような構成によれば、複数の発振部10,20のそれぞれに対応して設けられた誘導コイル35,36による電磁誘導により共振回路13,23で生じる高周波信号が誘導コイル35,36を通じて共振回路13,23間で伝達可能となる。このとき、誘導コイル35,36間は絶縁されているため、直流電流が流れることはない。したがって、第1配線11,21および第2配線12,22を流れる電流の直流成分が互いの共振回路13,23間に直接流れ込むことを防止しつつ、共振回路13,23同士を等価的に並列に接続されることができる。よって、より有効に動作電流を低減させることができる。 According to such a configuration, a high-frequency signal generated in the resonance circuits 13 and 23 due to electromagnetic induction by the induction coils 35 and 36 provided corresponding to each of the plurality of oscillation units 10 and 20 resonates through the induction coils 35 and 36. Transmission between the circuits 13 and 23 becomes possible. At this time, since the induction coils 35 and 36 are insulated, a direct current does not flow. Therefore, the resonance circuits 13 and 23 are equivalently connected in parallel while preventing the direct current component of the current flowing through the first wirings 11 and 21 and the second wirings 12 and 22 from flowing directly between the resonance circuits 13 and 23. Can be connected to. Therefore, the operating current can be reduced more effectively.
 なお、誘導コイル35,36のインダクタンスは、同じでもよいし、異なっていてもよい。誘導コイル35に対する誘導コイル36のインダクタンスの比をNとすると、N=1の場合は、第1実施形態と同様に同じ共振回路13,23同士を等価的に並列に接続した構成となるが、Nの値が1以外(0<N<1またはN>1)となるようなインダクタンスの比にすることにより、一方の共振回路13,23の発振振幅を他方の共振回路23,13の発振振幅に対して大きくすることができ、設計の自由度を高めることができる。 Note that the inductances of the induction coils 35 and 36 may be the same or different. Assuming that the inductance ratio of the induction coil 36 to the induction coil 35 is N, when N = 1, the same resonance circuits 13 and 23 are equivalently connected in parallel as in the first embodiment. By making the inductance ratio such that the value of N is other than 1 (0 <N <1 or N> 1), the oscillation amplitude of one resonance circuit 13, 23 is changed to the oscillation amplitude of the other resonance circuit 23, 13. The degree of freedom of design can be increased.
 このように、本発明における結合部の構成において、複数の発振部10,20の第1配線11,21および第2配線12,22同士を互いに電気的に結合とは、第1配線11,21同士および第2配線12,22同士を接続する構成に限られず、第1配線11,21間および第2配線12,22間を絶縁(isolate)しつつ接続する構成も含まれる。 As described above, in the configuration of the coupling portion in the present invention, the first wirings 11 and 21 and the second wirings 12 and 22 of the plurality of oscillation units 10 and 20 are electrically coupled to each other as the first wirings 11 and 21. The configuration is not limited to the configuration in which the second wirings 12 and 22 are connected to each other, and includes a configuration in which the first wirings 11 and 21 and the second wirings 12 and 22 are connected while being insulated.
 <第3実施形態>
 次に、本発明の第3実施形態に係る発振器について説明する。図4は本発明の第3実施形態に係る発振器の概略構成を示す回路図である。本実施形態において第1実施形態と同様の構成については同じ符号を付し、説明を省略する。本実施形態における発振器1Cが第1実施形態と異なる点は、結合部30Cが、複数の発振部10,20のインダクタ133,233同士が当該インダクタ133,233間で電磁誘導が生じるように並列配置されて構成されていることである。なお、図4においては理解容易のために、結合部30Cがインダクタ133,233間を繋ぐような破線で示されているが、実際にはインダクタ133とインダクタ233とが互いに電磁誘導可能なように並列配置されていることにより両者間の電気的な結合が実現される。
<Third Embodiment>
Next, an oscillator according to a third embodiment of the invention will be described. FIG. 4 is a circuit diagram showing a schematic configuration of the oscillator according to the third embodiment of the present invention. In the present embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. The difference of the oscillator 1 </ b> C in the present embodiment from the first embodiment is that the coupling unit 30 </ b> C is arranged in parallel so that the inductors 133 and 233 of the plurality of oscillation units 10 and 20 generate electromagnetic induction between the inductors 133 and 233. Is configured. In FIG. 4, for easy understanding, the coupling portion 30 </ b> C is shown by a broken line that connects the inductors 133 and 233. However, in practice, the inductor 133 and the inductor 233 can be electromagnetically induced to each other. By being arranged in parallel, electrical coupling between the two is realized.
 前述した第2実施形態においては、インダクタ133,233とは別に共振回路13,23同士を電気的に結合するための誘導コイル35,36を設けているが、インダクタ133と誘導コイル35とは並列に接続され、インダクタ233と誘導コイル36とは並列に接続されているため、それぞれ等価的に1つのインダクタで構成することができる。すなわち、インダクタ133のインダクタンスをL1とし、誘導コイル35のインダクタンスをL2とすれば、等価的なインダクタンスの値はL1・L2/(L1+L2)となる。 In the second embodiment described above, the induction coils 35 and 36 for electrically coupling the resonance circuits 13 and 23 are provided in addition to the inductors 133 and 233. However, the inductor 133 and the induction coil 35 are connected in parallel. Since the inductor 233 and the induction coil 36 are connected in parallel, each can be equivalently composed of one inductor. That is, if the inductance of the inductor 133 is L1, and the inductance of the induction coil 35 is L2, the equivalent inductance value is L1 · L2 / (L1 + L2).
 したがって、本実施形態においては、このようなインダクタンスを有するインダクタを共振回路13のインダクタ133として用い、複数の共振回路13,23のインダクタ133,233同士を誘導結合させている(電磁誘導可能に配置している)。これにより、別途結合用の誘導コイルを設けることなく第2実施形態と同様に複数の共振回路13,23が電気的に結合される。 Therefore, in the present embodiment, an inductor having such an inductance is used as the inductor 133 of the resonance circuit 13, and the inductors 133 and 233 of the plurality of resonance circuits 13 and 23 are inductively coupled (arranged so as to be capable of electromagnetic induction). is doing). Accordingly, the plurality of resonance circuits 13 and 23 are electrically coupled in the same manner as in the second embodiment without providing a separate coupling induction coil.
 このように、複数の共振回路13,23のインダクタ133,233間で電磁誘導を生じさせることにより、第1配線11,21および第2配線12,22同士を互いに電気的に結合する構成を別途用いることなく、共振回路13,23同士を等価的に並列接続させることができる。これにより、発振器1Cの半導体基板上の占有面積を小さくすることができる。 As described above, the first wirings 11 and 21 and the second wirings 12 and 22 are electrically coupled to each other by causing electromagnetic induction between the inductors 133 and 233 of the plurality of resonance circuits 13 and 23. The resonance circuits 13 and 23 can be equivalently connected in parallel without using them. Thereby, the occupation area on the semiconductor substrate of the oscillator 1C can be reduced.
 以上、本発明の実施の形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲内で種々の改良、変更、修正が可能である。例えば、複数の上記実施形態における各構成要素を任意に組み合わせることとしてもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various improvements, changes, and modifications can be made without departing from the spirit of the present invention. For example, it is good also as combining each component in several said embodiment arbitrarily.
 上記実施形態においては、複数の発振部として2つの発振部を例示したが、本発明はこれに限られず、3つ以上の発振部を有する構成としてもよい。また、各共振回路および各負性抵抗発生器の構成は上記実施形態において例示した構成に限られず、種々の構成が好適に適用され得る。さらに、本実施形態においては負性抵抗発生器を構成するトランジスタとしてNMOSトランジスタを例示したが、本発明は負性抵抗発生器に用いられる複数のトランジスタが同じ導電型を有する限りこれに限られず、例えばNPNトランジスタまたはPNPトランジスタを適用してもよい。また、上記実施形態においては共振回路の容量素子として固定容量を有する素子を用いているが、本発明はこれに限られず電圧に応じて容量を可変することができる可変容量素子を用いてもよい。これにより発振器を位相同期回路(PLL)等に用いられる電圧制御発振器(VCO)として構成することも可能である。 In the above embodiment, two oscillating units are exemplified as the plurality of oscillating units. However, the present invention is not limited to this, and a configuration having three or more oscillating units may be employed. In addition, the configuration of each resonance circuit and each negative resistance generator is not limited to the configuration illustrated in the above embodiment, and various configurations can be suitably applied. Furthermore, in the present embodiment, an NMOS transistor is exemplified as a transistor constituting the negative resistance generator, but the present invention is not limited to this as long as a plurality of transistors used in the negative resistance generator have the same conductivity type. For example, an NPN transistor or a PNP transistor may be applied. In the above embodiment, an element having a fixed capacitance is used as the capacitive element of the resonance circuit. However, the present invention is not limited to this, and a variable capacitive element that can vary the capacitance according to the voltage may be used. . Thus, the oscillator can be configured as a voltage controlled oscillator (VCO) used in a phase locked loop (PLL) or the like.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 本発明は、発振器を、少ない電流で必要な負性抵抗が得られることにより、安定に動作させるために有用である。 The present invention is useful for operating the oscillator stably by obtaining a necessary negative resistance with a small current.
 1A,1B,1C 発振器
 10 第1発振部
 11,21 第1配線
 12,22 第2配線
 13,23 共振回路
 14,24 負性抵抗発生器
 15,25 第1バイアス端子
 16,26 第2バイアス端子
 20 第2発振部
 30A,30B,30C 結合部
 31 第1結合配線
 32 第1容量素子
 33 第2結合配線
 34 第2容量素子
 35,36 誘導コイル
 131,141,231,241 第1端子
 132,142,232,242 第2端子
 133,233 インダクタ
 134,234 容量素子
 143,144,243,244 トランジスタ
 
 
1A, 1B, 1C Oscillator 10 First oscillator 11, 21 First wire 12, 22 Second wire 13, 23 Resonant circuit 14, 24 Negative resistance generator 15, 25 First bias terminal 16, 26 Second bias terminal 20 2nd oscillation part 30A, 30B, 30C coupling | bond part 31 1st coupling wiring 32 1st capacitive element 33 2nd coupling wiring 34 2nd capacitive element 35,36 Inductive coil 131,141,231,241 1st terminal 132,142 , 232, 242 Second terminal 133, 233 Inductor 134, 234 Capacitor element 143, 144, 243, 244 Transistor

Claims (5)

  1.  第1配線および第2配線と、前記第1配線と前記第2配線との間に互いに並列に配設された容量素子およびインダクタを有する共振回路と、前記第1配線と前記第2配線との間に前記共振回路の損失を打ち消す負性抵抗が生じるように配設された複数のトランジスタを有する負性抵抗発生器と、前記インダクタを介して第1配線および第2配線に接続された第1バイアス端子と、前記複数のトランジスタを介して前記第1配線および前記第2配線に接続された第2バイアス端子と、を備えた複数の発振部と、
     前記各共振回路が互いに等価的に並列に接続されるように、前記複数の発振部を電気的に結合する結合部と、を備え、
     前記複数の発振部は、それぞれの前記第1バイアス端子および第2バイアス端子において互いに直列に接続され、
     前記複数の発振部における前記複数のトランジスタは、互いに同じ導電型で構成されている、発振器。
    A resonance circuit having a first wiring and a second wiring, a capacitive element and an inductor disposed in parallel with each other between the first wiring and the second wiring, and the first wiring and the second wiring. A negative resistance generator having a plurality of transistors disposed so as to generate a negative resistance that cancels the loss of the resonant circuit between the first wiring and the first wiring connected to the first wiring and the second wiring through the inductor; A plurality of oscillation units comprising: a bias terminal; and a second bias terminal connected to the first wiring and the second wiring through the plurality of transistors;
    A coupling unit that electrically couples the plurality of oscillation units so that the resonance circuits are equivalently connected in parallel with each other, and
    The plurality of oscillation units are connected in series with each other at the first bias terminal and the second bias terminal,
    The plurality of transistors in the plurality of oscillation units are configured to have the same conductivity type.
  2.  前記結合部は、前記複数の発振部の前記第1配線同士を接続する第1結合配線に設けられた第1容量素子と、前記複数の発振部の前記第2配線同士を接続する第2結合配線に設けられた第2容量素子とを有する、請求項1に記載の発振器。 The coupling portion includes a first capacitive element provided in a first coupling wiring that connects the first wirings of the plurality of oscillation units and a second coupling that connects the second wirings of the plurality of oscillation units. The oscillator according to claim 1, further comprising a second capacitor element provided in the wiring.
  3.  前記結合部は、前記複数の発振部の前記第1配線および前記第2配線間にそれぞれ設けられた誘導コイルを有し、前記複数の発振部に対応する前記誘導コイル同士が当該誘導コイル間で電磁誘導が生じるように並列配置される、請求項1に記載の発振器。 The coupling unit includes induction coils respectively provided between the first wiring and the second wiring of the plurality of oscillation units, and the induction coils corresponding to the plurality of oscillation units are between the induction coils. The oscillator according to claim 1, which is arranged in parallel so that electromagnetic induction occurs.
  4.  前記結合部は、前記複数の発振部の前記インダクタ同士が当該インダクタ間で電磁誘導が生じるように並列配置されて構成される、請求項1に記載の発振器。 2. The oscillator according to claim 1, wherein the coupling unit is configured such that the inductors of the plurality of oscillation units are arranged in parallel so that electromagnetic induction occurs between the inductors.
  5.  前記複数のトランジスタは、N型のMOSトランジスタである、請求項1に記載の発振器。 The oscillator according to claim 1, wherein the plurality of transistors are N-type MOS transistors.
PCT/JP2011/000424 2010-10-28 2011-01-26 Oscillator WO2012056600A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-242604 2010-10-28
JP2010242604A JP2012095225A (en) 2010-10-28 2010-10-28 Oscillator

Publications (1)

Publication Number Publication Date
WO2012056600A1 true WO2012056600A1 (en) 2012-05-03

Family

ID=45993349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000424 WO2012056600A1 (en) 2010-10-28 2011-01-26 Oscillator

Country Status (2)

Country Link
JP (1) JP2012095225A (en)
WO (1) WO2012056600A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200065A (en) * 2013-03-12 2014-10-23 キヤノン株式会社 Oscillation element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003078349A (en) * 2001-09-05 2003-03-14 Murata Mfg Co Ltd Balanced oscillator circuit and electronic device employing the same
US6639481B1 (en) * 2002-08-20 2003-10-28 Intel Corporation Transformer coupled quadrature tuned oscillator
JP2005513826A (en) * 2001-07-05 2005-05-12 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) Oscillator
JP2005198084A (en) * 2004-01-08 2005-07-21 Matsushita Electric Ind Co Ltd Differential oscillation circuit
JP2007110701A (en) * 2005-10-11 2007-04-26 Samsung Electro Mech Co Ltd Body bias control type voltage controlled oscillator
JP2009177388A (en) * 2008-01-23 2009-08-06 Kawasaki Microelectronics Inc Lc oscillator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005513826A (en) * 2001-07-05 2005-05-12 テレフオンアクチーボラゲツト エル エム エリクソン(パブル) Oscillator
JP2003078349A (en) * 2001-09-05 2003-03-14 Murata Mfg Co Ltd Balanced oscillator circuit and electronic device employing the same
US6639481B1 (en) * 2002-08-20 2003-10-28 Intel Corporation Transformer coupled quadrature tuned oscillator
JP2005198084A (en) * 2004-01-08 2005-07-21 Matsushita Electric Ind Co Ltd Differential oscillation circuit
JP2007110701A (en) * 2005-10-11 2007-04-26 Samsung Electro Mech Co Ltd Body bias control type voltage controlled oscillator
JP2009177388A (en) * 2008-01-23 2009-08-06 Kawasaki Microelectronics Inc Lc oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200065A (en) * 2013-03-12 2014-10-23 キヤノン株式会社 Oscillation element

Also Published As

Publication number Publication date
JP2012095225A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
JP5154419B2 (en) Variable integrated inductor
EP1425844B1 (en) Oscillator
CN108028248B (en) Integrated circuit with low common mode coupling effect
US7547970B2 (en) Semiconductor device
JP5069355B2 (en) Improved Hartley voltage controlled oscillator
US20100271086A1 (en) Dual-band coupled vco
US9240752B2 (en) Power oscillator apparatus with transformer-based power combining
JP4922369B2 (en) Voltage controlled oscillator
US8957739B2 (en) Ultra-low voltage-controlled oscillator with trifilar coupling
JP4625138B2 (en) A circuit that converts a differential current signal to a single termination signal
JP2010272815A (en) Variable inductor
US20170179881A1 (en) Common-Mode Impedance Network for Reducing Sensitivity in Oscillators
CN107017842B (en) Signal generator and resonance circuit
US11843351B2 (en) Integrated circuit including resonant circuit
WO2019218371A1 (en) Integrated circuit for oscillator
US20160036382A1 (en) Low power wide tuning range oscillator
US20120169428A1 (en) Ac coupled stack inductor for voltage controlled oscillator
JP4836030B2 (en) LC oscillator circuit
JP4669130B2 (en) Oscillator
WO2012056600A1 (en) Oscillator
JP4884405B2 (en) LC oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835748

Country of ref document: EP

Kind code of ref document: A1