WO2012055266A1 - 一种测量处理方法及系统 - Google Patents

一种测量处理方法及系统 Download PDF

Info

Publication number
WO2012055266A1
WO2012055266A1 PCT/CN2011/076952 CN2011076952W WO2012055266A1 WO 2012055266 A1 WO2012055266 A1 WO 2012055266A1 CN 2011076952 W CN2011076952 W CN 2011076952W WO 2012055266 A1 WO2012055266 A1 WO 2012055266A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
cell
serving cell
event
downlink subframe
Prior art date
Application number
PCT/CN2011/076952
Other languages
English (en)
French (fr)
Inventor
施小娟
汪孙节
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012055266A1 publication Critical patent/WO2012055266A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements

Definitions

  • the present invention relates to the technical field of coexistence of multiple radio technologies in a terminal, and more particularly to a measurement processing method and system for a terminal device when a plurality of radio technologies coexist in the same terminal device. Background technique
  • radio technology With the development of radio technology, more and more radio technologies are beginning to be widely used, especially in order to meet the multiple communication needs of end users. In the same intelligent terminal, multiple radio technologies will be used simultaneously.
  • three radio technologies are designed, which are sub-devices (or sub-modules) using Long Term Evolution (LTE) technology, which can be represented as LTE sub-devices 101;
  • a sub-device (or sub-module) of a wireless local area network (WLAN) technology specified by the IEEE Std 802.11 specification may be represented as a WLAN-STA sub-device 102, where WLAN-STA refers to a wireless local area network station;
  • a sub-device (or sub-module) of the Bluetooth (Bluetooth) radio technology specified by the Std 802.15 specification may be represented as a Bluetooth sub-device 103.
  • the three sub-devices of the terminal device 100 are respectively in wireless communication with the peer devices corresponding to the respective radio technologies, wherein the LTE sub-device 101 and the LTE evolved base station (eNB, E-UTRAN NodeB) device 104 perform wireless communication through the air interface.
  • the WLAN-STA sub-device 102 and the WLAN STA device 105 (the WLAN STA device 105 is another WLAN STA device different from the WLAN-STA sub-device) perform wireless communication over the air interface;
  • the Bluetooth sub-device 103 and the Bluetooth device 106 (Bluetooth device) 106 is another Bluetooth device different from the Bluetooth sub-device 103) for wireless communication over the air interface.
  • the air interface can be represented as an air interface
  • the LTE sub-device 101, the WLAN-STA sub-device 102, and the Bluetooth sub-device 103 are connected by an inter-radio interface, such as an LTE sub-device 101 and a WLAN-STA.
  • the sub-devices 102 are connected through the interface L101, and the LTE sub-devices 101 and the Bluetooth sub-devices 103 are connected through the interface L102; or the three sub-devices are controlled by the same common control device 107.
  • radio technologies can be simultaneously available in the same terminal device.
  • the spatial distance between the sub-devices in which two or more radio technologies are located is closely related to each other due to the limitation of the volume of the terminal device.
  • the spatial isolation cannot be designed to be large enough, so that when the radio technologies in the same terminal device use adjacent frequency bands, due to out of band emission, spurious emissions, etc.
  • a sub-device in which one of the radio technologies is located in the terminal device transmits it is bound to interfere with the reception of the sub-device in which the other radio technology is located; the existing filter is eliminated, thereby affecting the communication quality of the sub-device in which the radio technology is located, Knife greedy ⁇ f7
  • WLAN and Bluetooth use the industrial, scientific, and medical (ISM, Industrial Scientific and Medical) band, which ranges from 2.4 GHz to 2.5 GHz, where the WLAN uses 2.4 GHz in the ISM band.
  • ISM industrial, scientific, and medical
  • Bluetooth uses the 2.4GHz ⁇ 2.497GHz band in the ISM band.
  • the ISM band is adjacent to the LTE band 40 (Band40: 2.3 GHz to 2.4 GHz) and the band 7 upstream band (Band7 UP: 2.5 GHz to 2.57 GHz), as shown in Fig. 2.
  • the LTE sub-device 101 uses time In the TDD (Time Division Duplex) mode and using Band 40, the LTE sub-device 101 and the WLAN-STA sub-device 102 and the Bluetooth sub-device 103 will interfere with each other. If the LTE sub-device 101 uses the Frequency Division Duplex (FDD) mode and uses Band7, as shown in FIG.
  • FDD Frequency Division Duplex
  • the WLAN-STA sub-device 102/ The uplink transmission of the Bluetooth sub-device 103 does not interfere with the downlink reception of the LTE sub-device 101, but since the uplink frequency band of the LTE Band 7 is adjacent to the ISM frequency band, the uplink transmission of the LTE sub-device 101 will interfere with the WLAN-STA sub-device 102/the Bluetooth sub-device 103. Downstream reception.
  • Table 1 below uses LTE Band40 and WLAN ISM Band as examples to illustrate the interference between different sub-bands of LTE Band 40 and different sub-bands of WLAN ISM Band.
  • the LTE sub-device 101 operates in the high frequency band of the Band 40 (such as 2375 ⁇ 2390 MHz), the WLAN-STA sub-device 102 operates in the high frequency band of the ISM Band (such as 2432 ⁇ 2472 MHz); or the LTE sub-device 101 works in the low of the Band40.
  • the frequency band (such as 2310 ⁇ 2365MHz), and the WLAN-STA sub-device 102 works in the low frequency band of the ISM Band (such as 2412 ⁇ 2422MHz), and the frequency interval between the operating frequencies of the LTE sub-device 101 and the WLAN-STA sub-device 102 is relatively large.
  • the coexistence interference in the device exists, but the former is not serious.
  • the LTE sub-device 101 operates in the low frequency band of the Band 40 (such as 2310 ⁇ 2365 MHz), and the WLAN-STA sub-device 102 operates in the high frequency band of the ISM Band (such as 2432 ⁇ 2472 MHz), the LTE sub-device 101 and the WLAN -
  • the frequency spacing between the operating frequencies of the STA sub-devices 102 is sufficiently large that there is no coexistence interference within the device. It will reduce the communication quality of each radio technology in the terminal device and affect the communication experience of the user. Therefore, there is an urgent need for a measurement and processing solution, which can avoid the work of various wireless electronic devices coexisting in the terminal device.
  • the LTE sub-device 101 is prevented from operating in the high frequency band of the Band 40 to reduce coexistence interference in the device.
  • there is currently no such solution there is currently no such solution. Summary of the invention
  • the main object of the present invention is to provide a measurement processing method and system for coexisting interference in a sub-band, thereby reducing coexistence interference in the device.
  • a measurement processing method includes: a plurality of wireless electronic devices coexisting in the same terminal device, wherein when the wireless electronic device performs measurement, for the measurement of the serving cell, the measurement event and the neighboring cell of the serving cell are not distinguished Measuring the measurement of an event; or Measurement of the to-be-served cell measurement event and neighboring cell measurement event.
  • the method further includes: when measuring the signal quality of the serving cell, the measurement part is downlinked. Subframe.
  • the part of the downlink subframe includes: an LTE downlink subframe corresponding to the uplink transmission of the non-LTE sub-device.
  • the method further includes: the method for measuring the measurement of the serving cell and the measurement of the neighboring cell, where the wireless electronic device is an LTE sub-device, the method further includes:
  • For the serving cell measurement event measuring any downlink subframe of the serving cell; for the neighboring cell measurement event, measuring the serving cell in the neighbor cell measurement event, and measuring part of the downlink subframe of the serving cell.
  • the part of the downlink subframe includes: an LTE downlink subframe corresponding to the uplink transmission of the non-LTE sub-device; or an adjusted partial downlink subframe obtained after the partial downlink subframe has been selected;
  • the adjusted partial downlink subframe is a subframe obtained by adjusting the selected downlink subframe according to the signal quality of the actual serving cell.
  • the adjusted part of the downlink subframe includes: an LTE downlink subframe corresponding to the non-LTE sub-device not performing uplink transmission;
  • the adjusted part of the downlink subframe includes: an LTE downlink subframe corresponding to the non-LTE sub-device performing uplink transmission.
  • the threshold 1 and the threshold 2 are threshold values configured by the serving base station to the terminal device; or the threshold 1 and the threshold 2 are threshold values pre-agreed by the serving base station and the terminal device.
  • the measurement event of the serving cell is: only measuring a measurement event of a signal quality of the serving cell;
  • the neighboring area measurement event is: It is necessary to measure the signal quality of the serving cell and measure the neighbor Measurement event of the signal quality of the zone.
  • a measurement processing system comprising: a measurement processing unit, configured to coexist in a plurality of wireless electronic devices in the same terminal device, wherein when the wireless electronic device performs measurement, the measurement of the serving cell is not differentiated from the service Measurement of cell measurement events and neighboring measurement events; or, differentiating measurements of service cell measurement events and neighbor cell measurement events.
  • the measurement processing unit is further configured to: perform measurement that does not distinguish between a measurement event of a serving cell and a neighboring measurement event, where the wireless electronic device is an LTE sub-device, and when measuring a signal quality of the serving cell, the measurement Partial downlink subframe.
  • the measurement processing unit is further configured to: perform measurement to distinguish between a measurement event of the serving cell and a neighboring measurement event, where the wireless electronic device is an LTE sub-device, and measure the service for the serving cell. Any downlink subframe of the cell; for the neighboring cell measurement event, measuring the serving cell in the neighbor cell measurement event, and measuring part of the downlink subframe of the serving cell.
  • the plurality of wireless electronic devices of the present invention coexist in the same terminal device, wherein when the wireless electronic device performs measurement, for the measurement of the serving cell, the measurement of the measurement event of the serving cell and the measurement event of the neighboring cell are not distinguished; or The measurement of the measurement event and the neighboring measurement event of the serving cell is differentiated.
  • FIG. 2 is a schematic diagram of a distribution of an ISM band and an LTE band;
  • FIG. 3 is a timing diagram of LTE and WLAN transmission and reception according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of coverage of a serving cell and a target cell according to an embodiment of the present invention
  • FIG. 5 is a serving cell and a target cell according to an embodiment of the present invention
  • Another overlay diagram Another overlay diagram. detailed description
  • the basic idea of the present invention is: a plurality of wireless electronic devices coexist in the same terminal device, wherein when the wireless electronic device performs measurement, for the measurement of the serving cell, the measurement of the serving cell measurement event and the neighboring cell measurement event is not distinguished. Measurement; or, a measurement that distinguishes between the measurement event of the serving cell and the measurement event of the neighboring cell.
  • the solution of the present invention is a measurement and processing scheme for reducing coexistence interference in a device, and when a wireless electronic device in which a plurality of radio technologies are located coexist in the same terminal device, for a wireless electronic device in which one of the radio technologies is located, for example,
  • the measurement processing scheme of the LTE sub-device can quickly find the target cell for the LTE sub-device.
  • the LTE sub-device communicates with the target cell, the LTE sub-device can effectively reduce or even avoid coexistence interference in the device, thereby improving coexistence in multiple radio technology devices. Communication quality, giving users a good communication experience.
  • a measurement processing method mainly includes the following contents:
  • Case 1 included in scenario 1 is: It does not distinguish between serving cell measurement events and neighbor cell measurement events.
  • the LTE sub-device when measuring the signal quality of the serving cell, only part of the downlink subframe is measured.
  • the part of the downlink subframe may be an LTE downlink subframe that corresponds to a non-LTE sub-device (such as a WLAN sub-device or a Bluetooth sub-device).
  • Case 2 included in scenario 1 is: Distinguishing between serving cell measurement events and neighboring cell measurement events.
  • the serving cell measurement event and the neighbor cell measurement event are distinguished.
  • the UE may measure any downlink subframe when measuring the serving cell.
  • the UE may measure only part of the downlink subframe for the measurement of the serving cell in the neighbor cell measurement event.
  • the part of the downlink subframe corresponds to the LTE downlink subframe in which the non-LTE sub-device (such as the WLAN sub-device and the Bluetooth sub-device) performs the uplink transmission.
  • the UE may adjust the selected downlink subframe according to the signal quality of the actual serving cell.
  • performing the adjusting on the selected downlink subframe includes: if the signal quality of the serving cell is higher than the threshold 1, the partial downlink subframe corresponds to a non-LTE sub-device (such as a WLAN sub-device, Bluetooth) If the signal quality of the serving cell is lower than the threshold 2, the part of the downlink subframe corresponds to the non-LTE sub-device (such as the WLAN sub-device and the Bluetooth sub-device).
  • the transmitted LTE downlink subframe includes: if the signal quality of the serving cell is higher than the threshold 1, the partial downlink subframe corresponds to a non-LTE sub-device (such as a WLAN sub-device, Bluetooth) If the signal quality of the serving cell is lower than the threshold 2, the part of the downlink subframe corresponds to the non-LTE sub-device (such as the WLAN sub-device and the Bluetooth sub-device).
  • the transmitted LTE downlink subframe includes: if the signal quality of the serving cell is higher than the threshold 1, the partial downlink subframe
  • the serving cell measurement event has two functions. On the one hand, the serving cell measurement event is used to measure the interference from the outside of the device in the traditional network; on the other hand, the measurement event of the serving cell is here. Based on the case where there are multiple radio technologies coexisting in the device, it is used to further detect the interference from the device. Therefore, in a specific scenario, for example, the UE is located at the center of the cell, and the UE is hardly subject to interference from outside the device. Therefore, for the measurement of the serving cell, only the timely measurement and detection of interference from the device may be considered when measuring the serving cell.
  • the part of the subframes refers to a subframe that is most affected by the interference in the device, for example, a subframe in which the WLAN sub-device is transmitting uplink. Only the part of the subframe is measured, and the UE can detect the coexistence interference in the device in time, and the case 1 can be applied to such a specific scenario.
  • the interference from the outside of the device can also be considered when measuring the serving cell, and the interference from the device is also considered, so the second case is also applicable to such a specific scenario.
  • the UE may be subjected to interference from outside the device and interference from the device. Therefore, for the measurement of the serving cell, it is necessary to measure the detection in time when measuring the serving cell. The interference within the device and the interference from outside the device, therefore, need to distinguish the serving cell measurement event and the neighbor cell measurement event, and the second case can be applied to such a specific scenario.
  • case 1 and case 2 for the measurement event of the neighboring cell, the UE may measure only the part of the downlink subframe in the measurement of the serving cell in the neighboring cell measurement event, and the part of the subframe may refer to the sub-frame with the most obvious interference in the device.
  • a frame for example, a sub-frame in which the WLAN sub-device is transmitting in the uplink, the measurement is more targeted, and the difference in signal quality between the neighboring cell and the serving cell can be compared as soon as possible, so that the neighboring cell measurement event can be triggered as soon as possible, and the candidate is reported to the serving cell.
  • the target cell can ultimately minimize or even avoid coexistence interference in the device.
  • the serving cell measurement event refers to a measurement event that only needs to measure the signal quality of the serving cell, such as an A1 event or an A2 event.
  • A1 event and “A2 event” are further elaborated below and will not be described here.
  • the neighboring area measurement event refers to a measurement event that needs to measure the signal quality of the neighboring cell, and also needs to measure the signal quality of the serving cell, such as an A3 event and an A5 event.
  • A3 event and A5 events are further elaborated below and will not be described here.
  • the interference offset is configured for the neighboring cell measurement event.
  • the UE subtracts the interference offset from the measurement result of the serving cell.
  • the device can know the working status of each sub-device through the inter-radio interface between the sub-devices or the common control device (such as the control device 107 in FIG. 1), so the UE can predict the possible settings.
  • the internal communication coexistence interference, and the predicted result (such as the working status of each sub-device, the operating frequency, etc.) is notified to the serving base station, and the serving base station can determine, according to the notification information of the UE, which adjacent frequencies are switched to work, because these The frequency separation between the frequency and the operating frequency of other wireless electronic devices (such as WLAN sub-devices) in the UE is large enough to minimize or even avoid coexistence interference within the device.
  • the serving base station may configure measurements for some or all of the adjacent frequencies. When configuring the measurement, the serving base station configures an interference offset for the neighboring measurement event configured for the measurement, and the UE evaluates the neighbor. When the area measures the signal quality of the serving cell in the event, the UE subtracts the interference offset from the measurement result of the serving cell.
  • the present invention is an example of a LTE and an ISM-related radio technology (such as WLAN or Bluetooth) coexisting in the same terminal device, and a description of a measurement and processing scheme for reducing coexistence interference in the device when coexisting in multiple radio technology devices of the present invention is required. It is explained that the measurement processing scheme of the present invention is also applicable to the case where LTE and other radio technologies coexist in the terminal device.
  • the UE in order to ensure service continuity and ensure service quality, after the user establishes a service, the UE needs to measure the serving cell and the neighboring cell according to the configuration of the serving base station, and timely detect the signal quality of the serving cell, and detect possible.
  • the interference source and the possible candidate handover target cells report the measurement report that meets the measurement configuration requirements to the serving base station.
  • the serving base station in order to detect the signal quality of the serving cell in time, can configure measurement events for the serving cell, including the A1 event and the A2 event, for the user equipment (UE, User Equipment) that communicates with the UE.
  • the entry condition of the A1 event is defined as: The signal quality of the serving cell is higher than a predetermined threshold.
  • the serving base station After receiving the measurement report of the A1 event, the serving base station knows that the signal quality of the serving cell is good, and the serving base station may not configure the UE for the measurement of the neighboring cell, especially the inter-frequency neighboring cell.
  • the entry condition of the A2 event is defined as: The signal quality of the serving cell is below a predetermined threshold.
  • the serving base station After receiving the measurement report of the A2 event, the serving base station learns that the signal quality of the serving cell is deteriorated, and the serving base station can configure the UE for the neighboring cell in time. the amount.
  • a measurement event that only needs to measure the signal quality of the serving cell is referred to as a serving cell measurement event, such as the above A1 event, A2 event.
  • the serving base station may configure measurement events for neighboring cells, such as measurement event A3, and measurement event A5, for the UEs communicating with the UE.
  • the entry condition of the A3 event is defined as: The signal strength of the neighboring cell is higher than the signal strength of the serving cell by a predetermined offset.
  • the serving base station may learn the interference of the same-frequency neighboring cell information for inter-cell interference coordination according to the measurement result of the neighboring cell reported by the measurement report, or obtain the information of the candidate target handover cell, and switch the UE to A target is switched on the cell.
  • the A5 event is defined as: the signal quality of the serving cell is below a predetermined threshold of 1, and the signal quality of the neighboring cell is above a predetermined threshold.
  • the serving base station may obtain the information of the candidate target cell according to the measurement result of the neighboring cell reported by the measurement report, and switch the UE to a target handover cell.
  • a measurement event that needs to measure both the signal quality of the neighboring cell and the signal quality of the serving cell is called a neighboring cell measurement event, such as the A3 event and the A5 event described above.
  • the signal quality refers to the reference signal received power of the measured cell (RSRP, Reference)
  • RSRQ Measurement Signal Received Quality
  • the UE may measure a cell reference signal (CRS, Cell Reference Signal) on any downlink subframe. All of the above events were not designed with co-existing interference in the device.
  • CRS Cell Reference Signal
  • All of the above events were not designed with co-existing interference in the device.
  • the frequency interval between the frequencies used by the radio technology is too small, which will result in serious equipment.
  • the internal coexistence interference affects the communication quality. Therefore, a solution is to find a target cell for the LTE sub-device as soon as possible.
  • the working frequency of the target cell and the working frequency interval of other wireless electronic devices coexisting in the device meet certain conditions, thereby ensuring LTE.
  • the sub-device communicates in the target cell, the coexistence interference in the device is effectively reduced or even circumvented, and the event designed in the LTE system of the prior art cannot meet the above requirements.
  • the measurement processing scheme of the present invention can quickly find a target cell for various wireless electronic devices coexisting in the terminal device, such as an LTE sub-device, and when the LTE sub-device communicates in the target cell, It can effectively reduce or even avoid coexistence interference in the device, thereby improving the communication quality when coexisting in multiple radio technology devices, and giving the user a good communication experience.
  • the invention is illustrated by way of example below.
  • the following examples are based on the LTE Band 40.
  • the LTE sub-device and the WLAN sub-device work in time division duplex mode (TDM, Time Division Duplex).
  • Figure 3 shows the transmission and reception timing diagrams of LTE and WLAN.
  • the downlink reception time or the uplink transmission time may include one or more LTE subframes, and the duration of the subframe is lms. If the WLAN is in the uplink transmission time during the downlink receiving time of the LTE, such as the time period A and the time period B in FIG. 3, and the frequency interval between the LTE and the WLAN is small, the downlink reception of the LTE will be adopted by the WLAN. Interference caused by uplink transmission.
  • the measurement processing scheme of the present invention makes full use of the timing relationship between the LTE and the WLAN described above, and performs the time period A and the time period B with strong interference.
  • Embodiment 1 Corresponding to the description of the foregoing scheme 1.
  • the serving cell measurement event such as the A1 event and the A2 event
  • the serving base station learns the serving cell according to the A1 event and the A2 event. Signal quality and make corresponding measurement configuration decisions.
  • the RSRQ measurement result of the serving cell characterizes the interference condition of the serving cell.
  • the neighboring cell measurement events such as A3 and A5, can be used to measure and evaluate the candidate handover cell.
  • the serving base station learns the signal quality of the neighboring cell and the serving cell according to the A3 or A5 event, and sets the UE according to the radio resource management policy of the serving base station. Switch to a suitable target cell. All of the above events were designed with only external interference considered, and the coexistence interference within the device was not considered.
  • Case 1 For the measurement of the signal quality of the serving cell, only part of the downlink subframe is measured, which is a case where the measurement event of the serving cell and the measurement event of the neighboring cell are not distinguished.
  • the present invention only measures a part of the downlink subframe when the UE measures the signal quality of the serving cell, and preferably the partial downlink subframe corresponds to the current downlink subframe in this embodiment.
  • the WLAN is configured to perform uplink transmission of the LTE downlink subframe. As shown in FIG. 3, when the UE measures the serving cell signal quality, only the cell reference signal of the serving cell in all downlink subframes of the time period A and the time period B is measured.
  • the RSRQ measurement result is small, and the A2 or A3 or A5 event can be triggered as early as possible and the measurement result is reported to the serving base station.
  • the serving base station may configure the neighboring cell measurement event as early as possible according to the A2 event, or trigger the blind handover to switch the UE to the same coverage cell as soon as possible, or the serving base station may learn the signal quality of the neighboring cell and the serving cell according to the A3 or A5 event and according to the The radio resource management strategy of the serving base station timely switches the UE to the target cell, effectively avoiding coexistence interference.
  • Case 2 In the case of measuring the signal quality of the serving cell, the present invention distinguishes the measurement event of the serving cell from the measurement event of the neighboring cell, and distinguishes the measurement event of the serving cell from the measurement event of the neighboring cell when the UE measures the signal quality of the serving cell.
  • the implementation is as follows:
  • the serving base station learns the signal quality of the serving cell according to the A1 event and the A2 event and makes corresponding measurement configuration decisions. And, the RSRQ measurement result of the serving cell is characterized The interference situation of the serving cell. Therefore, when one or more radio technologies coexist with the LTE sub-device, in order to detect the interference situation of the serving cell in a timely manner, for the measurement event of the serving cell, the UE measures the downlink of the arbitrary sub-frame when measuring the serving cell.
  • Cell reference signal As shown in FIG. 3, the UE measures the cell reference signals on all LTE downlink subframes in the time shown in FIG.
  • the measurement result is that the prior art detects the interference from the external device, and achieves the purpose of detecting interference from the internal device of the UE.
  • the candidate handover cell can be used for measurement and evaluation, and the serving base station learns the signal quality of the neighboring cell and the serving cell according to the A3 or A5 event, and according to the radio resource management policy of the serving base station, Switch the UE to a suitable target cell.
  • the current A3 and A5 events are not specifically designed for the coexistence interference in the device. Therefore, when the coexistence interference exists in the device, the existing A3 and A5 events cannot detect and discover the candidate target cell in time, so that the UE is in service.
  • the present invention performs special processing on the measurement of the serving cell when processing the neighboring area measurement event, and the processing includes the following implementation manners:
  • the LTE downlink subframe that the WLAN is transmitting in the uplink is specifically measured by the UE in the measurement of the neighboring cell.
  • the UE measures and evaluates the neighboring cell measurement event, only the cell reference signal of the serving cell in all downlink subframes of time period A and time period B is measured.
  • the entry condition of the A3 event is defined as: The signal strength of the neighboring cell is higher than the signal strength of the serving cell by a predetermined offset.
  • the UE measures the serving cell only the LTE downlink subframe corresponding to the WLAN that performs the uplink transmission is measured, and the LTE downlink subframe corresponding to the WLAN that performs the uplink transmission is strongly interfered with the in-device coexistence interference from the WLAN.
  • the RSRQ measurement result is small, and the A3 event of the neighboring cell will be quickly triggered and reported to the serving base station, and the service base The station can learn the signal quality of the neighboring cell and the serving cell according to the A3 event, and timely switch the UE to the target cell according to the radio resource management policy of the serving base station, thereby effectively avoiding coexistence interference.
  • the frequency interval between the operating frequency of the target cell and the operating frequency of the ISM sub-device (for example, the WLAN-STA sub-device 102 shown in FIG. 1) coexisting in the UE device is sufficiently large.
  • the entry condition of the A5 event is defined as: the signal quality of the serving cell is below a predetermined threshold of 1, and the signal quality of the neighboring cell is higher than a predetermined threshold.
  • the UE measures the serving cell only the LTE downlink subframe corresponding to the WLAN that performs the uplink transmission is measured, because the LTE downlink subframe corresponding to the WLAN just transmitting uplink receives a strong in-device coexistence interference from the WLAN. Therefore, the RSRQ measurement result is small, and the A5 event of the neighboring cell is quickly triggered and reported to the serving base station, and the serving base station can learn the signal quality of the neighboring cell and the serving cell according to the A5 event and according to the wireless of the serving base station.
  • the resource management strategy timely switches the UE to the target cell, effectively avoiding coexistence interference.
  • the frequency interval between the operating frequency of the target cell and the operating frequency of the ISM sub-device coexisting in the UE device is sufficiently large.
  • Cell l and Cell 2 are two coverage or close coverage cells.
  • the operating frequency (center frequency) of Cell 1 is 2380 MHz (Band40), and the operating frequency of Cell 2 is 1910 MHz (Band33).
  • the UE is an intelligent terminal with an LTE sub-device and a WLAN sub-device.
  • the LTE sub-device of the UE currently establishes a service in the cell 1 and the WLAN sub-device of the UE is enabled at a certain time.
  • the mode 1 of the present invention after the WLAN device is turned on, when the UE measures the signal quality of the serving cell, the cell is treated differently. Measurement events and neighboring measurement events.
  • the UE measures all downlink subframes when measuring Cell 1, so as to detect interference from outside the device and in the device in time; and for the neighbor measurement event, the UE measures Cell 1 Only the LTE downlink subframe corresponding to the WLAN that performs the uplink transmission is measured, and the Cell 2 will trigger the A3 event in time and report it to the serving base station.
  • Mode 2 When measuring and measuring neighboring cell measurement events, such as A3 and A5 events, depending on the signal quality of the actual serving cell, part of the downlink subframe of the serving cell is measured. If the signal of the serving cell If the quality of the serving cell is lower than the threshold 2, the UE measures and evaluates the neighboring cell. If the quality of the serving cell is lower than the threshold 2, the UE measures the neighboring cell measurement event and measures only the LTE downlink subframe corresponding to the WLAN. When measuring an event, only the LTE downlink subframe corresponding to the WLAN that is performing uplink transmission is measured.
  • neighboring cell measurement events such as A3 and A5 events
  • the threshold 1 and the threshold 2 are the threshold values of the serving base station configured to the UE, that is, the terminal equipment, or the threshold values pre-agreed by the serving base station and the UE. Further, the threshold 1 may be a threshold value configured by the serving base station to the UE in the A1 event, and the threshold 2 may be a threshold value configured by the serving base station to the UE in the A2 event. Further, the threshold 1 and threshold 2 values may be the same.
  • the interference is not serious, and the interference has little impact on the quality of service (QoS) of the currently established service of the LTE sub-device, and the UE can continue to The serving cell maintains its business.
  • QoS quality of service
  • the UE performs measurement on the LTE downlink subframe corresponding to the WLAN that performs uplink transmission, it is possible that the UE just happens to the subframe with strong WLAN transmit power, triggering the A3 event, and misleading the serving base station to perform unnecessary handover, so when The signal quality of the serving cell is higher than the threshold 1.
  • the UE measures and evaluates the neighbor cell measurement event, only the LTE downlink subframe corresponding to the WLAN not performing uplink transmission is measured.
  • the interference is severe, and the service QoS of the UE in the serving cell will not be guaranteed, which affects the user experience, and the UE measures and evaluates the neighbor because it corresponds to the WLAN.
  • the transmitted LTE downlink subframe is subjected to strong in-device coexistence interference from the WLAN. Therefore, the RSRQ measurement result is small, and the neighbor cell measurement event is quickly triggered and reported to the serving base station, and the serving base station can be based on the neighboring cell.
  • the measurement event learns the signal quality of the neighboring cell and the serving cell and switches the UE to the target cell according to the radio resource management policy of the serving base station, thereby effectively avoiding coexistence interference.
  • Cell 1, Cell 2, and Cell 3 are three adjacent cells.
  • the operating frequency (center frequency) of Cell 1 and Cell 3 is 2360 MHz ( Band 40 ), and the operating frequency of Cell 2 is 1910MHz ( Band33 ).
  • the UE is an intelligent terminal with an LTE sub-device and a WLAN sub-device.
  • the LTE sub-device of the UE currently establishes a service in Cell 1.
  • the WLAN sub-device of the UE is also enabled and established with the WLAN device corresponding thereto, and the WLAN sub-device operates at a central frequency of 2422 MHz.
  • the movement route of the UE under Cell 1 is as shown by the solid line with arrows in FIG.
  • the UE when the UE is located at point A shown in FIG. 5, the UE is close to the cell center position of the cell l, and the UE is not interfered by the co-frequency neighboring cell 3, and according to Table 1,
  • the interference between the LTE and the WLAN, the uplink transmission of the WLAN sub-device is 10 to 50 dB lower than the receiving power of the LTE sub-device. Therefore, for the LTE sub-device, the interference from inside and outside the device is not particularly strong.
  • the signal quality of the LTE sub-device serving cell Cell 1 is higher than the threshold 1.
  • the LTE sub-device can ensure that the service is normal in the Cell l.
  • the UE measures the measurement event and the neighboring cell measurement event, and preferably, for the serving cell measurement event, such as the Al and A2 events, the UE measures all downlink subframes when measuring Cell 1.
  • the serving cell measurement event such as the Al and A2 events
  • the UE measures all downlink subframes when measuring Cell 1.
  • the interference from the outside of the device and the device is detected in time; for the measurement event of the neighboring cell, the UE measures only the LTE downlink subframe corresponding to the WLAN that is not uplinked, and avoids unnecessary handover.
  • the UE When the UE moves to point B shown in FIG. 5, the UE is close to the cell edge of Cell 1, the UE will be subjected to out-of-device interference from its co-frequency neighboring cell 3, and the intra-device interference from the WLAN, the UE is The signal quality of Cell 1 is drastically degraded, which seriously affects the UE's service quality in Cell 1. Therefore, in order to find a suitable handover target cell for the UE, the UE measures Cell 1 and measures only the LTE downlink subframe corresponding to the WLAN to perform uplink transmission, so as to trigger the A3 and A5 events as soon as possible. Find a suitable handover target cell, such as Cell 2 in this embodiment. (If the UE switches to Cell 3, since Cell 3 and Cell 1 are co-frequency, the UE will continue to be subject to equipment and equipment from the cell edge of Cell 3. Internal interference, so Cell 3 is not a suitable handover target cell).
  • Embodiment 2 Corresponding to the description of the foregoing scheme 2.
  • Solution 2 “Interference Offset” is configured for the neighboring area measurement event, and when the signal quality of the serving cell in the neighboring area measurement event is evaluated, the UE subtracts the “interference offset” from the measurement result of the serving cell.
  • the current A3 event entry condition of the LTE system is defined as: the signal strength of the neighboring cell is higher than the signal strength of the serving cell by a predetermined offset, ie: (Mn+Ofn+Ocn) - Hys > (Ms+Ofs+Ocs) + Offset .
  • Mn is the measurement result of the signal of the neighboring cell
  • Ofn is the frequency specific parameter of the frequency of the neighboring cell
  • Ocn is the cell specific parameter of the neighboring cell
  • (Mn+Ofn+Ocn) can be regarded as an evaluation in the measurement event.
  • Hys is a hysteresis parameter that prevents ping-pong effects from being set.
  • Ms is the measurement result of the signal of the current serving cell
  • Ofs is the frequency specific parameter of the frequency of the current serving cell
  • Ocs is the cell specific parameter of the current serving cell.
  • (Ms+Ofs+Ocs) In this measurement event, it can be considered as the signal quality of the serving cell after evaluation.
  • Offset is the predetermined offset.
  • the A5 event entry condition is defined as: the signal quality of the serving cell is below a predetermined threshold 1 and the signal quality of the neighboring cell is above a predetermined threshold, namely: Ms+Hys ⁇ Threshl and Mn+Ofn+Ocn - Hys > Thresh2.
  • Threshl is the predetermined threshold 1 and Thresh2 is the predetermined threshold 2. Other parameters are described in the A3 event.
  • the design of the current A3 and A5 events does not specifically consider the coexistence interference in the device. Therefore, when the coexistence interference exists in the device, the existing A3 and A5 events cannot detect and discover the candidate target cell in time, so that the UE is in the serving cell.
  • the long-term in-device coexistence interference causes the downlink data of the UE to be incorrectly received or even worse, causing the UE to fail in the radio link in the serving cell.
  • an “interference offset/offset” is configured for the neighboring cell measurement event, and when evaluating the neighbor cell measurement event, the signal quality of the serving cell is subtracted from the measurement result.
  • the event is modified to: (Mn+Ofn+Ocn) - Hys > (Ms+Ofs+Ocs-X) + Offset.
  • the event is modified to: Ms+Hys _ X ⁇ Threshl and Mn+Ofn+Ocn-Hys > Thresh2.
  • X is the "interference offset/offset", which is explicitly configured by the serving base station to the UE, or pre-agreed by the serving base station and the UE.
  • the neighboring cell measurement event can be triggered in time, and the serving base station can learn the signal quality of the neighboring cell and the serving cell according to the neighbor cell measurement event and manage the radio resource according to the serving base station.
  • the policy timely switches the UE to the target cell, effectively avoiding coexistence interference.
  • a measurement processing system comprising: a measurement processing unit, wherein the measurement processing unit is configured to coexist in a plurality of wireless electronic devices in the same terminal device, wherein when the wireless electronic device performs measurement, the measurement of the serving cell is not Differentiating the measurement of the serving cell measurement event and the neighboring cell measurement event; or, differentiating the measurement of the service cell measurement event and the neighbor cell measurement event.
  • the measurement processing unit is further configured to extract measurement that does not distinguish between the measurement event of the serving cell and the measurement event of the neighboring cell.
  • the wireless electronic device is an LTE sub-device
  • when measuring the signal quality of the serving cell only part of the downlink subframe is measured. .
  • the measurement processing unit is further configured to: perform measurement to distinguish between the measurement target cell and the neighboring cell measurement event, where the wireless electronic device is an LTE sub-device, and measure any downlink subframe of the serving cell for the serving cell measurement event; For the neighboring cell measurement event, only the downlink sub-frame of the serving cell is measured for the measurement of the serving cell in the neighbor cell measurement event.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种测量处理方法及系统,该方法包括:当多种无线电子设备共存于同一终端设备中时,其中一种无线电子设备进行测量时,对于服务小区的测量,采取不区分对待服务小区测量事件和邻区测量事件的测量;或者,采取区分对待服务小区测量事件和邻区测量事件的测量。本发明所公开的一种测量方法系统包括:测量处理单元,用于对于服务小区的测量,采取不区分对待服务小区测量事件和邻区测量事件的测量;或者,采取区分对待服务小区测量事件和邻区测量事件的测量。采用本发明的方法及系统,能尽量避免让共存于终端设备内的各种无线电子设备工作在会造成强设备内共存干扰的子频段上,从而降低了设备内共存干扰。

Description

一种测量处理方法及系统 技术领域
本发明涉及终端内多种无线电技术共存的技术领域, 尤其涉及一种当 多种无线电技术共存于同一终端设备中时终端设备的测量处理方法及系 统。 背景技术
随着无线电技术的发展, 越来越多的无线电技术开始被广泛应用, 尤 其为了满足终端客户的多种通信需求, 在同一个智能终端内, 将同时使用 多种无线电技术。 示意图, 在该终端设备 100 中, 设计使用了三种无线电技术, 分别是使用 长期演进( LTE, Long Term Evolution )技术的子设备 (或称为子模块), 可 以表示为 LTE子设备 101 ; 使用 IEEE Std 802.11 规范规定的无线局域网 ( WLAN, Wireless Local Area Networks )技术的子设备 (或称为子模块), 可以表示为 WLAN-STA子设备 102,这里, WLAN-STA指无线局域网站点; 使用 IEEE Std 802.15 规范规定的蓝牙( Bluetooth )无线电技术的子设备(或 称为子模块), 可以表示为蓝牙子设备 103。 终端设备 100的这三个子设备 分别和各自的无线电技术所对应的对端设备进行无线通信, 其中 LTE子设 备 101与 LTE演进型基站( eNB, E-UTRAN NodeB )设备 104通过空中接 口进行无线通信; WLAN-STA子设备 102与 WLAN STA设备 105 ( WLAN STA设备 105是与 WLAN-STA子设备不同的另一个 WLAN STA设备 )通 过空中接口进行无线通信; 蓝牙子设备 103与蓝牙设备 106 (蓝牙设备 106 是与蓝牙子设备 103不同的另一个蓝牙设备 )通过空中接口进行无线通信。 其中, 所述空中接口可以表示为 air interface„
图 1中, LTE子设备 101、 WLAN-STA子设备 102和蓝牙子设备 103 这三个子设备之间通过无线电技术之间的接口 ( inter-radio interface )相连, 比如 LTE子设备 101与 WLAN-STA子设备 102之间通过接口 L101相连, LTE子设备 101与蓝牙子设备 103之间通过接口 L102相连; 或者三个子设 备受控于同一个公共的控制设备 107。
同一个终端设备内可以同时具备多种无线电技术。 然而鉴于终端设备 电技术时, 由于受限于该终端设备的体积, 从而导致两种或两种以上无线 电技术所在的子设备之间的空间距离相隔很近会产生彼此间的互相干扰。
空间隔离度无法设计的足够大, 从而导致当同一个终端设备内的各无线电 技术如果使用相邻的频带时, 由于带外泄露(Out of band emission ), 杂散 发射( Spurious emissions )等原因, 当终端设备内其中一个无线电技术所在 的子设备进行发射时, 势必干扰另一个无线电技术所在的子设备的接收; 过现有滤波器消除, 从而影响各无线电技术所在的子设备的通信质量, 本 刀仪贪 Π 什丁 f7
以图 1所示的终端设备 100为例, WLAN和 Bluetooth使用工业、 科学 及医疗 ( ISM , Industrial Scientific and Medical ) 频带, 该频带范围为 2.4GHz~2.5GHz,其中 WLAN使用 ISM频带中的 2.4GHz~2.4835GHz频段, Bluetooth使用 ISM频带中的 2.4GHz~2.497GHz频段。 ISM频带正好与 LTE 的频带 40 ( Band40: 2.3GHz~2.4GHz )和频带 7的上行频带 ( Band7 UP: 2.5GHz~2.57GHz )相邻, 如图 2所示。 因此如果 LTE子设备 101使用时分 双工( TDD, Time Division Duplex )模式且使用 Band40,则 LTE子设备 101 与 WLAN-STA子设备 102、 蓝牙子设备 103之间将相互干扰。 如果 LTE子 设备 101 使用频分双工 (FDD, Frequency Division Duplex )模式且使用 Band7 , 则如图 2所示, 由于 LTE Band7的下行频带与 ISM频带相隔很远, 因此 WLAN-STA子设备 102/蓝牙子设备 103的上行发射不干扰 LTE子设 备 101的下行接收, 但是由于 LTE Band7的上行频带与 ISM频带毗邻, 因 此 LTE子设备 101的上行发射将干扰 WLAN-STA子设备 102/蓝牙子设备 103的下行接收。
以下的表 1 以 LTE Band40与 WLAN ISM Band为例, 示例了 LTE Band40不同子频段与 WLAN ISM Band不同子频段之间的干扰情况。
Figure imgf000005_0001
表 1
由表 1所示的干扰情况可知:如果 LTE子设备 101工作在 Band40的高 频段(比如 2375~2390MHz ), 而 WLAN-STA子设备 102工作在 ISM Band 的低频段 (比如 2412~2422MHz ), 由于 LTE子设备 101与 WLAN-STA子 设备 102工作频率之间的频率间隔很小, 导致设备内共存干扰很大。 如果 LTE 子设备 101 工作在 Band40 的高频段(比如 2375~2390MHz ), 而 WLAN-STA子设备 102工作在 ISM Band的高频段(比如 2432~2472 MHz ); 或者 LTE子设备 101工作在 Band40的低频段 (比如 2310~2365MHz ), 而 WLAN-STA子设备 102工作在 ISM Band的低频段(比如 2412~2422MHz ), LTE子设备 101与 WLAN-STA子设备 102工作频率之间的频率间隔相对较 大, 设备内共存干扰存在, 但是没有前者严重。 相对的, 如果 LTE子设备 101工作在 Band40的低频段 (比如 2310~2365MHz ), 而 WLAN-STA子设 备 102工作在 ISM Band的高频段(比如 2432~2472 MHz ), 则 LTE子设备 101与 WLAN-STA子设备 102工作频率之间的频率间隔足够大, 不存在设 备内共存干扰。 将降低终端设备内各无线电技术的通信质量, 影响用户的通信体验, 因此, 目前迫切需要一种测量处理解决方案, 能尽量避免让共存于终端设备内的 各种无线电子设备工作在会造成强设备内共存干扰的子频段上, 比如避免 让 LTE子设备 101工作在 Band40的高频段, 以降低设备内共存干扰。然而 目前并未存在这样的解决方案。 发明内容
有鉴于此, 本发明的主要目的在于提供了一种测量处理方法及系统, 内共存干扰的子频段上, 从而降低了设备内共存干扰。
为达到上述目的, 本发明的技术方案是这样实现的:
一种测量处理方法, 该方法包括: 多种无线电子设备共存于同一终端 设备中, 其中一种无线电子设备进行测量时, 对于服务小区的测量, 釆取 不区分对待服务小区测量事件和邻区测量事件的测量; 或者, 釆取区分对 待服务小区测量事件和邻区测量事件的测量。
其中, 所述釆取不区分对待服务小区测量事件和邻区测量事件的测量, 所述无线电子设备为 LTE子设备的情况下, 该方法还包括: 测量服务小区 的信号质量时, 测量部分下行子帧。
其中, 所述部分下行子帧包括: 对应于非 LTE子设备正好进行上行发 送的 LTE下行子帧。
其中, 所述釆取区分对待服务小区测量事件和邻区测量事件的测量, 所述无线电子设备为 LTE子设备的情况下, 该方法还包括:
对于所述服务小区测量事件, 测量服务小区的任意下行子帧; 对于所述邻区测量事件, 对邻区测量事件中服务小区的测量, 测量服 务小区的部分下行子帧。
其中, 所述部分下行子帧包括: 对应于非 LTE子设备正好进行上行发 送的 LTE下行子帧; 或者, 在已经选择部分下行子帧的基础上获得的调整 后的部分下行子帧;
其中, 所述调整后的部分下行子帧为根据实际服务小区的信号质量对 选择的所述部分下行子帧进行调整后获得的子帧。
其中, 如果服务小区的信号质量高于门限 1 , 则所述调整后的部分下行 子帧包括: 对应于非 LTE子设备未进行上行发送的 LTE下行子帧;
如果服务小区的信号质量低于门限 2,则所述调整后的部分下行子帧包 括: 对应于非 LTE子设备正好进行上行发送的 LTE下行子帧。
其中, 所述门限 1和所述门限 2为服务基站配置给终端设备的门限值; 或者, 所述门限 1和所述门限 2为服务基站和终端设备预先约定的门限值。
其中, 所述服务小区测量事件为: 只需测量服务小区信号质量的测量 事件;
所述邻区测量事件为: 既需要测量服务小区信号质量, 又需要测量邻 区信号质量的测量事件。
一种测量处理系统, 该系统包括: 测量处理单元, 用于多种无线电子 设备共存于同一终端设备中, 其中一种无线电子设备进行测量时, 对于服 务小区的测量, 釆取不区分对待服务小区测量事件和邻区测量事件的测量; 或者, 釆取区分对待服务小区测量事件和邻区测量事件的测量。
其中, 所述测量处理单元, 进一步用于釆取不区分对待服务小区测量 事件和邻区测量事件的测量, 所述无线电子设备为 LTE子设备的情况下, 测量服务小区的信号质量时, 测量部分下行子帧。
其中, 所述测量处理单元, 进一步用于釆取区分对待服务小区测量事 件和邻区测量事件的测量, 所述无线电子设备为 LTE子设备的情况下, 对 于所述服务小区测量事件, 测量服务小区的任意下行子帧; 对于所述邻区 测量事件, 对邻区测量事件中服务小区的测量, 测量服务小区的部分下行 子帧。
本发明的多种无线电子设备共存于同一终端设备中, 其中一种无线电 子设备进行测量时, 对于服务小区的测量, 釆取不区分对待服务小区测量 事件和邻区测量事件的测量; 或者, 釆取区分对待服务小区测量事件和邻 区测量事件的测量。
由于釆用了本发明, 能够有针对性的进行测量, 可以为共存于终端设 备内的一种无线电子设备尽快找到目标小区, 当该无线电子设备在所述目 标小区通信时, 可以保证所述无线电子设备的工作频率与共存于终端设备 内的其他无线电子设备的工作频率之间的频率间隔足够大, 以便最大限度 的避免彼此间的互相干扰, 即所述设备内共存干扰。 也就是说, 釆用本发 明, 尽快找到与无线电子设备通信的目标小区, 就能最大限度的避免设备 内共存干扰。 附图说明 图 2为 ISM频带与 LTE频带的一分布示意图;
图 3为本发明实施例的 LTE与 WLAN的发送接收的一时序示意图; 图 4为本发明实施例的服务小区与目标小区的一覆盖示意图; 图 5为本发明实施例的服务小区与目标小区的另一覆盖示意图。 具体实施方式
本发明的基本思想是: 多种无线电子设备共存于同一终端设备中, 其 中一种无线电子设备进行测量时, 对于服务小区的测量, 釆取不区分对待 服务小区测量事件和邻区测量事件的测量; 或者, 釆取区分对待服务小区 测量事件和邻区测量事件的测量。
下面结合附图对技术方案的实施作进一步来讲详细描述。
本发明的方案是一种降低设备内共存干扰的测量处理方案, 提出了当 多种无线电技术所在的无线电子设备共存于同一终端设备中时, 对于其中 一种无线电技术所在的无线电子设备, 比如 LTE子设备的测量处理方案, 可以为 LTE子设备快速找到目标小区, LTE子设备在所述目标小区通信时, 可以有效降低甚至规避设备内共存干扰, 从而提高多种无线电技术设备内 共存时的通信质量, 给用户良好的通信体验。
一种测量处理方法, 该方法主要包括以下内容:
方案一:
方案一所包括的情况一为: 不区分服务小区测量事件和邻区测量事件。 此种情况下, 比如针对 LTE子设备而言, 测量服务小区的信号质量时, 只测量部分下行子帧。 所述部分下行子帧可以为对应于非 LTE子设备 (比 如 WLAN子设备、 蓝牙子设备 )正好进行上行发送的 LTE下行子帧。
方案一所包括的情况二为: 区分服务小区测量事件和邻区测量事件。 此种情况下, 比如针对 LTE子设备而言, 测量服务小区的信号质量时, 区分对待服务小区测量事件和邻区测量事件。
进一步来讲, 对于所述服务小区测量事件, UE在测量服务小区时, 可 以测量任意下行子帧。
进一步来讲, 对于所述邻区测量事件, UE对邻区测量事件中服务小区 的测量, 可以只测量部分下行子帧。
进一步来讲, 所述部分下行子帧对应于非 LTE子设备 (比如 WLAN子 设备、 Bluetooth子设备)正好进行上行发送的 LTE下行子帧。 或者, 进一 步来讲, 在已经选择部分下行子帧的基础上, UE可以根据实际服务小区的 信号质量对选择的所述部分下行子帧进行调整。
进一步来讲, 对选择的所述部分下行子帧进行所述调整包括: 如果服 务小区的信号质量高于门限 1 , 则所述部分下行子帧对应于非 LTE子设备 (比如 WLAN子设备、 蓝牙子设备 )未进行上行发送的 LTE下行子帧; 如 果服务小区的信号质量低于门限 2, 则所述部分下行子帧对应于非 LTE子 设备 (比如 WLAN子设备、 蓝牙子设备 )正好进行上行发送的 LTE下行子 帧。 其中, 针对 "门限 1"、 "门限 2" 的描述后面有进一步的阐述, 这里不 作赘述。
这里需要指出的是, 服务小区测量事件, 有两方面功能, 一方面, 服 务小区测量事件用于测量探测传统网络中来自于设备外的干扰; 另一方面, 服务小区的测量事件在此现有基础上, 对于设备内共存有多种无线电技术 的情况, 用于进一步探测来自于设备内干扰的情况。 因此在特定场景下, 比如 UE位于小区中心位置, UE几乎不会受到来自于设备外的干扰, 因此 针对服务小区测量事件, 在测量服务小区时可以仅考虑及时测量探测来自 于设备内的干扰, 即可以只测量部分下行子帧, 其中, 所述部分子帧指受 设备内干扰最明显的子帧, 比如 WLAN子设备正在进行上行发送的子帧, 只测量所述部分子帧, UE可以及时探测设备内共存干扰, 情况一可以适用 于此类特定场景。 当然对于此类特定场景, 针对服务小区测量事件, 在测 量服务小区时也可以即考虑来自设备外的干扰, 又考虑来自设备内的干扰, 因此情况二也适用于此类特定场景。在另一类特定场景下, 比如 UE位于小 区边缘位置, UE可能同时受到来自于设备外的干扰和来自于设备内的干 扰, 因此针对服务小区测量事件, 在测量服务小区时需要及时测量探测来 自于设备内的干扰和来自于设备外的干扰, 因此需要区分所述服务小区测 量事件和邻区测量事件, 情况二可以适用于此类特定场景。 情况一和情况 二中, 对于所述邻区测量事件, UE对邻区测量事件中服务小区的测量, 可 以只测量部分下行子帧, 所述部分子帧可以指受设备内干扰最明显的子帧, 比如 WLAN子设备正在进行上行发送的子帧, 测量更有针对性, 能尽快比 较出相邻小区和服务小区的信号质量的差异, 从而可以尽快触发邻区测量 事件, 向服务小区上报候选目标小区, 最终能最大限度的降低甚至规避设 备内共存干扰。
其中, 所述服务小区测量事件, 是指只需测量服务小区信号质量的测 量事件, 如 A1事件、 A2事件。 有关 "A1事件"、 "A2事件" 的描述后面 有进一步的阐述, 这里不作赘述。
其中, 所述邻区测量事件, 是指即需要测量邻区信号质量, 也需要测 量服务小区信号质量的测量事件, 如 A3事件、 A5事件。 有关 "A3事件"、 "A5事件" 的描述后面有进一步的阐述, 这里不作赘述。
方案二: 为邻区测量事件配置干扰偏移, 评估邻区测量事件中服务小 区的信号质量时, UE在服务小区的测量结果上减去所述干扰偏移。 备通过子设备间的 inter-radio interface或者公共的控制设备 (比如图 1中的 控制设备 107 )获知各子设备的工作状态, 因此 UE可以预知可能存在的设 备内共存干扰, 并将预知结果(比如各子设备的工作状态、 工作频率等) 通知给服务基站, 服务基站可以根据 UE的通知信息, 判断 UE切换到哪些 相邻频率上工作后,因为这些频率与 UE内其他无线电子设备(比如 WLAN 子设备) 的工作频率之间的频率间隔足够大, 可以最大限度降低甚至规避 设备内共存干扰。 服务基站可以为所述这些相邻频率中的部分频率或者全 部频率配置测量, 在配置测量时, 服务基站为所述测量所配置的邻区测量 事件配置干扰偏移,而 UE在评估所述邻区测量事件中服务小区的信号质量 时, UE在服务小区的测量结果上减去所述干扰偏移。
这里, 将本发明和现有技术的内容做一对比描述如下:
本发明以 LTE与 ISM相关无线电技术(比如 WLAN、 Bluetooth )共存 于同一终端设备内时为例, 说明本发明多种无线电技术设备内共存时为了 降低设备内共存干扰的一种测量处理方案, 需要说明的是本发明的测量处 理方案也同样适用于 LTE与其他无线电技术在终端设备内共存时的情况。
在 LTE系统中, 为了保证业务连续性, 确保业务质量, 在用户建立业 务后, UE需要根据服务基站的配置对服务小区和相邻小区进行测量, 以及 时检测服务小区的信号质量, 探测可能的干扰源和可能的候选切换目标小 区, 并向服务基站报告满足测量配置要求的测量报告。
现有 LTE系统中, 为及时检测服务小区的信号质量, 服务基站可以为 与之通信的用户设备 ( UE, User Equipment )即上述终端设备配置针对服务 小区的测量事件, 包括 A1事件和 A2事件。 其中 A1事件的进入条件定义 为: 服务小区的信号质量高于预定门限。 当服务基站接收到 A1事件的测量 报告后,获知服务小区的信号质量很好,服务基站可以不用为 UE配置针对 相邻小区, 尤其是异频邻区的测量。 A2事件的进入条件定义为: 服务小区 的信号质量低于预定门限。 当服务基站接收到 A2事件的测量报告后, 获知 服务小区的信号质量变差,服务基站可以及时为 UE配置针对相邻小区的测 量。 本发明中, 把只需测量服务小区信号质量的测量事件称为服务小区测 量事件, 如上述 A1事件、 A2事件。
现有 LTE系统中, 为探测可能的干扰源和可能的候选切换小区, 服务 基站可以为与之通信的 UE 配置针对相邻小区的测量事件, 比如测量事件 A3、 测量事件 A5。 其中 A3事件的进入条件定义为: 相邻小区的信号强度 比服务小区的信号强度高预定偏移量。服务基站接收到 A3事件的测量报告 后, 可以根据测量报告上报的相邻小区的测量结果, 获知干扰同频邻区信 息进行小区间干扰协调,或者获知候选目标切换小区的信息,把 UE切换到 一个目标切换小区上。 A5事件定义为: 服务小区的信号质量低于预定门限 1 , 并且相邻小区的信号质量高于预定门限。 服务基站接收到 A5事件的测 量报告后, 可以根据测量报告上报的相邻小区的测量结果, 获知候选目标 小区的信息, 把 UE切换到一个目标切换小区上。 本发明中, 把既需要测量 邻区信号质量, 又需要测量服务小区信号质量的测量事件称为邻区测量事 件, 如上述 A3事件、 A5事件。
其中,信号质量是指被测量小区的参考信号接收功率( RSRP, Reference
Signal Receiving Power )测量结果、 或者参考信号接收功率质量(RSRQ, Reference Signal Received Quality ) 测量结果, 其中 RSRQ的测量结果可以 反映出服务小区的被干扰情况, 即如果 RSRQ测量结果越大, 则表示服务 小区被干扰越强, 反之则说明服务小区被干扰很小或较小。
以上所有事件都需要测量服务小区的信号质量, 并且测量服务小区时,
UE可以测量任意下行子帧( downlink subframe )上的小区参考信号(CRS, Cell Reference Signal )。 以上所有事件在设计时均未考虑设备内共存干扰的 情况。 当同一个终端设备内存在多种无线电技术时, 由于终端设备体积太 种无线电技术所使用的频率之间的频率间隔比较小时, 将导致严重的设备 内共存干扰, 影响通信质量, 因此一种解决方法是尽快为 LTE子设备找到 一个目标小区, 该目标小区的工作频率与设备内共存的其他无线电子设备 的工作频率间隔满足一定条件, 从而保证 LTE子设备在所述目标小区通信 时, 有效降低甚至规避设备内共存干扰, 而现有技术的 LTE系统中所设计 的事件无法满足上述需求。
综上所述, 釆用本发明所述的测量处理方案, 可以为共存于终端设备 内的各种无线电子设备, 比如 LTE子设备快速找到目标小区, LTE子设备 在所述目标小区通信时, 可以有效降低甚至规避设备内共存干扰, 从而提 高多种无线电技术设备内共存时的通信质量, 给用户良好的通信体验。
以下对本发明进行举例阐述。
以下实施例都以 LTE Band40为例, LTE子设备和 WLAN子设备均以 时分双工方式工作 (TDM, Time Division Duplex ), 如图 3所示为 LTE与 WLAN的发送接收时序示意图, 其中 LTE的下行接收时间或者上行发送时 间可以包括一个或多个 LTE子帧( subframe ),子帧的时长为 lms。如果 LTE 的下行接收时间内 WLAN正好处于上行发送的时间, 比如图 3中的时间段 A和时间段 B , 而且 LTE与 WLAN之间的频率间隔又很小 ,则 LTE的下行 接收将被 WLAN的上行发送所干扰。 本发明的测量处理方案, 充分利用了 上述 LTE与 WLAN之间的时序关系, 针对干扰强的时间段 A和时间段 B 进行。
实施例一: 对应上述方案一的描述。
测量服务小区的信号质量时, 只测量部分下行子帧。 或者, 测量服务 小区的信号质量时, 区分对待服务小区测量事件和邻区测量事件。 即分为 以下两种情况:
现有 LTE系统中, 服务小区测量事件, 比如 A1事件和 A2事件, 用于 检测服务小区的信号质量, 服务基站根据 A1事件、 A2事件获知服务小区 的信号质量并做出相应的测量配置决策。 并且, 服务小区的 RSRQ测量结 果表征了服务小区的受干扰情况。 而邻区测量事件, 比如 A3、 A5 , 可以用 于测量评估候选切换小区, 服务基站根据 A3或者 A5事件获知相邻小区及 服务小区的信号质量,并根据服务基站的无线资源管理策略,把 UE切换到 一个合适的目标小区上。 以上所有事件在设计时均只考虑了设备外干扰的 情况, 未考虑设备内共存干扰的情况。
情况一: 针对上述测量服务小区的信号质量时只测量部分下行子帧而 言, 这是不区分对待服务小区测量事件和邻区测量事件的情况。 为避免设 备内共存干扰导致的用户通信质量下降甚至中断,本发明在 UE测量服务小 区的信号质量时, 只测量部分下行子帧, 优选的是所述部分下行子帧在本 实施例中对应于 WLAN正好进行上行发送的 LTE下行子帧, 以图 3为例, UE测量服务小区信号质量时, 只测量服务小区在时间段 A和时间段 B所 有下行子帧上的小区参考信号。 由于对应于 WLAN 正好进行上行发送的 LTE下行子帧受到很强的来自于 WLAN的设备内共存干扰, 因此 RSRQ测 量结果很小, A2或 A3或 A5事件可以被尽早触发并上报测量结果给服务 基站, 服务基站可以根据 A2事件尽早配置邻区测量事件, 或者尽早触发盲 切换把 UE切换到同覆盖小区上, 或者服务基站可以根据 A3或 A5事件获 知相邻小区和服务小区的信号质量并根据所述服务基站的无线资源管理策 略及时把 UE切换到目标小区上, 有效避免共存干扰。
情况二: 针对上述测量服务小区的信号质量时, 区分对待服务小区测 量事件和邻区测量事件而言,本发明在 UE测量服务小区的信号质量时, 区 分对待服务小区测量事件和邻区测量事件的实现如下所示:
一、 对于服务小区测量事件, 比如 A1事件和 A2事件, 用于检测服务 小区的信号质量, 服务基站根据 A1事件、 A2事件获知服务小区的信号质 量并做出相应的测量配置决策。 并且, 服务小区的 RSRQ测量结果表征了 服务小区的受干扰情况。 因此, 当有一种或多种无线电技术与 LTE子设备 共存时, 为了更及时的检测服务小区的受干扰情况, 对于服务小区的测量 事件, UE在测量服务小区时, 测量任意下行子帧上的小区参考信号。 以图 3为例, 优选的是, UE测量图 3所示时间内所有 LTE下行子帧上的小区参 考信号, 即测量时间段 C和时间段 D的所有子帧, 从而可以保证 UE对服 务小区的测量结果, 即实现现有技术检测来自于设备外干扰的目的, 又实 现检测来自于 UE内部设备内干扰的目的。
二、 对于邻区测量事件, 比如 A3、 A5 , 可以用于测量评估候选切换小 区, 服务基站根据 A3或者 A5事件获知相邻小区及服务小区的信号质量, 并根据服务基站的无线资源管理策略, 把 UE切换到一个合适的目标小区 上。 而当前 A3、 A5 事件的设计并未特殊考虑设备内共存干扰的情况, 因 此当设备内共存干扰存在时, 现有的 A3、 A5 事件将无法及时检测并发现 候选目标小区,从而使得 UE在服务小区长时间受到设备内共存干扰,最终 导致 UE的下行数据无法正确接收甚至更严重的情况导致 UE在服务小区发 生无线链路失败。 故本发明在处理邻区测量事件时, 对服务小区的测量进 行特殊处理, 该处理包括以下实现方式:
方式 1、 测量评估邻区测量事件时, UE对邻区测量事件中服务小区的 测量, 只测量部分下行子帧, 在本实施例中, 具体对应于 WLAN正好进行 上行发送的 LTE下行子帧。 以图 3为例, 即 UE测量评估邻区测量事件时, 只测量服务小区在时间段 A和时间段 B所有下行子帧上的小区参考信号。
A3事件的进入条件定义为: 相邻小区的信号强度比服务小区的信号强 度高预定偏移量。釆用方式 1 , UE测量服务小区时只测量对应于 WLAN正 好进行上行发送的 LTE下行子帧,由于对应于 WLAN正好进行上行发送的 LTE下行子帧受到很强的来自于 WLAN的设备内共存干扰, 因此 RSRQ测 量结果很小, 相邻小区的 A3事件将被快速触发并上报给服务基站, 服务基 站可以根据所述 A3 事件获知相邻小区和服务小区的信号质量并根据所述 服务基站的无线资源管理策略及时把 UE切换到目标小区上,有效避免共存 干扰。 所述目标小区的工作频率与 UE设备内共存的 ISM子设备 (比如, 如图 1所示的 WLAN-STA子设备 102 )的工作频率之间的频率间隔足够大。
同理 A5事件的进入条件定义为:服务小区的信号质量低于预定门限 1 , 并且相邻小区的信号质量高于预定门限。 釆用方式 1 , UE测量服务小区时 只测量对应于 WLAN 正好进行上行发送的 LTE 下行子帧, 由于对应于 WLAN正好进行上行发送的 LTE下行子帧受到很强的来自于 WLAN的设 备内共存干扰, 因此 RSRQ测量结果很小,相邻小区的 A5事件将被快速触 发并上报给服务基站,服务基站可以根据所述 A5事件获知相邻小区和服务 小区的信号质量并根据所述服务基站的无线资源管理策略及时把 UE切换 到目标小区上,有效避免共存干扰。所述目标小区的工作频率与 UE设备内 共存的 ISM子设备的工作频率之间的频率间隔足够大。
以图 4为例, Cell l、 Cell 2为两个同覆盖或接近同覆盖小区, Cell 1的 工作频率(中心频率)为 2380 MHz( Band40 ), Cell 2的工作频率为 1910MHz ( Band33 )。 UE是一个智能终端, 具备 LTE子设备和 WLAN子设备。 UE 的 LTE子设备当前在 Cell 1下了建立业务, 某一时刻, UE的 WLAN子设 备开启, 根据本发明的方式 1 , WLAN设备开启后, UE测量服务小区的信 号质量时, 区分对待服务小区测量事件和邻区测量事件。 优选的是, 针对 服务小区测量事件, 比如 Al、 A2事件, UE测量 Cell 1时测量所有下行子 帧, 从而及时检测来自于设备外和设备内的干扰; 针对邻区测量事件, UE 测量 Cell 1时只测量对应于 WLAN正好进行上行发送的 LTE下行子帧, 由 此 Cell 2将及时触发 A3事件并上报给服务基站。
方式 2、 测量评估相邻小区测量事件时, 比如 A3、 A5事件, 视实际服 务小区的信号质量, 测量服务小区的部分下行子帧。 如果服务小区的信号 质量高于门限 1 ,则 UE测量评估相邻小区测量事件时,只测量对应于 WLAN 未进行上行发送的 LTE下行子帧; 如果服务小区的信号质量低于门限 2, 则 UE测量评估相邻小区测量事件时, 只测量对应于 WLAN正好进行上行 发送的 LTE下行子帧。
上述门限 1和门限 2为服务基站配置给 UE即终端设备的门限值,或者 为服务基站和 UE预先约定的门限值。 进一步来讲, 门限 1可以是 A1事件 中服务基站配置给 UE的门限值, 门限 2可以是 A2事件中服务基站配置给 UE的门限值。 进一步来讲, 门限 1和门限 2取值可相同。
优选的是, 当服务小区的信号质量高于门限 1 时, 干扰并不严重, 所 述干扰对 LTE子设备当前所建立业务的服务质量( QoS, Quality of Service ) 影响很小, UE可以继续在服务小区保持业务。 如果 UE针对对应于 WLAN 正好进行上行发送的 LTE 下行子帧进行测量, 则有可能 UE正好釆样到 WLAN发射功率很强的子帧, 触发 A3事件, 误导服务基站进行不必要的 切换, 因此当服务小区的信号质量高于门限 1 , 则 UE测量评估相邻小区测 量事件时, 只测量对应于 WLAN未进行上行发送的 LTE下行子帧。
优选的是, 当服务小区的信号质量低于门限 2时, 干扰很严重, UE在 服务小区的业务 QoS将得不到保证, 影响用户体验, 则 UE测量评估相邻 由于对应于 WLAN正好进行上行发送的 LTE下行子帧受到很强的来自于 WLAN的设备内共存干扰, 因此 RSRQ测量结果很小, 相邻小区测量事件 将被快速触发并上报给服务基站, 服务基站可以根据所述相邻小区测量事 件获知相邻小区和服务小区的信号质量并根据所述服务基站的无线资源管 理策略及时把 UE切换到目标小区上, 有效避免共存干扰。
以图 5为例, Cell 1、 Cell 2、 Cell 3为三个相邻小区, Cell 1和 Cell3 的工作频率 (中心频率) 为 2360 MHz ( Band40 ), Cell 2 的工作频率为 1910MHz ( Band33 )。 UE是一个智能终端, 具备 LTE子设备和 WLAN子 设备。 UE的 LTE子设备当前在 Cell 1下了建立业务, 此外, UE的 WLAN 子设备也开启并与其所对应的 WLAN设备建立了业务, WLAN子设备工作 在 2422MHz的中心频率上。 UE的在 Cell 1下的移动路线如图 5带箭头实 线所示。根据本发明的方式 2, 当 UE位于图 5所示 A点时, UE靠近 Cell l 的小区中心位置, UE不会受到来自其同频邻区 Cell 3的干扰, 另外, 根据 表 1示出的 LTE和 WLAN之间干扰情况, WLAN子设备的上行发送对 LTE 子设备的接收功率降敏伟 10~50dB , 因此对于 LTE子设备而言, 来自于设 备内和设备外的干扰都不是特别强, LTE子设备服务小区 Cell 1的信号质 量高于门限 1 , LTE子设备可以在 Cell l保证业务正常进行。 因此 UE测量 服务小区的信号质量时, 区分对待服务小区测量事件和邻区测量事件, 优 选的是, 针对服务小区测量事件, 比如 Al、 A2事件, UE测量 Cell l时测 量所有下行子帧, 从而及时检测来自于设备外和设备内的干扰; 针对相邻 小区测量事件, UE测量 Cell 1时只测量对应于 WLAN未进行上行发送的 LTE下行子帧, 避免不必要的切换。
当 UE移动到图 5所示的 B点时, UE靠近 Cell 1的小区边缘, UE将 受到来自其同频邻区 Cell 3的设备外干扰, 再加上来自于 WLAN的设备内 干扰, UE在 Cell 1的信号质量讲急剧下降, 严重影响 UE在 Cell 1的业务 质量。 因此为了更快为 UE找到合适的切换目标小区,针对相邻小区测量事 件, UE测量 Cell 1时只测量对应于 WLAN正好进行上行发送的 LTE下行 子帧, 以尽快触发 A3、 A5事件, 为 UE找到合适的切换目标小区, 比如在 本实施例中的 Cell 2 (如果 UE切换到 Cell 3 , 由于 Cell 3和 Cell 1同频, 因此 UE在 Cell 3的小区边缘将继续受到来自于设备外和设备内的干扰,故 Cell 3不是合适的切换目标小区)。
实施例二: 对应上述方案二的描述。 方案二、 为邻区测量事件配置 "干扰偏移", 评估邻区测量事件中服务 小区的信号质量时, UE在服务小区的测量结果上减去所述 "干扰偏移"。
LTE系统当前的 A3事件进入条件定义为:相邻小区的信号强度比服务 小区的信号强度高预定偏移量,即:(Mn+Ofn+Ocn) - Hys > (Ms+Ofs+Ocs) + Offset。
其中 Mn是相邻小区的信号的测量结果, Ofn是相邻小区所在频率的频 率特定参数, Ocn是相邻小区的小区特定参数, (Mn+Ofn+Ocn)在本测量事 件中可以认为是评估后相邻小区的信号强度。 Hys是防止乒乓效应设定的滞 后参数。 Ms是当前服务小区的信号的测量结果, Ofs是当前服务小区所在 频率的频率特定参数, Ocs是当前服务小区的小区特定参数。(Ms+Ofs+Ocs) 在本测量事件中可以认为是评估后服务小区的信号质量。 Offset是预定偏移 量。
A5事件进入条件定义为: 服务小区的信号质量低于预定门限 1 , 并且 相邻小区的信号质量高于预定门限,即: Ms+Hys < Threshl且 Mn+Ofn+Ocn - Hys > Thresh2。
其中 Threshl为预定门限 1 , Thresh2为预定门限 2, 其他参数同 A3事 件说明。
当前 A3、 A5 事件的设计并未特殊考虑设备内共存干扰的情况, 因此 当设备内共存干扰存在时, 现有的 A3、 A5 事件将无法及时检测并发现候 选目标小区,从而使得 UE在服务小区长时间受到设备内共存干扰, 最终导 致 UE的下行数据无法正确接收甚至更严重的情况导致 UE在服务小区发生 无线链路失败。
为及时检测并发现候选目标小区, 本发明方案中, 为邻区测量事件配 置 "干扰偏移 /偏移", 在评估邻区测量事件时, 服务小区的信号质量在测量 结果上减去所述 "干扰偏移 /偏移"。 优选的是, 对于 A3事件, 所述事件修改为: (Mn+Ofn+Ocn) - Hys > (Ms+Ofs+Ocs-X) + Offset。
优选的是, 对于 A5事件, 所述事件修改为: Ms+Hys _ X < Threshl且 Mn+Ofn+Ocn-Hys > Thresh2。
其中 X为所述 "干扰偏移 /偏移", 由服务基站显式配置给 UE, 或者由 服务基站和 UE预先约定。
可见: 釆用本发明的测量处理方案, 可以及时触发邻区测量事件, 服 务基站可以根据所述相邻小区测量事件获知相邻小区和服务小区的信号质 量并根据所述服务基站的无线资源管理策略及时把 UE切换到目标小区上, 有效避免共存干扰。
一种测量处理系统, 该系统包括: 测量处理单元, 测量处理单元用于 多种无线电子设备共存于同一终端设备中, 其中一种无线电子设备进行测 量时, 对于服务小区的测量, 釆取不区分对待服务小区测量事件和邻区测 量事件的测量; 或者, 釆取区分对待服务小区测量事件和邻区测量事件的 测量。
这里, 测量处理单元进一步用于釆取不区分对待服务小区测量事件和 邻区测量事件的测量, 无线电子设备为 LTE子设备的情况下, 测量服务小 区的信号质量时, 只测量部分下行子帧。
这里, 测量处理单元进一步用于釆取区分对待服务小区测量事件和邻 区测量事件的测量, 无线电子设备为 LTE子设备的情况下, 对于服务小区 测量事件, 测量服务小区的任意下行子帧; 对于邻区测量事件, 对邻区测 量事件中服务小区的测量, 只测量服务小区的部分下行子帧。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种测量处理方法, 其特征在于, 该方法包括: 多种无线电子设备 共存于同一终端设备中, 其中一种无线电子设备进行测量时, 对于服务小 区的测量, 釆取不区分对待服务小区测量事件和邻区测量事件的测量; 或 者, 釆取区分对待服务小区测量事件和邻区测量事件的测量。
2、 根据权利要求 1所述的方法, 其特征在于, 所述釆取不区分对待服 务小区测量事件和邻区测量事件的测量, 所述无线电子设备为 LTE子设备 的情况下, 该方法还包括: 测量服务小区的信号质量时, 测量部分下行子 帧。
3、根据权利要求 2所述的方法, 其特征在于, 所述部分下行子帧包括: 对应于非 LTE子设备正好进行上行发送的 LTE下行子帧。
4、 根据权利要求 1所述的方法, 其特征在于, 所述釆取区分对待服务 小区测量事件和邻区测量事件的测量, 所述无线电子设备为 LTE子设备的 情况下, 该方法还包括:
对于所述服务小区测量事件, 测量服务小区的任意下行子帧; 对于所述邻区测量事件, 对邻区测量事件中服务小区的测量, 测量服 务小区的部分下行子帧。
5、根据权利要求 4所述的方法, 其特征在于, 所述部分下行子帧包括: 对应于非 LTE子设备正好进行上行发送的 LTE下行子帧; 或者, 在已经选 择部分下行子帧的基础上获得的调整后的部分下行子帧;
其中, 所述调整后的部分下行子帧为根据实际服务小区的信号质量对 选择的所述部分下行子帧进行调整后获得的子帧。
6、 根据权利要求 5所述的方法, 其特征在于, 如果服务小区的信号质 量高于门限 1 , 则所述调整后的部分下行子帧包括: 对应于非 LTE子设备 未进行上行发送的 LTE下行子帧;
如果服务小区的信号质量低于门限 2,则所述调整后的部分下行子帧包 括: 对应于非 LTE子设备正好进行上行发送的 LTE下行子帧。
7、 根据权利要求 6所述的方法, 其特征在于, 所述门限 1和所述门限 2为服务基站配置给终端设备的门限值; 或者, 所述门限 1和所述门限 2为 服务基站和终端设备预先约定的门限值。
8、 根据权利要求 1至 7任一项所述的方法, 其特征在于, 所述服务小 区测量事件为: 只需测量服务小区信号质量的测量事件;
所述邻区测量事件为: 既需要测量服务小区信号质量, 又需要测量邻 区信号质量的测量事件。
9、 一种测量处理系统, 其特征在于, 该系统包括: 测量处理单元, 用 于多种无线电子设备共存于同一终端设备中, 其中一种无线电子设备进行 测量时, 对于服务小区的测量, 釆取不区分对待服务小区测量事件和邻区 测量事件的测量; 或者, 釆取区分对待服务小区测量事件和邻区测量事件 的测量。
10、 根据权利要求 9所述的系统, 其特征在于, 所述测量处理单元, 进一步用于釆取不区分对待服务小区测量事件和邻区测量事件的测量, 所 述无线电子设备为 LTE子设备的情况下, 测量服务小区的信号质量时, 测 量部分下行子帧。
11、 根据权利要求 9 所述的系统, 其特征在于, 所述测量处理单元, 进一步用于釆取区分对待服务小区测量事件和邻区测量事件的测量, 所述 无线电子设备为 LTE子设备的情况下, 对于所述服务小区测量事件, 测量 服务小区的任意下行子帧; 对于所述邻区测量事件, 对邻区测量事件中服 务小区的测量, 测量服务小区的部分下行子帧。
PCT/CN2011/076952 2010-10-29 2011-07-07 一种测量处理方法及系统 WO2012055266A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010526716.7 2010-10-29
CN201010526716.7A CN102457885B (zh) 2010-10-29 2010-10-29 一种测量处理方法及系统

Publications (1)

Publication Number Publication Date
WO2012055266A1 true WO2012055266A1 (zh) 2012-05-03

Family

ID=45993138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076952 WO2012055266A1 (zh) 2010-10-29 2011-07-07 一种测量处理方法及系统

Country Status (2)

Country Link
CN (1) CN102457885B (zh)
WO (1) WO2012055266A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013166700A1 (zh) * 2012-05-11 2013-11-14 富士通株式会社 共存干扰的评估方法、用户设备及基站

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103906184A (zh) * 2012-12-28 2014-07-02 联芯科技有限公司 Lte终端热点覆盖时wifi信道的选择方法及选择系统
CN108184245A (zh) * 2018-01-31 2018-06-19 广东欧珀移动通信有限公司 无线热点连接控制方法、装置、存储介质及终端设备
CN117014095A (zh) * 2019-06-18 2023-11-07 北京小米移动软件有限公司 设备内共存干扰指示方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159964A (zh) * 2007-11-19 2008-04-09 北京天碁科技有限公司 多模终端的测量调度方法及多模终端
CN101754279A (zh) * 2009-12-11 2010-06-23 中国科学技术大学 一种保证实时类业务服务质量的负载均衡方法
CN101754425A (zh) * 2008-12-12 2010-06-23 中兴通讯股份有限公司 一种lte系统中避免用户设备误操作的方法
CN101801043A (zh) * 2009-02-09 2010-08-11 鼎桥通信技术有限公司 下行信号接收质量的上报方法
CN101860867A (zh) * 2009-04-09 2010-10-13 大唐移动通信设备有限公司 一种优化小区参考符号的方法、系统和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2396080B (en) * 2002-11-26 2006-03-01 Nec Technologies Improvements in standby time for dual mode mobile communication devices
CN101312575B (zh) * 2007-05-22 2011-10-19 展讯通信(上海)有限公司 Td-scdma系统中终端测量gsm邻区的方法
CN101415215B (zh) * 2007-10-19 2010-09-01 联芯科技有限公司 一种多模终端的邻区测量方法及装置
CN101674586B (zh) * 2009-10-13 2014-03-19 中兴通讯股份有限公司 一种载波聚合中的测量处理方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101159964A (zh) * 2007-11-19 2008-04-09 北京天碁科技有限公司 多模终端的测量调度方法及多模终端
CN101754425A (zh) * 2008-12-12 2010-06-23 中兴通讯股份有限公司 一种lte系统中避免用户设备误操作的方法
CN101801043A (zh) * 2009-02-09 2010-08-11 鼎桥通信技术有限公司 下行信号接收质量的上报方法
CN101860867A (zh) * 2009-04-09 2010-10-13 大唐移动通信设备有限公司 一种优化小区参考符号的方法、系统和设备
CN101754279A (zh) * 2009-12-11 2010-06-23 中国科学技术大学 一种保证实时类业务服务质量的负载均衡方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013166700A1 (zh) * 2012-05-11 2013-11-14 富士通株式会社 共存干扰的评估方法、用户设备及基站

Also Published As

Publication number Publication date
CN102457885A (zh) 2012-05-16
CN102457885B (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
EP2665334B1 (en) Communication method and system with various radio technologies coexisting in terminal
US9985771B2 (en) Methods and apparatus for cooperating between wireless wide area network radios and wireless local area network radios
CA2807884C (en) Method and system for communication implementation for user equipment
US8547867B2 (en) Method and apparatus for interference identification on configuration of LTE and BT
US8724545B2 (en) Method and apparatus to facilitate support for multi-radio coexistence
EP3092843B1 (en) Method and system for cooperating between wireless wide area network radios and wireless local area network radios
CN104885511B (zh) 涉及干扰减轻有效测量的方法和设备
US9596042B2 (en) Methods of performing inter-frequency measurements in the IDLE state
JP6046823B2 (ja) ユーザ機器、ネットワークノード及びその中の方法
US8655400B2 (en) Reduced transmit power for wireless radio coexistence
KR20120095813A (ko) 무선 통신 시스템에서 신호 측정 방법 및 장치
WO2012094933A1 (zh) 一种实现干扰信息上报的方法、系统及ue
WO2014070101A1 (en) In-device coexistence interference in a communications network
KR20130058068A (ko) 다중 라디오 공존
WO2014121697A1 (zh) 一种控制用户设备进行测量的方法及装置
WO2012055266A1 (zh) 一种测量处理方法及系统
WO2013118984A1 (ko) 무선 통신 시스템에서 idc 간섭 정보를 전송하는 방법 및 이를 위한 장치
CN105103597B (zh) 无线通信小区检测技术
WO2012136090A1 (zh) 一种测量处理方法及系统
KR20130124809A (ko) 무선통신 시스템에서 기기 내 공존 간섭을 제어하는 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835540

Country of ref document: EP

Kind code of ref document: A1