WO2012136090A1 - 一种测量处理方法及系统 - Google Patents

一种测量处理方法及系统 Download PDF

Info

Publication number
WO2012136090A1
WO2012136090A1 PCT/CN2012/072056 CN2012072056W WO2012136090A1 WO 2012136090 A1 WO2012136090 A1 WO 2012136090A1 CN 2012072056 W CN2012072056 W CN 2012072056W WO 2012136090 A1 WO2012136090 A1 WO 2012136090A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
network side
subset
interference
subsets
Prior art date
Application number
PCT/CN2012/072056
Other languages
English (en)
French (fr)
Inventor
姚君
黄亚达
施小娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012136090A1 publication Critical patent/WO2012136090A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements

Definitions

  • the present invention relates to a plurality of radio technology coexistence technologies in a user equipment (UE, User Equipment), and in particular, to a measurement processing method and system. Background technique
  • FIG. 1 is a schematic diagram of a prior art user equipment using three radio technologies.
  • the user equipment includes a Long Term Evolution (LTE) technology sub-module 101, which uses a wireless local area network (WLAN) technology sub-module 102 defined by the IEEE Std 802.11 specification, that is, a wireless local area network.
  • LTE Long Term Evolution
  • WLAN wireless local area network
  • a WLAN (STA, Wireless Local Area Networks Station) 102 uses a Bluetooth (BT, Bluetooth) technology sub-module 103 as specified by the IEEE Std 802.15 specification.
  • BT Bluetooth
  • the three sub-modules of the LTE technology sub-module 101, the WLAN-STA 102, and the Bluetooth technology sub-module 103 are connected by an inter-radio interface, such as between the LTE technology sub-module 101 and the WLAN-STA 102. Connected by L101, the WLAN-STA 102 and the Bluetooth technology sub-module 103 are connected by L102, and the LTE technology sub-module 101 and the Bluetooth technology sub-module 103 are connected by L103; or the three sub-modules are controlled by a common control module 104. .
  • the spatial distance between the technical sub-modules is small, for example only a few centimeters or even a few millimeters, and the spatial isolation between the antenna ports corresponding to the two or more radio technologies cannot be designed to be large enough, resulting in
  • each radio technology sub-module in the same user equipment operates in an adjacent frequency band, due to out of band emission, spurious emissions, receiver blocking, etc., when one of the radios
  • the technology sub-module transmits a signal, it will interfere with the signal reception of another radio technology sub-module, and vice versa.
  • the prior art filter technology cannot eliminate such adjacent frequency interference, thereby affecting the communication quality of each radio technology sub-module.
  • This adjacent-channel interference phenomenon is called "in-device coexistence interference (ICO, In-device). Coexistence Interference )".
  • the UE refers to a user communication terminal device having two or more radio technologies coexisting, and may be a mobile phone, a smart phone, a portable communication device, a personal digital assistant (PDA), or the like.
  • the coexistence of two or more radio technologies means that there are two or more radio transceivers inside the UE; the first radio transceiver uses the first radio technology, works under the first radio communication protocol specification, and The signal is transmitted and received within the frequency range specified by the protocol; the second transceiver uses the second radio technology, operates under the second radio communication protocol specification, and transmits and receives signals within the frequency range specified by the protocol, and so on. .
  • the frequency range in which the first radio technology operates is at least partially overlapping or adjacent to the frequency range in which other radio technologies operate; wherein the first radio technology may be LTE technology, Universal Mobile Telecommunication System (UMTS) Technology, Wimax technology using the IEEE 802.16 specification, etc., the partial operating frequency of the first radio technology or the frequency of its harmonics overlaps or is adjacent to the "ISM, Industrial Scientific and Medical"band;
  • This other radio technology can These are WLAN technology, Bluetooth technology, Zigbee technology using the IEEE 802.15.4 specification, etc.
  • the WLAN and Bluetooth work in the ISM band, and the frequency band is 2.4 GHz to 2.5 GHz.
  • the WLAN channel uses the 2.4 GHz to 2.4835 GHz band in the ISM band
  • the Bluetooth channel Use the 2.4 GHz to 2.497 GHz band in the ISM band.
  • LTE's Time Division Duplex (TDD) mode operates in Band 40 (Band 40) and Band 38 (Band 38)
  • Band 40 has a frequency range of 2.3 GHz to 2.4 GHz
  • Band 38 has a frequency range of 2.57 GHz to 2.62 GHz.
  • Uplink transmission in the frequency division duplex mode that is, the UE transmits to the eNB in Band 7 (Band 7), the frequency band is 2.5 GHz to 2.57 GHz;
  • the downlink transmission in the FDD mode Downlink Transmission
  • the transmission of the eNB to the UE operates in the band 2.62 GHz to 2.69 GHz of Band 7.
  • 2 is a schematic diagram showing the distribution of an ISM band and an LTE band in the prior art. As shown in FIG.
  • the ISM band is adjacent to the uplink transmission band of the LTE TDD mode Band 40 and the LTE FDD mode Band 7, so if the LTE technology sub-module 101 uses the TDD mode and uses the Band 40, the LTE technology sub-module 101 Interference with the WLAN-STA 102 and the Bluetooth technology sub-module 103 will occur. If the LTE technology sub-module 101 uses the FDD mode and uses the Band 7, the uplink frequency band of the LTE Band 7 is adjacent to the ISM band, and the LTE technology sub-module 101 The uplink transmission will interfere with the downlink reception of the WLAN-STA 102 or the Bluetooth technology sub-module 103.
  • LTE user equipment receives quality by reference signal (RSRQ)
  • RSRQ reference signal
  • Reference Signal Received Quality and Reference Signal Received Power (RSRP) measurements detect interference from outside the device. This detection method is more suitable for scenarios where there is stable continuous interference, such as interference from a macro cell.
  • the network side can generally configure reasonable measurement and evaluation parameters and measurement report parameters according to the network rules, network optimization, or support of the self-organizing network (SON, Self-Organising Networks) function.
  • the measurement result of the signal quality of the cell and the measurement result of the signal quality of the neighboring cell determine whether the UE is interfered in the serving cell; if it is determined to be interfered, the network side may switch to the phase by inter-cell interference coordination technology or by The neighboring cell ensures the communication quality of the UE.
  • the first type of radio technology is different from the in-device coexistence interference of other radio technologies in the device and the interference from the outside of the device.
  • the coexistence interference in the device is sudden and discontinuous.
  • the first in-premise coexistence interference is bursty.
  • the interference of other radio technologies with the first radio technology has discontinuous characteristics.
  • 3 is a schematic diagram of a BT frame structure when a single-slot packet is used in an extended Synchronous Connection-Oriented (eSCO) mode.
  • eSCO Synchronous Connection-Oriented
  • the BT technology sub-module coexisting with the first radio technology is used as a master device, In the transmission slot indicated by M, if the slot encounters the downlink reception slot of the first radio technology, the BT will interfere with the first radio technology, but in the transmission slot indicated by S, The interference will disappear. Therefore, for in-device coexistence interference with bursts and discontinuities, if the periodic measurement in the prior art is used, the interference from the device cannot be correctly measured, and the current interference state cannot be reflected, eventually resulting in the network side failing. Obtaining the correct interference information, and can not make the correct interference suppression measures, thus affecting the user's communication experience. Summary of the invention
  • a measurement processing method including:
  • the UE determines each measurement subset of the measurement object
  • the UE measures the measurement object on each of the measurement subsets
  • the UE reports the measurement result of the measurement object on the measurement subsets to the network side.
  • the UE determines that each measurement subset of the measurement object is:
  • the UE determines a measurement subset of the measurement object based on a temporal characteristic generated by interference existing on the measurement object.
  • the method further includes:
  • the network side configures a trigger condition for the UE to report the measurement result of the measurement object in the measurement configuration message.
  • the UE determines that each measurement subset of the measurement object is:
  • the measurement configuration information is configured with allocation information of each measurement subset.
  • the method further includes:
  • the UE sends the packet measurement configuration request information to the network side, where the packet measurement configuration request information includes the information that the network side is requested to configure the measurement subsets for the UE, and the packet measurement configuration request information includes one of the following:
  • the triggering condition of the measurement result of the measurement object is reported by the UE to the network side in the measurement configuration information of the measurement object.
  • the measurement object is a working frequency point of the UE, and/or other frequency points other than the working frequency point; or
  • the measurement subset includes measurement time gaps that are subject to the same type of interference.
  • the triggering condition for reporting the measurement result of the measurement object is one of the following: the measurement result of the signal quality on any measurement subset on the working frequency point is lower than the quality threshold configured on the network side, and the duration is greater than Time limit configured on the network side, parameters are quality threshold and time limit;
  • the measurement result of the signal quality on each measurement subset at the working frequency point is lower than the threshold configured by the network side for each measurement subset, and the duration is greater than the time limit configured on the network side, and the parameter is each measurement sub-parameter.
  • the measurement result of the signal quality on any measurement subset at the working frequency is lower than the quality threshold 1 configured on the network side, and the measurement result of any measurement subset on the other adjacent frequency points is higher than the quality threshold 2 configured on the network side, and The duration is greater than the time limit configured on the network side.
  • the parameters are other neighbor frequency information, quality threshold 1, quality threshold 2, and time limit.
  • the measurement results of the signal quality on each measurement subset at the working frequency point are respectively lower than the threshold configured by the network side for each measurement subset of the working frequency point and the measurement of each measurement subset at other adjacent frequency points.
  • the result is higher than the threshold configured by the network side for each measurement subset of the adjacent frequency points, and the duration is greater than the time limit configured by the network side, and the parameters are other neighbor frequency information, and the quality of each measurement subset on the working frequency point.
  • the signal quality on any of the measurement subsets other than the frequency of the working frequency is lower than the network
  • the quality threshold configured on the network side, and the duration is greater than the time limit configured on the network side.
  • the parameters are other frequency information, quality threshold, and time limit; or
  • the measurement result of the signal quality on each measurement subset at the frequency points other than the working frequency point is lower than the threshold configured by the network side for each measurement subset, and the duration is greater than the time limit configured on the network side, and the parameter For other frequency information, quality thresholds and time limits.
  • the UE When the UE reports the measurement result of the measurement object on the measurement subsets to the network side, the UE reports the auxiliary information that characterizes the measurement subsets.
  • the auxiliary information for characterizing the characteristics of the measurement subsets includes at least one of: a proportional relationship of occupation time of each measurement subset in a measurement period; a ratio; a positional relationship and generation of a transmission time slot of a radio technology; The type of service that interferes with radio technology.
  • a measurement processing system comprising:
  • a determining module configured to determine each measurement subset of the measurement object
  • a measuring module configured to measure the measuring object on each of the measurement subsets
  • the reporting module is configured to report, to the network side, a measurement result of the measurement object on each measurement subset.
  • the user equipment determines each measurement subset of each measurement object on the first radio technology, and the UE is in each determined measurement subset.
  • the measurement object is measured, the UE can accurately detect the discontinuous interference of the other radio technology to the first radio technology, and then the UE reports the measurement result of the measurement object on the measurement subsets to the network side, It is ensured that the network side comprehensively acquires the interference condition of the measurement object, thereby making a correct interference suppression decision.
  • the invention solves the problem of using existing The measurement technology detects the problem that the discontinuous interference cannot be detected or the non-continuous interference is detected during the discontinuous interference process, which reduces the invalidity and blindness of the measurement report thus introduced, and finally solves the result.
  • the execution of unnecessary interference suppression measures improves the user's communication experience.
  • FIG. 1 is a schematic diagram of a user equipment using three radio technologies in the prior art
  • FIG. 2 is a schematic diagram of distribution of an ISM band and an LTE band in the prior art
  • FIG. 3 is a schematic diagram of a frame format of Bluetooth in the prior art
  • FIG. 4 is a flow chart of an interference detecting method for the first radio technology interfered by an ISM related radio technology according to the present invention
  • FIG. 5 is a flowchart of a first embodiment of a method for detecting interference according to the present invention.
  • FIG. 6 is a flowchart of a second embodiment of a method for detecting interference according to the present invention. detailed description
  • the LTE technology is subject to the discontinuity interference of the ISM related radio technology, and the present invention is also applicable to the first radio technology. Interference detection when discontinuous interference occurs in other known second radio technologies other than the ISM related radio technologies listed above.
  • the measurement processing method of the present invention that is, the detection process for detecting discontinuous interference includes:
  • a user equipment determines each measurement subset of the measurement object.
  • the UE or the network determines one or more measurement subsets for the discontinuous time characteristics of the first radio technology interference according to a known second radio technology.
  • the UE determines each measurement subset of the measurement object to detect coexistence interference in the device as an example, and can be classified into the following two types:
  • the UE determines itself, that is, the UE determines the measurement subsets according to the time characteristics generated by the interference existing on the measurement object.
  • the ISM device when the ISM device is in the transmitting state and the LTE device is in the receiving state, the ISM device may cause interference to the LTE device.
  • the UE can obtain related parameters of the ISM device, for example, the current service characteristics and work on the ISM device, through the interface (L101 or L103) or the control module 104 between the LTE device and the ISM device.
  • the radio frame is not affected by the interference level of the ISM device, and the measurement subset is determined according to the interference level.
  • the UE classifies the downlink subframe/downlink radio frame that may be interfered by the ISM into the measurement subset A, and the The downlink subframe/downlink radio frame that is subject to ISM interference is classified as measurement subset B.
  • the network side is determined.
  • the UE determines the measurement subsets according to measurement configuration information of the measurement object sent by the network side to the UE.
  • the network side notifies the allocation information of each measurement subset described by the UE in the measurement configuration information sent to the UE.
  • the measurement configuration information is used by the network side to configure measurements for the UE.
  • the RRCConnectionReconfiguration message is used for configuration.
  • the allocation information of the measurement subset is included in the measurement
  • the configuration information determines the subset of measurements.
  • the network can learn the discontinuous characteristics of the second radio technology interference with the first radio technology through the UE, the neighbor base station or the OAM system. If the network side learns the discontinuous characteristic of the first radio technology interference of the second radio technology by the UE, for example, when the LTE sub-device and the ISM sub-device are simultaneously enabled in the UE, the UE sends the packet measurement configuration request information to the network side,
  • the packet measurement configuration request information includes information for requesting the network side to configure a measurement subset for the UE, and the packet measurement configuration request information specifically includes at least one of the following:
  • the network side is notified of the indication of the configuration of the packet measurement, which can be represented by a bit of 1 bit; the ratio; the positional relationship of the transmission time slot of the interfered radio technology and the service type of the radio technology generating the interference.
  • the allocation principle of the measurement subset is:
  • the measurement gaps in the subset are subject to the same type of interference
  • the gaps at different measurement moments between different measurement subsets are different in the type of interference.
  • the measurement time interval may be one subframe, a radio frame, a downlink subframe, or a downlink radio frame, and specifically refers to one or more downlink subframes in the LTE system.
  • the measurement object is a working frequency point of the UE in the LTE system, and/or a neighboring frequency point; or a serving cell of the UE, and/or a neighboring cell.
  • the network side configures the triggering condition for the UE to report the measurement result of each measurement object, that is, the measurement report, to the network side. Specifically, after the UE accesses the network, the network side configures the measurement for the UE, and includes the configuration of the measurement object and the trigger condition of the measurement report, and the network side sends the configuration to the UE by measuring the configuration information.
  • the UE decides the division of the subset by itself, the trigger condition of the measurement report in the last received RRCConnectionReconfiguration message may be used.
  • the network side divides the subset, when the network side notifies the UE to measure the division of the subset, it also notifies the UE of the trigger condition of the measurement, which is also included in the measurement configuration information.
  • the UE performs packet measurement, that is, the UE measures the measurement object on each measurement subset.
  • the measurement of the packet refers to the measurement frequency gap of the LTE radio technology or the measurement time gap of other frequency points (downlink subframe or downlink radio frame), and is divided into different measurement subsets, and the UE is in different measurement.
  • the physical layer is sampled, measured, and statistically measured on the subset, that is, the physical layer smoothing process, and then reported to the upper layer, and the upper layer performs high-level filtering on the physical layer measurement results on different measurement subsets, and the statistics are measured. High-level measurements on the subset. When the high-level measurement result satisfies the trigger condition that the network is configured for the UE to report the measurement result of each measurement object to the network side, the process proceeds to step 403.
  • the specific interference to the device may be the following two situations: :
  • the network configures the trigger condition of the reported measurement report for the UE;
  • the network configures the trigger condition of the reported measurement report for the UE.
  • the triggering condition of the measurement report configured by the network side for the UE includes at least one of the following: (1) The measurement result of the signal quality on any measurement subset on the working frequency point satisfies the corresponding When measuring the reporting conditions. For example, the measurement result of the signal quality on any measurement subset at the working frequency is lower than the quality threshold configured on the network side, and the duration is greater than the time limit configured on the network side, and the parameters are the quality threshold and the time limit;
  • the signal quality on any measurement subset at other frequencies except the working frequency is lower than the quality threshold configured on the network side, and the duration is greater than the time limit configured on the network side.
  • the parameters are other frequency information, quality threshold, and time limit;
  • the measurement results of the signal quality on each measurement subset at the working frequency point are lower than the thresholds configured for each measurement subset on the network side, and the duration is greater than the time limit configured on the network side, and the parameter is each measurement subset.
  • Quality threshold and time limit are lower than the thresholds configured for each measurement subset on the network side, and the duration is greater than the time limit configured on the network side, and the parameter is each measurement subset.
  • the measurement result of the signal quality on any measurement subset at the working frequency point is lower than the quality threshold 1 configured on the network side, and the measurement result of any measurement subset on the other adjacent frequency points is higher than the quality threshold 2 configured on the network side.
  • the duration is greater than the time limit configured on the network side, and the parameters are other neighbor frequency information, quality threshold 1, quality threshold 2, and time limit.
  • the measurement results of the signal quality on each measurement subset at the working frequency point are respectively lower than the threshold configured by the network side for each measurement subset of the working frequency point and each measurement subset of the other adjacent frequency points
  • the measurement result is higher than the threshold configured for each measurement subset of the adjacent frequency point on the network side, and the duration is greater than the time limit configured on the network side, and the parameter is other neighbor frequency information, and each measurement subset of the working frequency point Quality threshold, quality threshold and time limit for each measurement subset at the adjacent frequency point;
  • the measurement results of the signal quality on each measurement subset at other frequency points except the working frequency point are lower than the thresholds configured for each measurement subset on the network side, and the duration is greater than the time limit configured on the network side.
  • the parameters are other frequency information, quality thresholds and time limits.
  • the signal quality can be measured by a variety of parameters, which is a prior art and will not be described here. All of the above operating frequency points and other frequency points are the frequency of the first radio technology.
  • the working frequency point refers to the working frequency of the cell where the UE is located (that is, the serving cell), and the other frequency points refer to the working frequency of other cells (that is, the cell that does not serve the UE).
  • the UE reports, to the network side, a measurement result of the measurement object on each measurement subset, that is, a measurement report.
  • the UE When the measurement result of the measurement object on the one or more measurement subsets satisfies the trigger condition that the UE configured by the network reports the measurement result of each measurement object to the network side, the UE reports the measurement object to all measurement subsets on the network side. Measurement results.
  • auxiliary information may include one of the following:
  • the measurement report may or may not include auxiliary information (the reason will be explained below); but if the measurement subset is divided For the UE to determine by itself, the measurement report includes not only the measurement results of the respective measurement subsets but also the auxiliary information.
  • the network side determines whether the UE is subjected to in-device coexistence interference.
  • the network side determines whether the UE is subjected to in-device coexistence interference according to the received measurement report. According to the measurement results of each measurement subset in the measurement report, if the measurement result of the measurement subset subject to in-device coexistence interference is very poor, when the downlink subframe or the radio frame in the measurement subset experiences severe interference, And the network side can consider that the current UE is suffering from the downlink subframe or the downlink radio frame in the logic that is affected by the in-device coexistence interference, and the proportion of the downlink radio frame in the downlink subframe or the downlink radio frame is high.
  • interference suppression measures can be given; if the measurement result of the measured subset of in-device coexistence interference is very poor, the interference experienced is experienced by the downlink subframe or radio frame in the measurement subset When the interference is very serious, but the auxiliary information determines that the downlink subframe or the downlink radio frame in the measurement subset that is subject to coexistence interference in the device has a low proportion in all downlink subframes or downlink radio frames, the network side It can be considered that the intra-device coexistence interference suffered by the current UE is relatively small, and the UE can endure without requiring Adjustment; if the measurement result of the measurement subset subject to in-device coexistence interference is acceptable, when the downlink subframe or the radio frame in the measurement subset experiences relatively small interference, the network side may consider that the current UE suffers from in-device coexistence The interference is relatively minor and no adjustment is required.
  • the process of implementing the first embodiment of the method for detecting interference according to the present invention includes:
  • the network side configures a measurement for the UE, and then sends the measurement configuration information to the UE, where the measurement configuration information includes a trigger condition reported by the measurement report.
  • the occurrence of coexistence interference in the device is sudden, and the method of group measurement has a certain difference from the traditional measurement method.
  • the UE needs to divide different measurement subsets and needs to measure the measurement results for different measurement subsets.
  • the network side may configure a trigger condition of the measurement report of the packet measurement for the UE in advance in the RRC Connection Reconfiguration process.
  • the RRCConnectionReconfiguration message can be The UE configures a trigger condition for the measurement report of the packet measurement.
  • the trigger condition reported by the configured measurement report can be:
  • the measurement result of the signal quality on any measurement subset at the working frequency is lower than the quality threshold configured on the network side, and the duration is greater than the time limit configured on the network side.
  • the parameters are the quality threshold and the time limit.
  • the measurement of the signal quality on any of the measurement subsets at the operating frequency meets the A2 event.
  • the duration is greater than the trigger time (TTT, Time To Trigger) set by the network side
  • TTT Time To Trigger
  • the specific signal quality threshold and TTT settings are determined by the network side based on the current location of the UE, the UE's LTE technology service type, and QoS (Quality of Service) requirements.
  • the measurement result of the signal quality on each measurement subset at the working frequency point is lower than the threshold configured by the network side for each measurement subset, and the duration is greater than the time limit of the network configuration, and the parameter is each measurement subset. Quality threshold and time limit.
  • This trigger condition is similar to the A2 event, and there are also differences:
  • the network side sets a signal quality threshold, where the network side can set the corresponding quality threshold for each measurement subset of the UE, only when each The measurement report is triggered only when the measurement results of the signal quality on the subset satisfy the corresponding quality threshold and the duration exceeds TTT.
  • the measurement result of the signal quality on any measurement subset at the working frequency point is lower than the quality threshold 1 configured on the network side, and the measurement result of any measurement subset on the other adjacent frequency points is higher than the quality threshold 2 configured on the network side, and
  • the duration is longer than the time limit of the network side configuration, and the parameters are other neighbor frequency information, quality threshold 1, quality threshold 2, and time limit.
  • A5 event indicates that the signal strength/signal quality of the serving cell is lower than the threshold 1 set by the network, and the signal strength/signal quality of the neighboring cell is higher than the network setting
  • the threshold is 2.
  • the measurement results of the signal quality on each measurement subset at the working frequency point are lower than the thresholds configured by the network side for each measurement subset of the working frequency point and the measurement of each measurement subset at other adjacent frequency points.
  • the result is higher than the threshold configured by the network side for each measurement subset of the adjacent frequency points, and the duration is greater than the time limit configured by the network side, and the parameters are other frequency point information, the quality threshold of each measurement subset of the working frequency point,
  • the quality threshold and time limit of each measurement subset of the adjacent frequency points this trigger condition is similar to the A5 event, and there are also differences:
  • the network side configures a quality threshold 1 for the working frequency point, and configures the adjacent frequency point.
  • a quality threshold 2 here, a corresponding quality threshold is configured for each measurement subset at the working frequency point; a corresponding quality threshold is also configured for each measurement subset on the adjacent frequency point, and the working frequency must be guaranteed.
  • the measurement report is triggered only when each measurement subset on the point and adjacent frequency points reaches its own threshold and the duration exceeds TTT.
  • the signal quality on any measurement subset other than the frequency of the working frequency is lower than the quality threshold configured on the network side, and the duration is greater than the time limit configured on the network side.
  • the parameters are other frequency information, quality threshold and time. Limit
  • the in-device coexistence interference not only affects the working frequency of the UE, but also causes interference to other frequency points.
  • the network side may configure the working frequency point for the UE.
  • the other frequency points are configured with a quality threshold.
  • the measurement of the adjacent frequency points is performed.
  • the notification informs the network side of the interference situation of the adjacent frequency point, and prevents the network from switching to the adjacent frequency point due to the lack of detailed adjacent frequency point channel conditions, thereby affecting the communication quality of the UE. 6.
  • the measurement results of the signal quality on each measurement subset at other frequency points except the working frequency point are lower than the thresholds configured by the network side for each measurement subset, and the duration is greater than the time limit configured on the network side, and the parameters are For other frequency information, quality thresholds and time limits.
  • the difference from the fifth trigger condition is:
  • the network side configures corresponding thresholds for each measurement subset of other frequency points, and it must be ensured that each measurement subset reaches its own threshold and continues.
  • the reporting of the measurement report is triggered when the time exceeds the time limit.
  • the Bluetooth sub-device works simultaneously with the LTE sub-device.
  • the Bluetooth device When the Bluetooth device is in the transmitting state and the LTE device is in the receiving state, the Bluetooth device may interfere with the LTE device.
  • the interface between the LTE device and the ISM device, or the control module, the UE For the user equipment shown in Figure 1, the interface between the LTE device and the ISM device, or the control module, the UE. You can understand the working status of the LTE device and the Bluetooth device, including the working sequence of the Bluetooth, so as to divide the appropriate measurement subset for the working frequency of the LTE technology or the downlink/downlink radio frames at other frequencies.
  • the Bluetooth sub-device and the LTE sub-device are not working at the same time, it can be considered that all downlink subframes/downlink radio frames of the LTE sub-device are subjected to the same interference type, and it can be considered that only one measurement subset exists; when the Bluetooth sub-device and When the LTE sub-devices are working at the same time, the downlink subframe/downlink radio frame of the LTE sub-device of the UE may be considered to have different types of interference, and some may suffer from coexistence interference in the device. Therefore, the UE needs to re-determine the division of the measurement subset, and proceeds to step 503. .
  • the UE updates the division of the measurement subset and performs corresponding group measurement.
  • the UE determines the division of the measurement subset by itself, and the principle of dividing the measurement subset is:
  • the downlink subframe or the downlink radio frame in the subset receives the same interference type
  • the downlink subframe or downlink radio frame between the subsets receives different types of interference.
  • the working sequence of the Bluetooth sub-device is known, and the UE can predict in which subframes Bluetooth will interfere with LTE, and then the subframes that may be subject to interference are classified into one measurement. Subset, the remaining sub-frames are classified into another measurement sub-set, that is, in the Bluetooth packet format shown in Figure 3, the downlink sub-frames of LTE that coincide with the M-slot are classified into one measurement subset, and other sub-frames. The frame is classified into another measurement subset.
  • the division of the subset here must match the triggering condition of the measurement report of the packet measurement configured by the network for the UE, that is, if the measurement condition of the measurement report configured by the UE for the UE is one, three, and five, the number of measurement subsets may be determined by the UE. If the measurement report triggering conditions configured by the network for the UE are two, four, and six, the number of measurement subsets must match the number of thresholds configured on the network side.
  • the UE When the UE performs the measurement, it only needs to select a certain number of signals in each measurement subset for measurement, and uses the existing smoothing filtering method to give the measurement result of the measurement period to the network side in each measurement period.
  • step 504 is performed.
  • the UE reports the measurement report to the network side.
  • the measurement report includes content of measurement results and auxiliary information for all measurement subsets.
  • the auxiliary information is information indicating the relationship between the measurement subsets, which may be the ratio of each measurement subset, or the ratio of the traffic of the LTE device to the ISM device during the measurement period, or the downlink radio frame of the LTE device at the start time of the measurement period. The positional relationship with the ISM device transmission time slot and the ISM service type.
  • the network side determines whether the UE experiences in-device coexistence interference.
  • the network side determines whether the UE is subjected to in-device coexistence interference according to the received measurement report. In the measurement results of each measurement subset obtained in the measurement report, if the measurement result of the measurement subset subjected to the coexistence interference in the device is very poor, the downlink subframe in the measurement subset or none When the interference experienced by the line frame is very serious, and the auxiliary information determines that the proportion of the downlink subframe or the downlink radio frame in the logic of the coexistence interference in the device is high in all downlink subframes or downlink radio frames, Then, the network side can consider that the current UE is suffering from relatively serious in-device coexistence interference, and performs step 506; if the measurement result of the measured subset of in-device coexistence interference is very poor, the interference experienced is in the downlink of the measurement subset.
  • the proportion of the downlink subframe or the downlink radio frame in the logic of the intra-device coexistence interference is determined by the auxiliary information in all downlink subframes or downlink radio frames.
  • the network can consider that the intra-device coexistence interference suffered by the current UE is relatively small, the UE can endure, and no adjustment is needed, the process ends; if the measurement result of the measurement subset of the coexistence interference in the device is acceptable, When the downlink sub-frame or radio frame in the measurement subset experiences less interference, the network side To believe that the current UE device coexistence interference suffered relatively minor, do not need to make adjustments, the process ends.
  • the network side gives a response.
  • the network side may give appropriate interference suppression measures and give a response to the UE.
  • the interference suppression measure may be a method of switching the UE to other frequency points, or configuring other measurements for the UE to find suitable other frequency points for the UE, or configuring different working hours for the LTE sub-device and the Bluetooth sub-device in the UE.
  • the process of implementing the second embodiment of the method for detecting interference according to the present invention includes:
  • the Bluetooth sub-device works simultaneously with the LTE sub-device.
  • This step is the same as that described in step 502.
  • the UE sends a packet measurement configuration request to the network side.
  • the Bluetooth device When the Bluetooth device is in the transmitting state and the LTE device is in the receiving state, the Bluetooth device may cause interference to the LTE device.
  • the division of the measurement subset is determined by the network side, and the UE sends the packet measurement configuration to the network side.
  • the request requesting the network side to configure a trigger condition for the appropriate measurement report and the division of the measurement subset, where the packet measurement configuration request includes at least one of the following:
  • the network side is notified of the indication of the configuration of the packet measurement, which can be represented by a bit of 1 bit; the ratio; the positional relationship of the transmission time slot of the interfered radio technology and the service type of the radio technology generating the interference.
  • the network configures a packet measurement for the UE.
  • the network may configure the measurement subset and the trigger condition of the measurement report for the UE through the RRC Connection Reconfiguration process.
  • the network can learn the discontinuous characteristics of the second radio technology interference to the first radio technology through the UE, the neighbor base station, or the OAM system. If the network side knows the discontinuous characteristics of the second radio technology interference to the first radio technology through the UE, for example, when
  • the UE When the LTE sub-device and the ISM sub-device are simultaneously enabled in the UE, the UE sends the packet measurement configuration request information to the network side, and requests the UE to allocate an appropriate measurement subset and the trigger condition reported by the measurement report.
  • the measurement gaps in the subset are subject to the same type of interference
  • the gaps at different measurement moments between different measurement subsets are different in the type of interference.
  • the measurement time interval may be one subframe, a radio frame, a downlink subframe, or a downlink radio frame, and specifically refers to one or more downlink subframes in the LTE system.
  • the measurement object is a working frequency point of the UE in the LTE system, and/or an adjacent frequency point; Or the serving cell of the UE, and/or the neighboring cell.
  • the method of configuring the reporting condition of the measurement report is the same as described in step 501.
  • the UE performs packet measurement.
  • the UE performs measurement on each measurement subset and measures the measurement result according to the measurement subset divided by the network side for the UE.
  • the UE reports the measurement report to the network side.
  • the UE may report the measurement report to the network side in step 605.
  • the auxiliary information is sent again; or only the auxiliary information not included in the packet measurement configuration request is sent.
  • 606 ⁇ 607 are the same as steps 505 ⁇ 506, and are not described here.
  • the present invention accordingly provides a measurement processing system, the system comprising:
  • a determining module configured to determine each measurement subset of the measurement object
  • a measuring module configured to measure the measuring object on each of the measurement subsets
  • a reporting module configured to report, to the network side, a measurement result of the measurement object on each measurement subset.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种测量处理方法及系统。所述方法包括:UE确定测量对象的各测量子集;UE在所述各测量子集上测量所述测量对象;UE向网络侧上报所述测量对象在所述各测量子集上的测量结果。所述测量对象为UE的工作频点,和/或工作频点以外的其他频点;或者UE的服务小区,和/或相邻小区。所述测量子集包括受到相同类型干扰的测量时刻间隙。采用本发明能够准确检测具有非连续特性的干扰信号,尤其是设备内共存干扰。

Description

一种测量处理方法及系统 技术领域
本发明涉及用户设备 ( UE, User Equipment )内多种无线电技术共存技 术, 尤其涉及一种测量处理方法及系统。 背景技术
随着无线电技术与智能终端设备的发展, 为了支持终端设备用户的不 同通信需求, 需要在同一用户设备内集成多种无线电技术。 图 1 是现有技 术中使用三种无线电技术的用户设备的示意图。 如图 1 所示, 该用户设备 包含有长期演进 ( LTE, Long Term Evolution )技术子模块 101 , 使用 IEEE Std 802.11规范规定的无线局域网 ( WLAN, Wireless Local Area Networks ) 技术子模块 102, 即无线局域网站点 (WLAN-STA, Wireless Local Area Networks Station )102,使用 IEEE Std 802.15规范规定的蓝牙( BT, Bluetooth ) 技术子模块 103。 LTE技术子模块 101、 WLAN-STA 102、 蓝牙技术子模块 103这三个子模块之间通过无线电技术之间的接口( inter-radio interface )相 连, 例如 LTE技术子模块 101与 WLAN-STA 102之间通过 L101相连, WLAN-STA 102与蓝牙技术子模块 103之间通过 L102相连, LTE技术子模 块 101与蓝牙技术子模块 103之间通过 L103相连; 或三个子模块受控于一 个公共的控制模块 104。用户设备的三个子模块分别和各自无线电技术所对 应的对端设备进行无线通信, 其中 LTE技术子模块 101与演进型基站(如 LTE eNB, E-UTRAN NodeB ) 105通过空中接口 ( Air Interface )进行无线 通信, WLAN-STA 102与另一个 WLAN STA 106通过空中接口进行无线通 信, 蓝牙技术子模块 103与另一个蓝牙技术子模块 107通过空中接口进行 无线通信。 在同一用户设备内设计多种无线电技术子模块时, 鉴于用户设备的体 积有限, 势必意味着同时设计有两种或两种以上的无线电技术子模块的用 户设备内, 两种或两种以上无线电技术子模块之间的空间距离很小, 例如 只有几个厘米甚至几个毫米, 而且这两种或两种以上无线电技术所对应的 天线端口之间的空间隔离度无法设计得足够大, 导致当同一用户设备内的 各个无线电技术子模块工作于相邻的频带时, 由于带外泄露(Out of band emission ), 杂散发射(Spurious emissions ), 接收机阻塞(Blocking )等原 因, 当其中一个无线电技术子模块发射信号时, 将干扰另一个无线电技术 子模块的信号接收, 反之亦然。 而且现有技术中的滤波器技术无法消除这 种邻频干扰, 从而影响各无线电技术子模块的通信质量, 本领域中称这种 邻频干扰现象为 "设备内共存干扰 ( ICO , In-device Coexistence Interference )"。
本发明中, UE指有两种或两种以上无线电技术共存的用户通信终端设 备, 可以为移动电话、 智能手机、 便携式通信设备、 个人数字助理(PDA, Personal Digital Assistant )等。 两种或两种以上无线电技术共存是指在 UE 内部, 存在两个或多个无线电收发机; 第一无线电收发机采用第一种无线 电技术, 在第一种无线电通信协议规范下工作, 且在协议规定的频率范围 内进行信号的收发; 第二无线电收发机采用第二种无线电技术, 在第二种 无线电通信协议规范下工作, 且在协议规定的频率范围内进行信号的收发, 以此类推。 第一种无线电技术工作的频率范围与其他无线电技术工作的频 率范围至少有部分是重叠或毗邻的; 其中, 第一种无线电技术可以是 LTE 技术、 通用移动通信系统 ( UMTS , Universal Mobile Telecommunication System )技术、 使用 IEEE 802.16规范的 Wimax技术等, 所述第一种无线 电技术的部分工作频率或其谐波的频率与 "工业、 科学及医疗 (ISM , Industrial Scientific and Medical )"频带有重叠或毗邻; 该其他无线电技术可 以是 WLAN技术、 Bluetooth技术、 使用 IEEE 802.15.4规范的 Zigbee技术 等, 这些其他无线电技术工作于 ISM频带。
如图 1所示的用户设备, WLAN和 Bluetooth工作于 ISM频带, 频段 为 2.4GHz 〜 2.5GHz; 其中 WLAN信道( WLAN Channel )使用 ISM频带 中的 2.4GHz 〜 2.4835GHz频段, Bluetooth信道( Bluetooth Channel )使用 ISM频带中的 2.4GHz 〜 2.497GHz频段。 LTE 的时分双工 ( TDD, Time Division Duplex )模式工作于频带 40 ( Band 40 )和频带 38 ( Band 38 ), Band 40的频段为 2.3GHz ~ 2.4GHz, Band 38的频段为 2.57GHz ~ 2.62GHz; 频 分双工 (FDD , Frequency Division Duplex ) 模式的上行传输 ( Uplink Transmission ),即 UE向 eNB的传输工作于频带 7( Band 7 ),频段为 2.5GHz 〜 2.57GHz; FDD模式的下行传输( Downlink Transmission ), 即 eNB向 UE 的传输工作于 Band 7的 2.62GHz〜 2.69GHz频段。 图 2是现有技术中 ISM 频带和 LTE频带的分布示意图。如图 2所示, ISM频带正好与 LTE TDD模 式的 Band 40、 LTE FDD模式 Band 7的上行传输频段相邻 , 因此如果 LTE 技术子模块 101使用 TDD模式且使用 Band 40, 则 LTE技术子模块 101与 WLAN-STA 102、 蓝牙技术子模块 103之间将会相互干扰, 如果 LTE技术 子模块 101使用 FDD模式且使用 Band 7, 由于 LTE Band 7的上行频带与 ISM频带毗邻,因此 LTE技术子模块 101的上行发射将干扰 WLAN-STA 102 或蓝牙技术子模块 103的下行接收。
现有 LTE 系统中, LTE 用户设备通过参考信号接收质量 (RSRQ,
Reference Signal Received Quality )和参考信号接收功率( RSRP, Reference Signal Received Power )测量对来自设备外的干扰进行检测。 这种检测方式 比较适用于存在稳定连续干扰的场景, 例如宏小区的干扰。 网络侧一般可 以根据网规、 网优或者在自组织网络( SON, Self-Organising Networks )功 能的支持下配置合理的测量评估参数及测量报告参数,通过 UE上报的服务 小区的信号质量的测量结果以及相关相邻小区的信号质量的测量结果, 判 断 UE在服务小区是否受到干扰; 若确定受到干扰, 则网络侧可以通过小区 间干扰协调技术或者通过将 UE切换到相邻小区来保证 UE的通信质量。在 现有 LTE系统 UE的测量过程中, 由于来自设备外的干扰一般有一个由弱 到强逐渐增加的过程, 因此 UE 上报给网络侧的测量结果是对一段时间内 (例如 320ms甚至更长时间 )各测量结果进行平滑(filter )处理后的结果, 以防止由于信号的短暂抖动导致 UE的乒乓切换。
第一种无线电技术受到设备内其他无线电技术的设备内共存干扰与前 述来自设备外的干扰不同, 设备内共存干扰具有突发性、 不连续性。 第一 备内共存干扰具有突发性。 第二方面, 由于设备内其他无线电技术的时序 特性及业务类型有别于第一种无线电技术, 因此导致其他无线电技术对第 一种无线电技术的干扰具有不连续特性。图 3为 eSCO( extended Synchronous Connection-Oriented,扩展同步面向连接)方式下采用单时隙数据包时的 BT 的帧结构示意图,若与第一种无线电技术共存的 BT技术子模块是作为主设 备使用的话, 在 M标示的传输时隙中, 如果该时隙遇到第一种无线电技术 的下行接收时隙,则 BT将会干扰第一种无线电技术,但是在 S标示的传输 时隙, 这种干扰将会消失。 因此, 对于具有突发性和非连续性的设备内共 存干扰, 若采用现有技术中周期性的测量将无法正确测量到来自设备内的 干扰, 无法反映当前的干扰状态, 最终导致网络侧无法获得正确的干扰信 息, 并无法做出正确的干扰抑制措施, 从而影响用户的通信体验。 发明内容
有鉴于此, 本发明的主要目的在于提供一种测量处理方法及系统, 能 够准确检测具有非连续特性的干扰信号, 尤其是设备内共存干扰。
为达到上述目的, 本发明的技术方案是这样实现的: 一种测量处理方法, 包括:
UE确定测量对象的各测量子集;
UE在所述各测量子集上测量所述测量对象;
UE向网络侧上报所述测量对象在所述各测量子集上的测量结果。 其中, 所述 UE确定测量对象的各测量子集为:
所述 UE根据测量对象上存在的干扰产生的时间特性确定所述测量 对象的测量子集。
所述方法还包括:
网络侧为所述 UE在测量配置消息中配置上报所述测量对象的测量 结果的触发条件。
其中, 所述 UE确定测量对象的各测量子集为:
所述 UE根据网络侧发送给所述 UE的所述测量对象的测量配置信 息确定所述各测量子集;
所述测量配置信息中配置有所述各测量子集的分配信息。
所述方法还包括:
所述 UE根据网络侧发送给所述 UE的所述测量对象的测量配置信 息确定所述各测量子集之前,
所述 UE向网络侧发送分组测量配置请求信息, 所述分组测量配置 请求信息包含请求网络侧为 UE配置所述各测量子集的信息, 所述分组 测量配置请求信息包括以下之一:
通知网络侧为其配置分组测量的指示, 使用 1个 bit的标志位表示; 比例; 扰的无线电技术的传输时隙的位置关系及产生干扰的无线电技术的业务 类型。
其中, 所述测量对象的测量配置信息中, 配置有所述 UE向网络侧 上报所述测量对象的测量结果的触发条件。
其中, 所述测量对象为 UE的工作频点, 和 /或工作频点以外的其他 频点; 或者
UE的月良务小区, 和 /或相邻小区;
所述测量子集包括受到相同类型干扰的测量时刻间隙。
其中, 所述上报所述测量对象的测量结果的触发条件为以下之一: 所述工作频点上任一测量子集上的信号质量的测量结果低于网络侧 配置的质量门限, 且持续时间大于网络侧配置的时间限制, 参数为质量 门限和时间限制;
所述工作频点上每个测量子集上的信号质量的测量结果分别低于网 络侧为每个测量子集配置的门限, 且持续时间大于网络侧配置的时间限 制, 参数为每个测量子集的质量门限和时间限制;
所述工作频点上任一测量子集上的信号质量的测量结果低于网络侧 配置的质量门限 1且其他邻频点上任一测量子集的测量结果高于网络侧 配置的质量门限 2, 且持续时间大于网络侧配置的时间限制, 参数为其 他邻频点信息、 质量门限 1、 质量门限 2和时间限制;
所述工作频点上每个测量子集上的信号质量的测量结果分别低于网 络侧为所述工作频点每个测量子集配置的门限且其他邻频点上每个测量 子集的测量结果高于网络侧为所述邻频点每个测量子集配置的门限, 且 持续时间大于网络侧配置的时间限制, 参数为其他邻频点信息、 工作频 点上每个测量子集的质量门限、 邻频点上每个测量子集的质量门限和时 间限制;
所述工作频点以外的其他频点上任一测量子集上的信号质量低于网 络侧配置的质量门限, 且持续时间大于网络侧配置的时间限制, 参数为 其他频点信息、 质量门限和时间限制; 或
所述工作频点以外的其他频点上每个测量子集上的信号质量的测量 结果分别低于网络侧为每个测量子集配置的门限, 且持续时间大于网络 侧配置的时间限制, 参数为其他频点信息、 质量门限和时间限制。
其中, 所述 UE向网络侧上报所述测量对象在所述各测量子集上的 测量结果时, 上报表征所述各测量子集特性的辅助信息。
其中,所述表征所述各测量子集特性的辅助信息至少包括以下之一: 测量周期内所述各测量子集占用时间的比例关系; 比例; 的无线电技术的传输时隙的位置关系及产生干扰的无线电技术的业务类 型。
一种测量处理系统, 包括:
确定模块, 用于确定测量对象的各测量子集;
测量模块, 用于在所述各测量子集上测量所述测量对象;
上报模块, 用于向网络侧上报所述测量对象在所述各测量子集上的测 量结果。
由以上技术方案可以看出,当 UE中第一种无线电技术受到非连续性干 扰时, 用户设备确定第一种无线电技术上各测量对象的各测量子集, UE在 所确定的各测量子集上测量所述测量对象, UE可以准确检测出其他无线电 技术对第一种无线电技术的非连续性干扰,然后 UE向网络侧上报所述测量 对象在所述各测量子集上的测量结果, 可以保证网络侧全面获取所述测量 对象的受干扰情况, 从而做出正确的干扰抑制决策。 本发明解决了用现有 测量技术检测非连续性干扰过程中存在的不能检测到非连续性干扰或者错 误检测到非连续性干扰的问题, 降低了由此引入的测量报告的无效性和盲 目性, 最终解决了因此导致的不必要的干扰抑制措施的执行, 改善了用户 的通信体验。 附图说明
图 1为现有技术中一种使用三种无线电技术的用户设备的示意图; 图 2为现有技术中 ISM频带与 LTE频带的分布示意图;
图 3为现有技术中 Bluetooth的帧格式示意图;
图 4为本发明第一种无线电技术受到 ISM相关无线电技术干扰的干扰 检测方法流程图;
图 5为本发明实现检测干扰方法的第一实施例流程图;
图 6为本发明实现检测干扰方法的第二实施例流程图。 具体实施方式
本发明以 LTE技术与 ISM相关无线电技术(如 WLAN, Bluetooth ) 共存于用户设备内时, LTE技术受到 ISM相关无线电技术非连续性干扰 要说明的是本发明也同时适用于第一种无线电技术受到以上所列 ISM相 关无线电技术之外的其他已知的第二种无线电技术非连续性干扰时的干 扰检测。
如图 4所示, 本发明测量处理方法, 即检测非连续性干扰的检测流 程包括:
401、 用户设备(UE ) 确定测量对象的各测量子集。
具体地, UE 或网络根据已知的第二种无线电技术对第一种无线电 技术干扰的非连续时间特性确定一个或者多个测量子集。 UE 确定测量对象的各测量子集, 以检测设备内共存干扰为例, 可 以分为以下两种:
UE自行确定,即 UE根据测量对象上存在的干扰产生的时间特性确 定所述各测量子集。
具体地,当 ISM设备处于发送状态, LTE设备处于接收状态时, ISM 设备将可能对 LTE设备产生干扰。 对于如图 1 所示的用户设备, 通过 LTE设备与 ISM设备之间的接口 (L101或者 L103 )或者控制模块 104 , UE可以获知 ISM设备的相关参数, 比如, ISM设备上当前的业务特性、 工作时序特性, LTE设备当前的 TDD ( Time Division Duplex, 时分双工) 上下行配置模式等, 从而可以预估 LTE 的哪些下行子帧 /下行无线帧可 能受到 ISM设备的干扰, 哪些下行子帧 /下行无线帧不会受到 ISM设备 的干扰等级, 并根据干扰等级确定测量子集, 比如, UE 将所述可能受 到 ISM干扰的下行子帧 /下行无线帧归类为测量子集 A,将所述不会受到 ISM干扰的下行子帧 /下行无线帧归类为测量子集 B。
网络侧确定。 UE根据网络侧发送给 UE的所述测量对象的测量配置 信息确定所述各测量子集。 网络侧在发送给 UE的测量配置信息中, 通 知 UE所述各测量子集的分配信息。
所述测量配置信息用于网络侧为 UE配置测量, 例如 LTE系统中, 通过 RRCConnectionReconfiguration消息进行配置,主要有 5个测量配置 参数:测量 ID( Measurement identities ) ,测量对象( Measurement objects ) , 测量才艮告配置 ( Reporting configurations ) , 平滑配置 ( Quantity configurations )和测量间隙 ( Measurement gaps ) 。 其中, 测量报告配置 中有测量报告的触发条件。
当测量子集由网络侧决定时, 测量子集的分配信息包含在所述测量 配置信息确定所述各测量子集。
网络可以通过 UE、邻基站或者 OAM系统获知第二种无线电技术对 第一种无线电技术干扰的非连续特性。 如果网络侧通过 UE获知第二种 无线电技术对第一种无线电技术干扰的非连续特性,则比如当 UE中 LTE 子设备与 ISM子设备同时开启时, UE向网络侧发送分组测量配置请求 信息, 分组测量配置请求信息包含请求网络侧为 UE配置测量子集的信 息, 分组测量配置请求信息具体包括以下至少之一:
通知网络侧为其配置分组测量的指示, 可以使用 1个 bit的标志位 表示; 比例; 扰的无线电技术的传输时隙的位置关系及产生干扰的无线电技术的业务 类型。
无论是 UE确定还是 UE根据网络侧的配置确定测量对象的各测量 子集, 测量子集的分配原则为:
针对同一测量对象, 所述测量子集划分的原则为:
子集内的各测量时刻间隙受到的干扰类型相同;
不同测量子集间的各测量时刻间隙受到的干扰类型不同。
测量时刻间隙可以是一个子帧、无线帧、 下行子帧或者下行无线帧, 在 LTE系统中具体是指一个或多个下行子帧。
所述测量对象, 在 LTE系统中为 UE的工作频点, 和 /或相邻频点; 或者 UE的服务小区, 和 /或相邻小区。
无论是 UE确定还是 UE根据网络侧的配置确定测量对象的各测量 子集, 网络侧在为 UE进行测量配置时, 为 UE配置向网络侧上报各测 量对象的测量结果, 即测量报告, 的触发条件。 具体地, UE接入网络 后, 网络侧都会给 UE配置测量, 此时就包括测量对象以及测量报告的 触发条件的配置, 网络侧通过测量配置信息将这些配置发送给 UE。 当 UE 自 行 决 定 子 集 的 划 分 时 , 可 以 使 用 上 次 收 到 的 RRCConnectionReconfiguration消息中的测量报告的触发条件。 网络侧划 分子集时, 网络侧通知 UE测量子集的划分时, 还通知 UE上 ^艮测量才艮 告的触发条件, 这也包含在测量配置信息里。
402、 UE执行分组测量, 即 UE在各测量子集上测量测量对象。 所述分组测量是指 LTE 无线电技术的工作频点或者其他频点的测 量时刻间隙 (下行子帧或者下行无线帧) 受到的干扰类型不同而被分为 不同的测量子集, UE 在不同的测量子集上进行物理层的采样、 测量、 并统计物理层测量结果, 即物理层的平滑过程, 然后上报高层, 由高层 对不同测量子集上的物理层测量结果分别进行高层滤波, 统计各测量子 集上的高层测量结果。 当所述高层测量结果满足网络为 UE配置的向网 络侧上报各测量对象的测量结果的触发条件时, 进入步驟 403。
所述网络侧为 UE配置上报测量报告的触发条件的时机包括非连续 性干扰情况发生变化时,如产生非连续性干扰或者消除非连续性干扰时, 具体到设备内干扰可以有以下两种情况:
在 UE 内的第一种无线电技术与设备内干扰相关无线电技术尚未同 时工作时, 网络为 UE配置所述上报测量报告的触发条件;
在 UE 内的第一种无线电技术与设备内干扰相关无线电技术同时工 作后, 网络为 UE配置所述上报测量报告的触发条件。
所述网络侧为 UE配置的测量报告的触发条件至少包括以下之一: ( 1 )工作频点上任一测量子集上的信号质量的测量结果满足对应的 测量上报条件时。 如工作频点上任一测量子集上的信号质量的测量结果 低于网络侧配置的质量门限, 且持续时间大于网络侧配置的时间限制, 参数为质量门限和时间限制;
( 2 )工作频点以外的其他频点上任一测量子集上的信号质量低于网 络侧配置的质量门限, 且持续时间大于网络侧配置的时间限制, 参数为 其他频点信息、 质量门限和时间限制;
( 3 )工作频点上所有测量子集上的信号质量的测量结果满足对应的 测量上报条件时。 如工作频点上每个测量子集上的信号质量的测量结果 分别低于网络侧为每个测量子集配置的门限, 且持续时间大于网络侧配 置的时间限制, 参数为每个测量子集的质量门限和时间限制;
( 4 )工作频点上任一测量子集上的信号质量的测量结果低于网络侧 配置的质量门限 1且其他邻频点上任一测量子集的测量结果高于网络侧 配置的质量门限 2 , 且持续时间大于网络侧配置的时间限制, 参数为其 他邻频点信息、 质量门限 1、 质量门限 2和时间限制;
( 5 )工作频点上每个测量子集上的信号质量的测量结果分别低于网 络侧为所述工作频点每个测量子集配置的门限且其他邻频点上每个测量 子集的测量结果高于网络侧为所述邻频点每个测量子集配置的门限, 且 持续时间大于网络侧配置的时间限制, 参数为其他邻频点信息、 工作频 点上每个测量子集的质量门限、 邻频点上每个测量子集的质量门限和时 间限制;
( 6 )工作频点以外的其他频点上每个测量子集上的信号质量的测量 结果分别低于网络侧为每个测量子集配置的门限, 且持续时间大于网络 侧配置的时间限制, 参数为其他频点信息、 质量门限和时间限制。
其中, 信号质量可以由很多种参数衡量, 此为现有技术, 在此不再 赘述。 上述所有工作频点以及其他频点的表述都是第一种无线电技术的频 点。
所述工作频点是指 UE所在小区 (即服务小区) 的工作频点, 所述 其他频点是指其他小区 (即不服务 UE的小区) 的工作频点。
403、 UE向网络侧上报测量对象在所述各测量子集上的测量结果, 即测量 4艮告。
当测量对象在一个或多个测量子集上的测量结果满足网络配置的 UE向网络侧上报各测量对象的测量结果的触发条件时, UE向网络侧上 报该测量对象在所有测量子集上的测量结果。
此外, 如果步驟 402 中各测量子集为 UE 自行确定的, 则 UE在上 报该测量对象在所有测量子集上的测量结果的同时, 还上报表征各测量 子集特性的辅助信息。 具体辅助信息可以包括以下之一:
测量周期内所述各测量子集占用时间的比例关系, 或各测量子集以 测量间隙为单元个数的相互比例; 比例, 如测量周期内 LTE设备与 ISM设备的业务量比例; 扰的无线电技术的传输时隙的位置关系及产生干扰的无线电技术的业务 类型, 如测量周期的起始时刻时 LTE设备下行子帧 /下行无线帧与 ISM 设备传输时隙的位置关系与 ISM业务类型。
如果步驟 401 中所述测量子集的划分由网络侧确定, 则所述测量报 告中可以包含辅助信息, 也可以不包含辅助信息(原因将在下面说明); 但是若所述测量子集的划分为 UE 自行确定, 则测量报告中不仅包括各 个测量子集的测量结果, 还包括所述辅助信息。
404、 网络侧判断 UE是否经受设备内共存干扰。 网络侧根据收到的测量报告, 判断 UE是否经受设备内共存干扰。 根据测量报告中的各测量子集的测量结果, 如果受到设备内共存干扰的 测量子集的测量结果非常差, 在所述测量子集内的下行子帧或者无线帧 经受的干扰非常严重时, 并且通过辅助信息判断所述受到设备内共存干 扰的逻辑中的下行子帧或者下行无线帧在所有下行子帧或下行无线帧中 所占的比例较高时, 则网络侧可以认为当前 UE正在遭受比较严重的设 备内共存干扰, 可以给予干扰抑制措施; 如果受到的设备内共存干扰的 测量子集的测量结果非常差, 经受的干扰在所述测量子集内的下行子帧 或者无线帧经受的干扰非常严重时, 但是通过辅助信息判断所述受到设 备内共存干扰的测量子集中的下行子帧或者下行无线帧在所有下行子帧 或下行无线帧中所占的比例较低时, 则网络侧可以认为当前 UE遭受的 设备内共存干扰比较轻微, UE 可以忍受, 不需要作出调整; 如果受到 设备内共存干扰的测量子集的测量结果可以接受, 在所述测量子集内的 下行子帧或者无线帧经受的干扰比较轻微时, 网络侧可以认为当前 UE 遭受的设备内共存干扰比较轻微, 不需要作出调整。
下面以 LTE设备与 Bluetooth设备共存于同一用户设备时的干扰检 测为例, 举实施例详细说明本发明。
如图 5所示, 本发明实现检测干扰方法的第一实施例的流程包括:
501、 网络侧为 UE配置测量, 然后将测量配置信息发送给 UE , 所 述测量配置信息中包含测量报告上报的触发条件。
设备内共存干扰的发生具有突发性, 分组测量的方法与传统测量方 法具有一定区别。 在分组测量中, UE 需要划分不同的测量子集, 并且 需要对不同的测量子集统计测量结果。网络侧可以预先在 RRC连接重建 ( RRC Connection Reconfiguration )过程中为 UE配置分组测量的测量报 告的触发条件。特别地,可以通过 RRCConnectionReconfiguration消息为 UE 配置所述分组测量的测量报告的触发条件。 配置的测量报告上报的 触发条件可以为:
一、 工作频点上任一测量子集上的信号质量的测量结果低于网络侧 配置的质量门限, 且持续时间大于网络侧配置的时间限制, 参数为质量 门限和时间限制。
利用现有测量中的 A2事件( A2事件表示服务小区的信号强度 /信号 质量低于网络设定的门限) , 当工作频点上的任一测量子集上的信号质 量的测量结果满足 A2 事件, 且持续时间大于网络侧设定的触发时间 ( TTT, Time To Trigger ) 时, UE向网络侧上报测量报告。 具体的信号 质量门限、 TTT的设置由网络侧根据 UE当前位置, 以及 UE的 LTE技 术的业务类型以及 QoS ( Quality of Service, 服务质量)需求等因素综合 确定。
二、 工作频点上每个测量子集上的信号质量的测量结果分别低于网 络侧为每个测量子集配置的门限,且持续时间大于网络配置的时间限制, 参数为每个测量子集的质量门限和时间限制。
此触发条件与 A2事件类似, 也有区别: 在 A2事件中, 网络侧设定 了一个信号质量门限, 这里网络侧可以为 UE的每个测量子集都设定相 应的质量门限, 只有当每个测量子集上的信号质量的测量结果都满足了 相应的质量门限且持续时间超过 TTT时, 才触发测量报告的上报。
三、 工作频点上任一测量子集上的信号质量的测量结果低于网络侧 配置的质量门限 1且其他邻频点上任一测量子集的测量结果高于网络侧 配置的质量门限 2, 且持续时间大于网侧络配置的时间限制, 参数为其 他邻频点信息、 质量门限 1、 质量门限 2和时间限制;
利用现有测量中的 A5事件( A5事件表示服务小区的信号强度 /信号 质量低于网络设定的门限 1 , 且邻小区的信号强度 /信号质量高于网络设 定的门限 2 ) 。 当 UE 的工作频点受到设备内共存干扰时, 网络侧可以 把 UE切换到不受设备内共存干扰影响的频点, 因此需要 UE测量在其 他频点的信号强度 /信号质量情况。 配置 A5事件有利于干扰发生时, 网 络更快地做出一些抑制干扰的决策。
四、 工作频点上每个测量子集上的信号质量的测量结果分别低于网 络侧为所述工作频点每个测量子集配置的门限且其他邻频点上每个测量 子集的测量结果高于网络侧为所述邻频点每个测量子集配置的门限, 且 持续时间大于网络侧配置的时间限制, 参数为其他频点信息、 工作频点 每个测量子集的质量门限、邻频点每个测量子集的质量门限和时间限制; 此触发条件与 A5事件类似, 也有区别: 在 A5事件中, 网络侧为工 作频点配置了一个质量门限 1 , 为邻频点配置了一个质量门限 2; 这里, 对于工作频点上的每个测量子集都配置了相应的质量门限; 为邻频点上 的每个测量子集也都配置了相应的质量门限, 必须保证工作频点和邻频 点上的每个测量子集都达到自己的门限, 且持续时间超过 TTT时, 才会 触发测量报告的上报。
五、 工作频点以外的其他频点上任一测量子集上的信号质量低于网 络侧配置的质量门限, 且持续时间大于网络侧配置的时间限制, 参数为 其他频点信息、 质量门限和时间限制;
设备内共存干扰不仅会影响 UE的工作频点, 同时也会对其他频点 造成干扰, 为了防止网络侧将 UE切换到遭受到干扰的其他邻频点, 网 络侧可以为 UE配置工作频点以外的其他频点配置一个质量门限, 当 UE 检测到其他频点上任一测量子集低于网络侧配置的质量门限, 且持续时 间大于 TTT时, 将上 ^艮所述邻频点的测量 4艮告, 告知网络侧该邻频点受 到的干扰情况, 防止网络由于缺少详细的邻频点信道情况而将 UE切换 到邻频点从而影响 UE的通信质量。 六、 工作频点以外的其他频点上每个测量子集上的信号质量的测量 结果分别低于网络侧为每个测量子集配置的门限, 且持续时间大于网络 侧配置的时间限制, 参数为其他频点信息、 质量门限和时间限制。
与第五种触发条件的区别为: 这种配置中, 网络侧为其他频点的每 个测量子集都配置了相应的门限, 必须保证每个测量子集都达到了自己 的门限, 且持续时间超过时间限制时, 才会触发测量报告的上报。
502、 Bluetooth子设备与 LTE子设备同时工作。
当 Bluetooth 设备处于发送状态, LTE 设备处于接收状态时, Bluetooth设备将可能对 LTE设备产生干扰,对于如图 1所示的用户设备, 通过 LTE设备与 ISM设备之间的接口,或者控制模块, UE可以了解 LTE 设备与 Bluetooth设备的工作状态, 包括 Bluetooth的工作时序, 以便后 续为 LTE技术的工作频点或其他频点上的下行子帧 /下行无线帧划分合 适的测量子集。
当 Bluetooth子设备与 LTE子设备尚未同时工作时, 可以认为 LTE 子设备的所有下行子帧 /下行无线帧受到的干扰类型都是相同的, 可以认 为只有一个测量子集存在; 当 Bluetooth子设备与 LTE子设备同时工作 时,可以认为 UE的 LTE子设备的下行子帧 /下行无线帧受到的干扰类型 不同, 有些可能遭受设备内共存干扰, 因此 UE需要重新确定测量子集 的划分, 进入步驟 503。
503、 UE更新测量子集的划分并执行相应的分组测量。
UE自行确定测量子集的划分, 划分测量子集的原则为:
子集内的下行子帧或者下行无线帧受到的干扰类型相同;
子集间的下行子帧或者下行无线帧受到的干扰类型不同。
例如 Bluetooth子设备的工作时序已知, UE可以预判在哪些子帧上 Bluetooth将对 LTE造成干扰,进而将可能遭受干扰的子帧归入一个测量 子集, 剩下的子帧归入另外一个测量子集, 即如图 3 所示的 Bluetooth 分组格式中, 与 M时隙有重合的 LTE的下行子帧被归入一个测量子集, 其他子帧被归入另一个测量子集。
这里子集的划分必须与网络为 UE配置的分组测量的测量报告的触 发条件匹配, 即若网络为 UE配置的测量报告触发条件为一、 三和五时, 测量子集的个数可以由 UE决定; 若网络为 UE配置的测量报告触发条 件为二、 四和六时, 测量子集的个数必须与网络侧配置的门限个数相匹 配。
UE 执行测量时, 只需在每个测量子集内选取一定数目的信号进行 测量, 并使用现有的平滑过滤方法在每个测量周期内向网络侧给出该测 量周期的测量结果。
当测量结果满足步驟 501 中网络侧为 UE设置的测量报告的触发条 件时, 执行步驟 504。
504、 UE向网络侧上报测量报告。
所述测量报告包括的内容为所有测量子集的测量结果和辅助信息。
UE 向网络侧上报测量报告时, 不仅需要告知网络每个测量子集的 测量结果, 并且需要告知网络表示各测量子集之间关系的辅助信息, 以 便网络侧可以判断 UE是否正在经历设备内共存干扰。 其中辅助信息是 指表示各测量子集关系的信息, 可以为各测量子集的比例, 或测量周期 内 LTE设备与 ISM设备的业务量比例, 或测量周期的起始时刻时 LTE 设备下行无线帧与 ISM设备传输时隙的位置关系与 ISM业务类型等。
505、 网络侧判断 UE是否经历设备内共存干扰。
网络侧根据收到的测量报告, 判断 UE是否经受设备内共存干扰。 在测量报告中得到的各测量子集的测量结果中, 如果受到设备内共存干 扰的测量子集的测量结果非常差, 在所述测量子集内的下行子帧或者无 线帧经受的干扰非常严重时, 并且通过辅助信息判断所述受到设备内共 存干扰的逻辑中的下行子帧或者下行无线帧在所有下行子帧或下行无线 帧中所占的比例较高时, 则网络侧可以认为当前 UE正在遭受比较严重 的设备内共存干扰, 执行步驟 506; 如果受到的设备内共存干扰的测量 子集的测量结果非常差, 经受的干扰在所述测量子集内的下行子帧或者 无线帧经受的干扰非常严重时, 但是通过辅助信息判断所述受到设备内 共存干扰的逻辑中的下行子帧或者下行无线帧在所有下行子帧或下行无 线帧中所占的比例较低时, 则网络可以认为当前 UE遭受的设备内共存 干扰比较轻微, UE 可以忍受, 不需要作出调整, 则流程结束; 如果受 到设备内共存干扰的测量子集的测量结果可以接受, 在所述测量子集内 的下行子帧或者无线帧经受的干扰比较轻微时,网络侧可以认为当前 UE 遭受的设备内共存干扰比较轻微, 不需要作出调整, 则流程结束。
506、 网络侧给出响应。
若在步驟 505中网络侧确定 UE正在遭受比较严重的设备内共存干 扰时, 网络侧可以给予合适的干扰抑制措施, 向 UE给出响应。
所述干扰抑制措施可以是将 UE切换到其他频点, 或者为 UE配置 其他测量以便为 UE找到合适的其他频点, 或者为 UE中 LTE子设备与 Bluetooth子设备配置不同的工作时间等方法。
如图 6所示, 本发明实现检测干扰方法的第二实施例的流程包括:
601、 Bluetooth子设备与 LTE子设备同时工作。
本步驟与步驟 502所述的内容相同。
602、 UE向网络侧发送分组测量配置请求。
当 Bluetooth 设备处于发送状态, LTE 设备处于接收状态时, Bluetooth设备将可能对 LTE设备产生干扰。
测量子集的划分由网络侧决定, 则 UE向网络侧发送分组测量配置 请求, 请求网络侧为其配置合适的测量报告的触发条件以及测量子集的 划分情况, 这里的分组测量配置请求包括以下至少之一:
通知网络侧为其配置分组测量的指示, 可以使用 1 个 bit的标志位 表示; 比例; 扰的无线电技术的传输时隙的位置关系及产生干扰的无线电技术的业务 类型。
603、 网络为 UE配置分组测量。
网络收到 UE发送的分组测量配置请求后,可以通过 RRC Connection Reconfiguration过程为 UE配置测量子集以及测量报告的触发条件。
具体地, 网络可以通过 UE, 邻基站或者 OAM系统获知第二种无线 电技术对第一种无线电技术干扰的非连续特性。 如果网络侧通过 UE获 知第二种无线电技术对第一种无线电技术干扰的非连续特性, 则比如当
UE中 LTE子设备与 ISM子设备同时开启时, UE向网络侧发送分组测 量配置请求信息, 请求为 UE分配合适的测量子集及测量报告上报的触 发条件。
测量子集的分配原则为:
针对同一测量对象, 所述测量子集划分的原则为:
子集内的各测量时刻间隙受到的干扰类型相同;
不同测量子集间的各测量时刻间隙受到的干扰类型不同。
测量时刻间隙可以是一个子帧、无线帧、 下行子帧或者下行无线帧, 在 LTE系统中具体是指一个或多个下行子帧。
所述测量对象, 在 LTE系统中为 UE的工作频点, 和 /或相邻频点; 或者 UE的服务小区, 和 /或相邻小区。
配置测量报告的上报条件的方法与步驟 501中所述相同。
604、 UE执行分组测量。
UE按照网络侧为 UE划分的测量子集在每个测量子集上执行测量并 统计测量结果。
605、 当测量结果满足测量报告的触发条件时, UE向网络侧上报测 量报告。
由于分组测量配置请求与辅助信息中有些内容是相同的, 因此, 如 果发送的分组测量配置请求中已包含与辅助信息相同的内容, 则在步驟 605 , UE向网络侧上报测量报告时, 可以不必再发送辅助信息; 或者仅 发送分组测量配置请求中未包含的辅助信息。
606~607与步驟 505~506相同, 这里不再赘述。
为实现上述方法, 本发明相应提供一种测量处理系统, 所述系统包 括:
确定模块, 用于确定测量对象的各测量子集;
测量模块, 用于在所述各测量子集上测量所述测量对象;
上报模块, 用于向网络侧上报所述测量对象在所述各测量子集上的 测量结果。
该系统如何进行测量, 尤其是设备内共存干扰检测可以参见上述有 关方法的描述, 在此不再赘述。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的 保护范围。

Claims

权利要求书
1、 一种测量处理方法, 包括:
用户设备 UE确定测量对象的各测量子集;
UE在所述各测量子集上测量所述测量对象;
UE向网络侧上报所述测量对象在所述各测量子集上的测量结果。
2、 根据权利要求 1所述的方法, 其中, 所述 UE确定测量对象的各 测量子集为:
所述 UE根据测量对象上存在的干扰产生的时间特性确定所述测量 对象的测量子集。
3、 根据权利要求 2所述的方法, 其中, 所述方法还包括:
网络侧为所述 UE在测量配置信息中配置上报所述测量对象的测量 结果的触发条件。
4、 根据权要求 1所述的方法, 其中, 所述 UE确定测量对象的各测 量子集为:
所述 UE根据网络侧发送给所述 UE的所述测量对象的测量配置信 息确定所述各测量子集;
所述测量配置信息中配置有所述各测量子集的分配信息。
5、 根据权利要求 4所述的方法, 其中, 所述方法还包括:
所述 UE根据网络侧发送给所述 UE的所述测量对象的测量配置信 息确定所述各测量子集之前,
所述 UE向网络侧发送分组测量配置请求信息, 所述分组测量配置 请求信息包含请求网络侧为 UE配置所述各测量子集的信息, 所述分组 测量配置请求信息包括以下之一:
通知网络侧为其配置分组测量的指示, 使用 1个 bit的标志位表示; 比例; 扰的无线电技术的传输时隙的位置关系及产生干扰的无线电技术的业务 类型。
6、 根据权利要求 5所述的方法, 其中,
所述测量对象的测量配置信息中, 配置有所述 UE向网络侧上报所 述测量对象的测量结果的触发条件。
7、 根据权利要求 3或 6所述的方法, 其中,
所述测量对象为 UE的工作频点, 和 /或工作频点以外的其他频点; 或者
UE的月良务小区, 和 /或相邻小区;
所述测量子集包括受到相同类型干扰的测量时刻间隙。
8、 根据权利要求 7所述的方法, 其中, 所述上报所述测量对象的测 量结果的触发条件为以下之一:
所述工作频点上任一测量子集上的信号质量的测量结果低于网络侧 配置的质量门限, 且持续时间大于网络侧配置的时间限制, 参数为质量 门限和时间限制;
所述工作频点上每个测量子集上的信号质量的测量结果分别低于网 络侧为每个测量子集配置的门限, 且持续时间大于网络侧配置的时间限 制, 参数为每个测量子集的质量门限和时间限制;
所述工作频点上任一测量子集上的信号质量的测量结果低于网络侧 配置的质量门限 1且其他邻频点上任一测量子集的测量结果高于网络侧 配置的质量门限 2, 且持续时间大于网络侧配置的时间限制, 参数为其 他邻频点信息、 质量门限 1、 质量门限 2和时间限制;
所述工作频点上每个测量子集上的信号质量的测量结果分别低于网 络侧为所述工作频点每个测量子集配置的门限且其他邻频点上每个测量 子集的测量结果高于网络侧为所述邻频点每个测量子集配置的门限, 且 持续时间大于网络侧配置的时间限制, 参数为其他邻频点信息、 工作频 点上每个测量子集的质量门限、 邻频点上每个测量子集的质量门限和时 间限制;
所述工作频点以外的其他频点上任一测量子集上的信号质量低于网 络侧配置的质量门限, 且持续时间大于网络侧配置的时间限制, 参数为 其他频点信息、 质量门限和时间限制; 或
所述工作频点以外的其他频点上每个测量子集上的信号质量的测量 结果分别低于网络侧为每个测量子集配置的门限, 且持续时间大于网络 侧配置的时间限制, 参数为其他频点信息、 质量门限和时间限制。
9、 根据权利要求 3或 6所述的方法, 其中,
所述 UE向网络侧上报所述测量对象在所述各测量子集上的测量结 果时, 上报表征所述各测量子集特性的辅助信息。
10、 根据权利要求 9所述的方法, 其中, 所述表征所述各测量子集 特 ' 1·生的辅助信息至少包括以下之一:
测量周期内所述各测量子集占用时间的比例关系; 比例; 扰的无线电技术的传输时隙的位置关系及产生干扰的无线电技术的业务 类型。
11、 一种测量处理系统, 包括:
确定模块, 用于确定测量对象的各测量子集;
测量模块, 用于在所述各测量子集上测量所述测量对象; 上报模块, 用于向网络侧上报所述测量对象在所述各测量子集上的 测量结果。
PCT/CN2012/072056 2011-04-02 2012-03-07 一种测量处理方法及系统 WO2012136090A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110084007.2 2011-04-02
CN201110084007.2A CN102740348B (zh) 2011-04-02 2011-04-02 一种测量处理方法及系统

Publications (1)

Publication Number Publication Date
WO2012136090A1 true WO2012136090A1 (zh) 2012-10-11

Family

ID=46968581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072056 WO2012136090A1 (zh) 2011-04-02 2012-03-07 一种测量处理方法及系统

Country Status (2)

Country Link
CN (1) CN102740348B (zh)
WO (1) WO2012136090A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106487464B (zh) * 2015-08-31 2019-06-18 联芯科技有限公司 一种互扰验证中心及互扰验证方法
CN110299931B (zh) * 2019-06-25 2021-06-04 Oppo广东移动通信有限公司 干扰控制方法及相关产品
CN110519812B (zh) * 2019-08-16 2021-01-15 京信通信系统(中国)有限公司 Anr测量配置方法、装置、接入网设备和可读存储介质
EP4027682A4 (en) * 2019-09-03 2023-06-14 Xiaomi Communications Co., Ltd. IDC DETECTION METHOD AND DEVICE, AND IDC DETECTION INDICATING METHOD AND DEVICE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558572A (zh) * 2006-12-15 2009-10-14 摩托罗拉公司 用于检测周期性间歇干扰的方法和系统
CN101932045A (zh) * 2009-06-24 2010-12-29 中兴通讯股份有限公司 载波聚合中测量结果的上报方法及用户设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101558572A (zh) * 2006-12-15 2009-10-14 摩托罗拉公司 用于检测周期性间歇干扰的方法和系统
CN101932045A (zh) * 2009-06-24 2010-12-29 中兴通讯股份有限公司 载波聚合中测量结果的上报方法及用户设备

Also Published As

Publication number Publication date
CN102740348A (zh) 2012-10-17
CN102740348B (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
CN113438699B (zh) 混合移动性和无线资源管理机制
EP2665334B1 (en) Communication method and system with various radio technologies coexisting in terminal
KR101528693B1 (ko) Lte 및 bt 구성 상의 간섭 식별 방법 및 장치
JP6096310B2 (ja) 干渉が緩和された実効的な測定に関係する方法及びデバイス
CN114762261A (zh) 管理5g nr中热冲击的智能机制
US9467866B2 (en) Centralized control sharing of spectrum for coexistence of wireless communication systems in unlicensed bands
WO2012094933A1 (zh) 一种实现干扰信息上报的方法、系统及ue
WO2017028440A1 (zh) 一种不同通信网络共存使用免授权频段的方法
US11653399B2 (en) Method and apparatus for transmitting and receiving signals in wireless communication system
WO2012019369A1 (zh) 一种终端设备实现通信的方法及系统
KR101561757B1 (ko) 모바일 통신 디바이스 및 시스템
WO2015117406A1 (zh) 重配置请求方法、重配置方法及装置
WO2017028336A1 (zh) 非授权频谱上的辅服务小区的管理方法、系统及基站
WO2017156856A1 (zh) 用于d2d通信的方法、d2d设备和基站
KR20150005458A (ko) 이동 통신 시스템에서 복수 연결을 지원하기 위한 제어 방법 및 복수 연결 지원 장치
WO2012129935A1 (zh) 设备内共存干扰的处理方法及装置
WO2020200120A1 (zh) 一种测量方法、设备及装置
WO2020167219A1 (en) User equipment, radio network node and methodsfor managing recovery procedures therein
US20130279423A1 (en) Apparatus and method for controlling coexistence interference within device in wireless communication system
WO2015113247A1 (zh) 用于直连通信的用户设备、基站及直连通信建立方法
WO2011082597A1 (zh) 测量处理方法及系统、基站和用户设备
WO2014040558A1 (zh) 小小区的配置方法及装置
WO2012097734A1 (zh) 一种设备内共存干扰上报的触发方法和系统
WO2012136090A1 (zh) 一种测量处理方法及系统
CN117242893A (zh) 用于经由侧链路和直接链路的路径选择和复制的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12768555

Country of ref document: EP

Kind code of ref document: A1