WO2012053631A1 - ルーメン液によるセルロース含有廃棄物を用いた有機酸発酵方法 - Google Patents
ルーメン液によるセルロース含有廃棄物を用いた有機酸発酵方法 Download PDFInfo
- Publication number
- WO2012053631A1 WO2012053631A1 PCT/JP2011/074277 JP2011074277W WO2012053631A1 WO 2012053631 A1 WO2012053631 A1 WO 2012053631A1 JP 2011074277 W JP2011074277 W JP 2011074277W WO 2012053631 A1 WO2012053631 A1 WO 2012053631A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cellulose
- rumen
- organic acid
- containing waste
- acid
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/54—Acetic acid
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/22—Processes using, or culture media containing, cellulose or hydrolysates thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/02—Preparation of hydrocarbons or halogenated hydrocarbons acyclic
- C12P5/023—Methane
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/52—Propionic acid; Butyric acids
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21C—PRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
- D21C5/00—Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
- D21C5/02—Working-up waste paper
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P2203/00—Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/64—Paper recycling
Definitions
- the present invention relates to a method for producing raw materials for methane fermentation materials such as acetic acid and propionic acid, and various useful materials by causing rumen fluid collected from ruminants such as cattle to act on cellulose-containing waste.
- the above enzymatic saccharification method and acid treatment method have the advantage that the treatment speed is relatively fast.
- enzymes are expensive, and methods for recovering and reusing them have not been established.
- the problem is that the enzyme cannot degrade lignin that inhibits saccharification.
- the acid treatment method is not environmentally preferable because it requires subsequent neutralization of the waste liquid.
- the sugar skeleton itself is partially destroyed by acid overdecomposition. From the above, the conventional enzyme method and acid treatment method have problems of high cost, high environmental load, and low yield.
- the cellulose-containing waste as described above is a cellulosic biomass that is a high-quality fermentation resource, and its effective usage is required.
- a method for producing an organic acid as a raw material for methane fermentation comprising a step of reacting rumen fluid collected from a ruminant with cellulose-containing waste.
- Aspect 2 The method according to embodiment 1, wherein the cellulose-containing waste is waste paper.
- the ruminant is a cow.
- Aspect 4 The method according to any one of embodiments 1 to 3, wherein the reaction between the rumen fluid collected from the ruminant and the cellulose-containing waste is performed under anaerobic conditions.
- methane fermentation raw materials such as acetic acid, propionic acid and butyric acid were obtained. Furthermore, compared with the conventional method, the reaction time required for the production of methane fermentation raw materials was shortened (acceleration of acid fermentation) and the production of acetic acid, which is the main final product for methane fermentation raw materials, was significantly increased. . By performing methane fermentation using the organic acid such as acetic acid thus obtained or a rumen liquid treated product containing the organic acid as a methane fermentation raw material, methane could be produced efficiently.
- the method of the present invention is low in cost because it can use the waste rumen liquid after slaughtering livestock, which is a waste; since the reaction liquid after the treatment is used for methane fermentation as it is, there is no need for waste liquid treatment.
- the rumen solution there are microorganisms that cleave the ether bond, which is the main bond of lignin, so that saccharification of waste paper is promoted; This is an excellent effect compared to the prior art.
- the result of the acetic acid production amount with respect to the addition amount of cysteine in the method of the present invention is shown.
- the result of the acetic acid production amount with respect to the addition amount of cysteine in the method of the present invention is shown.
- the time-dependent change of the acetic acid production amount with respect to cysteine addition in the method of the present invention is shown.
- the result of the production amount of propionic acid with respect to the addition amount of cysteine in the method of the present invention is shown.
- the result of the production amount of propionic acid with respect to the addition amount of cysteine in the method of the present invention is shown.
- the result of the butyric acid production amount with respect to the addition amount of cysteine in the method of the present invention is shown.
- the result of the butyric acid production amount with respect to the addition amount of cysteine in the method of the present invention is shown.
- the result of acetic acid production with respect to the reaction temperature in the method of the present invention is shown.
- the result of the production amount of propionic acid with respect to the reaction temperature in the method of the present invention is shown.
- the result of the butyric acid production amount with respect to the reaction temperature in the method of the present invention is shown.
- concentration in this invention method is shown.
- concentration in this invention method is shown.
- concentration in this invention method is shown.
- generated in the methane fermentation of this invention method is shown.
- the present invention relates to a method for producing an organic acid such as acetic acid, propionic acid and butyric acid, which is a raw material for methane fermentation, comprising a step of reacting rumen fluid collected from a ruminant with cellulose-containing waste.
- an organic acid such as acetic acid, propionic acid and butyric acid
- Cellulose-containing waste refers to waste produced as a result of various industrial activities or daily consumption activities, and includes cellulose as a main component, and is not particularly limited to its origin and type.
- a typical example is used paper such as used office paper.
- pretreatment processing such as crushing, crushing, and cutting can be appropriately performed depending on the shape and state of the cellulose-containing waste.
- “Rumen” is something that ruminants such as cattle have because the fiber of plants is used as the energy source.
- a giant occupying almost all the left side of the abdominal cavity and the right half Sac (the rumen). It occupies 80% of the total gastric complex consisting of the rumen and the fourth stomach, and a cow (adult) has a size of about 200 liters.
- a large amount of feed is stored, and the feed is degraded by microorganisms that live in the lumen. About 90% of the rumen contents are moisture, and fermentation by microorganisms is sufficiently performed.
- microorganisms inhabit the lumen, about 10 9 to 10 11 bacteria (cellulose-degrading bacteria, starch-degrading bacteria, proteolytic bacteria, etc.) with more than 60 types per gram of rumen content and about 90 types or more There are 10 5 to 10 6 protozoa (protozoa) inhabited, and the action of these microorganisms (cellulose-degrading bacteria, starch-degrading bacteria, protein-degrading bacteria, etc.) is active in the decomposition and synthesis of feed components in the lumen. Has been done.
- “Rumen fluid” used in the method of the present invention is an aqueous solution (ruminal fluid) containing various microorganisms inhabiting the rumen of such ruminant animals, and is about 200 L per cow.
- This rumen fluid can be easily collected from ruminant lumens by any method known to those skilled in the art. For example, rumen fluid collected from livestock or rumen fluid that has been conventionally treated as waste after slaughter of livestock can be used.
- the collected rumen fluid does not need to be pretreated, and can be used as it is collected (“raw rumen fluid”).
- the lumen liquid can also be used after storage by freezing or the like.
- Anaerobic conditions include, for example, a compound having a reducing action such as cysteine, sodium sulfide, ascorbic acid, methionine, thioglycolic acid, and / or DTT in a reaction system of rumen fluid and cellulose-containing waste (a kind of compound or Appropriate combinations of several compounds) can be present together.
- a compound having a reducing action such as cysteine, sodium sulfide, ascorbic acid, methionine, thioglycolic acid, and / or DTT
- cysteine sodium sulfide
- ascorbic acid methionine
- thioglycolic acid a kind of compound or Appropriate combinations of several compounds
- DTT a reaction system of rumen fluid and cellulose-containing waste
- cysteine when cysteine is present alone, its concentration with respect to the whole reaction system is preferably 0.025 to 0.25% by weight, more preferably about 0.1% by weight.
- the temperature of the reaction system is preferably a temperature range centered on the body temperature of the ruminant and the temperature within the rumen. For example, when using a rumen solution derived from cattle, it is 30 ° C. to 45 ° C., more preferably 37 ° C. It is in the range of ⁇ 42 ° C.
- the pH of the reaction system is preferably in a range in which the activity of microorganisms contained in the rumen solution is sufficiently exhibited and the production efficiency of the organic acid is increased, for example, 5.0 to 8.0, more preferably 6.
- the range is from 0 to 7.0.
- the concentration of the cellulose-containing waste in the reaction system can be appropriately adjusted according to the type and the like, but is usually about 1 to 10% by weight, for example, 0.5 to 7% by weight with respect to the whole reaction system. It is preferably 5 to 7% by weight.
- the reaction time between the rumen liquid and the cellulose-containing waste is such that the desired amount of organic acid is produced by fermentation according to various reaction conditions such as the type and amount of the cellulose-containing waste and the state of the rumen liquid. Those skilled in the art can make appropriate adjustments.
- reaction can be carried out by an appropriate apparatus and means known to those skilled in the art.
- a mixture containing rumen liquid and cellulose-containing waste can be reacted in a reaction vessel while stirring or shaking.
- it can be several hours to several tens of hours.
- the reaction time between the rumen liquid and the cellulose-containing waste is 24 hours or less. For example, about 6 hours is preferable.
- the final product concentration of acetic acid which is the main raw material for methane fermentation, is 10 g / L (reaction solution) or more, preferably 12 g / L (reaction solution) or more, and more preferably 15 g in several hours. / L (reaction solution) or more and about 18 g / L (reaction solution) or less.
- butyric acid and propionic acid are also decomposed into acetic acid as a raw material for methane fermentation according to the following reaction formula.
- the present invention produces methane by performing methane fermentation by any method known to those skilled in the art using the organic acid produced by such a method or a rumen liquid treated product containing the organic acid as a raw material. It also relates to the method.
- methane fermentation any materials containing methanogens such as sludge generated in various treatment facilities for domestic waste or industrial waste such as digested sludge in anaerobic wastewater treatment facilities can be raised. .
- Raw material rumen solution 300 ml Used paper (used paper with 49 to 17 lines printed with black ink from A to Z): 1.5 g (0.5% (w / v)) to 30 g (10% (w / v)) L-cysteine hydrochloride monohydrate 0.3 g (0.1% (w / v)) (2) Method In a 500 ml reaction vessel fitted with a gas sampling bag, 300 ml of raw rumen solution, 1.5 g (0.5% (w / v)) to 30 g (10% (w / v)) of waste paper and 0.3 g L-cysteine hydrochloride monohydrate was added. A sample cultured with shaking at 37 ° C.
- the used paper density is preferably 0.5% to 7%, and more preferably 5% to 7%. If the concentration is lower than the above range, the amount of organic matter per unit area is low, which is inefficient. If the concentration is higher than the above range, the used paper is not sufficiently dissolved.
- FIG. 14 shows the average value of methane gas production per day.
- the area where the rumen liquid treated with the rumen liquid was subjected to methane fermentation showed the highest gas production (177.7 ml / day: standard deviation 16.1 ml / day), and then the 24-hour rumen liquid treated (142.0 ml / day: standard deviation 13.4 ml / day) and control group (71.7 ml / day: standard deviation 19.6 ml / day).
- the amount of methane gas generated in the rumen liquid treated product (300 ml capacity) (rumen liquid treated product (6h): 14 ml, rumen liquid treated product (24h): 147 ml) is reduced to 30 ml, which is the daily input amount.
- the converted value was combined with the amount of gas produced in the above methane fermentation to determine the methane yield (Table 6).
- the theoretical values used for yield calculation were calculated based on the COD of waste paper and rumen solution (Table 7: Rumen solution treatment, Table 8: Control group).
- the methane yield was higher in the order of the rumen liquid treated product (6h)> the rumen liquid treated product (24h)> the control group, indicating the effectiveness of the rumen liquid treatment.
- the control group it was difficult to continue methane fermentation unless ammonium carbonate was periodically added as a nitrogen source (data not shown).
- the rumen liquid-treated product has 300-400 mg / L of soluble nitrogen derived from the rumen liquid, so there was no need to add a nitrogen source. From the above, it was shown that the rumen solution is not only a waste paper solubilization catalyst but also a nitrogen source.
- the reaction time is preferably 24 hours or less, for example, about 6 hours.
- the present invention produces an organic acid that is a raw material for methane fermentation from cellulose-containing waste such as waste paper, and further fermentatively produces methane gas using the raw material as a raw material, thereby producing industries such as fuel gas and electricity as final products. Can be used in the field.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Processing Of Solid Wastes (AREA)
- Fodder In General (AREA)
Abstract
Description
[態様1]
反芻動物から採取したルーメン液をセルロース含有廃棄物と反応させる工程を含む、メタン発酵原料となる有機酸を製造する方法。
[態様2]
セルロース含有廃棄物が古紙である、態様1記載の方法。
[態様3]
反芻動物が牛である、態様1又は2記載の方法。
[態様4]
反芻動物から採取したルーメン液とセルロース含有廃棄物との反応を嫌気的条件下で行う、態様1~3のいずれか一項に記載の方法。
[態様5]
反芻動物から採取したルーメン液とセルロース含有廃棄物との反応系にシステイン、硫化ナトリウム、アスコルビン酸、メチオニン、チオグリコール酸、及びDTTからなる群から選択される還元作用を有する化合物の一種又は数種の組み合わせを共存させることによって嫌気的条件を生じさせる、態様4記載の方法。
[態様6]
反応系におけるシステイン濃度が0.025~0.25重量%である、態様5記載の方法。
[態様7]
窒素又は水素雰囲気下での閉鎖系でルーメン液とセルロース含有廃棄物との反応を行う、態様5記載の方法。
[態様8]
反応系を30℃~45℃に維持する、態様4~7のいずれか一項に記載の方法。
[態様9]
反応系のpHが5.0~8.0の範囲である、態様4~8のいずれか一項に記載の方法。
[態様10]
反応系におけるセルロース含有廃棄物の濃度が0.5~7重量%である、態様1~9のいずれか一項に記載の方法。
[態様11]
酢酸の最終生成濃度が10g/L(反応液)以上である、態様1~10のいずれか一項に記載の方法。
[態様12]
態様1~11のいずれか一項に記載の方法で製造された有機酸又は該有機酸を含むルーメン液処理物を原料としてメタン発酵を行い、メタンを製造する方法。
飼料摂取後1時間ほど経過した乳牛から、牛用胃汁採取器を用いてルーメン液を経口採取したのち、ただちに37℃に予備加温済みのインキュベータに保存した。
2.システイン添加量の検討
(1)材料
生ルーメン液:300 ml
古紙(A~Zを黒インクで49字×17行印字した古紙):3 g(1%(w/v))
L-システイン塩酸塩一水和物:0 g(0%(w/v))~9 g(3%(w/v))
(2)方法
ガス採取袋を取り付けた500 mlの反応容器に、300 mlの生ルーメン液、3 gの古紙および0 g(0%(w/v))~9 g(3%(w/v))のL-システイン塩酸塩一水和物を添加した。37℃、140 rpm、72時間で振盪培養したサンプルを0.25μmのメンブレンフィルターで濾過滅菌したのち、HPLCにて有機酸を測定した。
(3)結果
以下の表1及び表2、及び、図1、図2、図4~図7に示した結果から、システインを添加することでメタン生成菌が利用しやすい酢酸が増加したことが明らかとなった。システインの添加濃度は0.025%~0.25%が好ましく、0.1%がより好ましい。上記範囲より少ない添加量とすると十分な効果が得られず、上記範囲より多い添加量とすると、低pHおよびSH基の影響で阻害が起こるので好ましくない。
(1)材料
生ルーメン液:300 ml
古紙(A~Zを黒インクで49字×17行印字した古紙 ):3 g(1%(w/v))
L-システイン塩酸塩一水和物 0.3 g(0.1%(w/v))
(2)方法
ガス採取袋を取り付けた500 mlの反応容器に、300 mlの生ルーメン液、3 gの古紙および0.3 gのL-システイン塩酸塩一水和物を添加した。37℃、39.5℃および42℃、140 rpm、72時間で振盪培養したサンプルを0.25μmのメンブレンフィルターで濾過滅菌したのち、HPLCにて有機酸を測定した。
(3)結果
以下の表3、図8~図10に示した結果から、牛の体温(直腸温度:38.5℃、ルーメン内温度:39.5℃)よりも低い37℃で古紙の可溶化が可能であることが初めて示された。反応温度は37℃~42℃であることが好ましく、加温のエネルギーを考慮すると37℃がより好ましい。上記範囲より低い温度であると、古紙分解活性が低下し、上記範囲より高い温度であると、古紙分解活性が低下するかもしくは失活する。
(1)材料
生ルーメン液:300 ml
古紙(A~Zを黒インクで49字×17行印字した古紙):1.5g(0.5%(w/v))~30 g(10%(w/v))
L-システイン塩酸塩一水和物 0.3 g(0.1%(w/v))
(2)方法
ガス採取袋を取り付けた500 mlの反応容器に、300 mlの生ルーメン液、1.5g(0.5%(w/v))~30 g(10%(w/v))の古紙および0.3 gのL-システイン塩酸塩一水和物を添加した。37℃、190 rpm、72時間で振盪培養したサンプルを0.25μmのメンブレンフィルターで濾過滅菌したのち、HPLCにて有機酸を測定した。
(3)結果
以下の表4、図11~図13に示した結果から、古紙濃度は、0.5%~7%が好ましく、5%~7%であることがより好ましい。上記範囲より低い濃度とすると単位面積あたりの有機物量が低いため非効率であるし、上記範囲より高い濃度とすると古紙の溶解が不十分である。
測定した有機酸のうち、メタン生成菌がもっとも利用しやすいといわれる酢酸濃度で評価した。尚、HPLCによる有機酸の測定は、BTB試薬を用いたポストカラム法で行った。以下に測定条件を記す。
Pump:PU-980(JASCO)
Detector:870-UV
Wave length:445nm
Column:RSpak HC-G、RSpak KC-811(Shodex)
Flow rate:0.8 ml/min
Temperature:60℃(カラム)、20℃(室温)
Reagent Pump:PU-980(JASCO)
Regent floe rate:1.2 ml/min
(1)材料
1)ルーメン液処理物の調整
生ルーメン液:300 ml(前述の通りに採取したもの)
古紙(A~Zを黒インクで49字×17行印字した古紙):3g(1%(w/v))
L-システイン塩酸塩一水和物 0.3 g(0.1%(w/v))
2)メタン発酵のための種汚泥の調整
嫌気性排水処理施設の消化汚泥2Lに対し、表5に示した基質及び栄養塩を添加し、1ヶ月間培養したものを種汚泥とした。
ガス採取袋を取り付けた500 mlの反応容器に、300 mlの生ルーメン液、3g(1%(w/v))の古紙および0.3 gのL-システイン塩酸塩一水和物を添加した。37℃、140 rpmで、6時間および24時間処理することで古紙を処理した。得られたルーメン液処理物を600 mlの種汚泥に対し30ml/day(HRT20日)の割合で添加し、35℃、150 rpmでメタン発酵を20日間行った。発生したバイオガスはガスクロマトグラフィによりガス組成を分析した。対照区は、ルーメン液処理をしないで、0.3gの古紙及び30mlの蒸留水を毎日添加した。
(3)結果
図14にメタンガス生成量の一日あたりの平均値を示した。その結果、ルーメン液で6時間処理したルーメン液処理物をメタン発酵に供した区が最も高いガス生成量を示し(177.7 ml/day:標準偏差16.1 ml/day)、次いで24時間ルーメン液処理物(142.0 ml/day:標準偏差13.4 ml/day)、対照区(71.7 ml/day:標準偏差19.6 ml/day)であった。
Claims (12)
- 反芻動物から採取したルーメン液をセルロース含有廃棄物と反応させる工程を含む、メタン発酵原料となる有機酸を製造する方法。
- セルロース含有廃棄物が古紙である、請求項1記載の方法。
- 反芻動物が牛である、請求項1又は2記載の方法。
- 反芻動物から採取したルーメン液とセルロース含有廃棄物との反応を嫌気的条件下で行う、請求項1~3のいずれか一項に記載の方法。
- 反芻動物から採取したルーメン液とセルロース含有廃棄物との反応系にシステイン、硫化ナトリウム、アスコルビン酸、メチオニン、チオグリコール酸、及びDTTからなる群から選択される還元作用を有する化合物の一種又は数種の組み合わせを共存させることによって嫌気的条件を生じさせる、請求項4記載の方法。
- 反応系におけるシステイン濃度が0.025~0.25重量%である、請求項5記載の方法。
- 窒素又は水素雰囲気下での閉鎖系でルーメン液とセルロース含有廃棄物との反応を行う、請求項5記載の方法。
- 反応系を30℃~45℃に維持する、請求項4~7のいずれか一項に記載の方法。
- 反応系のpHが5.0~8.0の範囲である、請求項4~8のいずれか一項に記載の方法。
- 反応系におけるセルロース含有廃棄物の濃度が0.5~7重量%である、請求項1~9のいずれか一項に記載の方法。
- 酢酸の最終生成濃度が10g/L(反応液)以上である、請求項1~10のいずれか一項に記載の方法。
- 請求項1~11のいずれか一項に記載の方法で製造された有機酸又は該有機酸を含むルーメン液処理物を原料としてメタン発酵を行い、メタンを製造する方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800507580A CN103180452A (zh) | 2010-10-22 | 2011-10-21 | 由瘤胃液的使用含有纤维素的废弃物的有机酸发酵方法 |
JP2012539779A JP5920728B2 (ja) | 2010-10-22 | 2011-10-21 | ルーメン液によるセルロース含有廃棄物を用いた有機酸発酵方法 |
EP11834470.4A EP2631299B1 (en) | 2010-10-22 | 2011-10-21 | Method of organic acid fermentation by rumen fluid using cellulose-containing waste matter |
US13/878,469 US9574213B2 (en) | 2010-10-22 | 2011-10-21 | Method of organic acid fermentation by rumen fluid using cellulose-containing waste matter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010237676 | 2010-10-22 | ||
JP2010-237676 | 2010-10-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012053631A1 true WO2012053631A1 (ja) | 2012-04-26 |
Family
ID=45975339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/074277 WO2012053631A1 (ja) | 2010-10-22 | 2011-10-21 | ルーメン液によるセルロース含有廃棄物を用いた有機酸発酵方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9574213B2 (ja) |
EP (1) | EP2631299B1 (ja) |
JP (1) | JP5920728B2 (ja) |
CN (1) | CN103180452A (ja) |
WO (1) | WO2012053631A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019209286A (ja) * | 2018-06-06 | 2019-12-12 | 株式会社神鋼環境ソリューション | バイオマス処理方法、排水処理方法、及び、排水処理設備 |
WO2021085530A1 (ja) * | 2019-11-01 | 2021-05-06 | 株式会社神鋼環境ソリューション | バイオマス処理方法、及び、バイオマス処理設備 |
WO2022102192A1 (ja) | 2020-11-13 | 2022-05-19 | 株式会社神鋼環境ソリューション | リグノセルロース分解システム、及びリグノセルロースの分解方法 |
WO2022123855A1 (ja) * | 2020-12-11 | 2022-06-16 | 株式会社神鋼環境ソリューション | ろ過装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105274150A (zh) * | 2014-07-17 | 2016-01-27 | 武汉摩尔生物科技有限公司 | 一种高效分解植物纤维的“半人工瘤胃”方法及其装置 |
CN105505995A (zh) * | 2015-12-21 | 2016-04-20 | 湖南大学 | 一种利用瘤胃微生物预处理水稻秸秆提高甲烷产量的方法 |
CN106865937B (zh) * | 2017-02-24 | 2019-07-26 | 福建农林大学 | 一种赤泥联合瘤胃液处理污泥促进短链脂肪酸生成的方法 |
CN111458261A (zh) * | 2020-04-28 | 2020-07-28 | 常州工程职业技术学院 | 一种用于测定秸秆产甲烷潜力体系的构建方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10229889A (ja) * | 1992-10-22 | 1998-09-02 | Bio Technical Resources Lp | 反芻動物の揮発性脂肪酸の産生促進剤および方法 |
JP2000232892A (ja) * | 1999-02-15 | 2000-08-29 | Tokyo Gas Co Ltd | ゴルフ場廃棄物の処理方法 |
JP2002176997A (ja) | 2000-12-15 | 2002-06-25 | Tsukishima Kikai Co Ltd | セルロース含有物の処理方法 |
JP2002186938A (ja) | 2000-12-20 | 2002-07-02 | Tsukishima Kikai Co Ltd | セルロース含有物の処理方法 |
JP2007202518A (ja) | 2006-02-03 | 2007-08-16 | Mitsui Eng & Shipbuild Co Ltd | 木質系バイオマスチップの前処理方法及び前処理装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9121040B2 (en) * | 2006-12-18 | 2015-09-01 | University Of Maryland | Process for rapid anaerobic digestion of biomass using microbes and the production of biofuels therefrom |
ES2587402T3 (es) * | 2007-08-17 | 2016-10-24 | Basf Se | Miembro productor de ácido carboxílico de la familia Pasteurellaceae |
-
2011
- 2011-10-21 JP JP2012539779A patent/JP5920728B2/ja active Active
- 2011-10-21 EP EP11834470.4A patent/EP2631299B1/en active Active
- 2011-10-21 WO PCT/JP2011/074277 patent/WO2012053631A1/ja active Application Filing
- 2011-10-21 CN CN2011800507580A patent/CN103180452A/zh active Pending
- 2011-10-21 US US13/878,469 patent/US9574213B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10229889A (ja) * | 1992-10-22 | 1998-09-02 | Bio Technical Resources Lp | 反芻動物の揮発性脂肪酸の産生促進剤および方法 |
JP2000232892A (ja) * | 1999-02-15 | 2000-08-29 | Tokyo Gas Co Ltd | ゴルフ場廃棄物の処理方法 |
JP2002176997A (ja) | 2000-12-15 | 2002-06-25 | Tsukishima Kikai Co Ltd | セルロース含有物の処理方法 |
JP2002186938A (ja) | 2000-12-20 | 2002-07-02 | Tsukishima Kikai Co Ltd | セルロース含有物の処理方法 |
JP2007202518A (ja) | 2006-02-03 | 2007-08-16 | Mitsui Eng & Shipbuild Co Ltd | 木質系バイオマスチップの前処理方法及び前処理装置 |
Non-Patent Citations (6)
Title |
---|
GIJZEN H.J. ET AL.: "Application of rumen microorganisms for an enhanced anaerobic degradation of solid organic waste materials", BIOL. WASTES, vol. 22, no. 2, 1987, pages 81 - 95, XP055087964 * |
MCSWEENEY C.S. ET AL.: "Effect of sulfur supplements on cellulolytic rumen micro- organisms and microbial protein synthesis in cattle fed a high fibre diet", J. APPL. MICROBIOL, vol. 103, no. 5, 2007, pages 1757 - 1765, XP055087967 * |
SATOSHI KOIKE ET AL.: "Rumen ni Kakusareta Miryoku II) Ushi o Sasaeru Micro na Tateyakusha Rumen Saikin", LIVESTOCK TECHNOLOGY, 1 October 2010 (2010-10-01), pages 7 - 11, XP008171548 * |
SLYTER L.L. ET AL.: "Sulfur influences on rumen microorganisms in vitro and in sheep and calves", J. ANIM. SCI, vol. 63, no. 6, 1986, pages 1949 - 1959, XP055087966 * |
YASUO KOBAYASHI: "Rumen ni Kakusareta Miryoku I) Rumen ni Kakusareta Miryoku Chikusan, Kankyo, Sonota no Sangyo eno Oyo Tenkai", LIVESTOCK TECHNOLOGY, vol. 665, 1 October 2010 (2010-10-01), pages 2 - 7, XP008171547 * |
ZIKAKIS J.P. ET AL.: "Metabolism of sulfur amino acids by rumen microorganisms", J. DAIRY SCI., vol. 52, no. 12, 1969, pages 2014 - 2019, XP055087968 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019209286A (ja) * | 2018-06-06 | 2019-12-12 | 株式会社神鋼環境ソリューション | バイオマス処理方法、排水処理方法、及び、排水処理設備 |
WO2021085530A1 (ja) * | 2019-11-01 | 2021-05-06 | 株式会社神鋼環境ソリューション | バイオマス処理方法、及び、バイオマス処理設備 |
JP2021070000A (ja) * | 2019-11-01 | 2021-05-06 | 株式会社神鋼環境ソリューション | バイオマス処理方法、及び、バイオマス処理設備 |
WO2022102192A1 (ja) | 2020-11-13 | 2022-05-19 | 株式会社神鋼環境ソリューション | リグノセルロース分解システム、及びリグノセルロースの分解方法 |
WO2022123855A1 (ja) * | 2020-12-11 | 2022-06-16 | 株式会社神鋼環境ソリューション | ろ過装置 |
Also Published As
Publication number | Publication date |
---|---|
JP5920728B2 (ja) | 2016-05-18 |
EP2631299B1 (en) | 2019-09-25 |
EP2631299A1 (en) | 2013-08-28 |
JPWO2012053631A1 (ja) | 2014-02-24 |
US9574213B2 (en) | 2017-02-21 |
CN103180452A (zh) | 2013-06-26 |
EP2631299A4 (en) | 2016-04-27 |
US20130236939A1 (en) | 2013-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5920728B2 (ja) | ルーメン液によるセルロース含有廃棄物を用いた有機酸発酵方法 | |
Hitam et al. | A review on biohydrogen production through photo-fermentation of lignocellulosic biomass | |
Liu et al. | Improving biogas production using additives in anaerobic digestion: A review | |
Zheng et al. | A review on biological recycling in agricultural waste-based biohydrogen production: Recent developments | |
Jarvis et al. | Improvement of a grass-clover silage-fed biogas process by the addition of cobalt | |
Zhang et al. | Effect of ferrous chloride on biogas production and enzymatic activities during anaerobic fermentation of cow dung and Phragmites straw | |
US9121040B2 (en) | Process for rapid anaerobic digestion of biomass using microbes and the production of biofuels therefrom | |
Li et al. | Enhancement of corn stover hydrolysis with rumen fluid pretreatment at different solid contents: Effect, structural changes and enzymes participation | |
Chen et al. | Effects of pH on the hydrolysis of lignocellulosic wastes and volatile fatty acids accumulation: The contribution of biotic and abiotic factors | |
Song et al. | Recent advancements in strategies to improve anaerobic digestion of perennial energy grasses for enhanced methane production | |
Saidu et al. | Biological pre-treated oil palm mesocarp fibre with cattle manure for biogas production by anaerobic digestion during acclimatization phase | |
Zhu et al. | Enhanced bioenergy production in rural areas: synthetic urine as a pre-treatment for dry anaerobic fermentation of wheat straw | |
Grala et al. | Effects of Hydrothermal Depolymerization and Enzymatic Hydrolysis of Algae Biomass on Yield of Methane Fermentation Process. | |
Jagadabhi | Methods to enhance hydrolysis during one and two-stage anaerobic digestion of energy crops and crop residues | |
Tawfik et al. | Graphene/hydroxyapatite nano-composite for enhancement of hydrogen productivity from delignified duckweed | |
CN106630132A (zh) | 一种不同接种物对木薯酒精废液高温厌氧处理的方法 | |
Cavinato | Anaerobic digestion fundamentals I | |
CN103406007A (zh) | 金精矿焙烧烟气中的硫回收工艺 | |
JP2006312120A (ja) | バイオマスの処理方法 | |
JP2006255538A (ja) | 食品廃棄物の処理方法およびその装置 | |
EP0159054A1 (en) | A process for producing methane from solid vegetable material | |
WO2023086496A1 (en) | Systems and methods for the production of biogases from a lignocellulosic feedstock | |
JP4844951B2 (ja) | 生ごみと紙ごみの処理方法およびその装置 | |
CN106967588A (zh) | 生物质材料生成沼气装置及生成方法 | |
Xu et al. | Strategies to increase energy recovery from phase-separated anaerobic digestion of organic solid waste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11834470 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2012539779 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011834470 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13878469 Country of ref document: US |