WO2012051997A2 - Turbine wheel arrangement for a gas turbine - Google Patents

Turbine wheel arrangement for a gas turbine Download PDF

Info

Publication number
WO2012051997A2
WO2012051997A2 PCT/DE2011/001849 DE2011001849W WO2012051997A2 WO 2012051997 A2 WO2012051997 A2 WO 2012051997A2 DE 2011001849 W DE2011001849 W DE 2011001849W WO 2012051997 A2 WO2012051997 A2 WO 2012051997A2
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
gas
gas turbine
turbine according
runner
Prior art date
Application number
PCT/DE2011/001849
Other languages
German (de)
French (fr)
Other versions
WO2012051997A3 (en
Inventor
Dirk Büchler
Gerhard Buttkewitz
Original Assignee
Baltico Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/879,189 priority Critical patent/US20130192231A1/en
Application filed by Baltico Gmbh filed Critical Baltico Gmbh
Priority to CA2814427A priority patent/CA2814427A1/en
Priority to EP11817300.4A priority patent/EP2598736A2/en
Publication of WO2012051997A2 publication Critical patent/WO2012051997A2/en
Publication of WO2012051997A3 publication Critical patent/WO2012051997A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • F01D1/04Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/24Non-positive-displacement machines or engines, e.g. steam turbines characterised by counter-rotating rotors subjected to same working fluid stream without intermediate stator blades or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/06Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages
    • F02C3/067Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages having counter-rotating rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/08Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising at least one radial stage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/08Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising at least one radial stage
    • F02C3/09Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising at least one radial stage of the centripetal type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • F02C3/16Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant the combustion chambers being formed at least partly in the turbine rotor or in an other rotating part of the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • F02C3/16Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant the combustion chambers being formed at least partly in the turbine rotor or in an other rotating part of the plant
    • F02C3/165Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant the combustion chambers being formed at least partly in the turbine rotor or in an other rotating part of the plant the combustion chamber contributes to the driving force by creating reactive thrust

Definitions

  • the invention relates to a turbine wheel arrangement for a gas turbine with two successive, opposite to each other rotating turbine wheels.
  • the currently known gas turbines are designed for the highest possible performance with the highest possible efficiencies, which means that the components and materials used are loaded to the maximum permissible limits. This applies in particular to the turbine blades of the first turbine stage, which are subjected to the most extreme stresses, with the result that very expensive materials are used and expensive cooling measures for blade cooling must be taken. In addition, there are loads due to high mechanical stresses due to the high flow velocities, but above all the large centrifugal forces due to the high rotational speeds. Overall, it is difficult to achieve overall efficiencies higher than 35%.
  • the object of the invention is to provide a gas turbine, which is distinguished from conventional turbines by a lower temperature load of the turbine stage and a high temperature and Druckgesocite of the combustion chamber to the turbine blades in a large power range allows, so that high thermal efficiencies can be achieved.
  • the invention advantageously has the effect that the thermal energy and pressure energy of the gas at the nozzle inlet is largely converted into flow energy at the turbine stage outlet.
  • the impulse force of the nozzles drives the turbine wheel.
  • the escaping gas from the Laval nozzles has a very high flow
  • CONFIRMATION COPY speed is above Mach 1 and is directed to the vanes of the downstream turbine runner, creating a moment and rotation opposite the direction of rotation of the front turbine runner.
  • the speed of the gas jet is much greater than the peripheral speed of the turbine runner.
  • the rear turbine wheel is designed so that the tangential velocity at the outlet ideally almost disappears.
  • the combined loads can be thermally, mechanically and centrifugally separated.
  • a relaxation in Laval nozzles which reduce almost all the thermal energy and pressure energy and convert into kinetic energy.
  • the material stresses are therefore essentially reduced to this area.
  • the Laval nozzles themselves can be made of suitable, temperature-resistant materials such as ceramics or metal alloys and can withstand the thermal stresses.
  • the remaining kinetic energy in the gas jet is fully utilized by the pulse in the second turbine stage. Due to the mating principle, the required speed can be halved, which considerably reduces the centrifugal forces.
  • Another significant advantage of the invention is that the gap between the wheels has no significant effect on the efficiency. Furthermore, the components can be made simpler and cheaper than in conventional turbines, because it is enough a single-stage turbine to achieve the entire energy conversion. It is also advantageous that cooling is only required at the Laval nozzles, while a second turbine wheel requires no cooling, as a result of which the losses occurring in conventional turbines due to the considerable bleed air for turbine cooling are avoided. to be avoided.
  • a gas turbine comprises an inner rotor, on the outside of which several first rows of blades of a multi-stage axial compressor and the downstream turbine wheel are mounted, that this gas turbine further comprises a hollow shaft on the inside several second blade rows of the axial compressor are mounted, which are arranged in the axial direction alternately to the first rows of blades, that further on the hollow at least one combustion chamber and the front turbine runner are mounted. Since alternate in the axial direction of the compressor, the blade rings of the rotating shafts against each other, almost any higher number of stages in opposite constructions are possible.
  • the speeds of the two shafts are preferably the same size. In certain applications, e.g. in a booster mode, but also a speed variance between the two shafts is possible.
  • FIG. 1 shows an axial section through a gas turbine as a power generator
  • FIG. 2 shows a cross section through the gas turbines according to FIG. 1,
  • FIG. 3 shows an axial section through a Pelton-type gas turbine
  • Figure 4 a cross section through the gas turbine according to Figure 3
  • Figure 5 a perspective view of a gas turbine with axial turbine stage.
  • FIG. 1 shows a gas turbine 10a in axial section, which consists of a multi-stage axial compressor 12, a single-stage centrifugal compressor 4, a combustion chamber 16, a first radial turbine runner 18 and a second radial turbine runner 20.
  • the two radial turbine wheels 18, 20 together form a single-stage counter-rotating turbine.
  • Each second blade ring of the axial compressor 12 and the second turbine wheel 20 are mounted together on an inner rotor 22 which is supported by bearings 24 on a fixed axis 26.
  • the rotor 28a of a first generator is further attached, the outer stator is not shown.
  • a hollow-shaft-shaped outer rotor 30 carries on the inside the respective other blade rings of the axial compressor 12, further the blade ring of the centrifugal compressor 14, the combustion chamber 16 and the first turbine runner 18.
  • the outer rotor 30 is supported via a first bearing 32a on the fixed axis 26 and a second bearing 32b on the inner rotor 22 from.
  • the outer rotor 30 is connected via a first blade ring 34 with a rotor hub 36 which is supported on the shaft 26 via the front bearing 32a.
  • a rotor 28b of a second generator Radially outwardly, a rotor 28b of a second generator, whose outer stator is not shown, is mounted on the outer rotor 30.
  • FIG. 2 shows a cross section through the gas turbine 10a according to Figure 1 in the axial height of the turbine wheels 18, 20, as shown by the arrow II.
  • FIG. 2 shows a ring of molded parts 40 of the first turbine runner 18 (FIG. 1), which have a shape that forms between these flow passages 42, each with the cross-section of a Laval nozzle.
  • the flow channels 42 comprise substantially radially aligned gas inlets 43 and substantially tangentially or circumferentially oriented gas outlets 45.
  • the Laval cross-sectional shape of the flow channels 42 is preferably in only one direction, namely the circumferential direction, while there is a constant cross-section in the axial direction.
  • the shape of the molded parts 40 is also possible to design the shape of the molded parts 40 such that a cross-sectional change also takes place in the axial direction.
  • the mold parts 40 are preferably formed on an end plate 41, which closes off the flow channel for the gas flow in the axial direction.
  • outer turbine blades 44 of the second turbine runner 20 are arranged, which are acted on by the gas flow emerging through the flow passages 42 with supersonic and are set in rotation opposite to the first turbine runner 18.
  • air is drawn into the inlet located at the first blade ring 34 and compressed by the axial compressor 12.
  • the axial compressor 12 compresses the air via the two oppositely rotating shafts 22 and 30 with the blade rows arranged alternately thereon.
  • Downstream of the axial compressor 12 the air flow is radially outward deflected and enters the blade ring of the single-stage centrifugal compressor 14, via which the pressure is further increased.
  • Behind the outlet of the radial compressor 14, the air flow is again deflected radially inward and enters the inlet of the rotating combustion chamber 16, injected into the fuel and the air-fuel mixture is burned.
  • the gas flow Downstream of the combustion chamber 16, the gas flow is again deflected radially outward and enters the first turbine runner 18.
  • the cross-section Laval nozzle flow channels 42 ( Figure 2) of the first turbine runner 18 accelerate the gas flow to more than Mach 1, redirecting this in the circumferential direction and encounter the gas flow then predominantly in the circumferential direction. Due to the resulting angular momentum, the first turbine runner 18 is rotated in the counterclockwise direction as viewed in FIG. The supersonic gas flow then impinges on the outer turbine blades 44 of the second turbine runner 20 and is deflected there, which accordingly rotates inversely to the first turbine runner 18.
  • the rotation of the first turbine runner 18 is transmitted via the outer shaft 30 to the radial compressor 14 and the outer rotor-side blade rows of the axial compressor 12 and the generator rotor 28b.
  • the opposite rotation of the second turbine runner 20 is transmitted to the generator rotor 28 a and via the inner rotor 22 to the inner rotor-side compressor blades of the axial compressor 12.
  • the gas turbine 10a shown in FIGS. 1 and 2 serves to generate electrical energy. Alternatively, it may also be used for other applications, e.g. be used as the engine of a motor vehicle, sea or aircraft.
  • the generator rotors 28 may also be operated as starters for the shafts 22, 30.
  • FIGS. 3 and 4 show a gas turbine 10b in which, in contrast to the embodiment according to FIGS. 1 and 2, only a single-stage Pelton turbine is used.
  • the same reference numerals as in FIGS. 1 and 2 denote the same components.
  • the gas turbine embodiment 10b also includes a multi-stage axial compressor 12, which comprises a hollow shaft 30, to which each second row of blades is fastened in the axial direction. In between blade rows are provided which are fixed to a main rotor 52.
  • the main rotor 52 is supported by bearings 24 on the one hand on the axis 26 and on the other hand on a housing, not shown.
  • a Peltonturbinenrad 54 is further formed, which is shown in Figure 4 in cross-section and explained in more detail below.
  • a mounting flange 56 is further provided for discharging the generated power.
  • the hollow shaft 30 comprises a blade ring of a centrifugal compressor 14 and is connected to a rotating combustion chamber 16 and a nozzle impeller 58.
  • a first blade ring 34 connects the hollow shaft 30 with a hub shaft 60, which in turn is supported by means of a front bearing 32 a on the housing, not shown.
  • the nozzle impeller 58 is supported on the main rotor 52 by means of the bearing 32b.
  • a mounting flange 62 is provided for discharging the power generated in a manner analogous to the main rotor 52.
  • FIG. 4 shows the nozzle impeller 58 in cross section, which has a number of nozzles 64, which have a predominantly tangential outflow direction. Opposite this, the Pelton turbine wheel 54 has a number of circumferentially distributed Pelton buckets 66, which are acted upon by the nozzles 64.
  • the air flow enters through the first blade ring 34 in the multi-stage axial compressor 12 and is compressed there. Subsequently, a further compression in the radial compressor 14, from where the air flow of the co-rotating combustion chamber 16 is supplied. There fuel is added and the mixture is burned. The combustion gases flow through the nozzles 64 and from there they impinge on the Pelton buckets 66.
  • the jet impeller 58 is rotated in the counterclockwise direction as viewed in FIG. 4, while the Pelton turbine wheel 54 is rotated clockwise.
  • the rotation of the nozzle impeller 58 is transmitted to the hollow shaft 30 and via the blade ring 34 and the hub shaft 60 on the mounting flange 62.
  • the rotation of the Peltonturbinenrades 54 is transmitted via the main rotor 52 to the mounting flange 56.
  • FIG. 5 shows a gas turbine 10c in which, in contrast to the embodiment according to FIGS. 1 and 2, the second turbine stage 20b is designed as an axial stage and not as a radial stage.
  • an air supply passage 80 is provided, which supplies heated air from a combustion chamber or a heat exchanger and the first radial turbine stage 18 is applied.
  • the turbine stage 18 has a channel curvature 82 in the axial direction so that the gas flow leaves the turbine stage 18 at least substantially without a radial velocity component and acts on the second axial turbine stage 20b.
  • the first turbine stage 18 has Laval nozzle-like flow channels 42.
  • a gas outlet channel 84 Downstream of the axial turbine stage 20b is a gas outlet channel 84.
  • the turbine stage 18 may be connected to the air supply passage 80, and in a second vanante, the turbine stage 8 is separated from the air supply passage 80 and thus the air supply passage 80 also forms the housing of the gas turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The invention relates to a turbine wheel arrangement for a gas turbine comprising two successive turbine wheels (18, 20) rotating in opposite directions, wherein the first turbine wheel (18) comprises flow channels (42) of a Laval cross-sectional shape, distributed over the circumference and having radially inner gas inlets (43) and radially further out gas outlets (45), in each case with a substantially tangential flow direction component, wherein the gas outlets (45) act on the second axially or radially acting turbine wheel (20) in the direction of flow. This has the effect that the thermal energy and compressive energy of the gas at the nozzle inlet is largely converted into flow energy at the outlet of the turbine stage. The rotational speeds of the two rotors coupled to the turbine wheels can be set as desired, allowing the operational states of the two systems to be optimally set without adjusting systems.

Description

Turbinenradanordnunq für eine Gasturbine  Turbine wheel arrangement for a gas turbine
Die Erfindung betrifft eine Turbinenradanordnung für eine Gasturbine mit zwei aufeinanderfolgenden, gegenläufig zueinander rotierenden Turbinenlaufrädern. The invention relates to a turbine wheel arrangement for a gas turbine with two successive, opposite to each other rotating turbine wheels.
Die derzeit bekannten Gasturbinen sind auf höchstmögliche Leistungen mit höchstmöglichen Wirkungsgraden ausgelegt, was zur Folge hat, dass die eingesetzten Bauteile und Werkstoffe bis an die Zu lässig keitsgrenzen belastet werden. Insbesondere gilt dies für die Turbinenschaufeln der ersten Turbinenstufe, die extremsten Beanspruchungen ausgesetzt werden, was zur Folge hat, dass sehr teure Materialien verwendet und aufwändige Kühlmaßnahmen zur Schaufelkühlung getroffen werden müssen. Dazu kommen Belastungen durch hohe mechanische Beanspruchungen durch die hohen Strömungsgeschwindigkeiten, vor allem aber der großen Fliehkräfte durch die hohen Drehzahlen. Insgesamt ist es dabei schwierig, Gesamtwirkungsgrade von höher als 35% zu erzielen. The currently known gas turbines are designed for the highest possible performance with the highest possible efficiencies, which means that the components and materials used are loaded to the maximum permissible limits. This applies in particular to the turbine blades of the first turbine stage, which are subjected to the most extreme stresses, with the result that very expensive materials are used and expensive cooling measures for blade cooling must be taken. In addition, there are loads due to high mechanical stresses due to the high flow velocities, but above all the large centrifugal forces due to the high rotational speeds. Overall, it is difficult to achieve overall efficiencies higher than 35%.
Es ist im Dampfturbinenbau bekannt, stationäre Leiträder von Axialturbinen mit It is known in steam turbine construction, stationary stator of axial turbines with
Lavaldüsenkanalen auszubilden, die in einem Winkel von ca. 45° zur Umfangsrichtung ausgerichtet sind. Form Lavaldüsenkanalen, which are aligned at an angle of approximately 45 ° to the circumferential direction.
Aus der AT 239606 ist eine Gasturbine bekannt, bei der Verbrennungsgase über zwei entgegengesetzt orientierte Radialkanäle nach außen geführt und anschließend in Umfangsrichtung umgelenkt werden und durch lavaldüsenartige Austrittskanäle auf Schaufeln eines entgegengesetzt rotierenden Schaufelrades gelenkt werden. From AT 239606 a gas turbine is known, are guided in the combustion gases via two oppositely oriented radial channels to the outside and then deflected in the circumferential direction and are directed by Laval nozzle-like outlet channels on blades of an oppositely rotating paddle wheel.
Aufgabe der Erfindung ist es, eine Gasturbine bereitzustellen, die sich gegenüber herkömmlichen Turbinen durch eine geringere Temperaturbelastung der Turbinenstufe auszeichnet und ein hohes Temperatur- und Druckgefälte von der der Brennkammer bis zu den Turbinenschaufeln in einem großen Leistungsbereich zu ermöglicht, so dass damit hohe thermische Wirkungsgrade erzielbar sind. The object of the invention is to provide a gas turbine, which is distinguished from conventional turbines by a lower temperature load of the turbine stage and a high temperature and Druckgefälte of the combustion chamber to the turbine blades in a large power range allows, so that high thermal efficiencies can be achieved.
Die Erfindung ergibt sich aus den Merkmalen der unabhängigen Ansprüche. Vorteilhafte Weiterbildungen und Ausgestaltungen sind Gegenstand der abhängigen Ansprüche. The invention results from the features of the independent claims. Advantageous developments and refinements are the subject of the dependent claims.
Die Erfindung bewirkt vorteilhafterweise, dass die thermische Energie und Druckenergie des Gases am Düseneintritt weitgehend in Strömungsenergie am Turbinenstufenaustritt umgewandelt wird. Durch die Impulskraft der Düsen wird das Turbinenlaufrad angetrieben. Das austretende Gas aus den Lavaldüsen besitzt eine sehr hohe Ström ungsge-The invention advantageously has the effect that the thermal energy and pressure energy of the gas at the nozzle inlet is largely converted into flow energy at the turbine stage outlet. The impulse force of the nozzles drives the turbine wheel. The escaping gas from the Laval nozzles has a very high flow
BESTÄTIGUNGSKOPIE schwindigkeit oberhalb von Mach 1 und wird auf die Schaufeln des in Strömungsrichtung hinteren Turbinenlaufrades geleitet, wodurch in diesem ein Moment und eine Rotation entsteht, die der Rotationsrichtung des vorderen Turbinenlaufrades entgegengesetzt ist. Die Geschwindigkeit des Gasstrahles ist dabei wesentlich größer als die Umfangsgeschwindigkeit des Turbinenlaufrades. Somit wird die aus der ersten Energiewandlung in den Lavaldüsen im Strömungsstrahl verbleibende kinetische Energie genutzt. Dabei wird das hintere Turbinenlaufrad so ausgelegt, dass die Tangentialgeschwindigkeit am Austritt idealerweise nahezu verschwindet. CONFIRMATION COPY speed is above Mach 1 and is directed to the vanes of the downstream turbine runner, creating a moment and rotation opposite the direction of rotation of the front turbine runner. The speed of the gas jet is much greater than the peripheral speed of the turbine runner. Thus, the kinetic energy remaining in the flow jet from the first energy conversion in the Laval nozzles is utilized. The rear turbine wheel is designed so that the tangential velocity at the outlet ideally almost disappears.
Durch eine geeignete Steuerung der Belastung an jedem Laufrad z.B. über Generatoren lassen sich die Drehzahlen der beiden mit den Turbinenlaufrädern gekoppelten Rotoren beliebig einstellen, wodurch die Betriebszustände beider Systeme ohne Verstellsysteme optimal eingestellt werden können. By suitable control of the load on each impeller e.g. By means of generators, the rotational speeds of the two rotors coupled to the turbine wheels can be set as desired, so that the operating conditions of both systems can be set optimally without adjustment systems.
Durch die Erfindung können die kombinierten Belastungen thermisch, mechanisch und fliehkraftbedingt separiert werden. So erfolgt eine Entspannung in Lavaldüsen, die nahezu die gesamte thermische Energie und Druckenergie abbauen und in kinetische Energie wandeln. Die Materialbeanspruchungen reduzieren sich daher im Wesentlichen auf diesen Bereich. Die Lavaldüsen selber können aus geeigneten, temperaturfesten Materialen wie Keramiken oder Metalllegierungen gefertigt werden und den thermischen Belastungen widerstehen. Die danach noch vorliegende kinetische Energie im Gasstrahl wird durch den Impuls in der zweiten Turbinenstufe vollständig genutzt. Durch das Gegenlauf- prinzip kann die notwendige Drehzahl halbiert werden, was die fliehkraftbedingten Belastungen erheblich reduziert. By the invention, the combined loads can be thermally, mechanically and centrifugally separated. Thus, a relaxation in Laval nozzles, which reduce almost all the thermal energy and pressure energy and convert into kinetic energy. The material stresses are therefore essentially reduced to this area. The Laval nozzles themselves can be made of suitable, temperature-resistant materials such as ceramics or metal alloys and can withstand the thermal stresses. The remaining kinetic energy in the gas jet is fully utilized by the pulse in the second turbine stage. Due to the mating principle, the required speed can be halved, which considerably reduces the centrifugal forces.
Durch das erfindungsgemäße Konzept können sehr hohe Verdichtungsverhältnisse von > 25, hohe Brennkammertemperaturen von > 2.000 °C und dementsprechend große thermische Wirkungsgrade von > 60 % und Gesamtwirkungsgrade der Gasturbine von > 50 % erzielt werden. Due to the concept of the invention very high compression ratios of> 25, high combustion chamber temperatures of> 2,000 ° C and correspondingly high thermal efficiencies of> 60% and overall efficiency of the gas turbine> 50% can be achieved.
Ein weiterer wesentlicher Vorteil der Erfindung besteht darin, dass das Spaltmaß zwischen den Laufrädern keinen wesentlichen Einfluss auf den Wirkungsgrad hat. Ferner können die Bauteile einfacher und preiswerter gefertigt werden als bei herkömmlichen Turbinen, denn es reicht eine einstufige Turbine, um die gesamte Energieumsetzung zu erzielen. Auch ist von Vorteil, dass nur an den Lavaldüsen eine Kühlung nötig ist, während ein zweites Turbinenrad ohne Kühlung auskommt, wodurch die bei herkömmlichen Turbinen durch die erhebliche Zapfluft zur Turbinenkühlung entstehenden Verluste ver- mieden werden. Another significant advantage of the invention is that the gap between the wheels has no significant effect on the efficiency. Furthermore, the components can be made simpler and cheaper than in conventional turbines, because it is enough a single-stage turbine to achieve the entire energy conversion. It is also advantageous that cooling is only required at the Laval nozzles, while a second turbine wheel requires no cooling, as a result of which the losses occurring in conventional turbines due to the considerable bleed air for turbine cooling are avoided. to be avoided.
Gemäß einer vorteilhaften Weiterbildung der Erfindung umfasst eine Gasturbine einen Innenrotor, auf dem außenseitig mehrere erste Schaufelreihen eines mehrstufigen Axialverdichters und das in Strömungsrichtung hintere Turbinenlaufrad angebracht sind, dass diese Gasturbine ferner eine Hohlwelle umfasst, an der innenseitig mehrere zweite Schaufel reihen des Axialverdichters angebracht sind, die in Axialrichtung alternierend zu den ersten Schaufelreihen angeordnet sind, dass ferner an der Hohlweile mindestens eine Brennkammer sowie das vordere Turbinenlaufrad angebracht sind. Da in axialer Richtung des Verdichters sich die Schaufelkränze der gegeneinander rotierenden Wellen abwechseln, sind nahezu beliebig höhere Stufenzahlen in gegenläufiger Bauweise möglich. Die Drehzahlen der beiden Wellen sind dabei vorzugsweise gleich groß. Bei bestimmten Anwendungsfällen, z.B. in einem Boostermodus, ist aber auch eine Drehzahlvarianz zwischen beiden Wellen möglich. According to an advantageous development of the invention, a gas turbine comprises an inner rotor, on the outside of which several first rows of blades of a multi-stage axial compressor and the downstream turbine wheel are mounted, that this gas turbine further comprises a hollow shaft on the inside several second blade rows of the axial compressor are mounted, which are arranged in the axial direction alternately to the first rows of blades, that further on the hollow at least one combustion chamber and the front turbine runner are mounted. Since alternate in the axial direction of the compressor, the blade rings of the rotating shafts against each other, almost any higher number of stages in opposite constructions are possible. The speeds of the two shafts are preferably the same size. In certain applications, e.g. in a booster mode, but also a speed variance between the two shafts is possible.
Weitere Vorteile, Merkmale und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezug auf die Zeichnung Ausführungsbeispiele im Einzelnen beschrieben sind. Beschriebene und/oder bildlich dargestellte Merkmale bilden für sich oder in beliebiger, sinnvoller Kombinatton den Gegenstand der Erfindung, gegebenenfalls auch unabhängig von den Ansprüchen, und können insbesondere zusätzlich auch Gegenstand einer oder mehrerer separaten Anmeldung/en sein. Gleiche, ähnliche und/oder funktionsgleiche Teile sind mit gleichen Bezugszeichen versehen. Further advantages, features and details will become apparent from the following description in which, with reference to the drawings embodiments are described in detail. Described and / or illustrated features form the subject of the invention, or independently of the claims, either alone or in any meaningful Kombinatton, and may in particular also be the subject of one or more separate application / s. The same, similar and / or functionally identical parts are provided with the same reference numerals.
Es zeigen: Show it:
Figur 1 einen Axialschnitt durch eine Gasturbine als Stromerzeuger, 1 shows an axial section through a gas turbine as a power generator,
Figur 2: einen Querschnitt durch die Gasturbinen gemäß Figur 1 , FIG. 2 shows a cross section through the gas turbines according to FIG. 1,
Figur 3: einen Axialschnitt durch eine Gasturbine mit Peltonausführung, FIG. 3 shows an axial section through a Pelton-type gas turbine;
Figur 4: einen Querschnitt durch die Gasturbinen gemäß Figur 3, und Figure 4: a cross section through the gas turbine according to Figure 3, and
Figur 5: eine perspektivische Darstellung einer Gasturbine mit Axialturbinenstufe. Figure 5: a perspective view of a gas turbine with axial turbine stage.
In Figur 1 ist eine Gasturbine 10a im Axialschnitt dargestellt, die aus einem mehrstufigen Axialverdichter 12, einem einstufigen Radialverdichter 4, einer Brennkammer 16, einem ersten radialen Turbinenlaufrad 18 sowie einem zweiten radialen Turbinenlaufrad 20 besteht. Die beiden radialen Turbinenlaufräder 18, 20 bilden zusammen eine einstufige gegenläufige Turbine. Jeder zweite Schaufelkranz des Axialverdichters 12 sowie das zweite Turbinenlaufrad 20 sind gemeinsam auf einem Innenrotor 22 montiert, der sich über Lager 24 auf einer feststehenden Achse 26 abstützt. Auf dem Innenrotor 22 ist ferner der Läufer 28a eines ersten Generators befestigt, dessen außen liegender Stator nicht dargestellt ist. 1 shows a gas turbine 10a in axial section, which consists of a multi-stage axial compressor 12, a single-stage centrifugal compressor 4, a combustion chamber 16, a first radial turbine runner 18 and a second radial turbine runner 20. The two radial turbine wheels 18, 20 together form a single-stage counter-rotating turbine. Each second blade ring of the axial compressor 12 and the second turbine wheel 20 are mounted together on an inner rotor 22 which is supported by bearings 24 on a fixed axis 26. On the inner rotor 22, the rotor 28a of a first generator is further attached, the outer stator is not shown.
Ein hohlwellenförmiger Außenrotor 30 trägt innenseitig die jeweils anderen Schaufelkränze des Axialverdichters 12, ferner den Schaufelkranz des Radialverdichters 14, die Brennkammer 16 sowie das erste Turbinenlaufrad 18. Der Außenrotor 30 stützt sich über ein erstes Lager 32a auf der feststehenden Achse 26 und ein zweites Lager 32b auf dem Innenrotor 22 ab. Dazu ist der Außenrotor 30 über einen ersten Schaufelkranz 34 mit einer Rotornabe 36 verbunden, die über das vordere Lager 32a auf der Welle 26 abgestützt ist. Radial außen ist auf dem Außenrotor 30 ein Läufer 28b eines zweiten Generators befestigt, dessen außen liegender Stator nicht dargestellt ist. A hollow-shaft-shaped outer rotor 30 carries on the inside the respective other blade rings of the axial compressor 12, further the blade ring of the centrifugal compressor 14, the combustion chamber 16 and the first turbine runner 18. The outer rotor 30 is supported via a first bearing 32a on the fixed axis 26 and a second bearing 32b on the inner rotor 22 from. For this purpose, the outer rotor 30 is connected via a first blade ring 34 with a rotor hub 36 which is supported on the shaft 26 via the front bearing 32a. Radially outwardly, a rotor 28b of a second generator, whose outer stator is not shown, is mounted on the outer rotor 30.
Figur 2 zeigt einen Querschnitt durch die Gasturbine 10a gemäß Figur 1 in axialer Höhe der Turbinenlaufräder 18, 20, wie durch den Pfeil II dargestellt. In Figur 2 ist ein Kranz von Formteilen 40 des ersten Turbinenlaufrades 18 (Figur 1) dargestellt, die eine Form aufweisen, dass sich zwischen diesen Strömungskanäle 42 jeweils mit dem Querschnitt einer Lavaldüse ausbilden. Die Strömungskanäle 42 umfassen im Wesentlichen radial ausgerichtete Gaseinlässe 43 und im Wesentlichen in Tangential- oder Umfangsrichtung ausgerichtete Gasauslässe 45. Die Laval-Querschnittsform der Strömungskanäle 42 liegt vorzugsweise nur in einer Richtung, nämlich der Umfangsrichtung vor, während in Axialrichtung ein konstanter Querschnitt vorliegt. Alternativ ist es auch möglich, die Form der Formteile 40 so zu gestalten, dass auch in Axialrichtung eine Querschnittsveränderung erfolgt. Die Formteile 40 sind vorzugsweise an einer Endscheibe 41 angeformt, welche den Strömungskanal für den Gasstrom in axialer Richtung abschließt. Figure 2 shows a cross section through the gas turbine 10a according to Figure 1 in the axial height of the turbine wheels 18, 20, as shown by the arrow II. FIG. 2 shows a ring of molded parts 40 of the first turbine runner 18 (FIG. 1), which have a shape that forms between these flow passages 42, each with the cross-section of a Laval nozzle. The flow channels 42 comprise substantially radially aligned gas inlets 43 and substantially tangentially or circumferentially oriented gas outlets 45. The Laval cross-sectional shape of the flow channels 42 is preferably in only one direction, namely the circumferential direction, while there is a constant cross-section in the axial direction. Alternatively, it is also possible to design the shape of the molded parts 40 such that a cross-sectional change also takes place in the axial direction. The mold parts 40 are preferably formed on an end plate 41, which closes off the flow channel for the gas flow in the axial direction.
Radial außerhalb der Formteile 40 sind äußere Turbinenschaufeln 44 des zweiten Turbinenlaufrades 20 angeordnet, die von der durch die Strömungskanäle 42 mit Überschall austretenden Gasströmung beaufschlagt werden und dabei in Drehung entgegengesetzt zum ersten Turbinenlaufrad 18 versetzt werden. Radially outside of the mold parts 40, outer turbine blades 44 of the second turbine runner 20 are arranged, which are acted on by the gas flow emerging through the flow passages 42 with supersonic and are set in rotation opposite to the first turbine runner 18.
Im Betrieb wird bei der in den Figuren 1 und 2 dargestellten Gasturbine 10a Luft in den am ersten Schaufelkranz 34 befindlichen Einlass gesaugt und durch den Axialverdichter 12 verdichtet. Der Axialverdichter 12 verdichtet über die beiden entgegengesetzt rotierenden Wellen 22 und 30 mit den daran befestigten alternierend angeordneten Schaufelreihen die Luft. Stromabwärts des Axialverdichters 12 wird der Luftstrom nach radial außen umgelenkt und gelangt in den Schaufelkranz des einstufigen Radialverdichters 14, über den der Druck weiter erhöht wird. Hinter dem Austritt des Radialverdichters 14 wird der Luftstrom wieder nach radial innen umgelenkt und gelangt in den Einlass der rotierenden Brennkammer 16, in der Brennstoff eingespritzt und das Luft-Brennstoffgemisch verbrannt wird. Stromabwärts der Brennkammer 16 wird der Gasstrom erneut nach radial außen umgelenkt und gelangt in das erste Turbinenlaufrad 18. Die im Querschnitt Lavaldüsenförmigen Strömungskanäle 42 (Figur 2) des ersten Turbinenlaufrades 18 beschleunigen den Gasstrom auf mehr als Mach 1 , lenken diesen in Umfangsrichtung um und stoßen den Gasstrom dann überwiegend in Umfangsrichtung aus. Durch den entstehenden Drehimpuls wird das erste Turbinenlaufrad 18 in Figur 2 betrachtet entgegen dem Uhrzeigersinn in Drehung versetzt. Der Überschallgasstrom prallt anschließend auf die äußeren Turbinenschaufeln 44 des zweiten Turbinenlaufrades 20 und wird dort umgelenkt, die dementsprechend umgekehrt zum ersten Turbinenlaufrad 18 rotiert. In operation, in the gas turbine 10a shown in FIGS. 1 and 2, air is drawn into the inlet located at the first blade ring 34 and compressed by the axial compressor 12. The axial compressor 12 compresses the air via the two oppositely rotating shafts 22 and 30 with the blade rows arranged alternately thereon. Downstream of the axial compressor 12, the air flow is radially outward deflected and enters the blade ring of the single-stage centrifugal compressor 14, via which the pressure is further increased. Behind the outlet of the radial compressor 14, the air flow is again deflected radially inward and enters the inlet of the rotating combustion chamber 16, injected into the fuel and the air-fuel mixture is burned. Downstream of the combustion chamber 16, the gas flow is again deflected radially outward and enters the first turbine runner 18. The cross-section Laval nozzle flow channels 42 (Figure 2) of the first turbine runner 18 accelerate the gas flow to more than Mach 1, redirecting this in the circumferential direction and encounter the gas flow then predominantly in the circumferential direction. Due to the resulting angular momentum, the first turbine runner 18 is rotated in the counterclockwise direction as viewed in FIG. The supersonic gas flow then impinges on the outer turbine blades 44 of the second turbine runner 20 and is deflected there, which accordingly rotates inversely to the first turbine runner 18.
Die Rotation des ersten Turbinenlaufrades 18 wird über die Außenwelle 30 auf den Radialverdichter 14 sowie die außenrotorseitigen Schaufelreihen der Axialverdichter 12 und den Generatorläufer 28b übertragen. Die entgegengesetzte Rotation des zweiten Turbinenlaufrades 20 wird auf den Generatorläufer 28a und über den Innenrotor 22 auf die in- nenrotorseitigen Verdichterschaufeln des Axialverdichters 12 übertragen. The rotation of the first turbine runner 18 is transmitted via the outer shaft 30 to the radial compressor 14 and the outer rotor-side blade rows of the axial compressor 12 and the generator rotor 28b. The opposite rotation of the second turbine runner 20 is transmitted to the generator rotor 28 a and via the inner rotor 22 to the inner rotor-side compressor blades of the axial compressor 12.
Die in den Figuren 1 und 2 dargestellte Gasturbine 10a dient zur Erzeugung elektrischer Energie. Alternativ kann diese auch für andere Anwendungen, z.B. als Triebwerk eines Kraftfahr-, See- oder Luftfahrzeugs verwendet werden. Die Generatorläufer 28 können auch als Anlasser für die Wellen 22, 30 betrieben werden. The gas turbine 10a shown in FIGS. 1 and 2 serves to generate electrical energy. Alternatively, it may also be used for other applications, e.g. be used as the engine of a motor vehicle, sea or aircraft. The generator rotors 28 may also be operated as starters for the shafts 22, 30.
Die Figuren 3 und 4 zeigen eine Gasturbine 10b, bei der im Gegensatz zur Ausführung gemäß der Figuren 1 und 2 nur eine einstufige Peltonturbine zur Anwendung kommt. Gleiche Bezugszeichen wie in den Figuren 1 und 2 bezeichnen gleiche Bauteile. FIGS. 3 and 4 show a gas turbine 10b in which, in contrast to the embodiment according to FIGS. 1 and 2, only a single-stage Pelton turbine is used. The same reference numerals as in FIGS. 1 and 2 denote the same components.
Auch die Gasturbinenausführung 10b umfasst einen mehrstufigen Axialverdichter 12, der eine Hohlwelle 30 umfasst, an der in Axialrichtung jede zweite Schaufelreihe befestigt ist. Dazwischen sind Schaufelreihen vorgesehen, die an einem Hauptrotor 52 befestigt sind. Der Hauptrotor 52 ist mittels Lager 24 einerseits an der Achse 26 und andererseits an einem nicht gezeigten Gehäuse gelagert. Am Hauptrotor 52 ist ferner ein Peltonturbinenrad 54 angeformt, das in Figur 4 im Querschnitt dargestellt und weiter unten näher erläutert wird. Am Hauptrotor 52 ist ferner ein Befestigungsflansch 56 zur Abführung der erzeugten Leistung vorgesehen. Die Hohlwelle 30 umfasst einen Schaufelkranz eines Radialverdichters 14 und ist mit einer rotierenden Brennkammer 16 sowie einem Düsenlaufrad 58 verbunden. Ein erster Schaufelkranz 34 verbindet die Hohlwelle 30 mit einer Nabenwelle 60, die wiederum mittels eines vorderen Lagers 32a am nicht gezeigten Gehäuse abgestützt ist. Am anderen Ende stützt sich das Düsenlaufrad 58 mittels des Lagers 32b am Hauptrotor 52 ab. An der Nabenwelle 60 ist in analoger Weise wie am Hauptrotor 52 ein Befestigungsflansch 62 zur Abführung der erzeugten Leistung vorgesehen. The gas turbine embodiment 10b also includes a multi-stage axial compressor 12, which comprises a hollow shaft 30, to which each second row of blades is fastened in the axial direction. In between blade rows are provided which are fixed to a main rotor 52. The main rotor 52 is supported by bearings 24 on the one hand on the axis 26 and on the other hand on a housing, not shown. On the main rotor 52, a Peltonturbinenrad 54 is further formed, which is shown in Figure 4 in cross-section and explained in more detail below. On the main rotor 52, a mounting flange 56 is further provided for discharging the generated power. The hollow shaft 30 comprises a blade ring of a centrifugal compressor 14 and is connected to a rotating combustion chamber 16 and a nozzle impeller 58. A first blade ring 34 connects the hollow shaft 30 with a hub shaft 60, which in turn is supported by means of a front bearing 32 a on the housing, not shown. At the other end, the nozzle impeller 58 is supported on the main rotor 52 by means of the bearing 32b. On the hub shaft 60, a mounting flange 62 is provided for discharging the power generated in a manner analogous to the main rotor 52.
In Figur 4 ist das Düsenlaufrad 58 im Querschnitt dargestellt, das eine Anzahl von Düsen 64 aufweist, die eine überwiegend tangentiale Ausströmungsrichtung aufweisen. Diesen gegenüberliegend weist das Peltonturbinenrad 54 eine Anzahl über dem Umfang verteilte Peltonschaufeln 66 auf, die von den Düsen 64 beaufschlagt werden. FIG. 4 shows the nozzle impeller 58 in cross section, which has a number of nozzles 64, which have a predominantly tangential outflow direction. Opposite this, the Pelton turbine wheel 54 has a number of circumferentially distributed Pelton buckets 66, which are acted upon by the nozzles 64.
Im Betrieb tritt der Luftstrom durch den ersten Schaufelkranz 34 in den mehrstufigen Axialverdichter 12 ein und wird dort verdichtet. Anschließend erfolgt eine weitere Verdichtung im Radialverdichter 14, von wo der Luftstrom der mitrotierenden Brennkammer 16 zugeführt wird. Dort wird Brennstoff zugefügt und das Gemisch verbrannt. Die Verbrennungsgase strömen durch die Düsen 64 und von dort beaufschlagen diese die Peltonschaufeln 66. Dadurch wird das Düsenlaufrad 58 in Figur 4 gesehen entgegen dem Uhrzeigersinn gedreht, während das Peltonturbinenrad 54 im Uhrzeigersinn gedreht wird. Die Drehung des Düsenlaufrades 58 wird auf die Hohlwelle 30 übertragen und über den Schaufelkranz 34 und die Nabenwelle 60 auf den Befestigungsflansch 62. Analog wird die Drehung des Peltonturbinenrades 54 über den Hauptrotor 52 auf den Befestigungsflansch 56 übertragen. In operation, the air flow enters through the first blade ring 34 in the multi-stage axial compressor 12 and is compressed there. Subsequently, a further compression in the radial compressor 14, from where the air flow of the co-rotating combustion chamber 16 is supplied. There fuel is added and the mixture is burned. The combustion gases flow through the nozzles 64 and from there they impinge on the Pelton buckets 66. As a result, the jet impeller 58 is rotated in the counterclockwise direction as viewed in FIG. 4, while the Pelton turbine wheel 54 is rotated clockwise. The rotation of the nozzle impeller 58 is transmitted to the hollow shaft 30 and via the blade ring 34 and the hub shaft 60 on the mounting flange 62. Similarly, the rotation of the Peltonturbinenrades 54 is transmitted via the main rotor 52 to the mounting flange 56.
Die Figur 5 zeigt eine Gasturbine 10c, bei der im Gegensatz zur Ausführung gemäß der Figuren 1 und 2 die zweite Turbinenstufe 20b als Axialstufe und nicht als Radialstufe ausgebildet ist. Gleiche Bezugszeichen wie in den anderen Figuren bezeichnen gleiche Bauteile. Bei dieser Ausführung ist ein Luftzufuhrkanal 80 vorgesehen, der erhitzte Luft aus einer Brennkammer oder einem Wärmetauscher zuführt und die erste radiale Turbinenstufe 18 beaufschlagt. Im stromabwärtigen Bereich weist die Turbinenstufe 18 eine Kanalkrümmung 82 in die axiale Richtung so dass die Gasströmung die Turbinenstufe 18 mindestens weitgehend ohne radiale Geschwindigkeitskomponente verlässt und die zweite axiale Turbinenstufe 20b beaufschlagt. Die erste Turbinenstufe 18 weist dabei lavaldüsenartige Strömungskanäle 42 auf. Stromab der axialen Turbinenstufe 20b befindet sich ein Gasaustrittskanal 84. In einer Variante kann die Turbinenstufe 18 mit dem Luftzufuhrkanal 80 verbunden sein und in einer zweiten Vanante ist die Turbinenstufe 8 vom Luftzufuhrkanal 80 getrennt und somit bildet der Luftzufuhrkanal 80 auch das Gehäuse der Gasturbine. FIG. 5 shows a gas turbine 10c in which, in contrast to the embodiment according to FIGS. 1 and 2, the second turbine stage 20b is designed as an axial stage and not as a radial stage. The same reference numerals as in the other figures designate the same components. In this embodiment, an air supply passage 80 is provided, which supplies heated air from a combustion chamber or a heat exchanger and the first radial turbine stage 18 is applied. In the downstream region, the turbine stage 18 has a channel curvature 82 in the axial direction so that the gas flow leaves the turbine stage 18 at least substantially without a radial velocity component and acts on the second axial turbine stage 20b. The first turbine stage 18 has Laval nozzle-like flow channels 42. Downstream of the axial turbine stage 20b is a gas outlet channel 84. In one variant, the turbine stage 18 may be connected to the air supply passage 80, and in a second vanante, the turbine stage 8 is separated from the air supply passage 80 and thus the air supply passage 80 also forms the housing of the gas turbine.

Claims

Patentansprüche claims
1. Gasturbine (10a), die ein erstes Turbinenlaufrad (18) sowie ein zweites, gegenläufig rotierendes Turbinenlaufrad (20) umfasst, das vom ersten Turbinenlaufrad (20) beaufschlagt ist, die ferner eine Innenwelle (22) umfasst, auf dem außenseitig mehrere erste Schaufelreihen eines mehrstufigen Axialverdichters (12) und das zweite Turbinenlaufrad (20) angebracht sind, die ferner eine Hohlwelle (30) umfasst, an der das erste Turbinenlaufrad (18) sowie mehrere zweite Schaufelreihen des Axialverdichters (12) angebracht sind, die in Axialrichtung alternierend zu den ersten Schaufelreihen angeordnet sind, A gas turbine (10a) comprising a first turbine runner (18) and a second counter-rotating turbine runner (20) urged by the first turbine runner (20) further comprising an inner shaft (22) having a plurality of first outer ones Blade rows of a multi-stage axial compressor (12) and the second turbine runner (20) are mounted, further comprising a hollow shaft (30) on which the first turbine runner (18) and a plurality of second rows of blades of the axial compressor (12) are mounted, which are alternating in the axial direction are arranged to the first rows of blades,
2. Gasturbine nach Anspruch 1, dadurch gekennzeichnet, dass das erste Turbinenlaufrad (18) über dem Umfang verteilte Strömungskanäle (42) umfasst, die Gasauslässe (45) mit Laval-Querschnittsform aufweisen. 2. Gas turbine according to claim 1, characterized in that the first turbine runner (18) distributed over the circumference flow channels (42), the gas outlets (45) having Laval cross-sectional shape.
3. Gasturbine nach Anspruch 2, dadurch gekennzeichnet, dass die Gasauslässe (45) eine im wesentlichen tangentiale Strömungsrichtungskomponente aufweisen. 3. Gas turbine according to claim 2, characterized in that the gas outlets (45) have a substantially tangential flow direction component.
4. Gasturbine nach Anspruch 3, dadurch gekennzeichnet, dass die Gasauslässe (45) des ersten Turbinenlaufrades (18) in einem Winkel von 10° bis 30° zur Tangentialrichtung ausgerichtet sind. 4. Gas turbine according to claim 3, characterized in that the gas outlets (45) of the first turbine runner (18) are aligned at an angle of 10 ° to 30 ° to the tangential direction.
5. Gasturbine nach Anspruch 1, dadurch gekennzeichnet, dass an der Hohlwelle (30) mindestens eine rotierende Brennkammer (16) angebracht ist. 5. Gas turbine according to claim 1, characterized in that on the hollow shaft (30) at least one rotating combustion chamber (16) is mounted.
6. Gasturbine nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Strömungskanäle (42) in einer Strömungsquerrichtung einen lavaldüsenartigen Querschnittsverlauf aufweisen und in der anderen Strömungsquerrichtung keine Querschnittsveränderung aufweisen. 6. Gas turbine according to claim 1 or 2, characterized in that the flow channels (42) have a lavaldüsenartigen cross-sectional profile in a transverse flow direction and have no cross-sectional change in the other transverse flow direction.
7. Gasturbine nach Anspruch 2, dadurch gekennzeichnet, dass das erste Turbinenlaufrad (18) eine Scheibe (41) umfasst, an der über dem Umfang verteilte Formstücke (40) angebracht oder angeformt sind, zwischen denen die Strömungskanäle (42) mit Laval-Querschnittsform ausgebildet sind. 7. Gas turbine according to claim 2, characterized in that the first turbine runner (18) comprises a disc (41) are mounted on the circumferentially distributed moldings (40) or molded, between which the flow channels (42) with Laval cross-sectional shape are formed.
8. Gasturbine nach einem der vorherigen Ansprüche, dadurch gekenn- zeichnet, dass das in Strömungsrichtung hintere Turbinenlaufrad (54) 8. Gas turbine according to one of the preceding claims, characterized characterized in that the downstream turbine runner (54)
Peltonturbinen-Schaufeln (66) aufweist.  Peltonturbinen blades (66).
9. Gasturbine nach Anspruch l.dadurch gekennzeichnet, dass das zweite Turbinenlaufrad (20b) ein Axialturbinenrad ist. 9. Gas turbine according to claim l.dadurch in that the second turbine impeller (20b) is an axial turbine wheel.
10. Gasturbine nach Anspruch 1 , d a d u r c h g e k e n n ze i c h n e t , dass das zweite Turbinenlaufrad (20) ein Radialturbinenrad ist. 10. A gas turbine according to claim 1, characterized in that the second turbine runner (20) is a radial turbine wheel.
11. Gasturbine nach Anspruch 5, dadurch gekennzeichnet, dass jedem Strömungskanal (42) mit Laval-Querschnittsform eine mitrotierende Brennkammer (16) zugeordnet ist. 11. Gas turbine according to claim 5, characterized in that each flow channel (42) is associated with Laval cross-sectional shape of a co-rotating combustion chamber (16).
12. Gasturbine nach Anspruch 1 , d a d u r c h g e ke n n ze i c h n e t , dass an der Hohlwelle (30) stromabwärts des Axialverdichters (12) ein Radialverdichter (1 ) angebracht ist. 12. Gas turbine according to claim 1, characterized in that a radial compressor (1) is mounted on the hollow shaft (30) downstream of the axial compressor (12).
13. Gasturbine nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass auf den Innenrotor 22 der Läufer (28a) des ersten Generators und außenseitig auf der Hohlwelle (30) der Läufer (28b) des zweiten Generators angebracht sind. 13. Gas turbine according to one of the preceding claims, characterized in that on the inner rotor 22 of the rotor (28 a) of the first generator and on the outside of the hollow shaft (30) of the rotor (28 b) of the second generator are mounted.
14. Gasturbine nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass durch eine Steuerung der beiden Generatoren die Drehzahlen der beiden Turbinenlaufrädern (18, 20) beliebig eingestellt werden können, wodurch die Betriebszustände beider Systeme ohne Verstellsysteme optimierbar sind. 14. Gas turbine according to one of the preceding claims, characterized in that by a control of the two generators, the rotational speeds of the two turbine wheels (18, 20) can be set arbitrarily, whereby the operating conditions of both systems can be optimized without adjustment.
PCT/DE2011/001849 2010-10-15 2011-10-14 Turbine wheel arrangement for a gas turbine WO2012051997A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/879,189 US20130192231A1 (en) 2010-10-15 2011-10-04 Turbine Wheel Arrangement For A Gas Turbine
CA2814427A CA2814427A1 (en) 2010-10-15 2011-10-14 Turbine wheel arrangement for a gas turbine
EP11817300.4A EP2598736A2 (en) 2010-10-15 2011-10-14 Turbine wheel arrangement for a gas turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010048434.2 2010-10-15
DE102010048434.2A DE102010048434B4 (en) 2010-10-15 2010-10-15 Turbine wheel arrangement for a gas or steam turbine

Publications (2)

Publication Number Publication Date
WO2012051997A2 true WO2012051997A2 (en) 2012-04-26
WO2012051997A3 WO2012051997A3 (en) 2012-09-13

Family

ID=45581694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2011/001849 WO2012051997A2 (en) 2010-10-15 2011-10-14 Turbine wheel arrangement for a gas turbine

Country Status (5)

Country Link
US (1) US20130192231A1 (en)
EP (1) EP2598736A2 (en)
CA (1) CA2814427A1 (en)
DE (1) DE102010048434B4 (en)
WO (1) WO2012051997A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10267328B2 (en) 2015-07-21 2019-04-23 Rolls-Royce Corporation Rotor structure for rotating machinery and method of assembly thereof
US9909461B2 (en) * 2015-11-19 2018-03-06 Borgwarner Inc. Waste heat recovery system
GB2574615B (en) * 2018-06-12 2020-09-30 Gabrielle Engine Ltd Combustion engine
CN110043323A (en) * 2019-05-16 2019-07-23 广东索特能源科技有限公司 A kind of supersonic speed radial-inward-flow turbine
CN110630335A (en) * 2019-09-06 2019-12-31 北京市燃气集团有限责任公司 Gas expansion device
CN111535871B (en) * 2020-04-07 2022-01-11 东方电气集团东方汽轮机有限公司 Vane type turning mixed flow turbine structure
CN114776403B (en) * 2021-12-29 2023-12-26 东方电气集团东方汽轮机有限公司 Air inlet structure and method suitable for large enthalpy drop small flow turbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT239606B (en) 1962-02-22 1965-04-12 Schoeller Bleckmann Stahlwerke Gas turbine
WO2005017332A2 (en) 2003-01-10 2005-02-24 Keogh Rory Rotating combustor gas turbine engine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191317358A (en) * 1913-07-29 1914-06-18 Sydney March An Internal Combustion or Explosion Turbine.
US1146707A (en) * 1914-08-14 1915-07-13 Peter H Holtz Internal-combustion turbine.
CH310936A (en) * 1952-07-12 1955-11-15 Alfred Dipl Ing Buechi Multi-stage flow machine.
FR1070508A (en) * 1952-10-17 1954-07-28 Gas turbine
DE1817551A1 (en) * 1968-12-31 1970-07-16 Rainer Franzmann Turbine jet engine
DE6941982U (en) * 1969-10-28 1970-04-09 Richard Dipl Ing Schiel HOT AIR TURBINE
US3727401A (en) * 1971-03-19 1973-04-17 J Fincher Rotary turbine engine
US5177954A (en) * 1984-10-10 1993-01-12 Paul Marius A Gas turbine engine with cooled turbine blades
YU23586A (en) * 1986-02-17 1990-04-30 Tode Stojicic Circulation expander of lost energy of heat machines
JP3858436B2 (en) * 1998-04-09 2006-12-13 石川島播磨重工業株式会社 Multistage compressor structure
WO2008095172A1 (en) * 2007-02-01 2008-08-07 Watson Timethy D Reverse vortex impeller engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT239606B (en) 1962-02-22 1965-04-12 Schoeller Bleckmann Stahlwerke Gas turbine
WO2005017332A2 (en) 2003-01-10 2005-02-24 Keogh Rory Rotating combustor gas turbine engine

Also Published As

Publication number Publication date
EP2598736A2 (en) 2013-06-05
WO2012051997A3 (en) 2012-09-13
DE102010048434A1 (en) 2012-04-19
DE102010048434B4 (en) 2017-08-10
CA2814427A1 (en) 2012-04-26
US20130192231A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
DE102010048434B4 (en) Turbine wheel arrangement for a gas or steam turbine
EP3992446B1 (en) Adaptive engine with boost spool
EP1736635B1 (en) Air transfer system between compressor and turbine of a gas turbine engine
DE602004006942T2 (en) Triple turbine cooling circuit
DE60031744T2 (en) Turbine combustor assembly
DE859089C (en) Bladed gyroscope through which a work equipment flows
DE3713923C2 (en) Cooling air transmission device
JP5802380B2 (en) Multistage fan
US3391540A (en) Turbojet engines having contrarotating compressors
DE112011104298B4 (en) Gas turbine engine with secondary air circuit
DE3334880A1 (en) MULTI-STAGE RADIAL COMPRESSOR, RADIAL WHEEL AND METHOD FOR COMPRESSING A FLUID
EP3734052B1 (en) Efficient, low pressure ratio propulsor for gas turbine engines
JP2011106461A (en) Gas turbine engine with outer fan
DE102007025006A1 (en) Double shaft gas turbine, has bars arranged along circumference of bearing housing and extend via circular intermediate channel into space between outer circumference surface of housing and inner circumference surface of housing wall
DE3219615A1 (en) JET TURBINE WITH OPTICAL WHEELS
DE3506733A1 (en) TURBINE GUIDE RING
DE2454054A1 (en) INTERNAL POWER PLANT AND GAS GENERATOR FOR GAS TURBINE ENGINES
EP3064706A1 (en) Guide blade assembly for a flow engine with axial flow
DE3116923C2 (en)
DE102018124206A1 (en) Reduction gear
EP2617947A2 (en) Aviation gas turbine with adjustable fan
EP3591237B1 (en) Structural module for a compressor of a turbomachine
DE102020115579A1 (en) GAS TURBINE ENGINE WITH HIGHLY EFFICIENT FAN
DE102012215413B4 (en) Assembly of an axial turbo machine
EP2236759A1 (en) Rotor blade system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817300

Country of ref document: EP

Kind code of ref document: A2

REEP Request for entry into the european phase

Ref document number: 2011817300

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011817300

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2814427

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13879189

Country of ref document: US