WO2012050292A1 - Procédé de construction d'un échangeur de chaleur constitué d'un tuyau intégré en acier et d'un caloduc utilisant la chaleur du sous-sol - Google Patents

Procédé de construction d'un échangeur de chaleur constitué d'un tuyau intégré en acier et d'un caloduc utilisant la chaleur du sous-sol Download PDF

Info

Publication number
WO2012050292A1
WO2012050292A1 PCT/KR2011/004545 KR2011004545W WO2012050292A1 WO 2012050292 A1 WO2012050292 A1 WO 2012050292A1 KR 2011004545 W KR2011004545 W KR 2011004545W WO 2012050292 A1 WO2012050292 A1 WO 2012050292A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
pipe
heat exchanger
underground
steel tube
Prior art date
Application number
PCT/KR2011/004545
Other languages
English (en)
Korean (ko)
Inventor
김응춘
Original Assignee
(주)세종기술엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)세종기술엔지니어링 filed Critical (주)세종기술엔지니어링
Publication of WO2012050292A1 publication Critical patent/WO2012050292A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the construction cost can be reduced only by increasing the efficiency of drilling technology and heat exchanger, which is difficult to spread in general business due to the relatively high investment cost for underground heat drilling. Therefore, the steel pipe and the heat pipe are integrally formed on the ground where the borehole is formed. Part of the heat pipe is brought into contact with the outside to quickly cool or warm the heat pipe, and the heat exchanger and the fluid tube are buried in the ground, which is more efficient than the above technique in which the heat exchanger and the fluid tube are exposed to the outside, and outside the steel tube
  • the surface coating is to prevent corrosion of the contact surface with the outside, and relates to a construction method for embedding a heat exchanger underground to provide a high efficiency by making the fluid pipe as short as possible and contacting the top of the heat pipe.
  • heat exchanger is an underground heat source heat storage heat pump system, which uses underground temperature of about 100 ⁇ 150M underground as heat source of heat pump for cooling, heating and hot water supply.
  • Geothermal heat is a stable heat source that maintains an average temperature of 15 °C ⁇ 20 °C, and unlike air heat sources, heat pumps can be applied anywhere in the country regardless of region.
  • PE heat exchange pipes
  • Republic of Korea Patent Registration No. 10-0967085 is to prevent the pitch of the spiral heat exchanger tube to be changed to prevent the thermal efficiency is lowered, and the underground heat exchanger is made in the form of a module so that the construction can be easily shortened the air It is.
  • the invention described above is buried by forming a heat exchange tube in a spiral form and fixing it in a frame, but a spiral tube may not only crack in a bent portion when corrosion occurs over time, but also a long spiral tube When the fluid moves, it is radiated to the outside and does not provide maximum efficiency.
  • the present invention is presented as follows to improve the proposed content as described above,
  • the construction cost can be reduced only by increasing the efficiency of drilling technology and heat exchanger, which is difficult to spread in general business due to the relatively high investment cost in underground heat drilling.
  • Part of the heat pipe is brought into contact with the outside to transfer underground heat of the rock layer directly to the heat pipe, and the heat exchanger and the fluid tube are buried in the sand laying layer so that the heat exchanger and the fluid tube are exposed to the outside. It is high and aims to prevent corrosion of the contact surface with the outside by coating the steel tube.
  • the drilling hole is formed in two stages, and the steel pipe and the heat pipe are embedded to expose the heat pipe to the underground rock layer, thereby providing maximum ground heat.
  • the steel tube is buried in the heat exchanger buried in the first stage, the steel tube is coated to have the purpose of preventing corrosion in the water contained in the underground soil layer and rock layer when forming the borehole.
  • a fluid pipe, a heat exchanger, and a flow controller are embedded in the sand laying layer to prevent heat dissipation because they are not installed outside.
  • the construction method includes a drilling step of forming two-stage boreholes in the soil layer 30 and a rock layer 40, and embedding the steel tube 100 and the heat pipe 200 of the heat exchanger 1 in the two-stage boreholes.
  • the heat exchanger device embedding step (S920), the step of embedding the heat exchanger 300 and the flow controller 400 in the sand laying layer 20, and the topsoil layer 10 and sand after the heat exchanger device embedding step (S920) It is characterized by consisting of a warning tape laying step (S940) for embedding the warning tape 50 between the laying layer (20) and a topsoil layer finishing step (S950) to recover after construction.
  • the drilling step is to form a one-stage steel pipe drilling step (S900) for embedding the coated steel tube 100, is coupled to the steel tube 100, the heat filling the vacuum heat transfer material therein
  • S900 steel pipe drilling step
  • S910 two-stage heat pipe drilling step
  • the steel tube is embedded in the one-stage borehole formed in the soil layer 30 and the rock layer 40 by coating the steel tube 100 so as not to corrode when the steel tube 100 is embedded in the heat exchange device embedding step (S920).
  • Step S921 and the heat pipe buried step S922 coupled to the inside of the steel tube 100 and protruding a portion of the heat pipe 200 filled with the heat transfer material by vacuum in the rock layer 40 are embedded therein. It is characterized by.
  • the thermal insulation / coolant 150 is filled between the steel pipe 100 and the heat pipe 200.
  • a steel tube inner heat insulation / coolant filling step S923
  • it is characterized by consisting of a fluid pipe coupling step (S924) formed by winding the spring on the top of the heat pipe (200).
  • the heat exchanger 300 and the flow controller 400 is connected to the fluid pipe 500 of the heat exchanger 1 embedded in the soil layer 30 and the rock layer 40, the sand to prevent noise and heat radiation Buried in the laying layer 20 is characterized in that to form a heat exchanger and flow controller embedded step (S930).
  • thermal insulation / coolant is filled between the steel tube and the heat pipe to provide the effect that the ground heat transferred from the bottom of the heat pipe is not radiated, and maintained at the same temperature.
  • the heat exchanger is buried in the sand laying layer is not installed on the ground has the effect of providing a high efficiency for supplying the ground heat.
  • a portion of the heat pipe can be directly received underground heat transfer to the rock layer, and the inside of the heat pipe is filled with a heat transfer material while maintaining the vacuum state has the effect that can quickly transfer the ground heat.
  • 1 is a construction state diagram of the construction method of the heat exchanger of the integral steel tube and heat pipe using the ground heat of the present invention.
  • Figure 2 is an exploded perspective view of the construction method of the heat exchanger of the integrated steel tube and heat pipe using the ground heat of the present invention.
  • Figure 3 is a construction step diagram of the construction method of the heat exchanger of the integral steel tube and heat pipe using the ground heat of the present invention.
  • Figure 4 is a construction block diagram of the construction method of the heat exchanger of the integrated steel tube and heat pipe using the ground heat of the present invention.
  • Fig. 3 and 4 show the construction method of the heat exchanger of the present invention.
  • boreholes are formed in the soil layer 30 and the rock layer 40 so that the heat exchanger 1 is embedded, and the steel tube 100 of the heat exchanger 1 is embedded.
  • Heat pipe 200 is built in the tube 100, the fluid pipe 500 is wound on the heat pipe 200, the heat insulating / coolant 150 between the steel pipe 100 and the heat pipe 200 Is filled is to be buried in the steel tube cover 110 is finished.
  • the heat exchanger 1 is embedded in the soil layer 30 and the rock layer 40, the fluid pipe 500 of the heat exchanger 1 is formed of a sand laying layer 20 is coupled to the heat exchanger 300, One side is provided with a flow controller 400 is embedded in the sand laying layer (20).
  • the heat pipe 200 As the heat pipe 200 is partially exposed at the bottom of the rock layer 40, the heat pipe 200 is directly transferred to the ground heat to obtain maximum efficiency.
  • the heat pipe 200 has a maximum heat transfer material in a vacuum state.
  • the heat exchanger 1 has been briefly described as described above, and a construction method for the heat exchanger 1 will be described below.
  • the boreholes are formed in each step, and the heat exchanger 1 is embedded.
  • the above is divided into a one-stage steel pipe drilling step (S900) and a two-stage heat pipe drilling step (S910).
  • Perforation of the steel tube 100 and the heat pipe 200 is formed in the soil layer 30 and the rock layer 40.
  • the heat exchanger device embedding step (S920) is continued, and the next step is formed in the heat exchanger device embedding step (S920).
  • the heat exchange device buried step (S920) is a steel pipe buried step (S921), the heat pipe buried step (S922), the steel tube inner heat insulation / coolant filling step (S923), the fluid pipe coupling step (S924), Steel tube cover finish step (S925) is formed.
  • step (a) of burying the steel tube 100 by forming a borehole and the heat pipe 200 filled with the heat transfer material in a vacuum state inside the steel tube 100 are provided therein.
  • Step (c) of finishing with 110, the heat exchanger 300 and the flow controller 400 is embedded in the sand laying layer 20, the warning tape (between the topsoil layer 10 and the sand laying layer 20) 50) is buried sequentially in step (d).
  • the construction method block diagram of the present invention to form a large borehole through the first stage steel tube drilling step (S900) to embed the steel tube 100 in the borehole divided into two stages. .
  • a portion of the heat pipe 200 is embedded into the formed borehole, the two-stage heat pipe drilling step (S910), the borehole is formed.
  • the heat exchanger is embedded in the formed first stage borehole and the second stage borehole (S920), and the steel tube embedding stage (S921) in which the outer circumferential surface of the coated steel tube 100 is embedded is made, and is heated in the embedded steel tube 100.
  • the pipe 200 is coupled, and a heat pipe embedding step S922 in which a portion of the heat pipe 200 is embedded in the rock layer is formed in the two-stage borehole.
  • the heat pipe 200 is coupled to the inside of the steel tube 100, and the heat / insulating agent filling step inside the steel tube filling the heat / insulating agent 150 between the steel tube 100 and the heat pipe 200 (S923). After the filling is made, the fluid pipe coupling step (S924) formed by winding the spring on the top of the heat pipe 200 is made.
  • a heat exchanger and a flow controller embedding step S930 are performed upward, and the heat exchanger 300 and the flow controller 400 are embedded in the sand laying layer 20.
  • the distance that the fluid absorbs the ground heat is shortened to maximize the efficiency.
  • warning tape 50 As the warning tape 50 is buried, it is to inform the worker that the heat exchanger 1 is buried underground when the topsoil layer 10 is being worked on the ground.
  • the construction is finished by finishing the topsoil layer 10 through the topsoil finishing step (S950).

Abstract

La présente invention concerne un procédé de construction d'un échangeur de chaleur constitué d'un tuyau intégré en acier, ainsi qu'un caloduc utilisant la chaleur du sous-sol, et plus particulièrement un procédé de construction destiné à enterrer un échangeur de chaleur dans le sous-sol. Dans le procédé de construction, le tuyau en acier et le caloduc peuvent être intégrés ensemble sous le sol, un avant-trou étant formé, compte tenu du besoin d'amélioration de la technologie de forage et du rendement des échangeurs de chaleur afin de réduire les coûts de construction dans des technologies difficiles à appliquer à des entreprises de manière générale du fait de l'investissement relativement important nécessaire au forage thermique du sous-sol. En outre, une partie du caloduc peut être en contact avec l'extérieur afin de refroidir ou de chauffer rapidement le caloduc. Ici, l'échangeur de chaleur et le tuyau de fluide peuvent être enterrés en sous-sol pour améliorer le rendement par comparaison à une technologie où un échangeur de chaleur et un tuyau de fluide sont exposés à l'extérieur. Par ailleurs, une surface extérieure du tuyau en acier peut être revêtue pour empêcher une surface en contact avec l'extérieur d'être corrodée, et le tuyau de fluide peut être raccourci au maximum afin d'entrer en contact avec une extrémité supérieure du caloduc, améliorant ainsi le rendement. Selon le procédé de construction de l'échangeur de chaleur constitué d'un tuyau intégré en acier et du caloduc utilisant la chaleur du sous-sol, des avant-trous à 2 étages peuvent être formés pour forer séparément des avant-trous présentant un grand diamètre et un petit diamètre, réduisant ainsi le coût de construction. En outre, une partie du caloduc peut être enterrée dans une couche rocheuse de façon à recevoir directement la chaleur du sous-sol. Par ailleurs, l'intérieur du caloduc peut être garni d'un matériau de transfert thermique, l'intérieur du caloduc étant maintenu sous vide afin de recevoir rapidement la chaleur du sous-sol. En outre, l'échangeur de chaleur et un régulateur de débit peuvent être enterrés dans une couche de dépôt de sable pour empêcher que du bruit soit émis en provenance de l'échangeur de chaleur et que de la chaleur soit dissipée vers l'extérieur.
PCT/KR2011/004545 2010-10-12 2011-06-22 Procédé de construction d'un échangeur de chaleur constitué d'un tuyau intégré en acier et d'un caloduc utilisant la chaleur du sous-sol WO2012050292A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100099363A KR101036905B1 (ko) 2010-10-12 2010-10-12 지중열을 이용한 일체형 스틸 관과 히트파이프의 열교환장치의 시공방법
KR10-2010-0099363 2010-10-12

Publications (1)

Publication Number Publication Date
WO2012050292A1 true WO2012050292A1 (fr) 2012-04-19

Family

ID=44366569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004545 WO2012050292A1 (fr) 2010-10-12 2011-06-22 Procédé de construction d'un échangeur de chaleur constitué d'un tuyau intégré en acier et d'un caloduc utilisant la chaleur du sous-sol

Country Status (2)

Country Link
KR (1) KR101036905B1 (fr)
WO (1) WO2012050292A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014081911A3 (fr) * 2012-11-21 2014-09-18 Aavid Thermalloy, Llc Système et procédé pour collecte de chaleur géothermique
CN105180488A (zh) * 2015-09-15 2015-12-23 戚荣生 沙漠地区太阳热能接收装置
US9512677B2 (en) 2013-03-08 2016-12-06 Gtherm, Inc. System and method for creating lateral heat transfer appendages in a vertical well bore

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085162A (ja) * 1994-06-17 1996-01-12 Fujikura Ltd 地熱抽出装置
KR20070011836A (ko) * 2005-07-21 2007-01-25 지앤에스건설 주식회사 열펌프용 지열파이프가 설치된 마이크로파일
KR20070091487A (ko) * 2006-03-06 2007-09-11 (주)이앤이 시스템 지중열을 이용하는 열교환시스템
JP2008128494A (ja) * 2006-11-16 2008-06-05 Sekisui Chem Co Ltd 地熱利用システム
KR20090102238A (ko) * 2008-03-25 2009-09-30 유한회사 지오선 지중열 온도유지장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085162A (ja) * 1994-06-17 1996-01-12 Fujikura Ltd 地熱抽出装置
KR20070011836A (ko) * 2005-07-21 2007-01-25 지앤에스건설 주식회사 열펌프용 지열파이프가 설치된 마이크로파일
KR20070091487A (ko) * 2006-03-06 2007-09-11 (주)이앤이 시스템 지중열을 이용하는 열교환시스템
JP2008128494A (ja) * 2006-11-16 2008-06-05 Sekisui Chem Co Ltd 地熱利用システム
KR20090102238A (ko) * 2008-03-25 2009-09-30 유한회사 지오선 지중열 온도유지장치 및 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014081911A3 (fr) * 2012-11-21 2014-09-18 Aavid Thermalloy, Llc Système et procédé pour collecte de chaleur géothermique
US9512677B2 (en) 2013-03-08 2016-12-06 Gtherm, Inc. System and method for creating lateral heat transfer appendages in a vertical well bore
CN105180488A (zh) * 2015-09-15 2015-12-23 戚荣生 沙漠地区太阳热能接收装置

Also Published As

Publication number Publication date
KR101036905B1 (ko) 2011-05-25

Similar Documents

Publication Publication Date Title
CN103181251B (zh) 用于电信实用机柜的基于空气的地热冷却系统
WO2012050292A1 (fr) Procédé de construction d'un échangeur de chaleur constitué d'un tuyau intégré en acier et d'un caloduc utilisant la chaleur du sous-sol
JP2008075809A (ja) ロードヒーティングの配管接続構造、それに用いる防蝕スリーブおよびそれによる接続方法
JP2014163554A (ja) 地中熱利用システムの熱交換装置の施工方法および地中熱利用システム
CN207365374U (zh) 一种集成于吊顶板中的辐射空调末端装置
JP2017075487A (ja) トンネル覆工コンクリートにおけるケーブル配管類の埋設構造及び方法
CN109099738A (zh) 一种用于地铁隧道的薄壳式换热器及其安装施工方法
JP5486070B2 (ja) 地中熱採熱装置
JP2009198037A (ja) 地中熱採熱装置
CN1207521C (zh) 一种地源热泵的竖埋管铺设方法
CN210224825U (zh) 一种采用软管缠绕的电缆水循环强制冷却系统
CN108088102A (zh) 一种不锈钢波纹管地热源换热系统及其设置方法
US7841200B1 (en) Sub-surface tubing spacer means for direct expansion heating/cooling systems
KR101036904B1 (ko) 지중열을 이용한 일체형 스틸 관과 히트파이프의 열교환장치
CN108767800B (zh) 一种用于寒冷地区的电缆沟及其施工方法
WO2009131377A2 (fr) Échangeur de chaleur géothermique utilisant un caloduc
KR101457388B1 (ko) 지하구조물의 바닥공간을 이용한 지중 열교환 시스템의 시공방법
KR100873566B1 (ko) 관입으로 설치하는 열교환장치 및 설치공법
EP2557385A1 (fr) Réservoirs de stockage d'énergie thermique et ensembles d'échangeurs de chaleur correspondants
CN219368024U (zh) 一种高效的u型地埋管换热器
WO2012144739A2 (fr) Structure d'isolation pour bâtiment
CN220453087U (zh) 一种地下防护pe线管套管
CN214094649U (zh) 一种石墨烯高导热ppr地暖管
CN202452643U (zh) 一体固定式冷气机的被覆铜管管槽结构
JP2013015283A (ja) 地中熱利用システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832679

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 18.06.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11832679

Country of ref document: EP

Kind code of ref document: A1