WO2012050292A1 - Method of constructing a heat exchanger of an integrated steel pipe, and heat pipe using underground heat - Google Patents

Method of constructing a heat exchanger of an integrated steel pipe, and heat pipe using underground heat Download PDF

Info

Publication number
WO2012050292A1
WO2012050292A1 PCT/KR2011/004545 KR2011004545W WO2012050292A1 WO 2012050292 A1 WO2012050292 A1 WO 2012050292A1 KR 2011004545 W KR2011004545 W KR 2011004545W WO 2012050292 A1 WO2012050292 A1 WO 2012050292A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
pipe
heat exchanger
underground
steel tube
Prior art date
Application number
PCT/KR2011/004545
Other languages
French (fr)
Korean (ko)
Inventor
김응춘
Original Assignee
(주)세종기술엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)세종기술엔지니어링 filed Critical (주)세종기술엔지니어링
Publication of WO2012050292A1 publication Critical patent/WO2012050292A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the construction cost can be reduced only by increasing the efficiency of drilling technology and heat exchanger, which is difficult to spread in general business due to the relatively high investment cost for underground heat drilling. Therefore, the steel pipe and the heat pipe are integrally formed on the ground where the borehole is formed. Part of the heat pipe is brought into contact with the outside to quickly cool or warm the heat pipe, and the heat exchanger and the fluid tube are buried in the ground, which is more efficient than the above technique in which the heat exchanger and the fluid tube are exposed to the outside, and outside the steel tube
  • the surface coating is to prevent corrosion of the contact surface with the outside, and relates to a construction method for embedding a heat exchanger underground to provide a high efficiency by making the fluid pipe as short as possible and contacting the top of the heat pipe.
  • heat exchanger is an underground heat source heat storage heat pump system, which uses underground temperature of about 100 ⁇ 150M underground as heat source of heat pump for cooling, heating and hot water supply.
  • Geothermal heat is a stable heat source that maintains an average temperature of 15 °C ⁇ 20 °C, and unlike air heat sources, heat pumps can be applied anywhere in the country regardless of region.
  • PE heat exchange pipes
  • Republic of Korea Patent Registration No. 10-0967085 is to prevent the pitch of the spiral heat exchanger tube to be changed to prevent the thermal efficiency is lowered, and the underground heat exchanger is made in the form of a module so that the construction can be easily shortened the air It is.
  • the invention described above is buried by forming a heat exchange tube in a spiral form and fixing it in a frame, but a spiral tube may not only crack in a bent portion when corrosion occurs over time, but also a long spiral tube When the fluid moves, it is radiated to the outside and does not provide maximum efficiency.
  • the present invention is presented as follows to improve the proposed content as described above,
  • the construction cost can be reduced only by increasing the efficiency of drilling technology and heat exchanger, which is difficult to spread in general business due to the relatively high investment cost in underground heat drilling.
  • Part of the heat pipe is brought into contact with the outside to transfer underground heat of the rock layer directly to the heat pipe, and the heat exchanger and the fluid tube are buried in the sand laying layer so that the heat exchanger and the fluid tube are exposed to the outside. It is high and aims to prevent corrosion of the contact surface with the outside by coating the steel tube.
  • the drilling hole is formed in two stages, and the steel pipe and the heat pipe are embedded to expose the heat pipe to the underground rock layer, thereby providing maximum ground heat.
  • the steel tube is buried in the heat exchanger buried in the first stage, the steel tube is coated to have the purpose of preventing corrosion in the water contained in the underground soil layer and rock layer when forming the borehole.
  • a fluid pipe, a heat exchanger, and a flow controller are embedded in the sand laying layer to prevent heat dissipation because they are not installed outside.
  • the construction method includes a drilling step of forming two-stage boreholes in the soil layer 30 and a rock layer 40, and embedding the steel tube 100 and the heat pipe 200 of the heat exchanger 1 in the two-stage boreholes.
  • the heat exchanger device embedding step (S920), the step of embedding the heat exchanger 300 and the flow controller 400 in the sand laying layer 20, and the topsoil layer 10 and sand after the heat exchanger device embedding step (S920) It is characterized by consisting of a warning tape laying step (S940) for embedding the warning tape 50 between the laying layer (20) and a topsoil layer finishing step (S950) to recover after construction.
  • the drilling step is to form a one-stage steel pipe drilling step (S900) for embedding the coated steel tube 100, is coupled to the steel tube 100, the heat filling the vacuum heat transfer material therein
  • S900 steel pipe drilling step
  • S910 two-stage heat pipe drilling step
  • the steel tube is embedded in the one-stage borehole formed in the soil layer 30 and the rock layer 40 by coating the steel tube 100 so as not to corrode when the steel tube 100 is embedded in the heat exchange device embedding step (S920).
  • Step S921 and the heat pipe buried step S922 coupled to the inside of the steel tube 100 and protruding a portion of the heat pipe 200 filled with the heat transfer material by vacuum in the rock layer 40 are embedded therein. It is characterized by.
  • the thermal insulation / coolant 150 is filled between the steel pipe 100 and the heat pipe 200.
  • a steel tube inner heat insulation / coolant filling step S923
  • it is characterized by consisting of a fluid pipe coupling step (S924) formed by winding the spring on the top of the heat pipe (200).
  • the heat exchanger 300 and the flow controller 400 is connected to the fluid pipe 500 of the heat exchanger 1 embedded in the soil layer 30 and the rock layer 40, the sand to prevent noise and heat radiation Buried in the laying layer 20 is characterized in that to form a heat exchanger and flow controller embedded step (S930).
  • thermal insulation / coolant is filled between the steel tube and the heat pipe to provide the effect that the ground heat transferred from the bottom of the heat pipe is not radiated, and maintained at the same temperature.
  • the heat exchanger is buried in the sand laying layer is not installed on the ground has the effect of providing a high efficiency for supplying the ground heat.
  • a portion of the heat pipe can be directly received underground heat transfer to the rock layer, and the inside of the heat pipe is filled with a heat transfer material while maintaining the vacuum state has the effect that can quickly transfer the ground heat.
  • 1 is a construction state diagram of the construction method of the heat exchanger of the integral steel tube and heat pipe using the ground heat of the present invention.
  • Figure 2 is an exploded perspective view of the construction method of the heat exchanger of the integrated steel tube and heat pipe using the ground heat of the present invention.
  • Figure 3 is a construction step diagram of the construction method of the heat exchanger of the integral steel tube and heat pipe using the ground heat of the present invention.
  • Figure 4 is a construction block diagram of the construction method of the heat exchanger of the integrated steel tube and heat pipe using the ground heat of the present invention.
  • Fig. 3 and 4 show the construction method of the heat exchanger of the present invention.
  • boreholes are formed in the soil layer 30 and the rock layer 40 so that the heat exchanger 1 is embedded, and the steel tube 100 of the heat exchanger 1 is embedded.
  • Heat pipe 200 is built in the tube 100, the fluid pipe 500 is wound on the heat pipe 200, the heat insulating / coolant 150 between the steel pipe 100 and the heat pipe 200 Is filled is to be buried in the steel tube cover 110 is finished.
  • the heat exchanger 1 is embedded in the soil layer 30 and the rock layer 40, the fluid pipe 500 of the heat exchanger 1 is formed of a sand laying layer 20 is coupled to the heat exchanger 300, One side is provided with a flow controller 400 is embedded in the sand laying layer (20).
  • the heat pipe 200 As the heat pipe 200 is partially exposed at the bottom of the rock layer 40, the heat pipe 200 is directly transferred to the ground heat to obtain maximum efficiency.
  • the heat pipe 200 has a maximum heat transfer material in a vacuum state.
  • the heat exchanger 1 has been briefly described as described above, and a construction method for the heat exchanger 1 will be described below.
  • the boreholes are formed in each step, and the heat exchanger 1 is embedded.
  • the above is divided into a one-stage steel pipe drilling step (S900) and a two-stage heat pipe drilling step (S910).
  • Perforation of the steel tube 100 and the heat pipe 200 is formed in the soil layer 30 and the rock layer 40.
  • the heat exchanger device embedding step (S920) is continued, and the next step is formed in the heat exchanger device embedding step (S920).
  • the heat exchange device buried step (S920) is a steel pipe buried step (S921), the heat pipe buried step (S922), the steel tube inner heat insulation / coolant filling step (S923), the fluid pipe coupling step (S924), Steel tube cover finish step (S925) is formed.
  • step (a) of burying the steel tube 100 by forming a borehole and the heat pipe 200 filled with the heat transfer material in a vacuum state inside the steel tube 100 are provided therein.
  • Step (c) of finishing with 110, the heat exchanger 300 and the flow controller 400 is embedded in the sand laying layer 20, the warning tape (between the topsoil layer 10 and the sand laying layer 20) 50) is buried sequentially in step (d).
  • the construction method block diagram of the present invention to form a large borehole through the first stage steel tube drilling step (S900) to embed the steel tube 100 in the borehole divided into two stages. .
  • a portion of the heat pipe 200 is embedded into the formed borehole, the two-stage heat pipe drilling step (S910), the borehole is formed.
  • the heat exchanger is embedded in the formed first stage borehole and the second stage borehole (S920), and the steel tube embedding stage (S921) in which the outer circumferential surface of the coated steel tube 100 is embedded is made, and is heated in the embedded steel tube 100.
  • the pipe 200 is coupled, and a heat pipe embedding step S922 in which a portion of the heat pipe 200 is embedded in the rock layer is formed in the two-stage borehole.
  • the heat pipe 200 is coupled to the inside of the steel tube 100, and the heat / insulating agent filling step inside the steel tube filling the heat / insulating agent 150 between the steel tube 100 and the heat pipe 200 (S923). After the filling is made, the fluid pipe coupling step (S924) formed by winding the spring on the top of the heat pipe 200 is made.
  • a heat exchanger and a flow controller embedding step S930 are performed upward, and the heat exchanger 300 and the flow controller 400 are embedded in the sand laying layer 20.
  • the distance that the fluid absorbs the ground heat is shortened to maximize the efficiency.
  • warning tape 50 As the warning tape 50 is buried, it is to inform the worker that the heat exchanger 1 is buried underground when the topsoil layer 10 is being worked on the ground.
  • the construction is finished by finishing the topsoil layer 10 through the topsoil finishing step (S950).

Abstract

The present invention relates to a method of constructing a heat exchanger of an integrated steel pipe, and a heat pipe using underground heat, and more particularly, to a construction method for burying a heat exchanger underground. In the construction method, the steel pipe and the heat pipe may be integrated with each other underground, in which an exploratory hole is formed because drilling technology and heat exchanger efficiency should be improved to reduce construction costs in technologies that are difficult to apply to general businesses due to the relatively high investment required for underground heat drilling. Also, a portion of the heat pipe may contact the outside to quickly cool or heat the heat pipe. Here, the heat exchanger and the fluid pipe may be buried underground to improve efficiency when compared to a technology in which a heat exchanger and a fluid pipe are exposed to the outside. Also, an outer surface of the steel pipe may be coated to prevent a surface contacting the outside from being corroded, and the fluid pipe may be maximally shortened in length to contact an upper end of the heat pipe, thereby improving efficiency. According to the method of constructing the heat exchanger of the integrated steel pipe and heat pipe using underground heat, 2-stage exploratory holes may be formed to separately drill exploratory holes having a large diameter and a small diameter, thereby reducing construction cost. Also, a portion of the heat pipe may be buried in a rock layer to directly receive underground heat. Also, the inside of the heat pipe may be filled with a thermal transfer material in a state where the inside of the heat pipe is maintained under a vacuum state to quickly receive underground heat. Also, the heat exchanger and a flow controller may be buried in a sand laying layer to prevent noise occurring from the heat exchanger and heat from being dissipated to the outside.

Description

지중열을 이용한 일체형 스틸 관과 히트파이프의 열교환장치의 시공방법Construction method of heat exchanger of integrated steel tube and heat pipe using ground heat
본 발명은 지중열 천공에 투자비가 상대적으로 많아 일반사업에서 보급하기 어려운 기술을 천공기술과 열교환기의 효율을 증가시켜야만 공사비를 절감시킬 수 있으므로 시추공이 형성된 지면에 스틸 관과 히트파이프가 일체형으로 이루어지고, 히트파이프의 일부가 외부와 접촉되어 히트파이프를 빠르게 식히거나 데워지도록 하고, 열교환기와 유체 관이 지면에 매설되어 열교환기와 유체 관이 외부로 노출된 상기의 기술보다 효율이 높으며, 스틸 관 외부표면을 코팅함으로써 외부와의 접촉면이 부식되지 않도록 하는 것이며, 유체 관을 최대한 짧게 하고, 히트파이프 상단에 접촉시켜 높은 효율을 제공하는 열교환장치를 지하에 매설하는 시공방법에 관한 것이다.According to the present invention, the construction cost can be reduced only by increasing the efficiency of drilling technology and heat exchanger, which is difficult to spread in general business due to the relatively high investment cost for underground heat drilling. Therefore, the steel pipe and the heat pipe are integrally formed on the ground where the borehole is formed. Part of the heat pipe is brought into contact with the outside to quickly cool or warm the heat pipe, and the heat exchanger and the fluid tube are buried in the ground, which is more efficient than the above technique in which the heat exchanger and the fluid tube are exposed to the outside, and outside the steel tube The surface coating is to prevent corrosion of the contact surface with the outside, and relates to a construction method for embedding a heat exchanger underground to provide a high efficiency by making the fluid pipe as short as possible and contacting the top of the heat pipe.
현재 열교환기의 시공은 지중열원 축열식 히트펌프 시스템으로 지하 약 100~150M까지의 지중 온도를 히트펌프의 열원으로 이용하여 냉방 및 난방 및 급탕에 활용하고 있다.At present, the construction of heat exchanger is an underground heat source heat storage heat pump system, which uses underground temperature of about 100 ~ 150M underground as heat source of heat pump for cooling, heating and hot water supply.
지중열은 년 평균 15℃~20℃의 온도를 유지하는 안정적인 열원으로서 공기 열원과는 달리 지역에 관계없이 전국 어느 장소에도 히트펌프가 적용이 가능하여 현재 지중열을 히트펌프의 열원으로 사용하기 위하여 지하에 열교환용 파이프(PE)를 매설하고, 파이프내로 물 또는 부동액을 순환시켜 동절기에는 대지로부터 얻은 열을 본 시스템을 통해 건물내로 전달하고, 하절기에는 히트펌프에서 발생되는 열을 지중으로 방출시키는 시스템으로 사용하고 있다.Geothermal heat is a stable heat source that maintains an average temperature of 15 ℃ ~ 20 ℃, and unlike air heat sources, heat pumps can be applied anywhere in the country regardless of region. A system that embeds heat exchange pipes (PE) in the basement, circulates water or antifreeze into the pipes, transfers heat from the ground into the building through the system in winter, and releases heat generated from the heat pump to the ground in summer. I'm using it.
또한, 대한민국특허등록 10-0967085호는 나선형열교환관의 피치가 변화되는 것을 방지하여 열효율이 낮아지는 것을 막을 수 있도록 하고, 지중열교환기가 모듈형태로 제작되어 현장시공을 용이하게 공기를 단축시킬 수 있도록 한 것이다.In addition, the Republic of Korea Patent Registration No. 10-0967085 is to prevent the pitch of the spiral heat exchanger tube to be changed to prevent the thermal efficiency is lowered, and the underground heat exchanger is made in the form of a module so that the construction can be easily shortened the air It is.
상기의 발명은 나선형으로 열교환관을 형성하여 틀에 고정함으로 매설하는 것이나, 나선형관은 시간이 지남에 따라 부식현상이 일어날 때에 굽혀진 부분에 크랙이 생길 수 있을 뿐만 아니라, 길이가 길어진 나선형관은 유체가 이동시 외부로 방열되어 최대의 효율을 제공하지 못한다.The invention described above is buried by forming a heat exchange tube in a spiral form and fixing it in a frame, but a spiral tube may not only crack in a bent portion when corrosion occurs over time, but also a long spiral tube When the fluid moves, it is radiated to the outside and does not provide maximum efficiency.
본 발명은 상기와 같이 제안된 내용을 개선하고자 다음과 같이 제시한 것으로,The present invention is presented as follows to improve the proposed content as described above,
본 발명은 지중열천공에 투자비가 상대적으로 많아 일반사업에서 보급하기 어려운 기술을 천공기술과 열교환기의 효율을 증가시켜야만 공사비를 절감시킬 수 있으므로 시추공이 형성된 지면에 스틸 관과 히트파이프가 일체형으로 이루어지고, 히트파이프의 일부가 외부와 접촉되어 암반층의 지중열을 곧바로 히트파이프로 전달되도록 하고, 모래부설층에 열교환기와 유체 관이 매설되어 열교환기와 유체 관이 외부로 노출된 상기의 기술보다 효율이 높으며, 스틸 관을 코팅함으로써 외부와의 접촉 면이 부식되지 않도록 하는 것을 목적이 있다.According to the present invention, the construction cost can be reduced only by increasing the efficiency of drilling technology and heat exchanger, which is difficult to spread in general business due to the relatively high investment cost in underground heat drilling. Part of the heat pipe is brought into contact with the outside to transfer underground heat of the rock layer directly to the heat pipe, and the heat exchanger and the fluid tube are buried in the sand laying layer so that the heat exchanger and the fluid tube are exposed to the outside. It is high and aims to prevent corrosion of the contact surface with the outside by coating the steel tube.
또한, 시추공을 2단으로 형성시켜 스틸 관과 히트파이프를 매설하는 것으로 히트파이프를 지하 암반층에 노출시키는 것으로 지중열을 최대로 제공하는 목적이 있다.In addition, the drilling hole is formed in two stages, and the steel pipe and the heat pipe are embedded to expose the heat pipe to the underground rock layer, thereby providing maximum ground heat.
또한, 1단 층에 매설되는 열교환장치 중 스틸 관이 매설되고, 스틸 관 코팅되어 있어 시추공 형성시 지하 토사층과 암반층에 함유된 수분에 부식되지 않도록 하는 목적이 있다.In addition, the steel tube is buried in the heat exchanger buried in the first stage, the steel tube is coated to have the purpose of preventing corrosion in the water contained in the underground soil layer and rock layer when forming the borehole.
또한, 2단 층에 매설되는 열교환장치 중 일부 히트파이프가 매설되고, 일부 히트파이프는 암반층에 형성된 시추공면과 접촉시켜 지중열의 효율을 극대화시키는 목적이 있다.In addition, some heat pipes of the heat exchanger embedded in the second stage are embedded, and some heat pipes are in contact with the borehole surface formed in the rock layer to maximize the efficiency of the ground heat.
또한, 모래부설층에 유체관과 열교환기와 유량컨트롤러가 매설되어 외부에 설치되지 않아 방열을 막아주는 것을 목적으로 한다.In addition, a fluid pipe, a heat exchanger, and a flow controller are embedded in the sand laying layer to prevent heat dissipation because they are not installed outside.
상기와 같은 목적을 달성하기 위한 본 발명은 지중열을 이용한 일체형 스틸 관과 히트파이프의 열교환장치를 지하에 매설하는 시공방법에 있어서,In the present invention for achieving the above object in the construction method for embedding the heat exchanger of the integrated steel tube and heat pipe using underground heat underground,
상기 시공방법에는 토사층(30)과 암반층(40)에 2단의 시추공을 형성하는 천공단계와, 상기 형성된 2단 시추공에 열교환장치(1)의 스틸 관(100)과 히트파이프(200)를 매설하는 열교환장치 매설단계(S920)와, 상기 모래부설층(20)에 열교환기(300)와 유량컨트롤러(400)를 매설하는 단계와, 상기 열교환장치 매설단계(S920) 후 표토층(10)과 모래부설층(20) 사이에 경고테이프(50)를 매설하는 경고테이프 매설단계(S940)와 시공이 끝난 후 복구시키는 표토층 마감단계(S950)로 이루어지는 것을 특징으로 한다.The construction method includes a drilling step of forming two-stage boreholes in the soil layer 30 and a rock layer 40, and embedding the steel tube 100 and the heat pipe 200 of the heat exchanger 1 in the two-stage boreholes. The heat exchanger device embedding step (S920), the step of embedding the heat exchanger 300 and the flow controller 400 in the sand laying layer 20, and the topsoil layer 10 and sand after the heat exchanger device embedding step (S920) It is characterized by consisting of a warning tape laying step (S940) for embedding the warning tape 50 between the laying layer (20) and a topsoil layer finishing step (S950) to recover after construction.
또한, 상기 천공단계에는 코팅된 스틸관(100)을 매설하는 1단 스틸관 천공단계(S900)가 형성되도록 하며, 스틸관(100)에 결합되고, 내부에 진공상태의 열전달물질을 충진하는 히트파이프(200)를 암반층(40)에 일부 노출시켜 매설하기 위해 2단 히트파이프 천공단계(S910)로 이루어지는 것을 특징으로 한다.In addition, the drilling step is to form a one-stage steel pipe drilling step (S900) for embedding the coated steel tube 100, is coupled to the steel tube 100, the heat filling the vacuum heat transfer material therein In order to partially expose the pipe 200 to the rock layer 40, it is characterized in that the two-stage heat pipe drilling step (S910).
또한, 상기 열교환장치 매설단계(S920)에서 스틸 관(100)을 매설함에 스틸 관(100)을 부식되지 않도록 코팅하여 토사층(30)과 암반층(40)에 형성된 1단 시추공에 매설하는 스틸관 매설단계(S921)와, 스틸관(100) 내부에 결합되며, 암반층(40)에 내부에 진공으로 열전달물질이 충진된 히트파이프(200) 일부분을 돌출시켜 매설하는 히트파이프 매설단계(S922)로 이루어지는 것을 특징으로 한다.In addition, the steel tube is embedded in the one-stage borehole formed in the soil layer 30 and the rock layer 40 by coating the steel tube 100 so as not to corrode when the steel tube 100 is embedded in the heat exchange device embedding step (S920). Step S921 and the heat pipe buried step S922 coupled to the inside of the steel tube 100 and protruding a portion of the heat pipe 200 filled with the heat transfer material by vacuum in the rock layer 40 are embedded therein. It is characterized by.
또한, 상기 열교환장치 매설단계(S920)에서 스틸관(100)과 히트파이프(200)의 매설단계가 형성되면, 스틸관(100)과 히트파이프(200) 사이에 보온/보냉제(150)를 충진하는 스틸관 내부 보온/보냉제 충진단계(S923)를 이루고, 히트파이프(200) 상단에 스프링식으로 감겨 형성되는 유체관 결합단계(S924)로 이루어지는 것을 특징으로 한다.In addition, when the step of embedding the steel pipe 100 and the heat pipe 200 is formed in the heat exchange device buried step (S920), the thermal insulation / coolant 150 is filled between the steel pipe 100 and the heat pipe 200. To achieve a steel tube inner heat insulation / coolant filling step (S923), it is characterized by consisting of a fluid pipe coupling step (S924) formed by winding the spring on the top of the heat pipe (200).
또한, 상기 열교환기(300)와 유량컨트롤러(400)를 토사층(30)과 암반층(40)에 매설된 열교환장치(1)의 유체관(500)과 연결되어, 소음방지와 방열방지를 위해 모래부설층(20)에 매설되는 것으로 열교환기 및 유량컨트롤러 매설단계(S930)를 이루는 것을 특징으로 한다.In addition, the heat exchanger 300 and the flow controller 400 is connected to the fluid pipe 500 of the heat exchanger 1 embedded in the soil layer 30 and the rock layer 40, the sand to prevent noise and heat radiation Buried in the laying layer 20 is characterized in that to form a heat exchanger and flow controller embedded step (S930).
본 발명에 따르면 다음과 같은 효과가 나타난다.According to the present invention the following effects are obtained.
상기 본 발명의 지중열을 이용한 일체형 스틸 관 및 히트파이프의 열교환장치의 시공방법으로써, 토사층과 암반층에 매설되는 스틸 관의 외주면을 코팅제로 코팅됨으로 토사층과 암반층에 함유된 수분에 의한 부식을 방지해주는 효과를 제공한다.As a construction method of the heat exchanger of the integrated steel tube and heat pipe using the ground heat of the present invention, by coating the outer peripheral surface of the steel pipe embedded in the soil layer and the rock layer with a coating agent to prevent corrosion by moisture contained in the soil layer and the rock layer Provide effect.
또한, 스틸 관과 히트파이프 사이에 보온/보냉제를 충진하여 히트파이프 하단에서 전달되는 지중열이 방열되지 않고, 같은 온도로 유지하도록 하는 효과를 제공한다.In addition, the thermal insulation / coolant is filled between the steel tube and the heat pipe to provide the effect that the ground heat transferred from the bottom of the heat pipe is not radiated, and maintained at the same temperature.
또한, 열교환기가 지상에 설치되지 않고 모래부설층에 매설되어 지중열을 공급하는데 높은 효율을 제공하는 효과를 가진다.In addition, the heat exchanger is buried in the sand laying layer is not installed on the ground has the effect of providing a high efficiency for supplying the ground heat.
또한, 2단 시추공을 형성시켜 큰 구경과 작은 구경의 시추공으로 작업함에 시공비가 절감되는 효과를 가진다.In addition, by forming a two-stage borehole has the effect of reducing the construction cost when working with boreholes of large and small diameters.
또한, 히트파이프의 일부를 암반층에 매설함에 직접적인 지중열을 전달 받을수 있고, 히트파이프 내부가 열전달물질로 진공상태를 유지하며 충진되어 지중열 빨리 전달할 수 있는 효과를 가진다.In addition, a portion of the heat pipe can be directly received underground heat transfer to the rock layer, and the inside of the heat pipe is filled with a heat transfer material while maintaining the vacuum state has the effect that can quickly transfer the ground heat.
또한, 열교환기와 유량컨트롤러를 모래부설층에 매설함에 따라 열교환기에 따른 소음방지와 외부로 방열되는 것을 방지하는 효과를 가진다.In addition, by embedding the heat exchanger and the flow controller in the sand laying layer has the effect of preventing noise and heat radiation to the outside according to the heat exchanger.
도 1은 본 발명의 지중열을 이용한 일체형 스틸 관과 히트파이프의 열교환장치의 시공방법에 대한 시공상태도이다.1 is a construction state diagram of the construction method of the heat exchanger of the integral steel tube and heat pipe using the ground heat of the present invention.
도 2는 본 발명의 지중열을 이용한 일체형 스틸 관과 히트파이프의 열교환장치의 시공방법에 대한 분해사시도이다.Figure 2 is an exploded perspective view of the construction method of the heat exchanger of the integrated steel tube and heat pipe using the ground heat of the present invention.
도 3은 본 발명의 지중열을 이용한 일체형 스틸 관과 히트파이프의 열교환장치의 시공방법에 대한 시공단계도이다.Figure 3 is a construction step diagram of the construction method of the heat exchanger of the integral steel tube and heat pipe using the ground heat of the present invention.
도 4는 본 발명의 지중열을 이용한 일체형 스틸 관과 히트파이프의 열교환장치의 시공방법에 대한 시공블록도이다.Figure 4 is a construction block diagram of the construction method of the heat exchanger of the integrated steel tube and heat pipe using the ground heat of the present invention.
이하에서는 첨부된 도면을 참조하여 본 발명에 대해서 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the present invention.
본 발명의 도 1과 도 2에서 열교환장치에 대해 나타내고 있으며, 도 3과 도 4에서 본 발명의 열교환장치 시공방법에 대해 나타내고 있다.1 and 2 of the present invention are shown for the heat exchanger, and Fig. 3 and 4 show the construction method of the heat exchanger of the present invention.
상기 도 1과 도 2에서 보는 바와 같이, 토사층(30)과 암반층(40)에 시추공이 형성되어 열교환장치(1)가 매설되고, 열교환장치(1)의 스틸 관(100)이 매설되고, 스틸 관(100) 내부에 히트파이프(200)가 내장되며, 히트파이프(200) 상단에 유체관(500)이 감겨져 있고, 스틸 관(100)과 히트파이프(200) 사이에 보온/보냉제(150)가 충진되어 스틸 관 커버(110)로 마감됨으로 매설되는 것이다.As shown in FIG. 1 and FIG. 2, boreholes are formed in the soil layer 30 and the rock layer 40 so that the heat exchanger 1 is embedded, and the steel tube 100 of the heat exchanger 1 is embedded. Heat pipe 200 is built in the tube 100, the fluid pipe 500 is wound on the heat pipe 200, the heat insulating / coolant 150 between the steel pipe 100 and the heat pipe 200 Is filled is to be buried in the steel tube cover 110 is finished.
상기 열교환장치(1)가 토사층(30)과 암반층(40)에 매설되며, 열교환장치(1)의 유체관(500)이 모래부설층(20)으로 형성되어 열교환기(300)와 결합되고, 일측에 유량컨트롤러(400)가 구비되어 모래부설층(20)에 매설되는 것이다.The heat exchanger 1 is embedded in the soil layer 30 and the rock layer 40, the fluid pipe 500 of the heat exchanger 1 is formed of a sand laying layer 20 is coupled to the heat exchanger 300, One side is provided with a flow controller 400 is embedded in the sand laying layer (20).
상기 히트파이프(200)는 하단 일부가 암반층(40)에 노출됨에 따라 지중열을 직접전달받아 최대의 효율을 얻도록 하였으며, 히트파이프(200) 내부는 열전달물질이 최대의 진공상태로 이루어져 있다.As the heat pipe 200 is partially exposed at the bottom of the rock layer 40, the heat pipe 200 is directly transferred to the ground heat to obtain maximum efficiency. The heat pipe 200 has a maximum heat transfer material in a vacuum state.
상기와 같이 열교환장치(1)에 대해 간략하게 설명하였으며, 아래와 같이 열교환장치(1)에 대한 시공방법을 설명한다.The heat exchanger 1 has been briefly described as described above, and a construction method for the heat exchanger 1 will be described below.
상기 도 3과 4에서 보는 바와 같이, 각 단계별로 시추공을 형성하고, 열교환장치(1)를 매설하는 상태를 나타내고 있다.As shown in Figs. 3 and 4, the boreholes are formed in each step, and the heat exchanger 1 is embedded.
상기는 1단 스틸관 천공단계(S900)와, 2단 히트파이프 천공단계(S910)로 나뉜다.The above is divided into a one-stage steel pipe drilling step (S900) and a two-stage heat pipe drilling step (S910).
상기 스틸 관(100)과 히트파이프(200)의 천공은 토사층(30)과 암반층(40)에 형성되게 된다.Perforation of the steel tube 100 and the heat pipe 200 is formed in the soil layer 30 and the rock layer 40.
상기 천공단계가 끝남에 따라 열교환장치 매설단계(S920)로 이어지며, 열교환장치 매설단계(S920)에는 다음 단계가 형성된다.As the perforation step ends, the heat exchanger device embedding step (S920) is continued, and the next step is formed in the heat exchanger device embedding step (S920).
상기 열교환장치 매설단계에(S920)는 스틸 관 매설단계(S921)와, 히트파이프 매설단계(S922)와, 스틸 관 내부 보온/보냉제 충진단계(S923)와, 유체관 결합단계(S924)와, 스틸 관 커버 마감단계(S925)로 형성된다.In the heat exchange device buried step (S920) is a steel pipe buried step (S921), the heat pipe buried step (S922), the steel tube inner heat insulation / coolant filling step (S923), the fluid pipe coupling step (S924), Steel tube cover finish step (S925) is formed.
상기 열교환장치 매설단계(S920)가 끝나면 열교환기 및 유량컨트롤러 매설단계(S930)와, 경고테이프 매설단계(S940)와, 표토층 마감단계(S950)로 이루어진다.When the heat exchanger device buried step (S920) is finished, the heat exchanger and flow controller buried step (S930), the warning tape buried step (S940), and the topsoil layer finishing step (S950).
상기와 같이 각 단계별로 이루어져 있으며, 도 3과 도 4를 보며 아래와 같이 상세히 설명한다.Each step is made as described above, and will be described in detail below with reference to FIGS. 3 and 4.
상기 도 3에서 보는 바와 같이, 시추공을 형성하여 스틸 관(100)을 매설하는 (a)단계와, 상기 스틸 관(100) 내부에 열전달물질이 진공상태로 충진된 히트파이프(200)가 내부에 결합되고, 히트파이프(200) 상단에 유체관(500)이 형성되는 (b)단계와, 스틸 관(100) 내부와 히트파이프(200) 사이에 보온/보냉제(150)를 충진하고 스틸 관 커버(110)로 마감하는 (c)단계와, 모래부설층(20)에 열교환기(300)와 유량컨트롤러(400)가 매설되고, 표토층(10)과 모래부설층(20) 사이에 경고테이프(50)가 매설되는 (d)단계로 순차적으로 매설되는 것이다.As shown in FIG. 3, the step (a) of burying the steel tube 100 by forming a borehole and the heat pipe 200 filled with the heat transfer material in a vacuum state inside the steel tube 100 are provided therein. And (b) forming the fluid pipe 500 on the heat pipe 200 and filling the heat / coolant 150 between the inside of the steel pipe 100 and the heat pipe 200 and covering the steel pipe. Step (c) of finishing with 110, the heat exchanger 300 and the flow controller 400 is embedded in the sand laying layer 20, the warning tape (between the topsoil layer 10 and the sand laying layer 20) 50) is buried sequentially in step (d).
상기 도 4에서 보는 바와 같이, 본 발명의 시공방법 블록도 이며, 2단으로 나눠진 시추공 중에 스틸 관(100)을 매설하기 위해 1단 스틸 관 천공단계(S900)를 거쳐 구경이 큰 시추공을 형성시킨다.As shown in Figure 4, the construction method block diagram of the present invention, to form a large borehole through the first stage steel tube drilling step (S900) to embed the steel tube 100 in the borehole divided into two stages. .
상기 형성된 시추공에 히트파이프(200)의 일부가 매설될 2단 히트파이프 천공단계(S910)로 이루어지며, 시추공이 형성된다.A portion of the heat pipe 200 is embedded into the formed borehole, the two-stage heat pipe drilling step (S910), the borehole is formed.
상기 형성된 1단 시추공과 2단 시추공에 열교환장치 매설단계(S920)로써, 외주면이 코팅된 스틸 관(100)이 매설되는 스틸관 매설단계(S921)가 이뤄지며, 매설된 스틸 관(100)에 히트파이프(200)가 결합되며, 히트파이프(200)의 일부분이 암반층에 매설되는 히트파이프 매설단계(S922)가 2단 시추공에 형성된 것이다.The heat exchanger is embedded in the formed first stage borehole and the second stage borehole (S920), and the steel tube embedding stage (S921) in which the outer circumferential surface of the coated steel tube 100 is embedded is made, and is heated in the embedded steel tube 100. The pipe 200 is coupled, and a heat pipe embedding step S922 in which a portion of the heat pipe 200 is embedded in the rock layer is formed in the two-stage borehole.
상기 스틸 관(100) 내부에 히트파이프(200)가 결합되고, 스틸 관(100)과 히트파이프(200) 사이에 보온/보냉제(150)를 충진하는 스틸관 내부 보온/보냉제 충진단계(S923)가 이루어지며, 충진 후 히트파이프(200) 상단에 스프링식으로 감겨 형성되는 유체관 결합단계(S924)가 이루어진다.The heat pipe 200 is coupled to the inside of the steel tube 100, and the heat / insulating agent filling step inside the steel tube filling the heat / insulating agent 150 between the steel tube 100 and the heat pipe 200 (S923). After the filling is made, the fluid pipe coupling step (S924) formed by winding the spring on the top of the heat pipe 200 is made.
상기 유체관 결합단계(S924)가 마무리되면, 스틸 관(100) 내부의 보온/보냉제(150)의 외부 유출을 막기 위해 스틸 관 커버 마감단계(S925)를 거쳐 스틸 관(100)을 막아주는 것으로 이루어진다.When the fluid pipe coupling step (S924) is finished, to prevent the outflow of the thermal insulation / coolant 150 inside the steel pipe 100 to prevent the steel pipe 100 through the steel pipe cover finishing step (S925). Is done.
상기와 같이 2단으로 형성된 시추공에 스틸 관(100)과 히트파이프(200)를 매설하는 것으로 열교환장치 매설단계(S920)가 이루어진다.By embedding the steel tube 100 and the heat pipe 200 in the borehole formed in two stages as described above (S920) is made.
상기 열교환장치(1)가 매설되면 상측으로 열교환기 및 유량컨트롤러 매설단계(S930)가 이루어지며, 열교환기(300)와 유량컨트롤러(400)는 모래부설층(20)에 매설되는 것으로, 열교환기(300)를 매설함에 소음을 줄여주고, 외부로 방열되는 것을 지상에 있을 때보다 효과적으로 감소시켜주며, 유체가 지중열을 흡수하여 나오는 거리가 짧아 효율을 극대화시킬 수 있는 것이다.When the heat exchanger 1 is embedded, a heat exchanger and a flow controller embedding step S930 are performed upward, and the heat exchanger 300 and the flow controller 400 are embedded in the sand laying layer 20. To reduce the noise in buried (300), to reduce the heat dissipation to the outside more effectively than when on the ground, the distance that the fluid absorbs the ground heat is shortened to maximize the efficiency.
상기 모래부설층(20)에 열교환기(300)와 유량컨트롤러(400)를 매설하고, 모래부설층(20)과 표토층(10) 사이에 경고테이프(50)를 매설하는 경고테이프 매설단계(S940)가 이루어진다.A warning tape embedding step of embedding the heat exchanger 300 and the flow controller 400 in the sand laying layer 20, and embedding the warning tape 50 between the sand laying layer 20 and the topsoil layer 10 (S940). ) Is done.
상기 경고테이프(50)를 매설함에 따라 지상에서 타 작업시 표토층(10) 작업시 작업자에게 지하에 열교환장치(1)가 매설되어 있는지를 알려주는 것이다.As the warning tape 50 is buried, it is to inform the worker that the heat exchanger 1 is buried underground when the topsoil layer 10 is being worked on the ground.
상기 경고테이프 매설단계(S940)가 완료되면, 표토층 마감단계(S950)를 거쳐 표토층(10)을 원래대로 마감함에 따라 시공이 마무리되는 것이다.When the warning tape buried step (S940) is completed, the construction is finished by finishing the topsoil layer 10 through the topsoil finishing step (S950).

Claims (4)

  1. 지중열을 이용한 일체형 스틸 관과 히트파이프의 열교환장치를 지하에 매설하는 시공방법에 있어서,In the construction method of embedding the heat exchanger of the integrated steel tube and heat pipe using underground heat underground,
    상기 시공방법에는 토사층(30)과 암반층(40)에 코팅된 스틸관(100)을 매설하는 1단 스틸관 천공단계(S900)가 형성되도록 하며, 스틸관(100)에 결합되고, 내부에 진공상태의 열전달물질을 충진하는 히트파이프(200)를 암반층(40)에 일부 노출시켜 매설하기 위해 2단 히트파이프 천공단계(S910)로 형성되는 천공단계;The construction method is to form a one-stage steel pipe drilling step (S900) for embedding the steel pipe 100 coated on the soil layer 30 and the rock layer 40, is coupled to the steel pipe 100, the vacuum therein A perforation step formed of a two-stage heat pipe perforation step (S910) for partially exposing the heat pipe 200 filling the heat transfer material in a state to the rock layer 40;
    상기 형성된 2단 시추공에 열교환장치(1)의 스틸 관(100)과 히트파이프(200)를 매설하는 열교환장치 매설단계(S920);A heat exchanger embedding step of embedding the steel tube 100 and the heat pipe 200 of the heat exchanger 1 in the formed two-stage borehole (S920);
    상기 모래부설층(20)에 열교환기(300)와 유량컨트롤러(400)를 매설하는 단계;Embedding a heat exchanger (300) and a flow controller (400) in the sand laying layer (20);
    상기 열교환장치 매설단계(S920) 후 표토층(10)과 모래부설층(20) 사이에 경고테이프(50)를 매설하는 경고테이프 매설단계(S940)와 시공이 끝난 후 복구시키는 표토층 마감단계(S950);After the heat exchange device buried step (S920) and the warning tape buried step (S940) for embedding the warning tape 50 between the topsoil layer (10) and the sand laying layer (20) and the topsoil layer finishing step (S950) to recover after construction ;
    로 이루어지는 것을 특징으로 하는 지중열을 이용한 일체형 스틸 관과 히트파이프의 열교환장치의 시공방법.Construction method of an integrated steel tube and heat pipe heat exchanger using geothermal heat, characterized in that consisting of.
  2. 제 1항에 있어서,The method of claim 1,
    상기 열교환장치 매설단계(S920)에서 스틸 관(100)을 매설함에 스틸 관(100)을 부식되지 않도록 코팅하여 토사층(30)과 암반층(40)에 형성된 1단 시추공에 매설하는 스틸관 매설단계(S921)와, 스틸관(100) 내부에 결합되며, 암반층(40)에 내부에 진공으로 열전달물질이 충진된 히트파이프(200) 일부분을 돌출시켜 매설하는 히트파이프 매설단계(S922)로 이루어지는 것을 특징으로 하는 지중열을 이용한 일체형 스틸 관과 히트파이프의 열교환장치의 시공방법.Steel tube embedding step of embedding in the first stage borehole formed in the soil layer 30 and the rock layer 40 by coating the steel tube 100 to prevent corrosion in the steel tube 100 embedded in the heat exchange device buried step (S920) ( S921 and a heat pipe buried step S922 coupled to the inside of the steel tube 100 and protruding a portion of the heat pipe 200 filled with the heat transfer material by vacuum in the rock layer 40 is embedded therein. Construction method of an integrated steel tube and heat pipe heat exchanger using underground heat.
  3. 제 1항에 있어서,The method of claim 1,
    상기 열교환장치 매설단계(S920)에서 스틸관(100)과 히트파이프(200)의 매설단계가 형성되면, 스틸관(100)과 히트파이프(200) 사이에 보온/보냉제(150)를 충진하는 스틸관 내부 보온/보냉제 충진단계(S923)를 이루고, 히트파이프(200) 상단에 스프링식으로 감겨 형성되는 유체관 결합단계(S924)로 이루어지는 것을 특징으로 하는 지중열을 이용한 일체형 스틸 관과 히트파이프의 열교환장치의 시공방법.When the steel tube 100 and the heat pipe 200 are embedded in the heat exchange device buried step S920, the steel to fill the thermal insulation / coolant 150 between the steel pipe 100 and the heat pipe 200. Integral steel tube and heat pipe using geothermal heat, characterized in that the inner heat / coolant filling step (S923) inside the tube, consisting of a fluid pipe coupling step (S924) formed by winding the spring on the top of the heat pipe (200). Construction method of heat exchanger.
  4. 제 1항에 있어서,The method of claim 1,
    상기 열교환기(300)와 유량컨트롤러(400)를 토사층(30)과 암반층(40)에 매설된 열교환장치(1)의 유체관(500)과 연결되어, 소음방지와 방열방지를 위해 모래부설층(20)에 매설되는 것으로 열교환기 및 유량컨트롤러 매설단계(S930)를 이루는 것을 특징으로 하는 지중열을 이용한 일체형 스틸 관과 히트파이프의 열교환장치의 시공방법.The heat exchanger 300 and the flow controller 400 are connected to the fluid pipe 500 of the heat exchanger 1 embedded in the soil layer 30 and the rock layer 40, and the sand laying layer for noise prevention and heat dissipation prevention. The method for constructing a heat exchanger of an integrated steel tube and heat pipe using underground heat, comprising the step of embedding the heat exchanger and the flow controller (S930).
PCT/KR2011/004545 2010-10-12 2011-06-22 Method of constructing a heat exchanger of an integrated steel pipe, and heat pipe using underground heat WO2012050292A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100099363A KR101036905B1 (en) 2010-10-12 2010-10-12 Using the heat of underground steel pipes and heat pipe integrated construction method heat exchanger
KR10-2010-0099363 2010-10-12

Publications (1)

Publication Number Publication Date
WO2012050292A1 true WO2012050292A1 (en) 2012-04-19

Family

ID=44366569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/004545 WO2012050292A1 (en) 2010-10-12 2011-06-22 Method of constructing a heat exchanger of an integrated steel pipe, and heat pipe using underground heat

Country Status (2)

Country Link
KR (1) KR101036905B1 (en)
WO (1) WO2012050292A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014081911A3 (en) * 2012-11-21 2014-09-18 Aavid Thermalloy, Llc System and method for geothermal heat harvesting
CN105180488A (en) * 2015-09-15 2015-12-23 戚荣生 Solar heat energy receiving device in desert area
US9512677B2 (en) 2013-03-08 2016-12-06 Gtherm, Inc. System and method for creating lateral heat transfer appendages in a vertical well bore

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085162A (en) * 1994-06-17 1996-01-12 Fujikura Ltd Geothermal energy extractor
KR20070011836A (en) * 2005-07-21 2007-01-25 지앤에스건설 주식회사 Micro-pile installing geothermal pipe for heat pump
KR20070091487A (en) * 2006-03-06 2007-09-11 (주)이앤이 시스템 Heating exchanging system using the ground source
JP2008128494A (en) * 2006-11-16 2008-06-05 Sekisui Chem Co Ltd Geothermal utilization system
KR20090102238A (en) * 2008-03-25 2009-09-30 유한회사 지오선 Temperature maintenance apparatus and method for subterranean heat and heat pump device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085162A (en) * 1994-06-17 1996-01-12 Fujikura Ltd Geothermal energy extractor
KR20070011836A (en) * 2005-07-21 2007-01-25 지앤에스건설 주식회사 Micro-pile installing geothermal pipe for heat pump
KR20070091487A (en) * 2006-03-06 2007-09-11 (주)이앤이 시스템 Heating exchanging system using the ground source
JP2008128494A (en) * 2006-11-16 2008-06-05 Sekisui Chem Co Ltd Geothermal utilization system
KR20090102238A (en) * 2008-03-25 2009-09-30 유한회사 지오선 Temperature maintenance apparatus and method for subterranean heat and heat pump device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014081911A3 (en) * 2012-11-21 2014-09-18 Aavid Thermalloy, Llc System and method for geothermal heat harvesting
US9512677B2 (en) 2013-03-08 2016-12-06 Gtherm, Inc. System and method for creating lateral heat transfer appendages in a vertical well bore
CN105180488A (en) * 2015-09-15 2015-12-23 戚荣生 Solar heat energy receiving device in desert area

Also Published As

Publication number Publication date
KR101036905B1 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
CN103181251B (en) For the underground heat cooling system based on air of the practical rack of telecommunications
WO2012050292A1 (en) Method of constructing a heat exchanger of an integrated steel pipe, and heat pipe using underground heat
JP2008075809A (en) Road heating pipe connection structure, and anticorrosive sleeve to be used for the same and connection method using the same
JP2014163554A (en) Construction method of heat exchange equipment of geothermal heat utilization system and geothermal heat utilization system
CN207365374U (en) A kind of radiation air-conditioner end equipment being integrated in ceiling board
CN109099738A (en) A kind of thin shell type heat exchanger and its construction method of installation for subway tunnel
JP5486070B2 (en) Geothermal heat collector
JP2009198037A (en) Geothermal heat gathering device
CN1207521C (en) Laying method for erectly buried pipe of earth source heat pump
CN210224825U (en) Cable water circulation forced cooling system adopting hose winding
CN108088102A (en) A kind of corrugated stainless steel tubing geothermal source heat-exchange system and its setting method
US7841200B1 (en) Sub-surface tubing spacer means for direct expansion heating/cooling systems
CN108767800B (en) Cable trench for cold areas and construction method thereof
WO2009131377A2 (en) Geothermal heat exchanger using heat pipe
KR101457388B1 (en) Method for construction of ground heat exchanger system using floor space of the underground structures
KR100873566B1 (en) Geothermal exchanger installing by penetrating rig and its construction method
EP2557385A1 (en) Thermal Energy Stores and Heat Exchange Assemblies Therefor
CN219368024U (en) Efficient U-shaped buried pipe heat exchanger
KR100768064B1 (en) Heating exchange system using the geothermal
WO2012144739A2 (en) Insulation structure for building
CN202452643U (en) Coated copper pipe pipe-chase structure of fixed cold air machine
JP2013015283A (en) Geothermal heat utilization system
CN215105249U (en) Cast-in-place pile pre-buried ground source heat pump pipe pile cap node
JP2005069508A (en) Subterranean heat exchanger
CN212026979U (en) Cement corrosion resistant floor heating module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832679

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 18.06.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11832679

Country of ref document: EP

Kind code of ref document: A1