JP2009198037A - Geothermal heat gathering device - Google Patents

Geothermal heat gathering device Download PDF

Info

Publication number
JP2009198037A
JP2009198037A JP2008038131A JP2008038131A JP2009198037A JP 2009198037 A JP2009198037 A JP 2009198037A JP 2008038131 A JP2008038131 A JP 2008038131A JP 2008038131 A JP2008038131 A JP 2008038131A JP 2009198037 A JP2009198037 A JP 2009198037A
Authority
JP
Japan
Prior art keywords
pile
heat
hollow
geothermal heat
collecting apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008038131A
Other languages
Japanese (ja)
Inventor
Yoshihito Sakamoto
義仁 坂本
Masahiro Hayashi
正宏 林
Satoru Kimizuka
哲 君塚
Morio Hashizume
茂利雄 橋爪
Norihiko Koma
憲彦 小間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Welded Pipe Manufacturing Co Ltd
Original Assignee
JFE Steel Corp
JFE Welded Pipe Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Welded Pipe Manufacturing Co Ltd filed Critical JFE Steel Corp
Priority to JP2008038131A priority Critical patent/JP2009198037A/en
Publication of JP2009198037A publication Critical patent/JP2009198037A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a geothermal heat gathering device capable of restraining reduction in heat exchange efficiency, by preventing a heat loss in a pile head part of a heat gathering exclusive pile, when constructing the heat gathering exclusive pipe in land outside of a building, for using geothermal heat regardless of a new or existing building. <P>SOLUTION: A geothermal heat exchange circulating water pipe 2 is inserted from the upper end 1b of a hollow precast pile 1, and water 4 is filled inside the hollow precast pile 1, and a hollow part 6 is formed in an outer peripheral part of the pile 1 up to the predetermined depth from the ground surface 5a in the outer peripheral part of the hollow precast pile 1, and an upper part of the hollow part 6 is blocked up by a pile head cover 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、先端を閉塞した既製杭を利用した地中熱採熱装置に関する。   The present invention relates to a geothermal heat collecting apparatus using a ready-made pile whose end is closed.

地中温度は、ある深度以上になると、ほぼ年平均気温程度の温度で推移し、夏季は外気温よりも低く、冬季は外気温よりも高い。この地中と外気温の温度差を利用して、少ないエネルギーで建物の冷暖房や路面融雪に必要な熱を得る地中熱利用システムがある。このシステムは、欧米では既に広く普及し、わが国でも徐々に普及され始めた。   When the underground temperature exceeds a certain depth, it changes at a temperature of about the average annual temperature, which is lower than the outside temperature in summer and higher than the outside temperature in winter. There is a geothermal heat utilization system that uses the temperature difference between the underground and the outside air temperature to obtain the heat required for building air conditioning and road surface snow melting with a small amount of energy. This system has already spread widely in Europe and the United States, and has gradually started to spread in Japan.

地中熱利用システムにおいては、基礎杭を地中熱交換器として兼用する方法が注目されているが、基礎杭の本数だけで空調負荷をまかなうことができない場合もあり、部分使用や採熱専用杭を別途施工する方法が考えられる。   In geothermal heat utilization systems, the method of using foundation piles as a ground heat exchanger is attracting attention, but there are cases where the number of foundation piles alone cannot cover the air conditioning load. A method of constructing a pile separately is conceivable.

採熱専用杭は、一般に、建物外の土地に施工される場合、外気温の変動や日射の影響を受けて熱損失が大きくなるため、特許文献1が提案され、特許文献1にも示されるように、地中熱交換用の循環水往復配管(熱媒体流動配管)のうち、出口側の配管周囲に断熱材を被覆して熱損失を防止するように対策がなされている。   In general, when a heat-collecting pile is constructed on land outside a building, heat loss increases due to the influence of fluctuations in outside air temperature and solar radiation, so Patent Document 1 is proposed and is also shown in Patent Document 1. Thus, in the circulating water reciprocating pipe (heat medium flow pipe) for underground heat exchange, measures are taken to prevent heat loss by covering the periphery of the outlet pipe with a heat insulating material.

しかし、夏季の地表面温度は、45℃程度まで上昇するのに対し、地中熱交換器入り口部分での循環水温度は45℃よりも低い場合が多く、地中熱交換器入り口部分で循環水は地盤から熱取得し、循環水温度が上昇することになる。よって、地中熱交換器には、空調排熱と入り口部分で取得した熱が導入されるため、効率が低下する。また、冬季には放射冷却によって地表面は外気温度以下になることもあり、循環水は地中熱交換器入り口部分で冷却され、効率が低下する問題がある。また、断熱材を施工する範囲について具体的な開示がないため、どの程度まで断熱をするのが有効か示されていない。   However, while the ground surface temperature in summer rises to about 45 ° C, the circulating water temperature at the underground heat exchanger entrance is often lower than 45 ° C and circulates at the underground heat exchanger entrance. Water gets heat from the ground and the circulating water temperature rises. Therefore, since the heat acquired by the air-conditioning exhaust heat and the entrance is introduced into the underground heat exchanger, the efficiency is lowered. In winter, the ground surface may become lower than the outside air temperature due to radiative cooling, and the circulating water is cooled at the entrance of the underground heat exchanger, resulting in a problem of reduced efficiency. Moreover, since there is no specific disclosure about the range in which the heat insulating material is applied, it is not shown to what extent the heat insulation is effective.

この問題点を解決する方法として、特許文献2が提案され、採熱専用杭を建築物の床下に、基礎杭とは別に施工することで、外気温や日射の影響を受けにくくしている。
特開2004−169985号公報 特開2006−343004号公報
As a method for solving this problem, Patent Document 2 has been proposed, and a heat-extracting pile is constructed under the floor of a building separately from the foundation pile to make it less susceptible to the influence of outside air temperature and solar radiation.
JP 2004-169985 A JP 2006-343004 A

前記特許文献2の方法では、熱媒体流動配管の取り出し口が杭の上端部となるが、床下空間に設けるため、メンテナンス性が高いとはいえない。また、この方法は、新築時には施工可能だが、既存の建物においては、建物内部に新たに杭打ちすることはできないため採用することはできない。   In the method of Patent Document 2, the outlet of the heat medium flow pipe serves as the upper end of the pile, but it cannot be said that the maintainability is high because it is provided in the underfloor space. This method can be constructed at the time of new construction, but it cannot be used in existing buildings because it cannot be piled up inside the building.

本発明は、上記のような事情に鑑みてなされたものであり、建物の新築、既設を問わずに地中熱利用を可能とするために、建物外の土地に採熱専用杭を施工するのに際し、採熱専用杭の杭頭部分での熱損失を防止し、若しくは地中熱交換器の負荷を低減し、熱交換効率の低下を抑制することができる地中熱採熱装置を提供することを目的とする。   The present invention has been made in view of the circumstances as described above. In order to enable the use of underground heat regardless of whether the building is newly constructed or existing, a pile exclusively for heat collection is constructed on the land outside the building. Provides a geothermal heat sampling device that prevents heat loss at the pile head of a dedicated pile for heat collection, or reduces the load on the underground heat exchanger and suppresses the decline in heat exchange efficiency. The purpose is to do.

前記課題を解決するために、本発明は以下の特徴を有する。   In order to solve the above problems, the present invention has the following features.

[1]先端を閉塞した中空管を地中に貫入し、前記中空管の内部に採熱用の循環配管を配置し、前記中空管の内部に充填材を施工した地中熱採熱装置において、
前記中空管の外周部に、地表から所定の深さまで空間を形成し、かつ、その上部を閉塞したことを特徴とする地中熱採熱装置。
[1] A geothermal heat sampling system in which a hollow tube with a closed end is inserted into the ground, a circulation pipe for heat collection is arranged inside the hollow tube, and a filler is installed inside the hollow tube. In the thermal device,
A geothermal heat collecting apparatus characterized in that a space is formed in the outer peripheral portion of the hollow tube from the ground surface to a predetermined depth and the upper portion thereof is closed.

[2]前記中空管の外周部に形成した空間に、断熱材を施工したことを特徴とする前記[1]に記載の地中熱採熱装置。   [2] The geothermal heat collecting apparatus according to [1], wherein a heat insulating material is installed in a space formed in an outer peripheral portion of the hollow tube.

[3]前記中空管の外周部に形成した空間に、保水材を充填したことを特徴とする前記[1]に記載の地中熱採熱装置。   [3] The underground heat collecting apparatus according to [1], wherein a space formed in an outer peripheral portion of the hollow tube is filled with a water retention material.

[4]前記中空管の外周部に形成した空間の深さが50cm以上であることを特徴とする前記[1]〜[3]のいずれかに記載の地中熱採熱装置。   [4] The underground heat collecting apparatus according to any one of [1] to [3], wherein a depth of a space formed in an outer peripheral portion of the hollow tube is 50 cm or more.

[5]前記中空管の外周部に形成した空間の深さが3m以下であることを特徴とする前記[1]〜[4]のいずれかに記載の地中熱採熱装置。   [5] The underground heat collecting apparatus according to any one of [1] to [4], wherein a depth of a space formed in an outer peripheral portion of the hollow tube is 3 m or less.

本発明では、先端を閉塞した中空管(杭)を地中(地盤)に貫入し、前記中空管の内部に採熱用の循環配管を配置し、前記中空管の内部に充填材を施工した地中熱採熱装置において、前記中空管の外周部に、地表から所定の深さまで空間を形成し、かつ、その上部を閉塞しているので、杭頭部分が地盤と絶縁され、熱影響を緩和することができる。その結果、杭頭部分での熱損失を防止して、熱交換効率の低下を抑制することができる。   In the present invention, a hollow tube (pile) whose tip is closed is penetrated into the ground (ground), a circulation pipe for heat collection is arranged inside the hollow tube, and a filler is placed inside the hollow tube. In the geothermal heat collecting device that has been constructed, a space is formed from the ground surface to a predetermined depth in the outer peripheral portion of the hollow tube, and the upper portion is closed, so that the pile head portion is insulated from the ground. , Can reduce the heat effect. As a result, heat loss at the pile head portion can be prevented, and a decrease in heat exchange efficiency can be suppressed.

さらに、前記中空管の外周部に形成した空間に断熱材を施工することにより、上記効果をより確実にすることができる。   Furthermore, the said effect can be made more reliable by constructing a heat insulating material in the space formed in the outer peripheral part of the said hollow tube.

また、前記中空管の外周部に形成した空間に保水材を充填することにより、降雨あるいは散水によって保持された保水材内部の水が上部から蒸発することで、日射等によって上昇した地表面部分の熱影響を除去することができる。   Also, by filling the space formed in the outer peripheral portion of the hollow tube with a water retention material, the water inside the water retention material held by rain or water spray evaporates from the top, and the ground surface portion that has risen due to solar radiation or the like The heat effect of can be removed.

本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described with reference to the drawings.

[実施の形態1]
図1は本発明の実施の形態1に係る地中熱採熱装置の説明図である。
[Embodiment 1]
FIG. 1 is an explanatory diagram of a geothermal heat collecting apparatus according to Embodiment 1 of the present invention.

図1に示すように、この実施の形態1に係る地中熱採熱装置の構造は、先端(下端)1aを閉塞して地盤5に貫入した中空既製杭1を地中熱交換体として利用する中空既製杭の杭頭部の構造であって、中空既製杭1の後端(上端)1bから地中熱交換用の循環水配管2を中空既製杭1内に挿入し、中空既製杭1の内部に充填材(ここでは、水)4を充填し、その上、杭頭部の外周部(中空既製杭1の外周部)に、地表5aから所定の深さまで、杭1の外周よりも所定量(例えば、5cm程度)大きな中空部(空間部)6を形成するとともに、中空部6の上部を杭頭蓋3で閉塞している。   As shown in FIG. 1, the structure of the underground heat collecting apparatus according to the first embodiment uses a hollow ready-made pile 1 that closes the tip (lower end) 1a and penetrates into the ground 5 as a ground heat exchanger. It is the structure of the pile head of the hollow ready-made pile, and it inserts the circulating water piping 2 for underground heat exchange into the hollow ready-made pile 1 from the rear end (upper end) 1b of the hollow ready-made pile 1, and the hollow ready-made pile 1 Is filled with a filler (in this case, water) 4, and on the outer periphery of the pile head (the outer periphery of the hollow ready-made pile 1) from the ground surface 5 a to a predetermined depth than the outer periphery of the pile 1. A predetermined amount (for example, about 5 cm) of a large hollow portion (space portion) 6 is formed, and the upper portion of the hollow portion 6 is closed with a pile skull 3.

この中空部6の形成方法としては、中空既製杭1の貫入前に掘削することが望ましく、孔壁保護のために、鋼管、樹脂管などのケーシング(図示せず)を用いてもよい。なお、前述したように、中空部6の上部は杭頭蓋3で閉塞するが、杭頭(中空既製杭1の上端)1bを地盤面5aより下方にするか、またはケーシングの上端を地盤面5aより上方にするなどして、杭頭1bと杭頭蓋3を接触させないようにする。   As a method for forming the hollow portion 6, it is desirable to excavate before the hollow ready-made pile 1 penetrates, and a casing (not shown) such as a steel pipe or a resin pipe may be used to protect the hole wall. As described above, the upper portion of the hollow portion 6 is closed by the pile head 3, but the pile head (the upper end of the hollow ready-made pile 1) 1b is placed below the ground surface 5a, or the upper end of the casing is the ground surface 5a. The pile head 1b and the pile cradle 3 are not brought into contact with each other by, for example, further upward.

このようにして、この実施の形態1においては、中空既製杭1の外周部に、地表5aから所定の深さまで中空部6を形成し、かつ、その上部を杭頭蓋3で閉塞しているので、杭頭部分が地盤5と絶縁され、熱影響を緩和することができる。その結果、杭頭部分での熱損失を防止して、熱交換効率の低下を抑制することができる。   Thus, in this Embodiment 1, since the hollow part 6 is formed in the outer peripheral part of the hollow ready-made pile 1 from the ground surface 5a to the predetermined depth, and the upper part is obstruct | occluded with the pile skull 3. The pile head portion is insulated from the ground 5, and the thermal effect can be mitigated. As a result, heat loss at the pile head portion can be prevented, and a decrease in heat exchange efficiency can be suppressed.

なお、中空既製杭1のサイズ、循環水配管2のサイズおよび数量は、必要に応じて決定すれば良く、ここでは規定しない。   In addition, what is necessary is just to determine the size of the hollow ready-made pile 1, and the size and quantity of the circulating water piping 2 as needed, and is not prescribed | regulated here.

また、杭頭外周部に設ける中空部6の深さは50cm以上で、最深でも3m以下が望ましく、地中熱交換装置の全長と比較して過大にならないように、概ね全長の5分の1以下とすることが望ましい。中空部6の径は任意に定めることができる。   In addition, the depth of the hollow portion 6 provided on the outer periphery of the pile head is 50 cm or more, preferably 3 m or less at the deepest, and is approximately one-fifth of the total length so as not to be excessive compared with the total length of the underground heat exchange device. The following is desirable. The diameter of the hollow portion 6 can be arbitrarily determined.

ちなみに、地表面部分の熱影響は、概ね深さ50cm程度までが大きいことが地中温度観測によってわかっており、その影響範囲において対策を施すことによって、低コストで熱影響を有効に排除することができるので、中空既製杭1の外周部に形成する中空部6の深さを50cm以上とすることが望ましい。   By the way, it is known from the underground temperature observation that the thermal effect of the ground surface part is large up to about 50 cm deep, and by taking measures in the affected range, the thermal effect should be effectively eliminated at low cost. Therefore, it is desirable that the depth of the hollow portion 6 formed on the outer peripheral portion of the hollow ready-made pile 1 is 50 cm or more.

しかし、地中熱交換装置は、地盤5と接触することで熱伝導により採熱または排熱を行うため、断熱等の範囲を大きくしすぎると地中熱交換装置の有効長が不足してしまうため、その範囲を明確に設定する必要がある。図2に示すように、地表から5m程度以上の深部の地中温度は、外気温等の影響がほとんど無く、ほぼ一定の温度(以下、深部温度と記す)を保っている。一方、地表から5m程度までの地表に近い部分の地中温度は外気温等の影響を受けているが、1月、7月のデータをみると地表からおよそ3mの深さで変曲点があり、この部分の地中温度は、夏は深部温度よりも低く、冬は深部温度よりも高くなっている。この部分を有効に活用することで、採熱に効果的な設計ができるため、中空既製杭1の外周部に形成する中空部6の深さを3m以下とすることによって、夏季には深部よりも低温の部分、冬季には深部よりも高温の部分を活用することができる。   However, since the underground heat exchange device collects heat or exhausts heat by contact with the ground 5, if the range of heat insulation or the like is too large, the effective length of the underground heat exchange device will be insufficient. Therefore, it is necessary to set the range clearly. As shown in FIG. 2, the underground temperature at a depth of about 5 m or more from the surface of the earth is almost unaffected by the outside air temperature and the like, and is maintained at a substantially constant temperature (hereinafter referred to as a deep temperature). On the other hand, the underground temperature of the part near the ground surface from the ground surface to about 5m is affected by the outside air temperature etc., but when looking at the data in January and July, the inflection point is about 3m deep from the ground surface. Yes, the underground temperature in this area is lower than the deep temperature in summer and higher than the deep temperature in winter. By effectively utilizing this part, an effective design for heat collection can be performed. Therefore, by setting the depth of the hollow part 6 formed on the outer peripheral part of the hollow ready-made pile 1 to 3 m or less, in the summer, from the deep part It is possible to utilize the low temperature part and the hotter part than the deep part in winter.

[実施の形態2]
図3は本発明の実施の形態2に係る地中熱採熱装置の説明図である。
[Embodiment 2]
FIG. 3 is an explanatory diagram of a geothermal heat collecting apparatus according to Embodiment 2 of the present invention.

図3に示すように、この実施の形態2に係る地中熱採熱装置は、実施の形態1の地中熱採熱装置における中空部6に断熱材7を施工したものである。   As shown in FIG. 3, the geothermal heat collecting apparatus according to the second embodiment is obtained by constructing a heat insulating material 7 in the hollow portion 6 in the geothermal heat collecting apparatus of the first embodiment.

これによって、この実施の形態2においては、杭頭部分への熱影響を緩和するという実施の形態1の効果をより確実にすることができる。   Thereby, in this Embodiment 2, the effect of Embodiment 1 of relieving the thermal influence to a pile head part can be made more reliable.

なお、断熱材7は、吸水性の低い樹脂系断熱材が望ましいが、孔壁にケーシングを用いて地盤面よりも高くした場合(図示せず)は、グラスウール、ロックウールなど繊維系断熱材を用いてもよい。断熱材7の厚さは樹脂系断熱材では2.5cm以上、繊維系断熱材では5cm以上が望ましい。また、断熱材7は、杭1外周の中空部6のほか、杭頭蓋3と杭頭1bの間にも施工することが望ましい。さらに、循環水配管2の地上部分を断熱するとより効果的である。   The heat insulating material 7 is preferably a resin-based heat insulating material with low water absorption, but if it is made higher than the ground surface using a casing for the hole wall (not shown), a fiber-based heat insulating material such as glass wool or rock wool is used. It may be used. The thickness of the heat insulating material 7 is preferably 2.5 cm or more for the resin heat insulating material and 5 cm or more for the fiber heat insulating material. Moreover, as for the heat insulating material 7, it is desirable to construct also between the pile head 3 and the pile head 1b besides the hollow part 6 of the outer periphery of the pile 1. FIG. Furthermore, it is more effective to insulate the ground portion of the circulating water pipe 2.

[実施の形態3]
図4は本発明の実施の形態3に係る地中熱採熱装置の説明図である。
[Embodiment 3]
FIG. 4 is an explanatory diagram of a geothermal heat collecting apparatus according to Embodiment 3 of the present invention.

図4に示すように、この実施の形態3に係る地中熱採熱装置は、実施の形態2の地中熱採熱装置に対して、杭頭部1bを地盤面5bより高い位置に配置したものである。この場合は、地上に出る部分についても連続して断熱材7を施工する。循環水配管2も併せて断熱を行い、断熱材7表面にはアルミ箔などを施工し、日射の影響を軽減するとより望ましい。   As shown in FIG. 4, the geothermal heat collecting apparatus according to the third embodiment arranges the pile head 1b at a position higher than the ground surface 5b with respect to the geothermal heat collecting apparatus of the second embodiment. It is a thing. In this case, the heat insulating material 7 is continuously constructed also about the part which comes out on the ground. It is more desirable to insulate the circulating water pipe 2 together and to apply an aluminum foil or the like on the surface of the heat insulating material 7 to reduce the influence of solar radiation.

[実施の形態4]
図5は本発明の実施の形態4に係る地中熱採熱装置の説明図である。
[Embodiment 4]
FIG. 5 is an explanatory diagram of a geothermal heat collecting apparatus according to Embodiment 4 of the present invention.

図4に示すように、この実施の形態4に係る地中熱採熱装置は、実施の形態1の地中熱採熱装置における中空部6に保水材8を施工したものである。   As shown in FIG. 4, the geothermal heat collecting apparatus according to the fourth embodiment is constructed by installing a water retaining material 8 in the hollow portion 6 in the geothermal heat collecting apparatus of the first embodiment.

これによって、この実施の形態4においては、降雨あるいは散水によって保持された保水材8内部の水が上部から蒸発することで、日射等によって上昇した地表面5a部分の熱影響を除去することができる。したがって、冷房用の地中熱採熱装置に有効な形態である。   As a result, in the fourth embodiment, the water inside the water retaining material 8 held by rain or water spray evaporates from the upper portion, so that the thermal effect of the portion of the ground surface 5a that has risen due to solar radiation or the like can be removed. . Therefore, this is an effective form for a geothermal heat collecting device for cooling.

なお、保水材8は、高分子ポリマー、無機系多孔質体などを任意に選択するが、無機系多孔質体が最も望ましく、製鋼スラグやロックウール発泡体等を必要に応じてセメントを混入して充填施工する。   The water retention material 8 is arbitrarily selected from a polymer, an inorganic porous material, etc., but the inorganic porous material is most desirable, and steelmaking slag, rock wool foam, etc. are mixed with cement as necessary. Fill and install.

また、この実施の形態4では、杭頭蓋3を地盤面5aより下方の位置に配置し、その上部にも保水材8を施工することで、効率を向上させている。さらに、散水装置を設けて保水材8部分に散水してもよい。   Moreover, in this Embodiment 4, the efficiency is improved by arrange | positioning the pile skull 3 in the position below the ground surface 5a, and constructing the water retaining material 8 also in the upper part. Furthermore, a watering device may be provided to sprinkle the water retaining material 8 portion.

本発明の実施の形態1に係る地中熱採熱装置の説明図である。It is explanatory drawing of the geothermal heat collecting apparatus which concerns on Embodiment 1 of this invention. 季節毎の地中温度分布を示した図である。It is the figure which showed the underground temperature distribution for every season. 本発明の実施の形態2に係る地中熱採熱装置の説明図である。It is explanatory drawing of the geothermal heat collecting apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る地中熱採熱装置の説明図である。It is explanatory drawing of the geothermal heat collecting apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る地中熱採熱装置の説明図である。It is explanatory drawing of the geothermal heat collecting apparatus which concerns on Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 中空既製杭
1a 中空既製杭の先端(下端)
1b 中空既製杭の後端(上端)
2 循環水配管
3 杭頭蓋
4 充填材(充填水)
5 地盤
5a 地表面
6 中空部
7 断熱材
8 保水材
1 Hollow ready-made pile 1a Tip (lower end) of hollow ready-made pile
1b Rear end (upper end) of hollow ready-made pile
2 Circulating water piping 3 Pile skull 4 Filling material (filled water)
5 Ground 5a Ground surface 6 Hollow part 7 Heat insulating material 8 Water retaining material

Claims (5)

先端を閉塞した中空管を地中に貫入し、前記中空管の内部に採熱用の循環配管を配置し、前記中空管の内部に充填材を施工した地中熱採熱装置において、
前記中空管の外周部に、地表から所定の深さまで空間を形成し、かつ、その上部を閉塞したことを特徴とする地中熱採熱装置。
In a geothermal heat collecting apparatus in which a hollow tube with a closed end is inserted into the ground, a circulation pipe for heat collection is arranged inside the hollow tube, and a filler is installed inside the hollow tube ,
A geothermal heat collecting apparatus characterized in that a space is formed in the outer peripheral portion of the hollow tube from the ground surface to a predetermined depth and the upper portion thereof is closed.
前記中空管の外周部に形成した空間に、断熱材を施工したことを特徴とする請求項1に記載の地中熱採熱装置。   The underground heat collecting apparatus according to claim 1, wherein a heat insulating material is installed in a space formed in an outer peripheral portion of the hollow tube. 前記中空管の外周部に形成した空間に、保水材を充填したことを特徴とする請求項1に記載の地中熱採熱装置。   The geothermal heat collecting apparatus according to claim 1, wherein the space formed in the outer peripheral portion of the hollow tube is filled with a water retention material. 前記中空管の外周部に形成した空間の深さが50cm以上であることを特徴とする請求項1〜3のいずれかに記載の地中熱採熱装置。   The depth of the space formed in the outer peripheral part of the said hollow tube is 50 cm or more, The geothermal heat collecting apparatus in any one of Claims 1-3 characterized by the above-mentioned. 前記中空管の外周部に形成した空間の深さが3m以下であることを特徴とする請求項1〜4のいずれかに記載の地中熱採熱装置。   The depth of the space formed in the outer peripheral part of the said hollow tube is 3 m or less, The geothermal heat collecting apparatus in any one of Claims 1-4 characterized by the above-mentioned.
JP2008038131A 2008-02-20 2008-02-20 Geothermal heat gathering device Pending JP2009198037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008038131A JP2009198037A (en) 2008-02-20 2008-02-20 Geothermal heat gathering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038131A JP2009198037A (en) 2008-02-20 2008-02-20 Geothermal heat gathering device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012250754A Division JP5486070B2 (en) 2012-11-15 2012-11-15 Geothermal heat collector

Publications (1)

Publication Number Publication Date
JP2009198037A true JP2009198037A (en) 2009-09-03

Family

ID=41141727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038131A Pending JP2009198037A (en) 2008-02-20 2008-02-20 Geothermal heat gathering device

Country Status (1)

Country Link
JP (1) JP2009198037A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097741A (en) * 2010-10-26 2012-05-24 Siemens Ag Method for cooling carrier fluid of power plant, power plant and cooling system
JP2015083911A (en) * 2013-10-26 2015-04-30 重信 宮本 Underground heat exchange pile
JP2015098966A (en) * 2013-11-19 2015-05-28 株式会社大林組 Method for building up pipe member
JP2016194411A (en) * 2016-08-25 2016-11-17 Jfeスチール株式会社 Underground heat exchanger
CN115324038A (en) * 2021-12-17 2022-11-11 重庆大学 Cast-in-place heat exchange pile-wall supporting structure and construction method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123188A (en) * 1987-11-06 1989-05-16 Matsushita Seiko Co Ltd Apparatus for detecting freezing of road surface
JPH0587467U (en) * 1992-04-24 1993-11-26 ケーワイ建設工業株式会社 Cooling ventilation system
JPH0960983A (en) * 1995-08-25 1997-03-04 Akimi Suzawa Underground heat exchanger
JP2001289518A (en) * 2000-04-05 2001-10-19 S X L Corp Outside-air inlet device for building
JP2005069537A (en) * 2003-08-22 2005-03-17 Asahi Kasei Homes Kk Buried pipe for heat exchange
JP2005098542A (en) * 2003-09-22 2005-04-14 Asahi Kasei Homes Kk Terrestrial heat exchanging device
JP2006038256A (en) * 2004-07-22 2006-02-09 Toko Kogyo:Kk Underground heat exchanger
JP2007017141A (en) * 2005-06-11 2007-01-25 Yasushi Miyauchi Auxiliary burying material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123188A (en) * 1987-11-06 1989-05-16 Matsushita Seiko Co Ltd Apparatus for detecting freezing of road surface
JPH0587467U (en) * 1992-04-24 1993-11-26 ケーワイ建設工業株式会社 Cooling ventilation system
JPH0960983A (en) * 1995-08-25 1997-03-04 Akimi Suzawa Underground heat exchanger
JP2001289518A (en) * 2000-04-05 2001-10-19 S X L Corp Outside-air inlet device for building
JP2005069537A (en) * 2003-08-22 2005-03-17 Asahi Kasei Homes Kk Buried pipe for heat exchange
JP2005098542A (en) * 2003-09-22 2005-04-14 Asahi Kasei Homes Kk Terrestrial heat exchanging device
JP2006038256A (en) * 2004-07-22 2006-02-09 Toko Kogyo:Kk Underground heat exchanger
JP2007017141A (en) * 2005-06-11 2007-01-25 Yasushi Miyauchi Auxiliary burying material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012097741A (en) * 2010-10-26 2012-05-24 Siemens Ag Method for cooling carrier fluid of power plant, power plant and cooling system
JP2015083911A (en) * 2013-10-26 2015-04-30 重信 宮本 Underground heat exchange pile
JP2015098966A (en) * 2013-11-19 2015-05-28 株式会社大林組 Method for building up pipe member
JP2016194411A (en) * 2016-08-25 2016-11-17 Jfeスチール株式会社 Underground heat exchanger
CN115324038A (en) * 2021-12-17 2022-11-11 重庆大学 Cast-in-place heat exchange pile-wall supporting structure and construction method thereof

Similar Documents

Publication Publication Date Title
US20070151704A1 (en) Geothermal heat exchange system
JP5486070B2 (en) Geothermal heat collector
JP5963790B2 (en) Groundwater circulation type geothermal heat collection system and geothermal use air conditioning or hot water supply system
JP2009198037A (en) Geothermal heat gathering device
JP4785098B2 (en) Underground heat exchanger buried structure
US20150007960A1 (en) Column Buffer Thermal Energy Storage
EP2619509B1 (en) System for storing thermal energy, heating assembly comprising said system and method of manufacturing said system
JP2006207919A (en) Cooling/heating device and method using underground heat
JP2010151351A (en) Underground heat exchanger burying structure
JP4360690B1 (en) Rainwater infiltration type underground heat exchange system
JP2008304141A (en) Heat storage snow melting system using solar heat
JP2006010098A (en) House air conditioning equipment utilizing geothermal-heat
JP2007292445A (en) Cooling and heating system utilizing geothermal heat
KR101036905B1 (en) Using the heat of underground steel pipes and heat pipe integrated construction method heat exchanger
JP4632760B2 (en) Geothermal equipment
KR101303575B1 (en) Combined type geothermal system and construction method using large aperture punchung
KR101457388B1 (en) Method for construction of ground heat exchanger system using floor space of the underground structures
JP2005273235A (en) Building using underground heat
JP4609946B2 (en) Underground heat storage system and reserve water source for seasonal energy use
JP2007127397A (en) Geothermal heat utilization system of house in cold area
CN113339873A (en) Novel cold-proof and anti-freezing system and method for cold-region high-ground-temperature tunnel
JP2010281494A (en) Recovery utilization system of geothermal heat
KR20180136889A (en) Geothermal Heat Exchanging System and Construction Method thereof
JP2007139236A (en) Underfloor air-conditioning device and method
KR101124360B1 (en) Subterranean heat of Heat pump system use Well pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100818

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120327

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402