WO2012048880A2 - Système de gestion énergétique, procédé de distribution d'énergie dans un système de gestion énergétique, terminal pour un système de gestion énergétique et appareil central pour un système de gestion énergétique - Google Patents

Système de gestion énergétique, procédé de distribution d'énergie dans un système de gestion énergétique, terminal pour un système de gestion énergétique et appareil central pour un système de gestion énergétique Download PDF

Info

Publication number
WO2012048880A2
WO2012048880A2 PCT/EP2011/005140 EP2011005140W WO2012048880A2 WO 2012048880 A2 WO2012048880 A2 WO 2012048880A2 EP 2011005140 W EP2011005140 W EP 2011005140W WO 2012048880 A2 WO2012048880 A2 WO 2012048880A2
Authority
WO
WIPO (PCT)
Prior art keywords
energy
central
unit
terminals
storage unit
Prior art date
Application number
PCT/EP2011/005140
Other languages
German (de)
English (en)
Other versions
WO2012048880A3 (fr
Inventor
Markus Ehinger
Arnd MÜNZEBROCK
Original Assignee
Rockwell Collins Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwell Collins Deutschland Gmbh filed Critical Rockwell Collins Deutschland Gmbh
Publication of WO2012048880A2 publication Critical patent/WO2012048880A2/fr
Publication of WO2012048880A3 publication Critical patent/WO2012048880A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00022Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using wireless data transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially

Definitions

  • ENERGY MANAGEMENT SYSTEM METHOD FOR DISTRIBUTING ENERGY IN AN ENERGY MANAGEMENT SYSTEM, END UNIT FOR AN ENERGY MANAGEMENT SYSTEM AND
  • the invention relates to an energy management system having at least two terminals and at least one central unit, which are interconnected via an energy distribution network, wherein each of the at least two terminals has an energy storage unit, an energy conversion unit and a communication unit and the central unit has a central communication unit and a central processor. Moreover, the invention relates to a method for distributing energy in such an energy management system and for a corresponding terminal and a central device.
  • sources of electrical energy that provide electrical power, such as: primary and secondary batteries, solar cells, fuel cells, internal combustion engines or wind- or hydro-powered generators, thermoelectric generators, etc. Such sources provide electrical energy with characteristic, but sometimes very different electrical parameters.
  • the electrical parameters mentioned include, inter alia, the type of current, ie whether it is direct, alternating or three-phase current, optionally the frequency and the amplitude, optionally the polarity, the voltage, the current strength, or even dynamic parameters, such as the peak strength , etc.
  • Devices are known from the prior art, which can couple a source with multiple consumers, for example in the form of a power strip, wherein on the consumer side at the outputs of the same electrical voltage can be tapped, so that several consumers of the same voltage operated from a source can be.
  • power adapters that allow connection of a source to a consumer that allows variable voltage conversion so that the voltage required by the particular consumer can be adjusted at the output of the mains adapter.
  • hybrid solutions in which a consumer is supplied by several sources at the same time.
  • such devices are at least partially incorporated in a device, such as.
  • an energy management module for coupling sources of electrical energy with consumers of electrical energy, comprising a plurality of input interfaces for connecting sources of electrical energy, a plurality of output interfaces for connecting consumers of electrical energy and at least one energy management device for coupling of input interfaces with output interfaces such that at least the following couplings can be made: a first input interface having a first output interface, a second input interface having the first output interface, the first and / or the first input interface second input interface with a second output interface.
  • the converters and methods for switching on and off are centrally located in the energy management module. All energy is supplied to this energy management module via dedicated cables. There, the energy is converted and discharged via these cables, optimally prepared for the connected device. In highly distributed systems, however, the configuration of the interfaces, their large number and the plug variations becomes problematic. In mixed systems it is not possible to connect consumers and batteries or accumulators in parallel because of different voltage levels and power consumption.
  • the object is achieved according fiction, by an energy management system with the features of claim 1, by a method for distributing energy in an energy management system according to claim 10, by a terminal for an energy management system according to claim 1 1 and a central device for an energy management system according to claim 15.
  • FIG. 1 shows a schematic block diagram of an energy management system according to an exemplary embodiment of the invention.
  • a schematic block diagram of another embodiment of an energy management system according to the invention a display device of a central device according to an embodiment of the invention, a vest with attached terminals and a central device according to another embodiment of the invention, another example of a terminal according to an embodiment of the invention, and a schematic flow diagram of a method according to an embodiment of the invention.
  • an energy management system 100 is shown according to an embodiment of the invention.
  • the energy management system has at least two terminals 102, 104 and a central unit 1 06, which are connected via an energy distribution network 107, for example, a bus system such as power BUS.
  • One of the terminals 102 may be, for example, a battery or an accumulator, another terminal 104, for example, a radio.
  • the two terminals have an energy storage unit 110, an energy conversion unit 112 and a communication unit 114.
  • the central device 106 has a central communication unit 120 and a central processor 122.
  • the communication units 1 14 of the terminals 102, 104 are designed such that they transfer the energy requirement or the energy supply of the energy storage units 110 of the respective terminal 102, 104 to the central communication unit 120.
  • the central processor 122 is designed such that it calculates from the transmitted energy requirement or energy supply how the energy is to be distributed between the terminals and calculates values for the electrical parameters present on the energy distribution network 107.
  • the electrical parameters can be the type of current, ie whether it is direct, alternating or three-phase current, if appropriate the frequency and the amplitude, if necessary the polarity, the voltage tion, the amperage, or even dynamic parameters, such as the peak strength, etc. be.
  • the central communication unit 120 is further configured to transmit the calculated values to the communication units 1 14 of the terminals 102, 104.
  • the energy conversion units 1 12 of the terminals 102, 104 are designed so that they provide energy according to the calculated electrical parameters from the respective energy storage unit 110 on the energy distribution network 107, or energy with the calculated values from the energy distribution network 107 in FIG the respective energy storage unit 1 10 feed.
  • the energy conversion units 1 12 are designed so that they can provide both the energy on the power distribution network 107 available, as well as energy from the power distribution network 107 in the energy storage unit 1 10 can feed.
  • the energy conversion unit 1 12 can be designed to take on protective functions of the terminal 102, 104 to avoid undervoltage, overcharging, thermal and short-circuit protection.
  • the energy conversion unit 1 12 can be operable in one of three operating modes, wherein in a first operating mode via the energy conversion unit 1 12 a predetermined power from the energy storage unit 1 10 is removable, and this fed into the power distribution network 107 and thereby existing there Voltage level is transformed, in a second mode, a fixed output voltage is generated and in a third mode of operation, the energy storage unit 1 10 is loaded with an adjustable power. If several energy storage units 110 are available in, for example, a plurality of terminals 102, 104, the total energy requirement can be covered by different sources. In this case, to avoid a conflict between the energy storage units 110, the power controlled operation mode of the power conversion unit 12 may be used by setting a differential internal resistance of the terminal 102, 104 (a power source).
  • the power-controlled mode (energy mode) also ensures that peak loads come from the energy sources with the lowest (programmed) differential internal resistance. Furthermore, the energy mode can also be reversed current direction, z. B. be used when charging power storage.
  • the communication units 1 14 of the terminals 102, 104 may be designed such that a message of an input voltage range of the terminal 102, 104 can be transmitted to the central communication unit 120 and the central processor 122 is designed so that the values taking into account the input voltage ranges of Terminals 102, 104 can be determined.
  • a capacitor 130 and / or a central energy storage unit 132, 134 may be provided in the central device 106 to compensate for power surges and power drops on the power distribution network 107.
  • the communication units 1 14 of the terminals 102, 104 are designed to transmit operating modes of the terminals to the central unit 106 and the central processor 122 is configured to allow or deny the operating modes.
  • the terminals 102, 104 may have standardized interfaces 140 for connection to the power distribution network 107.
  • the central device 106 may include a protection circuit 145 for taking over protective functions of the terminal such as avoidance of undervoltage, over-charging, thermal and short-circuit protection.
  • the central device 106 may include dedicated interfaces 150 for high performance devices, solar cells, and fuel cells.
  • a radio as a terminal 104, this can have, for example, a microprocessor 1 62 and radio-specific functions 160.
  • each terminal a number, for example eight, independent equivalent active electrical connectors are provided for each terminal.
  • the power conversion unit 110 in each terminal is It should be understood that regardless of the exact physical connection (ie whichever connector of the terminal is connected to which single conductor of the PowerBus) a correct electrical connection is always set (eg by means of a suitable active rectifier circuit).
  • a communication via a e.g. capacitively coupled Powerlinemodem started. If this communication finds a partner in the form of a central device, device-specific data is initially exchanged. These are used to define electrical operating parameters of the power distribution network, which are acceptable for all terminals.
  • the focus is not on the negotiation of fixed, narrowly tolerated parameters, but explicitly on extended areas, eg. a voltage range of 18V to 24V. It is the stated aim to exploit these parameter ranges in order to avoid disturbances, e.g. With the aid of the exact value of the differential internal resistance, energy sources for constant base load and those for peak loads are distinguished, for example, and these energy sources are given the opportunity to control themselves largely intelligently.
  • the overall system can be designed so that various operating states can be set on the central unit, in which different operating modes (eg On, Off, Standby or Suspend) are set at individual terminals.
  • different operating modes eg On, Off, Standby or Suspend
  • Examples of predefined operating states of a particular military application are: marching, standby, observation, sneaking, targeting.
  • the overall system is designed such that different energy sources, e.g. a fuel cell, a battery, a solar panel or a sterling machine can be integrated.
  • the central unit periodically reconfigures the entire system (eg by means of the differential internal resistances in the power-controlled operating mode) taking into account the specific characteristics and permitted operating conditions of the terminals (including the energy sources) and the environmental parameters (eg temperature, incidence of light, operating state, time of day , Energy reserves, speed, vibration, historical data) to achieve optimal overall efficiency.
  • the task of the central device 106 or the Powermanager is also to protect the system components from harmful conditions.
  • configured the central unit the differential internal resistance of the batteries and the internal power storage (eg double-layer capacitors, ultracapacitors, hybrid capacitors) such that peak loads are mainly covered by the cold-insensitive capacitors instead of the battery.
  • the aim of the described energy management system is to relieve its user of configuration work on various devices and to save energy, if necessary supported by a heuristic database about the use of the device in the past.
  • the special feature of the energy conversion unit 1 10 complies with these requirements, by this initially separated from the connectors. Only when it has been clearly communicated in which mode it can be switched on, and this mode was set, the power conversion unit 1 12 is coupled to the grid.
  • the surrounding protection functions are used to detect faults and to protect the network or the device.
  • a microcontroller is used to control the energy conversion unit 110. This allows the continuous transition from a voltage regulation as up or down converter, in both current flow directions and at the same time the setting of the transfer performance.
  • a detailed embodiment of a terminal 102/104 may therefore include: eight equivalent electrical connectors,
  • Security functions with higher priority protection against eg. Overvoltage, undervoltage, overcurrent, overheating, overdischarge, measuring functions: eg mains voltage, mains current, device voltage, device current, temperature, status (on, off, energy saving mode, error), microcontroller for controlling the network coupling and interface functionality to the device or for controlling simple device functions ( On / Off / Energy Saving Mode) Battery charging and battery management functions such as charge level monitoring.
  • the powermanager can be implemented as a software package that uses the interface functionality of the powerlinemodem:
  • a device manager that optimizes the use of devices and defines acceptable communication paths between devices
  • a mission manager who can plan the energy consumption
  • a mission assistant who supports the implementation of the mission with advice or suggestions and device information trying to find the optimal or most energy-saving system state for the current situation.
  • FIG. 2 shows a further exemplary embodiment of an energy management system 200 according to the invention, in which terminals 102 are both designed as batteries or accumulators.
  • the two terminals 102 are connected via the power distribution network 107 to the central unit 1 06.
  • the current flows determined on the energy distribution network 107 can be displayed graphically on a display device 300 so that the user can obtain an overview of the currents and applied voltages flowing at the respective instant.
  • the display device 200 for example a display, displays general symbols for all energy consumers 310, energy generators 320 and energy storage units 330 in a summarized overview with consumption information.
  • Power generators may be solar panels, fuel cells, primary cells and external power grids or other sources of energy, and are displayed only when needed, ie. if they are connected. In this case, the currently supplied amount of energy can be displayed absolutely.
  • the relative amount of residual energy in the energy storage units is displayed within a symbol 320 for all energy storage units.
  • the current version Charging / charging can be displayed as the arrow strength of an arrow 350 or color and / or also numerically.
  • the current consumption amount compared to the determined peak consumption is displayed in the consumer icon 310.
  • the details of the ad, absolute or relative etc. can be configurable. By comparing the arrows 350 and their direction, it can be detected whether or not enough primary energy is available.
  • the display in a detail display mode, can display an overview of all connected devices of the corresponding type by selecting the consumers or the generators. At the same time important information such as designation, current status (radio: receive, send or standby or off, computer: full power, energy saving mode, standby or off, current consumption absolute or relative to the maximum consumption or relative to the mission energy demand quantity) can be displayed. If a special consumer is selected, the possible operating modes can be displayed or a control panel if this device is designed for external control.
  • the detail display mode can give the user a quick overview of all devices and their status, and in principle also allow their control.
  • the central processing unit 106 may also have the ability to obtain a mission profile. In this mission profile, expected operating times of the various terminals are stored in the respective operating mode. Then it is also possible to calculate and display the residual mission time. For this purpose, the relative operating time in comparison to the planning can be displayed for a terminal.
  • a power distribution network 407 is arranged on a garment 408, in this example a vest. On the garment 408, for example, two batteries 410, a fuel cell 412 and two radios 414 are arranged. Not shown in Fig. 4 is the central device, which may be hidden, for example, inside the vest.
  • the garment 408 includes conductive hook and loop fasteners 420 as a connector between the power distribution network 407 and terminals 410, 412, 414.
  • hook-and-loop fasteners 420 it is also possible, for example, to use push buttons, conductive loops or grinders, magnetic and conductive fasteners, capacitive or inductive coupled overlapping connections in order to produce a standardized connection. between the terminals 410, 412, 414 and the power distribution network 407.
  • FIG. 5 shows a battery 500 as a terminal, which has a display device 502, which is designed to display the residual energy of the battery 500.
  • FIG. 6 shows by way of example a method for distributing energy in an energy management system.
  • a first step S702 the energy requirement or the energy supply of the energy storage unit of the respective terminal is transmitted to the central communication unit.
  • values are calculated for voltage and current flowing on the energy distribution network from the transmitted energy requirement or energy supply.
  • the calculated value is transmitted to the communication unit of the terminals.
  • the calculated values are generated from the respective energy storage unit in the case of energy supply or conversion and storage of the calculated values into the respective energy storage unit in the case of energy requirement.
  • the energy conversion units are operated in three modes, wherein in a first mode via the energy conversion units, a predetermined power is removed from the energy storage unit and this is fed into the power distribution network and is transformed to a voltage level existing there, in a second mode, a fixed output voltage is generated and in a third mode, the energy storage unit is loaded with an adjustable power.
  • the operating mode is set in accordance with the values transmitted by the central communication unit.
  • the communication unit 1 14 can be designed such that it can report the functionality of the terminal 102, 104 to the central unit 106 and can transmit the respective energy requirement of the possibly multiple functions of the terminals 102, 104 to the central communication unit 120 and that the communication unit 1 14 can receive by a calculated by the central processor 122 of the central device 106 maximum power values, the energy conversion unit 1 12 is designed so that they can provide the registered functionality with the allocated energy via energy saving functions and possibly missing amounts of energy from the built-in energy storage unit 1 10 can cover. It is also possible that the terminal is designed such that it can use excess energy for charging the energy storage unit 140. In addition, a minimum charging power can be ensured, so that a charging operation is not unnecessarily interrupted.
  • the communication unit 1 1 4 may be designed such that it can report the functionality of the terminal 102, 104 to the central unit 106 and extract a lower discharge energy from the built-in energy storage means 10 can, as she needed for her function. The remaining requirement is then removed from the energy distribution network 107. This can ensure that the internal energy storage unit 1 10 is warmed up more slowly, resulting in a longer life is achieved.
  • the central processor 122 may be configured to calculate, from a power demand received from the central communication unit 120 and additionally transmitted energy storage temperatures, the values that provide for maximum utilization of the available capacity taking into account the ambient temperature.
  • the central communication unit 120 is designed so that it can transmit the calculated values to the communication units 14 of the terminals 102, 104 and the individual devices lacking amounts of energy on the internal energy storage 1 10 and from other external terminals commanded energy supply from their Energy storage 1 10 compensates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

L'invention concerne un système de gestion énergétique comportant au moins deux terminaux et au moins un appareil central reliés les uns aux autres par un réseau de distribution d'énergie, chacun des au moins deux terminaux comportant une unité de stockage d'énergie, une unité de transformation d'énergie et une unité de communication, et l'appareil central comportant une unité de communication centrale et un processeur central. Les unités de communication des terminaux sont conçues de telle manière qu'elles transmettent les besoins en énergie ou le stock d'énergie de l'unité de stockage d'énergie du terminal respectif à l'unité de communication centrale. Le processeur central est conçu de telle manière que celui-ci calcule à partir des besoins en énergie ou du stock d'énergie transmis, la manière dont l'énergie doit être distribuée entre les terminaux, et des valeurs pour les paramètres électriques à appliquer au réseau de distribution d'énergie. L'unité de communication centrale est conçue de telle manière qu'elle transmet les valeurs calculées aux unités de communication des terminaux. Les unités de transformation d'énergie des terminaux sont conçues de telle manière qu'elles mettent à disposition de l'énergie en fonction des valeurs calculées à partir de l'unité de stockage d'énergie respective, dans le réseau de distribution d'énergie ou injectent de l'énergie du réseau de distribution d'énergie avec les valeurs calculées dans l'unité de stockage d'énergie respective. L'invention concerne également un procédé correspondant, un terminal et un appareil central.
PCT/EP2011/005140 2010-10-14 2011-10-13 Système de gestion énergétique, procédé de distribution d'énergie dans un système de gestion énergétique, terminal pour un système de gestion énergétique et appareil central pour un système de gestion énergétique WO2012048880A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010048469A DE102010048469A1 (de) 2010-10-14 2010-10-14 Energiemanagement-System, Verfahren zum Verteilen von Energie in einem Energiemanagement-System, Endgerät für ein Energiemanagement-System und Zentralgerät für ein Energiemanagement-System
DE102010048469.5 2010-10-14

Publications (2)

Publication Number Publication Date
WO2012048880A2 true WO2012048880A2 (fr) 2012-04-19
WO2012048880A3 WO2012048880A3 (fr) 2012-07-26

Family

ID=45002878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/005140 WO2012048880A2 (fr) 2010-10-14 2011-10-13 Système de gestion énergétique, procédé de distribution d'énergie dans un système de gestion énergétique, terminal pour un système de gestion énergétique et appareil central pour un système de gestion énergétique

Country Status (2)

Country Link
DE (1) DE102010048469A1 (fr)
WO (1) WO2012048880A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158288A (zh) * 2014-07-20 2014-11-19 国家电网公司 一种用于超容客户的电力监控装置
CN105305560A (zh) * 2015-11-23 2016-02-03 合肥联宝信息技术有限公司 应用于手表设备的调整方法与手表设备
CN105990834A (zh) * 2015-02-15 2016-10-05 国家电网公司 一种电池储能电站的故障诊断与评估方法
CN106026087A (zh) * 2016-07-11 2016-10-12 国家电网公司 含分布式电源配电网的故障场景模拟方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014010071A1 (de) 2014-07-08 2016-01-14 Evohaus Gmbh Energiemanagementsystem zur anreizbasierten Verbrauchsoptimierung
CN109119983B (zh) * 2018-09-20 2021-09-03 西南交通大学 一种电-氢孤岛直流微电网能量管理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1596484A1 (fr) 2004-05-11 2005-11-16 SFC Smart Fuel Cell GmbH Module de gestion d'énergie

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914585A (en) * 1996-02-20 1999-06-22 Norand Corporation Power sharing in computing systems with a plurality of electronic devices
FR2779266B1 (fr) * 1998-05-28 2000-06-23 Commissariat Energie Atomique Textile inductif et utilisation d'un tel textile dans des dispositifs inductifs
DE10119283A1 (de) * 2001-04-20 2002-10-24 Philips Corp Intellectual Pty System zur drahtlosen Übertragung elektrischer Leistung, ein Kleidungsstück, ein System von Kleidungsstücken und Verfahren zum Übertragen von Signalen und/oder elektrischer Leistung
KR20060123223A (ko) * 2003-12-03 2006-12-01 코닌클리케 필립스 일렉트로닉스 엔.브이. 유도성 버튼과 버튼홀을 포함하는 의류
DE102004047650B3 (de) * 2004-09-30 2006-04-13 W.L. Gore & Associates Gmbh Kleidungsstück mit induktivem Koppler und induktive Bekleidungsstückschnittstelle
DE102005024450B3 (de) * 2005-05-24 2006-05-18 Dräger Safety AG & Co. KGaA Modulares System körpernah getragener elektronischer Baugruppen und Verfahren zu seiner Inbetriebsetzung
DE102006017540A1 (de) * 2006-04-13 2007-10-18 Drägerwerk AG Textilsystem mit einer Vielzahl von elektronischen Funktionselementen
US7814348B2 (en) * 2006-04-26 2010-10-12 Adaptive Materials, Inc. Power management apparatus
US8103892B2 (en) * 2006-04-26 2012-01-24 Adaptive Materials, Inc. Power management apparatus with buck boost converter module
US7671561B2 (en) * 2007-07-31 2010-03-02 Apple Inc. Host machines for battery charging system
WO2010093790A2 (fr) * 2009-02-11 2010-08-19 Adura Systems, Inc. Architecture de système modulaire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1596484A1 (fr) 2004-05-11 2005-11-16 SFC Smart Fuel Cell GmbH Module de gestion d'énergie

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158288A (zh) * 2014-07-20 2014-11-19 国家电网公司 一种用于超容客户的电力监控装置
CN105990834A (zh) * 2015-02-15 2016-10-05 国家电网公司 一种电池储能电站的故障诊断与评估方法
CN105305560A (zh) * 2015-11-23 2016-02-03 合肥联宝信息技术有限公司 应用于手表设备的调整方法与手表设备
CN106026087A (zh) * 2016-07-11 2016-10-12 国家电网公司 含分布式电源配电网的故障场景模拟方法

Also Published As

Publication number Publication date
WO2012048880A3 (fr) 2012-07-26
DE102010048469A1 (de) 2012-04-19

Similar Documents

Publication Publication Date Title
EP3286033B1 (fr) Circuit de puissance pour l'alimentation électrique dans un véhicule à propulsion électrique et système d'alimentation en énergie fixe
DE102012108674B4 (de) Stromversorgungssystem, Elektrofahrzeug und Ladeadapter
DE112013006845B4 (de) Fahrzeug
EP2270949B1 (fr) Procédé d'alimentation d'un consommateur en énergie électrique
WO2012048880A2 (fr) Système de gestion énergétique, procédé de distribution d'énergie dans un système de gestion énergétique, terminal pour un système de gestion énergétique et appareil central pour un système de gestion énergétique
EP2538520B1 (fr) Centrale de stockage de batterie
DE102013225221B4 (de) Batteriesystem
EP2496436A2 (fr) Système de charge pour véhicules électriques
DE112010005714T5 (de) Batteriesatz für ein elektronisches Gerät
EP2131469B1 (fr) Procédé et système de réglage de la puissance du chargement d'une batterie
DE202007017829U1 (de) Lithium-Batterie-Pack und System zu dessen Aufladung
DE102014105985A1 (de) Wandlermodul zur Umwandlung elektrischer Leistung und Wechselrichter für eine Photovoltaikanlage mit mindestens zwei Wandlermodulen
DE102010009260A1 (de) Einrichtung zur Versorgung eines Bordnetzes
DE102015212403A1 (de) Batterieladesystem mit regelungsschleife
DE102016224295A1 (de) Verfahren zum Betrieb einer Ladeeinrichtung, Ladeeinrichtung und Kraftfahrzeug
EP2949021B1 (fr) Dispositif de controle pour un système de stockage d'énergie électrique
DE102014109939A1 (de) Lokales Ladenetz mit wenigstens einem Ladesystem zum Laden von Elektrofahrzeugen, Ladesystem mit wenigstens einer Ladestation und Verfahren zum Betreiben eines Ladenetzes mit wenigstens einem Ladesystem zum Laden von Elektrofahrzeugen
DE112019005193T5 (de) Elektrisches speichersystem
EP2253059A1 (fr) Dispositif de chargement et/ou de dechargement electrique
CN206759482U (zh) Can总线隔离电路
DE102022104662A1 (de) Steuersystem und Energiemanagementverfahren
WO2020193122A1 (fr) Appareil modulaire destiné à l'alimentation électrique
DE202016105623U1 (de) Ladeeinrichtung für Powerbank
DE102016201407A1 (de) Vorrichtung zum Betreiben eines mobilen elektrischen Energiespeichers und Energiespeichersystem
EP1596484A1 (fr) Module de gestion d'énergie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11773398

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase

Ref document number: 11773398

Country of ref document: EP

Kind code of ref document: A2