WO2012048564A1 - 提高下行同步可靠性的方法及装置 - Google Patents

提高下行同步可靠性的方法及装置 Download PDF

Info

Publication number
WO2012048564A1
WO2012048564A1 PCT/CN2011/073460 CN2011073460W WO2012048564A1 WO 2012048564 A1 WO2012048564 A1 WO 2012048564A1 CN 2011073460 W CN2011073460 W CN 2011073460W WO 2012048564 A1 WO2012048564 A1 WO 2012048564A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
pdp
sync
code
peak
Prior art date
Application number
PCT/CN2011/073460
Other languages
English (en)
French (fr)
Inventor
梁立宏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012048564A1 publication Critical patent/WO2012048564A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7113Determination of path profile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects

Definitions

  • the downlink synchronization tracking device completes the downlink synchronization function, and provides frame header and path information for modules such as measurement and joint detection.
  • the UE may be in a scene of stationary, slow moving or high speed moving.
  • the downlink synchronization tracking at the UE side can provide stable frame header information, and when the UE moves at high speed, for example, in an intercity train or a maglev train scenario, the UE The position of the frame header caused by the fast movement changes rapidly, which brings difficulty to the downlink synchronization tracking of the UE.
  • the TD-SCDMA system is also a CDMA system. It can be known from the frame structure of the TD-SCDMA system.
  • the downlink synchronization (SYNC-DL, Downlink Synchronize) code sequence of the downlink pilot time slot (DwPTS, Downlink Piloting Time Slot) can be used.
  • DwPTS Downlink Piloting Time Slot
  • Associated with the local SYNC-DL code downlink synchronization is achieved by searching for correlation peaks.
  • Additive White Gaussian Noise (AWGN) channel simply SYNC of the sub-frame
  • the DL code is associated with the local SYNC-DL code of the UE, and the method of searching for the correlation peak can obtain relatively accurate downlink synchronization information.
  • AWGN Additive White Gaussian Noise
  • Calculate the energy mean of the noise path calculate the noise threshold according to the energy mean of the noise path; find the peak value of the PDP value of each subframe, and record the peak position;
  • the PDP value is calculated, and the PDP value is the square of the modulus of the DP interpolation value.
  • a noise threshold is calculated, the noise threshold being the energy mean of the noise path multiplied by the noise threshold coefficient ⁇ , ⁇ >1.
  • the frame header of the current subframe is adjusted backward by 1 sample
  • the frame header of the current subframe is adjusted forward 1 sample radical
  • the n is 4; the ⁇ is 9; the peak threshold is 2 chip; the sample is 1/8 chip, and the ideal position is 257.
  • the present invention also provides an apparatus for improving downlink synchronization reliability, the apparatus comprising: a PDP calculation module, a noise threshold calculation module, a peak position acquisition module, and a frame head position adjustment module;
  • a PDP calculation module configured to acquire part of data of the SYNC-DL code in each sub-frame data, and The local SYNC-DL code is correlated, the DP value is obtained, and the PDP value is calculated according to the DP value;
  • the noise threshold calculation module is configured to calculate the energy mean of the noise path, and calculate the noise threshold according to the energy mean of the noise path;
  • a peak position acquisition module configured to find a peak value of a PDP value of each subframe, and record a peak position
  • the frame header position adjustment module is configured to: when the peak position difference between the current subframe and the previous subframe is smaller than the peak threshold, and the peak value of the PDP value of the current subframe is greater than the noise threshold, according to the peak position and ideal of the PDP value of the current subframe The deviation of the position adjusts the position of the frame header of the current subframe.
  • the PDP calculation module includes: a correlation unit, an interpolation unit, and a calculation unit;
  • a correlation unit configured to acquire data of 32 chips before the SYNC-DL code of each subframe, 32 chips of the SYNC-DL code, and 32 chips after the SYNC-DL code, where the data is at least 2 times the sampling rate, and the local SYNC-DL of the UE Code correlation, get DP value;
  • the interpolation unit is configured to perform n-time interpolation on the DP value to obtain a DP interpolation value, where n is a natural number; and a calculation unit, configured to calculate a PDP value, where the PDP value is the square of the modulus of the DP interpolation value.
  • the noise threshold calculation module includes: a noise path energy mean calculation unit and a noise threshold calculation unit;
  • the noise path energy mean calculating unit is configured to obtain data of 16 chips and 16 chips before the SYNC-DL code of each subframe, and calculate a mean value of the PDP as an energy mean value of the noise path;
  • a noise threshold calculation unit is configured to calculate a noise threshold, wherein the noise threshold is an energy average of the noise path multiplied by a noise threshold coefficient ⁇ , ⁇ >1.
  • the frame header position adjustment module is further configured to:
  • the frame header of the current subframe is adjusted backward by 1 sample
  • the n is 4; the ⁇ is 9; the peak threshold is 2 chip; the sample is 1/8 chip, and the ideal position is 257.
  • the SYNC-DL code partial data in the downlink receiving subframe data is related to the local SYNC-DL code sequence
  • Interpolation method is used to improve the time domain resolution of the original signal
  • search for the relevant PDP peak to achieve downlink synchronization search for the relevant PDP peak to achieve downlink synchronization
  • determine the current sub-frame PDP peak position by comparing the correlation PDP peak and noise threshold and the difference between the PDP peak positions of the two sub-frames.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for improving downlink synchronization reliability according to the present invention.
  • FIG. 2 is a schematic diagram of an OFDM-DL code in each subframe data obtained by the method for improving downlink synchronization reliability according to an embodiment of the present invention.
  • the SYNC-DL code is related to obtain a DP value, and a flow chart for calculating a PDP value according to the DP value;
  • FIG. 3 is a schematic flow chart of calculating a mean value of energy of a noise path and calculating a noise threshold according to an energy mean of a noise path in an embodiment of the method for improving downlink synchronization reliability;
  • FIG. 4 is a schematic flow chart of adjusting a frame header position of a current subframe according to a deviation between a peak position of a PDP value of a current subframe and an ideal position in an embodiment of the method for improving downlink synchronization reliability according to the present invention
  • FIG. 5 is a schematic structural diagram of an apparatus for improving downlink synchronization reliability according to the present invention
  • FIG. 6 is a diagram of a PDP calculation module in an embodiment of the apparatus for improving downlink synchronization reliability according to the present invention
  • Figure 7 is a block diagram showing the structure of a noise threshold calculation module in an embodiment of the apparatus for improving downlink synchronization reliability of the present invention.
  • the solution of the embodiment of the present invention is mainly: using the SYNC-DL code part data in the received subframe data to correlate with the local SYNC-DL code sequence, calculating the PDP value, comparing the PDP peak value with the noise threshold, and comparing before and after The PDP peak position of the two subframes determines the reliability of the PDP peak position. If the PDP peak position is reliable, the frame head position is adjusted according to the PDP peak position. Otherwise, the frame header position is not adjusted to meet the downlink synchronization requirement, thereby improving system stability. .
  • the downlink reception rate of the TD-SCDMA system is twice as high, and the downlink synchronization tracking accuracy is l/8chip.
  • the sampling rate refers to the number of discrete signals extracted from the continuous signal of the same chip per second.
  • the sampling rate is two samples per chip.
  • an embodiment of the present invention provides a method for improving downlink synchronization reliability, including:
  • Step S101 Obtain partial data of the SYNC-DL code in each subframe data, and correlate with the local SYNC-DL code of the UE to obtain a DP value, and calculate a PDP value according to the DP value;
  • the received SYNC-DL code sequence in each subframe data downlink pilot time slot DwPTS is correlated with the UE local SYNC-DL code sequence to obtain a DP value, and the PDP value is calculated according to the DP value,
  • the downlink synchronization tracking result with higher precision is obtained.
  • the input correlator is twice the sampling rate data, and the DP value is interpolated by 4 times to obtain the DP value of l/8 chip precision, and then the PDP value is calculated.
  • the specific calculation process is as follows :
  • A) Receive the 32chip, SYNC-DL code sequence before each subframe SYNC-DL code sequence After 32chip and SYNC-DL code sequence 32chip, a total of 128chip, 256 samples of data r (n) are obtained, and the data r ( n ) is correlated with the UE local SYNC-DL code sequence sync: DP (n) r (n) ® conj (sync )
  • r (n) denotes the data of the received nth subframe
  • sync is the local SYNC-DL code
  • sync is 64chip
  • 128 samples conj denotes a conjugate function
  • DP (n) The value is the correlation result of the nth subframe
  • the DP (n) value is 128 samples
  • n is a natural number.
  • the 32chip data before and after the SYNC-DL code is the information between the TD-SCDMA sub-frames.
  • the so-called 4x interpolation is performed between every two DP (n) values.
  • three DPinterp values are inserted at equal intervals, and the obtained DPinterp ( n ) value is 512 samples.
  • the DPinterp ( n ) value spectrum is the DP ( n ) value spectrum which is compressed by 4 times, which improves the time domain resolution of the original signal. There are many mature methods for 4 times interpolation, so I won't go into details.
  • PDP ( n ) value is the square of the modulus of the complex DPinterp ( n ) value:
  • Step S102 calculating an energy mean value of the noise path, and calculating a noise threshold according to the energy average value of the noise path;
  • Step S103 searching for a peak value of a PDP value of each subframe, and recording a peak position
  • Step S104 If the peak position difference between the current subframe and the previous subframe is smaller than the peak threshold, and the peak value of the PDP value of the current subframe is greater than the noise threshold, adjust the current position according to the deviation between the peak position of the PDP value of the current subframe and the ideal position.
  • the frame header position of the sub-frame If the peak position difference between the current subframe and the previous subframe is smaller than the peak threshold, and the peak value of the PDP value of the current subframe is greater than the noise threshold, adjust the current position according to the deviation between the peak position of the PDP value of the current subframe and the ideal position.
  • the frame header position of the sub-frame is the peak position difference between the current subframe and the previous subframe is smaller than the peak threshold, and the peak value of the PDP value of the current subframe is greater than the noise threshold, adjust the current position according to the deviation between the peak position of the PDP value of the current subframe and the ideal position.
  • Thdiff 2chip, that is, 16 samples of l/8 chip precision: if max (PDP) > Thnoise, and PeakDiff ⁇ Thdiff , then
  • the current frame head position is adjusted according to the deviation of the peak position Position ( n ) and the ideal position IdealPosition.
  • the specific adjustment rule is:
  • the accuracy sample is determined according to system performance requirements and implementation cost, and It is 1/2 chip, 1/4 chip, 1/8 chip, l/16chip. In this embodiment, it is 1/8 chip, and the corresponding ideal position IdealPosition is 257 (IdlePosition is 129 when l/4chi precision is used, and so on).
  • step 101 in addition to the 4x interpolation of the DP(n) value, n-time interpolation can be performed as needed.
  • step S101 includes:
  • Step S1011 Obtain 32chip data before 32chip, SYNC-DL code 64chip and SYNC-DL code of each subframe SYNC-DL code, and the data uses at least 2 times sampling rate, and the local downlink synchronization SYNC-DL code of the UE Correlation, get the DP value;
  • Step S1012 performing n-time interpolation on the DP value to obtain a DP interpolation value, where n is a natural number; Step S1013, calculating a PDP value, and the PDP value is a square of a modulus of the DP interpolation value.
  • step S102 includes:
  • Step S1021 Obtain data of 16 chips and 16 chips before the SYNC-DL code of each subframe, and calculate a mean value of the PDP as an energy mean of the noise path;
  • Step S1022 calculating a noise threshold, which is the energy average of the noise path multiplied by the noise threshold coefficient ⁇ , ⁇ >1.
  • step S104 includes:
  • Step S1041 determining whether the peak position of the PDP value of the current subframe is greater than the ideal position; if greater, then proceeds to step S1042; if equal, proceeds to step S1043; if less, proceeds to step S1044;
  • Step S1042 adjusting the frame header of the current subframe backward by lsample
  • Step S1043 The frame header position of the current subframe is not adjusted
  • step s1044 the frame header of the current subframe is adjusted forward by lsample.
  • the SYNC-DL code partial data in the downlink received data is correlated with the local SYNC-DL code sequence, and the time domain resolution of the original signal is improved by interpolation, and the relevant PDP peak is searched.
  • the reliability of the current correlation peak position is determined by the comparison of the correlation PDP peak and the noise threshold and the difference between the peak positions of the two subframes before and after.
  • the relevant PDP peak position and the ideal position are passed. The deviation adjusts the position of the current frame header, thereby improving the accuracy of the downlink synchronization adjustment in a scenario where the channel environment is relatively poor, and satisfies the downlink synchronization requirement, thereby improving system stability.
  • an embodiment of the present invention provides an apparatus for improving downlink synchronization reliability, including: a PDP calculation module 501, a noise threshold calculation module 502, a peak position acquisition module 503, and a frame header position adjustment module 504, where:
  • the PDP calculation module 501 is configured to obtain the SYNC-DL code part data in each subframe data, and correlate with the local SYNC-DL code of the UE to obtain a DP value, and calculate a PDP value according to the DP value.
  • the received SYNC-DL code partial data in each subframe data is correlated with the UE local SYNC-DL code sequence to obtain a DP (Delay-Profile, Delay Function) value, and the PDP value is calculated according to the DP value, in order to obtain accuracy.
  • DP Delay-Profile, Delay Function
  • High downlink synchronization tracking result the input correlator is twice the sampling rate data, and the DP value is interpolated 4 times to obtain the DP value of l/8chip precision, and then calculate the PDP value.
  • the specific calculation process is as follows:
  • r ( n ) represents the data of the received nth subframe
  • sync is the local SYNC-DL code of the UE
  • sync is 64 chips
  • 128 samples conj represents the conjugate function
  • DP ( n The value is the correlation result of the nth subframe
  • the DP ( n ) value is 128 samples
  • n is a natural number.
  • the 32 chip data before and after the SYNC-DL code is the information between the TD-SCDMA subframes.
  • the so-called 4x interpolation is performed between every two DP (n) values.
  • three DPinterp values are inserted at equal intervals, and the obtained DPinterp ( n ) value is 512 samples.
  • the DPinterp ( n ) value spectrum is the DP ( n ) value frequency is compressed by 4 times, which improves the time domain resolution of the original signal. There are many mature methods for 4 times interpolation, so I won't go into details.
  • PDP (n) value is the square of the modulus of the complex DPinterp (n) value:
  • the noise threshold calculation module 502 is configured to calculate an energy mean of the noise path, and calculate a noise threshold according to the energy average of the noise path; specifically:
  • noise threshold There are many calculation methods for the noise threshold. In this embodiment, a preferred embodiment with a relatively simple implementation and a relatively good performance is selected.
  • a peak position obtaining module 503 configured to find a peak value of a PDP value of each subframe, and record a peak position
  • the frame header position adjustment module 504 is configured to: when a peak position difference between a current subframe and a previous subframe is smaller than a peak threshold, and a peak value of a PDP value of the current subframe is greater than a noise threshold, according to a peak position of a PDP value of the current subframe
  • the deviation of the ideal position adjusts the position of the frame header of the current subframe, and the specific adjustment process is as follows:
  • the frame header of the current subframe is oriented. After adjusting 1 sample;
  • the frame header of the current subframe is adjusted forward by 1 sample.
  • the sample is determined according to system performance requirements and implementation cost, and may be 1/2 chip, 1/4 chip, 1/8 chip, l/16 chip. In this embodiment, it is 1/8 chip, and the ideal ideal position IdealPosition is 257 ( IdealPosition is 129 when l/4chi precision, and so on).
  • the PDP calculation module 501 includes: a correlation unit 5011, an interpolation unit 5012, and a calculation unit 5013, where:
  • the correlation unit 5011 is configured to obtain data of 32 chips before the downlink synchronization SYNC-DL code of each subframe, 32 chips of the SYNC-DL code 64chip, and 32 chips after the SYNC-DL code, where the data is used with at least 2 times sampling rate, and local to the UE.
  • the downlink synchronous SYNC-DL code is correlated to obtain a DP value;
  • the interpolation unit 5012 is configured to perform n-time interpolation on the DP value to obtain a DP interpolation value, where n is a natural number;
  • the calculating unit 5013 is configured to calculate a PDP value, where the PDP value is a square of a modulus of the DP interpolation value.
  • the noise threshold calculation module 502 includes: a noise path energy mean calculation unit 5021 and a noise threshold calculation unit 5022, where:
  • the noise path energy mean calculating unit 5021 is configured to obtain data of 16 chips and 16 chips of the downlink synchronous SYNC-DL code of each subframe, and calculate a PDP mean value as an energy mean of the noise path; a noise threshold calculating unit 5022, configured to calculate a noise threshold The noise threshold is the energy average of the noise path multiplied by the noise threshold coefficient ⁇ , ⁇ >1.
  • the method and device for improving downlink synchronization reliability in the embodiment of the present invention in the TD-SCDMA system, using the SYNC-DL code partial data and the local SYNC-DL code in the downlink received data Sequence correlation, using interpolation method to improve the time domain resolution of the original signal, searching for the relevant PDP peak to achieve downlink synchronization, and judging the current correlation by comparing the correlation PDP peak and noise threshold and the difference between the PDP peak positions of the two subframes before and after. The reliability of the peak position of the PDP.
  • the position of the current frame header is adjusted by the deviation between the peak position of the relevant PDP and the ideal position, thereby improving the accuracy of the downlink synchronization adjustment in a scene with a poor channel environment. Meet the downlink synchronization requirements, thereby improving system stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Description

提高下行同步可靠性的方法及装置 技术领域
本发明涉及通信技术领域, 尤其涉及一种时分同步码分多址接入
( TD-SCDMA, Time Division Synchronous Code Division Multiple Access ) 系统中提高下行同步可靠性的方法及装置。 背景技术
在 TD-SCDMA系统中 , 上下行信道工作在相同的频率, 不同的时隙 , 对用户设备( UE, User Equipment )而言, 上行信道和下行信道可能存在互 相干扰, 同时, 不同的小区之间也存在干扰, 因此 TD-SCDMA系统对同步 要求比较高。
在 UE端, 由下行同步跟踪装置完成下行的同步功能, 给测量、联合检 测等模块提供帧头和径信息。 实际应用中, UE可能处于静止、 慢速移动或 者高速移动的场景。 在静止或者慢速移动时, 比如在室内或者步行场景下, UE端的下行同步跟踪能够给系统提供稳定的帧头信息, 而在 UE高速移动 时, 比如在城际动车或者磁悬浮列车场景下, UE快速移动引起的帧头位置 变化较快, 给 UE端的下行同步跟踪带来困难。
一般而言, 码分多址接入(CDMA, Code Division Multiple Access ) 系 统中的同步, 釆用基于伪随机码 ( PN , Pseudo-random Number )滑动相关, 确定相关峰值位置的捕获方案。
TD-SCDMA系统也是一种 CDMA系统,由 TD-SCDMA系统的帧结构 可以知道, 下行导频时隙( DwPTS , Downlink Piloting Time Slot )的下行同 步( SYNC-DL, Downlink Synchronize )码序列可以用来与本地的 SYNC-DL 码相关, 通过搜索相关峰值来实现下行同步。 在第三代合作伙伴计划 ( 3GPP, Third Generation Partnership Project ) 描述的几种典型的信道环境中, 例如: 加性白高斯噪声 (AWGN, Additive White Gaussion Noise )信道下, 简单的将子帧的 SYNC-DL码与 UE本地的 SYNC-DL码相关, 搜索相关峰值的方法可以得到比较准确的下行同步信 息。 但是, 在多径衰落信道, 比如第三种情况(CASE3 ) 的信道下, 由于 TD-SCDMA系统的 SYNC-DL码长度仅有 64码片 (chip ), 难于捕捉, 特 别是 UE快速移动时, 若简单地釆用将单个子帧的 SYNC-DL码与 UE本地 的 SYNC-DL码相关来获得下行同步信息, 可能不够准确。
因此, 在信道环境比较差比如有噪声和干扰的场景下, 简单的根据相 关峰值位置来进行下行帧头调整, 可能会存在帧头调整错误, 导致系统性 能下降的问题, 从而难以满足 TD-SCDMA系统高精度的同步要求。 发明内容
本发明的主要目的在于提供一种提高下行同步可靠性的方法及装置, 旨在提高 TD-SCDMA系统中下行同步的可靠性。
本发明提出一种提高下行同步可靠性的方法, 该方法包括:
获取各子帧数据中的 SYNC-DL码部分数据, 与 UE本地的 SYNC-DL 码相关, 得到时延函数(DP, Delay-Profile )值, 并根据 DP值计算能量时 延函数(PDP, Power-Delay-Profile )值;
计算噪声径的能量均值, 根据噪声径的能量均值计算噪声门限; 寻找各子帧的 PDP值的峰值, 并记录峰值位置;
当前子帧与其前一子帧的峰值位置差小于峰值门限, 且当前子帧的 PDP值的峰值大于噪声门限时, 根据当前子帧的 PDP值的峰值位置与理想 位置的偏差调整当前子帧的帧头位置。
优选地, 所述获取各子帧数据中的 SYNC-DL码部分数据, 与 UE本地 的 SYNC-DL码相关, 得到 DP值, 并根据 DP值计算 PDP值的步骤包括: 获取各子帧 SYNC-DL码前 32 chip, SYNC-DL码 64chip和 SYNC-DL 码后 32chip的数据,所述数据釆用至少 2倍釆样率,与 UE本地的 SYNC-DL 码相关, 得到 DP值;
对 DP值进行 n倍内插, 得到 DP内插值, n为自然数;
计算 PDP值, 所述 PDP值为 DP内插值的模的平方。
优选地, 所述计算噪声径的能量均值, 根据噪声径的能量均值计算噪 声门限的步骤包括:
获取各子帧 SYNC-DL码前 16chip和后 16chip的数据,计算 PDP均值, 作为噪声径的能量均值;
计算噪声门限, 所述噪声门限为噪声径的能量均值乘以噪声门限系数 λ , λ >1。
优选地, 所述 居当前子帧的 PDP值的峰值位置与理想位置的偏差调 整当前子帧的帧头位置的步骤包括:
若当前子帧的 PDP值的峰值位置大于理想位置, 则将当前子帧的帧头 向后调整 1 sample;
若当前子帧的 PDP值的峰值位置等于理想位置, 则不调整当前子帧的 帧头位置;
若当前子帧的 PDP值的峰值位置小于理想位置, 则将当前子帧的帧头 向前调整 1 sample„
优选地, 所述 n为 4; 所述 λ为 9; 所述峰值门限为 2chip; 所述 sample 为 1/8 chip, 理想位置为 257。
本发明还提出一种提高下行同步可靠性的装置, 该装置包括: PDP计 算模块、 噪声门限计算模块、 峰值位置获取模块以及帧头位置调整模块; 其中,
PDP计算模块, 用于获取各子帧数据中的 SYNC-DL码部分数据, 与 UE本地的 SYNC-DL码相关 , 得到 DP值 , 并根据 DP值计算 PDP值; 噪声门限计算模块, 用于计算噪声径的能量均值, 根据噪声径的能量 均值计算噪声门限;
峰值位置获取模块, 用于寻找各子帧的 PDP值的峰值, 并记录峰值位 置;
帧头位置调整模块, 用于当前子帧与其前一子帧的峰值位置差小于峰 值门限,且当前子帧的 PDP值的峰值大于噪声门限时,根据当前子帧的 PDP 值的峰值位置与理想位置的偏差调整当前子帧的帧头位置。
优选地, 所述 PDP计算模块包括: 相关单元、 内插单元以及计算单元; 其中,
相关单元,用于获取各子帧 SYNC-DL码前 32chip、 SYNC-DL码 64chip 和 SYNC-DL码后 32chip的数据, 所述数据釆用至少 2倍釆样率, 与 UE 本地的 SYNC-DL码相关 , 得到 DP值;
内插单元, 用于对 DP值进行 n倍内插, 得到 DP内插值, n为自然数; 计算单元, 用于计算 PDP值, 所述 PDP值为 DP内插值的模的平方。 优选地, 所述噪声门限计算模块包括: 噪声径能量均值计算单元以及 噪声门限计算单元; 其中,
噪声径能量均值计算单元, 用于获取各子帧 SYNC-DL码前 16chip和 后 16chip的数据, 计算 PDP均值, 作为噪声径的能量均值;
噪声门限计算单元, 用于计算噪声门限, 所述噪声门限为噪声径的能 量均值乘以噪声门限系数 λ , λ >1。
优选地, 所述帧头位置调整模块还用于:
当前子帧的 PDP值的峰值位置大于理想位置时, 将当前子帧的帧头向 后调整 1 sample;
当前子帧的 PDP值的峰值位置等于理想位置时, 不调整当前子帧的帧 头位置;
当前子帧的 PDP值的峰值位置小于理想位置时, 将当前子帧的帧头向 前调整 1 sample„
优选地, 所述 n为 4; 所述 λ为 9; 所述峰值门限为 2chip; 所述 sample 为 1/8 chip, 理想位置为 257。
本发明提出的一种提高下行同步可靠性的方法及装置, 在 TD-SCDM A 系统中, 釆用下行接收子帧数据中的 SYNC-DL 码部分数据与本地的 SYNC-DL码序列相关, 釆用内插法提高原始信号的时域分辨率, 搜索相关 PDP峰值来实现下行同步, 通过相关 PDP峰值和噪声门限的比较以及前后 两个子帧 PDP峰值位置的差异, 来判别当前子帧 PDP峰值位置的可靠性, 当前子帧 PDP峰值可靠时,通过当前子帧 PDP峰值位置与理想位置的偏差 来调整当前帧头的位置, 从而提高了信道环境比较差的场景下的下行同步 调整的准确性, 满足下行同步要求, 从而提高系统稳定性。 附图说明
图 1是本发明提高下行同步可靠性的方法一实施例流程示意图; 图 2是本发明提高下行同步可靠性的方法一实施例中获取各子帧数据 中的 SYNC-DL码, 与 UE本地的 SYNC-DL码相关, 得到 DP值, 并根据 DP值计算 PDP值的流程示意图;
图 3是本发明提高下行同步可靠性的方法一实施例中计算噪声径的能 量均值, 根据噪声径的能量均值计算噪声门限的流程示意图;
图 4是本发明提高下行同步可靠性的方法一实施例中根据当前子帧的 PDP值的峰值位置与理想位置的偏差调整当前子帧的帧头位置的流程示意 图;
图 5是本发明提高下行同步可靠性的装置一实施例结构示意图; 图 6是本发明提高下行同步可靠性的装置一实施例中 PDP计算模块结 构示意图;
图 7是本发明提高下行同步可靠性的装置一实施例中噪声门限计算模 块结构示意图。
为了使本发明的技术方案更加清楚、 明了, 下面将结合附图作进一步 详述。 具体实施方式
本发明实施例解决方案主要是: 利用接收的子帧数据中的 SYNC-DL 码部分数据与本地 SYNC-DL码序列进行相关,经计算得到 PDP值,将 PDP 峰值与噪声门限比较, 并比较前后两个子帧 PDP峰值位置, 判定 PDP峰值 位置的可靠性, 如果 PDP峰值位置可靠, 则根据此 PDP峰值位置来调整帧 头位置, 否则不调整帧头位置, 以满足下行同步要求, 提高系统稳定性。
下面结合本发明的附图用具体的实施例对 TD-SCDMA 系统中提高下 行同步可靠性的方法进行说明。本实施例 TD-SCDMA系统下行接收釆用两 倍釆样率, 下行同步跟踪精度是 l/8chip。 釆样率是指每秒从同一码片的连 续信号中提取的离散信号的个数, 两倍釆样率即每个码片选取两个样点。
如图 1 所示, 本发明一实施例提出一种提高下行同步可靠性的方法, 包括:
步骤 S101 , 获取各子帧数据中的 SYNC-DL码部分数据, 与 UE本地 的 SYNC-DL码相关, 得到 DP值, 并根据 DP值计算 PDP值;
在本实施例中, 将接收的各子帧数据下行导频时隙 DwPTS 中的 SYNC-DL码序列与 UE本地 SYNC-DL码序列进行相关, 得到 DP值, 并 根据 DP值计算 PDP值, 为了得到精度较高的下行同步跟踪结果, 输入相 关器的是两倍釆样率的数据, 并对 DP值进行 4倍插值, 得到 l/8chip精度 的 DP值, 再计算 PDP值, 具体计算过程如下:
A )接收各子帧 SYNC-DL码序列之前的 32chip、 SYNC-DL码序列 64chi 和 SYNC-DL码序列之后 32chip, 得到总共 128chip、 256个样点的 数据 r (n), 并将数据 r ( n )与 UE本地的 SYNC-DL码序列 sync相关: DP (n)= r(n) ® conj (sync )
其中, @表示卷积运算, r (n)表示接收的第 n个子帧的数据, sync 是 UE本地的 SYNC-DL码, sync为 64chip、 128个样点, conj表示共轭函 数, DP (n)值是第 n个子帧的相关结果, DP (n)值为 128个样点, n为 自然数。在 SYNC-DL码之前、之后的各 32chip数据就是 TD-SCDMA各子 帧之间的信息。
B )对 DP ( n )进行 4倍内插, 得到 l/8chip精度的 DP内插值 DPinterp ( n )值。
所谓 4倍内插是在每两个 DP (n)值之间, 根据 DP (n)值的计算方 式, 等间隔的插入 3个 DPinterp值, 得到的 DPinterp ( n )值为 512个样点。 DPinterp ( n )值频谱即是 DP ( n )值频谱经过 4倍压缩而成, 提高了原始 信号的时域分辨率, 4倍内插现在有很多成熟的方法, 此不赘述。
C )计算 PDP, PDP ( n )值为复数 DPinterp ( n )值的模的平方:
PDP{n) = ( DPinterp(w)))2 + (mag(DPinterp(w)))2
其中, real ( . )表示取实部, imag ( . )表示取虚部, PDP ( n )值为 512 个样点。
步骤 S102, 计算噪声径的能量均值, 根据噪声径的能量均值计算噪声 门限;
计算各子帧 SYNC-DL码最前面 16chip和最后面 16chip, 共 32chip, 即 256个样点上的 PDP均值, 作为噪声径的能量均值 noise:
noise = [PDP(l :128) + P P(385: 512)]/ 256
计算噪声门限: Thnoise=noise* λ , 其中 λ是噪声门限系数, λ>1, 根 据仿真或实测来设置, 在本实施例中, λ=9; 噪声门限的计算方法较多, 本实施例选取一种实现简单、 性能相对较 好方法的作为优选实施例。
步骤 S103 , 寻找各子帧的 PDP值的峰值, 并记录峰值位置;
找出各子帧的 PDP值的峰值 max ( PDP ), max表示取最大值, 并记录 其位置 Position , 第 N子帧的峰值位置在 Position ( N ) chip; 第 N-n子帧的 峰值位置在 Position ( N-n ) chip, 其中, n=l , 2, 根据仿真性能系统实 现复杂度来设置。
步骤 S104, 当前子帧与其前一子帧的峰值位置差小于峰值门限, 且当 前子帧的 PDP值的峰值大于噪声门限时,根据当前子帧的 PDP值的峰值位 置与理想位置的偏差调整当前子帧的帧头位置。
在本步骤中, 在判断当前子帧即第 η子帧的 PDP峰值的可靠性时, 需 要将第 η子帧的 PDP峰值 max ( PDP ) ( n )与噪声门限 Thnoise进行比较, 同时, 还需要考察前后两个子帧即第 n子帧的峰值位置 Position ( n )与其 前一子帧即第 n- 1子帧的峰值位置 Position ( n-1 ) 的位置差 PeakDiff , 即 , PeakDiff= Position ( n ) - Position ( n-1 );
并将 PeakDiff 与峰值门限 Thdiff进行比较, 其中 , Thdiff根据仿真或 实测来设置, 在本实施例中, Thdiff=2chip, 即 16个 l/8chip精度的样点: 若 max ( PDP ) > Thnoise, 且 PeakDiff<Thdiff , 则
表示当前第 η子帧的 PDP峰值可靠, 否则, 认为不可靠。
如果当前第 n子帧的 PDP峰值可靠, 则根据峰值位置 Position ( n )和 理想位置 IdealPosition的偏差来调整当前帧头位置, 具体调整规则为:
若 Position ( n ) > IdealPosition, 则将帧头向后调整 1 sample;
若 Position ( n ) = IdealPosition, 则不调整帧头位置;
若 Position ( n ) < IdealPosition, 则将帧头向前调整 1 sample„
在本实施例中, 精度 sample根据系统性能要求和实现代价确定, 可以 是 1/2 chip, 1/4 chip, 1/8 chip, l/16chip。 本实施例中是 1/8 chip, 对应的 理想位置 IdealPosition为 257 ( l/4chi 精度时 IdealPosition是 129, 以此类 推)。
以上方法中, 也可以根据需要釆用大于 2倍的釆样率, 以获得更精确 的数据。 步骤 101 中除了对 DP ( n )值进行 4倍内插外, 还可以根据需要 进行 n倍内插。
如图 2所示, 步骤 S101包括:
步骤 S1011 , 获取各子帧 SYNC-DL码前 32chip、 SYNC-DL码 64chip 和 SYNC-DL码后 32chip的数据,该数据釆用至少 2倍釆样率,与 UE本地 的下行同步 SYNC-DL码相关, 得到 DP值;
步骤 S1012, 对 DP值进行 n倍内插, 得到 DP内插值, n为自然数; 步骤 S1013 , 计算 PDP值, PDP值为 DP内插值的模的平方。
如图 3所示, 步骤 S102包括:
步骤 S1021 , 获取各子帧 SYNC-DL码前 16chip和后 16chip的数据, 计算 PDP均值, 作为噪声径的能量均值;
步骤 S1022,计算噪声门限,该噪声门限为噪声径的能量均值乘以噪声 门限系数 λ , λ >1。
如图 4所示,步骤 S104中根据当前子帧的 PDP值的峰值位置与理想位 置的偏差调整当前子帧的帧头位置的步骤包括:
步骤 S1041 , 判断当前子帧的 PDP值的峰值位置是否大于理想位置; 若大于, 则进入步骤 S1042; 若等于, 则进入步骤 S1043; 若小于, 则进入 步骤 S1044;
步骤 S1042, 将当前子帧的帧头向后调整 lsample;
步骤 S1043 , 不调整当前子帧的帧头位置;
步骤 s 1044, 将当前子帧的帧头向前调整 lsample。 本实施例针对 TD-SCDMA系统, 釆用下行接收数据中的 SYNC-DL码 部分数据与本地的 SYNC-DL码序列相关,釆用内插法提高原始信号的时域 分辨率, 搜索相关 PDP峰值来实现下行同步, 通过相关 PDP峰值和噪声门 限的比较以及前后两个子帧峰值位置的差异, 来判别当前相关峰值位置的 可靠性, 当前相关 PDP峰值可靠时, 通过相关 PDP峰值位置与理想位置的 偏差来调整当前帧头的位置, 从而提高了信道环境比较差的场景下的下行 同步调整的准确性, 满足下行同步要求, 从而提高系统稳定性。
如图 5 所示, 本发明一实施例提出一种提高下行同步可靠性的装置, 包括: PDP计算模块 501、 噪声门限计算模块 502、 峰值位置获取模块 503 以及帧头位置调整模块 504, 其中:
PDP计算模块 501 , 用于获取各子帧数据中的 SYNC-DL码部分数据, 与 UE本地的 SYNC-DL码相关, 得到 DP值, 并根据 DP值计算 PDP值; 在本实施例中, 将接收的各子帧数据中的 SYNC-DL码部分数据与 UE 本地 SYNC-DL码序列进行相关, 得到 DP ( Delay-Profile , 时延函数)值, 并根据 DP值计算 PDP值, 为了得到精度较高的下行同步跟踪结果, 输入 相关器的是两倍釆样率的数据, 并对 DP值进行 4倍插值, 得到 l/8chip精 度的 DP值, 再计算 PDP值, 具体计算过程如下:
A )接收各子帧 SYNC-DL码序列之前的 32chip、 SYNC-DL码序列 64chi 和 SYNC-DL码序列之后 32chip, 得到总共 128chip、 256个样点的 数据 r ( n ), 并将数据 r ( n )与 UE本地的 SYNC-DL码序列 sync相关:
DP (n)= r(n) ® conj (sync )
其中, @表示卷积运算, r ( n )表示接收的第 n个子帧的数据, sync 是 UE本地的 SYNC-DL码, sync为 64chip、 128个样点, conj表示共轭函 数, DP ( n )值是第 n个子帧的相关结果, DP ( n )值为 128个样点, n为 自然数。在 SYNC-DL码之前、之后的各 32chip数据就是 TD-SCDMA各子 帧之间的信息。 B )对 DP ( n )进行 4倍内插, 得到 l/8chip精度的 DP内插值 DPinterp
(n)值。
所谓 4倍内插是在每两个 DP (n)值之间, 根据 DP (n)值的计算方 式, 等间隔的插入 3个 DPinterp值, 得到的 DPinterp ( n )值为 512个样点。 DPinterp ( n )值频谱即是 DP ( n )值频语经过 4倍压缩而成, 提高了原始 信号的时域分辨率, 4倍内插现在有很多成熟的方法, 此不赘述。
C)计算 PDP, PDP (n)值为复数 DPinterp (n)值的模的平方:
PDP{n) = ( DPinterp(w)))2 + (mag(DPinterp(w)))2
其中, real(.)表示取实部, imag(.)表示取虚部, PDP(n)值为 512个样点。 噪声门限计算模块 502, 用于计算噪声径的能量均值,根据噪声径的能 量均值计算噪声门限; 具体为:
计算各子帧 SYNC-DL码最前面 16chip和最后面 16chip, 共 32chip, 即 256个样点上的 PDP均值, 作为噪声径的能量均值 noise:
noise = [PDP(l :128) + P P(385: 512)]/ 256
计算噪声门限: Thnoise=noise* λ , 其中 λ是噪声门限系数, λ>1, 根 据仿真或实测来设置, 在本实施例中, λ=9;
噪声门限的计算方法较多, 本实施例选取一种实现简单、 性能相对较 好方法的作为优选实施例。
峰值位置获取模块 503, 用于寻找各子帧的 PDP值的峰值, 并记录峰 值位置;
帧头位置调整模块 504,用于当前子帧与其前一子帧的峰值位置差小于 峰值门限, 且当前子帧的 PDP值的峰值大于噪声门限时, 根据当前子帧的 PDP值的峰值位置与理想位置的偏差调整当前子帧的帧头位置, 其具体调 整过程为:
当前子帧的 PDP值的峰值位置大于理想位置时, 将当前子帧的帧头向 后调整 1 sample;
当前子帧的 PDP值的峰值位置等于理想位置时, 不调整当前子帧的帧 头位置;
当前子帧的 PDP值的峰值位置小于理想位置时, 将当前子帧的帧头向 前调整 1 sample。
在本实施例中, sample根据系统性能要求和实现代价确定, 可以是 1/2 chip, 1/4 chip, 1/8 chip, l/16chip。 本实施例中是 1/8 chip, 对应的理想位 置 IdealPosition为 257 ( l/4chi 精度时 IdealPosition是 129 , 以此类推)。
如图 6所示, PDP计算模块 501包括: 相关单元 5011、 内插单元 5012 以及计算单元 5013 , 其中:
相关单元 5011 , 用于获取各子帧下行同步 SYNC-DL码前 32chip、 SYNC-DL码 64chip和 SYNC-DL码后 32chip的数据, 所述数据釆用至少 2 倍釆样率, 与 UE本地的下行同步 SYNC-DL码相关, 得到 DP值;
内插单元 5012, 用于对 DP值进行 n倍内插, 得到 DP内插值, n为自 然数;
计算单元 5013 , 用于计算 PDP值, 所述 PDP值为 DP内插值的模的平 方。
如图 7所示, 噪声门限计算模块 502包括: 噪声径能量均值计算单元 5021以及噪声门限计算单元 5022, 其中:
噪声径能量均值计算单元 5021 , 用于获取各子帧下行同步 SYNC-DL 码前 16chip和后 16chip的数据, 计算 PDP均值, 作为噪声径的能量均值; 噪声门限计算单元 5022, 用于计算噪声门限, 所述噪声门限为噪声径 的能量均值乘以噪声门限系数 λ , λ >1。
本发明实施例提高下行同步可靠性的方法及装置,在 TD-SCDMA系统 中,釆用下行接收数据中的的 SYNC-DL码部分数据与本地的 SYNC-DL码 序列相关, 釆用内插法提高原始信号的时域分辨率, 搜索相关 PDP峰值来 实现下行同步, 通过相关 PDP峰值和噪声门限的比较以及前后两个子帧 PDP峰值位置的差异, 来判别当前相关 PDP峰值位置的可靠性, 当前相关 PDP峰值可靠时, 通过相关 PDP峰值位置与理想位置的偏差来调整当前帧 头的位置, 从而提高了信道环境比较差的场景下的下行同步调整的准确性, 满足下行同步要求, 从而提高系统稳定性。
以上所述仅为本发明的优选实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明书及附图内容所作的等效结构或流程变换, 或直接或 间接运用在其它相关的技术领域, 均同理包括在本发明的专利保护范围内。

Claims

权利要求书
1、 一种提高下行同步可靠性的方法, 其特征在于, 该方法包括: 获取各子帧数据中的下行同步 SYNC-DL码部分数据, 与用户设备 UE 本地的 SYNC-DL码相关, 得到时延函数 DP值, 并根据 DP值计算能量时 延函数 PDP值;
计算噪声径的能量均值, 根据噪声径的能量均值计算噪声门限; 寻找各子帧的 PDP值的峰值, 并记录峰值位置;
当前子帧与其前一子帧的峰值位置差小于峰值门限, 且当前子帧的 PDP值的峰值大于噪声门限时, 根据当前子帧的 PDP值的峰值位置与理想 位置的偏差调整当前子帧的帧头位置。
2、 根据权利要求 1所述的方法, 其特征在于, 所述获取各子帧数据中 的 SYNC-DL码部分数据, 与 UE本地的 SYNC-DL码相关, 得到 DP值, 并根据 DP值计算 PDP值的步骤包括:
获取各子帧 SYNC-DL码前 32chip、 SYNC-DL码 64chip和 SYNC-DL 码后 32chip的数据,所述数据釆用至少 2倍釆样率,与 UE本地的 SYNC-DL 码相关, 得到 DP值;
对 DP值进行 n倍内插, 得到 DP内插值, n为自然数;
计算 PDP值, 所述 PDP值为 DP内插值的模的平方。
3、 根据权利要求 2所述的方法, 其特征在于, 所述计算噪声径的能量 均值, 根据噪声径的能量均值计算噪声门限的步骤包括:
获取各子帧 SYNC-DL码前 16chip和后 16chip的数据,计算 PDP均值, 作为噪声径的能量均值;
计算噪声门限, 所述噪声门限为噪声径的能量均值乘以噪声门限系数 λ , λ >1。
4、根据权利要求 3所述的方法,其特征在于,所述根据当前子帧的 PDP 值的峰值位置与理想位置的偏差调整当前子帧的帧头位置的步骤包括: 若当前子帧的 PDP值的峰值位置大于理想位置, 则将当前子帧的帧头 向后调整 1 sample;
若当前子帧的 PDP值的峰值位置等于理想位置, 则不调整当前子帧的 帧头位置;
若当前子帧的 PDP值的峰值位置小于理想位置, 则将当前子帧的帧头 向前调整 1 sample„
5、 根据权利要求 4所述的方法, 其特征在于, 所述 n为 4; 所述 λ为 9; 所述峰值门限为 2chip; 所述 sample为 1/8 chip, 理想位置为 257。
6、 一种提高下行同步可靠性的装置, 其特征在于, 该装置包括: PDP 计算模块、 噪声门限计算模块、 峰值位置获取模块以及帧头位置调整模块; 其中,
PDP计算模块, 用于获取各子帧数据中的 SYNC-DL码部分数据, 与 UE本地的 SYNC-DL码相关, 得到 DP值, 并根据 DP值计算 PDP值; 噪声门限计算模块, 用于计算噪声径的能量均值, 根据噪声径的能量 均值计算噪声门限;
峰值位置获取模块, 用于寻找各子帧的 PDP值的峰值, 并记录峰值位 置;
帧头位置调整模块, 用于当前子帧与其前一子帧的峰值位置差小于峰 值门限,且当前子帧的 PDP值的峰值大于噪声门限时,根据当前子帧的 PDP 值的峰值位置与理想位置的偏差调整当前子帧的帧头位置。
7、根据权利要求 6所述的装置,其特征在于,所述 PDP计算模块包括: 相关单元、 内插单元以及计算单元; 其中,
相关单元,用于获取各子帧 SYNC-DL码前 32chip、 SYNC-DL码 64chip 和 SYNC-DL码后 32chip的数据, 所述数据釆用至少 2倍釆样率, 与 UE 本地的 SYNC-DL码相关, 得到 DP值;
内插单元, 用于对 DP值进行 n倍内插, 得到 DP内插值, n为自然数; 计算单元, 用于计算 PDP值, 所述 PDP值为 DP内插值的模的平方。
8、 根据权利要求 7所述的装置, 其特征在于, 所述噪声门限计算模块 包括: 噪声径能量均值计算单元以及噪声门限计算单元; 其中,
噪声径能量均值计算单元, 用于获取各子帧 SYNC-DL码前 16chip和 后 16chip的数据, 计算 PDP均值, 作为噪声径的能量均值;
噪声门限计算单元, 用于计算噪声门限, 所述噪声门限为噪声径的能 量均值乘以噪声门限系数 λ , λ >1。
9、 根据权利要求 8所述的装置, 其特征在于, 所述帧头位置调整模块 还用于:
当前子帧的 PDP值的峰值位置大于理想位置时, 将当前子帧的帧头向 后调整 1 sample;
当前子帧的 PDP值的峰值位置等于理想位置时, 不调整当前子帧的帧 头位置;
当前子帧的 PDP值的峰值位置小于理想位置时, 将当前子帧的帧头向 前调整 1 sample„
10、 根据权利要求 9所述的装置, 其特征在于, 所述 n为 4; 所述 λ为 9; 所述峰值门限为 2chip; 所述 sample为 1/8 chip, 理想位置为 257。
PCT/CN2011/073460 2010-10-11 2011-04-28 提高下行同步可靠性的方法及装置 WO2012048564A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010504372.X 2010-10-11
CN201010504372XA CN102447506A (zh) 2010-10-11 2010-10-11 提高下行同步可靠性的方法及装置

Publications (1)

Publication Number Publication Date
WO2012048564A1 true WO2012048564A1 (zh) 2012-04-19

Family

ID=45937859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/073460 WO2012048564A1 (zh) 2010-10-11 2011-04-28 提高下行同步可靠性的方法及装置

Country Status (2)

Country Link
CN (1) CN102447506A (zh)
WO (1) WO2012048564A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106851677A (zh) * 2017-02-06 2017-06-13 上海鸿洛通信电子有限公司 基于tdd模式的最大功率抓取方法及装置
CN107437978A (zh) * 2016-05-27 2017-12-05 上海复旦微电子集团股份有限公司 数据处理方法及接收机
CN113411177A (zh) * 2021-08-10 2021-09-17 广州慧睿思通科技股份有限公司 信号类型的检测方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047422A (zh) * 2007-04-30 2007-10-03 重庆重邮信科(集团)股份有限公司 时分-同步码分多址系统实现码片级以下同步的方法
CN101478339A (zh) * 2008-01-03 2009-07-08 大唐移动通信设备有限公司 一种实现小区搜索时精同步的方法、装置和移动终端
CN101577576A (zh) * 2008-05-09 2009-11-11 杰脉通信技术(上海)有限公司 一种td-scdma终端初始下行同步方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615922B (zh) * 2008-06-24 2012-12-05 中兴通讯股份有限公司 一种下行同步跟踪方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047422A (zh) * 2007-04-30 2007-10-03 重庆重邮信科(集团)股份有限公司 时分-同步码分多址系统实现码片级以下同步的方法
CN101478339A (zh) * 2008-01-03 2009-07-08 大唐移动通信设备有限公司 一种实现小区搜索时精同步的方法、装置和移动终端
CN101577576A (zh) * 2008-05-09 2009-11-11 杰脉通信技术(上海)有限公司 一种td-scdma终端初始下行同步方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107437978A (zh) * 2016-05-27 2017-12-05 上海复旦微电子集团股份有限公司 数据处理方法及接收机
CN107437978B (zh) * 2016-05-27 2020-11-27 上海复旦微电子集团股份有限公司 数据处理方法及接收机
CN106851677A (zh) * 2017-02-06 2017-06-13 上海鸿洛通信电子有限公司 基于tdd模式的最大功率抓取方法及装置
CN106851677B (zh) * 2017-02-06 2019-08-02 上海鸿洛通信电子有限公司 基于tdd模式的最大功率抓取方法及装置
CN113411177A (zh) * 2021-08-10 2021-09-17 广州慧睿思通科技股份有限公司 信号类型的检测方法、装置、设备及存储介质
CN113411177B (zh) * 2021-08-10 2021-11-16 广州慧睿思通科技股份有限公司 信号类型的检测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN102447506A (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
CN102025671B (zh) 时间粗同步和频率精同步的时域联合估计方法
US20160073370A1 (en) Secondary Cell Synchronization for Carrier Aggregation
CN107241794B (zh) 一种针对tdd-ofdm下行链路的快速同步跟踪方法及装置
EP1564903A2 (en) Apparatus and method for estimating initial frequency offset in an asynchronous mobile communication system
TWM240735U (en) User equipment (UE) having an acquisition circuit for 1.28 MCHPS chip rate mobile telecommunication system
JP4575921B2 (ja) 携帯受信器の効率の良いフレームトラッキング
US6680968B2 (en) CDMA searcher with time offset compensation
US20090303889A1 (en) Method of uplink synchronization establishment based on the united transmission technology and the transmission matrix thereof
CN104717174A (zh) 一种复杂多径信道下的ofdm抗干扰同步方法
CN112637101B (zh) 高多径时延下的sc-fde系统同步方法及系统
WO2010069172A1 (zh) 用于cmmb制式手机电视的精确定时同步方法和系统
WO2012048564A1 (zh) 提高下行同步可靠性的方法及装置
TW200901700A (en) Adaptive cell ID detection in a cellular communications system
US7352704B1 (en) Method and apparatus for multi-path delay spread detection in wideband CDMA systems
JP2007525101A5 (zh)
WO2009155864A1 (zh) 一种下行同步跟踪方法及装置
CN101252390B (zh) 一种基于并行策略的帧同步方法及其实现装置
KR101811221B1 (ko) 신호 분석기의 wcdma 신호 타이밍 오프셋 처리 방법
CN109561042B (zh) 一种ofdm系统接收机的定时频率同步方法
CN100364254C (zh) 一种频偏估计装置和方法
CN100438399C (zh) 定时跟踪装置,接收装置,定时跟踪和调整方法
WO2006080904A1 (en) Method and system for sub-chip resolution for secondary cell search
WO2007100024A1 (ja) 送信タイミング制御システム及びその方法並びにそれを用いた基地局及び移動局
US8433012B2 (en) Timing synchronization method and apparatus in a wireless communication system
WO2011157088A1 (zh) Td-scdma中单倍采样数据的下行同步码确认方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11831961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11831961

Country of ref document: EP

Kind code of ref document: A1