WO2012046969A2 - Wind power generating tower - Google Patents

Wind power generating tower Download PDF

Info

Publication number
WO2012046969A2
WO2012046969A2 PCT/KR2011/007056 KR2011007056W WO2012046969A2 WO 2012046969 A2 WO2012046969 A2 WO 2012046969A2 KR 2011007056 W KR2011007056 W KR 2011007056W WO 2012046969 A2 WO2012046969 A2 WO 2012046969A2
Authority
WO
WIPO (PCT)
Prior art keywords
wind
tower
rotor
guide
blade
Prior art date
Application number
PCT/KR2011/007056
Other languages
French (fr)
Korean (ko)
Other versions
WO2012046969A3 (en
Inventor
송수윤
Original Assignee
제이케이이엔지(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이케이이엔지(주) filed Critical 제이케이이엔지(주)
Priority to JP2013532714A priority Critical patent/JP2013542368A/en
Publication of WO2012046969A2 publication Critical patent/WO2012046969A2/en
Publication of WO2012046969A3 publication Critical patent/WO2012046969A3/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/02Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having a plurality of rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0409Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels surrounding the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0427Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels with converging inlets, i.e. the guiding means intercepting an area greater than the effective rotor area
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/007Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations the wind motor being combined with means for converting solar radiation into useful energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/11Combinations of wind motors with apparatus storing energy storing electrical energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/911Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose
    • F05B2240/9112Mounting on supporting structures or systems on a stationary structure already existing for a prior purpose which is a building
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a wind power tower, and more particularly, to a wind power tower that can implement an effective wind power by increasing the generation area of wind pressure and air differential pressure.
  • a wind power generation system is a technology for generating power by converting wind force into rotational force, and converts wind energy into mechanical energy and drives a generator to produce power.
  • the wind power generation system has the advantage of more efficient use of the site compared to other power generation systems and is environmentally friendly, free of pollution and waste.
  • the disadvantage is that the efficiency of converting energy into electrical energy is very low.
  • An object of the present invention for solving this problem is to provide a wind power tower that can maximize the efficiency of wind power by realizing wind power by inducing wind speed and inducing an optimum wind angle even at low wind speed.
  • Wind power tower includes a ventilation tower, a guide wall, a rotary blade, a direction indicating stopper and a wind rotor.
  • the ventilation tower has a plurality of wind inlets through which wind is introduced, and the guide wall is disposed radially in the ventilation tower so that the wind introduced through the wind inlet is guided toward the center of the ventilation tower, and the rotating blade is the guide.
  • the direction stopper limits the rotation angle of the rotating blade to a certain angle
  • the wind rotor is a rotating shaft that is rotatably installed in the center of the ventilation tower, and the rotational force to the rotating shaft Rotor blades disposed radially with respect to the rotary shaft to provide, and a generator that is driven to the rotary shaft to generate electricity by the rotation of the rotary shaft.
  • the rotation angle ( ⁇ ) of the rotating blade is a vertical tangent (T1) in which the inner circumference of the rotor blade is perpendicular to the inner end of the guide wall, and the outer circumference of the rotor blade and the inner end of the guide wall It satisfies the angular range between the vertical tangent T2 which is in perpendicular contact.
  • the wind rotor further comprises an upper magnet support piece fixedly installed on the upper end of the rotating shaft, and a lower magnet support piece fixedly installed at the center of the ventilation tower to face the upper magnet support piece, wherein the rotor blade Is magnetically floated through the generation of magnetic force between the upper magnet support piece and the lower magnet support piece.
  • the rotor blades are composed of a plurality of curved semi-cylindrical shapes and are spaced apart from each other while surrounding the rotation shaft in a ring shape.
  • the wind rotor is provided with a guide cylinder for guiding the wind moved in the rotor blades to surround the rotating shaft.
  • the separation angle ⁇ between adjacent rotor blades among the plurality of rotor blades satisfies the range of 22 degrees to 23 degrees.
  • the wind rotor is provided with a wind flow path for guiding the introduced wind to the outside, the wind flow passage is formed between the inner end of the rotating blade and the outer periphery of the rotor blade, and the guide passage A second wind flow path formed between the inner circumference of the rotor blade, a third wind flow path communicating with upper ends of the first wind flow path and the second wind flow path, and lower ends of the first wind flow path and the second wind flow path; It includes a fourth wind euro communicating with each other.
  • the area ratio of the rotor blades and the wind flow path satisfies 3: 7.
  • the guide wall is a guide vertical wall disposed radially from the ventilation tower to form the side walls of the ventilation tower, and a guide horizontal wall vertically connected to the guide vertical wall to form the bottom of the ventilation tower, and the wind And a guide slope wall inclinedly connected to the guide horizontal wall so that the wind converges toward the rotor.
  • the guide vertical wall is composed of a plurality of radially disposed within a 30 degree angle range in the ventilation tower.
  • the wind speed sensor for measuring the wind speed flowing into the wind rotor
  • the control unit for applying an operation signal for providing an initial rotational force to the rotor blade when the wind speed measured by the wind speed sensor is less than a predetermined speed and
  • an air nozzle for injecting air toward the wind rotor when the operation signal is applied, and an air tank for supplying air to the air nozzle.
  • the photovoltaic power generation equipment is a solar cell module installed on the upper layer or sidewall of the ventilation tower, and It includes a capacitor for storing the electrical energy generated in the solar cell module, and a solar control panel for controlling the solar cell module and the capacitor.
  • the lower floor of the ventilation tower is provided with a plant cultivation facility through LED lighting.
  • the ventilation tower is configured in any one form selected from round, square, hexagon and octagon.
  • the present invention can accelerate the low-speed wind by using the air pressure generation phenomenon according to the concentration of the wind, there is an advantage that the wind power generation can be implemented in a low wind speed region.
  • the present invention has the advantage that by adjusting the inflow angle of the wind so that the area in which the wind inflow is increased to the maximum, the optimum power generation state can always be maintained even if the wind blows in any direction.
  • the present invention has an advantage in that the friction blades generated during rotation of the rotor blades can be prevented by maintaining the rotor blades rotated by the wind in a no-load state in which magnetic levitation is applied.
  • FIG. 1 is a block diagram showing a wind power tower according to the present invention.
  • Figure 2 is a plan sectional view showing a wind power tower according to the present invention.
  • Figure 3a is a state diagram showing a state in which the wind is introduced from the wind power tower when the rotating blade is rotated according to the present invention.
  • 3b is a state diagram illustrating a state in which wind is introduced from a wind power tower under the assumption that the rotating blade is fixed, compared to the case where the rotating blade is rotated.
  • FIG. 4 is an enlarged view illustrating an enlarged portion "A" of FIG. 1.
  • Figure 5a is a block diagram showing a wind rotor of the wind power tower according to the present invention.
  • Figure 5b is a cross-sectional view showing a wind rotor of the wind power tower according to the present invention.
  • Figure 6 is a schematic view showing a wind rotor of the wind power tower in a modification of the present invention.
  • Figure 7 is a block diagram showing a wind power tower according to the present invention provided with a solar power installation.
  • Figure 8 is a block diagram showing a wind power tower according to the present invention equipped with an air nozzle.
  • Figure 9 is a block diagram showing a wind power tower according to the present invention equipped with a solar power plant and air nozzles.
  • 10a and 10b is a block diagram and a plan view showing a hexagonal ventilation tower in the wind power tower according to the present invention.
  • 11a and 11b is a block diagram and a plan view showing an octagonal ventilation tower in the wind power tower according to the present invention.
  • 12a and 12b is a block diagram and a plan view showing a circular ventilation tower in the wind power tower according to the present invention.
  • Figure 13 is a state diagram showing the wind state of the wind power tower according to the invention.
  • control unit 630 air nozzle
  • FIG. 1 is a view showing the configuration of a wind power tower according to the present invention
  • Figure 2 is a view showing a cross-sectional view of the wind power tower according to the present invention.
  • the wind power tower according to the present invention by accelerating the wind effectively by using the air differential pressure generation phenomenon to accelerate the wind, by adjusting the inflow angle of the wind is the area where the wind flows Allow for maximum growth.
  • the wind power tower is configured to include a ventilation tower 100, the guide wall 200, the rotary blade 300, the direction indicating stopper 400 and the wind rotor 500.
  • Ventilation tower 100 is a tower-shaped structure in which wind passages 110 through which wind flows are formed in a plurality of layers, and an internal structure in which wind converges to the center by using guide walls 200 and rotating blades 300. Has a, through the wind rotor 500 installed in each layer to ensure that independent power generation is made in that layer.
  • the guide wall 200 is disposed radially from the center of the ventilation tower 100 to form a flow path through which the wind is moved so that the wind introduced into the ventilation tower 100 is concentrated toward the center of the ventilation tower 100. . Therefore, when the wind flowing into the wind hole 110 is concentrated by the guide wall 200 to the center of the ventilation tower 100, the introduced internal air generates an air differential between the outside air, the air differential pressure of the wind You can increase the speed.
  • the rotating blade 300 adjusts the angle of the wind moved by the guide wall 200, so that the wind inflow area is increased to the maximum when the wind rotor 500 flows.
  • the maximum wind inflow area may be secured regardless of the direction in which the wind blows, and, thus, maximization of power generation efficiency may be realized.
  • Directional stopper 400 serves to limit the rotation of the rotary blade 300 to a predetermined angle, preferably the rotation of the rotary blade 300 is made within the angle between the outer and inner circumference of the rotor blade 530 Restrict to lose.
  • specific details for limiting the rotation of the rotary blade 300 will be described later.
  • the wind rotor 500 is a device that implements electricity generation by using wind moved to the center of the ventilation tower 100. Since the wind rotor 500 is disposed at the center of each floor of the ventilation tower 100 so as to be positioned in a straight line with respect to the wind passage 110 through which the wind is introduced, the direction of the wind is changed several times until it is moved to the generator 540. It is possible to prevent the wind energy loss problem of the prior art caused.
  • the ventilation tower 100 is a cross-sectional quadrangular tower of the cross-sectional shape, each floor is provided with a wind speed sensor for measuring the speed of the wind.
  • each floor of the ventilation tower 100 eight partition spaces radially partitioned are formed in each floor of the ventilation tower 100. Wind is introduced into two or three adjacent compartments of the eight compartments, and the winds introduced into these compartments converge toward the center of the ventilation tower 100 to increase the wind speed. These compartments are partitioned by the guide wall 200.
  • Guide wall 200 is a structure that is deployed in a radial form from the center of the ventilation tower 100 in order to guide the wind introduced through the wind hole 110 to the center of the ventilation tower (100).
  • the guide wall 200 extends a certain length, the amount of wind flowing through the wind hole 110 may be increased, and the speed of the wind flowing into the center of the ventilation tower 100 may also be increased.
  • the length of the guide wall 200 should be determined in consideration of design factors such as the frictional resistance of the guide wall 200 and the surrounding environment.
  • the guide wall 200 is composed of a guide vertical wall 210, guide horizontal wall 230 and guide slope wall 220.
  • the guide vertical wall 210 constitutes a sidewall of the ventilation tower 100, but is disposed radially from the ventilation tower 100, and the guide horizontal wall 230 is disposed perpendicular to the guide vertical wall 210 to provide a ventilation tower 100.
  • Each layer of), and the guide slope wall 220 is inclinedly connected to the guide horizontal wall 230 so that the wind converges toward the rotor blade 530 of the wind rotor 500.
  • the guide slope wall 220 of the guide wall 200 is disposed inclined upward toward the center of the ventilation tower 100, for example, the rotor blade 530 of the wind rotor 500, the generator 540 in the lower side
  • the installation space of can be prepared.
  • the guide vertical wall 210 is preferably composed of a plurality of radially arranged in an angle range within 30 degrees, in this embodiment, the guide vertical wall 210 is disposed in a radial form at intervals of 22.5 degrees, thereby providing a ventilation tower ( The interior of 100) was divided into eight compartments.
  • the rotating blade 300 is rotatably connected to the inner end of the guide wall 200.
  • the rotary blade 300 is connected to the inner end of the guide wall 200 and the rotation shaft 301 so as to allow free rotation at the inner end of the guide wall 200, and one side and the other side thereof move from the guide wall 200. It is a structure that can be rotated in one direction or the other direction by the wind pressure of the wind.
  • Figure 3a is a view showing a state in which wind is introduced from the wind power tower when the rotating blade is rotated in accordance with the present invention
  • Figure 3b is assuming that the rotating blade is fixed compared to the case where the rotating blade is rotated wind power
  • the rotary blade 300 adjusts the angle of the wind so that the maximum wind inlet area flowing into the wind rotor 500 is maximized.
  • the rotation angle ⁇ of the rotary blade 300 is a vertical tangent T1 in which the inner circumference of the rotor blade 530 is perpendicular to the inner end of the guide wall 200, and the outside of the rotor blade 530.
  • the circumference should satisfy the angular range between the vertical tangent T2 which is in perpendicular contact with the inner end of the guide wall 200.
  • Vertical tangents T1 and T2 in the figure are indicated by dashed lines.
  • the rotary blade 300 of one side is disposed on the vertical tangent (T2) in contact with the outer circumference of the rotor blade 530 and the rotary blade 300 of the other side Is disposed at the vertical tangent T1 ′ and the vertical tangent T1 ′′ in contact with the inner circumference of the rotor blade 530.
  • the wind inflow area for rotating the rotor blade 530 is as shown in FIG. It is represented by the combined area of S2.
  • the rotating blade 300 ' when the rotating blade 300 'is fixed despite the inflow of wind, the rotating blade 300' is disposed at a vertical tangent tangent to the inner circumference of the rotor blade 530. Therefore, the wind inflow area S for rotating the rotor blade 530 is represented by the area of S1 as shown in FIG. 3B.
  • the wind inflow area may be increased to the maximum even if the wind has the same speed as when the rotation blade 300 is fixed.
  • the rotation blade 300 rotates within a predetermined angle, the wind inflow area is increased by about 30% than when the rotation blade 300 is fixed, regardless of the direction of the wind blowing. Maximum wind inflow area could be secured.
  • the rotation angle of the rotary blade 300 is limited through the direction indicator stopper 400.
  • Direction indicator stopper 400 is composed of a pair of spaced apart while maintaining a certain distance with one rotating blade 300 in between. The separation distance with respect to the pair of direction indicator stopper 400 is determined by the rotation angle of the rotating blade 300 which can increase the wind inflow area to the maximum.
  • the direction indicating stopper 400 limits the rotation angle of the rotation blade 300, and the rotation blade 300 limited to the rotation angle maintains the maximum wind inflow area according to the rotation angle at the guide wall 200. Guide the moved wind to the wind rotor (500).
  • Figure 4 is an enlarged view of the "A" part of Figure 1
  • Figure 5a is a view showing the configuration of the wind rotor of the wind power tower according to the present invention
  • Figure 5b is a flat of the wind rotor of the wind power tower according to the present invention It is a figure which shows sectional drawing.
  • the wind rotor 500 includes a rotating shaft 520, a rotor blade 530, a guide barrel 560, and a generator 540 to produce electricity by using wind. It is configured by.
  • the rotary shaft 520 is rotated in conjunction with the rotation of the rotor blade 530, is installed in the center of the ventilation tower 100 via the bearing 551, the generator 540 via the rotary gear 541. And drive are connected. Therefore, when the rotor blade 530 is rotated by the flow of wind, the rotating shaft 520 is rotated in conjunction with the rotation of the rotor blade 530, the generator 540 to generate electricity by using the rotational force of the rotating shaft 520. Can be.
  • the rotor blade 530 is composed of a plurality of spaced apart while surrounding the rotation shaft 520 in a ring shape to provide a rotational force to the rotation shaft 520.
  • the rotor blade 530 is configured in a semi-cylindrical curved concave toward the direction in which the wind flows in order to maximize the resistance by the wind, preferably the separation angle ⁇ between the adjacent rotor blades 530, It satisfies the range of 22 degrees to 23 degrees.
  • the guide cylinder 560 is configured in the form of a cylindrical pipe surrounding the rotating shaft 520.
  • the guide cylinder 560 prevents the wind moved from the rotor blade 530 to move straight to the opposite rotor blade 530 across the rotation axis 520, thereby smoothly moving the wind from the rotor blade 530. To be guided and moved.
  • the generator 540 is driven and connected to the rotating shaft 520 through the rotating gear 541 so that electricity can be generated using the rotating force of the rotating shaft 520.
  • the generator 540 according to the present embodiment is the same as the configuration of a conventional generator 540 used for wind power generation, so a detailed description thereof will be omitted.
  • FIG. 6 is a view showing a wind rotor configuration of a wind power tower according to a modification of the present invention.
  • the wind rotor 500 may be equipped with an upper magnet support piece 550a and a lower magnet support piece 550b for maintaining the rotor blade 530 at no load.
  • the upper magnet support piece 550a and the lower magnet support piece 550b are made of a magnetic material having the same polarity to each other to realize a magnetic levitation effect using the repulsive force of the magnetic material.
  • the upper magnet support piece 550a is fixedly installed on the upper end of the rotating shaft 520 via the upper support piece 553a, and the lower magnet support piece 550b has the same polarity as the upper magnet support piece 550a. And it is fixedly installed in the center of the ventilation tower 100 via the lower support piece (553b).
  • a guide piece 552 for supporting the upper support piece 553a is provided at the center of the ventilation tower 100 so that the upper magnet support piece 550a and the lower magnet support piece 550b are located at opposite points. do.
  • the wind rotor 500 is provided with a wind flow path 570 for guiding the movement of the introduced wind.
  • the wind flow path 570 allows the flow of air in the wind rotor 500 to be smooth, so that the rotor blade 530 of the wind rotor 500 can be effectively operated.
  • Wind flow path 570 to implement this, the first, second, third and fourth wind flow paths 570a, 570b, 570c, 570d which induce a smooth air flow around the rotor blade 530. Is done.
  • the first wind flow path (570a) is formed between the inner end of the rotary blade 300 and the outer periphery of the rotor blade 530, the second wind flow path (570b) of the guide cylinder 560 and the rotor blade 530
  • the third wind path 570c is formed between the inner circumferences, and the third wind path 570c communicates with upper ends of the first wind path 570a and the second wind path 570b from the upper side of the rotor blade 530, and the fourth wind path 570
  • the lower portion of the first wind channel 570a and the second wind channel 570b communicate with each other at the lower side of the rotor blade 530.
  • the wind flow path 570 when the wind flow path 570 is formed around the rotor blade 530, a part of the air introduced into the rotor blade 530 is rotated together with the rotor blade 530 and flows out of the rotor blade 530.
  • the air flowing out of the rotor blade 530 may be induced to re-enter the rotor blade 530 by the wind flow path 570, whereby the rotational speed of the rotor blade 530 is one layer
  • the power generation efficiency may be improved by improving torque of the rotor blade 530.
  • the wind flow path 570 may smoothly discharge the air introduced into the rotor blade 530, so that the air flow into the rotor blade 530 can be made quickly and smoothly.
  • the area ratio of the rotor blade 530 and the wind flow path 570 preferably satisfies 3: 7. Because, in order to effectively implement the rotation operation of the rotor blade 530, it is required to obtain the optimum area ratio of the rotor blade 530 and the wind flow path 570, which can smoothly flow the air in the wind rotor 500. In order to obtain this optimum area ratio, the present inventor has undergone numerous trial and error, and as a result, the inventors have found that the configuration of the ratio is most suitable. Therefore, if the ratio is out of the configuration of the air flow in the wind rotor 500, there is a fear that the flow is lowered.
  • FIG. 7 is a view showing a configuration of a wind power tower according to the present invention equipped with a solar power generation facility.
  • the wind power tower according to the present invention includes a photovoltaic power generation facility 700 for generating electricity using solar light, and a plant cultivation facility for growing plants using generated electric energy. 800) may be further included.
  • the solar power generation apparatus 700 is for converting sunlight irradiated to the ventilation tower 100 into electrical energy, and includes a solar cell module 710, a capacitor (not shown), and a solar control panel 720. do.
  • the solar cell module 710 includes a plurality of solar panels that generate electrical energy when a potential difference is generated by solar energy.
  • the plurality of solar panels are vertically or horizontally disposed on an upper layer or a sidewall of the ventilation tower 100. Spaced apart.
  • the installation structure of the solar panel is affected by the angle of incidence and the amount of sunshine of the sun, it can be changed depending on the region and the surrounding environment.
  • the capacitor charges the electric energy generated through the solar cell module 710 during the time from the sunrise to the sunset where the solar power is possible, and may use the charged electric energy as necessary. This capacitor is controlled by the solar control panel 720.
  • the solar control panel 720 is responsible for the overall control necessary for the operation of the solar cell module 710 and the capacitor, and using the electric energy stored in the capacitor as the power required for the operation of the ventilation tower 100, or if necessary It may also be used as an operating power for the plant cultivation facility (800).
  • the plant cultivation facility 800 to cultivate the plant using the effective utilization space of the ventilation tower 100, so that the space utilization efficiency of wind power and solar power generation can be maximized.
  • the plant cultivation facility 800 is installed on the lower floor of the ventilation tower 100, which is difficult to wind power generation, and grows plants by using the electrical energy of the solar power generation facility 700 for LED lighting.
  • the plant cultivation facility 800 is provided with various plants necessary for the cultivation of the cultivated plant and the cultivated plant.
  • the plant cultivation facility 800 may include an LED lighting device for irradiating LED light to cultivated plants, a water supply pipe for providing water to the cultivated plants, and a spray nozzle for spraying water.
  • FIG. 8 is a view showing the configuration of a wind power tower according to the present invention provided with an air nozzle.
  • the wind power tower according to the present invention may be installed to provide an initial rotational force to the rotor blade 530 when the wind speed is less than a certain speed.
  • a large number of operating energizers are required to rotate the rotor blade 530 in a stationary state.
  • the rotor blade 530 When the rotor blade 530 is normally operated as in the present invention, it actively responds to a wind condition that changes in real time and has a small speed. Even winds can be applied directly to wind power.
  • a wind speed sensor In order to implement this, a wind speed sensor, an air nozzle 630, an air tank 640, and a controller 620 may be installed.
  • the wind speed sensor is installed on each floor of the ventilation tower 100 to measure the wind speed flowing into the wind rotor 500 in real time.
  • the air nozzle 630 is disposed to face the rotor blade 530 of the wind rotor 500 to inject air toward the wind rotor 500 when an operation signal is applied from the controller 620.
  • the air tank 640 stores the high pressure air and provides the air nozzle 630. If the wind speed measured by the wind speed sensor is below a predetermined speed, the controller 620 may apply an operation signal to the air nozzle 630 to maintain the rotation of the rotor blade 530.
  • FIG. 9 is a view showing the configuration of a wind power tower according to the present invention equipped with a solar power plant and an air nozzle.
  • the wind power tower As shown in Figure 9, the wind power tower according to the invention the power control panel for recording the power produced by the generator 540 of the wind rotor 500 or the power produced by the solar cell module 710 (POWER CONTROL PANEL) is installed, a control unit 620 (PLC) for recording the wind speed or the RPM of the wind rotor 500, etc. is installed, and a UPS having a capacitor for storing electric power generated from wind or solar power ( Uninterruptible Power Supply control system can be installed.
  • PLC control unit 620
  • UPS Uninterruptible Power Supply control system
  • the UPS control system prevents power abnormalities caused by voltage fluctuations, frequency fluctuations, instantaneous power failures, and transient voltages when using general or redundant power, and always provides a stable power supply.
  • the control unit 620 includes a computer system and a program for performing overall control of the ventilation tower 100, and includes a structured database for monitoring the operation state through the recording of the overall control.
  • FIG. 10a and 10b is a view showing a hexagonal ventilation tower in the wind power tower according to the present invention
  • Figures 11a and 11b is a view showing an octagonal ventilation tower in the wind power tower according to the invention
  • Figures 12a and Figure 12b is a view showing a circular ventilation tower in the wind power tower according to the present invention.
  • the ventilation tower 100 is a cross-sectional tower consisting of a multi-storey tower
  • the shape of the ventilation tower 100 may be variously changed.
  • the ventilation tower 100 is composed of a multi-layer tower of the hexagonal cross-section, or as shown in Figures 11a and 11b, the ventilation tower 100 is 12A and 12B, the ventilation tower 100 may be configured as a multilayer tower having a circular cross section.
  • Figure 13 is a view showing a wind state of the wind power tower according to the present invention.
  • the ventilation towers 100 having a height of about 6 mm (about 20 mm) are designated areas A to D through which wind is introduced.
  • the zone A is the zone where the natural air velocity is measured
  • the zone B is the zone where the changed speed is measured while the wind in zone A is compressed
  • the zone C is the zone where the changed speed is measured while the wind in zone B is compressed
  • Zone D is the zone in which the speed changed due to the differential pressure caused by the air compression in zone B is measured.
  • the measured wind speed in the area is shown in Table 1 below.
  • Zone A (m / s) Zone B (m / s) Zone C (m / s) Zone D (m / s) Number of rpm of wind rotor Estimated Power Generation (KW) 2 ⁇ 3 1.8 ⁇ 2.5 3.5-4.2 2 ⁇ 2.5 115-121 - 3 ⁇ 4 2 ⁇ 2.5 4 ⁇ 4.5 2.5 ⁇ 3 125-127 12-15 4 ⁇ 5 3 ⁇ 3.5 6.5 ⁇ 7 3.5-4 156-162 27-30 5 ⁇ 6 3.5 to 4.5 7.2-8 4 ⁇ 4.5 194-210 30-38
  • wind speed in zone A is 4 ⁇ 5m / s and 5 ⁇ 6m /
  • wind speeds in zone C ranged from 6.5 to 7 m / s and 7.2 to 8 m / s, with expected power generations of 27 to 30 KW and 30 to 38 KW.
  • the actual power generation capacity that can be generated through the wind power tower according to the present invention is 19.5 of 27 ⁇ 30KW and 30 ⁇ 38KW. It is expected to be a ship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

The present invention relates to a wind power generating tower which enables an optimum wind angle to be obtained so as to achieve maximized wind power generation efficiency. The wind power generating tower comprises: a wind flow tower (100) having a plurality of layers of wind inlets (110) for introducing wind; guide walls (200) radially arranged in the wind flow tower (100) such that wind introduced through the wind inlets (110) is guided toward the center of the wind flow tower (100); rotatable blades (300) rotatably connected to the inner ends of the guide walls (200), respectively; direction-indicating stoppers (400) for restricting the rotating angles of the rotatable blades to a certain angle; and window rotors (500), each of which includes a rotary shaft (520) spinnably arranged at the center of the wind flow tower (100), rotor blades (530) radially arranged about the rotary shaft (520) so as to provide the rotary shaft (520) with rotating force, and a generator (540) connected to the rotary shaft (520) so as to generate electrical energy by means of the rotation of the rotary shaft (520).

Description

풍력발전타워Wind power tower
본 발명은 풍력발전타워에 관한 것으로, 보다 상세하게는 풍압과 공기차압의 발생 면적을 증가시켜 효과적인 풍력발전을 구현할 수 있는 풍력발전타워에 관한 것이다.The present invention relates to a wind power tower, and more particularly, to a wind power tower that can implement an effective wind power by increasing the generation area of wind pressure and air differential pressure.
일반적으로 풍력발전시스템은 바람의 힘을 회전력으로 전환시켜 전력을 생산하는 기술로, 바람 에너지를 기계적 에너지로 변환하고 발전기를 구동하여 전력을 생산하는 시스템이다. In general, a wind power generation system is a technology for generating power by converting wind force into rotational force, and converts wind energy into mechanical energy and drives a generator to produce power.
풍력발전시스템은 다른 발전 시스템에 비해 효과적인 부지 이용이 가능하고, 공해 및 폐기물이 배출이 없는 친환경적이다라는 장점이 있는 반면에, 바람의 풍속이 낮은 지역에서는 발전 자체가 불가능하거나 발전이 이루어지더라도 바람 에너지를 전기 에너지로 변환하는 효율이 매우 낮아진다는 단점이 있었다.The wind power generation system has the advantage of more efficient use of the site compared to other power generation systems and is environmentally friendly, free of pollution and waste. The disadvantage is that the efficiency of converting energy into electrical energy is very low.
이에, 다양한 방향으로부터 불어오는 바람을 효과적으로 집중시켜 저속의 바람이라도 풍속의 가속화를 구현하고, 최적의 바람 각도를 유도하여 풍력 발전 효율을 높일 수 있는 기술이 요구되고 있다.Accordingly, there is a demand for a technology that can effectively concentrate the wind blowing from various directions to implement the acceleration of the wind speed even at a low speed wind, and induce an optimum wind angle to increase the wind power generation efficiency.
이러한 문제점을 해결하기 위한 본 발명의 목적은, 저속의 바람이라도 풍속을 가속화하여 풍력발전을 구현하고 최적의 바람 각도를 유도하여 풍력발전의 효율을 극대화할 수 있는 풍력발전타워를 제공하는 것이다.An object of the present invention for solving this problem is to provide a wind power tower that can maximize the efficiency of wind power by realizing wind power by inducing wind speed and inducing an optimum wind angle even at low wind speed.
상기 목적을 달성하기 위해 본 발명에 따른 풍력발전타워는, 통풍타워, 가이드벽, 회전블레이드, 방향지시스토퍼 및 윈드로터를 포함한다. 통풍타워는 바람이 유입되는 윈드유입구가 복수층을 이루고, 가이드벽은 상기 윈드유입구를 통해 유입된 바람이 상기 통풍타워의 중심방향으로 가이드되도록 상기 통풍타워에서 방사상으로 배치되고, 회전블레이드는 상기 가이드벽의 내측단에 회전가능하게 연결되고, 방향지시스토퍼는 상기 회전블레이드의 회전 각도를 일정 각도로 제한하고, 윈드로터는 상기 통풍타워의 중심부에 스핀가능하게 설치되는 회전축과, 상기 회전축에 회전력을 제공하기 위해 상기 회전축을 기준으로 방사상으로 배치되는 로터블레이드와, 상기 회전축의 회전에 의해 전기가 발생되도록 상기 회전축에 구동 연결되는 발전기로 구성된다.Wind power tower according to the present invention to achieve the above object, includes a ventilation tower, a guide wall, a rotary blade, a direction indicating stopper and a wind rotor. The ventilation tower has a plurality of wind inlets through which wind is introduced, and the guide wall is disposed radially in the ventilation tower so that the wind introduced through the wind inlet is guided toward the center of the ventilation tower, and the rotating blade is the guide. It is rotatably connected to the inner end of the wall, the direction stopper limits the rotation angle of the rotating blade to a certain angle, the wind rotor is a rotating shaft that is rotatably installed in the center of the ventilation tower, and the rotational force to the rotating shaft Rotor blades disposed radially with respect to the rotary shaft to provide, and a generator that is driven to the rotary shaft to generate electricity by the rotation of the rotary shaft.
바람직하게, 상기 회전블레이드의 회전 각도(α)는, 상기 로터블레이드의 내주연이 상기 가이드벽의 내측단과 수직하게 접하는 수직 접선(T1)과, 상기 로터블레이드의 외주연이 상기 가이드벽의 내측단과 수직하게 접하는 수직 접선(T2) 사이의 각도 범위를 만족한다.Preferably, the rotation angle (α) of the rotating blade is a vertical tangent (T1) in which the inner circumference of the rotor blade is perpendicular to the inner end of the guide wall, and the outer circumference of the rotor blade and the inner end of the guide wall It satisfies the angular range between the vertical tangent T2 which is in perpendicular contact.
바람직하게, 상기 윈드로터는 상기 회전축의 상단에 고정 설치되는 상부 자석지지편과, 상기 상부 자석지지편에 대향되도록 상기 통풍타워의 중심부에 고정 설치되는 하부 자석지지편을 더 포함하고, 상기 로터블레이드는 상기 상부 자석지지편과 하부 자석지지편 간의 자력 발생을 통해 자기 부상된다.Preferably, the wind rotor further comprises an upper magnet support piece fixedly installed on the upper end of the rotating shaft, and a lower magnet support piece fixedly installed at the center of the ventilation tower to face the upper magnet support piece, wherein the rotor blade Is magnetically floated through the generation of magnetic force between the upper magnet support piece and the lower magnet support piece.
바람직하게, 상기 로터블레이드는 만곡된 반원통형의 복수개로 구성되고 상기 회전축의 주위를 고리 형태로 두르면서 이격 배치된다.Preferably, the rotor blades are composed of a plurality of curved semi-cylindrical shapes and are spaced apart from each other while surrounding the rotation shaft in a ring shape.
바람직하게, 상기 윈드로터에는 상기 로터블레이드에서 이동된 바람을 가이드하기 위한 가이드통이 상기 회전축을 감싸도록 설치된다.Preferably, the wind rotor is provided with a guide cylinder for guiding the wind moved in the rotor blades to surround the rotating shaft.
바람직하게, 상기 복수의 로터블레이드 중에서 인접한 로터블레이드 간의 이격 각도(β)는, 22도 ~ 23도 범위를 만족한다.Preferably, the separation angle β between adjacent rotor blades among the plurality of rotor blades satisfies the range of 22 degrees to 23 degrees.
바람직하게, 상기 윈드로터에는 유입된 바람을 외부로 안내하기 위한 윈드유로가 형성되되, 상기 윈드유로는 상기 회전블레이드의 내측단과 로터블레이드의 외주연 사이에 형성되는 제1윈드유로와, 상기 가이드통과 로터블레이드의 내주연 사이에 형성되는 제2윈드유로와, 상기 제1윈드유로 및 제2윈드유로의 상단부를 서로 연통하는 제3윈드유로와, 상기 제1윈드유로 및 제2윈드유로의 하단부를 서로 연통하는 제4윈드유로를 포함한다.Preferably, the wind rotor is provided with a wind flow path for guiding the introduced wind to the outside, the wind flow passage is formed between the inner end of the rotating blade and the outer periphery of the rotor blade, and the guide passage A second wind flow path formed between the inner circumference of the rotor blade, a third wind flow path communicating with upper ends of the first wind flow path and the second wind flow path, and lower ends of the first wind flow path and the second wind flow path; It includes a fourth wind euro communicating with each other.
바람직하게, 상기 로터블레이드와 윈드유로의 면적비는 3:7을 만족한다.Preferably, the area ratio of the rotor blades and the wind flow path satisfies 3: 7.
바람직하게, 상기 가이드벽은 상기 통풍타워에서 방사상으로 배치되어 상기 통풍타워의 측벽을 이루는 가이드수직벽과, 상기 통풍타워의 바닥을 이루도록 상기 가이드수직벽에 수직하게 연결되는 가이드수평벽과, 상기 윈드로터를 향해 바람이 수렴되도록 상기 가이드수평벽에 경사지게 연결되는 가이드경사벽을 포함한다.Preferably, the guide wall is a guide vertical wall disposed radially from the ventilation tower to form the side walls of the ventilation tower, and a guide horizontal wall vertically connected to the guide vertical wall to form the bottom of the ventilation tower, and the wind And a guide slope wall inclinedly connected to the guide horizontal wall so that the wind converges toward the rotor.
바람직하게, 상기 가이드수직벽은 상기 통풍타워에서 30도 각도 범위 내에서 방사상으로 배치되는 복수개로 구성된다.Preferably, the guide vertical wall is composed of a plurality of radially disposed within a 30 degree angle range in the ventilation tower.
바람직하게, 상기 윈드로터로 유입되는 바람속도를 측정하기 위한 풍속센서와, 상기 풍속센서에 의해 측정된 바람속도가 일정속도 이하인 경우 상기 로터블레이드에 초기 회전력을 제공하기 위한 작동신호를 인가하는 제어부와, 상기 작동신호의 인가시 상기 윈드로터를 향해 에어를 분사하는 에어노즐과, 상기 에어노즐에 에어를 공급하기 위한 에어탱크를 더 포함한다.Preferably, the wind speed sensor for measuring the wind speed flowing into the wind rotor, and the control unit for applying an operation signal for providing an initial rotational force to the rotor blade when the wind speed measured by the wind speed sensor is less than a predetermined speed and And an air nozzle for injecting air toward the wind rotor when the operation signal is applied, and an air tank for supplying air to the air nozzle.
바람직하게, 상기 통풍타워에 조사되는 태양광을 이용하여 전기를 발생시키기 위한 태양광 발전설비를 더 포함하고, 상기 태양광 발전 설비는 상기 통풍타워의 상층 또는 측벽에 설치되는 태양전지모듈과, 상기 태양전지모듈에서 생성된 전기 에너지를 저장하기 위한 축전기와, 상기 태양전지모듈 및 축전기를 제어하기 위한 태양광 제어패널을 포함한다.Preferably, further comprising a photovoltaic power generation equipment for generating electricity by using the sunlight irradiated to the ventilation tower, the photovoltaic power generation equipment is a solar cell module installed on the upper layer or sidewall of the ventilation tower, and It includes a capacitor for storing the electrical energy generated in the solar cell module, and a solar control panel for controlling the solar cell module and the capacitor.
바람직하게, 상기 통풍타워의 하층에는 LED 조명을 통한 식물 재배설비가 마련된다.Preferably, the lower floor of the ventilation tower is provided with a plant cultivation facility through LED lighting.
바람직하게, 상기 통풍타워는 원형, 사각형, 육각형 및 팔각형 중에서 선택된 어느 하나의 형태로 구성된다.Preferably, the ventilation tower is configured in any one form selected from round, square, hexagon and octagon.
본 발명에 의하면, 다음과 같은 현저한 효과가 구현될 수 있다.According to the present invention, the following remarkable effects can be realized.
첫째, 본 발명은 바람의 집중에 따른 공기차압 발생현상을 이용하여 저속의 바람을 가속화할 수 있으므로, 풍속이 낮은 지역에서도 풍력발전을 구현할 수 있다는 이점이 있다.First, the present invention can accelerate the low-speed wind by using the air pressure generation phenomenon according to the concentration of the wind, there is an advantage that the wind power generation can be implemented in a low wind speed region.
둘째, 본 발명은 바람이 유입되는 면적이 최대로 증가될 수 있도록 바람의 유입 각도를 조절함으로써, 바람이 어느 방향에서 불어오더라도 항상 최적의 발전 상태를 유지할 수 있다는 이점이 있다.Second, the present invention has the advantage that by adjusting the inflow angle of the wind so that the area in which the wind inflow is increased to the maximum, the optimum power generation state can always be maintained even if the wind blows in any direction.
셋째, 본 발명은 바람에 의해 회전되는 로터블레이드를 자기 부상을 적용한 무부하 상태로 유지함으로써, 로터블레이드의 회전시 발생되는 마찰 손실을 미연에 방지할 수 있다는 이점이 있다.Third, the present invention has an advantage in that the friction blades generated during rotation of the rotor blades can be prevented by maintaining the rotor blades rotated by the wind in a no-load state in which magnetic levitation is applied.
도 1은 본 발명에 따른 풍력발전타워를 도시한 구성도.1 is a block diagram showing a wind power tower according to the present invention.
도 2는 본 발명에 따른 풍력발전타워를 도시한 평단면도.Figure 2 is a plan sectional view showing a wind power tower according to the present invention.
도 3a는 본 발명에 따라 회전블레이드가 회전되는 경우 풍력발전타워에서 바람이 유입되는 상태를 나타낸 상태도.Figure 3a is a state diagram showing a state in which the wind is introduced from the wind power tower when the rotating blade is rotated according to the present invention.
도 3b는 회전블레이드가 회전되는 경우와 비교하여, 회전블레이드가 고정되는 경우를 가정하여 풍력발전타워에서 바람이 유입되는 상태를 나타낸 상태도.3b is a state diagram illustrating a state in which wind is introduced from a wind power tower under the assumption that the rotating blade is fixed, compared to the case where the rotating blade is rotated.
도 4는 도 1의 "A"부를 확대하여 도시한 확대도.4 is an enlarged view illustrating an enlarged portion "A" of FIG. 1.
도 5a는 본 발명에 따른 풍력발전타워의 윈드로터를 도시한 구성도.Figure 5a is a block diagram showing a wind rotor of the wind power tower according to the present invention.
도 5b는 본 발명에 따른 풍력발전타워의 윈드로터를 도시한 평단면도.Figure 5b is a cross-sectional view showing a wind rotor of the wind power tower according to the present invention.
도 6은 본 발명의 변형예에 풍력발전타워의 윈드로터를 도시한 구성도.Figure 6 is a schematic view showing a wind rotor of the wind power tower in a modification of the present invention.
도 7은 태양광 발전설비가 구비된 본 발명에 따른 풍력발전타워를 도시한 구성도.Figure 7 is a block diagram showing a wind power tower according to the present invention provided with a solar power installation.
도 8은 에어노즐이 구비된 본 발명에 따른 풍력발전타워를 도시한 구성도.Figure 8 is a block diagram showing a wind power tower according to the present invention equipped with an air nozzle.
도 9는 태양광 발전설비 및 에어노즐이 구비된 본 발명에 따른 풍력발전타워를 도시한 구성도.Figure 9 is a block diagram showing a wind power tower according to the present invention equipped with a solar power plant and air nozzles.
도 10a 및 도 10b는 본 발명에 따른 풍력발전타워에서 육각형의 통풍타워를 도시한 구성도 및 평단면도.10a and 10b is a block diagram and a plan view showing a hexagonal ventilation tower in the wind power tower according to the present invention.
도 11a 및 도 11b는 본 발명에 따른 풍력발전타워에서 팔각형의 통풍타워를 도시한 구성도 및 평단면도.11a and 11b is a block diagram and a plan view showing an octagonal ventilation tower in the wind power tower according to the present invention.
도 12a 및 도 12b는 본 발명에 따른 풍력발전타워에서 원형의 통풍타워를 도시한 구성도 및 평단면도.12a and 12b is a block diagram and a plan view showing a circular ventilation tower in the wind power tower according to the present invention.
도 13은 본 발명에 따른 풍력발전타워의 집풍상태를 도시한 상태도.Figure 13 is a state diagram showing the wind state of the wind power tower according to the invention.
100 :통풍타워 110 :윈드통구100: ventilation tower 110: wind hole
200 :가이드벽 210 :가이드수직벽200: guide wall 210: guide vertical wall
220 :가이드경사벽 230 :가이드수평벽 220: guide slope wall 230: guide horizontal wall
300 :회전블레이드 400 :방향지시스토퍼 300: rotating blade 400: direction indicating stopper
500 :윈드로터 520 :회전축500: wind rotor 520: rotating shaft
530 :로터블레이드 540 :발전기530: rotor blade 540: generator
620 :제어부 630 :에어노즐620: control unit 630: air nozzle
640 :에어탱크 700 :태양광 발전설비640: air tank 700: solar power generation equipment
800 :식물 재배설비800: plant cultivation facility
우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략하기로 한다.First of all, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even if displayed on different drawings. In addition, in describing the present invention, when it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
첨부된 도면에 의거하여 본 발명의 실시예를 상세히 설명하기로 한다.An embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 풍력발전타워의 구성을 나타낸 도면이고, 도 2는 본 발명에 따른 풍력발전타워의 평단면도를 나타낸 도면이다.1 is a view showing the configuration of a wind power tower according to the present invention, Figure 2 is a view showing a cross-sectional view of the wind power tower according to the present invention.
도 1 내지 도 2에 도시된 바와 같이, 본 발명에 의한 풍력발전타워는, 공기차압 발생현상을 이용하여 바람을 효과적으로 집중시킴으로써 바람을 가속화하고, 바람의 유입 각도를 조절하여 바람이 유입되는 면적이 최대로 증가될 수 있도록 한다.As shown in Figures 1 to 2, the wind power tower according to the present invention, by accelerating the wind effectively by using the air differential pressure generation phenomenon to accelerate the wind, by adjusting the inflow angle of the wind is the area where the wind flows Allow for maximum growth.
이를 구현하기 위해, 풍력발전타워는 통풍타워(100), 가이드벽(200), 회전블레이드(300), 방향지시스토퍼(400) 및 윈드로터(500)를 포함하여 구성된다. To implement this, the wind power tower is configured to include a ventilation tower 100, the guide wall 200, the rotary blade 300, the direction indicating stopper 400 and the wind rotor 500.
통풍타워(100)는 바람의 유통이 이루어지는 윈드통구(110)가 복수층을 이루는 타워 형태의 구조물로, 가이드벽(200) 및 회전블레이드(300)를 이용하여 해당 중심으로 바람이 수렴되는 내부 구조를 갖으며, 각 층에 설치된 윈드로터(500)를 통해 해당 층에서 독립적인 발전이 이루어지도록 한다. Ventilation tower 100 is a tower-shaped structure in which wind passages 110 through which wind flows are formed in a plurality of layers, and an internal structure in which wind converges to the center by using guide walls 200 and rotating blades 300. Has a, through the wind rotor 500 installed in each layer to ensure that independent power generation is made in that layer.
가이드벽(200)은 통풍타워(100)의 중심에서 방사상으로 배치되는 형태로, 통풍타워(100)에 유입된 바람이 통풍타워(100)의 중심을 향해 집중되도록 바람이 이동되는 유로를 형성한다. 따라서, 윈드통구(110)로 유입된 바람이 가이드벽(200)에 의해 통풍타워(100)의 중심으로 집중되면, 유입된 내부 공기는 외부 공기 간에 공기차압을 발생시키는데, 이 공기차압은 바람의 속도를 증가시킬 수 있다.The guide wall 200 is disposed radially from the center of the ventilation tower 100 to form a flow path through which the wind is moved so that the wind introduced into the ventilation tower 100 is concentrated toward the center of the ventilation tower 100. . Therefore, when the wind flowing into the wind hole 110 is concentrated by the guide wall 200 to the center of the ventilation tower 100, the introduced internal air generates an air differential between the outside air, the air differential pressure of the wind You can increase the speed.
회전블레이드(300)는 가이드벽(200)에 의해 이동된 바람의 각도를 조절함으로써, 바람의 윈드로터(500) 유입시 바람 유입면적이 최대로 증가되도록 한다. 이로써, 윈드로터(500)에서는 바람이 불어오는 방향에 무관하게 최대의 바람 유입면적이 확보될 수 있으며, 결국, 발전 효율의 극대화를 구현할 수 있다. The rotating blade 300 adjusts the angle of the wind moved by the guide wall 200, so that the wind inflow area is increased to the maximum when the wind rotor 500 flows. As a result, in the wind rotor 500, the maximum wind inflow area may be secured regardless of the direction in which the wind blows, and, thus, maximization of power generation efficiency may be realized.
방향지시스토퍼(400)는 회전블레이드(300)의 회전을 일정 각도로 제한하는 역할을 하는데, 바람직하게 회전블레이드(300)의 회전이 로터블레이드(530)의 외주연 및 내주연 사이 각도 내에서 이루어지도록 제한한다. 여기서, 회전블레이드(300)의 회전을 제한하기 위한 구체적인 내용은 후술한다. Directional stopper 400 serves to limit the rotation of the rotary blade 300 to a predetermined angle, preferably the rotation of the rotary blade 300 is made within the angle between the outer and inner circumference of the rotor blade 530 Restrict to lose. Here, specific details for limiting the rotation of the rotary blade 300 will be described later.
윈드로터(500)는 통풍타워(100)의 중심으로 이동된 바람을 이용하여 전기 발전을 구현하는 장치이다. 이 윈드로터(500)는 바람이 유입되는 윈드통구(110)에 대해 직선상에 위치되도록 통풍타워(100)의 각 층 중심부에 배치되므로, 발전기(540)로 이동되기까지 바람의 방향이 여러 바뀌어 야기되었던 종래기술의 바람 에너지 손실 문제를 미연에 방지할 수 있다. The wind rotor 500 is a device that implements electricity generation by using wind moved to the center of the ventilation tower 100. Since the wind rotor 500 is disposed at the center of each floor of the ventilation tower 100 so as to be positioned in a straight line with respect to the wind passage 110 through which the wind is introduced, the direction of the wind is changed several times until it is moved to the generator 540. It is possible to prevent the wind energy loss problem of the prior art caused.
상술한 구성을 보다 명확히 설명하기 위하여 해당 도면을 참고하여 본 발명의 구성을 구체적으로 살펴보면 다음과 같다. In order to more clearly describe the above-described configuration, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
도 1 내지 도 2를 다시 참조하면, 본 실시예에 따른 통풍타워(100)는 해당 횡단면이 사각형 형태의 복층 타워로 구성되며, 각 층에는 바람의 속도를 측정하기 위한 풍속센서가 마련된다.Referring back to Figures 2 and 2, the ventilation tower 100 according to the present embodiment is a cross-sectional quadrangular tower of the cross-sectional shape, each floor is provided with a wind speed sensor for measuring the speed of the wind.
그리고 통풍타워(100)의 각 층에는 방사상으로 구획되는 8개의 구획 공간이 형성된다. 이 8개의 구획 공간 중에서 2~3개의 인접한 구획공간에는 바람의 유입이 이루어지며, 이들 구획공간에 유입된 바람은 통풍타워(100)의 중심부를 향해 수렴되면서 풍속의 증가가 이루어진다. 이들 구획공간은 가이드벽(200)에 의해 구획된다. In addition, eight partition spaces radially partitioned are formed in each floor of the ventilation tower 100. Wind is introduced into two or three adjacent compartments of the eight compartments, and the winds introduced into these compartments converge toward the center of the ventilation tower 100 to increase the wind speed. These compartments are partitioned by the guide wall 200.
가이드벽(200)은 윈드통구(110)를 통해 유입된 바람을 통풍타워(100)의 중심으로 유도하기 위해, 통풍타워(100)의 중심에서부터 방사상 형태로 전개되는 구조이다. Guide wall 200 is a structure that is deployed in a radial form from the center of the ventilation tower 100 in order to guide the wind introduced through the wind hole 110 to the center of the ventilation tower (100).
여기서, 가이드벽(200)을 일정 길이 연장하게 되면, 윈드통구(110)를 통해 유입되는 바람의 양이 증가될 수 있으며, 통풍타워(100)의 중심부에 유입되는 바람의 속도 또한 증가될 수 있다. 다만, 가이드벽(200)의 길이 결정은 가이드벽(200)의 마찰저항과 주변 환경 등의 설계 인자를 고려하여 결정되어야 할 것이다.Here, if the guide wall 200 extends a certain length, the amount of wind flowing through the wind hole 110 may be increased, and the speed of the wind flowing into the center of the ventilation tower 100 may also be increased. . However, the length of the guide wall 200 should be determined in consideration of design factors such as the frictional resistance of the guide wall 200 and the surrounding environment.
이러한 가이드벽(200)은 가이드수직벽(210), 가이드수평벽(230) 및 가이드경사벽(220)으로 구성된다. 가이드수직벽(210)은 통풍타워(100)의 측벽을 구성하되 통풍타워(100)에서 방사상으로 배치되고, 가이드수평벽(230)은 가이드수직벽(210)에 수직하게 배치되어 통풍타워(100)의 각 층을 구분하고, 가이드경사벽(220)은 윈드로터(500)의 로터블레이드(530)를 향해 바람이 수렴되도록 가이드수평벽(230)에 경사지게 연결된다. The guide wall 200 is composed of a guide vertical wall 210, guide horizontal wall 230 and guide slope wall 220. The guide vertical wall 210 constitutes a sidewall of the ventilation tower 100, but is disposed radially from the ventilation tower 100, and the guide horizontal wall 230 is disposed perpendicular to the guide vertical wall 210 to provide a ventilation tower 100. Each layer of), and the guide slope wall 220 is inclinedly connected to the guide horizontal wall 230 so that the wind converges toward the rotor blade 530 of the wind rotor 500.
이때, 가이드벽(200)의 가이드경사벽(220)은 통풍타워(100)의 중심부, 예컨대, 윈드로터(500)의 로터블레이드(530)를 향해 상향 경사지게 배치되므로, 해당 하측에 발전기(540)의 설치공간을 마련할 수 있다. 그리고 가이드수직벽(210)은 30도 내 각도 범위에서 방사상으로 배치되는 복수개로 구성되는 것이 바람직한데, 본 실시예에서는 가이드수직벽(210)이 22.5도 간격의 방사 형태로 배치됨으로써, 통풍타워(100)의 내부가 8개의 구획 공간으로 구분되도록 하였다. 또한, 가이드벽(200)의 내측단에는 회전블레이드(300)가 회전가능하게 연결된다.At this time, the guide slope wall 220 of the guide wall 200 is disposed inclined upward toward the center of the ventilation tower 100, for example, the rotor blade 530 of the wind rotor 500, the generator 540 in the lower side The installation space of can be prepared. And the guide vertical wall 210 is preferably composed of a plurality of radially arranged in an angle range within 30 degrees, in this embodiment, the guide vertical wall 210 is disposed in a radial form at intervals of 22.5 degrees, thereby providing a ventilation tower ( The interior of 100) was divided into eight compartments. In addition, the rotating blade 300 is rotatably connected to the inner end of the guide wall 200.
회전블레이드(300)는 가이드벽(200)의 내측단에서 자유 회전이 가능하도록 가이드벽(200)의 내측단과 회전축(301)을 매개로 연결되어, 해당 일면 및 타면이 가이드벽(200)으로부터 이동되는 바람의 풍압에 의해 일방향 또는 타방향으로 회전이 가능한 구조이다. The rotary blade 300 is connected to the inner end of the guide wall 200 and the rotation shaft 301 so as to allow free rotation at the inner end of the guide wall 200, and one side and the other side thereof move from the guide wall 200. It is a structure that can be rotated in one direction or the other direction by the wind pressure of the wind.
도 3a는 본 발명에 따라 회전블레이드가 회전되는 경우 풍력발전타워에서 바람이 유입되는 상태를 나타낸 도면이고, 도 3b는 회전블레이드가 회전되는 경우와 비교하여, 회전블레이드가 고정되는 경우를 가정하여 풍력발전타워에서 바람이 유입되는 상태를 나타낸 상태도.Figure 3a is a view showing a state in which wind is introduced from the wind power tower when the rotating blade is rotated in accordance with the present invention, Figure 3b is assuming that the rotating blade is fixed compared to the case where the rotating blade is rotated wind power A state diagram showing the flow of wind from the power generation tower.
특히, 도 3a에 도시된 바와 같이, 회전블레이드(300)는 윈드로터(500)로 유입되는 바람 유입면적이 최대로 증가되도록 바람의 각도를 조절한다. 이를 위해, 회전블레이드(300)의 회전 각도(α)는, 로터블레이드(530)의 내주연이 가이드벽(200)의 내측단과 수직하게 접하는 수직 접선(T1)과, 로터블레이드(530)의 외주연이 가이드벽(200)의 내측단과 수직하게 접하는 수직 접선(T2) 사이의 각도 범위를 만족해야 한다. 도면에서 수직 접선(T1, T2)는 점선으로 표시한다.In particular, as shown in Figure 3a, the rotary blade 300 adjusts the angle of the wind so that the maximum wind inlet area flowing into the wind rotor 500 is maximized. To this end, the rotation angle α of the rotary blade 300 is a vertical tangent T1 in which the inner circumference of the rotor blade 530 is perpendicular to the inner end of the guide wall 200, and the outside of the rotor blade 530. The circumference should satisfy the angular range between the vertical tangent T2 which is in perpendicular contact with the inner end of the guide wall 200. Vertical tangents T1 and T2 in the figure are indicated by dashed lines.
즉, 바람의 유입으로 인해 회전블레이드(300)가 회전되는 경우, 일측의 회전블레이드(300)는 로터블레이드(530)의 외주연에 접하는 수직 접선(T2)에 배치되고 타측의 회전블레이드(300)는 로터블레이드(530)의 내주연에 접하는 수직 접선(T1') 및 수직 접선(T1")에 배치된다. 이때, 로터블레이드(530)를 회전시키기 위한 바람 유입면적이 도 3a에서와 같이 S1과 S2를 합친 면적으로 나타낸다. That is, when the rotary blade 300 is rotated due to the inflow of wind, the rotary blade 300 of one side is disposed on the vertical tangent (T2) in contact with the outer circumference of the rotor blade 530 and the rotary blade 300 of the other side Is disposed at the vertical tangent T1 ′ and the vertical tangent T1 ″ in contact with the inner circumference of the rotor blade 530. At this time, the wind inflow area for rotating the rotor blade 530 is as shown in FIG. It is represented by the combined area of S2.
반면에, 도 3b에 도시된 바와 같이, 바람의 유입됨에도 불구하고 회전블레이드(300')가 고정되는 경우, 이 회전블레이드(300')는 로터블레이드(530)의 내주연에 접하는 수직 접선에 배치되므로, 로터블레이드(530)를 회전시키기 위한 바람 유입면적(S)이 도 3b에서와 같이 S1의 면적으로 나타낸다.On the other hand, as shown in FIG. 3B, when the rotating blade 300 'is fixed despite the inflow of wind, the rotating blade 300' is disposed at a vertical tangent tangent to the inner circumference of the rotor blade 530. Therefore, the wind inflow area S for rotating the rotor blade 530 is represented by the area of S1 as shown in FIG. 3B.
이와 같이, 회전블레이드(300) 일정 각도 내로 회전시키는 경우가 회전블레이드(300')를 고정시키는 경우보다 동일한 속도의 바람이라도 바람 유입면적이 최대로 증가될 수 있다. 그리고 실험 결과, 회전블레이드(300) 일정 각도 내로 회전시키는 경우가 회전블레이드(300')를 고정시키는 경우보다 약 30% 정도의 바람 유입면적이 증가됨을 알 수 있었으며, 바람이 불어오는 방향에 무관하게 최대의 바람 유입면적을 확보할 수 있었다.As such, when the rotation blade 300 is rotated within a predetermined angle, the wind inflow area may be increased to the maximum even if the wind has the same speed as when the rotation blade 300 is fixed. As a result of the experiment, the rotation blade 300 rotates within a predetermined angle, the wind inflow area is increased by about 30% than when the rotation blade 300 is fixed, regardless of the direction of the wind blowing. Maximum wind inflow area could be secured.
이러한 회전블레이드(300)의 회전 각도는 방향지시스토퍼(400)를 통해 제한이 이루어진다.The rotation angle of the rotary blade 300 is limited through the direction indicator stopper 400.
방향지시스토퍼(400)는 하나의 회전블레이드(300)를 사이에 두고 일정 거리를 유지하며 이격 배치되는 한 쌍으로 구성된다. 이들 한 쌍의 방향지시스토퍼(400)에 대한 이격 거리는 바람 유입면적을 최대로 증가시킬 수 있는 회전블레이드(300)의 회전 각도에 의해 결정된다. Direction indicator stopper 400 is composed of a pair of spaced apart while maintaining a certain distance with one rotating blade 300 in between. The separation distance with respect to the pair of direction indicator stopper 400 is determined by the rotation angle of the rotating blade 300 which can increase the wind inflow area to the maximum.
예컨대, 방향지시스토퍼(400)는 회전블레이드(300)의 회전 각도를 제한하고, 회전 각도에 제한된 회전블레이드(300)는 해당 회전 각도에 따라 바람 유입면적을 최대로 유지하면서 가이드벽(200)에서 이동된 바람을 윈드로터(500)로 안내한다.For example, the direction indicating stopper 400 limits the rotation angle of the rotation blade 300, and the rotation blade 300 limited to the rotation angle maintains the maximum wind inflow area according to the rotation angle at the guide wall 200. Guide the moved wind to the wind rotor (500).
도 4는 도 1의 "A"부를 확대하여 나타낸 도면이고, 도 5a는 본 발명에 따른 풍력발전타워의 윈드로터 구성을 나타낸 도면이고, 도 5b는 본 발명에 따른 풍력발전타워의 윈드로터의 평단면도를 나타낸 도면이다.Figure 4 is an enlarged view of the "A" part of Figure 1, Figure 5a is a view showing the configuration of the wind rotor of the wind power tower according to the present invention, Figure 5b is a flat of the wind rotor of the wind power tower according to the present invention It is a figure which shows sectional drawing.
도 4 내지 도 5b에 도시된 바와 같이, 윈드로터(500)는 바람을 이용하여 전기를 생산하기 위해, 회전축(520), 로터블레이드(530), 가이드통(560) 및 발전기(540)를 포함하여 구성된다. As shown in FIGS. 4-5B, the wind rotor 500 includes a rotating shaft 520, a rotor blade 530, a guide barrel 560, and a generator 540 to produce electricity by using wind. It is configured by.
회전축(520)은 로터블레이드(530)의 회전에 연동하여 회전되는 구조로, 통풍타워(100)의 중심부에 베어링(551)을 매개로 설치되고, 회전기어(541)를 매개로 발전기(540)와 구동 연결된다. 따라서, 로터블레이드(530)가 바람의 유동에 의해 회전되면 회전축(520)이 로터블레이드(530)의 회전에 연동하여 회전되고, 발전기(540)는 회전축(520)의 회전력을 이용하여 전기를 생산할 수 있다.The rotary shaft 520 is rotated in conjunction with the rotation of the rotor blade 530, is installed in the center of the ventilation tower 100 via the bearing 551, the generator 540 via the rotary gear 541. And drive are connected. Therefore, when the rotor blade 530 is rotated by the flow of wind, the rotating shaft 520 is rotated in conjunction with the rotation of the rotor blade 530, the generator 540 to generate electricity by using the rotational force of the rotating shaft 520. Can be.
로터블레이드(530)는 회전축(520)에 회전력을 제공하도록 회전축(520)의 주위를 고리 형태로 두르면서 이격 배치되는 복수개로 구성된다. 특히, 로터블레이드(530)는 바람에 의한 저항을 극대화하기 위해, 바람이 유입되는 방향을 향해 오목하게 만곡되는 반원통형으로 구성되며, 바람직하게 인접한 로터블레이드(530) 간의 이격 각도(β)는, 22도 ~ 23도 범위를 만족한다.The rotor blade 530 is composed of a plurality of spaced apart while surrounding the rotation shaft 520 in a ring shape to provide a rotational force to the rotation shaft 520. In particular, the rotor blade 530 is configured in a semi-cylindrical curved concave toward the direction in which the wind flows in order to maximize the resistance by the wind, preferably the separation angle β between the adjacent rotor blades 530, It satisfies the range of 22 degrees to 23 degrees.
가이드통(560)은 회전축(520)을 감싸는 원통형의 파이프 형태로 구성된다. 이러한 가이드통(560)은 로터블레이드(530)에서 이동된 바람이 회전축(520)을 가로질러 반대측 로터블레이드(530)로 직진 이동되는 것을 방지함으로써, 로터블레이드(530)에서 이동된 바람이 원활하게 가이드되어 이동될 수 있도록 한다.The guide cylinder 560 is configured in the form of a cylindrical pipe surrounding the rotating shaft 520. The guide cylinder 560 prevents the wind moved from the rotor blade 530 to move straight to the opposite rotor blade 530 across the rotation axis 520, thereby smoothly moving the wind from the rotor blade 530. To be guided and moved.
발전기(540)는 회전축(520)의 회전력을 이용하여 전기가 발생될 수 있도록 회전기어(541)를 매개로 회전축(520)에 구동 연결된다. 본 실시예에 따른 발전기(540)는 풍력 발전을 위해 사용되는 통상의 발전기(540) 구성과 동일하므로 이에 대한 상세한 설명은 생략하기로 한다.The generator 540 is driven and connected to the rotating shaft 520 through the rotating gear 541 so that electricity can be generated using the rotating force of the rotating shaft 520. The generator 540 according to the present embodiment is the same as the configuration of a conventional generator 540 used for wind power generation, so a detailed description thereof will be omitted.
도 6은 본 발명의 변형예에 풍력발전타워의 윈드로터 구성을 나타낸 도면이다.6 is a view showing a wind rotor configuration of a wind power tower according to a modification of the present invention.
도 6에 도시된 바와 같이, 윈드로터(500)에는 로터블레이드(530)를 무부하 상태로 유지하기 위한 상부 자석지지편(550a) 및 하부 자석지지편(550b)이 장착될 수 있다. 이들 상부 자석지지편(550a) 및 하부 자석지지편(550b)은 서로 동일한 극성을 갖는 자성체로 구성되어 자성체의 척력을 이용한 자기 부상 효과를 구현한다.As shown in FIG. 6, the wind rotor 500 may be equipped with an upper magnet support piece 550a and a lower magnet support piece 550b for maintaining the rotor blade 530 at no load. The upper magnet support piece 550a and the lower magnet support piece 550b are made of a magnetic material having the same polarity to each other to realize a magnetic levitation effect using the repulsive force of the magnetic material.
예컨대, 상부 자석지지편(550a)은 상부지지편(553a)을 매개로 회전축(520)의 상단에 고정 설치되고, 하부 자석지지편(550b)은 상부 자석지지편(550a)과 동일한 극성으로 구성되고 하부지지편(553b)을 매개로 통풍타워(100)의 중심부에 고정 설치된다. For example, the upper magnet support piece 550a is fixedly installed on the upper end of the rotating shaft 520 via the upper support piece 553a, and the lower magnet support piece 550b has the same polarity as the upper magnet support piece 550a. And it is fixedly installed in the center of the ventilation tower 100 via the lower support piece (553b).
이때, 통풍타워(100)의 중심부에는 상부 자석지지편(550a)과 하부 자석지지편(550b)이 서로 대향되는 지점에 위치되도록 상부지지편(553a)을 지지하기 위한 가이드편(552)이 마련된다.At this time, a guide piece 552 for supporting the upper support piece 553a is provided at the center of the ventilation tower 100 so that the upper magnet support piece 550a and the lower magnet support piece 550b are located at opposite points. do.
윈드로터(500)에는 유입된 바람의 이동을 가이드하는 윈드유로(570)가 형성된다. 이 윈드유로(570)는 윈드로터(500) 내 공기의 흐름이 원활해지도록 함으로써, 윈드로터(500)의 로터블레이드(530) 작동이 효과적으로 이루어질 수 있도록 한다.The wind rotor 500 is provided with a wind flow path 570 for guiding the movement of the introduced wind. The wind flow path 570 allows the flow of air in the wind rotor 500 to be smooth, so that the rotor blade 530 of the wind rotor 500 can be effectively operated.
이를 구현하기 위한 윈드유로(570)는, 로터블레이드(530)의 주위에 원활한 공기 유동을 유도하는 제1, 2, 3 및 4윈드유로(570a),(570b),(570c),(570d)로 이루어진다. Wind flow path 570 to implement this, the first, second, third and fourth wind flow paths 570a, 570b, 570c, 570d which induce a smooth air flow around the rotor blade 530. Is done.
*제1윈드유로(570a)는 회전블레이드(300)의 내측단과 로터블레이드(530)의 외주연 사이에 형성되고, 제2윈드유로(570b)는 가이드통(560)과 로터블레이드(530)의 내주연 사이에 형성되고, 제3윈드유로(570c)는 로터블레이드(530)의 상측에서 제1윈드유로(570a) 및 제2윈드유로(570b)의 상단부를 서로 연통하고, 제4윈드유로(570d)는 로터블레이드(530)의 하측에서 제1윈드유로(570a) 및 제2윈드유로(570b)의 하단부를 서로 연통한다.* The first wind flow path (570a) is formed between the inner end of the rotary blade 300 and the outer periphery of the rotor blade 530, the second wind flow path (570b) of the guide cylinder 560 and the rotor blade 530 The third wind path 570c is formed between the inner circumferences, and the third wind path 570c communicates with upper ends of the first wind path 570a and the second wind path 570b from the upper side of the rotor blade 530, and the fourth wind path 570 The lower portion of the first wind channel 570a and the second wind channel 570b communicate with each other at the lower side of the rotor blade 530.
이와 같이, 로터블레이드(530)의 주위에 윈드유로(570)를 형성하는 경우, 로터블레이드(530)에 유입된 공기의 일부는 로터블레이드(530)와 함께 회전되면서 로터블레이드(530) 외측으로 유출될 수 있는데, 이때, 로터블레이드(530) 외측으로 유출된 공기는 윈드유로(570)에 의해 로터블레이드(530)로 재유입이 유도될 수 있으며, 이로써, 로터블레이드(530)의 회전속도는 일층 증가되고, 로터블레이드(530)의 토크 향상을 통해 발전 효율을 향상시킬 수 있다. 또한, 윈드유로(570)는 로터블레이드(530)로 유입된 공기를 원활하게 배출시킴으로써, 로터블레이드(530)로의 공기 유입이 신속하고 원활하게 이루어지도록 할 수 있다.As such, when the wind flow path 570 is formed around the rotor blade 530, a part of the air introduced into the rotor blade 530 is rotated together with the rotor blade 530 and flows out of the rotor blade 530. In this case, the air flowing out of the rotor blade 530 may be induced to re-enter the rotor blade 530 by the wind flow path 570, whereby the rotational speed of the rotor blade 530 is one layer In addition, the power generation efficiency may be improved by improving torque of the rotor blade 530. In addition, the wind flow path 570 may smoothly discharge the air introduced into the rotor blade 530, so that the air flow into the rotor blade 530 can be made quickly and smoothly.
이때, 로터블레이드(530)와 윈드유로(570)의 면적비는 3:7을 만족하는 것이 바람직하다. 왜냐하면, 로터블레이드(530)의 회전 작동이 효과적으로 구현되기 위해서는, 윈드로터(500) 내 공기의 흐름이 가장 원활해질 수 있는 로터블레이드(530)와 윈드유로(570)의 최적 면적비를 구하는 것이 요구되는데, 이 최적 면적비를 구하기 위하여, 본 발명자는 수많은 시행착오를 거쳤으며, 그 결과 상기 비율의 구성이 가장 적합함을 발견하게 되었다. 따라서, 상기 비율의 구성을 벗어나게 되면 윈드로터(500) 내 공기의 흐름이 저하될 우려가 발생된다.At this time, the area ratio of the rotor blade 530 and the wind flow path 570 preferably satisfies 3: 7. Because, in order to effectively implement the rotation operation of the rotor blade 530, it is required to obtain the optimum area ratio of the rotor blade 530 and the wind flow path 570, which can smoothly flow the air in the wind rotor 500. In order to obtain this optimum area ratio, the present inventor has undergone numerous trial and error, and as a result, the inventors have found that the configuration of the ratio is most suitable. Therefore, if the ratio is out of the configuration of the air flow in the wind rotor 500, there is a fear that the flow is lowered.
도 7은 태양광 발전설비가 구비된 본 발명에 따른 풍력발전타워의 구성을 나타낸 도면이다.7 is a view showing a configuration of a wind power tower according to the present invention equipped with a solar power generation facility.
도 7에 도시된 바와 같이, 본 발명에 따른 풍력발전타워는 태양광을 이용하여 전기를 발생시키기 위한 태양광 발전설비(700)와, 발전된 전기 에너지를 이용하여 식물을 재배하기 위한 식물 재배설비(800)를 더 포함할 수 있다.As shown in FIG. 7, the wind power tower according to the present invention includes a photovoltaic power generation facility 700 for generating electricity using solar light, and a plant cultivation facility for growing plants using generated electric energy. 800) may be further included.
이 태양광 발전설비(700)는 통풍타워(100)에 조사되는 태양광을 전기에너지로 변환시키기 위한 것으로, 태양전지모듈(710), 축전기(미도시), 태양광 제어패널(720)을 포함한다.The solar power generation apparatus 700 is for converting sunlight irradiated to the ventilation tower 100 into electrical energy, and includes a solar cell module 710, a capacitor (not shown), and a solar control panel 720. do.
태양전지모듈(710)은 태양 에너지에 의한 전위차 발생시 전기 에너지를 발생시키는 복수의 태양패널을 포함하는데, 바람직하게 이 복수의 태양패널은 통풍타워(100)의 상층 또는 측벽에 세로방향 또는 가로방향으로 이격하여 배치된다. 다만, 이 태양패널의 설치 구조는 태양의 입사각과 일조량에 영향을 받으므로, 지역 및 주위 환경에 따라 변경될 수 있음은 물론이다. The solar cell module 710 includes a plurality of solar panels that generate electrical energy when a potential difference is generated by solar energy. Preferably, the plurality of solar panels are vertically or horizontally disposed on an upper layer or a sidewall of the ventilation tower 100. Spaced apart. However, since the installation structure of the solar panel is affected by the angle of incidence and the amount of sunshine of the sun, it can be changed depending on the region and the surrounding environment.
태양전지모듈(710)에서 생성된 전기 에너지는 축전기를 통해 충전된다. Electrical energy generated by the solar cell module 710 is charged through a capacitor.
축전기는 태양광 발전이 가능한 일출에서 일몰까지의 시간동안 태양전지모듈(710)을 통해 발생한 전기 에너지를 충전하고, 필요에 따라 충전된 전기 에너지를 사용도 가능하다. 이 축전기는 태양광 제어패널(720)에 의해 제어된다.The capacitor charges the electric energy generated through the solar cell module 710 during the time from the sunrise to the sunset where the solar power is possible, and may use the charged electric energy as necessary. This capacitor is controlled by the solar control panel 720.
태양광 제어패널(720)은 태양전지모듈(710) 및 축전기의 운용에 필요한 전반적인 제어를 담당하며, 필요에 따라 축전기에 저장된 전기 에너지를 통풍타워(100) 운영에 필요한 전력으로 사용하거나, 별도의 식물 재배설비(800)를 위한 운영 전력으로 사용하기도 한다.The solar control panel 720 is responsible for the overall control necessary for the operation of the solar cell module 710 and the capacitor, and using the electric energy stored in the capacitor as the power required for the operation of the ventilation tower 100, or if necessary It may also be used as an operating power for the plant cultivation facility (800).
한편, 식물 재배설비(800)는 통풍타워(100)의 유효 활용 공간을 이용하여 식물을 경작할 수 있도록 함으로써, 풍력 발전 및 태양광 발전의 공간 활용 효율이 극대화될 수 있도록 한다.On the other hand, the plant cultivation facility 800 to cultivate the plant using the effective utilization space of the ventilation tower 100, so that the space utilization efficiency of wind power and solar power generation can be maximized.
이를 위해, 식물 재배설비(800)는 풍력 발전이 어려운 통풍타워(100)의 하층에 설치되며, 태양광 발전설비(700)의 전기 에너지를 LED 조명에 사용하여 식물을 재배한다.To this end, the plant cultivation facility 800 is installed on the lower floor of the ventilation tower 100, which is difficult to wind power generation, and grows plants by using the electrical energy of the solar power generation facility 700 for LED lighting.
이 식물 재배설비(800)에는 경작 식물 및 경작 식물의 재배에 필요한 각종 기구가 구비된다. 예를 들어, 식물 재배설비(800)에는 경작 식물을 LED 조명을 조사하기 위한 LED 조명장치, 경작 식물에 용수를 제공하기 위한 용수 공급관, 용수를 분사하는 분사노즐 등이 포함될 수 있다. The plant cultivation facility 800 is provided with various plants necessary for the cultivation of the cultivated plant and the cultivated plant. For example, the plant cultivation facility 800 may include an LED lighting device for irradiating LED light to cultivated plants, a water supply pipe for providing water to the cultivated plants, and a spray nozzle for spraying water.
도 8은 에어노즐이 구비된 본 발명에 따른 풍력발전타워의 구성을 나타낸 도면이다.8 is a view showing the configuration of a wind power tower according to the present invention provided with an air nozzle.
도 8에 도시된 바와 같이, 본 발명에 따른 풍력발전타워는 바람속도가 일정속도 이하인 경우 로터블레이드(530)에 초기 회전력을 제공하기 위한 설비가 설치될 수 있다. As shown in Figure 8, the wind power tower according to the present invention may be installed to provide an initial rotational force to the rotor blade 530 when the wind speed is less than a certain speed.
통상적으로 정지 상태의 로터블레이드(530)를 회전시키기 위해서는 많은 작동 에너지기 요구되는데, 본 발명과 같이 평상시 로터블레이드(530)를 가동 상태로 유지하면, 실시간으로 변하는 바람 상태에 적극적으로 대처하여 작은 속도의 바람이라도 풍력 발전에 바로 적용될 수 있다.Typically, a large number of operating energizers are required to rotate the rotor blade 530 in a stationary state. When the rotor blade 530 is normally operated as in the present invention, it actively responds to a wind condition that changes in real time and has a small speed. Even winds can be applied directly to wind power.
이를 구현하기 위해, 풍력발전타워에는 풍속센서, 에어노즐(630), 에어탱크(640) 및 제어부(620)가 설치될 수 있다.In order to implement this, a wind speed sensor, an air nozzle 630, an air tank 640, and a controller 620 may be installed.
여기서, 풍속센서는 통풍타워(100)의 각 층에 설치되어 윈드로터(500)로 유입되는 바람속도를 실시간으로 측정한다. 에어노즐(630)은 제어부(620)에서 작동신호가 인가되는 경우 윈드로터(500)를 향해 에어를 분사하도록 윈드로터(500)의 로터블레이드(530)를 향해 대향되게 배치된다. 에어탱크(640)는 고압의 에어를 저장하여 에어노즐(630)에 제공한다. 제어부(620)는 풍속센서를 통해 측정된 바람속도가 일정속도 이하이면, 에어노즐(630)에 작동신호를 인가하여 로터블레이드(530)의 회전이 유지되도록 한다.Here, the wind speed sensor is installed on each floor of the ventilation tower 100 to measure the wind speed flowing into the wind rotor 500 in real time. The air nozzle 630 is disposed to face the rotor blade 530 of the wind rotor 500 to inject air toward the wind rotor 500 when an operation signal is applied from the controller 620. The air tank 640 stores the high pressure air and provides the air nozzle 630. If the wind speed measured by the wind speed sensor is below a predetermined speed, the controller 620 may apply an operation signal to the air nozzle 630 to maintain the rotation of the rotor blade 530.
도 9는 태양광 발전설비 및 에어노즐이 구비된 본 발명에 따른 풍력발전타워의 구성을 나타낸 도면이다.9 is a view showing the configuration of a wind power tower according to the present invention equipped with a solar power plant and an air nozzle.
도 9에 도시된 바와 같이, 본 발명에 따른 풍력발전타워에는 윈드로터(500)의 발전기(540)에서 생산된 전력을 기록하거나 태양전지모듈(710)에서 생산된 전력을 기록하는 전력 제어 패널(POWER CONTROL PANEL)이 설치되고, 풍속을 기록하거나 윈드로터(500)의 RPM 등을 기록하는 제어부(620:PLC)가 설치되며, 풍력 또는 태양광으로부터 생산된 전력을 저장하는 축전기가 구비되는 UPS(Uninterruptible Power Supply) 컨트롤 시스템이 설치될 수 있다. As shown in Figure 9, the wind power tower according to the invention the power control panel for recording the power produced by the generator 540 of the wind rotor 500 or the power produced by the solar cell module 710 ( POWER CONTROL PANEL) is installed, a control unit 620 (PLC) for recording the wind speed or the RPM of the wind rotor 500, etc. is installed, and a UPS having a capacitor for storing electric power generated from wind or solar power ( Uninterruptible Power Supply control system can be installed.
특히, UPS 컨트롤 시스템은 일반 전원 또는 예비 전원 등을 사용할 때 전압 변동, 주파수 변동, 순간 정전, 과도 전압 등으로 인한 전원 이상을 방지하고 항상 안정된 전원을 공급한다. 그리고 제어부(620:PLC)는 통풍타워(100)의 전반적인 제어를 수행하기 위한 컴퓨터 시스템과 그 프로그램을 포함하고, 제어 전반에 대한 기록을 통해 운영 상태를 모니터링할 수 있는 체계화된 데이터베이스를 포함한다.In particular, the UPS control system prevents power abnormalities caused by voltage fluctuations, frequency fluctuations, instantaneous power failures, and transient voltages when using general or redundant power, and always provides a stable power supply. The control unit 620 includes a computer system and a program for performing overall control of the ventilation tower 100, and includes a structured database for monitoring the operation state through the recording of the overall control.
도 10a 및 도 10b는 본 발명에 따른 풍력발전타워에서 육각형의 통풍타워를 나타낸 도면이고, 도 11a 및 도 11b는 본 발명에 따른 풍력발전타워에서 팔각형의 통풍타워를 나타낸 도면이며, 도 12a 및 도 12b는 본 발명에 따른 풍력발전타워에서 원형의 통풍타워를 나타낸 도면이다.10a and 10b is a view showing a hexagonal ventilation tower in the wind power tower according to the present invention, Figures 11a and 11b is a view showing an octagonal ventilation tower in the wind power tower according to the invention, Figures 12a and Figure 12b is a view showing a circular ventilation tower in the wind power tower according to the present invention.
본 실시예에서는 횡단면이 사각형 형태의 복층 타워로 구성되는 통풍타워(100)에 대하여 설명하였지만, 이 통풍타워(100)의 형태는 다양하게 변경될 수 있다. 예를 들어, 도 10a 및 도 10b에 도시된 바와 같이, 통풍타워(100)는 해당 횡단면이 육각형 형태의 복층 타워로 구성되거나, 도 11a 및 도 11b에 도시된 바와 같이, 통풍타워(100)는 해당 횡단면이 팔각형 형태의 복층 타워로 구성되거나, 도 12a 및 도 12b에 도시된 바와 같이, 통풍타워(100)는 해당 횡단면이 원형 형태의 복층 타워로 구성될 수도 있다.In the present embodiment has been described with respect to the ventilation tower 100 is a cross-sectional tower consisting of a multi-storey tower, the shape of the ventilation tower 100 may be variously changed. For example, as shown in Figures 10a and 10b, the ventilation tower 100 is composed of a multi-layer tower of the hexagonal cross-section, or as shown in Figures 11a and 11b, the ventilation tower 100 is 12A and 12B, the ventilation tower 100 may be configured as a multilayer tower having a circular cross section.
이하, 본 발명에 따른 풍력발전타워의 집풍현황을 알아보기 위한 예비 실험 결과를 살펴보면 다음과 같다. 본 실험에서는 육각형 형태의 통풍타워를 실험 모델로 사용하였다.Hereinafter, the preliminary test results for examining the current wind conditions of the wind power tower according to the present invention. In this experiment, hexagonal ventilation tower was used as an experimental model.
도 13은 본 발명에 따른 풍력발전타워의 집풍상태를 나타낸 도면이다.Figure 13 is a view showing a wind state of the wind power tower according to the present invention.
도 13에 도시된 바와 같이, 먼저, 6층 높이(약 20mm)의 통풍타워(100)에는 바람이 유입되는 구역(A~D)을 지정한다. As shown in FIG. 13, first, the ventilation towers 100 having a height of about 6 mm (about 20 mm) are designated areas A to D through which wind is introduced.
이때, A구역은 자연 대기풍속이 측정되는 구역이고, B구역은 A구역의 바람이 압축되면서 변화된 속도가 측정되는 구역이고, C구역은 B구역의 바람이 압축되면서 변화된 속도가 측정되는 구역이며, D구역은 B구역의 공기압축 발생현상으로 인한 공기차압 발생현상으로 인해 변화된 속도가 측정되는 구역이다. 해당 구역에서 측정된 바람의 풍속을 측정해 보면 다음의 표 1과 같다.At this time, the zone A is the zone where the natural air velocity is measured, the zone B is the zone where the changed speed is measured while the wind in zone A is compressed, and the zone C is the zone where the changed speed is measured while the wind in zone B is compressed, Zone D is the zone in which the speed changed due to the differential pressure caused by the air compression in zone B is measured. The measured wind speed in the area is shown in Table 1 below.
표 1
A 구역(m/s) B 구역(m/s) C 구역(m/s) D 구역(m/s) 윈드로터의 회전수(rpm) 예상발전량(KW)
2~3 1.8~2.5 3.5~4.2 2~2.5 115~121 -
3~4 2~2.5 4~4.5 2.5~3 125~127 12~15
4~5 3~3.5 6.5~7 3.5~4 156~162 27~30
5~6 3.5~4.5 7.2~8 4~4.5 194~210 30~38
Table 1
Zone A (m / s) Zone B (m / s) Zone C (m / s) Zone D (m / s) Number of rpm of wind rotor Estimated Power Generation (KW)
2 ~ 3 1.8 ~ 2.5 3.5-4.2 2 ~ 2.5 115-121 -
3 ~ 4 2 ~ 2.5 4 ~ 4.5 2.5 ~ 3 125-127 12-15
4 ~ 5 3 ~ 3.5 6.5 ~ 7 3.5-4 156-162 27-30
5 ~ 6 3.5 to 4.5 7.2-8 4 ~ 4.5 194-210 30-38
표 1에서 보듯이, 우리나라 내륙지역의 연평균 풍속이 5m/s 이하이고, 해안지역의 연평균 풍속이 5~6m/s 인 것을 고려하면, A 구역의 풍속이 4~5m/s와 5~6m/s 일 때, C 구역의 풍속은 6.5~7m/s와 7.2~8m/s로 것으로 나타났고, 예상되는 예상발전량은 27~30KW 와 30~38KW로 나타났다. As shown in Table 1, considering that the annual average wind speed in the inland region of Korea is below 5m / s, and the annual average wind speed in the coastal zone is 5 ~ 6m / s, the wind speed in zone A is 4 ~ 5m / s and 5 ~ 6m / At s, wind speeds in zone C ranged from 6.5 to 7 m / s and 7.2 to 8 m / s, with expected power generations of 27 to 30 KW and 30 to 38 KW.
통풍타워(100)를 실제로 제작하는 경우 실험 모델보다 19.5배의 용량으로 제작되는 것을 감안한다면, 실제 본 발명에 따른 풍력발전타워를 통해 발전할 수 있는 예상발전량은 27~30KW 와 30~38KW의 19.5배에 해당될 것으로 예상된다.Considering that the ventilation tower 100 is actually manufactured at a capacity of 19.5 times larger than the experimental model, the actual power generation capacity that can be generated through the wind power tower according to the present invention is 19.5 of 27 ~ 30KW and 30 ~ 38KW. It is expected to be a ship.
상기에서 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.Although the present invention has been described in detail using the preferred embodiments, the scope of the present invention is not limited to the specific embodiments, and should be interpreted by the appended claims. In addition, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present invention.

Claims (14)

  1. 바람이 유입되는 윈드통구(110)가 복수층을 이루는 통풍타워(100);Ventilation tower 100, the wind passage 110 through which the wind is formed a plurality of layers;
    상기 윈드통구(110)를 통해 유입된 바람이 상기 통풍타워(100)의 중심방향으로 가이드되도록 상기 통풍타워(100)에서 방사상으로 배치되는 가이드벽(200);A guide wall 200 disposed radially from the ventilation tower 100 so that the wind introduced through the wind vent 110 is guided toward the center of the ventilation tower 100;
    상기 가이드벽(200)의 내측단에 회전가능하게 연결되는 회전블레이드(300);A rotating blade 300 rotatably connected to an inner end of the guide wall 200;
    상기 회전블레이드(300)의 회전 각도를 일정 각도로 제한하기 위한 방향지시스토퍼(400); 및A direction indicating stopper 400 for limiting the rotation angle of the rotation blade 300 to a predetermined angle; And
    상기 통풍타워(100)의 중심부에 스핀가능하게 설치되는 회전축(520)과, 상기 회전축(520)에 회전력을 제공하기 위해 상기 회전축(520)을 기준으로 방사상으로 배치되는 로터블레이드(530)와, 상기 회전축(520)의 회전에 의해 전기가 발생되도록 상기 회전축(520)에 구동 연결되는 발전기(540)로 구성된 윈드로터(500)를 포함하는 것을 특징으로 하는 풍력발전타워.A rotating shaft 520 spinably installed at the center of the ventilation tower 100, a rotor blade 530 disposed radially with respect to the rotating shaft 520 to provide rotational force to the rotating shaft 520, and Wind turbines characterized in that it comprises a wind rotor (500) consisting of a generator (540) which is driven to the rotation shaft 520 to generate electricity by the rotation of the rotary shaft (520).
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 회전블레이드(300)의 회전 각도(α)는, 상기 로터블레이드(530)의 내주연이 상기 가이드벽(200)의 내측단과 수직하게 접하는 수직 접선(T1)과, 상기 로터블레이드(530)의 외주연이 상기 가이드벽(200)의 내측단과 수직하게 접하는 수직 접선(T2) 사이의 각도 범위를 만족하는 것을 특징으로 하는 풍력발전타워.Rotation angle (α) of the rotary blade 300 is a vertical tangent (T1) of the inner circumference of the rotor blade 530 perpendicular to the inner end of the guide wall 200 and the rotor blade 530 Wind power tower, characterized in that the outer circumference satisfies the angle range between the vertical tangent (T2) in contact with the inner end of the guide wall 200 vertically.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 윈드로터(500)는 상기 회전축(520)의 상단에 고정 설치되는 상부 자석지지편(550a)과, 상기 상부 자석지지편(550a)에 대향되도록 상기 통풍타워(100)의 중심부에 고정 설치되는 하부 자석지지편(550b)을 더 포함하고, 상기 로터블레이드(530)는 상기 상부 자석지지편(550a)과 하부 자석지지편(550b) 간의 자력 발생을 통해 자기 부상되는 것을 특징으로 하는 풍력발전타워.The wind rotor 500 is fixedly installed at the center of the ventilation tower 100 so as to face the upper magnet support piece 550a fixedly installed on the upper end of the rotating shaft 520 and the upper magnet support piece 550a. Further comprising a lower magnet support piece 550b, the rotor blade 530 is a wind power tower, characterized in that the magnetic levitation through the generation of magnetic force between the upper magnet support piece 550a and the lower magnet support piece 550b. .
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 로터블레이드(530)는 만곡된 반원통형의 복수개로 구성되고 상기 회전축(520)의 주위를 고리 형태로 두르면서 이격 배치되는 것을 특징으로 하는 풍력발전타워.The rotor blade 530 is composed of a plurality of curved semi-cylindrical wind turbine tower, characterized in that spaced apart while surrounding the rotating shaft 520 in a ring shape.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 윈드로터(500)에는 상기 로터블레이드(530)에서 이동된 바람을 가이드하기 위한 가이드통(560)이 상기 회전축(520)을 감싸도록 설치되는 것을 특징으로 하는 풍력발전타워.The wind rotor 500, the wind turbine tower, characterized in that the guide cylinder 560 for guiding the wind moved from the rotor blades 530 is installed to surround the rotary shaft 520.
  6. 청구항 4에 있어서,The method according to claim 4,
    상기 복수의 로터블레이드(530) 중에서 인접한 로터블레이드(530) 간의 이격 각도(β)는, 22도 ~ 23도 범위를 만족하는 것을 특징으로 하는 풍력발전타워.The separation angle β between the adjacent rotor blades 530 among the plurality of rotor blades 530 may satisfy a range of 22 degrees to 23 degrees.
  7. 청구항 5에 있어서,The method according to claim 5,
    상기 윈드로터(500)에는 유입된 바람을 외부로 안내하기 위한 윈드유로(570)가 형성되되, 상기 윈드유로(570)는 상기 회전블레이드(300)의 내측단과 로터블레이드(530)의 외주연 사이에 형성되는 제1윈드유로(570a)와, 상기 가이드통(560)과 로터블레이드(530)의 내주연 사이에 형성되는 제2윈드유로(570b)와, 상기 제1윈드유로(570a) 및 제2윈드유로(570b)의 상단부를 서로 연통하는 제3윈드유로(570c)와, 상기 제1윈드유로(570a) 및 제2윈드유로(570b)의 하단부를 서로 연통하는 제4윈드유로(570d)를 포함하는 것을 특징으로 하는 풍력발전타워.The wind rotor 500 is provided with a wind flow path 570 for guiding the introduced wind to the outside, the wind flow path 570 between the inner edge of the rotary blade 300 and the outer peripheral edge of the rotor blade 530 A first wind path 570a formed at the second wind path, a second wind path 570b formed between the inner circumference of the guide cylinder 560 and the rotor blade 530, and the first wind path 570a and the first wind path 570a. The third wind channel 570c communicating with the upper ends of the second wind channel 570b and the fourth wind channel 570d communicating with the lower ends of the first wind channel 570a and the second wind channel 570b. Wind power tower comprising a.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 로터블레이드(530)와 윈드유로(570)의 면적비는 3:7을 만족하는 것을 특징으로 하는 풍력발전타워.The area ratio between the rotor blades 530 and the wind flow path 570 is 3: 7 to the wind turbine.
  9. 청구항 1에 있어서, The method according to claim 1,
    상기 가이드벽(200)은 상기 통풍타워(100)에서 방사상으로 배치되어 상기 통풍타워(100)의 측벽을 이루는 가이드수직벽(210)과, 상기 통풍타워(100)의 바닥을 이루도록 상기 가이드수직벽(210)에 수직하게 연결되는 가이드수평벽(230)과, 상기 로터블레이드(530)를 향해 바람이 수렴되도록 상기 가이드수평벽(230)에 경사지게 연결되는 가이드경사벽(220)을 포함하는 것을 특징으로 하는 풍력발전타워.The guide wall 200 is disposed radially from the ventilation tower 100 to form a guide vertical wall 210 forming a side wall of the ventilation tower 100 and the guide vertical wall to form a bottom of the ventilation tower 100. And a guide horizontal wall 230 vertically connected to 210 and a guide slope wall 220 inclinedly connected to the guide horizontal wall 230 so that the wind converges toward the rotor blade 530. Wind power tower.
  10. 청구항 9에 있어서, The method according to claim 9,
    상기 가이드수직벽(210)은 상기 통풍타워(100)에서 30도 각도 범위 내에서 방사상으로 배치되는 복수개로 구성되는 것을 특징으로 하는 풍력발전타워.The guide vertical wall 210 is a wind power tower, characterized in that composed of a plurality of radially disposed within a 30 degree angle range in the ventilation tower (100).
  11. 청구항 1에 있어서, The method according to claim 1,
    상기 윈드로터(500)로 유입되는 바람속도를 측정하기 위한 풍속센서와, 상기 풍속센서에 의해 측정된 바람속도가 일정속도 이하인 경우 상기 로터블레이드(530)에 초기 회전력을 제공하기 위한 작동신호를 인가하는 제어부(620)와, 상기 작동신호의 인가시 상기 윈드로터(500)를 향해 에어를 분사하는 에어노즐(630)과, 상기 에어노즐(630)에 에어를 공급하기 위한 에어탱크(640)를 더 포함하는 것을 특징으로 하는 풍력발전타워.Applying a wind speed sensor for measuring the wind speed flowing into the wind rotor 500, and an operating signal for providing an initial rotational force to the rotor blade 530 when the wind speed measured by the wind speed sensor is less than a certain speed. A control unit 620, an air nozzle 630 for injecting air toward the wind rotor 500 when the operation signal is applied, and an air tank 640 for supplying air to the air nozzle 630. Wind power tower, characterized in that it further comprises.
  12. 청구항 1에 있어서,The method according to claim 1,
    상기 통풍타워(100)에 조사되는 태양광을 이용하여 전기를 발생시키기 위한 태양광 발전설비(700)를 더 포함하고, Further comprising a photovoltaic power generation facility 700 for generating electricity by using the sunlight irradiated to the ventilation tower 100,
    상기 태양광 발전 설비는 상기 통풍타워(100)의 상층 또는 측벽에 설치되는 태양전지모듈(710)과, 상기 태양전지모듈(710)에서 생성된 전기 에너지를 저장하기 위한 축전기와, 상기 태양전지모듈(710) 및 축전기를 제어하기 위한 태양광 제어패널(720)로 구성되는 것을 특징으로 하는 풍력발전타워.The photovoltaic power generation facility includes a solar cell module 710 installed on an upper layer or a sidewall of the ventilation tower 100, a capacitor for storing electrical energy generated by the solar cell module 710, and the solar cell module. Wind power tower, characterized in that consisting of 710 and the solar control panel 720 for controlling the capacitor.
  13. 청구항 1에 있어서, The method according to claim 1,
    상기 통풍타워(100)의 하층에는 LED 조명을 통한 식물 재배설비(800)가 마련되는 것을 특징으로 하는 풍력발전타워.Wind turbine tower, characterized in that the plant cultivation facility 800 is provided through the LED light in the lower floor of the ventilation tower (100).
  14. 청구항 1에 있어서,The method according to claim 1,
    상기 통풍타워(100)는 원형, 사각형, 육각형 및 팔각형 중에서 선택된 어느 하나의 형태로 구성되는 것을 특징으로 하는 풍력발전타워.The ventilation tower 100 is a wind power tower, characterized in that configured in any one form selected from round, square, hexagon and octagon.
PCT/KR2011/007056 2010-10-06 2011-09-26 Wind power generating tower WO2012046969A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013532714A JP2013542368A (en) 2010-10-06 2011-09-26 Wind power tower

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100097177A KR101059160B1 (en) 2010-10-06 2010-10-06 Tower for wind power generatior
KR10-2010-0097177 2010-10-06

Publications (2)

Publication Number Publication Date
WO2012046969A2 true WO2012046969A2 (en) 2012-04-12
WO2012046969A3 WO2012046969A3 (en) 2012-05-31

Family

ID=44933722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007056 WO2012046969A2 (en) 2010-10-06 2011-09-26 Wind power generating tower

Country Status (3)

Country Link
JP (1) JP2013542368A (en)
KR (1) KR101059160B1 (en)
WO (1) WO2012046969A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083142A1 (en) * 2013-12-06 2015-06-11 Waldemar Piskorz Multisegment vertical axis wind turbine
CN104747379A (en) * 2015-02-10 2015-07-01 丁思华 Horizontal rotation type wind generator device
CN105201747A (en) * 2015-07-17 2015-12-30 东莞市汇如涞电能科技有限公司 Wind driven generator
CN105201746A (en) * 2015-07-17 2015-12-30 东莞市汇如涞电能科技有限公司 Air blowing power device
WO2017081496A1 (en) * 2015-11-11 2017-05-18 Drosis Loannis Kionas wind turbine
WO2017221132A1 (en) * 2016-06-20 2017-12-28 Melodysymbol, Lda Omnidirectional wind-capture modular device
WO2020230148A1 (en) * 2019-06-02 2020-11-19 Chandan Sharma Multi-tier elevated super-structural novel renewable energy infrastructures (mesnrei)
CN114251228A (en) * 2021-12-02 2022-03-29 卢玉斌 Box type wind power generation device
EP3936714A4 (en) * 2019-03-05 2022-11-16 Jun Kyu Park Fluid power generator and power generation system comprising same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103047090A (en) * 2011-10-17 2013-04-17 罗才德 Tower type wind driven generator
KR200460486Y1 (en) 2011-12-01 2012-05-23 손호윤 Pillar type wind electric power generator
CN102606407A (en) * 2012-03-29 2012-07-25 偏允让 Wind power station and power generation method thereof
AU2013395801B2 (en) * 2013-08-02 2018-05-10 Odin Energy Co., Ltd Wind power generation tower provided with gyromill type wind turbine
KR101372251B1 (en) 2013-12-17 2014-03-10 (주)미가람 Wind power generation tower with giromill
KR101374050B1 (en) 2013-12-17 2014-03-12 (주)미가람 Wind power generation tower with giromill
KR101406839B1 (en) * 2013-08-02 2014-06-13 오딘에너지 주식회사 Tower for wind power generatior
KR101372253B1 (en) 2013-12-17 2014-03-11 (주)미가람 Wind power generation tower with giromill
KR101372250B1 (en) * 2013-08-02 2014-03-10 (주)미가람 Wind power generation tower with giromill
KR101372248B1 (en) 2013-08-02 2014-03-10 (주)미가람 Wind power generation tower
FR3025561B1 (en) * 2014-09-05 2016-12-30 Wind-It TOWER STRUCTURE FOR WIND ROTOR WITH VERTICAL AXIS.
KR101544558B1 (en) * 2015-02-17 2015-08-13 주식회사 청산이엔씨 Smart hybrid green energy tower
CN107747528A (en) * 2017-10-17 2018-03-02 李晓亮 Large area energy-absorption type wind-driven generator
RU2673280C1 (en) * 2017-10-24 2018-11-23 Денис Валентинович Тяглин Wind power plant
KR102093473B1 (en) * 2018-09-12 2020-03-25 강용수 Vertical wind power generator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559995B1 (en) * 2003-10-09 2004-09-02 守 山本 Vertical generator windmill
JP2005054695A (en) * 2003-08-05 2005-03-03 Tomotake Shigemori Wind power generating device
KR100967160B1 (en) * 2009-11-18 2010-07-05 김전수 Wind collecting tower of wind power generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005054695A (en) * 2003-08-05 2005-03-03 Tomotake Shigemori Wind power generating device
JP3559995B1 (en) * 2003-10-09 2004-09-02 守 山本 Vertical generator windmill
KR100967160B1 (en) * 2009-11-18 2010-07-05 김전수 Wind collecting tower of wind power generator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083142A1 (en) * 2013-12-06 2015-06-11 Waldemar Piskorz Multisegment vertical axis wind turbine
CN104747379A (en) * 2015-02-10 2015-07-01 丁思华 Horizontal rotation type wind generator device
CN105201747A (en) * 2015-07-17 2015-12-30 东莞市汇如涞电能科技有限公司 Wind driven generator
CN105201746A (en) * 2015-07-17 2015-12-30 东莞市汇如涞电能科技有限公司 Air blowing power device
CN105201747B (en) * 2015-07-17 2018-12-18 东莞市汇如涞电能科技有限公司 Wind-driven generator
WO2017081496A1 (en) * 2015-11-11 2017-05-18 Drosis Loannis Kionas wind turbine
WO2017221132A1 (en) * 2016-06-20 2017-12-28 Melodysymbol, Lda Omnidirectional wind-capture modular device
EP3936714A4 (en) * 2019-03-05 2022-11-16 Jun Kyu Park Fluid power generator and power generation system comprising same
US11821405B2 (en) 2019-03-05 2023-11-21 Jun Kyu Park Fluid power generator and power generation system comprising same
WO2020230148A1 (en) * 2019-06-02 2020-11-19 Chandan Sharma Multi-tier elevated super-structural novel renewable energy infrastructures (mesnrei)
CN114251228A (en) * 2021-12-02 2022-03-29 卢玉斌 Box type wind power generation device
CN114251228B (en) * 2021-12-02 2023-08-11 卢玉斌 Box type wind power generation device

Also Published As

Publication number Publication date
JP2013542368A (en) 2013-11-21
WO2012046969A3 (en) 2012-05-31
KR101059160B1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
WO2012046969A2 (en) Wind power generating tower
KR100656806B1 (en) Wind Energy Turbine
US9057357B2 (en) Split collar mountable wind turbine
EP2005558B1 (en) Electric generator for wind and water turbines
US5194754A (en) Height difference type aerogenerator
US7276810B2 (en) Wind power plant based on the windmill principle with an additional vane bearing at the vane end
WO2019083134A1 (en) Power generation system with non-powered fans and ventilator utilizing rudder-induced wind power
WO2012036352A1 (en) Wind turbine assembly moving device and method for loading/unloading wind turbine assembly using same
CN101777774A (en) Solar energy and wind-powered generating field grid-connected generating system
US20090250938A1 (en) Wind turbine incorporated in an electric transmission tower
CN201781288U (en) Solar energy/wind power plant grid generating system
KR20150081358A (en) Wind turbine
WO2011134372A1 (en) Wind wheel device for wind gathering and wind power generation device
WO2014025124A1 (en) Wind power generator
WO2010062018A1 (en) Vertical axis turbine
CN103485979A (en) Energy utilization system capable of comprehensively utilizing natural energy
WO2013048007A2 (en) High-efficiency tidal current generator, and hybrid generation system
WO2012081862A2 (en) Power generating apparatus using solar light and wind power
CN105649886A (en) Wind power generator
CN201513293U (en) High-altitude wind power generation field system
WO2021060705A1 (en) Wind power generation device for streetlamp
WO2018014871A1 (en) Self-adjusting sail-type fluid power-generation device
CN114135444A (en) Automatic opening-closing type fan blade wind power generation equipment
WO2013005874A1 (en) Wind turbine apparatus having improved rotational efficiency
CN205779471U (en) A kind of indoor wind-power system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830854

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase in:

Ref document number: 2013532714

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830854

Country of ref document: EP

Kind code of ref document: A2