WO2012046898A1 - 고상파우더 코팅장치 - Google Patents

고상파우더 코팅장치 Download PDF

Info

Publication number
WO2012046898A1
WO2012046898A1 PCT/KR2010/006889 KR2010006889W WO2012046898A1 WO 2012046898 A1 WO2012046898 A1 WO 2012046898A1 KR 2010006889 W KR2010006889 W KR 2010006889W WO 2012046898 A1 WO2012046898 A1 WO 2012046898A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid powder
solid
air
pressure
injection nozzle
Prior art date
Application number
PCT/KR2010/006889
Other languages
English (en)
French (fr)
Inventor
김옥률
김옥민
이근식
정승채
Original Assignee
주식회사 펨빅스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 펨빅스 filed Critical 주식회사 펨빅스
Priority to PCT/KR2010/006889 priority Critical patent/WO2012046898A1/ko
Priority to US13/878,163 priority patent/US9079209B2/en
Publication of WO2012046898A1 publication Critical patent/WO2012046898A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C19/00Apparatus specially adapted for applying particulate materials to surfaces
    • B05C19/04Apparatus specially adapted for applying particulate materials to surfaces the particulate material being projected, poured or allowed to flow onto the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/03Discharge apparatus, e.g. electrostatic spray guns characterised by the use of gas, e.g. electrostatically assisted pneumatic spraying
    • B05B5/032Discharge apparatus, e.g. electrostatic spray guns characterised by the use of gas, e.g. electrostatically assisted pneumatic spraying for spraying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the present invention provides a method and apparatus for inhaling and transporting a solid powder by inhaling air at atmospheric pressure, and spraying the sucked solid powder on an arbitrary substrate located inside the vacuum chamber without a separate gas supply device. It is about.
  • Low temperature spray (cold spray) method compresses gas at several hundred ° C to low pressure (10 ⁇ 20bar) or high pressure (20 ⁇ 40bar) state, and deposits 1 ⁇ 50 ⁇ m size metal particles with compressed gas by spraying on substrate This is how you do it.
  • the velocity of the gas injected by this method is 300 m / s or more, and thus plastic deformation occurs when the metal particles collide with the substrate by the kinetic energy of the metal particles and the heat of the gas.
  • the deposition was done in such a way that the substrate was fused to the substrate.
  • the thickness of the deposited layer by this method can be from several mm to several cm.
  • the particles having a low specific gravity or fine particles have a disadvantage that they are not deposited on the substrate because the speed of particle flow is significantly reduced due to factors such as shock waves.
  • U.S. Patent 5,302,414 (“Gas-dynamic spraying method for applying a coating”; PCT / SU90 / 00126) is a technique for spray coating, which applies three methods to transport solid powder using compressed gas. Doing.
  • the first method is shown in Fig.
  • the compressed gas stored in the compressed gas chamber is supplied to the hopper containing the pressure tube and the solid powder, and the cylinder drum is rotated to adjust the pressure so that the solid powder does not flow back toward the hopper, mixed with the gas, and the nozzle.
  • a method that allows it to be moved is used, and the second method, like the first method, is shown in Fig. As shown in Fig.
  • the compressed gas stored in the compressed gas chamber is directly supplied to the feeder with the solid powder so that the solid powder can be pushed out and supplied to the nozzle.
  • the compressed gas stored in the compressed gas chamber is supplied to the heating apparatus and the solid powder feeder, respectively, the supplied compressed gas and the solid powder are mixed in the premix chamber, and the transport gas pipe is fed to the mixing chamber.
  • Direct connection to the surface and the solid powder supply pipe to penetrate the inside of the mixing chamber has been proposed a method for allowing the solid powder to be transported smoothly to the nozzle without backflow.
  • US Pat. No. 6,569,245 (“Method and apparatus for applying a powder coating”) is a technique of supplying a solid powder powder at atmospheric pressure to a nozzle and coating.
  • the compressed air supply device supplies compressed air to the nozzle unit, and supplies the solid powder to the nozzle unit.
  • the pressure of the nozzle unit can be supplied only when a negative pressure is formed lower than the atmospheric pressure. Therefore, in such a device, the solid powder cannot be supplied to the nozzle unit and can flow backward. There is this.
  • the pressure of the compressed air is further increased to express the injection speed of the solid powder, there is a problem that the solid powder is placed in an environment that cannot be supplied to the nozzle unit even more.
  • Korean Patent 10-0770173 (“Low Temperature Spray Apparatus”)
  • Korean Patent 10-0575139 (“Low Temperature Spray Coating Apparatus with Gas Cooling System”
  • Korean Patent 10-0515608 (“Powder Preheater PCT / KR04 / 03395) provides a method of transporting and spraying powder using a high pressure gas such as nitrogen, helium, or air, as in the conventional low temperature spraying method.
  • a high pressure gas such as nitrogen, helium, or air
  • Korean Patent Registration No. 10-0691161 (“Field Emission Emitter Electrode Manufacturing Method”) is a method of manufacturing a field emission emitter electrode by spraying carbon nanotube powder at a supersonic speed using the cold spray method and depositing on a substrate.
  • the method is disclosed. This method also transports the powder by supplying gas from the compressed gas supply unit, and the gas is injected at supersonic speed in the air, so there is a disadvantage in that severe noise is generated.
  • carbon nanotubes having a small specific gravity and nanometer size When sprayed, there is a problem that the particle velocity is significantly reduced by the shock wave, and thus it is difficult to be deposited on the substrate.
  • US Pat. No. 6,759,085 (“Method and apparatus for low pressure cold spraying; PCT / US03 / 18758; WO 03/106051) generally uses expensive inert pressurized inert gases in conventional cold spraying methods.
  • a method for recovering and recycling compressed gas has been proposed, specifically, a vacuum tank is provided, and a cold spray nozzle is placed in the vacuum tank to transport and spray solid powder with compressed gas. After the compressed gas of the pressure tank is exhausted by a vacuum pump to filter, and then compressed again to transport gas through a gas compressor (gas compressor) to provide a method for reuse.
  • a gas compressor gas compressor
  • the aerosol deposition method is designed to produce various thin films by improving the gas deposition method.
  • the basic concept of the aerosol deposition method is to transport the compressed gas to an aerosol chamber containing solid powder, and to transport the powder suspended in the aerosol chamber by using the pressure difference, and the compressed gas is transported through the nozzle to the substrate in the vacuum chamber. It is a method of spraying and depositing.
  • Korean Patent Registration No. 10-07677395 (“Composite Structure”; PCT / JP2000 / 007076)
  • Korean Patent Registration No. 10-0695046 (“Low Temperature Forming Method of Ultrafine Particle Brittle Materials and Ultrafine Particle Brittle Materials for Use”; PCT / JP2003 / 006640)
  • Korean Patent Registration No. 10-0724070 (“Composite Structure and Manufacturing Method and Manufacturing Apparatus thereof"; PCT / JP2000 / 007076), which are commonly used as transport gases for transporting materials such as air compressors, nitrogen tanks and helium tanks.
  • the solid powder supply method is to maintain the pressure of the transport gas supplied to the aerosol chamber in which the solid powder is located to be greater than the pressure in the deposition chamber so that the solid powder can be supplied to the subsonic nozzle and injected.
  • Korean Patent Registration No. 10-0531165 (“Method and apparatus for fixing fibers on a substrate using an aerosol deposition process")
  • US Pat. Disclosed is a method and apparatus for directly depositing carbon nanotubes by arc discharge in an aerosol chamber and transporting carbon nanotubes to a vacuum chamber for deposition.
  • This method and apparatus is a technique of forming a thin film by applying carbon nanotubes to powders in aerosol deposition, which is very different from the shape of metal particles (length (tens of tens to tens of nanometers)).
  • the material ratio of carbon nanotubes (a material having similar characteristics to the aggregation phenomenon and the entanglement of polymer chain) due to van der waals attraction.
  • Korean Patent Registration No. 10-0499613 Metal of manufacturing electron emitting device, electron source, light emitting device and image forming apparatus
  • Korean Patent Registration No. 10-0490112 Manufacturing method of fiber and its fiber The electron emitting device, and the method for manufacturing each of the electron source and the image display device ") disclosed a method for manufacturing a device such as an electron emitting device using the above method.
  • Korean Patent No. 10-0846148 (“Method and Apparatus for Forming Deposition Thin Film Using Solid Powder”) uses the aerosol deposition method, and this method uses a solid powder (raw material powder) located in the aerosol chamber internal space to transport external gas. It is aerosolized by the supply of and is discharged to the transport pipe connected to the vacuum chamber by the pressure difference between the block chamber and the vacuum chamber. At this time, since the flow of the external transport gas supplied to the block chamber and the flow of the solid powder does not match, it is impossible to continuously inject the quantitative solid powder from the nozzle. In addition, there is a significant problem in depositing solid powder continuously and uniformly because of the intermittent pressure regulation.
  • aerosols that are not supplied with a constant flow rate and a certain amount of powder per unit time to the cross section of the outlet transport pipe of the chamber are sprayed onto the substrate through the nozzle, they can be used for products (eg, thin film, etc.) that require uniform physical properties. There is no limit.
  • this method intermittently opens and closes the space where the base material is located, the space where the raw material powder is located, the supply of external transport gas, the injection of aerosolized fine particles, and the transport line, thereby increasing the speed of the aerosol particles injected from the nozzle and colliding with each other. It is a way to increase the energy.
  • the aerosol deposition method 1) as in the cold spray method described above requires a compressed gas supply device for transporting the solid powder, 2) the concentration and amount of aerosol formed in the aerosol chamber is constantly controlled There is a disadvantage that it cannot be discharged, so that it is difficult to deposit uniformly.
  • problems to be solved in the solid powder spray deposition method of the cold spray and aerosol deposition methods include: 1) inert compressed gas or compressed air having a higher pressure than atmospheric pressure to transport the solid powder; and 2) supplying the solid powder. It is not possible to transport and spray continuously in a quantitative manner, and 3) it is difficult to coat a solid powder having a low specific gravity or a particle size of several nanometers or less in an atmospheric pressure or vacuum state.
  • the present invention adjusts the pressure inside the vacuum chamber and sets the pressure at the front end of the injection nozzle to a pressure lower than atmospheric pressure, thereby automatically providing air at atmospheric pressure without supplying inert compressed gas or compressed air transported from a separate gas supply device. It is an object of the present invention to provide a device capable of transporting a solid powder by suction, and spraying the suction transported solid powder through an injection nozzle located inside the vacuum chamber to coat any substrate.
  • the present invention is the air intake unit 10 through which air at atmospheric pressure is sucked, without a separate gas supply device;
  • Solid powder supply unit 20 for supplying a fixed amount of solid powder to the air sucked through the air suction unit 10;
  • An injection nozzle (40) provided at an end of the transport pipe (30) for injecting the solid powder;
  • a pressure regulator (60) for controlling the displacement and the exhaust velocity of the exhaust pump (50). It provides a solid-phase powder coating apparatus comprising a.
  • the present invention is installed in the air suction unit 10, the air flow rate adjusting device 11 for adjusting the flow rate of the air sucked; It provides a solid-phase powder coating apparatus, characterized in that further comprises.
  • the present invention is installed in the air suction unit 10, the air temperature control device 12 for adjusting the temperature of the air sucked; It provides a solid-phase powder coating apparatus, characterized in that further comprises.
  • the present invention is the intake air processing unit 13 for filtering and drying the air before the intake air is mixed with the solid powder; It provides a solid-phase powder coating apparatus, characterized in that further comprises.
  • the present invention is in communication with the air suction unit 10 and the solid powder supply unit 20, the block chamber 21 for supplying the transport pipe 30 in a state in which the intake air and the solid powder is mixed; It provides a solid-phase powder coating apparatus, characterized in that further comprises.
  • the present invention is in communication with the solid powder supply unit 20, the block chamber 21, the opening 23 is formed on one side; And a branch pipe 31 connecting the block chamber 21 and the transport pipe 30 to the solid-phase powder coating apparatus.
  • the branch pipe 31 has a solid powder temperature control device 24;
  • Solid powder coating apparatus characterized in that is further provided, the solid powder is supplied to the transport pipe 30 from the block chamber 21 through the branch pipe 31, the particle size sorting device 25 and the dispersion device It is provided to pass through the (27), the particle size sorting device 25 provides a solid powder coating apparatus, characterized in that in communication with the solid powder recovery device 26 through the recovery pipe 28.
  • the present invention is provided so that the solid powder 3, which is transferred to the injection nozzle 40 through the transport pipe 30, passes through the particle size sorting device 25 and the dispersion device 27 in sequence, the particle size
  • the sorting device 25 provides a solid powder coating apparatus, which is in communication with the solid powder recovering machine 26 through the collecting pipe 28.
  • the present invention is the injection nozzle position adjusting device for adjusting the position of the injection nozzle 40 between the end of the transport pipe 30 and the injection nozzle 40; It provides a solid-phase powder coating apparatus, characterized in that further comprises.
  • the present invention in the vacuum chamber 50, the base holder 53; It provides a solid-phase powder coating apparatus characterized in that it is provided.
  • a substrate transfer device 54 connected to the substrate holder 53 in the vacuum chamber 50; Provides with a solid-phase powder coating apparatus characterized in that it is further provided.
  • the present invention is connected to the exhaust pump 51, the dust collection and recovery apparatus 55 which can collect the solid state powder recovery process remaining in the vacuum chamber (50); It provides a solid-phase powder coating apparatus, characterized in that further comprises.
  • the present invention is a plasma processing apparatus (not shown) for activating the substrate surface in the vacuum chamber 50; It provides a solid-phase powder coating apparatus characterized in that it is further provided.
  • the present invention is an electrostatic device 70 for generating an electric field between the injection nozzle 40 and the substrate (1); It provides a solid-phase powder coating apparatus characterized in that it is further provided.
  • the electrostatic device 70, the first high voltage power supply 72 is connected to the transport pipe by the lead wire 71, the other electrode is grounded to the ground plane 4 by the lead wire 71;
  • a metal ring 73 connected to the injection nozzle 40 by a conductive line 71;
  • a second high voltage power supply 74 connected to one side of the metal ring 73 by the conductive line 71 and the other electrode grounded to the ground plane 4 by the conductive line 71;
  • the electrodes of the first high voltage power supply 72 and the second high voltage power supply 74 connected to the ground plane 4 are opposite poles, and the second high voltage power supply 74 and the metal ring 73 are opposite to each other.
  • the conductive wire connecting to provide a solid-phase powder coating apparatus, characterized in that the ground wire is connected to the substrate is divided.
  • the above-described solid powder coating apparatus includes a pressure at the front end of the injection nozzle 40, a pressure inside the vacuum chamber 50, an air intake flow rate in the air suction unit 10, and a solid powder supply amount in the solid powder supply unit 20. It may be configured to further include a system control unit (not shown) to control, in this case, the temperature / pressure measuring instruments in the transport pipe 30, the front end of the injection nozzle 40, the vacuum chamber 50, respectively Provided with a solid powder coating apparatus, characterized in that the (5) is provided.
  • FIG. 1 is a schematic diagram of a basic embodiment of a solid-phase powder coating apparatus according to the present invention.
  • Figure 2 is a schematic diagram of an embodiment of the solid-phase powder coating apparatus is a branch pipe formed.
  • FIG. 3 is a schematic diagram of an embodiment in which a temperature / pressure gauge is installed in main components.
  • Figure 4 is a schematic diagram of an embodiment provided with an air flow rate adjusting device and a suction air treatment.
  • Figure 5 is a schematic diagram of an embodiment equipped with an air temperature control device and a solid powder temperature control device.
  • FIG. 6 is a schematic diagram of an embodiment in which a position adjusting device of a spray nozzle is added to deposit a solid powder on a three-dimensional substrate.
  • FIG. 7 is a schematic diagram of a cross section of a mixing apparatus applied to the present invention.
  • Figure 8 is a schematic diagram of an embodiment equipped with a roll-to-roll substrate transfer apparatus applied to the present invention.
  • FIG. 9 is a schematic diagram of an embodiment in which a particle size sorting device and a dispersion device are added to branch pipes.
  • FIG. 10 is a schematic diagram of an embodiment in which a particle size sorting device and a dispersion device are added to a transport pipe.
  • FIG. 11 is a schematic diagram of an embodiment with an electrostatic device.
  • transport pipe 31 injection nozzle position adjusting device
  • lead wire 72 first high voltage power supply
  • metal ring 74 second high voltage power supply
  • the best form for implementing the solid-phase powder coating apparatus is an air intake unit 10, the air is sucked in the atmospheric state without a separate gas supply device;
  • Solid powder supply unit 20 for supplying a fixed amount of solid powder to the air sucked through the air suction unit 10;
  • An injection nozzle (40) provided at an end of the transport pipe (30) for injecting the solid powder (3);
  • An exhaust pump 51, a substrate 1 disposed therein, and a vacuum chamber 50 accommodating the injection nozzle 40;
  • a pressure regulator (60) for controlling the displacement and the exhaust velocity of the exhaust pump (50);
  • a block chamber 21 in communication with the air suction unit 10 and the solid powder supply unit 20 and supplying the sucked air and the solid powder to the transport pipe 30.
  • the air intake portion 10 it further comprises a, the air intake portion 10, the air flow rate adjusting device 11 for adjusting the flow rate of the air sucked;
  • An air temperature control device 12 for controlling the temperature of the air sucked in;
  • An intake air processor 13 for filtering and drying the air before the intake air is mixed with the solid powder; Any one or more of these may be configured to be further included.
  • the present invention provides an air intake unit through which air at atmospheric pressure is sucked without a separate gas supply device; A solid powder supply unit supplying a fixed amount of solid powder to the air sucked through the air suction unit; A transport pipe through which the sucked air and the solid powder are mixed and transported; An injection nozzle provided at an end of the transport pipe for injecting the solid powder; An exhaust pump, a substrate disposed therein, and a vacuum chamber accommodating the injection nozzle; And a pressure regulating device for adjusting an exhaust amount and an exhaust speed of the exhaust pump. It provides a solid-phase powder coating apparatus comprising a.
  • the air intake unit 10 serves to suck air in the atmospheric pressure state.
  • Conventional apparatus and methods for solid powder spray deposition have all used inert compressed gas or compressed air as a transport gas for solid powder transportation, and a separate supply device is required for their supply.
  • Argon (Ar), nitrogen (N 2 ), helium (He) and the like are used as the inert compressed gas for transporting the solid powder.
  • the inert compressed gas is a very expensive gas to be used in a continuous process for mass production of a commercial product, and even when used as a storage container, the capacity of the container is limited. There is also a need for an air compressor that compresses and supplies air without using inert compressed gas.
  • the present invention is configured to suck air in the atmospheric pressure state, without a separate gas supply device, the air intake unit 10 serves to suck the outside air in the atmospheric pressure state. Since the present invention does not use inert compressed gas and compressed air, the present invention is suitable for a continuous process for mass-producing a commercial product, and the manufacturing cost of a product coated using the present invention can be greatly reduced.
  • the principle of air suction in the air suction unit 10 is as shown in FIGS. 1 and 2 through a pressure regulator 60 connected to the exhaust pump 51 of the vacuum chamber 50 which will be described later.
  • the pressure in the vacuum chamber 50 is set to a pressure 760torr below the atmospheric pressure so that the air in the atmospheric pressure is sucked into the air suction part 10.
  • the air suction unit 10 is in communication with the vacuum chamber 50 through the transport pipe 30 and the injection nozzle 40 is possible as described above.
  • the air suction unit 10 may be configured to further include an air flow rate control device 11 for adjusting the flow rate of the air sucked.
  • the air flow rate adjusting device 11 is a device for adjusting the air flow rate to be sucked in a predetermined amount (liter / min) per unit time by adjusting the flow rate of the air sucked.
  • the flow rate of the air sucked from the air intake unit 10 may be determined according to the cross-sectional area of the injection nozzle 40 and the vacuum pressure of the vacuum chamber 50, wherein the condition of the maximum air flow rate is choking in the injection nozzle. This is the flow rate. This is because the highest speed can be expressed in each injection nozzle only when the injection nozzle is choked.
  • the present invention is configured to form a negative pressure in the air suction portion 10 by using the exhaust pump 51 communicated with the vacuum chamber 50, the cross-sectional area of the injection nozzle 40, the vacuum of the vacuum chamber 50 Depending on the conditions of pressure and choking, it is not possible to inhale more air than the maximum inhalable air flow rate, but the flow rate can be adjusted to suck in less air.
  • the cross-sectional area of the injection nozzle 40 is increased or before the sucked air reaches the injection nozzle 40, that is, transportation
  • the air temperature at the tube end may be lowered or the pressure of the vacuum chamber 50 may be adjusted to a low vacuum state. Accordingly, it is possible to express the highest injection speed that can be expressed in the subsonic nozzle or supersonic nozzle applied to the injection nozzle (40).
  • the temperature of the air (2) to be sucked may be configured to further include an air temperature control device 12 in the air suction unit (10).
  • the air temperature control device 12 is necessary to prevent the solid powder (3) is applied to the substrate (1) located in the vacuum chamber 50 in the case of being injected at subsonic speed or supersonic speed through the injection nozzle 40 will be.
  • the air sucked into the air temperature control device 12 may be heated to maintain the temperature of the air above room temperature.
  • the present invention is the suction air processing unit 13 for filtering and drying the air before the intake air (2) is mixed with the solid powder; It provides with a solid-phase powder coating apparatus, characterized in that further comprises.
  • the intake air processor 13 may be configured such that the air filter 14 and the air dryer 15 perform filtering and drying treatments, respectively.
  • the air filter 14 may be composed of a moisture filter, an oil filter, and a dust filter to remove impurities in the air.
  • the air dryer 15 may process air in a dry state.
  • the filter 14 and the air dryer 15 may be installed to allow the dry air from which moisture and impurities have been removed to be mixed with the solid powder and transported.
  • the solid powder supply unit 20 serves to quantitatively supply the solid powder to the air sucked through the air suction unit 10.
  • the solid powder supply unit 20 may be provided with a solid powder supply amount adjusting device 22 as shown in [FIG. 1] to [FIG. 3] in order to constantly adjust the amount of solid powder supplied per unit time.
  • the solid powder may be discharged into the block chamber 21 to be mixed with the sucked air.
  • the block chamber 21 is configured to communicate with the air suction unit 10 and the solid powder supply unit 20, and serves to supply the transport pipe 30 in a state in which the suctioned air and the solid powder are mixed.
  • the block chamber 21 may be disposed between the air suction unit 10 and the transport pipe 30 as shown in FIG.
  • a separate branch pipe (a block chamber upper branch pipe 33a and a lower branch pipe 31b) may be provided so that the solid powder is introduced into the air passing through the transport pipe 30.
  • FIG. 5 is a branch pipe that installs an opening 23 to allow air at atmospheric pressure to flow into one side of the block chamber 21, and connects the block chamber 21 and the transport pipe 30.
  • a separate configuration of 33 is an example configured to allow air introduced into the opening 23 to flow into a transport pipe having a negative pressure through the branch pipe 33. Accordingly, the solid powder is suctioned into the block chamber 21 and introduced into the transport pipe 30 together with the air.
  • a separate mixing device 32 may be placed in the middle of the transport pipe 30 so that the air and the solid powder are sprayed evenly mixed.
  • the mixing device 32 is configured to mix the solid powder in the atmospheric pressure state and the air sucked into the air suction unit 10 to be smoothly transported to the transport pipe 30 by using a venturi effect. .
  • the mixing device 32 may be installed at a position where the branch pipe 33 connected from the transport pipe 30 and the block chamber 21 meets as shown in FIG. 5. At this time, the mixing device 32 may properly configure the area and the shape of the cross section as shown in FIG. 7 for smooth mixing and transport of air and solid powder.
  • the present invention may further comprise a solid powder temperature control device 24 for temperature control of the solid powder.
  • the solid powder temperature control device 24 is located in the branch pipe 33 connecting the block chamber 21 and the transport pipe 30, as shown in Figure 5 in the solid powder supply device 20 It is a device for controlling the temperature by heating or cooling the solid powder discharged by suction is supplied through the block chamber 21.
  • the air temperature control device 12 and the solid powder temperature control device 24 is appropriate to the temperature according to the material of the substrate within a range that does not affect the substrate thermal shock due to the temperature of the transport air and the solid powder when the solid powder (3) injection To be controlled.
  • Korean Patent Application No. 10-2008-0111430 Solid powder spray deposition apparatus having a substrate thermal shock control means and the substrate in the solid powder spray deposition process
  • Temperature control method for thermal shock removal may be applied.
  • the transport pipe 30 is a conduit for transporting the solid powder 3 mixed in the air 2 sucked from the air suction unit 10 to the injection nozzle 40, as shown in FIG. 1. It is configured to directly connect the block chamber 21 and the injection nozzle 40 of the powder supply unit 20, or as shown in Figure 2 through the branch pipe (33a, 33b) through the solid powder supply unit 20 and The transport pipe 30 can be configured to be connected. In order for the solid powder 3 passing through the transport pipe 30 to maintain a constant injection amount and speed, the cross-sectional area of the transport pipe 30 should not increase or decrease due to external impact or internal pressure.
  • the transport pipe 30 is made of a plastic material or the like, the vibration or the cross-sectional area is reduced or increased due to factors such as external pressure, so that the amount of the solid powder 3 transported through the transport pipe 30 is irregular. Is sprayed.
  • a transport tube made of a material such as stainless steel rather than a flexible material such as plastic, It is desirable to insulate so that the temperature can be kept constant.
  • the particle size sorting device 25, the solid powder recovery device 26 and the dispersing device 27 may be further configured. This is to provide a solid powder of a constant size as a whole at a critical speed of coating when the solid powder of a constant particle size is selectively supplied and coated on the substrate.
  • 9 and 10 are schematic diagrams of a device in which a particle size sorting device 25, a solid powder recovery device 26, and a dispersion device 27 are added.
  • 9 is an embodiment in which the solid powder supply unit 20 is not directly connected to the transport pipe 30, but is connected to the transport pipe 30 through the branch pipe 33, and the solid powder is a block chamber 21.
  • the size of the non-uniform size classified through the particle size sorting device (25) Particles are separately configured to be recovered in the solid powder recovery processor 26 through the recovery pipe 28.
  • 10 is a solid powder 3 conveyed toward the injection nozzle 40 through the transport pipe 30 is configured to pass through the particle size sorting device 25 and the dispersing device 27 in sequence, and the particle size Particles of non-constant size sorted through the sorting device 25 are separately configured to be recovered to the solid-phase powder recovery processor 26 through the recovery pipe 28.
  • the dispersing device 27 is a device for dispersing the aggregated solid powder, the solid powder dispersing operation is to supply the solid powder supply method of the solid powder supply unit 20 (e.g., volumetric type, constant weight supply Weight control type), the coagulation characteristics of the solid powder, and the degree of dispersion should be determined according to the degree of solid powder defect.
  • the dispersing device 27 is preferably installed after the particle size sorting device 25 as shown in Figs. 9 and 10.
  • the dispersing device 27 may be configured to generate ultrasonic waves and to irradiate and disperse the solid powder.
  • the injection nozzle 40 is provided at the end of the transport pipe 30, and is a component for spraying the solid powder 3 mixed with air into the vacuum chamber 50 to be coated on the substrate.
  • the injection nozzle 40 is for maximizing the coating efficiency by spraying the solid powder above the coating critical velocity and below the erosion velocity, according to the type and size of the solid powder.
  • the subsonic nozzle also called an orifice nozzle, has a cross-sectional shape that is reduced to the nozzle outlet.
  • the highest gas injection rate that can be developed at the subsonic nozzle outlet can not exceed the Mach number (M) of 1 (sonic speed).
  • the supersonic nozzle has a shape in which the cross-sectional area decreases as it goes from the supersonic nozzle inlet to the supersonic nozzle throat, and then crosses the supersonic nozzle neck toward the supersonic nozzle outlet, which is generally called a laval nozzle. .
  • This supersonic nozzle was developed by Gustaf de Laval in Sweden in 1897 and used in steam turbines, which was then applied to rocket engines by Robert Goddard.
  • the Mach number M is determined according to pressure, temperature, and cross-sectional area ratio.
  • the injection nozzle 40 may be a circular injection nozzle (subsonic nozzle or supersonic nozzle) shown in FIGS. 1 to 3, and may be horizontally wider than the vertical width as shown in FIG. 4.
  • a wide slit nozzle (subsonic nozzle or supersonic nozzle) can be applied to uniformly coat the solid-state powder on the large area substrate.
  • FIG. 6 it is also possible to spray-coated the solid powder on a three-dimensional object.
  • the injection nozzle 40 may be made of stainless steel, a titanium, an aluminum alloy, or the like that is resistant to pressure and temperature.
  • the injection nozzle 40 can be adjusted to the position by the injection nozzle position adjusting device 31 provided separately, specifically, may be mounted between the end of the transport pipe 30 and the injection nozzle (40).
  • the injection nozzle position adjusting device 31 may move the injection nozzle 40 to a specific coordinate (x, y, z) in the space in the vacuum chamber 50, and between the substrate 1 and the injection nozzle 40 The separation distance can be adjusted.
  • the injection nozzle position adjusting device 31 may be a useful means for the spray nozzle 40 spray coating the three-dimensional object in any position of the three-dimensional space.
  • the pressure difference and pressure change around the injection nozzle generated due to the distance between the injection nozzle 40 and the substrate 1 can be used as a means for adjusting and confirming the pressure change.
  • the vacuum chamber 50 accommodates the injection nozzle 40 to provide a space for coating a solid powder on a flat substrate or a three-dimensional substrate disposed therein.
  • a substrate holder 53 may be installed at a point where the solid powder 3 is injected from the injection nozzle 40, and the substrate holder 53 is a substrate for transporting the substrate 1. It can be connected to the transfer device (54).
  • the substrate holder 53 may be arranged as shown in [FIG. 1] to [FIG. 3], and may be equipped with the substrate transfer apparatus 54 as shown in [FIG. 4].
  • FIGS. 4 and 8 show an embodiment in which the substrate is adsorbed by a vacuum chuck 56 so as not to be affected by reaction force caused by solid powder injection.
  • the vacuum chuck 56 is installed below the substrate to operate so as to adsorb and fix the substrate, and even when the substrate transfer device 54 is operated, the substrate 1 is stably fixed as well as a solid powder ( 3) It is comprised so that generation
  • the suction pressure of the vacuum chuck 56 is increased so that the substrate 1 located on the base holder 53 does not lift due to the difference between the suction pressure of the vacuum chuck 56 and the exhaust pressure of the exhaust pump 51. It should be adjusted accordingly.
  • a separate exhaust pump may be installed, and the vacuum chuck 56 is connected to the exhaust pump connecting pipe 52 communicating with the vacuum chamber 50 to adsorb the substrate. It may be possible (not shown).
  • the vacuum chamber 50 of the present invention can be configured in various embodiments so as to coat the solid powder regardless of the type of the substrate (1).
  • the substrate transfer device 54 is a batch type (substrate having a predetermined area is moved by the transfer device to perform a process of coating). Structure).
  • a substrate of a flexible material such as a polymer film, foil (foil) can be spray-coated and transferred to the batch type device described above, but as shown in FIG. 8, the substrate transfer device is roll-to-roll. can be replaced with an inline device of the form roll).
  • the substrate transfer device may be configured to be assembled, disassembled and replaced according to the material of the substrate.
  • the substrate transport apparatus may be configured to adjust the transport speed and the reciprocating frequency of the substrate.
  • a substrate holder for coating a solid powder on a three-dimensional shape (regular or irregular shape such as a sphere, a tetrahedron, a rod, a tube, etc.) 53) can be installed, and the base holder 53 can be configured to control the position and direction of the object to coat the three-dimensional shape substrate 1 as a whole.
  • the vacuum chamber 50 may be made of a material such as stainless steel, aluminum alloy, etc., which is sufficiently resistant to external pressure even when the inside is in a vacuum state, and has a high durability.
  • a transparent material may be combined to make the inside of the 50 visible from the outside, and one side of the vacuum chamber 50 may automatically or manually position the substrate 1 into the vacuum chamber or clean the inside of the chamber.
  • a door (not shown) may be installed to smoothly perform such work.
  • the vacuum chamber 50 should be provided with an exhaust pump 51, the exhaust pump 51 is a device for maintaining the vacuum chamber 50 in a vacuum state.
  • the vacuum chamber 50 should be maintained in a vacuum state to reduce chemical reactions in the vacuum chamber and to reduce noise during solid state powder injection.
  • a pressure regulator 60 is mounted between the vacuum chamber 50 and the exhaust pump 51.
  • the pressure adjusting device 60 controls the pressure of the vacuum chamber 50 by adjusting the displacement and the exhaust speed of the exhaust pump 51, and thus the air flowing into the air intake unit 10 and the solid powder supply unit.
  • Pressure at 20 may be maintained to allow the mixing of the solid powder and the transport air, and the pressure and vacuum chamber at the end of the transport pipe before the injection nozzle 40 when the solid powder is coated on the substrate 1.
  • the pressure of 50) can be effectively maintained and adjusted.
  • the exhaust pump 51 may further include a dust collection and recovery apparatus 55 capable of collecting and collecting the solid powder remaining in the vacuum chamber 40.
  • 4 and 8 are connected to the front end and the rear end of the exhaust pump 51, and are provided to collect the small amount of solid powder remaining in the vacuum chamber 50 after the solid powder is injected. . Since solid powder is heavier than air, air may be exhausted and solid powder may be collected at a lower floor.
  • the surface-treated plasma substrate is activated by the surface is a strong chemical bond with the solid powder is improved coating efficiency.
  • the energy of ions or electrons is high, so that the surface of the substrate can be activated. Therefore, the plasma processing apparatus for the substrate surface treatment can be further mounted in the vacuum chamber.
  • Surface treatment of the substrate by chemical methods causes environmental problems related to the treatment of many chemicals, but the method using plasma has many industrial advantages because it is an environmentally friendly process.
  • the present invention provides a solid-phase powder coating apparatus further comprising an electrostatic (70).
  • the electrostatic device 70 is a device for improving the coating uniformity and the coating efficiency of the solid powder, and the electric field (E) between the injection nozzle 40 and the substrate 1 is applied. By forming, the solid powder can reach the substrate sufficiently to be coated.
  • FIG. 11 An embodiment of the solid state powder coating apparatus provided with the electrostatic device 70 is shown in FIG.
  • the electrostatic device 70 shown in FIG. 11 includes a first high voltage source 72, a second high voltage power 74, a metal ring 73, and a conductor 71 connecting them. It is composed.
  • the first high voltage power supply 72 one electrode is connected to the transport pipe 30 by the conductive wire 71, and the other electrode is connected to the ground plane 4 by the conductive wire 71.
  • the metal ring 73 is connected to the injection nozzle 40 by the conductive wire 71, and when the voltage is applied to the first high voltage power supply 72 or the second high voltage power supply 74, the injection nozzle 40 and the substrate ( 1) is provided so that a strong electric field is generated between.
  • the second high voltage power supply 74 one electrode is connected to the base 1 by the conductive line 71, and the other electrode is connected to the ground plane 4.
  • the electrodes of the first high voltage power supply 72 and the second high voltage power supply 74 connected to the ground plane 4 must be opposite polarities, and the first high voltage power supply 72 and the ground plane 4 are opposite to each other.
  • the branch line connected to the metal ring 73 should be divided in the conductive line 71.
  • the electrostatic device 70 may determine whether or not to use the electrostatic device 70 according to the shape, size, type and coating efficiency of the solid state powder.
  • the present invention interlocks the pressure at the front end of the injection nozzle 40, the pressure inside the vacuum chamber 50, the air suction flow rate in the air suction unit 10, the solid powder supply amount from the solid powder supply unit 20 It provides a solid-phase powder coating apparatus characterized in that it further comprises a system control unit (not shown) for controlling.
  • a temperature / pressure measuring instrument 5 is provided inside the transport pipe 30, the front end of the injection nozzle 40, and the vacuum chamber 50, respectively. It is preferable to configure so as to collect the temperature and pressure information of each part.
  • the temperature / pressure measuring device 5 may be mounted on the mixing device 32, the branch pipe 33, and the like to provide temperature and pressure information of the main parts to the system control unit. Can be configured.
  • the air flow rate adjusting device 11 may be provided with a mass flow meter, and the solid powder supply amount adjusting device 22 may be provided with a solid powder supply amount measuring device to provide the collected information to the system control unit. .
  • the pressure Po of the end of the injection pipe 30 before the injection nozzle 40 is adjusted to less than 760torr
  • the pressure inside the vacuum chamber 50 is the cross-sectional area and shape of the injection nozzle 40
  • the solid powder 3 may be controlled to be injected at subsonic or supersonic speed from the injection nozzle 40 by adjusting the pressure difference between the end of the transport pipe 30 and the outlet of the injection nozzle 40 and the temperature ratio.
  • the system controller by controlling the vacuum chamber 50 in a vacuum state, the air in the atmospheric pressure flows into the transport pipe through the air suction unit 10, the solid-phase powder supply unit 20 is provided Powder (3) is mixed with the air to be injected into the vacuum chamber 50 through the injection nozzle 40, the end of the transport pipe 30 before the injection nozzle 40 for high-speed injection of the solid powder
  • Powder (3) is mixed with the air to be injected into the vacuum chamber 50 through the injection nozzle 40, the end of the transport pipe 30 before the injection nozzle 40 for high-speed injection of the solid powder
  • the pressure Po to less than 760torr
  • the pressure inside the vacuum chamber 50 to control the cross-sectional area and shape of the injection nozzle 40, the pressure difference and the temperature between the end of the transport pipe 30 and the outlet of the injection nozzle 40.
  • the solid powder 3 may be controlled to be sprayed at the subsonic or supersonic speed from the injection nozzle 40. This will be described in detail as a method aspect of coating the solid powder on the substrate in the following "II
  • the solid powder vacuum deposition method includes the steps of: (a) evacuating air in the vacuum chamber (50); (b) adjusting the pressure Po at the end of the transport pipe 30 before the injection nozzle 40 to less than 760 torr; (c) adjusting the pressure in the vacuum chamber 50 according to the injection conditions (eg, the injection speed according to the expansion wave, the vertical shock wave, the gradient shock wave, etc.
  • the injection conditions eg, the injection speed according to the expansion wave, the vertical shock wave, the gradient shock wave, etc.
  • This step is to exhaust the air in the vacuum chamber 50.
  • the air in the vacuum chamber 50 is exhausted through the exhaust pump 51 connected to the vacuum chamber 50 to maintain the vacuum pressure.
  • This step (a) is a preliminary process for transporting the solid-phase powder in the atmospheric air suction and atmospheric pressure, and corresponds to the preparation process for adjusting the pressure inside the vacuum chamber (50).
  • This step is to adjust the pressure (Po) of the end of the transport pipe (30) before the injection nozzle (40) below the atmospheric pressure (760torr), this step is the solid powder in the atmospheric pressure transport pipe 30 This step is to meet the conditions that can be supplied to the suction smoothly.
  • This step is to adjust the pressure (Pv) in the vacuum chamber 50 according to the injection conditions (for example, the injection speed according to the expansion wave, vertical shock wave, gradient shock wave, etc. at the nozzle outlet).
  • This step is a pressure connected to the exhaust pump so that the pressure of the vacuum chamber 50 can be distributed in accordance with the injection conditions in a state in which the arbitrary pressure Pv of the vacuum chamber 50 is maintained through the step (a).
  • the control device 60 in the vacuum chamber 50 in accordance with the pressure Po of the end of the transport pipe 30 before the injection nozzle 40 adjusted in the step (b) and the Mach number condition of the injection nozzle 40 It is a process of matching the pressure Pv.
  • the pressure Po at the end of the transport pipe before the subsonic nozzle is set to less than atmospheric pressure (760torr) (Po ⁇ 760 torr), and the subsonic nozzle outlet back pressure (Pb, back pressure) in the vacuum chamber with the subsonic nozzle
  • the pressure is set below the pressure Po at the front end of the nozzle and the pressure multiplied by 0.528 (Po x 0.528)
  • the highest spraying speed can be obtained at the subsonic nozzle.
  • the flow rate of the air injected from the subsonic nozzle is determined according to the nozzle outlet cross-sectional area and the temperature of the nozzle front end.
  • the supersonic nozzle is the Mach number (M) is determined according to the pressure, temperature, cross-sectional area ratio.
  • the pressure Po of the end of the injection pipe before the injection nozzle is set to 700torr, and the solid powder under atmospheric pressure (760torr) is loaded into the air sucked from the air inlet 10 described above and sucked into the transport pipe, and the nozzle
  • the Mach number (M) of the nozzle outlet is 1.5, at which point no shock and expansion waves are formed at the nozzle outlet and the surroundings.
  • This step is to suck the atmospheric air and transport the solid powder (3) mixed in the air to the injection nozzle 40, the solid powder (3) in the pressure state adjusted in the step (a), (b) process ) Is a process of transporting to the injection nozzle 40 through the transport pipe (30).
  • step (d) in order to improve the uniformity and coating efficiency of the solid powder coating in the process (e), the following process may be further added.
  • This step is a step of coating the substrate by spraying the solid powder transported in the steps (a) to (d) at a subsonic or supersonic speed to the substrate provided in the vacuum chamber in a vacuum state through a circular or slit injection nozzle.
  • the surface of the substrate may be additionally treated with plasma and sprayed.
  • step (e) in order to improve the coating uniformity and efficiency of the solid powder may be additionally performed by forming an electric field between the injection nozzle and the substrate to spray.
  • step (e) it is possible to perform a step of collecting dust collection of a small amount of solid powder after the injection.
  • Steps (a) to (e) may be performed in a state where each component is interlocked by the above-described system control unit.
  • Conductive (semi) transparent electrode implemented by coating with solid phase powder (carbon nanotube, ITO (indium tin oxide), etc.)
  • According to the present invention can solve the problems and disadvantages raised in the conventional solid-phase powder spray deposition method.
  • the conventional solid powder spray deposition apparatus used inert compressed gas and compressed air of nitrogen, helium, mixed gas as a transport gas for transporting the solid powder
  • the solid powder coating apparatus provided by the present invention is at atmospheric pressure By inhaling the air of the solid-phase powder can be transported by spray coating to the sucked air, there is no need for a separate gas supply device.
  • the pressure inside the vacuum chamber e.g. expansion at the nozzle outlet.
  • metals deposited by plastic deformation ceramics (oxides, nitrides, borides, etc.) deposited by fracture, special materials having intermediate deposition characteristics (carbon nanotubes, fullerenes, graphite) , Solid powders such as graphene, dissimilar materials (e.g.
  • the substrate can be coated without thermal shock through an air temperature controller and a solid powder temperature controller for controlling the temperature of the sucked air in the atmospheric pressure state, so that the material of the substrate such as metal, semimetal, ceramic, polymer, paper, etc. Regardless, it can be coated.
  • Products that can be manufactured with a solid-phase powder coating apparatus include electrical and electronic related coating products, conductive (semi) transparent electrode, field emission device for FED (field emission display), field emission device for BLU (back light unit), CNT lighting devices, solar cells, semiconductors, electronic shielding materials, heat dissipation and heating elements, sensors, flexible display electrodes, antistatic materials, dispersing materials, flexible circuit boards (PCB, FCCL), dielectrics, magnetically conducting Materials, supercapacitors, stacked capacitors, secondary battery electrodes, fuel cell electrodes, and the like; Examples include antifriction materials, corrosion-resistance materials, surface hardening materials, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nozzles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

본 발명은 별도의 가스 공급장치 없이, 대기압상태에 있는 공기를 흡입시켜 고상파우더를 수송하고, 이 흡입 수송된 고상파우더를 진공상태에서 분사하여 기재에 코팅할 수 있는 장치에 관한 것으로서, 구체적으로는 진공챔버 내부의 압력을 조절하고, 분사노즐 전(前)단부의 압력을 대기압 보다 낮은 압력으로 설정함으로써, 가스 공급장치로부터 압축가스의 공급 없이 대기압 상태에 있는 공기를 자동 흡입하여 고상파우더를 수송하고, 이 흡입 수송된 고상파우더를 진공챔버 내부에 위치한 분사노즐 출구에서 분사하여 임의의 기재에 코팅할 수 있는 장치를 제공한다.

Description

고상파우더 코팅장치
본 발명은 별도의 가스 공급장치 없이, 대기압 상태의 공기를 흡입하여 고상파우더를 흡입·수송하고, 흡입된 고상파우더를 진공챔버 내부에 위치한 임의의 기재에 분사하여 코팅할 수 있는 방법 및 그 장치에 관한 것이다.
종래의 전통적인 고상 파우더 분사 증착방법을 살펴보면 다음과 같다.
1. 저온분사(cold spray) 방법
저온분사(콜드스프레이) 방법은 수백℃의 가스를 저압(10~20bar) 또는 고압(20~40bar) 상태로 압축하여, 1~50㎛크기의 금속입자들을 압축된 가스와 함께 기재에 분사하여 증착시키는 방법이다. 이 방법에 의해 분사되는 가스의 속도는 300m/s 이상이며, 이에 따른 금속입자의 운동에너지와 가스의 열에 의해 금속입자들이 기재에 충돌될 때 소성 변형이 이루어지고, 기재 표면의 온도 상승에 의해 입자가 기재에 융착되는 방식으로 증착이 이루어졌다. 이러한 방법에 의한 증착층의 두께는 수 mm에서 수 cm까지 가능하다. 다만, 비중이 낮거나 미세한 입자들은 충격파(shock wave) 등의 요인에 의해 입자 흐름의 속도가 현저히 감소하므로 기재에 증착되지 않는다는 단점이 있다.
(1) 미합중국 특허 5,302,414("Gas-dynamic spraying method for applying a coating"; PCT/SU90/00126)는 스프레이 코팅에 관한 기술로서, 압축가스를 사용하여 고상파우더를 수송하는 방법으로 3가지 방법을 적용하고 있다. 첫 번째 방법은 이 특허발명의 Fig. 1에 도시된 바와 같이 압축가스 챔버에 저장되어 있는 압축가스를 압력관 및 고상파우더가 담긴 호퍼에 공급하고, 실린더 드럼을 회전시켜 고상파우더가 호퍼 쪽으로 역류하지 않도록 압력을 조절하여 가스와 혼합되어 노즐로 이동될 수 있도록 하는 방법을 사용하였고, 두 번째 방법은 첫 번째 방법과 마찬가지로, 이 특허발명의 Fig. 4에 도시된 바와 같이 압축가스 챔버에 저장되어 있는 압축 가스를 고상파우더가 있는 피더(feeder)에 직접 공급하여 고상파우더를 밀어내어 노즐로 공급될 수 있도록 하는 방법을 사용하였고, 세 번째 방법은 이 특허발명의 Fig. 5에 도시된 바와 같이 압축가스 챔버에 저장된 압축가스를 가열장치와 고상파우더 공급기에 각각 공급하고, 공급된 압축가스와 고상파우더가 혼합 챔버(premix chamber)에서 혼합되게 하고, 수송가스관을 혼합챔버에 직접 표면까지 연결하고, 고상파우더 공급관을 혼합챔버 내부로 관통하게 하여 고상파우더가 역류되지 않고 노즐에 원활하게 수송할 수 있도록 하는 방법을 제시하였다.
(2) 미합중국 특허 6,139,913("Kinetic spray coating method and apparatus")은 스프레이 코팅에 관한 기술로서, 이 특허발명의 Fig. 2에 도시된 바와 같이 고상파우더를 수송하기 위하여 압력탱크의 공기를 혼합챔버로 이송하고, 또한 이 혼합챔버 내부로 수송된 고압의 공기보다 높은 압력상태의 고상파우더를 수송하는 방법을 제공한다.
(3) 미합중국 특허 4,815,414("Powder spray apparatus")는 대기압 상태에 있는 고상파우더를 노즐유닛으로 이송하고, 압축공기 장치로부터 공기를 노즐유닛으로 이송하여 분사캡(ejection cap)에서 서로 혼합되어 분사되는 장치를 제시한 것으로서, 이 특허발명의 명세서와 함께 첨부된 Fig. 1에 도시된 바와 같이 고상파우더와 초음속 노즐(sprayer)로 일차 분사되어 노즐유닛 내에 있는 판(profile-shaping plate)에 부딪혀 고상파우더의 속도가 감소하여, 실제로 출구(ejection cap)에서의 속도는 코팅속도에 이르지 못할 수 있고, 고상파우더가 상기 판에 증착될 수 있는 문제점이 있다.
(4) 미합중국 특허 6,569,245("Method and apparatus for applying a powder coating")는 대기압 상태에 있는 고상파우더를 노즐에 공급하여 코팅하는 기술로서, 이 특허발명의 Fig. 1에 도시된 바와 같이 압축공기 공급장치에서 압축공기를 노즐유닛에 공급하고, 이 노즐유닛에 고상파우더를 공급하여 분사되는 기술로 설명되어 있다. 그러나, 대기압 상태에 있는 고상파우더가 노즐유닛에 공급되기 위해서는 노즐유닛의 압력이 대기압 상태보다 낮은 부압이 형성되어야만 공급될 수 있으므로, 이러한 장치에서 고상파우더는 노즐유닛에 공급되지 못하고 역류될 수 있는 문제점이 있다. 또한, 고상파우더의 분사속도를 더 높게 발현하기 위해 압축공기의 압력을 더 상승시킬 경우 고상파우더는 노즐유닛에 더더욱 공급될 수 없는 환경에 놓이게 되는 문제점이 있다.
(5) 대한민국 특허 10-0770173호("저온스프레이 장치"), 대한민국 특허 10-0575139호("가스냉각장치가 구비된 저온 스프레이 코팅장치") 및 대한민국 특허 10-0515608호("분말 예열장치가 구비된 저온 스프레이 장치"; PCT/KR04/03395)는 종래의 저온분사 방법에서와 마찬가지로 질소, 헬륨, 공기 등의 고압가스를 이용하여 분말을 수송하여 분사하는 방법을 제공한다.
(6) 대한민국 특허등록 10-0691161호("전계방출 에미터전극 제조방법")는 상기 콜드스프레이 방법을 이용하여 탄소나노튜브 분말을 초음속으로 분사하여 기재에 증착하여 전계방출 에미터 전극을 제조하는 방법을 개시하였다. 이 방법 역시 압축가스 공급부에서 가스를 공급하여 분말을 수송하며, 공기 중에서 가스가 초음속으로 분사되므로, 심한 소음이 발생하는 단점이 있으며, 특히 금속 입자가 아닌 비중이 작고 나노미터 크기인 탄소나노튜브가 분사되면, 충격파에 의해 입자 속도가 현저히 감소하여 기재에 증착되기 어려운 문제점이 있다.
(7) 미합중국 특허 6,759,085("Method and apparatus for low pressure cold spraying; PCT/US03/18758; WO 03/106051)는 종래 콜드스프레이 방법에서 고가의 비활성 압축가스(pressurized inert gas)를 일반적으로 사용하기 때문에 압축가스를 회수하여 재사용(recycling)하기 위한 방법을 제시하였다. 구체적으로는 진공탱크(vacuum tank)를 구비하고, 콜드스프레이 노즐을 이 진공탱크에 위치시켜, 압축가스로 고상파우더를 수송하여 분사한 후 압력탱크의 압축가스를 진공 펌프로 배기하여 필터링한 다음, 다시 압축기(gas compressor)를 통하여 수송가스를 압축하여 재사용하는 방법을 제공한다.
전술한 바와 같이 종래의 저온분사 방법에서는; 1) 고상파우더를 수송하는 가스로 압축된 고가의 가스(예; 질소, 헬륨 등의 비활성가스) 또는 압축공기를 사용하므로, 분사 장치에서 반드시 압축가스 공급장치가 필요하고, 2) 고상파우더를 강제투입(injection)하므로 단위시간당 일정한 양을 공급하기 어렵고, 3) 대기압상태의 공기중에 분사되므로 소음이 발생하고, 4) 고온의 가스 및 분말 온도로 인하여 플라스틱과 같이 열충격에 약한 기재를 사용할 수 없으며, 5) 비중이 낮거나, 파우더 입자간 응집력이 크거나, 마이크로미터 이하 크기의 분말은 충격파(shock wave)에 의해 입자속도가 현저히 감소하여 기재에 증착하기 어려운 단점이 있다.
2. 에어로졸증착(AD; Aerosol Deposition) 방법
에어로졸 증착방법은 가스 증착(gas deposition)법을 개선 발전시켜, 다양한 박막을 제조할 수 있도록 고안된 것이다. 에어로졸 증착방법의 기본 개념은 압축가스를 고상 파우더가 담긴 에어로졸 챔버(chamber)로 수송하고, 압력차를 이용하여 에어로졸 챔버 내에 부유하는 파우더를 압축가스가 수송하여, 진공챔버 내에 있는 기재에 노즐을 통하여 분사하여 증착하는 방법이다.
(1) 대한민국 특허등록 10-07677395호("복합구조물"; PCT/JP2000/007076), 대한민국 특허등록 10-0695046호("초미립자 취성재료의 저온성형방법 및 그것에 사용하는 초미립자 취성재료"; PCT/JP2003/006640) 및 대한민국 특허등록 10-0724070호("복합구조물 및 그의 제조방법과 제조장치"; PCT/JP2000/007076)에서 공통적으로, 재료를 수송하는 수송가스로 공기 압축기, 질소 탱크, 헬륨 탱크의 압축가스 장치를 사용하여 압축가스를 에어로졸 챔버 내부로 수송하여 분말을 에어로졸화하여 수송관을 통하여 진공챔버로 수송하여 분사하는 방법을 제시하였다. 즉, 고상파우더 공급 방법은 고상파우더가 위치해 있는 에어로졸 챔버에 공급되는 수송가스의 압력을 증착 챔버 내의 압력보다 큰 압력을 유지시킴으로써 고상파우더가 아음속 노즐에 공급되어 분사될 수 있도록 한 것이다.
다만, 에어로졸 증착 방법에서 에어로졸 챔버 내에 있는 고상파우더가 수송가스와 혼합되어 이동할 때 에어로졸 챔버 출구에서 토출되는 고상파우더의 양을 일정하게 연속적으로 공급하는 것이 매우 어려운 문제점이 있다. 그 이유는 고상파우더 입자의 거동이 수송가스의 거동과 일치하지 않으므로 실제 에어로졸 챔버에 연결된 압력관을 통한 에어로졸의 이동방향과 에어로졸 챔버로 유입되는 수송가스의 이동방향이 일치할 확률이 매우 낮아 균일한 농도의 에어로졸(고상파우더와 수송가스의 혼합상태)이 압력관에 연속적으로 공급되기 어렵다. 또한 에어로졸 챔버에서 에어로졸 생성시 에어로졸 챔버 내벽에 정전기 발생으로 인한 고상파우더의 부착으로 일정량의 고상파우더가 연속적으로 에어로졸 챔버에 연결된 압력관을 통해 수송되기 어렵기 때문이다.
(2) 대한민국 특허등록 10-0531165호("기판 위에 고정된 카본파이버를 위한 방법 및 장치"; 미합중국 특허 7,306,503("Method and apparatus of fixing fibers on a substrate using an aerosol deposition process"))는 상기 에어로졸 증착방법의 기본 개념에 에어로졸 챔버에서 아크방전(arc discharge)으로 탄소나노튜브를 바로 생성하여 진공챔버로 카본나노튜브를 수송하여 증착하는 방법 및 장치를 개시하였다. 이 방법 및 장치는 에어로졸 증착법에 분말의 재료를 탄소나노튜브로 적용하여 박막을 형성하는 기술로서, 금속 입자의 형태와 아주 다른 튜브형의 재료(직경(수~수십 나노미터) 대비 길이(수~수십 마이로크미터)의 비(aspect ratio)가 약 500~1,000배이며, 반데르발스(van der waals) 인력에 의한 응집현상 및 고분자 사슬의 엉킴현상과 유사한 특성을 가지는 재료)인 탄소나노튜브의 물질적인 특성 및 상기 전술한 바와 같이 고상파우더 공급방법이 탄소나노튜브 입자의 양이 아음속 노즐에 연결된 압력관에 균일한 농도의 에어로졸(고상파우더와 수송가스의 혼합상태)로 연속적으로 공급되기 어렵다. 따라서, 대면적 기재에 균일한 증착이 요구되는 상용화 제품 생산에 적용하기에 문제점이 있고, 탄소나노튜브 재료의 형태가 기존의 에어로졸 방법으로서는 균일한 박막을 제조할 수 없는 문제점이 있다는 것을 간과하고 있다.
한편, 대한민국 특허등록 10-0499613호("전자방출 소자와, 전자원과, 발광장치 및 화상 형성장치의 제조방법"), 대한민국 특허등록 10-0490112호("파이버의 제조방법 및 그 파이버를 이용한 전자방출소자와, 전자원 및 화상표시 장치 각각의 제조방법")는 상기 방법을 이용하여 전자방출소자 등의 장치 제조방법을 개시하였다.
(3) 대한민국 특허 10-0846148호("고상 파우더를 이용한 증착박막 형성방법 및 장치")는 상기 에어로졸 증착법을 이용한 것으로서, 이 방법은 에어로졸 챔버 내부 공간에 위치한 고상파우더(원료분말)를 외부수송가스의 공급으로 에어로졸화하여 블록챔버와 진공챔버간의 압력차에 의해 진공챔버와 연결된 수송관으로 토출되게 한다. 이때 블록챔버에 공급되는 외부 수송가스의 유동과 고상파우더의 유동이 일치하지 않으므로, 연속적으로 정량의 고상파우더를 노즐에서 분사할 수 없게 된다. 또한, 간헐적으로 압력을 조절하기 때문에 고상파우더를 연속적으로 균일하게 증착하는데 상당한 문제점이 있다. 왜냐하면, 간헐적으로 압력을 조절할 때 이로 인하여 그 시간에 해당되는 순간의 분사 간격으로 균일한 박막을 형성할 수 없는 문제점이 있기 때문이다. 특히 튜브형 재료(직경대비 길이가 약 500~1000배)인 경우 반데르발스 인력에 의한 응집 및 고분자 사슬의 엉킴을 분산시키기 위하여, 에어로졸 챔버 내에 필터 또는 바람개비를 설치하여 분산시키려고 하였으나, 오히려 챔버 내에 와류가 발생하여 더 응집되어 진공챔버내로 분말 입자가 수송되기 전 단계에서 분산에 역효과가 발생할 수 있고, 필터로 인하여 수송가스의 유량 부하가 발생할 우려가 클 뿐만 아니라, 에어로졸 챔버에서 진공챔버로 수송되는 에어로졸 챔버의 출구 수송관 단면에 단위시간당 일정한 유량과 일정한 양의 분말이 공급되지 못하고 불규칙적으로 수송된 에어로졸이 노즐을 통하여 기재에 분사되므로 균일한 물성이 필요한 제품(예를 들면, 박막 필름 등)에는 사용할 수 없는 한계성이 있다.
한편, 이 방법은 모재가 위치한 공간, 원료분말이 위치한 공간, 외부수송가스의 공급, 에어로졸화된 미립자의 분사, 수송라인 등을 간헐적으로 개폐함으로써, 노즐에서 분사되는 에어로졸 입자의 속도를 증가시켜 충돌에너지를 크게 하고자 한 방법이다. 그러나, 이 방법의 아음속 노즐(오리피스 노즐; 단면적이 축소되는 노즐)의 경우, 아음속 노즐출구에서의 최대속도(M, 마하수; mach number)가 1이 되어, 이 방법에서처럼 간헐적으로 개폐하는 방법으로는 노즐입구의 압력이 증가하더라도, 노즐에 흐르는 질량유량만 증가할 뿐, 노즐 출구의 분사속도는 그 이상 증가하지 않고, 에어로졸의 고상파우더 입자 속도가 그 이상 증가하지 않는다.
요약하면, 상기 에어로졸 증착방법은 1) 전술한 콜드스프레이 방법에서와 마찬가지로 고상파우더를 수송하기 위한 압축가스 공급장치가 필요하고, 2) 에어로졸 챔버내에서 형성되는 에어로졸의 농도와 양이 일정하게 조절되어 토출될 수 없어, 균일하게 증착하기 어려운 단점이 있다.
전술한 바와 같이 상기 콜드스프레이 및 에어로졸 증착방법의 고상파우더 분사증착 방법에서 개선할 문제점은 1) 고상파우더를 수송하기 위하여 대기압보다 높은 고압력의 비활성 압축가스 또는 압축공기가 요구되며, 2) 고상파우더 공급을 연속적으로 정량으로 수송하여 분사할 수 없고, 3) 대기압 상태 또는 진공상태에서 비중이 낮거나, 입자크기가 수 나노미터 이하인 고상파우더를 기재에 코팅하기 어렵다는 것 등이다.
본 발명은 진공챔버 내부의 압력을 조절하고, 분사노즐 전단부의 압력을 대기압보다 낮은 압력으로 설정함으로써, 별도의 가스 공급장치에서 수송되는 비활성 압축가스나 압축공기의 공급 없이 대기압 상태에 있는 공기를 자동흡입하여 고상파우더를 수송하고, 이 흡입 수송된 고상파우더를 진공챔버 내부에 위치한 분사노즐을 통해 분사하여 임의의 기재에 코팅할 수 있는 장치를 제공함을 그 목적으로 한다.
본 발명은 별도의 가스 공급장치 없이, 대기압 상태의 공기가 흡입되는 공기흡입부(10); 상기 공기흡입부(10)를 통해 흡입된 공기에 고상파우더를 정량 공급하는 고상파우더공급부(20); 흡입된 공기와 고상파우더가 혼합되어 수송되는 수송관(30); 상기 수송관(30)의 말단에 구비되어 상기 고상파우더를 분사하는 분사노즐(40); 배기펌프(51)가 구비되어 있고, 내부에는 기재(1)가 배치되어 있으며, 상기 분사노즐(40)을 수용하는 진공챔버(50); 및 상기 배기펌프(50)의 배기량과 배기속도를 조절하는 압력조절장치(60); 를 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치를 제공한다.
또한, 본 발명은 상기 공기흡입부(10)에 설치되어 흡입되는 공기의 유량을 조절하는 공기유량조절장치(11); 를 더 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치를 제공한다.
또한, 본 발명은 상기 공기흡입부(10)에 설치되어 흡입되는 공기의 온도를 조절하는 공기온도조절장치(12); 를 더 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치를 제공한다.
또한, 본 발명은 흡입된 공기가 고상파우더와 혼합되기 전에 공기를 필터링 및 건조처리하는 흡입공기처리부(13); 를 더 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치를 제공한다.
또한, 본 발명은 상기 공기흡입부(10) 및 고상파우더공급부(20)와 연통되어 있어 흡입된 공기와 고상파우더를 혼합시킨 상태로 상기 수송관(30)에 공급하는 블록챔버(21); 를 더 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치를 제공한다.
또한, 본 발명은 상기 고상파우더공급부(20)와 연통되어 있으며, 일측에 개방구(23)가 형성된 블록챔버(21); 및 상기 블록챔버(21)와 수송관(30)을 연결하는 가지관(31);이 구비된 것을 특징으로 하는 고상파우더 코팅장치를 제공한다.
이 경우 상기 가지관(31)에는 고상파우더 온도조절장치(24); 가 더 구비된 것을 특징으로 하는 고상파우더 코팅장치와, 상기 가지관(31)을 통해 상기 블록챔버(21)에서 수송관(30)으로 공급되는 고상파우더가 입자크기 선별장치(25) 및 분산장치(27)를 차례로 거치도록 구비되며, 상기 입자크기 선별장치(25)는 회수관(28)을 통해 고상파우더 회수기(26)와 연통된 것을 특징으로 하는 고상파우더 코팅장치를 함께 제공한다.
또한, 본 발명은 상기 수송관(30)을 통해 분사노즐(40)로 이송되는 고상파우더(3)가 입자크기 선별장치(25) 및 분산장치(27)를 차례로 거치도록 구비되며, 상기 입자크기 선별장치(25)는 회수관(28)을 통해 고상파우더 회수기(26)와 연통된 것을 특징으로 하는 고상파우더 코팅장치를 제공한다.
또한, 본 발명은 상기 수송관(30)의 말단과 분사노즐(40) 사이에는 상기 분사노즐(40)의 위치를 조절하는 분사노즐 위치조절장치(31); 를 더 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치를 제공한다.
또한, 본 발명은 상기 진공챔버(50) 내에는 상기 기재거치대(53); 가 구비된 것을 특징으로 하는 고상파우더 코팅장치를 제공한다.
이 경우 상기 진공챔버(50) 내에는 상기 기재거치대(53)와 연결된 기재이송장치(54); 가 더 구비된 것을 특징으로 하는 고상파우더 코팅장치를 함께 제공한다.
또한, 본 발명은 상기 배기펌프(51)에 연결되어 상기 진공챔버(50) 내에 잔류하는 고상파우더를 집진회수처리할 수 있는 집진회수처리장치(55); 를 더 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치를 제공한다.
또한, 본 발명은 상기 진공챔버(50) 내에는 기재표면을 활성화시키는 플라즈마 처리장치(미도시); 가 더 구비된 것을 특징으로 하는 고상파우더 코팅장치를 제공한다.
또한, 본 발명은 상기 분사노즐(40)과 기재(1) 사이에 전기장을 발생시키는 정전장치(70); 가 더 구비된 것을 특징으로 하는 고상파우더 코팅장치를 제공한다.
이 경우 상기 정전장치(70)는, 도선(71)에 의해 일측전극은 수송관에 연결되고, 타측전극은 도선(71)에 의해 접지면(4)에 접지된 제1고압전원(72); 도선(71)에 의해 상기 분사노즐(40)과 연결된 메탈링(73); 도선(71)에 의해 일측전극은 상기 메탈링(73)과 연결되고, 타측전극은 도선(71)에 의해 접지면(4)에 접지된 제2고압전원(74); 을 포함하여 구성되고, 접지면(4)에 연결된 제1고압전원(72)과 제2고압전원(74)의 전극은 상호 반대 극이며, 상기 제2고압전원(74)과 메탈링(73)을 연결하는 도선에는 기재와 연결되는 지선이 분선되어 있는 것을 특징으로 하는 고상파우더 코팅장치를 함께 제공한다.
전술한 고상파우더 코팅장치는 상기 분사노즐(40) 전단에서의 압력, 진공챔버(50) 내부의 압력, 공기흡입부(10)에서의 공기 흡입 유량, 고상파우더공급부(20)에서의 고상파우더 공급량을 연동 제어하는 시스템제어부(미도시)를 더 포함하여 구성될 수 있으며, 이 경우에는 상기 수송관(30) 내부, 분사노즐(40) 전단부, 진공챔버(50) 내부에는 각각 온도/압력측정기(5)가 구비된 것을 특징으로 하는 고상파우더 코팅장치를 함께 제공한다.
도 1은 본 발명에 따른 고상파우더 코팅장치 기본 실시예의 개략도이다.
도 2는 가지관이 형성된 고상파우더 코팅장치 실시예의 개략도이다.
도 3은 주요 구성요소에 온도/압력측정기가 설치된 실시예의 개략도이다.
도 4는 공기유량조절장치와 흡입공기처리부가 구비된 실시예의 개략도이다.
도 5는 공기온도조절장치와 고상파우더 온도조절장치가 구비된 실시예의 개략도이다.
도 6은 분사노즐의 위치조절장치가 부가되어 3차원 형상의 기재에 고상파우더를 증착시킬 수 있도록 구성된 실시예의 개략도이다.
도 7은 본 발명에 적용된 혼합장치 단면형상의 개략도이다.
도 8은 본 발명에 적용된 롤트롤(roll-to-roll) 기재이송장치가 구비된 실시예의 개략도이다.
도 9는 가지관에 입자크기 선별장치와 분산장치가 부가된 실시예의 개략도이다.
도 10은 수송관에 입자크기 선별장치와 분산장치가 부가된 실시예의 개략도이다.
도 11은 정전장치가 구비된 실시예의 개략도이다.
<도면의 주요부분에 대한 부호의 설명>
1 : 기재 2 : 공기
3 : 고상파우더 4 : 접지면
5 : 온도/압력 측정기 6 : 롤러
10 : 공기흡입부 11 : 공기유량조절장치
12 : 공기온도조절장치 13 : 흡입공기처리부
14 : 공기필터 15 : 공기건조장치
20 : 고상파우더공급부 21 : 블록챔버
22 : 고상파우더 공급량 조절장치 23 : 개방구
24 : 고상파우더 온도조절장치 25 : 입자크기 선별장치
26 : 고상파우더 회수기 27 : 분산장치
30 : 수송관 31 : 분사노즐 위치조절장치
32 : 혼합장치 33 : 가지관
33a : 상부 가지관 33b : 하부 가지관
40 : 분사노즐 50 : 진공챔버
51 : 배기펌프 52 : 배기펌프 연결관
53 : 기재 거치대 54 : 기재 이송장치
55 : 집진회수처리장치 56 : 진공척
60 : 압력조절장치 70 : 정전장치
71 : 도선 72 : 제1고압전원
73 : 메탈링 74 : 제2고압전원
75 : 메탈링 고정기
고상파우더 코팅장치 구현을 위한 최선의 형태는 별도의 가스 공급장치 없이, 대기압 상태의 공기가 흡입되는 공기흡입부(10); 상기 공기흡입부(10)를 통해 흡입된 공기에 고상파우더를 정량 공급하는 고상파우더공급부(20); 흡입된 공기와 고상파우더가 혼합되어 수송되는 수송관(30); 상기 수송관(30)의 말단에 구비되어 상기 고상파우더(3)를 분사하는 분사노즐(40); 배기펌프(51)가 구비되어 있고, 내부에는 기재(1)가 배치되어 있으며, 상기 분사노즐(40)을 수용하는 진공챔버(50); 상기 배기펌프(50)의 배기량과 배기속도를 조절하는 압력조절장치(60); 및 상기 공기흡입부(10) 및 고상파우더공급부(20)와 연통되어 있어 흡입된 공기와 고상파우더를 혼합시킨 상태로 상기 수송관(30)에 공급하는 블록챔버(21); 를 더 포함하여 구성된 것이며, 상기 공기흡입부(10)에는 흡입되는 공기의 유량을 조절하는 공기유량조절장치(11); 흡입되는 공기의 온도를 조절하는 공기온도조절장치(12); 흡입된 공기가 고상파우더와 혼합되기 전에 공기를 필터링 및 건조처리하는 흡입공기처리부(13); 중 어느 하나 이상이 더 포함되도록 구성할 수 있다.
Ⅰ. 고상파우더 코팅 장치
본 발명은 별도의 가스 공급장치 없이, 대기압 상태의 공기가 흡입되는 공기흡입부; 상기 공기흡입부를 통해 흡입된 공기에 고상파우더를 정량 공급하는 고상파우더공급부; 흡입된 공기와 고상파우더가 혼합되어 수송되는 수송관; 상기 수송관의 말단에 구비되어 상기 고상파우더를 분사하는 분사노즐; 배기펌프가 구비되어 있고, 내부에는 기재가 배치되어 있으며, 상기 분사노즐을 수용하는 진공챔버; 및 상기 배기펌프의 배기량과 배기속도를 조절하는 압력조절장치; 를 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치를 제공한다.
이하에서는 첨부된 도면과 함께 본 발명을 각 구성요소별로 상세히 설명하기로 한다.
상기 공기흡입부(10)는 대기압 상태의 공기를 흡입하는 역할을 수행한다. 고상파우더 분사 증착을 위한 종래의 장치, 방법은 모두 고상파우더 수송을 위한 수송가스로서 비활성 압축가스 또는 압축공기를 활용하였으며, 이들의 공급을 위한 별도의 공급장치가 필요하였다. 고상파우더를 수송하는 비활성 압축가스로는 아르곤(Ar), 질소(N2), 헬륨(He) 등이 사용된다. 상기 비활성 압축가스는 상용화 제품을 양산하기 위한 연속공정에 사용하기에는 매우 고가의 가스이며, 저장용기로 사용할 경우에도 용기의 용량 한계성이 있다. 또한 비활성 압축가스를 사용하지 않고, 공기를 사용하더라도 압축하여 공급하는 압축기(air compressor)가 필요하다. 본 발명은 별도의 가스 공급장치 없이, 대기압 상태에 있는 공기를 흡입하도록 구성된 것으로서, 상기 공기흡입부(10)는 대기압 상태의 외부 공기를 흡입하는 역할을 담당한다. 본 발명은 비활성 압축가스와 압축공기를 사용하지 않기 때문에, 상용화 제품을 양산하기 위한 연속공정에 적합하며, 본 발명을 이용하여 코팅한 제품의 제작 단가도 크게 줄일 수 있다.
상기 공기흡입부(10)에서의 공기 흡입 원리는 [도 1] 및 [도 2]에 도시된 바와 같이 후술할 진공챔버(50)의 배기펌프(51)에 연결된 압력조절장치(60)를 통하여 진공챔버(50) 내의 압력을 대기압 미만의 압력(760torr)으로 설정하여, 대기압 상태에 있는 공기가 상기 공기흡입부(10)에 흡입되도록 하는 것이다. 상기 공기흡입부(10)는 수송관(30)과 분사노즐(40)을 매개로 진공챔버(50)와 연통되어 있으므로 위와 같은 작용이 가능하다.
또한, 상기 공기흡입부(10)는 흡입되는 공기의 유량을 조절하는 공기유량조절장치(11)를 더 포함하여 구성할 수 있다. 상기 공기유량조절장치(11)는 흡입되는 공기의 유량을 조절하여 단위 시간당 일정량(liter/min)으로 흡입되도록 조절하는 장치이다. 상기 공기흡입부(10)에서 흡입되는 공기의 유량은 분사노즐(40)의 단면적, 진공챔버(50)의 진공압력에 따라 결정할 수 있는데, 이때 최대 공기 유량의 조건은 분사노즐에서 초킹(choking)이 되는 유량이다. 왜냐하면, 분사노즐에서 초킹이 되어야만 각 분사노즐에서 최고의 속도를 발현할 수 있기 때문이다.
본 발명은 진공챔버(50)에 연통되어 있는 배기펌프(51)를 이용하여 공기흡입부(10)에 부압을 형성시키도록 구성된 것이기 때문에 분사노즐(40)의 단면적, 진공챔버(50)의 진공압력 및 초킹의 조건에 따라 최대 흡입할 수 있는 공기의 유량보다 더 많은 공기를 흡입할 수는 없고 그 미만의 공기를 흡입할 수 있도록 유량 조절이 가능하다. 또한, 목적에 따라 흡입공기의 유량을 증가시켜 이 범위 내에서 유량을 조절하려면, 분사노즐(40)의 단면적을 크게 하거나, 흡입된 공기가 분사노즐(40)에 이르기 전(前), 즉 수송관 단부의 공기 온도를 낮추거나, 진공챔버(50)의 압력을 저(低) 진공상태로 조절하면 된다. 이에 따라 분사노즐(40)로 적용되는 아음속노즐 또는 초음속노즐에서 발현될 수 있는 최고의 분사속도를 발현시킬 수 있다.
한편, 흡입되는 공기(2)의 온도 조절을 위해서는 상기 공기흡입부(10)에 공기온도조절장치(12)를 더 포함하여 구성할 수 있다. 상기 공기온도조절장치(12)는 고상파우더(3)가 분사노즐(40)을 통해 아음속으로 분사되거나 초음속으로 분사되는 경우 진공챔버(50)에 위치한 기재(1)에 열충격을 가하지 않도록 하기 위하여 필요한 것이다. 또한, 상기 공기온도조절장치(12)로 흡입되는 공기를 가열하여 공기의 온도가 상온 이상으로 유지되도록 할 수 있다.
또한, 본 발명은 흡입된 공기(2)가 고상파우더와 혼합되기 전에 공기를 필터링 및 건조처리하는 흡입공기처리부(13); 를 더 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치를 함께 제공한다. 상기 흡입공기처리부(13)는 공기필터(14)와 공기건조장치(15)가 각각 필터링 처리와 건조처리를 시행하도록 구성할 수 있다. 상기 공기필터(14)는 수분필터, 유분필터 및 먼지필터로 구성하여 공기 중의 불순물을 제거할 수 있다. 상기 공기건조장치(15)는 공기를 건조 상태로 처리할 수 있다. 또한, 이러한 흡입공기처리부(13)는 [도 5]에 도시된 실시예에 추가하여, 상기 블록챔버(21)의 개방구(23)로 흡입되는 공기의 수분 및 불순물을 제거하기 위하여, 상기 공기필터(14)와 공기건조장치(15)를 설치하여 수분 및 불순물이 제거된 건조공기가 고상파우더와 혼합되어 수송되도록 할 수 있다.
상기 고상파우더공급부(20)는 상기 공기흡입부(10)를 통해 흡입된 공기에 고상파우더를 정량으로 공급하는 역할을 한다. 상기 고상파우더공급부(20)는 단위시간당 공급하는 고상파우더의 양을 일정하게 조절하기 위해 [도 1] 내지 [도 3]에 도시된 바와 같이 고상파우더 공급량 조절장치(22)를 구비토록 할 수 있으며, 고상파우더는 블록챔버(21) 내로 토출되어 흡입된 공기와 섞이도록 할 수 있다. 상기 블록챔버(21)는 상기 공기흡입부(10) 및 고상파우더공급부(20)와 연통되도록 구성하여, 흡입된 공기와 고상파우더를 혼합시킨 상태로 상기 수송관(30)에 공급하는 역할을 담당하도록 구성할 수 있다. 상기 블록챔버(21)는 [도 1]에 도시된 바와 같이 공기흡입부(10)와 수송관(30) 사이에 위치하여 고상파우더가 직접 수송관으로 유입되도록 구성할 수도 있고, [도 2]에 도시된 바와 같이 별도의 가지관(블록챔버 상부 가지관(33a) 및 하부 가지관(31b))을 두어 수송관(30)을 지나는 공기에 고상파우더가 유입되도록 구성할 수도 있다.
한편, [도 5]는 블록챔버(21)의 일측에 대기압 상태의 공기가 유입될 수 있도록 개방구(23)를 설치하고, 상기 블록챔버(21)와 수송관(30)을 연결하는 가지관(33)을 별도로 구성하여, 상기 개방구(23)로 유입된 공기가 상기 가지관(33)을 통해 부압이 형성된 수송관으로 흘러들어가도록 구성한 예이다. 이에 따라 고상파우더가 상기 블록챔버(21)로 흡입(suction)되어 공기와 함께 수송관(30)으로 유입된다. 이 경우 수송관(30) 중간에 별도의 혼합장치(32)를 두어 공기와 고상파우더가 고르게 혼합된 상태로 분사되도록 할 수 있다. 상기 혼합장치(32)는 벤투리(venturi) 효과를 이용하여 대기압 상태에 있는 고상파우더와 상기 공기흡입부(10)로 흡입된 공기를 수송관(30)으로 원활하게 수송되게 하여 혼합되도록 구성된 것이다. 상기 혼합장치(32)는 [도 5]에 도시된 바와 같이 수송관(30)과 블록챔버(21)에서부터 이어진 가지관(33)이 만나는 위치에 설치할 수 있다. 이때, 상기 혼합장치(32)는 공기와 고상파우더의 원활한 혼합 수송을 위해 [도 7]에 도시된 바와 같이 그 단면의 면적과 형상을 적절하게 구성할 수 있다.
또한, [도 7]에 도시된 바와 같이 상기 혼합장치(32), 수송관(30) 내부 및 가지관(33) 내부의 압력과 온도를 측정하는 온도/압력 측정기(4)를 통하여 각 부위에 대기압 미만의 압력이 형성되는지 확인할 수 있으며, 이를 통해 고상파우더(3)의 수송이 원활하게 이루어지도록 각 부위별 온도와 압력상태를 제어하도록 구성할 수 있다.(상기 혼합장치에 대해서는 특허출원 2009-0021959호 "고상파우더 공급장치 및 압력관 내 고상파우더 공급방법" 및 특허출원 2009-0032151호 "고상파우더 공급장치 및 압력관 내 고상파우더 공급방법" 참조)
또한, 본 발명은 고상파우더의 온도조절을 위한 고상파우더 온도조절장치(24)를 더 포함하여 구성할 수 있다. 상기 고상파우더 온도조절장치(24)는 [도 5]에 도시된 바와 같이 상기 블록챔버(21)와 수송관(30)을 연결하는 가지관(33)에 위치하여 고상파우더공급장치(20)에서 토출되어 블록챔버(21)를 통해 흡입 공급되는 고상파우더를 가열 또는 냉각하여 온도를 조절하는 장치이다.
상기 공기온도조절장치(12)와 고상파우더 온도조절장치(24)는 고상파우더(3) 분사시 수송공기와 고상파우더의 온도로 인한 기재 열충격을 미치지 않는 범위 내에서 기재의 재료에 따라 온도를 적절하게 조절하도록 제어되어야 한다. 기재에 열충격을 미치지 않는 온도 제어 방법으로는, 본 발명자들이 기 출원한 대한민국 특허출원 10-2008-0111430호("기재 열충격 제어수단을 구비한 고상파우더 분사 증착 장치 및 고상파우더 분사 증착 과정에서의 기재 열충격 제거를 위한 온도조절방법")을 적용할 수 있다.
상기 수송관(30)은 공기흡입부(10)에서 흡입된 공기(2)에 혼합된 고상파우더(3)를 분사노즐(40)로 수송하는 관로로서, [도 1]에 도시된 바와 같이 고상파우더공급부(20)의 블록챔버(21)와 분사노즐(40)을 직접 연결하도록 구성하거나, [도 2]에 도시된 바와 같이 가지관(33a, 33b)을 매개로 고상파우더공급부(20)와 수송관(30)을 연결되도록 구성할 수 있다. 상기 수송관(30)을 지나는 고상파우더(3)가 일정한 분사량과 속도를 유지하기 위해서는, 상기 수송관(30)의 단면적이 외부의 충격 또는 내부의 압력으로 인해 증가하거나 감소하지 않아야 한다. 상기 수송관(30)을 플라스틱 재질 등으로 제작하면 외부압력 등의 요인에 의해 진동되거나, 단면적이 축소 또는 증가하게 되므로, 상기 수송관(30)을 통해 수송되는 고상파우더(3)의 양이 불규칙하게 분사된다. 또한, 고상파우더를 기재(1)에 균일하게 코팅하기 위해서는 플라스틱과 같은 유연한 재질 보다는 스테인레스(stainless) 스틸(steel) 등의 재질로 제작된 수송관 사용이 더 바람직하고, 수송관에 흐르는 고상파우더의 온도가 일정하게 유지될 수 있도록 단열을 하는 것이 바람직하다.
한편, 고상파우더의 코팅 효율 및 균일도를 향상시키기 위한 구성요소로서는 입자크기 선별장치(25), 고상파우더 회수기(26) 및 분산장치(27)를 추가로 구성할 수 있다. 이는 일정한 입자 크기의 고상파우더를 선별 공급하여 기재에 코팅시킬 때 코팅 임계속도에서 전체적으로 일정한 크기의 고상파우더가 기재에 코팅될 수 있도록 구비되는 것이다. [도 9]와 [도 10]은 입자크기 선별장치(25), 고상파우더 회수기(26) 및 분산장치(27)가 부가된 장치의 개략도이다. [도 9]는 고상파우더공급부(20)가 수송관(30)에 직접 연결되어 있지 않고, 가지관(33)을 매개로 수송관(30)에 연결된 실시예로서, 고상파우더가 블록챔버(21)에서 수송관(30)으로 수송되는 과정에서 상기 입자크기 선별장치(25)와 분산장치(27)를 차례로 거치도록 구성된 것이고, 상기 입자크기 선별장치(25)를 통해 분류된 일정하지 않은 크기의 입자들은 따로 회수관(28)을 통하여 고상파우더 회수처리기(26)에서 회수되도록 구성된 예이다. [도 10]은 수송관(30)을 통해 분사노즐(40) 쪽으로 이송되는 고상파우더(3)는 상기 입자크기 선별장치(25)와 분산장치(27)를 차례로 거치도록 구성된 것이고, 상기 입자크기 선별장치(25)를 통해 분류된 일정하지 않은 크기의 입자들은 따로 회수관(28)을 통하여 고상파우더 회수처리기(26)에 회수되도록 구성된 예이다. 다만, 전술한 고상파우더공급부(20)에서 처음부터 일정한 크기의 고상파우더를 준비한다면, 상기 입자크기 선별장치(25)가 별도로 필요하지 않을 수도 있다. 한편, 분산장치(27)는 응집된 고상파우더를 분산시키는 장치로서, 고상파우더 분산작업은 고상파우더공급부(20)의 고상파우더 공급 방식(예; 일정한 용적으로 공급하는 용적식, 일정한 중량으로 공급하는 중량제어식), 고상파우더의 응집특성, 고상파우더 손상(defect) 정도에 따라 분산정도를 결정하여 수행하여야 한다. 상기 분산장치(27)는 [도 9] 및 [도 10]에 도시된 바와 같이 상기 입자크기 선별장치(25) 다음에 설치하는 것이 바람직하다. 상기 분산장치(27)는 초음파를 발생시켜 고상파우더에 조사하여 분산시키도록 구성할 수 있다.
상기 분사노즐(40)은 상기 수송관(30)의 말단에 구비되어 있으며, 공기와 혼합된 고상파우더(3)를 진공챔버(50) 내에 분사하여 기재에 코팅되도록 하는 구성요소이다. 상기 분사노즐(40)은 고상파우더를 코팅 임계속도(critical velocity) 이상, 침식속도(erosion velocity) 미만으로 분사하여 코팅효율(coating efficiency)을 최대로 하기 위한 것이며, 고상파우더의 종류 및 크기에 따라 아음속(subsonic; 마하수(M)<1) 노즐 또는 음속(sonic; 마하수(M)=1) 노즐 또는 초음속(supersonic; 마하수(M)>1) 노즐을 적용할 수 있다. 상기 아음속 노즐은 오리피스(orifice) 노즐이라고도 하는데, 노즐 출구까지 축소되는 단면 형상을 가진다. 아음속 노즐 출구에서 발현될 수 있는 최고의 가스 분사속도는 마하수(M)가 1(음속)을 초과할 수 없다. 또한, 초음속 노즐은 초음속 노즐입구에서 초음속 노즐목(throat)으로 갈수록 단면적이 작아지고 다시 초음속 노즐목을 지나 초음속 노즐출구로 갈수록 단면적이 커지는 형상을 가지고 있는데, 이를 일반적으로 라발(laval) 노즐이라고 부른다. 이 초음속 노즐은 1897년 스웨덴의 Gustaf de Laval에 의해 개발되어 증기 터빈(steam turbine)에 이용되었고, 그 후 Robert Goddard에 의해 로켓트 엔진에 그 원리가 적용되었다. 상기 초음속 노즐은 압력과, 온도, 단면적비에 따라 마하수(M)가 결정된다.
코팅을 하는 고상파우더의 종류, 크기, 비중에 따라 임계속도와 침식속도가 상이하므로, 각 고상파우더에 적합한 분사노즐을 선택적으로 적용할 수 있다. 상기 분사노즐(40)의 형태는 [도 1] 내지 [도 3]에 도시한 원형 분사노즐(아음속 노즐 또는 초음속 노즐)을 적용할 수도 있고, [도 4]에 도시한 바와 같이 세로폭 보다 가로폭이 큰 슬릿(slit) 노즐(아음속 노즐 또는 초음속 노즐)을 적용하여 대면적 기재에 균일하게 고상파우더를 코팅할 수 있다. 한편, [도 6]에 도시된 바와 같이 3차원 형상 물체에 고상파우더를 분사 코팅할 수도 있다. 상기 분사노즐(40)의 재질은 압력과 온도에 강한 스테인레스 스틸이나, 티타늄, 알루미늄 합금 등의 재질로 제작할 수 있다.
상기 분사노즐(40)은 별도로 구비된 분사노즐 위치조절장치(31)로 그 위치를 조절할 수 있으며, 구체적으로는 수송관(30)의 말단과 분사노즐(40) 사이에 장착시킬 수 있다. 상기 분사노즐 위치조절장치(31)는 분사노즐(40)을 진공챔버(50) 내 공간상의 특정좌표(x,y,z)로 이동시킬 수 있고, 기재(1)와 분사노즐(40)간의 이격거리를 조절할 수 있다. 상기 분사노즐 위치조절장치(31)는 분사노즐(40)이 3차원 공간의 임의 위치에 있는 3차원 형상 물체를 분사 코팅하는데 유용한 수단이 될 수 있다. [도 4]는 분사노즐(40)의 길이를 조절할 수 있도록 수송관(30)에 장착된 분사노즐 위치조절장치(31)로서 이는 분사노즐(40)과 기재(1)간의 이격거리를 조절함으로써 분사노즐(40)과 기재(1)간 거리로 인해 발생하는 분사노즐 주위의 압력차이 및 압력변화를 조절하고 확인할 수 있는 수단으로 사용할 수 있다.
상기 진공챔버(50)는 상기 분사노즐(40)을 수용하여 내부에 배치된 평면기재나 3차원 형상의 기재에 고상파우더를 코팅하는 공간을 제공한다. 상기 진공챔버(50) 내부에는 분사노즐(40)에서 고상파우더(3)가 분사되는 지점에 기재거치대(53)를 설치해 둘 수 있고, 상기 기재거치대(53)는 기재(1)를 수송하는 기재이송장치(54)와 연결시킬 수 있다. 상기 기재거치대(53)는 [도 1] 내지 [도 3]에 도시된 바와 같이 배치할 수 있으며, 여기에는 [도 4]에 도시된 바와 같은 기재이송장치(54)를 함께 장착해둘 수 있다.
[도 4] 및 [도 8]은 진공척(vacuum chuck, 56)으로 기재를 흡착하여, 고상파우더 분사에 의한 반력에 영향을 받지 않도록 구성한 실시예를 도시한 것이다. 상기 진공척(56)은 기재 하부에 설치되어 기재를 흡착하여 고정할 수 있도록 작동하는 것이며, 기재이송장치(54)가 작동하는 경우에도 상기 기재(1)가 안정되게 고정될 뿐만 아니라 고상파우더(3) 분사에 의한 기재(1)의 요동 발생도 함께 억제할 수 있도록 구성된 것이다. 다만, 상기 진공척(56)의 흡착압력과 배기펌프(51)의 배기압력차로 인하여 기재거치대(53)에 위치해 있는 기재(1)가 들뜨는 현상이 발생하지 않도록 진공척(56)의 흡착압력을 적절하게 조절하여야 한다. 상기 진공척(56)의 흡착압력을 조절하기 위해서는 별도의 배기펌프를 설치할 수도 있고, 진공챔버(50)와 연통되어 있는 배기펌프 연결관(52)에 진공척(56)을 연결하여 기재를 흡착할 수도 있다(미도시).
본 발명의 진공챔버(50)는 기재(1)의 종류에 관계없이 고상파우더를 코팅할 수 있도록 다양한 실시예로 구성할 수 있다. 다만, 유리, 금속 등과 같이 딱딱한 소재의 기재에 고상파우더를 코팅하는 공정을 위해서는 상기 기재이송장치(54)를 배치타입(소정의 면적을 가지는 기재가 이송장치에 의해 이동하며 코팅되는 공정을 실행하기 위한 구조)장치로 구성할 수 있다. 물론, 폴리머 필름, 호일(foil) 등과 같은 유연한 재질의 기재라도 전술한 배치타입장치로 이송하며 분사 코팅할 수 있으나 [도 8]에 도시된 바와 같이 상기 기재이송장치를 롤투롤(roll-to-roll) 형태의 인라인 장치로 대체할 수 있다. 이러한 롤투롤 장치의 일예는 본 발명자들이 기 출원한 특허출원 10-2008-0090115호("고상파우더 연속 증착 롤투롤 장치")를 적용할 수 있다. 상기 기재이송장치는 기재의 재질에 따라 조립, 해체 및 치환 가능하도록 구성할 수 있다. 또한, 상기 기재이송장치는 기재의 이송속도 및 왕복회수 등을 조절할 수 있도록 구성할 수 있다.
한편, 진공챔버(50) 내에는 [도 4]에 도시된 바와 같이 3차원 형상(구체, 사면체, 봉, 관 등의 규칙적인 형상 또는 불규칙한 형상)의 기재에 고상파우더를 코팅하기 위한 기재거치대(53)를 설치할 수 있고, 상기 기재거치대(53)는 3차원 형상 기재(1)를 전체적으로 코팅하기 위하여 물체의 위치 및 방향 제어가 가능하도록 구성할 수 있다.
상기 진공챔버(50)의 재질은 내부가 진공상태가 되더라도 외부의 압력에 충분히 저항할 수 있고, 내구성이 좋은 스테인레스(stainless) 스틸(steel), 알루미늄 합금 등의 재료로 구성하는 것이 좋고, 진공챔버(50)의 내부를 외부에서 관찰할 수 있도록 투명한 재료를 결합하여 제작할 수 있고, 상기 진공챔버(50) 일측에는 기재(1)를 자동 또는 수동으로 진공챔버 내부로 위치시키거나, 챔버 내부의 청소 등의 작업을 원활하게 하기 위한 도어(미도시)를 설치할 수 있다.
한편, 상기 진공챔버(50)에는 배기펌프(51)가 구비되어 있어야 하는데, 상기 배기펌프(51)는 상기 진공챔버(50)를 진공상태로 유지시키기 위한 장치이다. 상기 진공챔버(50)는 진공상태로 유지시켜야 진공챔버 내의 화학적 반응을 감소시키고, 고상파우더 분사시의 소음을 감소시킬 수 있다. 상기 진공챔버(50)와 상기 배기펌프(51) 사이에는 압력조절장치(60)가 장착되어 있다. 상기 압력조절장치(60)는 배기펌프(51)의 배기량과 배기속도를 조절하여 진공챔버(50)의 압력을 조절하고, 이에 따라 상기 공기흡입부(10)로 유입되는 공기와 상기 고상파우더공급부(20)에서 고상파우더와 수송공기의 혼합이 이루어질 수 있도록 압력을 유지할 수 있으며, 기재(1)에 고상파우더 코팅 시 상기 분사노즐(40) 전(前) 수송관 단부에서의 압력과 진공챔버(50)의 압력을 효율적으로 유지, 조절할 수 있다.
상기 배기펌프(51)에는 상기 진공챔버(40) 내에 잔류하는 고상파우더를 집진회수처리할 수 있는 집진회수처리장치(55)를 더 포함하여 구성할 수 있다. [도 4]와 [도 8]은 배기펌프(51)의 전단부와 후단부에 연결되어, 고상파우더 분사 후 진공챔버(50)에 남은 미량의 고상파우더를 집진회수 처리할 수 있도록 구비된 것이다. 고상파우더는 공기보다 무거우므로 공기는 배기하고, 고상파우더는 하부 바닥에서 집진하는 원리를 사용할 수 있다.
한편, 표면이 플라즈마 처리된 기재는 표면이 활성화되어 고상파우더와의 강한 화학적 결합이 이루어지므로 코팅효율이 향상된다. 플라즈마 상태에서는 이온이나 전자의 에너지가 높아 기재의 표면이 활성화될 수 있는 것이다. 따라서, 진공챔버 내에는 기재표면 처리를 위한 플라즈마 처리장치를 더 장착해둘 수 있다. 화학적 방법에 의한 기재의 표면처리는 많은 화학제품의 처리에 관계된 환경적인 문제를 야기하나 플라즈마를 이용하는 방법은 환경 친화적인 공정이므로 실제 산업적으로 많은 이점이 있다.
한편, 본 발명은 정전장치(electrostatic, 70)를 더 구비한 고상파우더 코팅장치를 제공한다. 상기 정전장치(70)는 고상파우더의 코팅균일도(coating uniformity) 및 코팅효율(coating efficiency)을 향상시키기 위한 장치로서, 분사노즐(40)과 기재(1) 사이에 전기장(electric field; E)을 형성시킴으로써, 고상파우더가 기재에 충분히 도달하여 코팅될 수 있도록 하는 것이다.
상기 정전장치(70)가 구비된 고상파우더 코팅장치의 실시예는 [도 11]에 도시되어 있다. [도 11]에 도시된 정전장치(70)는 제1고압전원(high voltage source, 72), 제2고압전원(74), 메탈링(metal ring, 73) 및 이들을 연결하는 도선(71)으로 구성된 것이다.
상기 제1고압전원(72)은 도선(71)에 의해 일측전극이 수송관(30)에 연결되고, 타측전극은 도선(71)에 의해 접지면(4)에 연결된다. 상기 메탈링(73)은 도선(71)에 의해 분사노즐(40)과 연결되는 것으로서, 제1고압전원(72) 또는 제2고압전원(74)에 전압 인가시 분사노즐(40)과 기재(1) 사이에 강한 전기장이 생성되도록 구비되는 것이다. 상기 제2고압전원(74)은 일측전극이 도선(71)에 의해 기재(1)와 연결되고, 타측전극은 접지면(4)에 연결된다. 이 때, 접지면(4)에 연결된 제1고압전원(72)과 제2고압전원(74)의 전극은 상호 반대 극(polarity)이어야 하며, 상기 제1고압전원(72)과 접지면(4)을 연결하는 도선(71)에는 상기 메탈링(73)과 연결되는 지선이 분선되어 있어야 한다. 상기 정전장치(70)는 고상파우더의 형상, 크기, 종류 및 코팅 효율에 따라 그 사용 여부를 결정할 수 있다.
또한, 본 발명은 상기 분사노즐(40) 전단에서의 압력, 진공챔버(50) 내부의 압력, 공기흡입부(10)에서의 공기 흡입 유량, 고상파우더공급부(20)에서의 고상파우더 공급량을 연동 제어하는 시스템제어부(미도시)를 더 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치를 함께 제공한다.
상기 시스템제어부의 제어를 위해서는 [도 3]에 도시된 바와 같이 상기 수송관(30) 내부, 상기 분사노즐(40)의 전단 및 상기 진공챔버(50) 내부에 각각 온도/압력측정기(5)를 장착하여 각 부위의 온도와 압력 정보를 수집할 수 있도록 구성함이 바람직하다.
아울러, [도 7]에 도시된 바와 같이 혼합장치(32), 가지관(33) 등에도 온도/압력측정기(5)를 장착하여 주요 부위의 온도, 압력 정보를 상기 시스템제어부에 제공할 수 있도록 구성할 수 있다. 아울러, 상기 공기유량조절장치(11)에는 질량유량측정기를 설치하고, 상기 고상파우더 공급량 조절장치(22)에는 고상파우더 공급량 측정기를 설치하여, 상기 시스템제어부에 수집된 정보를 제공토록 구성할 수 있다.
한편, 상기 분사노즐(40) 전(前) 수송관(30) 단부의 압력(Po)은 760torr 미만으로 조절되고, 상기 진공챔버(50) 내부의 압력은 분사노즐(40)의 단면적과 형상, 수송관(30) 단부와 분사노즐(40) 출구간의 압력차와 온도비에 따라 조절되어 상기 고상파우더(3)가 상기 분사노즐(40)에서 아음속 또는 초음속으로 분사되도록 제어되도록 구성할 수 있다. 이를 위해 상기 시스템제어부는, 상기 진공챔버(50)를 진공상태로 제어하여 대기압 상태의 공기가 상기 공기흡입부(10)를 통해 수송관으로 유입되고, 상기 고상파우더공급부(20)에서 제공되는 고상파우더(3)가 공기와 혼합되어 분사노즐(40)을 통해 진공챔버(50) 내로 분사되도록 하되, 상기 고상파우더의 고속 분사를 위해 상기 분사노즐(40) 전(前) 수송관(30) 단부의 압력(Po)을 760torr 미만으로 조절하고, 상기 진공챔버(50) 내부의 압력을 분사노즐(40)의 단면적과 형상, 수송관(30) 단부와 분사노즐(40) 출구간의 압력차와 온도비에 따라 조절하여 상기 고상파우더(3)는 상기 분사노즐(40)에서 아음속 또는 초음속으로 분사되도록 제어할 수 있다. 이에 대해서는 이하의 "Ⅱ. 고상파우더 코팅방법"에서 고상파우더를 기재에 코팅하는 방법적 측면으로 자세히 서술하기로 한다.
Ⅱ. 고상파우더 코팅방법
이하에서는 본 발명에 따른 고상파우더 코팅장치를 이용하여 기재에 고상파우더를 코팅하는 방법(이하, '고상파우더 코팅방법' 이라 함)에 대해 구체적인 예를 들어 설명한다. 상기 고상파우더 진공증착방법은 (a) 진공챔버(50)의 공기를 배기하는 단계; (b) 분사노즐(40) 전(前) 수송관(30) 단부의 압력(Po)을 760torr 미만으로 조절하는 단계; (c) 상기 진공챔버(50) 내부의 압력을 분사조건(예; 노즐출구에서의 팽창파, 수직충격파, 경사충격파 등에 따른 분사속도)에 맞게 조절하는 단계; (d) 대기압 공기를 흡입하여 상기 공기와 혼합된 고상파우더(3)를 상기 분사노즐(40)로 수송하는 단계; 및 (e) 상기 고상파우더(3)를 분사노즐(40)을 통해 진공상태의 진공챔버(50) 내부에 구비된 기재(1)에 아음속 또는 초음속으로 분사하는 단계; 를 포함하여 실시될 수 있다. 이하에서는 전술한 각 단계별로 고상파우더 코팅방법을 상세히 설명하기로 한다.
1. (a)단계
본 단계는 진공챔버(50)의 공기를 배기하는 단계이다. 본 단계에서는 진공챔버(50)와 연결되어 있는 배기펌프(51)를 통하여 상기 진공챔버(50) 내의 공기를 배기하여 진공압력을 유지한다. 본 (a)단계는 대기압 공기 흡입 및 대기압 상태에 있는 고상파우더를 수송하기 위한 예비공정이며, 진공챔버(50) 내부의 압력을 조절하기 위한 준비공정에 해당된다.
2. (b)단계
본 단계는 분사노즐(40) 전(前) 수송관(30) 단부의 압력(Po)을 대기압(760torr) 미만으로 조절하는 단계로서, 본 단계는 대기압 상태에 있는 고상파우더가 수송관(30)에 원활하게 흡입 공급될 수 있는 조건을 맞추는 단계이다.
3. (c)단계
본 단계는 진공챔버(50) 내부의 압력(Pv)을 분사조건(예; 노즐출구에서의 팽창파, 수직충격파, 경사충격파 등에 따른 분사속도)에 맞게 조절하는 단계이다. 본 단계는 상기 (a)단계를 통해 진공챔버(50) 임의의 압력(Pv)이 유지되는 상태에서, 분사조건에 맞게 진공챔버(50)의 압력이 분포할 수 있도록 배기펌프에 연결되어 있는 압력조절장치(60)를 통하여 상기 (b)단계에서 조절된 분사노즐(40) 전 수송관(30) 단부의 압력(Po)과 분사노즐(40)의 마하수 조건에 맞추어 진공챔버(50) 내부의 압력(Pv)을 맞추는 공정이다.
예를 들어, 상기 분사노즐로서 아음속 노즐이 적용될 경우, 아음속 노즐 출구에서 발현될 수 있는 수송공기의 최고 분사속도는 M(마하수)=1(음속)을 초과할 수 없다. 이 때는 노즐 전(前) 수송관 단부의 압력(Po)과 노즐 출구 압력(Pe) 비(Pe/Po)가 0.528일 경우 아음속 노즐 출구에서의 최고 분사 속도인 M=1(음속)이 발현된다. 그러므로, 아음속 노즐 전(前) 수송관 단부의 압력(Po)을 대기압(760torr) 미만으로 설정하고(Po<760 torr), 아음속 노즐이 있는 진공챔버에서의 아음속 노즐 출구 배압(Pb, back pressure)을 노즐 전단부의 압력 Po와 0.528을 곱한 압력(Po×0.528) 미만으로 설정하면 아음속 노즐에서 최고 분사속도를 발현할 수 있다. 이 때, 아음속 노즐에서 분사되는 공기의 유량은 노즐출구 단면적과 노즐 전단부의 온도에 따라 결정된다.
한편, 상기 분사노즐로서 초음속 노즐이 적용될 경우, 초음속 노즐은 압력과, 온도, 단면적비에 따라 마하수(M)가 결정된다. 분사노즐 전(前) 수송관 단부의 압력(Po)을 700torr로 설정하고, 대기압(760torr)하에 있는 고상파우더가 전술한 공기흡입부(10)로부터 흡입된 공기에 실려 수송관에 흡입되고, 노즐목-출구 단면적 비(노즐출구 단면적/노즐목 단면적=Ae/A*)가 1.176일 때 노즐출구의 마하수(M)는 1.5가 되는데, 이 때, 노즐출구 및 주위에서 충격파 및 팽창파가 형성되지 않고 완전 팽창할 수 있는 압력은 190torr이다. 따라서, 진공챔버에서의 초음속 노즐 출구 배압(Pv)을 190torr에 설정하면 노즐목-출구 단면적 비를 가진 형상의 초음속 노즐에서 속도 감소 없이 최대속도(M=1.5)로 분사될 수 있다.
4. (d)단계
본 단계는 대기압 공기를 흡입하고 이 공기에 혼합된 고상파우더(3)를 분사노즐(40)로 수송하는 단계로서, 상기 (a)공정, (b)공정에서 조절된 압력상태에서 고상파우더(3)가 수송관(30)을 통하여 분사노즐(40)로 수송되는 공정이다.
본 (d)단계에서 대기압 공기를 흡입하고 흡입된 공기에 고상파우더를 공급할 때에는 다음과 같은 추가적인 공정을 수행할 수 있다.
1) 대기압 흡입공기의 불순물을 필터링 하는 공정
2) 대기압 흡입공기를 건조처리하는 공정
3) 대기압 흡입공기의 유량 조절 공정;
4) 대기압 흡입공기의 온도조절(가열) 공정;
5) 고상파우더의 온도조절(냉각 또는 가열) 공정;
6) 고상파우더의 정량공급 공정;
또한, 본 (d)단계에서는 (e)공정에서의 고상파우더 코팅 균일도 및 코팅효율 향상을 위해 다음과 같은 공정을 더 추가하여 수행할 수 있다.
1) 고상파우더 입자크기 선별 공정;
2) 고상파우더 분산 공정;
5. (e)단계
본 단계는 상기 (a) 내지 (d)단계로 수송된 고상파우더를 원형 또는 슬릿분사노즐을 통해 진공상태의 진공챔버 내부에 구비된 기재에 아음속 또는 초음속으로 분사하여 기재에 코팅하는 공정이다.
또한, 본 (e)단계에 더 부가하여 고상파우더의 코팅 효율을 향상시키기 위하여 기재 표면을 플라즈마(plasma)로 처리하여 분사하는 공정을 추가적으로 수행할 수 있다.
또한, 본 (e)단계에 더 부가하여 고상파우더의 코팅균일도 및 효율을 향상시키기 위하여 분사노즐과 기재 사이에 전기장(electric field)을 형성시켜 분사하는 공정을 추가적으로 수행할 수도 있다.
또한, 본 (e)단계에 더 부가하여, 분사 후 미량의 고상파우더를 집진회수 처리하는 공정을 더 수행할 수 있다.
상기 (a) 내지 (e)단계는 전술한 시스템제어부에 의해 각 구성요소가 연동제어되는 상태에서 시행할 수 있다.
Ⅲ. 고상파우더 코팅에 의해 형성되는 결과물
상기 고상파우더 코팅장치를 이용해 제조할 수 있는 것은 다음과 같다.
1. 고상파우더(탄소나노튜브, ITO(indium tin oxide) 등)로 코팅하여 구현되는 전도성 (반)투명 전극
2. 탄소나노튜브 분말로 코팅 구현되는 FED(field emission display) 및 BLU(back light unit)용 전계방출소자
3. 탄소나노튜브 분말로 코팅 구현되는 고효율 조명장치
4. 고상파우더 코팅으로 구현되는 태양 전지
5. 고상파우더 코팅으로 구현되는 반도체 소자(semiconductor diode)
6. 고상파우더(탄소나노튜브, 구리 등) 코팅으로 구현되는 반도체 배선
7. 고상파우더(구리, 니켈 등) 코팅으로 구현되는 적층콘덴서
8. 고상파우더 코팅으로 구현되는 2차전지 전극 및 연료전지 전극
9. 고상파우더 코팅으로 구현되는 전자 차폐재
10. 탄소나노튜브 분말이 코팅되어 구현되는 고효율 방열체 및 발열체
11. 탄소나노튜브 분말이 코팅되어 구현되는 고효율 센서
12. 고상파우더 코팅으로 구현되는 플렉시블(flexible) 디스플레이
13. 고상파우더 코팅으로 구현되는 정전기 분산재
14. 고상파우더 코팅으로 구현되는 연성회로기판
15. 탄소나노튜브 코팅으로 구현되는 고분자복합재 및 초경량, 고강도복합재
16. 고상파우더 코팅으로 구현되는 유전체(dielectric)
17. 고상파우더 코팅으로 구현되는 전자장(magnetically conducting) 재료
18. 고상파우더 코팅으로 구현되는 내마모성(antifriction) 재료
19. 고상파우더 코팅으로 구현되는 내부식성(corrosion-resistance) 재료
20. 고상파우더 코팅으로 구현되는 표면 강화(surface hardening) 재료 등.
본 발명에 따르면 종래 고상파우더 분사 증착법에서 제기된 여러 문제점 및 단점을 해결할 수 있다.
구체적으로는, 첫째, 종래 고상파우더 분사 증착 장치에서는 고상파우더를 수송하는 수송가스로 질소, 헬륨, 혼합가스의 비활성 압축가스 및 압축공기를 사용하였지만, 본 발명이 제공하는 고상파우더 코팅장치는 대기압 상태의 공기를 흡입하여 흡입된 공기로 고상파우더를 수송하여 분사 코팅할 수 있어서, 별도의 가스 공급장치가 필요없다.
둘째, 진공챔버의 공기를 배기하는 공정, 분사노즐 전(前)단의 압력(Po)을 대기압(760torr) 미만으로 조절하는 공정, 진공챔버 내부의 압력을 분사조건(예; 노즐출구에서의 팽창파, 수직충격파, 경사충격파 등에 따른 고상파우더의 분사속도)에 맞게 조절하는 공정, 대기압 공기를 흡입하여 고상파우더를 분사노즐로 수송하는 공정, 상기 고상파우더를 분사노즐을 통해 진공상태의 진공챔버 내부에 구비된 기재에 분사하는 공정으로 아음속 노즐 및 초음속 노즐을 통하여 각 고상파우더의 임계 코팅속도 이상으로 구현할 수 있다. 이에 따라, 1) 소성변형으로 증착되는 금속류, 파쇄로 증착되는 세라믹류(산화물, 질화물, 붕화물 등), 중간적인 증착특성을 지닌 특수재료(탄소나노튜브, 풀러린(fullerene), 그라파이트(graphite), 그래핀(graphene), 이종재료(예; 금속+세라믹, 금속(또는 세라믹)+특수재료 등) 및 상기 원소들의 조합인 화합물 등의 고상 파우더, 2)입자 크기가 마이크로미터 크기뿐만 아니라 마이크로미터 크기 이하의 나노미터 크기(예: 어느 한 방향만이 나노미터 크기로 제한되어 있는 2차원 구조의 양자우물(quantum well), 두 방향이 나노미터 크기로 제한되는 1차원 구조의 양자선(quantum wire), 세 방향 모두 나노미터 크기로 제한되는 0차원 구조의 양자점(quantum dot)) 및 비중이 낮은 고상파우더, 3) 튜브형, 판형, 구형, 선형(예:rod, wire) 등의 형상을 가지고 있는 고상파우더를 기재에 코팅할 수 있다.
셋째, 대기압 상태의 흡입된 공기의 온도를 조절하는 공기온도조절장치 및 고상파우더 온도조절장치를 통하여 기재에 열충격 없이 코팅할 수 있어서, 금속, 반금속, 세라믹, 폴리머, 종이 등의 기재의 재료에 상관없이 코팅할 있다.
넷째, 진공챔버에 연결된 압력조절장치를 통하여 분사환경을 아음속 및 초음속의 압력조건을 설정하기가 용이하고, 고상파우더 분사 시 발생하는 소음을 제거할 수 있으며, 화학적 반응을 감소시킬 수 있다.
다섯째, 기재이송장치의 속도 또는 노즐이동 속도 및 반복 회수를 조절하여, 각 고상파우더에 따른 저속 및 고속의 코팅층 형성 속도가 가능하고, 광범위한 코팅층의 두께(서브마이크로미터~수백마이크로미터) 조절이 용이하다.
본 발명에 따른 고상파우더 코팅장치로 제조할 수 있는 제품은 전기전자관련 코팅 제품, 전도성 (반)투명 전극, FED(field emission display)용 전계방출소자, BLU(back light unit)용 전계방출소자, CNT 조명장치, 태양전지, 반도체, 전자 차폐재, 방열 및 발열체, 센서, 플렉시블(flexible) 디스플레이 전극, 정전기 방지재, 분산재, 연성회로기판(PCB, FCCL), 유전체(dielectric), 자장(magnetically conducting) 재료, 수퍼커패서트(super-capacitor), 적층콘덴서, 2차전지 전극, 연료전지 전극 등을 예로 들 수 있고, 기계관련 코팅 제품; 내마모성(antifriction) 재료, 내부식성(corrosion-resistance) 재료, 표면 강화(surface hardening) 재료 등을 예로 들 수 있다.

Claims (19)

  1. 별도의 가스 공급장치 없이, 대기압 상태의 공기가 흡입되는 공기흡입부(10);
    상기 공기흡입부(10)를 통해 흡입된 공기에 고상파우더를 정량 공급하는 고상파우더공급부(20);
    흡입된 공기와 고상파우더가 혼합되어 수송되는 수송관(30);
    상기 수송관(30)의 말단에 구비되어 상기 고상파우더(3)를 분사하는 분사노즐(40);
    배기펌프(51)가 구비되어 있고, 내부에는 기재(1)가 배치되어 있으며, 상기 분사노즐(40)을 수용하는 진공챔버(50); 및
    상기 배기펌프(50)의 배기량과 배기속도를 조절하는 압력조절장치(60); 를 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치.
  2. 제1항에서,
    상기 공기흡입부(10)에 설치되어 흡입되는 공기의 유량을 조절하는 공기유량조절장치(11); 를 더 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치.
  3. 제1항에서,
    상기 공기흡입부(10)에 설치되어 흡입되는 공기의 온도를 조절하는 공기온도조절장치(12); 를 더 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치.
  4. 제1항에서,
    흡입된 공기가 고상파우더와 혼합되기 전에 공기를 필터링 및 건조처리하는 흡입공기처리부(13); 를 더 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치.
  5. 제1항에서,
    상기 공기흡입부(10) 및 고상파우더공급부(20)와 연통되어 있어 흡입된 공기와 고상파우더를 혼합시킨 상태로 상기 수송관(30)에 공급하는 블록챔버(21); 를 더 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치.
  6. 제1항에서,
    상기 고상파우더공급부(20)와 연통되어 있으며, 일측에 개방구(23)가 형성된 블록챔버(21); 및
    상기 블록챔버(21)와 수송관(30)을 연결하는 가지관(31);이 구비된 것을 특징으로 하는 고상파우더 코팅장치.
  7. 제6항에서,
    상기 가지관(31)에는 고상파우더 온도조절장치(24); 가 더 구비된 것을 특징으로 하는 고상파우더 코팅장치
  8. 제6항에서,
    상기 가지관(31)을 통해 상기 블록챔버(21)에서 수송관(30)으로 공급되는 고상파우더가 입자크기 선별장치(25) 및 분산장치(27)를 차례로 거치도록 구비되며,
    상기 입자크기 선별장치(25)는 회수관(28)을 통해 고상파우더 회수기(26)와 연통된 것을 특징으로 하는 고상파우더 코팅장치.
  9. 제1항에서,
    상기 수송관(30)을 통해 분사노즐(40)로 이송되는 고상파우더(3)가 입자크기 선별장치(25) 및 분산장치(27)를 차례로 거치도록 구비되며,
    상기 입자크기 선별장치(25)는 회수관(28)을 통해 고상파우더 회수기(26)와 연통된 것을 특징으로 하는 고상파우더 코팅장치.
  10. 제1항에서,
    상기 수송관(30)의 말단과 분사노즐(40) 사이에는 상기 분사노즐(40)의 위치를 조절하는 분사노즐 위치조절장치(31); 를 더 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치.
  11. 제1항에서,
    상기 진공챔버(50) 내에는 상기 기재거치대(53); 가 구비된 것을 특징으로 하는 고상파우더 코팅장치.
  12. 제11항에서,
    상기 진공챔버(50) 내에는 상기 기재거치대(53)와 연결된 기재이송장치(54); 가 더 구비된 것을 특징으로 하는 고상파우더 코팅장치.
  13. 제1항에서,
    상기 배기펌프(51)에 연결되어 상기 진공챔버(50) 내에 잔류하는 고상파우더를 집진회수처리할 수 있는 집진회수처리장치(55); 를 더 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치.
  14. 제1항에서,
    상기 진공챔버(50) 내에는 기재표면을 활성화시키는 플라즈마 처리장치(미도시); 가 더 구비된 것을 특징으로 하는 고상파우더 코팅장치.
  15. 제1항에서,
    상기 분사노즐(40)과 기재(1) 사이에 전기장을 발생시키는 정전장치(70); 가 더 구비된 것을 특징으로 하는 고상파우더 코팅장치.
  16. 제15항에서, 상기 정전장치(70)는,
    일측전극은 도선(71)에 의해 수송관에 연결되고, 타측전극은 도선(71)에 의해 접지면(4)에 접지된 제1고압전원(72);
    상기 분사노즐(40)과 도선(71)에 의해 연결된 메탈링(73);
    일측전극은 도선(71)에 의해 상기 기재(1)와 연결되고, 타측전극은 도선(71)에 의해 접지면(4)에 접지된 제2고압전원(74); 을 포함하여 구성되고,
    접지면(4)에 연결된 제1고압전원(72)과 제2고압전원(74)의 전극은 상호 반대 극이며,
    상기 제1고압전원(72)과 접지면(4)을 연결하는 도선에는 상기 메탈링(73)과 연결되는 지선이 분선되어 있는 것을 특징으로 하는 고상파우더 코팅장치.
  17. 제1항 내지 제16항 중 어느 한 항에서,
    상기 분사노즐(40) 전단에서의 압력, 진공챔버(50) 내부의 압력, 공기흡입부(10)에서의 공기 흡입 유량, 고상파우더공급부(20)에서의 고상파우더 공급량을 연동 제어하는 시스템제어부(미도시)를 더 포함하여 구성되는 것을 특징으로 하는 고상파우더 코팅장치.
  18. 제17항에서,
    상기 수송관(30) 내부, 분사노즐(40) 전단부, 진공챔버(50) 내부에는 각각 온도/압력측정기(5)가 구비된 것을 특징으로 하는 고상파우더 코팅장치.
  19. 제1항에서,
    상기 분사노즐(40) 전(前) 수송관(30) 단부의 압력(Po)은 760torr 미만으로 조절되고,
    상기 진공챔버(50) 내부의 압력은 분사노즐(40)의 단면적과 형상, 수송관(30) 단부와 분사노즐(40) 출구간의 압력차와 온도비에 따라 조절되어 상기 고상파우더(3)가 상기 분사노즐(40)에서 아음속 또는 초음속으로 분사되도록 제어되는 것을 특징으로 하는 고상파우더 코팅장치.
PCT/KR2010/006889 2010-10-08 2010-10-08 고상파우더 코팅장치 WO2012046898A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2010/006889 WO2012046898A1 (ko) 2010-10-08 2010-10-08 고상파우더 코팅장치
US13/878,163 US9079209B2 (en) 2010-10-08 2010-10-08 Apparatus for power coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2010/006889 WO2012046898A1 (ko) 2010-10-08 2010-10-08 고상파우더 코팅장치

Publications (1)

Publication Number Publication Date
WO2012046898A1 true WO2012046898A1 (ko) 2012-04-12

Family

ID=45927880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006889 WO2012046898A1 (ko) 2010-10-08 2010-10-08 고상파우더 코팅장치

Country Status (2)

Country Link
US (1) US9079209B2 (ko)
WO (1) WO2012046898A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104721052A (zh) * 2015-02-10 2015-06-24 武汉工程大学 一种纳米药物制备装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102058773B1 (ko) * 2012-12-21 2019-12-23 두산 퓨얼 셀 아메리카, 인크. 조정가능 필드를 가지는 침착 클라우드 타워
WO2015005705A1 (ko) 2013-07-11 2015-01-15 (주)펨빅스 고상파우더 코팅장치 및 코팅방법
US20160221014A1 (en) * 2013-09-25 2016-08-04 United Technologies Corporation Simplified cold spray nozzle and gun
DE102013113169A1 (de) * 2013-11-28 2015-05-28 Karlsruher Institut für Technologie Vorrichtung und Verfahren zur Herstellung von Partikelschichten und deren Verwendung
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
GB201417502D0 (en) * 2014-10-03 2014-11-19 Zephyros Inc Improvements in or relating to powdered adhesives
KR101592946B1 (ko) 2014-11-05 2016-02-11 서울대학교산학협력단 전기변색 윈도우 제작을 위한 삼산화 텅스텐 나노입자 분말 적층 장치 및 이것의 운용 방법
US10100412B2 (en) * 2014-11-06 2018-10-16 United Technologies Corporation Cold spray nozzles
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
US11167864B2 (en) * 2018-04-27 2021-11-09 The Boeing Company Applying cold spray erosion protection to an airfoil
CN109590132A (zh) * 2018-12-05 2019-04-09 杭州龙盛工贸有限公司 一种耐腐蚀型安防监控设备结构件的喷塑装置
US12091754B2 (en) 2019-04-23 2024-09-17 Northeastern University Internally cooled aerodynamically centralizing nozzle (ICCN)
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
JP7517277B2 (ja) * 2021-07-14 2024-07-17 トヨタ自動車株式会社 電極製造装置
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197078A (ja) * 1985-02-25 1986-09-01 Nitto Electric Ind Co Ltd 粉体塗装方法
JPH07163919A (ja) * 1993-08-27 1995-06-27 Nylok Fastener Corp コーティングを施すパウダースプレー装置
KR960013924B1 (ko) * 1989-06-16 1996-10-10 파르브렉 게젤샤프트 퓌르 베쉬히퉁스카비넨 지스템 엠베하 파우더코팅재를 이용한 물품의 스프레이코팅용 캐빈
KR20100103897A (ko) * 2009-03-16 2010-09-29 주식회사 펨빅스 고상파우더 공급장치 및 압력관 내 고상파우더 공급 방법

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924943B1 (ko) * 1970-06-01 1974-06-26
US5209821A (en) * 1985-05-09 1993-05-11 Purdue Research Foundation Apparatus for removing volatiles from, or dehydrating, liquid products
US4815414A (en) * 1987-04-20 1989-03-28 Nylok Fastener Corporation Powder spray apparatus
DE69016433T2 (de) * 1990-05-19 1995-07-20 Papyrin Anatolij Nikiforovic Beschichtungsverfahren und -vorrichtung.
US6139913A (en) * 1999-06-29 2000-10-31 National Center For Manufacturing Sciences Kinetic spray coating method and apparatus
EP1231294B1 (en) 1999-10-12 2010-09-29 National Institute of Advanced Industrial Science and Technology Composite structured material and method for preparation thereof and apparatus for preparation thereof
JP3605105B2 (ja) 2001-09-10 2004-12-22 キヤノン株式会社 電子放出素子、電子源、発光装置、画像形成装置および基板の各製造方法
JP3710436B2 (ja) 2001-09-10 2005-10-26 キヤノン株式会社 電子放出素子、電子源及び画像表示装置の製造方法
RU2213805C2 (ru) * 2001-10-23 2003-10-10 Крыса Валерий Корнеевич Способ нанесения покрытий из порошковых материалов и устройство для его осуществления
TWI330672B (en) 2002-05-28 2010-09-21 Nat Inst Of Advanced Ind Scien Method for forming ultrafine particle brittle material at low temperature
US6759085B2 (en) * 2002-06-17 2004-07-06 Sulzer Metco (Us) Inc. Method and apparatus for low pressure cold spraying
JP3998241B2 (ja) 2002-10-18 2007-10-24 キヤノン株式会社 カーボンファイバーが固定された基体の製造方法
KR100515608B1 (ko) 2003-12-24 2005-09-16 재단법인 포항산업과학연구원 분말 예열 장치가 구비된 저온 스프레이 장치
KR100575139B1 (ko) 2004-11-12 2006-05-03 (주)태광테크 가스냉각장치가 구비된 저온 스프레이 코팅장치
KR100691161B1 (ko) 2005-05-12 2007-03-09 삼성전기주식회사 전계방출 에미터전극 제조방법
KR100770173B1 (ko) 2006-07-31 2007-10-25 재단법인 포항산업과학연구원 저온 스프레이 장치
KR100846148B1 (ko) 2007-01-08 2008-07-15 요업기술원 고상 파우더를 이용한 증착박막 형성방법 및 장치
KR100876100B1 (ko) 2007-04-04 2008-12-26 (주)이노맥스 웨이퍼 스핀척 어셈블리
KR101373456B1 (ko) 2007-08-29 2014-03-13 엘지전자 주식회사 디지털 비디오 레코더에서의 모션 검출 제어장치 및 방법
KR100892076B1 (ko) 2007-09-27 2009-04-06 주식회사 에이치케이 주방용 쓰레기통
KR101042554B1 (ko) 2009-04-14 2011-06-20 주식회사 펨빅스 고상파우더 공급장치 및 압력관 내 고상파우더 공급 방법
KR100991723B1 (ko) 2008-09-12 2010-11-03 주식회사 펨빅스 고상파우더 연속 증착 롤투롤 장치
KR101020042B1 (ko) 2008-11-11 2011-03-09 주식회사 펨빅스 기재 열충격 제어수단을 구비한 고상파우더 분사 증착 장치및 고상파우더 분사 증착 과정에서의 기재 열충격 제거를 위한 온도조절방법
KR20080111430A (ko) 2008-12-03 2008-12-23 하영빈 모바일을 활용한 결제내역 관리 시스템 및 그 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197078A (ja) * 1985-02-25 1986-09-01 Nitto Electric Ind Co Ltd 粉体塗装方法
KR960013924B1 (ko) * 1989-06-16 1996-10-10 파르브렉 게젤샤프트 퓌르 베쉬히퉁스카비넨 지스템 엠베하 파우더코팅재를 이용한 물품의 스프레이코팅용 캐빈
JPH07163919A (ja) * 1993-08-27 1995-06-27 Nylok Fastener Corp コーティングを施すパウダースプレー装置
KR20100103897A (ko) * 2009-03-16 2010-09-29 주식회사 펨빅스 고상파우더 공급장치 및 압력관 내 고상파우더 공급 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104721052A (zh) * 2015-02-10 2015-06-24 武汉工程大学 一种纳米药物制备装置

Also Published As

Publication number Publication date
US20130192519A1 (en) 2013-08-01
US9079209B2 (en) 2015-07-14

Similar Documents

Publication Publication Date Title
WO2012046898A1 (ko) 고상파우더 코팅장치
KR101065271B1 (ko) 고상파우더 코팅장치
WO2010011076A2 (ko) 고상파우더 연속 증착장치 및 고상파우더 연속 증착방법
US8512816B2 (en) Method of fabricating thin film by microplasma processing and apparatus for same
KR101497854B1 (ko) 성막 방법
CN109295451B (zh) 等离子体辅助气溶胶沉积成膜方法及气溶胶沉积装置
US8936830B2 (en) Apparatus and method for continuous powder coating
WO2018217062A1 (ko) 플로라이드화 이트륨 옥사이드 코팅막의 형성 방법 및 이에 따른 플로라이드화 이트륨 옥사이드 코팅막
US5075257A (en) Aerosol deposition and film formation of silicon
WO2012108704A2 (ko) 무기물 박막 태양전지 제조 장치 및 이의 제어 방법
US10266938B2 (en) Deposition method, deposition apparatus, and structure
KR101038187B1 (ko) 온도조절장치가 구비된 고상파우더 진공증착장치 및 고상파우더 진공증착방법
WO2018124739A1 (ko) 투명 불소계 박막의 형성 방법 및 이에 따른 투명 불소계 박막
WO2000029635A2 (en) System and method for applying a metal layer to a substrate
KR100916944B1 (ko) 고상파우더 연속 증착장치 및 고상파우더 연속 증착방법
KR20120094294A (ko) 레이저를 이용한 박막 형성 장치 및 방법
KR101020042B1 (ko) 기재 열충격 제어수단을 구비한 고상파우더 분사 증착 장치및 고상파우더 분사 증착 과정에서의 기재 열충격 제거를 위한 온도조절방법
WO2010011114A2 (ko) 세라믹 코팅막 형성 장치
AU1444495A (en) Method and apparatus for coating glassware
KR101568287B1 (ko) 고상파우더 코팅장치 및 코팅방법
US5173121A (en) Apparatus for the deposition and film formation of silicon on substrates
WO2023042977A1 (ko) 플라즈마 분말 증착 장치 및 그를 이용한 증착 방법
KR102407368B1 (ko) 성막 장치
JP4920912B2 (ja) 成膜方法及び成膜装置
JP4194279B2 (ja) 静電粉体塗着法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858174

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13878163

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/08/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 10858174

Country of ref document: EP

Kind code of ref document: A1