WO2012046633A1 - 入出力一体型表示装置 - Google Patents
入出力一体型表示装置 Download PDFInfo
- Publication number
- WO2012046633A1 WO2012046633A1 PCT/JP2011/072441 JP2011072441W WO2012046633A1 WO 2012046633 A1 WO2012046633 A1 WO 2012046633A1 JP 2011072441 W JP2011072441 W JP 2011072441W WO 2012046633 A1 WO2012046633 A1 WO 2012046633A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coordinate detection
- input
- wiring
- display device
- output integrated
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0412—Digitisers structurally integrated in a display
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/04166—Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/0416—Control or interface arrangements specially adapted for digitisers
- G06F3/0418—Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
- G06F3/04184—Synchronisation with the driving of the display or the backlighting unit to avoid interferences generated internally
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0421—Structural details of the set of electrodes
- G09G2300/0426—Layout of electrodes and connections
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3648—Control of matrices with row and column drivers using an active matrix
Definitions
- the present invention relates to an input / output integrated display device, and more particularly to an input / output integrated display device that realizes a highly accurate touch panel function.
- a liquid crystal display itself has an input position detection function, and the display panel itself constitutes an input / output integrated display device. According to this structure, it is thought that it is advantageous as a structure which eliminates the various problems which the conventional structure which the transparent tablet provided independently in the front surface of the liquid crystal display has.
- the problems include a decrease in light transmittance from the liquid crystal display due to the presence of the transparent tablet, an increase in parallax between the input position and the display position by the pen, an increase in cost, an increase in module thickness and module area, and the like.
- an input / output integrated tablet device includes an active matrix type liquid crystal display panel 101 having both an image display function and an electrostatic induction tablet function, a gate drive circuit 102 for driving the display panel 101, and A source drive circuit 103, a display control circuit 104 that supplies a display control signal to the gate drive circuit 102 and the source drive circuit 103, and a position information control signal to the source drive circuit 103, the pulse generation circuit 105, and the coordinate detection circuit 108
- a position information control circuit 106 and a coordinate detection circuit 108 that receives a signal from the pen 107 and detects a tip coordinate of the pen 107 on the display panel 101 are provided.
- the display panel 101 is roughly constituted by a TFT substrate 121, a counter substrate 122, and a liquid crystal layer sandwiched between the TFT substrate 121 and the counter substrate 122.
- the signal wiring 112 is formed of a transparent conductive material and has a function of a counter electrode, and is formed on the counter substrate 122 side.
- the TFT substrate 121 is electrically connected to the TFT 117, the scanning line 114 that partially becomes the gate electrode 123 of the TFT 117, the reference wiring 113 electrically connected to the drain electrode 124 of the TFT 117, and the source electrode 125 of the TFT 117.
- a pixel electrode 115 connected to is formed.
- the TFT 117, the scanning line 114, the reference wiring 113, and the pixel electrode 115 are drawn so as to be seen through the TFT substrate 121.
- a common line is formed outside the display area on the TFT substrate 121 in parallel with the scanning lines 114, and intersects one end of each signal wiring 112 formed on the counter substrate 122.
- a capacitance is formed by the signal wiring 112, the common line, and the liquid crystal layer.
- the other end of each signal line 112 is connected to the source drive circuit 103.
- one frame period is time-divided into a display period for displaying an image on the display panel 101 and a non-display period such as a vertical blanking period, and a part of the non-display period is Assigned as a position detection period.
- the position detection period is further divided into an x detection period and a y detection period.
- the peak value proportional to (or inversely proportional to) the distance from the source drive circuit 103 to the gate drive circuit 102 side is detected during the x detection period.
- a position information signal composed of pulses is simultaneously applied to all signal wirings 112.
- an induced voltage (analog information) induced in the tip electrode of the pen 107 in accordance with the peak value (that is, the x coordinate) of the pulse applied to the signal wiring 112 at the tip position of the pen 107 is used as the coordinate detection circuit 108.
- a / D conversion is performed by the above, and the x coordinate is obtained based on the obtained digital information.
- the coordinate detection circuit 108 obtains the y coordinate based on the digital information obtained by A / D conversion in the same manner as the x coordinate detection.
- the tip coordinate of the pen 107 on the display panel 101 is detected in response to a signal from the pen 107. That is, when an object such as a finger is used, the coordinates cannot be detected, and the pen 107 having wiring is an essential configuration. For this reason, operability is greatly lost.
- Patent Document 1 in order to realize so-called multi-touch in which a plurality of positions are touched, it is necessary to dispose a plurality of pens 107.
- the present invention has been made in view of the above-described problems, and its purpose is to detect capacitance fluctuations when a position detection target object such as a fingertip comes in contact with or approaches a display panel, and to display panel wiring only. It is an object to provide an input / output integrated display device that can be detected by using a display.
- the input / output integrated display device is to solve the above problems, Pixel electrodes arranged in a matrix, switching elements arranged in a matrix and connected to the pixel electrodes, and a plurality of scanning lines commonly connected to control terminals of the switching elements arranged in a row direction A first insulating substrate on which a plurality of reference wirings commonly connected to the pixel electrodes arranged in the row direction via the switching elements are formed, and a plurality facing the pixel electrodes arranged in the column direction A display panel having a second insulating substrate on which the signal wiring is formed, and a liquid crystal layer sandwiched between the first insulating substrate and the second insulating substrate; During a display period, scanning signals are input to the plurality of scanning lines, the switching elements are turned on in units of rows to connect the pixel electrodes to a reference wiring, and voltages are input to the plurality of signal wirings according to display data.
- An input / output integrated display device comprising a display control unit for applying a display voltage according to the display data between the pixel electrode connected to the reference wiring and the signal wiring,
- the display panel includes a plurality of first coordinate detection lines arranged in a row direction on the first insulating substrate for detecting a close position coordinate when a coordinate detection target approaches or contacts the display panel.
- the input / output integrated display device further includes: A voltage applying unit that applies a voltage to at least one coordinate detection line of the plurality of first coordinate detection lines and the plurality of second coordinate detection lines in a non-display period that is a period different from the display period; In the non-display period, the change of the capacitance formed between the first coordinate detection line and the second coordinate detection line with the approach or contact of the coordinate detection object is captured, and And a coordinate detection unit that detects proximity position coordinates.
- a body-type display device can be provided.
- Another input / output integrated display device is to solve the above-described problems, Pixel electrodes arranged in a matrix, switching elements arranged in a matrix and connected to the pixel electrodes, and a plurality of scanning lines commonly connected to control terminals of the switching elements arranged in a row direction
- a display panel having a second insulating substrate on which the signal wiring is formed, and a liquid crystal layer sandwiched between the first insulating substrate and the second insulating substrate;
- scanning signals are input to the plurality of scanning lines, the switching elements are turned on in units of rows to connect the pixel electrodes to a reference wiring, and voltages are input to the plurality of signal wirings according to display data.
- An input / output integrated display device comprising a display control unit for applying a display voltage according to the display data between the pixel electrode connected to the reference wiring and the signal wiring,
- the display panel includes a plurality of first coordinates arranged in parallel with a reference wiring on the first insulating substrate for detecting a proximity position coordinate when a coordinate detection object approaches or contacts the display panel.
- the input / output integrated display device further includes: A voltage application unit that applies a voltage to one coordinate detection line of the plurality of first coordinate detection lines and the plurality of second coordinate detection lines; The proximity position coordinates are detected by detecting the change of the capacitance formed between the first coordinate detection line and the second coordinate detection line accompanying the approach or contact of the coordinate detection target object. And a coordinate detection unit.
- a body-type display device can be provided.
- the input / output integrated display device is as described above.
- Pixel electrodes arranged in a matrix, switching elements arranged in a matrix and connected to the pixel electrodes, and a plurality of scanning lines commonly connected to control terminals of the switching elements arranged in a row direction A first insulating substrate on which a plurality of reference wirings commonly connected to the pixel electrodes arranged in the row direction via the switching elements are formed, and a plurality facing the pixel electrodes arranged in the column direction
- a display panel having a second insulating substrate on which the signal wiring is formed, and a liquid crystal layer sandwiched between the first insulating substrate and the second insulating substrate;
- scanning signals are input to the plurality of scanning lines, the switching elements are turned on in units of rows to connect the pixel electrodes to a reference wiring, and voltages are input to the plurality of signal wirings according to display data.
- An input / output integrated display device comprising a display control unit for applying a display voltage according to the display data between the pixel electrode connected to the reference wiring and the signal wiring,
- the display panel includes a plurality of first coordinate detection lines arranged in a row direction on the first insulating substrate for detecting a close position coordinate when a coordinate detection target approaches or contacts the display panel.
- the input / output integrated display device further includes: A voltage applying unit that applies a voltage to one of the plurality of first coordinate detection lines and one of the plurality of second coordinate detection lines in a non-display period that is a period different from the display period; In the non-display period, the change of the capacitance formed between the first coordinate detection line and the second coordinate detection line with the approach or contact of the coordinate detection object is captured, and And a coordinate detection unit that detects proximity position coordinates.
- scanning signals are input to the plurality of scanning lines, the switching elements are turned on in units of rows to connect the pixel electrodes to a reference wiring, and voltages are input to the plurality of signal wirings according to display data.
- An input / output integrated display device comprising a display control unit for applying a display voltage according to the display data between the pixel electrode connected to the reference wiring and the signal wiring,
- the display panel includes a plurality of first coordinates arranged in parallel with a reference wiring on the first insulating substrate for detecting a proximity position coordinate when a coordinate detection object approaches or contacts the display panel.
- the input / output integrated display device further includes: A voltage application unit that applies a voltage to one coordinate detection line of the plurality of first coordinate detection lines and the plurality of second coordinate detection lines; The proximity position coordinates are detected by detecting the change of the capacitance formed between the first coordinate detection line and the second coordinate detection line accompanying the approach or contact of the coordinate detection target object. And a coordinate detection unit.
- an input / output integrated display device that can detect a capacitance variation when a position detection target object such as a fingertip contacts or approaches the display panel using only the wiring of the display panel. be able to.
- FIG. 2 is a perspective view illustrating a configuration of a display panel of the input / output integrated display device illustrated in FIG. 1.
- FIG. 2 is a plan view illustrating a configuration of a display panel of the input / output integrated display device illustrated in FIG. 1. It is explanatory drawing of the display period of one frame period, a non-display period, and a position detection period.
- FIG. 10 is a block diagram illustrating a configuration of an input / output integrated display device according to another embodiment of the present invention including the display panel illustrated in FIG. 9. It is the top view which showed the structure of the display panel of further another embodiment of the input-output integrated display apparatus which concerns on this invention.
- FIG. 15 is a diagram showing an operation timing chart of the display panel shown in FIG. 14. It is a figure which shows a prior art. It is a figure which shows a prior art.
- the input / output integrated display device can be mounted on any device having a liquid crystal display device as a display device having a touch panel function on a liquid crystal panel having a display function. As an example, it can be applied to a portable terminal.
- FIG. 1 is a block diagram of the input / output integrated display device of this embodiment.
- the input / output integrated display device shown in FIG. 1 includes a display panel 1 having both an image display function and an electrostatic induction tablet function, a gate drive circuit 2 and a source drive circuit 3 for driving the display panel 1, and a gate drive.
- a display control circuit 4 display control unit
- a display control circuit 4 that supplies a display control signal to the circuit 2 and the source drive circuit 3, a pulse generation circuit 5, a timing controller 6, a first coordinate detection line drive circuit 7, and a coordinate detection circuit 8 (Coordinate detection unit), a reference wiring drive circuit 9, and a power supply circuit 10.
- the display panel 1 is an active matrix type liquid crystal display panel in which a liquid crystal layer is sandwiched between two opposing substrates.
- FIG. 2 shows an equivalent circuit of the display panel 1.
- the display panel 1 has a plurality of liquid crystal capacitors 11 arranged in a matrix to constitute each pixel. Further, signal wirings 12 are wired between the columns of the liquid crystal capacitors 11, while reference wirings 13, scanning lines 14, and first coordinate detection lines 20 are wired between the rows of the liquid crystal capacitors 11.
- Each liquid crystal capacitor 11 is configured such that liquid crystal is sandwiched between a pixel electrode 15 and a counter electrode 16 facing each other.
- a TFT 17 is disposed as a switching element.
- the source of the TFT 17 is connected to the pixel electrode 15, the drain is connected to the reference wiring 13, and the gate is connected to the scanning line 14. Further, the signal wiring 12 is connected to the counter electrode 16.
- the TFT 17 is controlled to be turned on / off by the electric signal supplied from the scanning line 14, and a voltage corresponding to the display data signal applied between the reference wiring 13 and the signal wiring 12 when the TFT 17 is turned on is held in the liquid crystal capacitor 11.
- the TFT 17 is maintained even when it is off.
- This configuration is shown separately in FIG. 3 when n lines are selected and when n + 1 lines are selected.
- the first coordinate detection line 20 (FIG. 2) is omitted for convenience of explanation.
- FIG. 4 is a schematic perspective view of three pixels in the display panel 1.
- the display panel 1 includes an insulating TFT substrate 21 made of glass or the like and an optically transparent facing made of glass or the like facing the TFT substrate 21 at a predetermined interval.
- the substrate 22 and a liquid crystal layer (not shown) sandwiched between the TFT substrate 21 and the counter substrate 22 are schematically configured.
- the counter substrate 22 side is an observer (touch panel operator) side, but the present invention is not limited to this, and the TFT substrate 21 side is an observer (touch panel operation). It is good also as the person) side.
- the TFT substrate 21 has a reference surface electrically connected to the TFT 17, the scanning line 14 that partially becomes the gate electrode 23 of the TFT 17, and the drain electrode 24 of the TFT 17 on the surface facing the counter substrate 22.
- a wiring 13, a pixel electrode 15 electrically connected to the source electrode 25 of the TFT 17, and a first coordinate detection line 20 are formed.
- the reference wiring 13 and the scanning line 14 are formed of the same metal layer such as a tantalum layer, but may be formed of different metal layers.
- a gate insulating film (not shown) such as a silicon nitride film is typically formed on substantially the entire surface of the TFT substrate 21 so as to cover the gate electrode 23 and the scanning line 14 of the TFT 17.
- An active semiconductor layer (not shown), a drain electrode, a source electrode, and a pixel electrode 15 constituting the TFT 17 are formed on the gate insulating film.
- the pixel electrode 15 is formed of a transparent conductive film such as ITO.
- the first coordinate detection line 20 can be formed of the same metal layer as the reference wiring 13 and the scanning line 14, but may be formed of different metal layers. One end of the first coordinate detection line 20 is connected to the pulse generation circuit 5 shown in FIG. The other end of the first coordinate detection line 20 may be connected to the coordinate detection circuit 8 shown in FIG. 1, or may not be connected to the coordinate detection circuit 8 as shown in FIG.
- a stripe-like counter electrode 16 common to all the pixels arranged in the column direction is formed on the counter substrate 22. That is, the striped counter electrode 16 in this embodiment also functions as the signal wiring 12.
- the counter electrode 16 is referred to as a signal wiring 12.
- the other end of the signal wiring 12 is connected to the coordinate detection circuit 8 shown in FIG.
- the signal wiring 12 is formed to be transparent so as to have the function of the counter electrode, and is formed on the counter substrate 22 side. Therefore, even when the TFT substrate 21 is positioned on the front surface, the signal wiring 12 is incident from the front surface. Light such as outside light is hardly reflected by the signal wiring 12 formed of an ITO film on the counter substrate 22 side. Therefore, it is possible to suppress a decrease in display quality due to a decrease in contrast in a place where external light exists.
- each signal wiring 12 is provided with a notch 12 a at the intersection with the first coordinate detection line 20 formed on the TFT substrate 21.
- the line width is narrow.
- the notch part 12a is provided, and the first coordinate detection line 20 in the lower layer is exposed to the operation surface side of the display panel 1, whereby the coordinate detection target using the first coordinate detection line 20 described later is used.
- the coordinate detection can be performed with high accuracy.
- the gate drive circuit 2 Based on the display control signal from the display control circuit 4 shown in FIG. 1, the gate drive circuit 2 sequentially scans the scanning lines 14 of the display panel 1 shown in FIG. Then, the TFT 17 having a part of the scanning line 14 to which the scanning pulse is applied as a gate electrode is turned on.
- the source drive circuit 3 applies a drive pulse corresponding to the display data signal to the signal line 12 via the signal line input unit in synchronization with the scanning of the gate electrode based on the display control signal. . Then, a drive pulse is applied to the liquid crystal capacitor 11 of the TFT 17 that is turned on, and image information is written.
- the pulse generation circuit 5 sends a pulse signal to the first coordinate detection line drive circuit 7 based on the timing control signal from the timing controller 6.
- the timing controller 6 generates a timing control signal for switching between a display period and a non-display period, which will be described later, and uses the generated timing control signal as a source drive circuit 3, a display control circuit 4, a pulse generation circuit 5, and a coordinate detection circuit. 8 to send.
- the first coordinate detection line drive circuit 7 generates a pulse voltage signal based on the pulse signal from the pulse generation circuit 5, and generates the pulse voltage signal along all the first coordinate detection lines 20 along the column direction. Apply sequentially.
- the scan pulse generated by the gate drive circuit 2, the drive pulse generated by the source drive circuit 3, the pulse signal generated by the pulse generation circuit 5, and the pulse voltage signal generated by the first coordinate detection line drive circuit 7 are , Generated by a bias voltage from the power supply circuit 10.
- the display control circuit 4 detects image display timing based on a timing control signal from the timing controller 6 and displays an image on the display panel 1 based on a display data signal and a synchronization signal input from the outside.
- the display control signal is generated.
- the generated display control signal is sent to the gate drive circuit 2 and the source drive circuit 3 to control the operations of the gate drive circuit 2 and the source drive circuit 3.
- the reference wiring drive circuit 9 applies a reference voltage of a predetermined level generated by the bias voltage from the power supply circuit 10 to the reference wiring 13 of the display panel 1.
- the coordinate detection circuit 8 detects the coordinate detection timing based on the timing control signal from the timing controller 6 and detects the pulse current value from the signal wiring 12 to detect the coordinates of the coordinate detection object as will be described later. .
- the display control circuit 4, the gate drive circuit 2, the source drive circuit 3, and the reference wiring drive circuit 9 constitute display control means.
- the source drive circuit 3, the pulse generation circuit 5, the first coordinate detection line drive circuit 7, and the coordinate detection circuit 8 constitute position detection means.
- one frame period is time-divided into a display period for displaying an image on the display panel 1 and a non-display period such as a vertical blanking period.
- Display period (display operation)> Since the display period is basically the same as that of a normal active matrix liquid crystal display device, it will be briefly described. That is, based on the display control signal from the display control circuit 4, the scanning line 14 is scanned by the gate drive circuit 2 and the TFTs 17 are sequentially turned on for each row, and the display data is supplied from the source drive circuit 3 to all the signal lines 12. A voltage signal corresponding to is applied. When the TFT 17 is turned off, the potential difference between the signal wiring 12 and the reference wiring 13 is held in the liquid crystal capacitor 11 connected to the TFT 17 and an image is displayed.
- Non-display period (position detection operation)>
- the non-display period as shown in FIG. 6B, a part of the period is assigned to the position detection period.
- the position detection in the present invention uses a so-called projection type capacitance method.
- the principle of this method is that a pulse voltage is applied to the drive electrode using the drive electrode and the receive electrode, and a capacitance is formed between the drive electrode and the receive electrode, and a coordinate detection object (dielectric)
- the position is detected by utilizing the change in the capacitance when approaching or touching.
- the first coordinate detection line 20 is used as the driving electrode and the signal wiring 12 is used as the receiving electrode will be described.
- Coordinate detection (hereinafter also referred to as position detection) is performed by sequentially applying a pulse voltage (pulse signal) along the column direction along the plurality of first coordinate detection lines 20 in accordance with a clock signal for synchronizing the entire apparatus. ) Is applied. Charges are induced by capacitive coupling between the first coordinate detection line 20 to which the pulse voltage is applied among the plurality of first coordinate detection lines 20 and the signal wiring 12, and a response waveform (pulse) is observed. .
- a coordinate detection object such as a finger approaches or contacts the counter substrate 22
- a relatively large capacitance is formed at the intersection of the first coordinate detection line 20 and the signal wiring 12 in the vicinity of the contact point. Since the first coordinate detection line 20 and the signal wiring 12 constitute a capacitor at the intersection thereof, the amount of charge induced in the capacitor changes due to the change in capacitance, and is observed by the signal wiring 12. The amount of pulsed current changes.
- the coordinate detection circuit 8 connected to the end of each signal wiring 12 analyzes the pulse current with respect to each signal wiring 12 in synchronization with the clock signal, thereby detecting the coordinate detection object close to the counter substrate 22. The position can be detected.
- the signal wiring 12 is provided with the notch 12a at the intersection (intersection) with the first coordinate detection line 20.
- the first coordinate detection line 20 is widely exposed to the counter substrate 22 side by the notch 12a.
- the detection intensity ratio is determined by the ratio of the capacitance formed by the first coordinate detection line 20, the object, and the signal wiring 12 to the capacitance formed by the first coordinate detection line 20 and the signal wiring 12. Therefore, by exposing the first coordinate detection line 20 widely, the capacity formed by the first coordinate detection line 20 and the coordinate detection target can be increased, which can contribute to the improvement of the intensity ratio. .
- a voltage is applied to the gate (scanning line) so that the TFT 17 is turned off.
- the first coordinate detection line (A), the first coordinate detection line (B), and the first coordinate detection line (C) are arranged in this order in the column direction.
- signal wiring (i), signal wiring (ii), and signal wiring (iii) extending in a direction orthogonal to the first coordinate detection line are arranged in this order in the row direction (in FIG. 7). (B)).
- the first coordinate detection line (A) and the signal wiring (i), and the first coordinate detection line (C) and the signal wiring (iii) are touched.
- a description will be given of multi-touch in the case of being.
- the first coordinate detection line (A), the first coordinate detection line (B), and the first coordinate detection line (C) along the timing chart shown in FIG.
- a pulse is detected on the signal wiring (i) during a period in which the pulse signal is input to the first coordinate detection line (A) (detection pulse (c) in FIG. 7). I). Then, it becomes clear from the timing that “first coordinate detection line (A)” and from the position “signal wiring (i)”, and touching the intersection of the first coordinate detection line (A) and signal wiring (i) is performed. Can be recognized.
- a pulse is input to the first coordinate detection line (B), but no pulse is detected from any of the signal wiring (i), the signal wiring (ii), and the signal wiring (iii).
- multi-touch can be realized by analyzing the presence / absence of pulse detection from the signal wirings arranged in this order in the row direction.
- the first coordinate detection line 20 group arranged in the row direction on the TFT substrate 21 of the display panel 1 and the column arrangement on the counter substrate 22 in the column direction. It is possible to detect the coordinate position of the coordinate detection target object using the group of signal wires 12 thus made. That is, a pen having wiring that is essential in the conventional configuration is unnecessary in the present configuration and can be operated with a finger, so that operability can be improved.
- an output-integrated display device can be provided.
- the configuration has been described in which the counter substrate 22 is the outermost surface and a coordinate detection target object such as a finger approaches or contacts the counter substrate 22, but the present invention is not limited to this.
- another configuration may be provided on the surface side of the counter substrate 22.
- Another configuration includes, for example, a polarizing layer and / or a cover layer.
- FIG. 8 is a top view of the display panel 1 of the present embodiment and shows a state corresponding to the display panel 1 of the first embodiment shown in FIG. .
- the signal wiring 12, the pixel electrode 15, the scanning line 14, and the reference wiring 13 ′ are drawn so as to be seen through the counter substrate 22.
- the first embodiment shown in FIG. 5 uses the first coordinate detection lines 20 arranged in the row direction on the TFT substrate 21 as drive electrodes to realize the position detection operation, while arranged in the column direction on the counter substrate 22.
- the signal wiring group 12 is used as a receiving electrode.
- the reference wiring 13 ′ group arranged in the row direction on the TFT substrate 21 is used as the drive electrode, while the counter substrate 22 is used.
- a group of signal wires 12 arranged in the column direction are used as receiving electrodes. That is, in the present embodiment, the first coordinate detection line 20 group (FIG. 1) described in the first embodiment does not exist. Further, the present embodiment does not include the first coordinate detection line drive circuit 7 that drives the first coordinate detection lines 20 group (FIG. 1) described in the first embodiment.
- the display control circuit is constituted by the display control circuit 4, the gate drive circuit 2, the source drive circuit 3, and the reference wiring drive circuit 9, while the source drive circuit 3, the pulse generation circuit 5, Further, the reference wiring drive circuit 9 and the coordinate detection circuit 8 constitute position detection means.
- the reference wiring drive circuit 9 applies a reference voltage of a predetermined level generated by the bias voltage from the power supply circuit 10 to the reference wiring 13 ′ of the display panel 1 during the display period, while not displaying.
- a pulse voltage signal is generated based on the pulse signal from the pulse generation circuit 5, and the generated pulse voltage signal is sequentially applied to all the reference wirings 13 ′ along the column direction.
- the present embodiment uses the fact that the capacitance formed by the reference wiring 13 'and the signal wiring 12 changes as the coordinate detection object approaches or comes into contact with the coordinates.
- the position detection operation is realized by detecting the presence or absence of a pulse from each signal wiring 12 in the detection circuit 8.
- a notch 12 a is provided at the intersection of the signal wiring 12 with the reference wiring 13 ′. Since the effect is the same as that of Embodiment 1, description is abbreviate
- the present invention is not limited to this. Instead, the signal wiring 12 may be used as a drive electrode, and the reference wiring 13 may be used as a reception electrode.
- the source drive circuit 3 outputs all the position detection pulse signals independently of the application of the drive pulses based on the timing control signal from the timing controller 6 described in the first embodiment. What is necessary is just to be comprised so that it may apply to the signal wiring 12 simultaneously.
- FIG. 9 is a plan view of the display panel 1 of the present embodiment, showing a state corresponding to the display panel 1 of the first embodiment shown in FIG. .
- wiring such as the signal wiring 12, the pixel electrode 15, the scanning line 14, and the reference wiring 13 is drawn so as to be seen through the counter substrate 22.
- FIG. 10 is a block diagram of the input / output integrated display device of this embodiment, and corresponds to the block diagram of Embodiment 1 shown in FIG.
- a stripe-like counter electrode 16 (signal wiring 12) common to all the pixels arranged in the column direction is formed on the counter substrate 22.
- the second coordinate detection line 30 group common to all the pixels arranged in the column direction is provided on the counter substrate 22 as signal wirings. 12 in parallel.
- the second coordinate detection line 30 is formed transparently by an ITO layer or the like, and one end thereof is connected to the coordinate detection circuit 8.
- the first coordinate detection lines 20 group arranged in the row direction on the TFT substrate 21 shown in FIG. 9 are used as drive electrodes, while arranged in the column direction on the counter substrate 22.
- the second group of coordinate detection lines 30 is used as a receiving electrode.
- the second coordinate detection line 30 since the second coordinate detection line 30 does not need to be as thick as the signal wiring 12, the second coordinate detection line 30 is formed with a structure like the notch 12 a of the signal wiring 12. do not have to. Note that a notch portion 12 a is provided at the intersection of the signal wiring 12 and the first coordinate detection line 20, as in the first embodiment.
- the display control circuit 4, the gate drive circuit 2, the source drive circuit 3, and the reference wiring drive circuit 9 constitute display control means, while the pulse generation circuit 5 and the first coordinate detection are performed.
- the line drive circuit 7 and the coordinate detection circuit 8 constitute position detection means.
- the second The position detection operation is realized by detecting in the coordinate detection line 30.
- the first coordinate detection line 20 is used as a drive electrode in realizing the position detection operation, while the second coordinate detection arranged in the column direction on the counter substrate 22.
- the present invention is not limited to this, and the second coordinate detection line 30 is used as the driving electrode, while the second substrate arranged on the counter substrate 22 in the column direction.
- One coordinate detection line 20 group may be used as a receiving electrode.
- the second coordinate detection line 30 may receive a pulse signal from the pulse generation circuit.
- the first coordinate detection line 20 group arranged in the row direction on the TFT substrate 21 is driven. Used as an electrode.
- a group of reference wirings 13 'arranged in the row direction on the TFT substrate 21 is used as the drive electrode. That is, in the present embodiment, the first coordinate detection line 20 group (FIG. 1) described in the first embodiment does not exist. Further, the present embodiment does not include the first coordinate detection line drive circuit 7 that drives the first coordinate detection lines 20 group (FIG. 1) described in the first embodiment.
- the signal wiring 12 group arranged in the column direction on the counter substrate 22 is used as the reception electrode in realizing the position detection operation.
- the present embodiment in the same manner as in the third embodiment, in addition to the signal wirings 12 arranged in the column direction, all the pixels arranged in the column direction on the counter substrate 22.
- the second coordinate detection line 30 group is used as a reception electrode.
- the second coordinate detection line 30 is formed transparently by an ITO layer or the like, and one end thereof is connected to the coordinate detection circuit 8.
- the signal wiring 12 is provided with a notch 12 a at the intersection with the reference wiring 13 ′.
- the second coordinate detection line 30 since the second coordinate detection line 30 does not need to be as thick as the signal wiring 12, the second coordinate detection line 30 is formed with a structure such as the notch 12 a of the signal wiring 12. There is no need.
- the reference wiring 13 'group arranged in the row direction on the TFT substrate 21 shown in FIG. 8 is used as the drive electrode. Therefore, the reference wiring drive circuit 9 (FIG. 1) applies a reference voltage of a predetermined level generated by the bias voltage from the power supply circuit 10 to the reference wiring 13 ′ of the display panel 1 during the display period, while not displaying. In the period (position detection operation), a pulse voltage signal is generated based on the pulse signal from the pulse generation circuit 5, and the generated pulse voltage signal is sequentially applied to all the reference wirings 13 ′ along the column direction.
- the capacitance formed by the reference wiring 13 ′ and the second coordinate detection line 30 changes with the approach or contact of the coordinate detection target object.
- the position detection operation is realized by the detection.
- the display control circuit is constituted by the display control circuit 4, the gate drive circuit 2, the source drive circuit 3, and the reference wiring drive circuit 9, while the source drive circuit 3, the pulse generation circuit 5,
- the reference wiring drive circuit 9 and the coordinate detection circuit 8 constitute position detection means.
- the coordinate position of the coordinate detection object can be detected using the two coordinate detection lines 30. That is, a pen having wiring that is essential in the conventional configuration is unnecessary in the present configuration and can be operated with a finger, so that operability can be improved.
- an output-integrated display device can be provided.
- the reference wiring 13 ′ group is used as the drive electrode, while the second coordinate detection lines 30 group arranged in the column direction on the counter substrate 22 are used.
- the configuration used as the reception electrode has been described, the present invention is not limited to this, and the second coordinate detection line 30 is used as the drive electrode, while the reference wiring 13 group arranged in the column direction on the counter substrate 22 is used. It may be used as a receiving electrode.
- the second coordinate detection line 30 may receive a pulse signal from the pulse generation circuit.
- this pulse generation circuit may be provided separately, another pulse generation circuit is provided separately by configuring another drive circuit to generate a position detection pulse signal independently of the drive signal. There is no need.
- each reference wiring 13 is connected to a pulse generation circuit, and a pulse signal is transmitted. It has been detected.
- the reference wirings 13 are electrically bundled at the other end every several wires, and the coordinate detection circuit 8 performs coordinate detection for each bundle. .
- the TFT 17 that controls the pixels in the display unit is in the off state.
- the TFTs 17 for displaying the pixels are sequentially scanned in the column direction during the display period to switch the potential of the pixel electrode, that is, display, while the reference wiring 13 ′ for detecting the coordinates is provided.
- the TFT 17 'for driving is in an off state.
- a signal for simultaneously turning on all TFTs 17 ′ for driving the reference wiring 13 ′ for coordinate detection is sent from the coordinate detection circuit 8 during the position detection operation.
- a pulse voltage signal is sequentially applied to each reference wiring 13 ′ and flows to the signal wiring 12 that is a reception electrode in the position detection operation for each bundle of the reference wirings 13 ′.
- the pulse current is analyzed in the coordinate detection circuit 8.
- a timing chart showing the relationship between the pulse signal and the pulse current (response waveform) flowing in the signal wiring 12 for each bundle of the reference wirings 13 ' is shown in (b) of FIG.
- the coordinate position of the coordinate detection target object can be detected using the wiring 12 group. That is, a pen having wiring that is essential in the conventional configuration is unnecessary in the present configuration and can be operated with a finger, so that operability can be improved.
- the pulse current value of each signal wiring 12 analyzed by the coordinate detection circuit 8 does not represent a change in capacitance for each reference wiring 13 ′, but a plurality of signals constituting a bundle. Since this corresponds to an integrated change in electrostatic capacitance in the reference wiring 13 ', the detection sensitivity of position detection is increased.
- each reference wiring 13 is connected to a pulse generation circuit, and a pulse signal is transmitted. It has been detected.
- all the reference wirings 13 ' are electrically bundled together.
- the TFT 17 for displaying the pixels is sequentially scanned in the column direction during the display period to switch the potential of the pixel electrode, that is, the display, while the TFT 17 ′ for driving the reference wiring 13 ′ for detecting the coordinates is in the OFF state. is there.
- the non-display period that is, during the position detection operation, the TFTs 17 ′ for driving the reference wiring 13 ′ for detecting the coordinates are bundled in a predetermined number, and the TFTs 17 ′ are sequentially turned on for each bundle.
- a pulse is sent from the coordinate detection circuit 8 so that the pulse signal is applied to all the reference wires 13 'electrically bundled together to drive the reference wire 13' for detecting coordinates.
- the coordinate detection circuit 8 analyzes the pulse current flowing through the signal wiring 12 for each bundle of TFTs 17 ′.
- a timing chart showing the relationship between the pulse signal and the pulse current (response waveform) flowing in the signal wiring 12 for each bundle of the reference wirings 13 is shown in FIG. During this position detection operation, the TFT 17 that displays the pixel is turned off, and the pixel electrode is insulated so as not to affect the display of the detection pulse.
- the coordinate position of the coordinate detection target object can be detected using the wiring 12 group. That is, a pen having wiring that is essential in the conventional configuration is unnecessary in the present configuration and can be operated with a finger, so that operability can be improved.
- the pulse current value of each signal wiring 12 analyzed by the coordinate detection circuit 8 does not represent a change in capacitance for each reference wiring 13 ′, but a plurality of signals constituting a bundle. Since this corresponds to an integrated change in electrostatic capacitance in the reference wiring 13 ', the detection sensitivity of position detection is increased.
- FIGS. 1-10 an embodiment of an input / output integrated display device having multi-pixels will be described with reference to FIGS.
- members having the same functions as the members described in the first embodiment are denoted by the same member numbers, and the description thereof. Is omitted.
- FIG. 14 is an equivalent circuit of a multi-pixel display panel provided in the input / output integrated display device of this embodiment.
- the signal wiring 12 is formed on the counter substrate, similarly to the display panels of the above-described embodiments.
- the reference wiring 13 is arranged for each pixel arranged in the column direction. That is, the reference wiring 13 is provided for every two subpixels.
- the reference wiring 13 group arranged in the row direction on the TFT substrate 21 shown in FIG. 14 is used as a drive electrode, while arranged in the column direction on the counter substrate 22.
- the signal wiring group 12 is used as a receiving electrode. That is, the position detection mode is the same as that of the second embodiment described above.
- the reference wiring drive circuit 9 applies a reference voltage of a predetermined level generated by the bias voltage from the power supply circuit 10 to the reference wiring 13 of the display panel 1 during the display period, while in the non-display period.
- a pulse signal for position detection is sequentially applied to all the reference wirings 13 along the column direction.
- the signal wiring is utilized by utilizing the fact that the capacitance formed by the reference wiring 13 and the signal wiring 12 changes as the coordinate detection object approaches or comes into contact. By detecting at 12, the position detection operation is realized.
- a notch 12a is provided at the intersection of the signal wiring 12 with the reference wiring 13.
- the 12 groups the coordinate position of the coordinate detection object can be detected. That is, a pen having wiring that is essential in the conventional configuration is unnecessary in the present configuration and can be operated with a finger, so that operability can be improved.
- an output-integrated display device can be provided.
- the input / output integrated display device is as described above.
- scanning signals are input to the plurality of scanning lines, the switching elements are turned on in units of rows to connect the pixel electrodes to a reference wiring, and voltages are input to the plurality of signal wirings according to display data.
- An input / output integrated display device comprising a display control unit for applying a display voltage according to the display data between the pixel electrode connected to the reference wiring and the signal wiring,
- the display panel includes a plurality of first coordinate detection lines arranged in a row direction on the first insulating substrate for detecting a close position coordinate when a coordinate detection target approaches or contacts the display panel.
- the input / output integrated display device further includes: A voltage applying unit that applies a voltage to at least one coordinate detection line of the plurality of first coordinate detection lines and the plurality of second coordinate detection lines in a non-display period that is a period different from the display period; In the non-display period, the change of the capacitance formed between the first coordinate detection line and the second coordinate detection line with the approach or contact of the coordinate detection object is captured, and And a coordinate detection unit that detects proximity position coordinates.
- a body-type display device can be provided.
- the input / output integrated display device includes:
- the first coordinate detection line is the reference wiring.
- the bus line for driving the display of the display panel can be used as it is, it can be realized at a lower cost as compared with the case where the line is separately provided.
- the input / output integrated display device includes:
- the second coordinate detection line is the signal wiring.
- the bus line for driving the display of the display panel can be used as it is, it can be realized at a lower cost as compared with the case where the line is separately provided.
- the input / output integrated display device includes:
- the coordinate detection object is on the opposite side of the second insulating substrate from the first insulating substrate,
- the second coordinate detection line is the signal wiring, It is preferable that the width of the signal wiring is narrower at the intersection of the signal wiring with the first coordinate detection line than at the non-crossing portion.
- the first insulating substrate is formed.
- the formed first coordinate detection line can be exposed to the side where the coordinate detection target is located (touch panel operation surface), and a capacitance is formed between the coordinate detection target and the first coordinate detection line. It becomes easy to detect the change in capacitance with high accuracy.
- the input / output integrated display device includes: The plurality of first coordinate detection lines are divided into a plurality of groups in which at least two of the first coordinate detection lines are configured as one group, It is preferable that the coordinate detection unit detects the proximity position coordinates by collectively collecting the change in the capacitance for each group.
- the capacitance used for coordinate detection can be increased, so that the detection sensitivity can be improved.
- the first coordinate detection line is the reference wiring.
- a voltage signal for coordinate detection is input to the reference wiring during the non-display period, It is preferable that the coordinate detection unit is configured to turn on all the switching elements and sequentially apply voltage signals to the plurality of reference wirings during the non-display period.
- the input / output integrated display device includes:
- the first coordinate detection line is the reference wiring
- the second coordinate detection line is the signal wiring
- the plurality of reference wirings are electrically combined into one
- the coordinate detection unit divides all the switching elements into a plurality of groups so that at least two switching elements are configured per group during the non-display period, and sequentially switches the switching elements into the plurality of groups. It is preferable that the proximity position coordinates are detected by turning on and capturing the change in the capacitance for each group.
- the capacitance used for coordinate detection can be increased, so that the detection sensitivity can be improved.
- the input / output integrated display device includes: In the display panel, the switching element is connected to each of the two pixel electrodes (sub-pixel electrodes) arranged in the column direction across one scanning line extending in the row direction, thereby forming one pixel. It may have a multi-pixel structure.
- scanning signals are input to the plurality of scanning lines, the switching elements are turned on in units of rows to connect the pixel electrodes to a reference wiring, and voltages are input to the plurality of signal wirings according to display data.
- An input / output integrated display device comprising a display control unit for applying a display voltage according to the display data between the pixel electrode connected to the reference wiring and the signal wiring,
- the display panel includes a plurality of first coordinates arranged in parallel with a reference wiring on the first insulating substrate for detecting a proximity position coordinate when a coordinate detection object approaches or contacts the display panel.
- the input / output integrated display device further includes: A voltage application unit that applies a voltage to one coordinate detection line of the plurality of first coordinate detection lines and the plurality of second coordinate detection lines; The proximity position coordinates are detected by detecting the change of the capacitance formed between the first coordinate detection line and the second coordinate detection line accompanying the approach or contact of the coordinate detection target object. And a coordinate detection unit.
- a body-type display device can be provided.
- another input / output integrated display device includes: The plurality of first coordinate detection lines are divided into a plurality of groups in which at least two of the first coordinate detection lines are configured as one group, It is preferable that the coordinate detection unit detects the proximity position coordinates by collectively collecting the change in the capacitance for each group.
- the capacitance used for coordinate detection can be increased, so that the detection sensitivity can be improved.
- the present invention can be mounted on any device having a liquid crystal display device as a display device having a touch panel function on a liquid crystal panel having a display function.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Input By Displaying (AREA)
Abstract
本発明に係る一形態の入出力一体型表示装置は、2つの対向する基板に液晶層を挟持した表示パネル(1)を備え、その一方の基板に行方向に第1の座標検知線が配列し、他方の基板に列方向に第2の座標検知線が配列している。入出力一体型表示装置に設けられた座標検出部(8)は、第1の座標検知線および第2の座標検知線に電気的に接続しており、非表示期間に、座標検出対象物の接近または接触に伴って第1の座標検知線と第2の座標検知線との間で形成されている静電容量の変化を捉えて、座標検出対象物の近接位置座標を検出する。
Description
本発明は、入出力一体型表示装置に関し、より詳細には、精度の高いタッチパネル機能を実現した入出力一体型表示装置に関する。
液晶ディスプレイ自身に入力位置検出機能を持たせて、表示パネルそのもの単独で入出力一体型表示装置を構成するものが知られている。この構成によれば、透明タブレットが液晶ディスプレイの前面に独立して設けられた従前の構成が抱える種々の問題を解消する構成として優位であると考えられている。当該問題とは、透明タブレットの存在による液晶ディスプレイからの光の透過率低下や、ペンによる入力位置と表示位置との視差の増大、コストの増加、モジュール厚およびモジュール面積の増大等である。
表示パネルそのもの単独で入出力一体型表示装置を構成する一具体例としては、特許文献1に示す入出力一体型タブレット装置がある。この入出力一体型タブレット装置のブロック図を図16に示す。図16に示すように、入出力一体型タブレット装置は、画像表示機能と静電誘導タブレット機能とを兼ね備えたアクティブマトリックスタイプの液晶表示パネル101と、この表示パネル101を駆動するゲート駆動回路102およびソース駆動回路103と、ゲート駆動回路102およびソース駆動回路103に表示制御信号を供給する表示制御回路104と、ソース駆動回路103、パルス発生回路105および座標検出回路108に位置情報制御信号を供給する位置情報制御回路106と、ペン107からの信号を受けて表示パネル101上におけるペン107の先端座標を検出する座標検出回路108とを備えている。
より具体的には、上記表示パネル101は、図17に示すように、TFT基板121、対向基板122、および、TFT基板121と対向基板122との間に挟持された液晶層によって概略構成されており、信号配線112を透明導電材料で形成して対向電極の機能を持たせて対向基板122側に形成している。一方、TFT基板121は、TFT117と、一部がTFT117のゲート電極123となる走査線114と、TFT117のドレイン電極124に電気的に接続された基準配線113と、TFT117のソース電極125に電気的に接続された画素電極115が形成されている。なお、図17は、TFT117、走査線114、基準配線113および画素電極115は、TFT基板121を透過して見えるように描かれている。また、TFT基板121上の表示領域外に走査線114と平行に1本の共通線を形成し、対向基板122に形成された各信号配線112の一端と交差させている。こうして、信号配線112と共通線と液晶層とで容量を形成している。一方、各信号配線112の他端はソース駆動回路103に接続されている。
上記構成の入出力一体型タブレット装置は、1フレーム期間が、表示パネル101に画像を表示する表示期間と、垂直ブランキング期間等の非表示期間とに時分割され、非表示期間の一部が位置検出期間として割り当てられる。位置検出期間は、さらにx検出期間とy検出期間とに時分割されている。
そして、表示パネル101上のペン107先のx座標を検出する場合には、上記x検出期間に、ソース駆動回路103から、ゲート駆動回路102側からの距離に比例(または反比例)した波高値のパルスで成る位置情報信号を、全信号配線112に対して同時に印加する。その際に、ペン107の先端位置にある信号配線112に印加されたパルスの波高値(つまりx座標)に応じてペン107の先端電極に誘起された誘導電圧(アナログ情報)を座標検出回路108によってA/D変換し、得られたデジタル情報に基づいてx座標を得る。
一方、表示パネル101上のペン107先のy座標を検出する場合には、上記y検出期間に、パルス発生回路105から、共通線に1つのパルスが入力される。そして、容量を介して全信号配線112に略同時に発生するソース駆動回路103からの距離(y座標)に比例した振幅のスパイク状の電位変化(位置情報信号)をペン107の先端電極で検出し、座標検出回路108によって、x座標検出の場合と同様にして、A/D変換して得られたデジタル情報に基づいてy座標を得る。
上述した特許文献1の構成の場合、ペン107からの信号を受けて表示パネル101上におけるペン107の先端座標を検出している。すなわち、指等の物体を用いた場合にその座標を検出することはできず、配線を有したペン107が必須構成となっている。このため、操作性が大きく失われる。
加えて特許文献1の構成において、複数位置をタッチする、いわゆるマルチタッチを実現する場合には、複数のペン107を配設する必要がある。
本発明は、上記の問題点に鑑みなされたものであり、その目的は、表示パネル上に指先等の位置検出被対象物が接触した時または近づいた時の容量変動を、表示パネルの配線のみを用いて検出することができる入出力一体型表示装置を提供することである。
すなわち、本発明に係る入出力一体型表示装置は、上記の課題を解決するために、
マトリクス状に配置された画素電極と、マトリクス状に配置されて上記画素電極に接続されたスイッチング素子と、行方向に配列された各スイッチング素子の制御端子に共通に接続された複数の走査線と、行方向に配列された各画素電極に各スイッチング素子を介して共通に接続された複数の基準配線とが形成された第1絶縁基板と、列方向に配列された各画素電極に対向した複数の信号配線が形成された第2絶縁基板と、上記第1絶縁基板と第2絶縁基板との間に挟持された液晶層とを有する表示パネルと、
表示期間に、上記複数の走査線に走査信号を入力して行単位で上記スイッチング素子をオンして上記画素電極を基準配線に接続する一方、上記複数の信号配線に表示データに従って電圧を入力して上記基準配線に接続された画素電極と上記信号配線との間に上記表示データに応じた表示電圧を印加する表示制御部とを備えている入出力一体型表示装置であって、
上記表示パネルには、上記表示パネルに座標検出対象物が接近または接触したときにその近接位置座標を検出するための、上記第1絶縁基板に行方向に配列した複数の第1の座標検知線と、上記第2絶縁基板に列方向に配列した複数の第2の座標検知線とが設けられており、
上記入出力一体型表示装置は、更に、
表示期間とは異なる期間である非表示期間に、上記複数の第1の座標検知線および上記複数の第2の座標検知線の少なくとも一方の座標検知線に電圧を印加する電圧印加部と、
上記非表示期間に、上記第1の座標検知線と上記第2の座標検知線との間で形成されている静電容量の、座標検出対象物の接近または接触に伴う変化を捉えて、上記近接位置座標を検出する座標検出部とを備えていることを特徴としている。
マトリクス状に配置された画素電極と、マトリクス状に配置されて上記画素電極に接続されたスイッチング素子と、行方向に配列された各スイッチング素子の制御端子に共通に接続された複数の走査線と、行方向に配列された各画素電極に各スイッチング素子を介して共通に接続された複数の基準配線とが形成された第1絶縁基板と、列方向に配列された各画素電極に対向した複数の信号配線が形成された第2絶縁基板と、上記第1絶縁基板と第2絶縁基板との間に挟持された液晶層とを有する表示パネルと、
表示期間に、上記複数の走査線に走査信号を入力して行単位で上記スイッチング素子をオンして上記画素電極を基準配線に接続する一方、上記複数の信号配線に表示データに従って電圧を入力して上記基準配線に接続された画素電極と上記信号配線との間に上記表示データに応じた表示電圧を印加する表示制御部とを備えている入出力一体型表示装置であって、
上記表示パネルには、上記表示パネルに座標検出対象物が接近または接触したときにその近接位置座標を検出するための、上記第1絶縁基板に行方向に配列した複数の第1の座標検知線と、上記第2絶縁基板に列方向に配列した複数の第2の座標検知線とが設けられており、
上記入出力一体型表示装置は、更に、
表示期間とは異なる期間である非表示期間に、上記複数の第1の座標検知線および上記複数の第2の座標検知線の少なくとも一方の座標検知線に電圧を印加する電圧印加部と、
上記非表示期間に、上記第1の座標検知線と上記第2の座標検知線との間で形成されている静電容量の、座標検出対象物の接近または接触に伴う変化を捉えて、上記近接位置座標を検出する座標検出部とを備えていることを特徴としている。
上記の構成によれば、表示パネルの第1絶縁基板に行方向に配列された第1の座標検知線群と、第2絶縁基板に列方向に配列された第2の座標検知線群とを用いて、座標検知対象物の座標位置を検出することができる。
これにより、指での操作も可能であることから、従来構成のように配線を有したペンが不要であり、操作性を向上させることができる。
また、マルチタッチも容易に実現可能である。
従って、上記の構成によれば、表示パネル上に指先等の位置検出被対象物が接触した時または近づいた時の容量変動を、表示パネルの配線のみを用いて検出することができる入出力一体型表示装置を提供することが可能となる。
また、本発明に係る別の入出力一体型表示装置は、上記の課題を解決するために、
マトリクス状に配置された画素電極と、マトリクス状に配置されて上記画素電極に接続されたスイッチング素子と、行方向に配列された各スイッチング素子の制御端子に共通に接続された複数の走査線と、行方向に配列された各画素電極に各スイッチング素子を介して共通に接続された複数の基準配線とが形成された第1絶縁基板と、列方向に配列された各画素電極に対向した複数の信号配線が形成された第2絶縁基板と、上記第1絶縁基板と第2絶縁基板との間に挟持された液晶層とを有する表示パネルと、
表示期間に、上記複数の走査線に走査信号を入力して行単位で上記スイッチング素子をオンして上記画素電極を基準配線に接続する一方、上記複数の信号配線に表示データに従って電圧を入力して上記基準配線に接続された画素電極と上記信号配線との間に上記表示データに応じた表示電圧を印加する表示制御部とを備えている入出力一体型表示装置であって、
上記表示パネルには、上記表示パネルに座標検出対象物が接近または接触したときにその近接位置座標を検出するための、上記第1絶縁基板に基準配線と平行に配列した複数の第1の座標検知線と、上記第2絶縁基板に信号配線と平行に配列した複数の第2の座標検知線とが設けられており、
上記入出力一体型表示装置は、更に、
上記複数の第1の座標検知線および上記複数の第2の座標検知線の一方の座標検知線に電圧を印加する電圧印加部と、
上記第1の座標検知線と上記第2の座標検知線との間で形成されている静電容量の、座標検出対象物の接近または接触に伴う変化を捉えて、上記近接位置座標を検出する座標検出部とを備えていることを特徴としている。
マトリクス状に配置された画素電極と、マトリクス状に配置されて上記画素電極に接続されたスイッチング素子と、行方向に配列された各スイッチング素子の制御端子に共通に接続された複数の走査線と、行方向に配列された各画素電極に各スイッチング素子を介して共通に接続された複数の基準配線とが形成された第1絶縁基板と、列方向に配列された各画素電極に対向した複数の信号配線が形成された第2絶縁基板と、上記第1絶縁基板と第2絶縁基板との間に挟持された液晶層とを有する表示パネルと、
表示期間に、上記複数の走査線に走査信号を入力して行単位で上記スイッチング素子をオンして上記画素電極を基準配線に接続する一方、上記複数の信号配線に表示データに従って電圧を入力して上記基準配線に接続された画素電極と上記信号配線との間に上記表示データに応じた表示電圧を印加する表示制御部とを備えている入出力一体型表示装置であって、
上記表示パネルには、上記表示パネルに座標検出対象物が接近または接触したときにその近接位置座標を検出するための、上記第1絶縁基板に基準配線と平行に配列した複数の第1の座標検知線と、上記第2絶縁基板に信号配線と平行に配列した複数の第2の座標検知線とが設けられており、
上記入出力一体型表示装置は、更に、
上記複数の第1の座標検知線および上記複数の第2の座標検知線の一方の座標検知線に電圧を印加する電圧印加部と、
上記第1の座標検知線と上記第2の座標検知線との間で形成されている静電容量の、座標検出対象物の接近または接触に伴う変化を捉えて、上記近接位置座標を検出する座標検出部とを備えていることを特徴としている。
上記の構成によれば、表示パネルの第1絶縁基板に行方向に配列された第1の座標検知線群と、第2絶縁基板に列方向に配列された第2の座標検知線群とを用いて、座標検知対象物の座標位置を検出することができる。
これにより、指での操作も可能であることから、従来構成のように配線を有したペンが不要であり、操作性を向上させることができる。
また、マルチタッチも容易に実現可能である。
従って、上記の構成によれば、表示パネル上に指先等の位置検出被対象物が接触した時または近づいた時の容量変動を、表示パネルの配線のみを用いて検出することができる入出力一体型表示装置を提供することが可能となる。
本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。
本発明に係る入出力一体型表示装置は、以上のように、
マトリクス状に配置された画素電極と、マトリクス状に配置されて上記画素電極に接続されたスイッチング素子と、行方向に配列された各スイッチング素子の制御端子に共通に接続された複数の走査線と、行方向に配列された各画素電極に各スイッチング素子を介して共通に接続された複数の基準配線とが形成された第1絶縁基板と、列方向に配列された各画素電極に対向した複数の信号配線が形成された第2絶縁基板と、上記第1絶縁基板と第2絶縁基板との間に挟持された液晶層とを有する表示パネルと、
表示期間に、上記複数の走査線に走査信号を入力して行単位で上記スイッチング素子をオンして上記画素電極を基準配線に接続する一方、上記複数の信号配線に表示データに従って電圧を入力して上記基準配線に接続された画素電極と上記信号配線との間に上記表示データに応じた表示電圧を印加する表示制御部とを備えている入出力一体型表示装置であって、
上記表示パネルには、上記表示パネルに座標検出対象物が接近または接触したときにその近接位置座標を検出するための、上記第1絶縁基板に行方向に配列した複数の第1の座標検知線と、上記第2絶縁基板に列方向に配列した複数の第2の座標検知線とが設けられており、
上記入出力一体型表示装置は、更に、
上記複数の第1の座標検知線および上記複数の第2の座標検知線の一方の座標検知線に、表示期間とは異なる期間である非表示期間に電圧を印加する電圧印加部と、
上記非表示期間に、上記第1の座標検知線と上記第2の座標検知線との間で形成されている静電容量の、座標検出対象物の接近または接触に伴う変化を捉えて、上記近接位置座標を検出する座標検出部とを備えていることを特徴としている。
マトリクス状に配置された画素電極と、マトリクス状に配置されて上記画素電極に接続されたスイッチング素子と、行方向に配列された各スイッチング素子の制御端子に共通に接続された複数の走査線と、行方向に配列された各画素電極に各スイッチング素子を介して共通に接続された複数の基準配線とが形成された第1絶縁基板と、列方向に配列された各画素電極に対向した複数の信号配線が形成された第2絶縁基板と、上記第1絶縁基板と第2絶縁基板との間に挟持された液晶層とを有する表示パネルと、
表示期間に、上記複数の走査線に走査信号を入力して行単位で上記スイッチング素子をオンして上記画素電極を基準配線に接続する一方、上記複数の信号配線に表示データに従って電圧を入力して上記基準配線に接続された画素電極と上記信号配線との間に上記表示データに応じた表示電圧を印加する表示制御部とを備えている入出力一体型表示装置であって、
上記表示パネルには、上記表示パネルに座標検出対象物が接近または接触したときにその近接位置座標を検出するための、上記第1絶縁基板に行方向に配列した複数の第1の座標検知線と、上記第2絶縁基板に列方向に配列した複数の第2の座標検知線とが設けられており、
上記入出力一体型表示装置は、更に、
上記複数の第1の座標検知線および上記複数の第2の座標検知線の一方の座標検知線に、表示期間とは異なる期間である非表示期間に電圧を印加する電圧印加部と、
上記非表示期間に、上記第1の座標検知線と上記第2の座標検知線との間で形成されている静電容量の、座標検出対象物の接近または接触に伴う変化を捉えて、上記近接位置座標を検出する座標検出部とを備えていることを特徴としている。
また、本発明に係る別の入出力一体型表示装置は、以上のように、
マトリクス状に配置された画素電極と、マトリクス状に配置されて上記画素電極に接続されたスイッチング素子と、行方向に配列された各スイッチング素子の制御端子に共通に接続された複数の走査線と、行方向に配列された各画素電極に各スイッチング素子を介して共通に接続された複数の基準配線とが形成された第1絶縁基板と、列方向に配列された各画素電極に対向した複数の信号配線が形成された第2絶縁基板と、上記第1絶縁基板と第2絶縁基板との間に挟持された液晶層とを有する表示パネルと、
表示期間に、上記複数の走査線に走査信号を入力して行単位で上記スイッチング素子をオンして上記画素電極を基準配線に接続する一方、上記複数の信号配線に表示データに従って電圧を入力して上記基準配線に接続された画素電極と上記信号配線との間に上記表示データに応じた表示電圧を印加する表示制御部とを備えている入出力一体型表示装置であって、
上記表示パネルには、上記表示パネルに座標検出対象物が接近または接触したときにその近接位置座標を検出するための、上記第1絶縁基板に基準配線と平行に配列した複数の第1の座標検知線と、上記第2絶縁基板に信号配線と平行に配列した複数の第2の座標検知線とが設けられており、
上記入出力一体型表示装置は、更に、
上記複数の第1の座標検知線および上記複数の第2の座標検知線の一方の座標検知線に電圧を印加する電圧印加部と、
上記第1の座標検知線と上記第2の座標検知線との間で形成されている静電容量の、座標検出対象物の接近または接触に伴う変化を捉えて、上記近接位置座標を検出する座標検出部とを備えていることを特徴としている。
マトリクス状に配置された画素電極と、マトリクス状に配置されて上記画素電極に接続されたスイッチング素子と、行方向に配列された各スイッチング素子の制御端子に共通に接続された複数の走査線と、行方向に配列された各画素電極に各スイッチング素子を介して共通に接続された複数の基準配線とが形成された第1絶縁基板と、列方向に配列された各画素電極に対向した複数の信号配線が形成された第2絶縁基板と、上記第1絶縁基板と第2絶縁基板との間に挟持された液晶層とを有する表示パネルと、
表示期間に、上記複数の走査線に走査信号を入力して行単位で上記スイッチング素子をオンして上記画素電極を基準配線に接続する一方、上記複数の信号配線に表示データに従って電圧を入力して上記基準配線に接続された画素電極と上記信号配線との間に上記表示データに応じた表示電圧を印加する表示制御部とを備えている入出力一体型表示装置であって、
上記表示パネルには、上記表示パネルに座標検出対象物が接近または接触したときにその近接位置座標を検出するための、上記第1絶縁基板に基準配線と平行に配列した複数の第1の座標検知線と、上記第2絶縁基板に信号配線と平行に配列した複数の第2の座標検知線とが設けられており、
上記入出力一体型表示装置は、更に、
上記複数の第1の座標検知線および上記複数の第2の座標検知線の一方の座標検知線に電圧を印加する電圧印加部と、
上記第1の座標検知線と上記第2の座標検知線との間で形成されている静電容量の、座標検出対象物の接近または接触に伴う変化を捉えて、上記近接位置座標を検出する座標検出部とを備えていることを特徴としている。
これにより、表示パネル上に指先等の位置検出被対象物が接触した時または近づいた時の容量変動を、表示パネルの配線のみを用いて検出することができる入出力一体型表示装置を提供することができる。
〔実施形態1〕
本発明に係る入出力一体型表示装置の一実施形態について、図1から図6を参照して以下に説明する。
本発明に係る入出力一体型表示装置の一実施形態について、図1から図6を参照して以下に説明する。
本発明に係る入出力一体型表示装置は、表示機能を有する液晶パネルにタッチパネル機能を兼ね備えた表示装置として、液晶表示装置を具備するあらゆる機器に搭載することができる。一例として、携帯型端末に適用することができる。
(1) 入出力一体型表示装置の構成
図1は、本実施形態の入出力一体型表示装置におけるブロック図である。
(1) 入出力一体型表示装置の構成
図1は、本実施形態の入出力一体型表示装置におけるブロック図である。
図1に示す入出力一体型表示装置は、画像表示機能と静電誘導タブレット機能とを兼ね備えた表示パネル1と、当該表示パネル1を駆動するゲート駆動回路2およびソース駆動回路3と、ゲート駆動回路2およびソース駆動回路3に表示制御信号を供給する表示制御回路4(表示制御部)と、パルス発生回路5と、タイミングコントローラ6、第1の座標検知線駆動回路7と、座標検出回路8(座標検出部)と、基準配線駆動回路9と、電源回路10とを備えている。
<表示パネル>
表示パネル1は、対向する2つの基板に液晶層を挟持させたアクティブマトリックスタイプの液晶表示パネルである。図2に、表示パネル1の等価回路を示す。
表示パネル1は、対向する2つの基板に液晶層を挟持させたアクティブマトリックスタイプの液晶表示パネルである。図2に、表示パネル1の等価回路を示す。
表示パネル1は、図2に示すように、マトリックス状に配置された複数の液晶容量11を有して各画素を構成している。また、各液晶容量11の列間には信号配線12が配線される一方、各液晶容量11の行間には基準配線13と走査線14と第1の座標検知線20とが配線されている。各液晶容量11は互いに対向する画素電極15と対向電極16との間に液晶が挟持されて構成されている。
各画素にはスイッチング素子としてTFT17が配置されており、TFT17のソースは画素電極15に接続され、ドレインは基準配線13に接続され、ゲートは走査線14に接続されている。さらに、対向電極16には信号配線12が接続されている。こうして、TFT17は、走査線14から供給される電気信号によってオン・オフ制御され、オン時に基準配線13と信号配線12との間に印加される表示データ信号に応じた電圧が液晶容量11に保持され、TFT17がオフ時にも維持される構成となっている。この構成を、図3にnライン選択時とn+1ライン選択時とに分けて示している。なお、図3では、説明の便宜上、第1の座標検知線20(図2)は省略している。また、図3では、nライン選択時において走査線14(n)がオン、走査線14(n+1)がオフであり、n+1ライン選択時において走査線14(n)がオフで、走査線14(n+1)がオンである。n+1ライン選択時においてTFT17がオフ時にも表示データ信号に応じた電圧が液晶容量11に維持されていることがわかる。
ここで、スイッチング素子がTFTである場合の具体的な画素構成について図4に基づいて説明する。図4は、上記表示パネル1における3画素分の模式斜視図である。
表示パネル1は、図4に示すように、ガラス等でなる絶縁性を有するTFT基板21と、このTFT基板21に対して所定の間隔をあけて対向するガラス等でなる光透過性を有する対向基板22と、TFT基板21と対向基板22との間に挟持された液晶層(図示せず)で概略構成される。TFT基板21と対向基板22との間に挟持される液晶層としては、種々のタイプの液晶層を用いることができる。
なお、本実施形態の表示パネル1は、対向基板22側を観察者(タッチパネル操作者)側とするが、本発明はこれに限定されるものではなく、TFT基板21側を観察者(タッチパネル操作者)側としてもよい。
上記TFT基板21には、対向基板22に対向する側の面に、上記TFT17と、一部がTFT17のゲート電極23となる走査線14と、TFT17のドレイン電極24に電気的に接続された基準配線13と、TFT17のソース電極25に電気的に接続された画素電極15と、第1の座標検知線20とが形成されている。
基準配線13と走査線14とはタンタル層等の同じ金属層で形成されているが、異なる金属層によって形成しても差し支えない。また、TFT17のゲート電極23および走査線14を覆うように、典型的にはTFT基板21の略全面に、窒化シリコン膜等のゲート絶縁膜(図示せず)が形成されている。そして、このゲート絶縁膜上に、TFT17を構成する活性半導体層(図示せず)、ドレイン電極、ソース電極および画素電極15が形成されている。
画素電極15は、例えばITO等の透明導電膜で形成されている。
第1の座標検知線20は、基準配線13と走査線14と同じ金属層で形成することができるが、異なる金属層によって形成しても差し支えない。第1の座標検知線20の一端は、図1に示すパルス発生回路5に接続されている。なお、第1の座標検知線20の他端は、図1に示す座標検出回路8に接続されていてもよいし、図1に示すように座標検出回路8に接続されていなくてもよい。
一方、上記対向基板22には、列方向に配列された全画素に共通のストライプ状の対向電極16が形成されている。つまり、本実施形態におけるストライプ状の対向電極16は、信号配線12としても機能するのである。以下、対向電極16を信号配線12と言う。
また、信号配線12の他端は、図1に示す座標検出回路8に接続されている。
このように、信号配線12を透明に形成して対向電極の機能を持たせ、対向基板22側に形成するようにしたことにより、TFT基板21を前面に位置させた場合でも、前面から入射される外光等の光が、対向基板22側にITO膜で形成された信号配線12によって反射されることは極少ない。したがって、外光が存在する個所におけるコントラストの低下による表示品位の低下を抑制することができる。
さらに、信号配線12について図5に基づいて説明する。図5は、表示パネルを上面からみたとき上面図である。図5に示すように、各信号配線12は、TFT基板21に形成された第1の座標検知線20との交差部分において、切り欠き部12aが設けられており、当該部分において信号配線12の線幅が狭くなっている。このように切り欠き部12aが設けられ、下層の第1の座標検知線20が表示パネル1の操作面側に露出することによって、後述する第1の座標検知線20を用いた座標検出対象物の座標検出を精度の良いものとすることができる。
<駆動回路>
ゲート駆動回路2は、図1に示す表示制御回路4からの表示制御信号に基づいて、走査パルスを、図2示す表示パネル1の各走査線14に順次印加して走査する。そうすると、上記走査パルスが印加された走査線14の一部をゲート電極とするTFT17はオンとなる。
ゲート駆動回路2は、図1に示す表示制御回路4からの表示制御信号に基づいて、走査パルスを、図2示す表示パネル1の各走査線14に順次印加して走査する。そうすると、上記走査パルスが印加された走査線14の一部をゲート電極とするTFT17はオンとなる。
一方、ソース駆動回路3は、上記表示制御信号に基づいて、上記ゲート電極の走査に同期して、表示データ信号に応じた駆動パルスを、上記信号配線入力部を介して信号配線12に印加する。そうすると、オンとなっているTFT17の液晶容量11に駆動パルスが印加されて画像情報が書き込まれるのである。
パルス発生回路5は、上記タイミングコントローラ6からのタイミング制御信号に基づいて、パルス信号を第1の座標検知線駆動回路7に送出する。
タイミングコントローラ6は、後述する表示期間と非表示期間とを切り替えるタイミング制御信号を生成し、生成したタイミング制御信号を、ソース駆動回路3、表示制御回路4、パルス発生回路5、および、座標検出回路8に送出する。
第1の座標検知線駆動回路7は、上記パルス発生回路5からのパルス信号に基づいて、パルス電圧信号を生成し、生成したパルス電圧信号を全第1の座標検知線20に列方向に沿って順次印加する。
なお、ゲート駆動回路2が生成する走査パルス、ソース駆動回路3が生成する駆動パルス、パルス発生回路5が生成するパルス信号、および、第1の座標検知線駆動回路7が生成するパルス電圧信号は、電源回路10からのバイアス電圧によって生成される。
上記表示制御回路4は、タイミングコントローラ6からのタイミング制御信号に基づいて画像表示タイミングを検知して、外部から入力される表示データ信号および同期信号に基づいて、表示パネル1に画像を表示するための表示制御信号を生成する。そして、この生成した表示制御信号をゲート駆動回路2およびソース駆動回路3に送出してゲート駆動回路2およびソース駆動回路3の動作を制御する。
基準配線駆動回路9は、上記電源回路10からのバイアス電圧によって生成される所定レベルの基準電圧を表示パネル1の基準配線13に印加する。
座標検出回路8は、タイミングコントローラ6からのタイミング制御信号に基づいて座標検出タイミングを検知して、後述するように、信号配線12からパルス電流値を検出して座標検出対象物の座標を検出する。
すなわち、本実施形態においては、表示制御回路4、ゲート駆動回路2、ソース駆動回路3、および、基準配線駆動回路9によって表示制御手段が構成される。また、ソース駆動回路3、パルス発生回路5、および、第1の座標検知線駆動回路7、座標検出回路8によって位置検出手段が構成される。
(2) 入出力一体型表示装置の動作
次に、上記構成の入出力一体型表示装置の動作について説明する。
次に、上記構成の入出力一体型表示装置の動作について説明する。
図6中の(a)に示すように、1フレーム期間を、表示パネル1に画像を表示する表示期間と、垂直ブランキング期間等の非表示期間とに時分割する。
<表示期間(表示動作)>
表示期間については、通常のアクティブマトリクス型の液晶表示装置と基本的には同じであるから簡単に説明する。すなわち、表示制御回路4からの表示制御信号に基づいて、ゲート駆動回路2によって走査線14を走査して行毎に順次TFT17をオンし、ソース駆動回路3から全信号配線12に対して表示データに応じた電圧信号を印加する。そして、TFT17をオフすれば、信号配線12と基準配線13との電位差分の電位が当該TFT17に接続された液晶容量11に保持されて画像が表示される。
表示期間については、通常のアクティブマトリクス型の液晶表示装置と基本的には同じであるから簡単に説明する。すなわち、表示制御回路4からの表示制御信号に基づいて、ゲート駆動回路2によって走査線14を走査して行毎に順次TFT17をオンし、ソース駆動回路3から全信号配線12に対して表示データに応じた電圧信号を印加する。そして、TFT17をオフすれば、信号配線12と基準配線13との電位差分の電位が当該TFT17に接続された液晶容量11に保持されて画像が表示される。
<非表示期間(位置検出動作)>
一方、上記非表示期間については、図6中の(b)に示すように、当該期間の一部を位置検出期間に割り当てる。
一方、上記非表示期間については、図6中の(b)に示すように、当該期間の一部を位置検出期間に割り当てる。
本発明における位置検出は、いわゆる投影型の静電容量方式を用いる。当該方式の原理は、駆動電極と受信電極とを用いて駆動電極にパルス電圧を与えて、駆動電極と受信電極との間で静電容量を形成しておき、座標検出対象物(誘電体)が接近あるいは接触したときにこの静電容量が変化することを利用して位置を検出するものである。
本実施形態では、第1の座標検知線20を上記駆動電極として用い、信号配線12を上記受信電極として用いる構成について説明する。
座標検出(以下、位置検出と記載することもある)は、装置全体を同期させるクロック信号に合わせて、複数の第1の座標検知線20に列方向に沿って、順次、パルス電圧(パルス信号)が印加される。複数の第1の座標検知線20のうちのパルス電圧が印加された第1の座標検知線20と、信号配線12に容量カップリングにより電荷が誘起されて、応答波形(パルス)が観測される。対向基板22に指などの座標検出対象物が接近あるいは接触したときは、接触箇所近傍の第1の座標検知線20と信号配線12との交点に比較的大きな静電容量が形成される。第1の座標検知線20と信号配線12とは、その交差部分においてキャパシタを構成しているので、静電容量の変化によって、当該キャパシタに誘起される電荷量が変化し、信号配線12で観測されるパルス電流量が変化する。
したがって、各信号配線12の端に接続された座標検出回路8は、クロック信号と同期しながらそのパルス電流を各信号配線12に対して解析することで対向基板22に近接した座標検出対象物の位置を検出することができる。
また、上述したように信号配線12には第1の座標検知線20との交差(交差)部分に切り欠き部12aが設けられている。切り欠き部12aにより、第1の座標検知線20が対向基板22側に広く露出することになる。ここで検出の強度比率は、第1の座標検知線20と信号配線12とにより形成される容量に対する、第1の座標検知線20と物体と信号配線12とにより形成される容量の比率により決まるので、第1の座標検知線20を広く露出させることで第1の座標検知線20と座標検出対象物とにより形成される容量を大きくすることができ、強度比率の向上に寄与することができる。
なお、非表示期間は、TFT17がオフ状態となるように、ゲート(走査線)に電圧が印加される。
次に、マルチタッチの場合の位置検出動作について説明する。説明するにあたって、列方向に第1の座標検知線(A)、第1の座標検知線(B)、第1の座標検知線(C)がこの順で並んでいて、且つ、これら3本の第1の座標検知線に直交する方向に延びた信号配線(i)、信号配線(ii)、信号配線(iii)が行方向にこの順で並んでいる表示パネル構成を仮定する(図7中の(b))。そして、図7に示す当該構成において、第1の座標検知線(A)と信号配線(i)、および、第1の座標検知線(C)と信号配線(iii)の2点をタッチしている場合のマルチタッチについて説明する。
上記仮定の構成において、図7中の(a)に示すタイミングチャートに沿って第1の座標検知線(A)、第1の座標検知線(B)、第1の座標検知線(C)の順でパルス信号が入力されると、第1の座標検知線(A)にパルス信号が入力される期間に信号配線(i)にパルスが検出される(図7中の(c)の検出パルスI)。すると、タイミングから「第1の座標検知線(A)」、位置から「信号配線(i)」だと判明し、第1の座標検知線(A)と信号配線(i)の交点のタッチを認識することができる。
続いて、第1の座標検知線(B)にパルスが入力されるが、信号配線(i)、信号配線(ii)、信号配線(iii)のいずれからもパルスが検出されない。
最後に、第1の座標検知線(C)にパルス信号が入力される期間に信号配線(iii)にパルスが検出される(図7中の(c)の検出パルスII)。すると、タイミングから「第1の座標検知線(C)」、位置から「信号配線(iii)」だと判明し、第1の座標検知線(C)と信号配線(iii)の交点のタッチを認識することができる。
以上のように、パルス検出の有無を、行方向にこの順で並ぶ信号配線から解析することによって、マルチタッチを実現することができる。
(3) 本実施形態の作用効果
本実施形態の構成によれば、表示パネル1のTFT基板21に行方向に配列された第1の座標検知線20群と、対向基板22に列方向に配列された信号配線12群とを用いて、座標検知対象物の座標位置を検出することができる。すなわち、従来構成においては必須であった配線を有したペンが本構成では不要であり、指での操作も可能であることから、操作性を向上させることができる。
本実施形態の構成によれば、表示パネル1のTFT基板21に行方向に配列された第1の座標検知線20群と、対向基板22に列方向に配列された信号配線12群とを用いて、座標検知対象物の座標位置を検出することができる。すなわち、従来構成においては必須であった配線を有したペンが本構成では不要であり、指での操作も可能であることから、操作性を向上させることができる。
また、上述した構成によれば、マルチタッチも容易に実現可能である。
従って、本実施形態の構成によれば、表示パネル上に指先等の位置検出被対象物が接触した時または近づいた時の容量変動を、表示パネルの配線のみを用いて検出することができる入出力一体型表示装置を提供することが可能である。
なお、本実施形態では、対向基板22が最表面になっていて対向基板22に指などの座標検出対象物が接近あるいは接触する構成について説明したが、本発明はこれに限定されるものではなく、上述した検出動作を妨げないものであれば、対向基板22よりも表面側に別の構成が配設されていてもよい。別の構成としては、例えば、偏光層および/またはカバー層がある。
(4-1) 変形例
上述した本実施形態では、位置検出動作を実現するにあたって、第1の座標検知線20を駆動電極として用い、信号配線12を受信電極として用いる構成について説明したが、本発明はこれに限定されるものではなく、信号配線12を駆動電極として用い、第1の座標検知線20を受信電極として用いてもよい。この変形例においては、ソース駆動回路3が、上記タイミングコントローラ6からのタイミング制御信号に基づいて、上記駆動パルスの印加とは独立して、位置検出用のパルス信号を全信号配線12に順次印加するように構成されていればよい。
上述した本実施形態では、位置検出動作を実現するにあたって、第1の座標検知線20を駆動電極として用い、信号配線12を受信電極として用いる構成について説明したが、本発明はこれに限定されるものではなく、信号配線12を駆動電極として用い、第1の座標検知線20を受信電極として用いてもよい。この変形例においては、ソース駆動回路3が、上記タイミングコントローラ6からのタイミング制御信号に基づいて、上記駆動パルスの印加とは独立して、位置検出用のパルス信号を全信号配線12に順次印加するように構成されていればよい。
(4-2) 変形例
本実施形態では、パルス発生回路5を別途設けた構成について説明したが、基準配線駆動回路9もしくはソース駆動回路3が、駆動信号とは独立して、位置検出用のパルス信号を生成するように構成すれば、パルス発生回路5を別途設ける必要はなく、また、当該パルス信号の生成は、基準配線駆動回路9もしくはソース駆動回路3に限られるものでもない。
本実施形態では、パルス発生回路5を別途設けた構成について説明したが、基準配線駆動回路9もしくはソース駆動回路3が、駆動信号とは独立して、位置検出用のパルス信号を生成するように構成すれば、パルス発生回路5を別途設ける必要はなく、また、当該パルス信号の生成は、基準配線駆動回路9もしくはソース駆動回路3に限られるものでもない。
〔実施形態2〕
本発明に係る他の実施形態について、図8に基づいて説明すれば以下の通りである。尚、本実施形態では、上記実施形態1との相違点について説明するため、説明の便宜上、実施形態1で説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
本発明に係る他の実施形態について、図8に基づいて説明すれば以下の通りである。尚、本実施形態では、上記実施形態1との相違点について説明するため、説明の便宜上、実施形態1で説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
(1) 入出力一体型表示装置の構成と動作
図8は、本実施形態の表示パネル1の上面図であり、図5に示した実施形態1の表示パネル1に対応する状態を示している。なお、図8では、図5と同じく、説明の便宜上、信号配線12、画素電極15、走査線14、基準配線13´を、対向基板22を透過して見えるように描いている。
図8は、本実施形態の表示パネル1の上面図であり、図5に示した実施形態1の表示パネル1に対応する状態を示している。なお、図8では、図5と同じく、説明の便宜上、信号配線12、画素電極15、走査線14、基準配線13´を、対向基板22を透過して見えるように描いている。
図5に示す実施形態1は、位置検出動作を実現するにあたって、TFT基板21に行方向に配列された第1の座標検知線20群を駆動電極として用いる一方、対向基板22に列方向に配列した信号配線12群を受信電極として用いている。これに対して、本実施形態では、位置検出動作を実現するにあたって、図8に示すように、TFT基板21に行方向に配列された基準配線13´群を駆動電極として用いる一方、対向基板22に列方向に配列した信号配線12群を受信電極として用いる。すなわち、本実施形態には、実施形態1において説明した第1の座標検知線20群(図1)が存在しない。また、本実施形態には、実施形態1において説明した第1の座標検知線20群(図1)を駆動する第1の座標検知線駆動回路7も存在しない。
すなわち、本実施形態においては、表示制御回路4、ゲート駆動回路2、ソース駆動回路3、および、基準配線駆動回路9によって表示制御手段が構成される一方、ソース駆動回路3、パルス発生回路5、および、基準配線駆動回路9、座標検出回路8によって位置検出手段が構成される。
本実施形態について具体的に説明すると、次の通りである。上述したように本実施形態では、図8に示すTFT基板21に行方向に配列された基準配線13´群を位置検出動作を実現する際の駆動電極として用いる。そのため、基準配線駆動回路9(図1)は、表示期間には上記電源回路10からのバイアス電圧によって生成される所定レベルの基準電圧を表示パネル1の基準配線13´に印加する一方、非表示期間(位置検出動作)においては、上記パルス発生回路5からのパルス信号に基づいて、パルス電圧信号を生成し、生成したパルス電圧信号を全基準配線13´に列方向に沿って順次印加する。
上述した実施形態1と同様に、本実施形態では基準配線13´と信号配線12とにより形成される静電容量が座標検出対象物の接近あるいは接触に伴って変化することを利用して、座標検出回路8において各信号配線12からのパルスの有無を検出することによって位置検出動作を実現する。
本実施形態では、基準配線13´群を(位置検出動作における)駆動電極として用いるため、信号配線12における基準配線13´との交差部分に切り欠き部12aが設けられていることが好ましい。その効果は、実施形態1と同様であるため説明は省略する。
(2) 本実施形態の作用効果
本実施形態の構成によれば、上述した実施形態1の作用効果を奏するだけでなく、行方向に配列される配線が実施形態1のそれよりも1種類少ないことから、製造コストを低減することができ、加えて、実施形態1の構成に比べて、画素領域の開口率を向上させることができる。
本実施形態の構成によれば、上述した実施形態1の作用効果を奏するだけでなく、行方向に配列される配線が実施形態1のそれよりも1種類少ないことから、製造コストを低減することができ、加えて、実施形態1の構成に比べて、画素領域の開口率を向上させることができる。
(3) 変形例
上述した本実施形態では、位置検出動作を実現するにあたって、基準配線13を駆動電極として用い、信号配線12を受信電極として用いる構成について説明したが、本発明はこれに限定されるものではなく、信号配線12を駆動電極として用い、基準配線13を受信電極として用いてもよい。この変形例においては、ソース駆動回路3が、実施形態1で説明した上記タイミングコントローラ6からのタイミング制御信号に基づいて、上記駆動パルスの印加とは独立して、位置検出用のパルス信号を全信号配線12に同時に印加するように構成されていればよい。
上述した本実施形態では、位置検出動作を実現するにあたって、基準配線13を駆動電極として用い、信号配線12を受信電極として用いる構成について説明したが、本発明はこれに限定されるものではなく、信号配線12を駆動電極として用い、基準配線13を受信電極として用いてもよい。この変形例においては、ソース駆動回路3が、実施形態1で説明した上記タイミングコントローラ6からのタイミング制御信号に基づいて、上記駆動パルスの印加とは独立して、位置検出用のパルス信号を全信号配線12に同時に印加するように構成されていればよい。
〔実施形態3〕
本発明に係る他の実施形態について、図9および図10に基づいて説明すれば以下の通りである。尚、本実施形態では、上記実施形態1との相違点について説明するため、説明の便宜上、実施形態1で説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
本発明に係る他の実施形態について、図9および図10に基づいて説明すれば以下の通りである。尚、本実施形態では、上記実施形態1との相違点について説明するため、説明の便宜上、実施形態1で説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
(1) 入出力一体型表示装置の構成と動作
図9は、本実施形態の表示パネル1の平面図であり、図5に示した実施形態1の表示パネル1に対応する状態を示している。なお、図9では、図5と同じく、説明の便宜上、信号配線12、画素電極15、走査線14、基準配線13等の配線を、対向基板22を透過して見えるように描いている。また、図10は、本実施形態の入出力一体型表示装置におけるブロック図であり、図1に示した実施形態1のブロック図に対応している。
図9は、本実施形態の表示パネル1の平面図であり、図5に示した実施形態1の表示パネル1に対応する状態を示している。なお、図9では、図5と同じく、説明の便宜上、信号配線12、画素電極15、走査線14、基準配線13等の配線を、対向基板22を透過して見えるように描いている。また、図10は、本実施形態の入出力一体型表示装置におけるブロック図であり、図1に示した実施形態1のブロック図に対応している。
図5に示す実施形態1では、列方向に配列された全画素に共通のストライプ状の対向電極16(信号配線12)が対向基板22に形成されている。これに対して、本実施形態では、対向基板22に、列方向に配列された信号配線12に加えて、列方向に配列された全画素に共通の第2の座標検知線30群が信号配線12に平行して配列している。
第2の座標検知線30はITO層等によって透明に形成されており、その一端が座標検出回路8に接続されている。
そして、位置検出動作を実現するにあたっては、図9に示す、TFT基板21に行方向に配列された第1の座標検知線20群を駆動電極として用いる一方、対向基板22に列方向に配列された第2の座標検知線30群を受信電極として用いる。
ここで、第2の座標検知線30は、信号配線12ほど線幅を太くする必要がないため、第2の座標検知線30には、信号配線12の切り欠き部12aのような構造は形成する必要はない。なお、信号配線12における第1の座標検知線20との交差部分には、実施形態1と同様に、切り欠き部12aが設けられている。
すなわち、本実施形態においては、表示制御回路4、ゲート駆動回路2、ソース駆動回路3、および、基準配線駆動回路9によって表示制御手段が構成される一方、パルス発生回路5、第1の座標検知線駆動回路7、および、座標検出回路8によって位置検出手段が構成される。
本実施形態では、第1の座標検知線20と第2の座標検知線30とにより形成される静電容量が座標検出対象物の接近あるいは接触に伴って変化することを利用して、第2の座標検知線30において検出することによって位置検出動作を実現する。
(2-1) 変形例
上述した本実施形態では、位置検出動作を実現するにあたって、第1の座標検知線20を駆動電極として用いる一方、対向基板22に列方向に配列した第2の座標検知線30群を受信電極として用いる構成について説明したが、本発明はこれに限定されるものではなく、第2の座標検知線30を駆動電極として用いる一方、対向基板22に列方向に配列した第1の座標検知線20群を受信電極として用いてもよい。この変形例においては、第2の座標検知線30がパルス発生回路からのパルス信号の送出を受ければよい。
上述した本実施形態では、位置検出動作を実現するにあたって、第1の座標検知線20を駆動電極として用いる一方、対向基板22に列方向に配列した第2の座標検知線30群を受信電極として用いる構成について説明したが、本発明はこれに限定されるものではなく、第2の座標検知線30を駆動電極として用いる一方、対向基板22に列方向に配列した第1の座標検知線20群を受信電極として用いてもよい。この変形例においては、第2の座標検知線30がパルス発生回路からのパルス信号の送出を受ければよい。
(2-2) 変形例
本実施形態では、パルス発生回路5を別途設けた構成について説明したが、他の駆動回路を、駆動信号とは独立して、位置検出用のパルス信号を生成するように構成しておけば、パルス発生回路5を別途設ける必要はない。
本実施形態では、パルス発生回路5を別途設けた構成について説明したが、他の駆動回路を、駆動信号とは独立して、位置検出用のパルス信号を生成するように構成しておけば、パルス発生回路5を別途設ける必要はない。
(2-3) 変形例
本実施形態のように、座標検知線が、信号配線および基準配線とはそれぞれ独立して設けられている場合は、座標検知動作を、表示期間内に行うことも可能である。
本実施形態のように、座標検知線が、信号配線および基準配線とはそれぞれ独立して設けられている場合は、座標検知動作を、表示期間内に行うことも可能である。
〔実施形態4〕
本発明に係る他の実施形態について、図11に基づいて説明すれば以下の通りである。尚、本実施形態では、上記実施形態1との相違点について説明するため、説明の便宜上、実施形態1で説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
本発明に係る他の実施形態について、図11に基づいて説明すれば以下の通りである。尚、本実施形態では、上記実施形態1との相違点について説明するため、説明の便宜上、実施形態1で説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
(1) 入出力一体型表示装置の構成と動作
図5に示す実施形態1では、位置検出動作を実現するにあたって、TFT基板21に行方向に配列された第1の座標検知線20群を駆動電極として用いている。これに対して、本実施形態では、位置検出動作を実現するにあたって、図11に示すように、TFT基板21に行方向に配列された基準配線13´群を駆動電極として用いる。すなわち、本実施形態には、実施形態1において説明した第1の座標検知線20群(図1)が存在しない。また、本実施形態には、実施形態1において説明した第1の座標検知線20群(図1)を駆動する第1の座標検知線駆動回路7も存在しない。
図5に示す実施形態1では、位置検出動作を実現するにあたって、TFT基板21に行方向に配列された第1の座標検知線20群を駆動電極として用いている。これに対して、本実施形態では、位置検出動作を実現するにあたって、図11に示すように、TFT基板21に行方向に配列された基準配線13´群を駆動電極として用いる。すなわち、本実施形態には、実施形態1において説明した第1の座標検知線20群(図1)が存在しない。また、本実施形態には、実施形態1において説明した第1の座標検知線20群(図1)を駆動する第1の座標検知線駆動回路7も存在しない。
また、図5に示す実施形態1では、位置検出動作を実現するにあたって、対向基板22に列方向に配列した信号配線12群を受信電極として用いている。これに対して、本実施形態では、図11に示すように、実施形態3と同様に、対向基板22に、列方向に配列された信号配線12に加えて、列方向に配列された全画素に共通の第2の座標検知線30群が信号配線12に平行して配列して、位置検出動作を実現するにあたっては、第2の座標検知線30群を受信電極として用いる。
第2の座標検知線30はITO層等によって透明に形成されており、その一端が座標検出回路8に接続されている。
基準配線13´群を(位置検出動作における)駆動電極として用いるため、信号配線12における基準配線13´との交差部分に切り欠き部12aが設けられていることが好ましい。また、第2の座標検知線30は、信号配線12ほど線幅を太くする必要がないため、第2の座標検知線30には、信号配線12の切り欠き部12aのような構造は形成する必要はない。
上述したように本実施形態では位置検出動作を実現するにあたって、図8に示すTFT基板21に行方向に配列された基準配線13´群を駆動電極として用いる。そのため、基準配線駆動回路9(図1)は、表示期間には上記電源回路10からのバイアス電圧によって生成される所定レベルの基準電圧を表示パネル1の基準配線13´に印加する一方、非表示期間(位置検出動作)においては、上記パルス発生回路5からのパルス信号に基づいて、パルス電圧信号を生成し、生成したパルス電圧信号を全基準配線13´に列方向に沿って順次印加する。
そして、基準配線13´と第2の座標検知線30とにより形成される静電容量が座標検出対象物の接近あるいは接触に伴って変化することを利用して、第2の座標検知線30において検出することによって位置検出動作を実現する。
すなわち、本実施形態においては、表示制御回路4、ゲート駆動回路2、ソース駆動回路3、および、基準配線駆動回路9によって表示制御手段が構成される一方、ソース駆動回路3、パルス発生回路5、基準配線駆動回路9、および、座標検出回路8によって位置検出手段が構成される。
(2) 本実施形態の作用効果
本実施形態の構成によれば、表示パネル1のTFT基板21に行方向に配列された基準配線13´群と、対向基板22に列方向に配列された第2の座標検知線30群とを用いて、座標検知対象物の座標位置を検出することができる。すなわち、従来構成においては必須であった配線を有したペンが本構成では不要であり、指での操作も可能であることから、操作性を向上させることができる。
本実施形態の構成によれば、表示パネル1のTFT基板21に行方向に配列された基準配線13´群と、対向基板22に列方向に配列された第2の座標検知線30群とを用いて、座標検知対象物の座標位置を検出することができる。すなわち、従来構成においては必須であった配線を有したペンが本構成では不要であり、指での操作も可能であることから、操作性を向上させることができる。
また、上述した構成によれば、マルチタッチも容易に実現可能である。
従って、本実施形態の構成によれば、表示パネル上に指先等の位置検出被対象物が接触した時または近づいた時の容量変動を、表示パネルの配線のみを用いて検出することができる入出力一体型表示装置を提供することが可能である。
(3) 変形例
上述した本実施形態では、位置検出動作を実現するにあたって、基準配線13´群を駆動電極として用いる一方、対向基板22に列方向に配列した第2の座標検知線30群を受信電極として用いる構成について説明したが、本発明はこれに限定されるものではなく、第2の座標検知線30を駆動電極として用いる一方、対向基板22に列方向に配列した基準配線13群を受信電極として用いてもよい。この変形例においては、第2の座標検知線30がパルス発生回路からのパルス信号の送出を受ければよい。
上述した本実施形態では、位置検出動作を実現するにあたって、基準配線13´群を駆動電極として用いる一方、対向基板22に列方向に配列した第2の座標検知線30群を受信電極として用いる構成について説明したが、本発明はこれに限定されるものではなく、第2の座標検知線30を駆動電極として用いる一方、対向基板22に列方向に配列した基準配線13群を受信電極として用いてもよい。この変形例においては、第2の座標検知線30がパルス発生回路からのパルス信号の送出を受ければよい。
なお、このパルス発生回路は別途設けてもよいが、他の駆動回路を、駆動信号とは独立して、位置検出用のパルス信号を生成するように構成することで、パルス発生回路を別途設ける必要がなくなる。
〔実施形態5〕
本発明に係る他の実施形態について、図12に基づいて説明すれば以下の通りである。尚、本実施形態では、上記実施形態2との相違点について説明するため、説明の便宜上、実施形態2で説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
本発明に係る他の実施形態について、図12に基づいて説明すれば以下の通りである。尚、本実施形態では、上記実施形態2との相違点について説明するため、説明の便宜上、実施形態2で説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
(1) 入出力一体型表示装置の構成と動作
上記実施形態2では、各基準配線13の一端がそれぞれパルス発生回路に接続されてパルス信号が送出され、基準配線13ごとに座標検出回路8において検出されている。これに対して、本実施形態では、基準配線13が数本ごとに他端において電気的に一つに束ねられて、この束ごとに座標検出回路8において座標検出が行われる構成となっている。
上記実施形態2では、各基準配線13の一端がそれぞれパルス発生回路に接続されてパルス信号が送出され、基準配線13ごとに座標検出回路8において検出されている。これに対して、本実施形態では、基準配線13が数本ごとに他端において電気的に一つに束ねられて、この束ごとに座標検出回路8において座標検出が行われる構成となっている。
また、上述した各実施形態では、非表示期間、すなわち位置検出動作時には、表示部内の画素を制御するTFT17はオフ状態になっている。これに対して、本実施形態では、画素を表示するTFT17は表示期間中に列方向に順次スキャンされて画素電極の電位、すなわち表示を切り替えていく一方、座標検知用である基準配線13´を駆動するためのTFT17´はオフ状態である。そして、図12中の(a)に示すように、位置検出動作時に、座標検知用である基準配線13´を駆動するための全TFT17´を同時にオンするための信号が座標検出回路8から送出されて、全TFT17´がオンになった状態で、各基準配線13´にパルス電圧信号が順次印加され、基準配線13´の束ごとに、位置検出動作における受信電極である信号配線12に流れるパルス電流を、座標検出回路8において解析する。パルス信号と、基準配線13´の束ごとに信号配線12に流れるパルス電流(応答波形)との関係を示すタイミングチャートを、図12中の(b)に示す。
なお、何本ごとに基準配線13´を束ねるかは、適宜設定すればよい。また、列方向に沿って束を形成する必要はなく、列方向に沿って配列した基準配線13´群の例えば奇数番目の基準配線13´を列方向に沿って何本ごとか束ねて、偶数番目の基準配線13´を列方向に沿って何本ごとか束ねるような構成であってもよい。他の例としては、基準配線13群の総本数がnであり、列方向に沿って1、2、3、・・・、n-2、n-1、n番目に配列していた場合に、1、2、3、n-2、n-1、n番目の基準配線13´が1つに束ねられていてもよい。
(2) 本実施形態の作用効果
本実施形態の構成によれば、表示パネル1のTFT基板21に行方向に配列された基準配線13´群と、対向基板22に列方向に配列された信号配線12群とを用いて、座標検知対象物の座標位置を検出することができる。すなわち、従来構成においては必須であった配線を有したペンが本構成では不要であり、指での操作も可能であることから、操作性を向上させることができる。
本実施形態の構成によれば、表示パネル1のTFT基板21に行方向に配列された基準配線13´群と、対向基板22に列方向に配列された信号配線12群とを用いて、座標検知対象物の座標位置を検出することができる。すなわち、従来構成においては必須であった配線を有したペンが本構成では不要であり、指での操作も可能であることから、操作性を向上させることができる。
本実施形態の構成によれば、座標検出回路8で解析される各信号配線12のパルス電流値は、基準配線13´ごとの静電容量の変化を表すものではなく、束を構成する複数の基準配線13´における静電容量の変化が積算されたものに相当するので、位置検出の検出感度が高くなる。
〔実施形態6〕
本発明に係る他の実施形態について、図13に基づいて説明すれば以下の通りである。尚、本実施形態では、上記実施形態2との相違点について説明するため、説明の便宜上、実施形態2で説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
本発明に係る他の実施形態について、図13に基づいて説明すれば以下の通りである。尚、本実施形態では、上記実施形態2との相違点について説明するため、説明の便宜上、実施形態2で説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
(1) 入出力一体型表示装置の構成と動作
上記実施形態2では、各基準配線13の一端がそれぞれパルス発生回路に接続されてパルス信号が送出され、基準配線13ごとに座標検出回路8において検出されている。
上記実施形態2では、各基準配線13の一端がそれぞれパルス発生回路に接続されてパルス信号が送出され、基準配線13ごとに座標検出回路8において検出されている。
これに対して、本実施形態では、全基準配線13´が電気的に一つに束ねられている。画素を表示するTFT17は表示期間中に列方向に順次スキャンされて画素電極の電位、すなわち表示を切り替えていく一方、座標検知用である基準配線13´を駆動するためのTFT17´はオフ状態である。そして、非表示期間、すなわち位置検出動作時においては、座標検知用である基準配線13´を駆動するためのTFT17´を予め定めた数ごとに束ねて、その束ごとにTFT17´が順次オン状態となるように座標検出回路8からパルスが送出される一方、電気的に一つに束ねられた全基準配線13´にパルス信号が印加され、座標検知用である基準配線13´を駆動するためのTFT17´の束ごとに信号配線12に流れるパルス電流を、座標検出回路8において解析する。パルス信号と、基準配線13の束ごとに信号配線12に流れるパルス電流(応答波形)との関係を示すタイミングチャートを、図13中の(b)に示す。この位置検出動作時においては、画素を表示するTFT17はオフ状態となって検出用のパルスの表示に影響を与えないように画素電極を絶縁状態にする。
(2) 本実施形態の作用効果
本実施形態の構成によれば、表示パネル1のTFT基板21に行方向に配列された基準配線13´群と、対向基板22に列方向に配列された信号配線12群とを用いて、座標検知対象物の座標位置を検出することができる。すなわち、従来構成においては必須であった配線を有したペンが本構成では不要であり、指での操作も可能であることから、操作性を向上させることができる。
本実施形態の構成によれば、表示パネル1のTFT基板21に行方向に配列された基準配線13´群と、対向基板22に列方向に配列された信号配線12群とを用いて、座標検知対象物の座標位置を検出することができる。すなわち、従来構成においては必須であった配線を有したペンが本構成では不要であり、指での操作も可能であることから、操作性を向上させることができる。
本実施形態の構成によれば、座標検出回路8では解析される各信号配線12のパルス電流値は、基準配線13´ごとの静電容量の変化を表すものではなく、束を構成する複数の基準配線13´における静電容量の変化が積算されたものに相当するので、位置検出の検出感度が高くなる。
〔実施形態7〕
本発明に係る入出力一体型表示装置は、行方向に延設された1本の走査線に対して、列方向に並んだ2つのサブ画素電極(サブ画素)が各々TFTを介して接続されて1つの画素を構成するマルチ画素の形態にも適用することができる。
本発明に係る入出力一体型表示装置は、行方向に延設された1本の走査線に対して、列方向に並んだ2つのサブ画素電極(サブ画素)が各々TFTを介して接続されて1つの画素を構成するマルチ画素の形態にも適用することができる。
本実施形態では、このマルチ画素を有する入出力一体型表示装置の一実施形態について、図14および図15に基づいて説明する。尚、本実施形態では、上記実施形態1との相違点について説明するため、説明の便宜上、実施形態1で説明した部材と同一の機能を有する部材には同一の部材番号を付し、その説明を省略する。
図14は、本実施形態の入出力一体型表示装置に設けられたマルチ画素の表示パネルの等価回路である。なお、本実施形態の表示パネルも、上述した各実施形態の表示パネルと同様に、信号配線12は、対向基板に形成されている。
図14に示すように、基準配線13は、列方向に並んだ1つの画素ごとに配設されている。すなわち、基準配線13は、2つのサブ画素ごとに配設されている。
ここで図14の構成の駆動方法の一例として、ドット反転駆動を採用した動作タイミングチャートを図15に示す。
次に、本実施形態では、位置検出動作を実現するにあたって、図14に示す、TFT基板21に行方向に配列された基準配線13群を駆動電極として用いる一方、対向基板22に列方向に配列した信号配線12群を受信電極として用いる。すなわち、位置検出の形態としては、上述した実施形態2と同じである。
そのため、基準配線駆動回路9(図1)は、表示期間には上記電源回路10からのバイアス電圧によって生成される所定レベルの基準電圧を表示パネル1の基準配線13に印加する一方、非表示期間(位置検出動作)においては、位置検出用のパルス信号を全基準配線13に列方向に沿って順次印加するように構成されている。
上述した実施形態1と同様に、本実施形態では基準配線13と信号配線12とにより形成される静電容量が座標検出対象物の接近あるいは接触に伴って変化することを利用して、信号配線12において検出することによって位置検出動作を実現する。
本実施形態では、基準配線13群を(位置検出動作における)駆動電極として用いるため、信号配線12における基準配線13との交差部分に切り欠き部12aが設けられていることが好ましい。
(2) 本実施形態の作用効果
本実施形態の構成によれば、表示パネル1のTFT基板21に行方向に配列された基準配線13群と、対向基板22に列方向に配列された信号配線12群とを用いて、座標検知対象物の座標位置を検出することができる。すなわち、従来構成においては必須であった配線を有したペンが本構成では不要であり、指での操作も可能であることから、操作性を向上させることができる。
本実施形態の構成によれば、表示パネル1のTFT基板21に行方向に配列された基準配線13群と、対向基板22に列方向に配列された信号配線12群とを用いて、座標検知対象物の座標位置を検出することができる。すなわち、従来構成においては必須であった配線を有したペンが本構成では不要であり、指での操作も可能であることから、操作性を向上させることができる。
また、上述した構成によれば、マルチタッチも容易に実現可能である。
従って、本実施形態の構成によれば、表示パネル上に指先等の位置検出被対象物が接触した時または近づいた時の容量変動を、表示パネルの配線のみを用いて検出することができる入出力一体型表示装置を提供することが可能である。
なお、本発明は上述した各実施形態に限定されるものではない。当業者は、請求項に示した範囲内において、本発明をいろいろと変更できる。すなわち、請求項に示した範囲内において、適宜変更された技術的手段を組み合わせれば、新たな実施形態が得られる。すなわち、発明の詳細な説明の項においてなされた具体的な実施形態は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。
(本発明の総括)
本発明に係る入出力一体型表示装置は、以上のように、
マトリクス状に配置された画素電極と、マトリクス状に配置されて上記画素電極に接続されたスイッチング素子と、行方向に配列された各スイッチング素子の制御端子に共通に接続された複数の走査線と、行方向に配列された各画素電極に各スイッチング素子を介して共通に接続された複数の基準配線とが形成された第1絶縁基板と、列方向に配列された各画素電極に対向した複数の信号配線が形成された第2絶縁基板と、上記第1絶縁基板と第2絶縁基板との間に挟持された液晶層とを有する表示パネルと、
表示期間に、上記複数の走査線に走査信号を入力して行単位で上記スイッチング素子をオンして上記画素電極を基準配線に接続する一方、上記複数の信号配線に表示データに従って電圧を入力して上記基準配線に接続された画素電極と上記信号配線との間に上記表示データに応じた表示電圧を印加する表示制御部とを備えている入出力一体型表示装置であって、
上記表示パネルには、上記表示パネルに座標検出対象物が接近または接触したときにその近接位置座標を検出するための、上記第1絶縁基板に行方向に配列した複数の第1の座標検知線と、上記第2絶縁基板に列方向に配列した複数の第2の座標検知線とが設けられており、
上記入出力一体型表示装置は、更に、
表示期間とは異なる期間である非表示期間に、上記複数の第1の座標検知線および上記複数の第2の座標検知線の少なくとも一方の座標検知線に電圧を印加する電圧印加部と、
上記非表示期間に、上記第1の座標検知線と上記第2の座標検知線との間で形成されている静電容量の、座標検出対象物の接近または接触に伴う変化を捉えて、上記近接位置座標を検出する座標検出部とを備えていることを特徴としている。
本発明に係る入出力一体型表示装置は、以上のように、
マトリクス状に配置された画素電極と、マトリクス状に配置されて上記画素電極に接続されたスイッチング素子と、行方向に配列された各スイッチング素子の制御端子に共通に接続された複数の走査線と、行方向に配列された各画素電極に各スイッチング素子を介して共通に接続された複数の基準配線とが形成された第1絶縁基板と、列方向に配列された各画素電極に対向した複数の信号配線が形成された第2絶縁基板と、上記第1絶縁基板と第2絶縁基板との間に挟持された液晶層とを有する表示パネルと、
表示期間に、上記複数の走査線に走査信号を入力して行単位で上記スイッチング素子をオンして上記画素電極を基準配線に接続する一方、上記複数の信号配線に表示データに従って電圧を入力して上記基準配線に接続された画素電極と上記信号配線との間に上記表示データに応じた表示電圧を印加する表示制御部とを備えている入出力一体型表示装置であって、
上記表示パネルには、上記表示パネルに座標検出対象物が接近または接触したときにその近接位置座標を検出するための、上記第1絶縁基板に行方向に配列した複数の第1の座標検知線と、上記第2絶縁基板に列方向に配列した複数の第2の座標検知線とが設けられており、
上記入出力一体型表示装置は、更に、
表示期間とは異なる期間である非表示期間に、上記複数の第1の座標検知線および上記複数の第2の座標検知線の少なくとも一方の座標検知線に電圧を印加する電圧印加部と、
上記非表示期間に、上記第1の座標検知線と上記第2の座標検知線との間で形成されている静電容量の、座標検出対象物の接近または接触に伴う変化を捉えて、上記近接位置座標を検出する座標検出部とを備えていることを特徴としている。
上記の構成によれば、表示パネルの第1絶縁基板に行方向に配列された第1の座標検知線群と、第2絶縁基板に列方向に配列された第2の座標検知線群とを用いて、座標検知対象物の座標位置を検出することができる。
これにより、指での操作も可能であることから、従来構成のように配線を有したペンが不要であり、操作性を向上させることができる。
また、マルチタッチも容易に実現可能である。
従って、上記の構成によれば、表示パネル上に指先等の位置検出被対象物が接触した時または近づいた時の容量変動を、表示パネルの配線のみを用いて検出することができる入出力一体型表示装置を提供することが可能となる。
また、本発明に係る入出力一体型表示装置は、上記の構成に加えて、
上記第1の座標検知線は、上記基準配線である。
上記第1の座標検知線は、上記基準配線である。
上記の構成によれば、表示パネルの表示駆動用にあるバスラインをそのまま利用することができるので、ラインを別途配設する場合と比較して低コストで実現することが可能である。
また、本発明に係る入出力一体型表示装置は、上記の構成に加えて、
上記第2の座標検知線は、上記信号配線である。
上記第2の座標検知線は、上記信号配線である。
上記の構成によれば、表示パネルの表示駆動用にあるバスラインをそのまま利用することができるので、ラインを別途配設する場合と比較して低コストで実現することが可能である。
また、本発明に係る入出力一体型表示装置は、上記の構成に加えて、
座標検知対象物は、第2絶縁基板における第1絶縁基板とは反対側にあり、
上記第2の座標検知線は上記信号配線であり、
上記信号配線における上記第1の座標検知線との交差部分は、当該交差していない部分と比較して、当該信号配線の幅が狭く構成されていることが好ましい。
座標検知対象物は、第2絶縁基板における第1絶縁基板とは反対側にあり、
上記第2の座標検知線は上記信号配線であり、
上記信号配線における上記第1の座標検知線との交差部分は、当該交差していない部分と比較して、当該信号配線の幅が狭く構成されていることが好ましい。
上記の構成によれば、信号配線における、第1の座標検知線との交差部分の配線の幅(すなわち、或る信号配線における行方向の長さ)を狭くすることによって、第1絶縁基板に形成されている第1の座標検知線を、座標検知対象物がある側(タッチパネル操作面)に露出することができ、座標検知対象物と第1の座標検知線との間に容量が形成され易くなり、静電容量の変化を精度良く検出することができる。
また、本発明に係る入出力一体型表示装置は、上記の構成に加えて、
上記複数の第1の座標検知線は、少なくとも2本の上記第1の座標検知線が1つのグループとして構成された複数のグループに分かれており、
上記座標検出部は、上記静電容量の変化を、上記グループごとにまとめて捉えて上記近接位置座標を検出することが好ましい。
上記複数の第1の座標検知線は、少なくとも2本の上記第1の座標検知線が1つのグループとして構成された複数のグループに分かれており、
上記座標検出部は、上記静電容量の変化を、上記グループごとにまとめて捉えて上記近接位置座標を検出することが好ましい。
上記の構成によれば、座標検出に用いる静電容量を増やすことができるため、検出感度を向上させることができる。
より具体的には、上記第1の座標検知線は、上記基準配線であり、
上記基準配線には、上記非表示期間に、座標検出用の電圧信号が入力して、
上記座標検出部は、上記非表示期間に、全ての上記スイッチング素子をオンして、上記複数の基準配線に電圧信号を順次印加するように構成されていることが好ましい。
上記基準配線には、上記非表示期間に、座標検出用の電圧信号が入力して、
上記座標検出部は、上記非表示期間に、全ての上記スイッチング素子をオンして、上記複数の基準配線に電圧信号を順次印加するように構成されていることが好ましい。
また、本発明に係る入出力一体型表示装置は、上記の構成に加えて、
上記第1の座標検知線は、上記基準配線であり、
上記第2の座標検知線は、上記信号配線であり、
上記複数の基準配線は、電気的に1つにまとめられており、
上記座標検出部は、上記非表示期間に、全ての上記スイッチング素子を1つのグループあたり少なくとも2つの上記スイッチング素子が構成されるように複数のグループに分けて、当該複数のグループに順次スイッチング素子をオンして、上記静電容量の変化を、上記グループごとにまとめて捉えて上記近接位置座標を検出することが好ましい。
上記第1の座標検知線は、上記基準配線であり、
上記第2の座標検知線は、上記信号配線であり、
上記複数の基準配線は、電気的に1つにまとめられており、
上記座標検出部は、上記非表示期間に、全ての上記スイッチング素子を1つのグループあたり少なくとも2つの上記スイッチング素子が構成されるように複数のグループに分けて、当該複数のグループに順次スイッチング素子をオンして、上記静電容量の変化を、上記グループごとにまとめて捉えて上記近接位置座標を検出することが好ましい。
上記の構成によれば、座標検出に用いる静電容量を増やすことができるため、検出感度を向上させることができる。
また、本発明に係る入出力一体型表示装置は、上記の構成に加えて、
上記表示パネルは、行方向に延設された1本の走査線を挟んで列方向に並んだ2つの上記画素電極(サブ画素電極)にそれぞれ上記スイッチング素子が接続されて1つの画素を構成するマルチ画素構造を有していてもよい。
上記表示パネルは、行方向に延設された1本の走査線を挟んで列方向に並んだ2つの上記画素電極(サブ画素電極)にそれぞれ上記スイッチング素子が接続されて1つの画素を構成するマルチ画素構造を有していてもよい。
また、本発明に係る別の入出力一体型表示装置は、以上のように、
マトリクス状に配置された画素電極と、マトリクス状に配置されて上記画素電極に接続されたスイッチング素子と、行方向に配列された各スイッチング素子の制御端子に共通に接続された複数の走査線と、行方向に配列された各画素電極に各スイッチング素子を介して共通に接続された複数の基準配線とが形成された第1絶縁基板と、列方向に配列された各画素電極に対向した複数の信号配線が形成された第2絶縁基板と、上記第1絶縁基板と第2絶縁基板との間に挟持された液晶層とを有する表示パネルと、
表示期間に、上記複数の走査線に走査信号を入力して行単位で上記スイッチング素子をオンして上記画素電極を基準配線に接続する一方、上記複数の信号配線に表示データに従って電圧を入力して上記基準配線に接続された画素電極と上記信号配線との間に上記表示データに応じた表示電圧を印加する表示制御部とを備えている入出力一体型表示装置であって、
上記表示パネルには、上記表示パネルに座標検出対象物が接近または接触したときにその近接位置座標を検出するための、上記第1絶縁基板に基準配線と平行に配列した複数の第1の座標検知線と、上記第2絶縁基板に信号配線と平行に配列した複数の第2の座標検知線とが設けられており、
上記入出力一体型表示装置は、更に、
上記複数の第1の座標検知線および上記複数の第2の座標検知線の一方の座標検知線に電圧を印加する電圧印加部と、
上記第1の座標検知線と上記第2の座標検知線との間で形成されている静電容量の、座標検出対象物の接近または接触に伴う変化を捉えて、上記近接位置座標を検出する座標検出部とを備えていることを特徴としている。
マトリクス状に配置された画素電極と、マトリクス状に配置されて上記画素電極に接続されたスイッチング素子と、行方向に配列された各スイッチング素子の制御端子に共通に接続された複数の走査線と、行方向に配列された各画素電極に各スイッチング素子を介して共通に接続された複数の基準配線とが形成された第1絶縁基板と、列方向に配列された各画素電極に対向した複数の信号配線が形成された第2絶縁基板と、上記第1絶縁基板と第2絶縁基板との間に挟持された液晶層とを有する表示パネルと、
表示期間に、上記複数の走査線に走査信号を入力して行単位で上記スイッチング素子をオンして上記画素電極を基準配線に接続する一方、上記複数の信号配線に表示データに従って電圧を入力して上記基準配線に接続された画素電極と上記信号配線との間に上記表示データに応じた表示電圧を印加する表示制御部とを備えている入出力一体型表示装置であって、
上記表示パネルには、上記表示パネルに座標検出対象物が接近または接触したときにその近接位置座標を検出するための、上記第1絶縁基板に基準配線と平行に配列した複数の第1の座標検知線と、上記第2絶縁基板に信号配線と平行に配列した複数の第2の座標検知線とが設けられており、
上記入出力一体型表示装置は、更に、
上記複数の第1の座標検知線および上記複数の第2の座標検知線の一方の座標検知線に電圧を印加する電圧印加部と、
上記第1の座標検知線と上記第2の座標検知線との間で形成されている静電容量の、座標検出対象物の接近または接触に伴う変化を捉えて、上記近接位置座標を検出する座標検出部とを備えていることを特徴としている。
上記の構成によれば、表示パネルの第1絶縁基板に行方向に配列された第1の座標検知線群と、第2絶縁基板に列方向に配列された第2の座標検知線群とを用いて、座標検知対象物の座標位置を検出することができる。
これにより、指での操作も可能であることから、従来構成のように配線を有したペンが不要であり、操作性を向上させることができる。
また、マルチタッチも容易に実現可能である。
従って、上記の構成によれば、表示パネル上に指先等の位置検出被対象物が接触した時または近づいた時の容量変動を、表示パネルの配線のみを用いて検出することができる入出力一体型表示装置を提供することが可能となる。
また、本発明に係る別の入出力一体型表示装置は、上記の構成に加えて、
上記複数の第1の座標検知線は、少なくとも2本の上記第1の座標検知線が1つのグループとして構成された複数のグループに分かれており、
上記座標検出部は、上記静電容量の変化を、上記グループごとにまとめて捉えて上記近接位置座標を検出することが好ましい。
上記複数の第1の座標検知線は、少なくとも2本の上記第1の座標検知線が1つのグループとして構成された複数のグループに分かれており、
上記座標検出部は、上記静電容量の変化を、上記グループごとにまとめて捉えて上記近接位置座標を検出することが好ましい。
上記の構成によれば、座標検出に用いる静電容量を増やすことができるため、検出感度を向上させることができる。
本発明は、表示機能を有する液晶パネルにタッチパネル機能を兼ね備えた表示装置として、液晶表示装置を具備するあらゆる機器に搭載することができる。
1 表示パネル
2 ゲート駆動回路
3 ソース駆動回路(電圧印加部)
4 表示制御回路
5 パルス発生回路
6 タイミングコントローラ
7 第1の座標検知線駆動回路(電圧印加部)
8 座標検出回路
9 基準配線駆動回路(電圧印加部)
10 電源回路
11 液晶容量
12 信号配線(第2の座標検知線)
12a 切り欠き部
13 基準配線(第1の座標検知線)
14 走査線
15 画素電極
16 対向電極
17 (表示用の)TFT
17´ (検出用の)TFT
20 第1の座標検知線
21 TFT基板(第1絶縁基板)
22 対向基板(第2絶縁基板)
23 ゲート電極
24 ドレイン電極
25 ソース電極
30 第2の座標検知線
2 ゲート駆動回路
3 ソース駆動回路(電圧印加部)
4 表示制御回路
5 パルス発生回路
6 タイミングコントローラ
7 第1の座標検知線駆動回路(電圧印加部)
8 座標検出回路
9 基準配線駆動回路(電圧印加部)
10 電源回路
11 液晶容量
12 信号配線(第2の座標検知線)
12a 切り欠き部
13 基準配線(第1の座標検知線)
14 走査線
15 画素電極
16 対向電極
17 (表示用の)TFT
17´ (検出用の)TFT
20 第1の座標検知線
21 TFT基板(第1絶縁基板)
22 対向基板(第2絶縁基板)
23 ゲート電極
24 ドレイン電極
25 ソース電極
30 第2の座標検知線
Claims (10)
- マトリクス状に配置された画素電極と、マトリクス状に配置されて上記画素電極に接続されたスイッチング素子と、行方向に配列された各スイッチング素子の制御端子に共通に接続された複数の走査線と、行方向に配列された各画素電極に各スイッチング素子を介して共通に接続された複数の基準配線とが形成された第1絶縁基板と、列方向に配列された各画素電極に対向した複数の信号配線が形成された第2絶縁基板と、上記第1絶縁基板と第2絶縁基板との間に挟持された液晶層とを有する表示パネルと、
表示期間に、上記複数の走査線に走査信号を入力して行単位で上記スイッチング素子をオンして上記画素電極を基準配線に接続する一方、上記複数の信号配線に表示データに従って電圧を入力して上記基準配線に接続された画素電極と上記信号配線との間に上記表示データに応じた表示電圧を印加する表示制御部とを備えている入出力一体型表示装置であって、
上記表示パネルには、上記表示パネルに座標検出対象物が接近または接触したときにその近接位置座標を検出するための、上記第1絶縁基板に行方向に配列した複数の第1の座標検知線と、上記第2絶縁基板に列方向に配列した複数の第2の座標検知線とが設けられており、
上記入出力一体型表示装置は、更に、
上記複数の第1の座標検知線および上記複数の第2の座標検知線の一方の座標検知線に、表示期間とは異なる期間である非表示期間に電圧を印加する電圧印加部と、
上記非表示期間に、上記第1の座標検知線と上記第2の座標検知線との間で形成されている静電容量の、座標検出対象物の接近または接触に伴う変化を捉えて、上記近接位置座標を検出する座標検出部とを備えていることを特徴とする入出力一体型表示装置。 - 上記第1の座標検知線は、上記基準配線であることを特徴とする請求項1に記載の入出力一体型表示装置。
- 上記第2の座標検知線は、上記信号配線であることを特徴とする請求項1または2に記載の入出力一体型表示装置。
- 座標検知対象物は、第2絶縁基板における第1絶縁基板とは反対側にあり、
上記第2の座標検知線は上記信号配線であり、
上記信号配線における上記第1の座標検知線との交差部分は、当該交差していない部分と比較して、当該信号配線の幅が狭く構成されていることを特徴とする請求項1から3までの何れか1項に記載の入出力一体型表示装置。 - 上記複数の第1の座標検知線は、少なくとも2本の上記第1の座標検知線が1つのグループとして構成された複数のグループに分かれており、
上記座標検出部は、上記静電容量の変化を、上記グループごとにまとめて捉えて上記近接位置座標を検出することを特徴とする請求項1から4までの何れか1項に記載の入出力一体型表示装置。 - 上記第1の座標検知線は、上記基準配線であり、
上記基準配線には、上記非表示期間に、座標検出用の電圧信号が入力して
上記座標検出部は、上記非表示期間に、全ての上記スイッチング素子をオンして、上記複数の基準配線に電圧信号を順次印加するように構成されていること請求項5に記載の入出力一体型表示装置。 - 上記第1の座標検知線は、上記基準配線であり、
上記第2の座標検知線は、上記信号配線であり、
上記複数の基準配線は、電気的に1つにまとめられており、
上記座標検出部は、上記非表示期間に、全ての上記スイッチング素子を1つのグループあたり少なくとも2つの上記スイッチング素子が構成されるように複数のグループに分けて、当該複数のグループに順次スイッチング素子をオンして、上記静電容量の変化を、上記グループごとにまとめて捉えて上記近接位置座標を検出することを特徴とする請求項1から4までの何れか1項に記載の入出力一体型表示装置。 - 上記表示パネルは、行方向に延設された1本の走査線を挟んで列方向に並んだ2つの上記画素電極にそれぞれ上記スイッチング素子が接続されて1つの画素を構成するマルチ画素構造を有していることを特徴とする請求項1から7までの何れか1項に記載の入出力一体型表示装置。
- マトリクス状に配置された画素電極と、マトリクス状に配置されて上記画素電極に接続されたスイッチング素子と、行方向に配列された各スイッチング素子の制御端子に共通に接続された複数の走査線と、行方向に配列された各画素電極に各スイッチング素子を介して共通に接続された複数の基準配線とが形成された第1絶縁基板と、列方向に配列された各画素電極に対向した複数の信号配線が形成された第2絶縁基板と、上記第1絶縁基板と第2絶縁基板との間に挟持された液晶層とを有する表示パネルと、
表示期間に、上記複数の走査線に走査信号を入力して行単位で上記スイッチング素子をオンして上記画素電極を基準配線に接続する一方、上記複数の信号配線に表示データに従って電圧を入力して上記基準配線に接続された画素電極と上記信号配線との間に上記表示データに応じた表示電圧を印加する表示制御部とを備えている入出力一体型表示装置であって、
上記表示パネルには、上記表示パネルに座標検出対象物が接近または接触したときにその近接位置座標を検出するための、上記第1絶縁基板に基準配線と平行に配列した複数の第1の座標検知線と、上記第2絶縁基板に信号配線と平行に配列した複数の第2の座標検知線とが設けられており、
上記入出力一体型表示装置は、更に、
上記複数の第1の座標検知線および上記複数の第2の座標検知線の一方の座標検知線に電圧を印加する電圧印加部と、
上記第1の座標検知線と上記第2の座標検知線との間で形成されている静電容量の、座標検出対象物の接近または接触に伴う変化を捉えて、上記近接位置座標を検出する座標検出部とを備えていることを特徴とする入出力一体型表示装置。 - 上記複数の第1の座標検知線は、少なくとも2本の上記第1の座標検知線が1つのグループとして構成された複数のグループに分かれており、
上記座標検出部は、上記静電容量の変化を、上記グループごとにまとめて捉えて上記近接位置座標を検出することを特徴とする請求項9に記載の入出力一体型表示装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010226617 | 2010-10-06 | ||
JP2010-226617 | 2010-10-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012046633A1 true WO2012046633A1 (ja) | 2012-04-12 |
Family
ID=45927628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/072441 WO2012046633A1 (ja) | 2010-10-06 | 2011-09-29 | 入出力一体型表示装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012046633A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115407538A (zh) * | 2022-08-30 | 2022-11-29 | 昆山龙腾光电股份有限公司 | 防窥显示装置和防窥控制方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11143626A (ja) * | 1997-11-10 | 1999-05-28 | Sharp Corp | 座標入力装置 |
JP2010092275A (ja) * | 2008-10-08 | 2010-04-22 | Sony Corp | 接触検出装置、表示装置および接触検出方法 |
-
2011
- 2011-09-29 WO PCT/JP2011/072441 patent/WO2012046633A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11143626A (ja) * | 1997-11-10 | 1999-05-28 | Sharp Corp | 座標入力装置 |
JP2010092275A (ja) * | 2008-10-08 | 2010-04-22 | Sony Corp | 接触検出装置、表示装置および接触検出方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115407538A (zh) * | 2022-08-30 | 2022-11-29 | 昆山龙腾光电股份有限公司 | 防窥显示装置和防窥控制方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11385489B2 (en) | Display device | |
US9626037B2 (en) | Display device | |
EP2698689B1 (en) | In-cell touch panel | |
US9151979B2 (en) | In-cell capacitive touch panel LCD module and method for driving the same | |
US8994673B2 (en) | Display device with integrated touch screen having electrical connections provided in inactive regions of display panel | |
US10073556B2 (en) | Liquid crystal display device with touch panel | |
US11093072B2 (en) | Touch display panel, method of driving and manufacturing same, and touch display device | |
US9483987B2 (en) | Embedded touch screen | |
KR101360782B1 (ko) | 터치 스크린 일체형 표시장치 | |
WO2014061261A1 (ja) | 入力装置、および液晶表示装置 | |
US11144165B2 (en) | Proximity sensor and display device | |
US10558307B2 (en) | Touchscreen with switching circuit for changing the number of connected detection electrodes | |
JP2018180954A (ja) | 表示装置及び方法 | |
JP2008097051A (ja) | 表示装置 | |
WO2012063788A1 (ja) | 表示装置 | |
US9760221B2 (en) | Embedded touch screen | |
WO2014045600A1 (ja) | 液晶表示装置 | |
WO2012046633A1 (ja) | 入出力一体型表示装置 | |
WO2012063787A1 (ja) | 表示装置 | |
JP2016197400A (ja) | 表示装置 | |
JP2014021799A (ja) | タッチパネル装置 | |
WO2020049649A1 (ja) | タッチパネル装置及びタッチパネル装置における接触位置の検出方法 | |
CN111505874A (zh) | 显示装置 | |
JP2019191761A (ja) | 表示装置 | |
JP2014149770A (ja) | センサモジュールの駆動方法及び電子機器の駆動方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11830565 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11830565 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |