WO2012046519A1 - Fiber-reinforced elastomer and method for manufacturing same - Google Patents

Fiber-reinforced elastomer and method for manufacturing same Download PDF

Info

Publication number
WO2012046519A1
WO2012046519A1 PCT/JP2011/069143 JP2011069143W WO2012046519A1 WO 2012046519 A1 WO2012046519 A1 WO 2012046519A1 JP 2011069143 W JP2011069143 W JP 2011069143W WO 2012046519 A1 WO2012046519 A1 WO 2012046519A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
fiber
weight
elastomer
thermoplastic resin
Prior art date
Application number
PCT/JP2011/069143
Other languages
French (fr)
Japanese (ja)
Inventor
栗原 秀夫
将司 山口
優一 伊藤
Original Assignee
大丸産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大丸産業株式会社 filed Critical 大丸産業株式会社
Publication of WO2012046519A1 publication Critical patent/WO2012046519A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention is used for tire internal members such as tire beets and carcasses, tire external members such as treads and sidewalls, automobile belts such as toothed belts and flat belts or industrial belts, hoses, rubber rolls, rubber crawls, etc.
  • the present invention relates to a fiber-reinforced elastic body and a manufacturing method thereof.
  • the fiber-reinforced elastic body it is important to disperse nylon fibers and the like sufficiently uniformly in a vulcanizable rubber polymer. When the dispersion is insufficient, the modulus, strength and the like are reduced.
  • the rubber is subjected to a pretreatment to relieve entanglement between nylon fibers. Is dispersed in a polymer. When pretreatment between nylon fibers is not performed, the kneading time of a banbury, kneader, extruder, etc. is lengthened.
  • an object of the present invention is to solve these problems and provide a fiber-reinforced elastic body excellent in modulus, tear strength and productivity, and a method for producing the same.
  • the present invention provides (a) a polyolefin, (b) a first elastomer, (c) a spherical silica having an average particle size of 1 ⁇ m or less and a water content of 1000 ppm or less, and (d) a thermoplastic having a polyamide.
  • a polyolefin polyolefin
  • component (a), component (b), and component (c) constitute a matrix, in which component (d) has an average diameter of 1 ⁇ m or less and an aspect ratio of 2 or more and 1000 or less.
  • the total amount of the component (b) and the component (B) is 100 parts by weight
  • the component (a) is 1 to 40 parts by weight
  • the component (c) is 1 to 50 parts by weight
  • the ratio of the ultrafine fibers made of is preferably 1 to 50 parts by weight.
  • the present invention includes those in which at least one of component (b) and composition (B) is vulcanized.
  • the present invention also includes those vulcanized by adding a vulcanizing agent such as sulfur, peroxide, a resin vulcanizing agent, and a vulcanization aid as required.
  • the fiber-reinforced thermoplastic resin composition is produced by the following first to third steps.
  • a 1st process adjusts the matrix which consists of a component (a), a component (b), and a component (c).
  • the matrix obtained in the first step and the component (d) are melt-kneaded and reacted.
  • the kneaded product obtained in the second step is extruded at a temperature equal to or higher than the melting point of component (d), and then stretched and / or rolled at a temperature lower than the melting point of component (d).
  • the reaction is carried out by melt-kneading, and the binder at that time is kneaded in the step of adjusting the matrix in the first step, or the component (d) is at or above the melting point of the component (d).
  • a method in which a material kneaded and reacted in advance in a pretreatment is used as a binder may be used.
  • Component (a) polyolefin preferably has a melting point in the range of 70 to 250 ° C. Further, those having a Vicat softening point of 50 ° C. or more, particularly preferably 50 to 200 ° C. are also used. As such, homopolymers and copolymers of olefins having 2 to 8 carbon atoms, copolymers of olefins having 2 to 8 carbon atoms and aromatic vinyl compounds such as styrene, chlorostyrene, and ⁇ -methylstyrene.
  • An olefin having 2 to 8 carbon atoms and a vinyl acetate copolymer a copolymer of an olefin having 2 to 8 carbon atoms and acrylic acid or an ester thereof, and a copolymer of an olefin having 2 to 8 carbon atoms and a vinylsilane compound.
  • a copolymer of an olefin having 2 to 8 carbon atoms and acrylic acid or an ester thereof a copolymer of an olefin having 2 to 8 carbon atoms and a vinylsilane compound.
  • high density polyethylene linear low density polyethylene, low density polyethylene, polypropylene, ethylene / propylene block copolymer, ethylene / propylene random copolymer, ethylene / vinyl acetate copolymer, ethylene / vinyl alcohol copolymer.
  • Polymer ethylene / acrylic acid copolymer, ethylene / methyl acrylate copolymer, ethylene / ethyl acrylate copolymer, ethylene / propyl acrylate copolymer, ethylene / butyl acrylate copolymer, ethylene / acrylic Examples include acid 2-ethylhexyl copolymer, ethylene / hydroxyethyl acrylate copolymer, ethylene / vinylsilane copolymer, ethylene / styrene copolymer, and propylene / styrene copolymer.
  • component (a) polyolefins are high density polyethylene, linear low density polyethylene, low density polyethylene, polypropylene, ethylene / propylene block copolymer, ethylene / propylene random copolymer, ethylene / acetic acid.
  • examples include vinyl copolymers, ethylene / vinyl alcohol copolymers, ethylene / acrylic acid copolymers, and ethylene / methyl acrylate copolymers, and those having a melt flow index of 0.2 to 50 g / 10 min. It is preferable that only one of these may be used, or two or more may be combined.
  • the first elastomer preferably has a glass transition temperature of 0 ° C. or lower, more preferably ⁇ 20 ° C. or lower.
  • These include natural rubber, isoprene rubber, butadiene rubber, styrene / butadiene rubber, acrylonitrile / butadiene rubber, butyl rubber, chlorinated butyl rubber, brominated butyl rubber, nitrile / chloropyrene rubber, nitrile / isoprene rubber, acrylate / butadiene.
  • Rubber vinylpyridine / butadiene rubber, vinylpyridine / styrene / butadiene rubber, styrene / chloropyrene rubber, styrene / isoprene rubber, carboxylated styrene / butadiene rubber, carboxylated acrylonitrile / butadiene rubber, styrene / butadiene block copolymer, styrene ⁇ Isoprene block copolymer, styrene / isoprene / styrene copolymer, styrene / ethylene / butylene / styrene copolymer, carboxylated styrene / butane Diblock rubber such as enblock copolymer, carboxylated styrene / isoprene block copolymer, styrene / propylene rubber, ethylene
  • Rubber having an oxygen atom in the main chain such as a rubber having a main chain, an epichlorohydrin copolymer, an ethylene oxide / epichlorohydrin / allyl glycidyl ether copolymer, and a propylene oxide / allyl glycidyl ether copolymer
  • the Silicone rubber such as phenylmethylsiloxane, polydimethylsiloxane, polymethylethylsiloxane, polymethylbutylsiloxane, etc., rubber having nitrogen atoms and oxygen atoms in the main chain such as nitroso rubber, polyester urethane, polyether urethane, etc. Can be mentioned. Further, those obtained by modifying these rubbers with epoxy or the like, those modified with silane, or those made maleated are also preferred.
  • the spherical silica having an average particle diameter of 1 ⁇ m or less and a water content of 1000 ppm or less of the component (c) is preferably a method for producing true spherical oxide fine particles by utilizing the deflagration phenomenon of metal powder (hereinafter referred to as “Vaporized Metal Combustion Method”). (Abbreviated as VMC method). Specifically, a method in which metal powder is dispersed in an oxygen stream, oxidized by being ignited, the metal and oxide are vaporized or liquid with the reaction heat, and cooled to form fine oxide particles.
  • Silica produced by Silica produced by the VMC method is a spherical group of fine spherical particles and has an average particle diameter of 0.2 ⁇ m to 2.0 ⁇ m, and does not have an agglomerated structure between silicas.
  • a material characterized by low moisture adsorption and 1000 ppm or less is used as the fiber reinforced thermoplastic resin composition.
  • silica produced by the VMC method has an average particle size of 1 ⁇ m or less, more preferably an average particle size of 0.5 ⁇ m. Used for.
  • Silica possesses silanol groups.
  • a VMC method having a silanol group concentration of 10 ⁇ mol / m 3 or less is used.
  • a silanol group concentration of 10 ⁇ mol / m 3 or more is not used because it is highly active and the reaction proceeds and is therefore unsuitable for a fiber-reinforced thermoplastic resin composition.
  • the silanol group of component (c) has a function as a coupling agent. What is the silanol group structure formed from the alkoxy group of the silane coupling agent and the alkoxy group through moisture in the silane coupling agent? It reacts easily.
  • those preferably used for the condensation reaction with the amide group of component (d) are also used.
  • the component (c) is preferably used in combination with a silane coupling agent or as a mixture of three components of a silane coupling agent and an organic peroxide.
  • the water content in the silica of component (c) is preferably 1000 ppm or less as the water content.
  • the content including all of surface adhesion, crystal water and the like is 1000 ppm or less. More preferably, it is 800 ppm or less, Especially preferably, it is 400 ppm or less.
  • About the average particle diameter of a component (c), 1 micrometer or less is preferable.
  • silica has a wet sedimentation method, a wet gel method, a dry method, a powder melting method, etc., but any method other than the VMC method can easily adsorb moisture and has a moisture content exceeding 1000 ppm. May be. Moreover, even if it uses a water content as 1000 ppm or less after drying, it will become an irregular shape by the aggregation of a silica group. Silica obtained by the powder melting method has a strong tendency not to form aggregates, but many particles having an average particle diameter exceeding 10 ⁇ m are often observed. In addition, the particle size distribution is wide and some have a maximum particle size exceeding 50 ⁇ m.
  • the third step of stretching and / or rolling at a temperature lower than the melting point of the component (d) when the form of the silica is a shape other than the spherical particles such as an irregular shape or a lump shape due to the aggregation of the silica group fibers are formed in the third step. This is not preferable because it is an unstable process.
  • the component (c) silica a fiber reinforced thermoplastic resin composition produced by using fine oxide silica produced by the VMC method is preferably used.
  • thermoplastic resin having component (d) polyamide will be described.
  • a thermoplastic polymer having an amide group in the main chain hereinafter abbreviated as polyamide
  • the melting point is in the range of 130 to 350 ° C., and is higher than the melting point of the olefin of component (a), more preferably in the range of 160 to 265 ° C.
  • component (d) a polyamide that gives tough fibers by extrusion and rolling is preferable.
  • polyamide examples include nylon 6, nylon 66, nylon 6-nylon 66 copolymer, nylon 610, nylon 612, nylon 46, nylon 11, nylon 12, nylon MXD6, polycondensation of xylylenediamine and adipic acid Body, polycondensate of xylyldiamine and pimelic acid, polycondensate of xylyldiamine and speric acid, polycondensate of xylyldiamine and azelaic acid, polycondensate of xylylenediamine and terephthalic acid, Polycondensates of octamethylenediamine and terephthalic acid, polycondensates of trimethylhexamethylenediamine and terephthalic acid, polycondensates of decamethylenediamine and terephthalic acid, polycondensates of undecamethylenediamine and terephthalic acid, Tetramethyl, a polycondensate of dodecamethylenediamine and
  • polyamides one particularly selected from the group consisting of nylon 6, nylon 66, nylon 6-nylon 66 copolymer, nylon 610, nylon 612, nylon 46, nylon 11 and nylon 12 is particularly preferable. Or 2 or more types of polyamide is mentioned. These polyamides preferably have a molecular weight in the range of 10,000 to 200,000.
  • component (d) is dispersed in the matrix as ultrafine fibers. Specifically, 80% by weight, preferably 90% by weight or more is dispersed as ultrafine fibers.
  • the fiber of component (d) has an average fiber diameter of 1 ⁇ m or less, more preferably in the range of 0.01 to 0.8 ⁇ m.
  • the aspect ratio is 2 or more and 1000 or less, more preferably 10 to 500.
  • the component (d) is bonded to any of the components (a), (b), and (c) at the interface. This can be confirmed by the following method, for example.
  • the fiber reinforced thermoplastic resin composition is refluxed with a refluxer such as Soxhlet with a solvent such as methyl ethyl ketone, toluene, xylene or the like that dissolves the component (a) and the component (b), and the component (a) and the component (b) are removed.
  • the remaining component (c) and component (d) are then stirred with 1,2-dichlorobenzene and then allowed to stand gently to separate the suspended fibers from the precipitated silica and further collect the recovered fibers.
  • the bonding ratio between the component (d) and the component (a), the component (b), and the component (c) is preferably 1 to 30% by weight, particularly preferably 5 to 25% by weight.
  • the proportion of the components of the fiber reinforced thermoplastic resin composition is as follows: component (a) 100 parts by weight of polyolefin, component (b) 10 to 600 parts by weight of rubbery polymer having a glass transition temperature of 0 ° C. or less, Component (c) 10 to 500 parts by weight of spherical silica having an average particle diameter of 1 ⁇ m or less and a water content of 1000 ppm or less, and component (d) 1 to 400 parts by weight of a thermoplastic polymer ultrafine fiber having an amide group in the main chain A composition consisting of parts is preferred.
  • the component (b) exceeds 600 parts by weight, it is not preferable because the fiber-reinforced thermoplastic resin composition has strong adhesiveness, poor handling properties, and is difficult to be pelletized.
  • the component (c) is 10 parts by weight or less, the elastic modulus is lowered, which is not preferable.
  • it exceeds 500 parts by weight it is not preferable in forming the ultrafine fibers of the component (d) of the fiber-reinforced thermoplastic resin composition, and the proportion of the aspect ratio of 2 or more and 1000 or less is significantly reduced. The reproducibility of mechanical properties such as elastic modulus is poor and adversely affects quality.
  • component (d) exceeds 400 parts by weight, the fine fibers of component (d) are not formed in the fiber-reinforced thermoplastic resin composition. Even if such a fiber-reinforced thermoplastic resin composition is used, a fiber-reinforced elastic body having a high stress cannot be obtained.
  • the amount of the binder is 0.1 to 20% by weight, preferably 0.2 to 15% by weight when the ratio of the binder to the component (d) is 100% by weight of the total amount of the component (d) and the binder. %.
  • the amount of the binder is 0.1% by weight or less, a strong bond is not obtained, and the composition is inferior in creep resistance, which is not preferable.
  • the binder is 20% by weight or more, most of the component (d) has a fine spherical or egg-like aspect ratio of 2 or less and does not form ultrafine fibers. For this reason, a composition excellent in modulus cannot be obtained.
  • silane coupling agents As binders, silane coupling agents, titanate coupling agents, novolak-type alkylphenols, formaldehyde initial condensates, resol-type alkylphenol formaldehyde initial condensates, novolac-type formaldehyde initial condensates, resol-type formaldehyde initial condensates, unsaturated carboxylic acids Ordinarily used ones such as derivatives thereof can be used. Particularly preferred are silane coupling agents.
  • the coupling agent examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriacetylsilane, and ⁇ -methacryloxypropyltrimethoxysilane.
  • ⁇ - (3,4-epoxycyclohexyl) ethylmethoxysilane ⁇ -glucidoxypropyltrimethoxysilane, ⁇ -glucidoxypropylmethyldimethoxysilane, ⁇ -glucidoxypropylmethyldiethoxysilane, ⁇ -gluci Doxypropylethyldimethoxysilane, ⁇ -glucidoxypropylethyldiethoxysilane, N- ⁇ - (aminoethyl) aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) aminopropyltriethoxysilane, N- ⁇ - ( Aminoethyl) aminopro Pyrmethyldimethoxysilane, N- ⁇ - (aminoethyl) aminopropylethyldimethoxysilane, N- ⁇ - (aminoethyl) aminopropylethyldiethoxysilane,
  • An organic peroxide can be used in combination with a silane coupling agent.
  • the amount of the organic peroxide used is preferably 0.01 to 2.0 parts by weight, more preferably 0.01 to 0.5 parts by weight, per 100 parts by weight of component (a).
  • the organic peroxide preferably has a half-life temperature of 1 minute in a temperature range higher than the melting point of the component (a) or the melting point of the component (d) by about 20 ° C. from this temperature. Specifically, a one-minute half-life temperature of about 80 to 270 ° C. is preferable.
  • a radical is formed on the molecular chain of the component (a), and this radical reacts with the silane coupling agent, whereby the component (a) and the component ( It is considered that reaction between each component of at least one of b) and component (d) is promoted.
  • an organic peroxide may not be used.
  • the rubber has a mechanochemical reaction during kneading, so that molecules in the main chain are cleaved to generate —COO • groups at the ends of the main chain to become peroxides, which have the same action as organic peroxides. Since it is considered, it is not necessary to use an organic peroxide.
  • the amount of organic peroxide used is in the range of 0.01 to 2.0 parts by weight, but outside the range, 0.01 parts by weight or less is not preferable because the acceleration of the reaction is remarkably inferior. Further, when 2.0 parts by weight or more is added, the reaction is excessively promoted alone or between each component such as component (a), component (b), component (d), etc., and the molecular weight is high or simple component Alternatively, cross-linking due to reaction between the components proceeds remarkably and becomes a gelled (lumped) state, making it difficult to produce a fiber-reinforced thermoplastic resin composition.
  • organic peroxide examples include 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane, 1,1-di-t-butylperoxycyclohexane, 2,2-di- t-butylperoxybutane, 4,4-di-t-butyl-peroxyvaleric acid n-butyl ester, 2,2-bis (4,4-di-t-butylperoxycyclohexane) propane, peroxyneodecanoic acid 2,2,4-trimethylpentyl, 2,2,4-trimethylpentyl peroxyodecanoate, ⁇ -cumyl peroxycineodecanoate, t-butyl peroxyneohexanoate, t-butyl peroxypivalate, peroxy T-butyl acetate, t-butyl peroxylaurate, t-butyl peroxybenzoate, t-butyl peroxyisophthal
  • a matrix composed of the component (a), the component (b), and the component (c) is formed.
  • the matrix may have a structure in which the component (b) and the component (c) are dispersed in the form of islands in the component (a), and conversely, the component (a) and the component (c) are component ( b)
  • a structure in which islands are dispersed may be employed. And it is preferable that it is mutually couple
  • the component (a), the component (b), the component (c), and the method of melt-kneading the binder include mixing the component (a) with the melting point of the binder and component (a)
  • Examples include a method of performing melt kneading at the above temperature and then melt kneading the component (b) and the component (c) at a temperature equal to or higher than the melting point of the component (a).
  • the melt kneading can be performed using a kneading apparatus usually used for resins, rubbers and the like.
  • a Banbury type mixer for example, a Banbury type mixer, a kneader, a pressure type kneader, a kneader extruder, an open roll, a short screw extruder, a twin screw extruder, and the like.
  • a twin screw extruder capable of continuous melt kneading in a short time.
  • the second step will be described.
  • the matrix component obtained by melting and kneading the component (a), component (b), component (c) and binder obtained in the first step and the component (d) are melt-kneaded.
  • the matrix component obtained by melting and kneading the component (a), the component (b), and the component (c) in the first step and the component (d) previously kneaded and reacted at a melting point or higher of the component (d) are melt-kneaded.
  • the second step is modified by an apparatus used for kneading resin, rubber or the like.
  • Specific apparatuses include a Banbury mixer, a kneader, a pressure kneader, a kneader extruder, an open roll, a short screw extruder, a twin screw extruder, and the like. Particularly preferred is a twin screw extruder capable of continuous melt kneading in a short time as in the first step.
  • the melt kneading temperature in the second step is adjusted as an extrudate by melt kneading at a temperature equal to or higher than the melting point of either component (a) or component (d). Even when melted and kneaded at a temperature below the melting point of component (d), the kneaded product is remarkably preferable because component (d) is not kneaded or dispersed in the matrix of component (a), component (b), or component (c). Absent.
  • the extrudate of the second step is stretched and / or rolled at a temperature lower than the melting point of the component (d).
  • the kneaded product obtained in the second step is a spinneret, an inflation die or Drawing or rolling from a T die.
  • the third step is a step in which the fine particles of the component (d) in the kneaded product in the second step are transformed into fibers by spinning and extrusion. Therefore, both spinning and extrusion must be performed at a temperature equal to or higher than the melting point of component (d).
  • the melting is preferably performed at a melting point of the component (d) or a temperature range 20 ° C. higher than the melting point.
  • the kneaded material is subsequently subjected to a stretching treatment by stretching or rolling to obtain a stronger fiber. Accordingly, stretching and rolling are performed at a temperature lower than the melting point of component (d).
  • the kneaded product of the second step is extruded from a spinneret of an extruder and spun into a string shape or a yarn shape, and wound with a winder or the like attached with a bobbin or the like while being drafted.
  • the draft means that the winding speed is higher than the extrusion speed of the kneaded material coming out of the spinneret of an extruder or the like, and winding is performed.
  • Draft ratio winding speed / speed of kneaded product from spinneret
  • the draft ratio is preferably in the range of 1.5 to 100, more preferably in the range of 2 to 50.
  • the extrudate in the second step can be continuously rolled with a rolling roll or the like.
  • a rolling roll or the like For example, while extruding a kneaded extrudate from an inflation die or a T die, it is wound with a roll or the like while being drafted.
  • the thermoplastic resin composition formed by drafting to form ultrafine fibers can be in various product forms such as string, thread, tape, pellet, etc., but preferably a pellet shape is more preferable. . This is because the fiber reinforced thermoplastic resin composition can be uniformly kneaded with the additional elastomer, that is, the second elastomer, by making it into pellets.
  • the second elastomer that is, the additional elastomer, those similar to those used as the first elastomer of the component (b) of the fiber-reinforced thermoplastic resin composition are used. Accordingly, any polymer that is a rubber-like polymer at room temperature and is called a so-called elastomer is used as the second elastomer, and preferably has a glass transition temperature of 0 ° C. or less, more preferably ⁇ Examples include elastomers of 20 ° C. or lower.
  • the second elastomer includes natural rubber, isoprene rubber, butadiene rubber, styrene / butadiene rubber, acrylonitrile / butadiene rubber, butyl rubber, chlorinated butyl rubber, brominated butyl rubber, nitrile / chloropyrene rubber, nitrile / isoprene rubber, acrylate / butadiene.
  • Rubber vinylpyridine / butadiene rubber, vinylpyridine / styrene / butadiene rubber, styrene / chloropyrene rubber, styrene / isoprene rubber, carboxylated styrene / butadiene rubber, carboxylated acrylonitrile / butadiene rubber, styrene / butadiene block copolymer, styrene ⁇ Isoprene block copolymer, styrene / isoprene / styrene copolymer, styrene / ethylene / butylene / styrene copolymer, carboxylated styrene / Tadiene block copolymer, diene rubber such as carboxylated styrene / isoprene block copolymer, styrene / propylene rubber, ethylene /
  • Rubber having nitrogen and oxygen atoms in addition to carbon atoms in the main chain such as nitroso rubber, polyester urethane, polyether urethane, etc. Is mentioned.
  • the second elastomer only one kind of these rubbers may be used, or two or more kinds may be combined.
  • the second elastomer may be the same as or different from the first elastomer.
  • the proportion of polyolefin is 1 to 40 parts by weight, preferably 2 to 30 parts by weight, with respect to the total amount of the first elastomer and the second elastomer of 100 parts by weight.
  • 1 to 50 parts by weight preferably 5 to 40 parts by weight of spherical silica having a water content of 1000 ppm or less and 1 ⁇ m or less
  • the proportion of ultrafine fibers made of a thermoplastic polymer having polyamide is 1 to 50 parts by weight, preferably 2 to 35 parts by weight.
  • the proportion of polyolefin is more than 40 parts by weight, a fiber-reinforced elastic body without rubber elasticity is not preferable.
  • the amount of the fiber-reinforced elastic body are not preferable because the fatigue resistance has a particularly directivity and the physical properties perpendicular to the fiber orientation become low.
  • the amount of silica exceeds 50 parts by weight, fiber orientation becomes difficult, physical properties such as modulus perpendicular to the fiber orientation vary, and the quality becomes unstable. If the silica is less than 1 weight, the modulus is low, which is not preferable.
  • the amount of ultrafine fibers is more than 50 parts by weight, only a fiber-reinforced elastic body having a small elongation can be obtained.
  • it is less than 1 part by weight only a fiber-reinforced elastic body having a low modulus can be obtained.
  • the fiber-reinforced elastic body of the present invention is produced by kneading the above-mentioned (A) fiber-reinforced thermoplastic resin composition and (B) the second elastomer. If the ratio of the polyolefin to the total amount of the first and second elastomers in the obtained fiber-reinforced elastic body, the spherical silica having an average particle diameter of 1 ⁇ m or less and a water content of 1000 ppm or less, and the ultrafine fibers is within the above range,
  • the second elastomer is not limited, but the weight ratio of (B) the second elastomer and (A) the fiber reinforced thermoplastic resin composition is 20/1 to 0.1 / 1, particularly 10/1 to 0.5. A range of / 1 is preferable because the kneading operation is easy.
  • the kneading temperature of (A) the fiber reinforced thermoplastic resin composition and (B) the second elastomer is that of the thermoplastic resin having the polyamide of component (d) constituting the ultrafine fiber in the fiber reinforced thermoplastic resin composition.
  • a temperature lower than the melting point and higher than the melting point of the polyolefin of component (a) is required. Kneading at a temperature higher than the melting point of the thermoplastic resin having the component (d) polyamide is not preferable because the ultrafine fibers in the fiber-reinforced thermoplastic resin composition melt and deform into spherical particles or the like.
  • the kneading temperature of (A) the fiber reinforced thermoplastic resin composition and (B) the second elastomer is not higher than the melting point of the thermoplastic resin having the polyamide of component (d), preferably 20 ° C. or lower than the melting point temperature, The temperature is higher than the melting point of the polyolefin of component (a), preferably higher than 10 ° C.
  • a rubber reinforcing agent such as carbon black, a rubber softening agent such as process oil, a vulcanizing agent, a vulcanizing aid, an anti-aging agent and the like are added and kneaded.
  • the kneading time is preferably 145 to 180 ° C., but is preferably 1 to 10 minutes. At this time, various vulcanizing agents and vulcanization aids may be kneaded together at a necessary amount from room temperature to 100 ° C.
  • the amount of the vulcanizing agent at this time is preferably in the range of 0.1 to 5.0 parts by weight, particularly 0.5 to 3.0 parts by weight with respect to 100 parts by weight of the total amount of the first and second elastomers.
  • the amount of the vulcanization aid is preferably 0.01 to 2.0 parts by weight, particularly preferably 0.1 to 1.0 parts by weight, based on 100 parts by weight of the total amount of the first and second elastomers.
  • vulcanizing agent known vulcanizing agents such as sulfur, organic peroxides, resin vulcanizing agents and the like are used.
  • vulcanization aid aldehyde / ammonia, aldehyde / amine, guanidine, thiourea, thiazole, thiuram, dithiocarbamate, xanthate and the like are used.
  • the vulcanization temperature when a vulcanizing agent or the like is added to the fiber-reinforced elastic composition of the present invention is preferably about 100 to 180 ° C. However, the vulcanization temperature needs to be lower than the melting point of the thermoplastic resin constituting the ultrafine fibers in the fiber-reinforced elastic composition.
  • thermoplastic resin composition When vulcanization is performed at a temperature equal to or higher than the melting point of this thermoplastic resin, (A) the fiber formed at the stage of adjusting the fiber-reinforced thermoplastic resin composition is dissolved, and the fiber-reinforced elastic composition having a high modulus. It is because it cannot be obtained.
  • the fiber reinforced elastic composition of the present invention includes various fillers such as carbon black, white carbon, activated calcium carbonate, ultrafine magnesium silicate, clay, zinc white, diatomaceous earth, recycled rubber, powder rubber, ebonite, A stabilizer such as amine / aldehyde, amine / ketone, amine, phenol, imidazole, sulfur-containing antioxidant, phosphorus-containing antioxidant, and various pigments may be included.
  • fillers such as carbon black, white carbon, activated calcium carbonate, ultrafine magnesium silicate, clay, zinc white, diatomaceous earth, recycled rubber, powder rubber, ebonite,
  • a stabilizer such as amine / aldehyde, amine / ketone, amine, phenol, imidazole, sulfur-containing antioxidant, phosphorus-containing antioxidant, and various pigments may be included.
  • the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to the scope of these examples.
  • the fiber reinforced thermoplastic resin composition and the fiber reinforced elastic body were measured as follows.
  • HNBR hydrogenated acrylonitrile butadiene rubber
  • Example 1 "Preparation of fiber reinforced thermoplastic resin composition" (Sample 1) As component (a), high-density polyethylene (HDPE M3800 MFR (g / 10 min) 8 made by Keiyo Polyethylene), and as component (b), HNBR (Zetpol 2010L Mooney viscosity 57.5 density (g / cc) 0.950 made by ZEON) 0.950 ), Silica as the component (c) (manufactured by SO-C2 VMC manufactured by Admatechs, silica secondary unaggregated structure average particle size 0.5 ⁇ m), and polyamide (hereinafter referred to as nylon 66) as the component (d) (Ube Nylon manufactured by Ube Industries) 2026B melting point 265 ° C.).
  • high-density polyethylene HDPE M3800 MFR (g / 10 min) 8 made by Keiyo Polyethylene
  • component (b) HNBR (Zetpol 2010L Mooney viscosity 57.5 density (g / c
  • component (b) After melt-kneading 0.1 parts by weight of dicumyl peroxide with respect to silane and the component (a) at a temperature of 170 ° C. higher than the melting point of the component (a) using a Banbury mixer, It was used as a pellet.
  • the obtained pellet was used as a matrix component.
  • nylon 66 as the component (d) is melt-kneaded with a twin-screw extruder heated to 280 ° C. with respect to 100 parts by weight of the HNBR in 240 parts by weight of the obtained pellets. Then, it was pelletized with a pelletizer while being drawn at a draft ratio of 5 using a take-up machine. The obtained pellet was stirred with a solvent methyl ethyl ketone at 50 ° C. to remove HNBR, and then refluxed at 100 ° C. in a mixed solvent of o-dichlorobenzene and xylene (weight ratio 50:50).
  • the component (a) olefin was extracted and removed, and further stirred with o-dichlorobenzene, then allowed to stand gently, separated into precipitated silica and floating fibers, and the floating fibers were collected and observed with an electron microscope. It was confirmed that the fibers had an average fiber diameter of 0.2 ⁇ m.
  • Sample 2 was prepared and pelletized in the same manner as Sample 1, except that the proportion of the component 66 nylon 66 was increased to 240 parts by weight with respect to 100 parts by weight of the component (b) HNBR.
  • the obtained pellets were observed in the same manner as in sample 1, they were confirmed to be fibers having an average fiber diameter of 0.3 ⁇ m.
  • Example 3 The ratio of the component (c) silica was increased to 100 parts by weight with respect to 100 parts by weight of the component (b) HNBR, and the sample 3 was adjusted and pelletized in the same manner as the sample 2. When the obtained pellets were observed in the same manner as in sample 1, they were confirmed to be fibers having an average fiber diameter of 0.3 ⁇ m.
  • Sample 4 was prepared and pelletized in the same manner as Sample 3, except that the component (c) silica was not added. When the obtained pellets were observed in the same manner as in Sample 1, the fibers were observed and confirmed to be fibers having an average fiber diameter of 0.2 ⁇ m.
  • Component (a) is 50 parts by weight of LDPE (F522 MFR 5 grams / 10 min. Manufactured by Ube Maruzen Polyethylene), and the first elastomer of component (b) is EPDM (JSR EP-22 Mooney viscosity 42 density (g / cc) 0.86. ) 100 parts by weight, 50 parts by weight of component (c) silica, 100 parts by weight of component 6 (d) polyamide 6 (hereinafter referred to as nylon 6) Turned into. The obtained pellet was refluxed at 100 ° C.
  • Sample 6 was prepared and pelletized in the same manner as Sample 5, except that the component (c) silica was not used. When the obtained pellet was observed in the same manner as in Sample 5, the fiber was confirmed to be a fiber having an average fiber diameter of 0.2 ⁇ m.
  • the composition table of Samples 1 to 6 is shown in Table 1.
  • Example 1 to 6 Examples 1 to 6 and Comparative Examples 1 and 2 will be described below with reference to Table 2.
  • Table 2 the fiber reinforced thermoplastic resin compositions shown in Examples 1 to 6 and Comparative Examples 1 and 2, parts by weight such as the second elastomer (HNBR), carbon black (FEF), zinc white No. 1, stearic acid, anti-aging agent (Naugard XL-1, Nocrack MBZ), vulcanizing peroxide (Percadox 14/40), etc. were vulcanized according to the formulation shown in Table 2.
  • the blending procedure is as follows: HNBR and a fiber reinforced thermoplastic resin composition are put into a Brabender plastograph set at 160 ° C.
  • Vulcanized physical properties As is apparent from Table 2, in the vulcanized physical properties of the fiber-reinforced elastic bodies of Examples 1 to 6, the modulus of 100% elongation of the tensile physical properties was 8.5 to 23.8 MPa. On the other hand, the blending formulation and blending procedure of Comparative Example 1 were performed in the same manner as in Examples 1-6. At that time, the modulus of 100% elongation of the tensile properties was 5.7 MPa, which was lower than those of Examples 1 to 6. This is considered because sample 4 in Table 2 does not contain the component (c) silica (see Table 1), and thus has a low crosslinking density.
  • Example 2 an elastic body was prepared in the same manner as in Example 1 except that the HNBR of the second elastomer was increased to 100 parts by weight without using the fiber-reinforced thermoplastic resin composition.
  • the modulus of 100% elongation of the tensile properties of the obtained elastic body was 3.9 MPa, which was a significantly lower value than Examples 1-6.
  • Examples 7 to 9 As shown in Table 3, component weight parts such as fiber reinforced thermoplastic resin compositions (samples) and second elastomers (EPDM) shown in Examples 7 to 9 and Comparative Examples 3 and 4 and carbon black (HAF) , Naphthenic oil, zinc white No. 1, stearic acid, vulcanization accelerators TS, M, and sulfur were vulcanized.
  • the blending procedure was as follows: EPDM and a fiber reinforced thermoplastic resin composition were put into a Brabender plastograph set at 140 ° C. and masticated for 30 seconds, and then carbon black (HAF), naphthenic oil, zinc white No.
  • vulcanization accelerators TS, M, and sulfur were blended on an open roll set at 60 ° C. The obtained blend was vulcanized at 160 ° C. for 15 minutes to obtain a vulcanized product of a fiber reinforced elastic composition.
  • the ratio of the fibers of nylon 6 to the total of 100 parts by weight of EPDM and EPDM added as the second elastomer in the fiber reinforced thermoplastic resin composition is in the range of 7 to 15 parts by weight. there were. When observed with an electron microscope, all of the vulcanizates of Examples 7 to 9 had nylon 6 ultrafine fibers uniformly dispersed in EPDM.
  • Example 10 EPDM in the fiber reinforced thermoplastic resin composition, 80 parts by weight of EPDM added as the second elastomer, and 10 parts by weight of butyl rubber “IIR” (Nippon Butyl Co., Ltd. Butyl 365 ML1 + 8 (125 ° C.) 38)
  • a fiber reinforced elastic body was obtained in the same manner as in Example 7 except that the total amount was 100 parts by weight.
  • all nylon 6 ultrafine fibers were uniformly dispersed in 100 parts by weight of the total amount of EPDM in the fiber reinforced thermoplastic resin composition, EPDM of the second elastomer, and butyl rubber. It was.
  • the modulus in the parallel direction to the fiber direction of 100% elongation in the tensile properties of the vulcanizates of the fiber-reinforced elastic bodies of Examples 7 to 10 was 7.3 to 9.7 MPa.
  • the 100% elongation modulus in the fiber vertical direction was 4.5 to 5.7 MPa.
  • the tensile strength was 12.6 to 14.6 MPa.
  • the direction parallel to the fiber orientation direction was 50 to 53 N / mm, while the direction perpendicular to the fiber orientation direction was 54 to 58 N / mm.
  • the direction perpendicular to the fiber orientation direction had higher tear strength than the parallel direction. This is thought to be because the effect of suppressing tearing was exhibited by the fine fibers oriented during tearing.
  • Example 7 The blending prescription and blending procedure of Comparative Example 3 were performed in the same manner as in Example 7.
  • the modulus in the direction parallel to the fiber direction of the 100% elongation modulus in the fiber vertical direction was 6.2 MPa.
  • the 100% elongation modulus in the fiber vertical direction was 3.9 MPa.
  • the tensile strength was 10.5 MPa. All values were lower than those in Examples 7 to 10.
  • the direction parallel to the fiber orientation direction was 43 N / mm, while the direction perpendicular to the fiber orientation direction was 48 N / mm.
  • the tear strength was low compared to Examples 7 to 10 in both the direction perpendicular to and parallel to the fiber orientation direction. This is because the sample 5 of the fiber-reinforced thermoplastic resin composition used in Examples 7 to 10 uses the silica of component (c), and the silanol of this silica is contained in the fiber-reinforced thermoplastic resin composition.
  • the chemical reaction with the component (a) LDPE, the component (b) EPDM, the component (d) nylon 6 and the like is considered to increase the crosslink density and improve the tear strength.
  • Comparative Example 4 an elastic body was prepared in the same manner as in Example 7, except that the fiber reinforced thermoplastic resin composition was not used and the EPDM of the second elastomer was increased to 100 parts by weight.
  • the modulus of 100% elongation of the tensile properties of the obtained elastic body was 2.8 MPa, which was a significantly lower value than in Examples 7 to 10.
  • the tensile strength was 11.5 MPa. All values were lower than those in Examples 7 to 10.
  • the tear strength of Comparative Example 4 was 41 to 43 N / mm, which was significantly lower than that of Examples 7 to 10.
  • the hardness of Examples 7 to 10 is 76 to 82, and a predetermined hardness can be obtained, so that the rigidity is also excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

Provided are a fiber-reinforced elastomer having excellent modulus, tear strength and productivity, and a method for manufacturing the same. The fiber-reinforced elastomer of the present invention is obtained by kneading (A) a fiber-reinforced thermoplastic resin composition and (B) a second elastomer. The fiber-reinforced thermoplastic resin composition (A) comprises (a) a polyolefin, (b) a first elastomer, (c) a spherical silica having an average particle diameter of 1 μm or less and a water content of 1000 ppm or less and (d) a thermoplastic resin comprising a polyamide; components (a), (b) and (c) constitute a matrix; component (d) is dispersed in the matrix as an ultrafine fiber having an average diameter of 1 μm or less and an aspect ratio of 2 or more and 1000 or less; and components (a), (b), (c) and (d) are chemically bonded to each other.

Description

繊維強化弾性体及びその製造方法Fiber-reinforced elastic body and method for producing the same
 本発明は、タイヤのビート、カーカス等のタイヤ内部部材、トレッド、サイドウォール等のタイヤ外部部材、歯付きベルト、平ベルト等の自動車用ベルト又は工業用ベルト、ホース、ゴムロール、ゴムクロール等に用いられる繊維強化弾性体及びその製造方法に関する。 The present invention is used for tire internal members such as tire beets and carcasses, tire external members such as treads and sidewalls, automobile belts such as toothed belts and flat belts or industrial belts, hoses, rubber rolls, rubber crawls, etc. The present invention relates to a fiber-reinforced elastic body and a manufacturing method thereof.
 特許文献1~4に開示されているよう、従来、天然ゴムやポリブタジエンゴム、ポリイソプレンゴム、エチレン・プロピレンゴム、ニトリル・ブタジエンゴム等にナイロン、ポリエステル等の短繊維、或いは弾性率の高い有機繊維、例えば芳香族ポリアミド短繊維、セルロース繊維等を加硫可能なゴム状ポリマーに分散させたモジュラスや強度を改善した繊維強化弾性体が製造されてきた。この際、必要に応じて加硫する方法で製造されることもある。
 これらの繊維強化弾性体は、タイヤ部材や自動車ベルト、工業部材、スポーツ関連グッズ等に採用されている。
 また、ナイロン等の短繊維を有する繊維強化弾性体が公知である。
As disclosed in Patent Documents 1 to 4, conventionally, natural fiber, polybutadiene rubber, polyisoprene rubber, ethylene / propylene rubber, nitrile / butadiene rubber, etc., short fibers such as nylon and polyester, or organic fibers having a high elastic modulus. For example, fiber reinforced elastic bodies having improved modulus and strength in which aromatic polyamide short fibers, cellulose fibers and the like are dispersed in a vulcanizable polymer have been produced. At this time, it may be produced by a vulcanization method as necessary.
These fiber-reinforced elastic bodies are used for tire members, automobile belts, industrial members, sports-related goods, and the like.
Further, fiber reinforced elastic bodies having short fibers such as nylon are known.
特開昭58-79037JP 58-79037 A 特開昭63-81137JP 63-81137 A 特開平7-278360JP-A-7-278360 特開平9-59435JP-A-9-59435
 近年、地球環境保護の一つとして、自動車関連の対策が進められている。例えば、燃費向上のための薄肉軽量化対策、自動車性能の強化による対策、更には自動車駆動システム自体の見直しによる新システムによる環境対策、燃費向上の高機能化等があり、その為の開発も多岐に亘り、その開発速度も急進的に推し進められている。
 自動車部材の開発も然りである。例えば、自動車部材の耐高出力性、耐強度、或いは高温度特性等の耐久性等が要求されている。これに対して、特許文献1~4にかかる方法で得られる繊維強化弾性体は、モジュラス、破断強度、引き裂き強度等が不足しているという問題がある。
In recent years, automobile-related measures have been promoted as one of the global environmental protections. For example, there are measures to reduce the thickness and weight to improve fuel efficiency, measures by strengthening vehicle performance, environmental measures by a new system by reviewing the vehicle drive system itself, advanced functions to improve fuel efficiency, etc. In the meantime, the development speed has been accelerated.
The same applies to the development of automotive parts. For example, durability such as high output resistance, strength resistance, or high temperature characteristics of automobile members is required. On the other hand, the fiber-reinforced elastic bodies obtained by the methods according to Patent Documents 1 to 4 have a problem that the modulus, breaking strength, tearing strength, etc. are insufficient.
 一方、繊維強化弾性体は、加硫可能なゴム状ポリマーにナイロン繊維等を十分に均一に分散させることが重要である。分散が不十分なときは、モジュラス、強度等が低下する原因となる。これに対して、例えば、ナイロン繊維を加硫可能なゴム状ポリマーに分散させるために、ロール等で圧延することにより、ナイロン繊維間同士の絡みを和らげるための前処理を施したうえで、ゴム状ポリマーに分散させている。ナイロン繊維間同士の前処理を行わない場合は、バンバリー、ニーダー、押出機等の混練時間を長くしている。
 しかし、上述した従来の方法は、生産性が悪く、工程が複雑となることから、コスト上昇の原因となってきた。
 そこで、本発明は、これらの問題を解決し、モジュラス、引き裂き強度、生産性に優れる繊維強化弾性体及びその製造方法を提供することを目的とする。        
On the other hand, in the fiber-reinforced elastic body, it is important to disperse nylon fibers and the like sufficiently uniformly in a vulcanizable rubber polymer. When the dispersion is insufficient, the modulus, strength and the like are reduced. On the other hand, for example, in order to disperse nylon fibers in a vulcanizable rubber polymer, by rolling with a roll or the like, the rubber is subjected to a pretreatment to relieve entanglement between nylon fibers. Is dispersed in a polymer. When pretreatment between nylon fibers is not performed, the kneading time of a banbury, kneader, extruder, etc. is lengthened.
However, the above-described conventional method has been low in productivity and complicated in process, which has led to an increase in cost.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve these problems and provide a fiber-reinforced elastic body excellent in modulus, tear strength and productivity, and a method for producing the same.
 上記目的を達成するため、本発明は、(a)ポリオレフィン、(b)第1のエラストマー、(c)平均粒子径1μm以下で水分量1000ppm以下の球状のシリカ及び(d)ポリアミドを有する熱可塑性樹脂からなり、成分(a)、成分(b)、成分(c)がマトリックスを構成しており、そのマトリックス中に成分(d)が平均径1μm以下で、アスペクト比が2以上1000以下の極細な繊維として分散しており、成分(a)、成分(b)、成分(c)及び成分(d)の各成分が化学結合をしている(A)繊維強化熱可塑性樹脂組成物と、(B)第2のエラストマーと、を混練してなる繊維強化弾性体及びその製造方法である。
 本発明において、成分(b)と成分(B)の合計量が100重量部に対して、成分(a)が1~40重量部、成分(c)が1~50重量部、成分(d)からなる極細な繊維の割合が1~50重量部であることが好ましい。
To achieve the above object, the present invention provides (a) a polyolefin, (b) a first elastomer, (c) a spherical silica having an average particle size of 1 μm or less and a water content of 1000 ppm or less, and (d) a thermoplastic having a polyamide. Made of resin, component (a), component (b), and component (c) constitute a matrix, in which component (d) has an average diameter of 1 μm or less and an aspect ratio of 2 or more and 1000 or less. (A) a fiber-reinforced thermoplastic resin composition in which the components (a), (b), (c) and (d) are chemically bonded, B) A fiber-reinforced elastic body obtained by kneading a second elastomer and a method for producing the same.
In the present invention, the total amount of the component (b) and the component (B) is 100 parts by weight, the component (a) is 1 to 40 parts by weight, the component (c) is 1 to 50 parts by weight, and the component (d) The ratio of the ultrafine fibers made of is preferably 1 to 50 parts by weight.
 本発明は、成分(b)及び組成物(B)の少なくとも一方が加硫されているものを含む。
 また、本発明は、硫黄、パーオキサイド、樹脂加硫剤等の加硫剤及び必要に応じて加硫助剤を添加して、加硫したものも含む。
The present invention includes those in which at least one of component (b) and composition (B) is vulcanized.
The present invention also includes those vulcanized by adding a vulcanizing agent such as sulfur, peroxide, a resin vulcanizing agent, and a vulcanization aid as required.
 本発明の繊維強化弾性体の製造に用いられる(A)繊維強化熱可塑性樹脂組成物及び(B)第2のエラストマーについて説明する。
 (A)繊維強化熱可塑性樹脂組成物は、以下の第1工程~第3工程により製造する。第1工程は、成分(a)、成分(b)及び成分(c)からなるマトリックスを調整する。第2工程は、前記の第1工程で得られるマトリックスと成分(d)を溶融混練して反応をさせる。第3工程は、第2工程で得られた混練物を、成分(d)の融点以上で押出し、次いで成分(d)の融点より低い温度で延伸及び/又は圧延する。
 第2工程では、溶融混練して反応を行うが、その際の結合剤は、第1工程のマトリックスを調整する工程中で練り込むか、又は成分(d)を成分(d)の融点以上で事前に前処理で混練して反応させたものを結合剤として使用する方法、のどちらでも良い。
(A) Fiber reinforced thermoplastic resin composition and (B) 2nd elastomer used for manufacture of the fiber reinforced elastic body of this invention are demonstrated.
(A) The fiber-reinforced thermoplastic resin composition is produced by the following first to third steps. A 1st process adjusts the matrix which consists of a component (a), a component (b), and a component (c). In the second step, the matrix obtained in the first step and the component (d) are melt-kneaded and reacted. In the third step, the kneaded product obtained in the second step is extruded at a temperature equal to or higher than the melting point of component (d), and then stretched and / or rolled at a temperature lower than the melting point of component (d).
In the second step, the reaction is carried out by melt-kneading, and the binder at that time is kneaded in the step of adjusting the matrix in the first step, or the component (d) is at or above the melting point of the component (d). Either a method in which a material kneaded and reacted in advance in a pretreatment is used as a binder may be used.
 成分(a)ポリオレフィンは、70~250℃の範囲の融点のものが好ましい。
 また、50℃以上、特に好ましくは50~200℃のビカット軟化点を有するものも用いられる。このようなものとして、炭素数2~8のオレフィンの単独重合体や共重合体、炭素数2~8のオレフィンとスチレンやクロロスチレン、α‐メチルスチレン等の芳香族ビニル化合物との共重合体、炭素数2~8のオレフィンと酢酸ビニル共重合体、炭素数2~8のオレフィンとアクリル酸或いはそのエステルとの共重合体及び炭素数2~8のオレフィンとビニルシラン化合物との共重合体が好ましく用いられる。
Component (a) polyolefin preferably has a melting point in the range of 70 to 250 ° C.
Further, those having a Vicat softening point of 50 ° C. or more, particularly preferably 50 to 200 ° C. are also used. As such, homopolymers and copolymers of olefins having 2 to 8 carbon atoms, copolymers of olefins having 2 to 8 carbon atoms and aromatic vinyl compounds such as styrene, chlorostyrene, and α-methylstyrene. An olefin having 2 to 8 carbon atoms and a vinyl acetate copolymer, a copolymer of an olefin having 2 to 8 carbon atoms and acrylic acid or an ester thereof, and a copolymer of an olefin having 2 to 8 carbon atoms and a vinylsilane compound. Preferably used.
 具体例としては、高密度ポリエチレン、線状低密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、エチレン・プロピレンブロック共重合体、エチレン・プロピレンランダム共重合体、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、エチレン・アクリル酸共重合体、エチレン・アクリル酸メチル共重合体、エチレン・アクリル酸エチル共重合体、エチレン・アクリル酸プロピル共重合体、エチレン・アクリル酸ブチル共重合体、エチレン・アクリル酸2‐エチルヘキシル共重合体、エチレン・アクリル酸ヒドロキシエチル共重合体、アエチレン・ビニルシラン共重合体、エチレン・スチレン共重合体及びプロピレン・スチレン共重合体等がある。 Specific examples include high density polyethylene, linear low density polyethylene, low density polyethylene, polypropylene, ethylene / propylene block copolymer, ethylene / propylene random copolymer, ethylene / vinyl acetate copolymer, ethylene / vinyl alcohol copolymer. Polymer, ethylene / acrylic acid copolymer, ethylene / methyl acrylate copolymer, ethylene / ethyl acrylate copolymer, ethylene / propyl acrylate copolymer, ethylene / butyl acrylate copolymer, ethylene / acrylic Examples include acid 2-ethylhexyl copolymer, ethylene / hydroxyethyl acrylate copolymer, ethylene / vinylsilane copolymer, ethylene / styrene copolymer, and propylene / styrene copolymer.
 これらの成分(a)のポリオレフィンの中でも特に好ましいのは、高密度ポリエチレン、線状低密度ポリエチレン、低密度ポリエチレン、ポリプロピレン、エチレン・プロピレンブロック共重合体、エチレン・プロピレンランダム共重合体、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、エチレン・アクリル酸共重合体、エチレン・アクリル酸メチル共重合体が挙げられ、中でもメルトフローインデックスが0.2~50g/10分の範囲のもが好ましく、これら1種のみを用いてもよく、2種以上を組み合わせても良い。 Particularly preferred among these component (a) polyolefins are high density polyethylene, linear low density polyethylene, low density polyethylene, polypropylene, ethylene / propylene block copolymer, ethylene / propylene random copolymer, ethylene / acetic acid. Examples include vinyl copolymers, ethylene / vinyl alcohol copolymers, ethylene / acrylic acid copolymers, and ethylene / methyl acrylate copolymers, and those having a melt flow index of 0.2 to 50 g / 10 min. It is preferable that only one of these may be used, or two or more may be combined.
 次に、成分(b)第1のエラストマーについて説明する。(b)第1のエラストマーは、ガラス転移温度が0℃以下のものが好ましく、より好ましくは-20℃以下のものが好ましい。
 このようなものとしては、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン・ブタジエンゴム、アクリロニトリル・ブタジエンゴム、ブチルゴム、塩素化ブチルゴム、臭素化ブチルゴム、ニトリル・クロロピレンゴム、ニトリル・イソプレンゴム、アクルレート・ブタジエンゴム、ビニルピリジン・ブタジエンゴム、ビニルピリジン・スチレン・ブタジエンゴム、スチレン・クロロピレンゴム、スチレン・イソプレンゴム、カルボキシル化スチレン・ブタジエンゴム、カルボキシル化アクリロニトリル・ブタジエンゴム、スチレン・ブタジエンブロック共重合体、スチレン・イソプレンブロック共重合体、スチレン・イソプレン・スチレン共重合体、スチレン・エチレン・ブチレン・スチレン共重合体、カルボキシル化スチレン・ブタジエンブロック共重合体、カルボキシル化スチレン・イソプレンブロック共重合体等のジエン系ゴム、スチレン・プロピレンゴム、エチレン・プロピレン・ジエン三元共重合体、エチレン・ブテンゴム、エチレン・ブテン・ジエン三元共重合体、塩素化ポリエチレン、クロロスルフォン化ポリエチレン、エチレン・酢酸ビニル共重合体等のポリオレフィン系エラストマー、アクリルゴム、エチレンアクリルゴム、ポリ塩化三フッ素エチレン、フッ素ゴム、水素化ニトリル・ブタジエンゴム等のポリメチレン型の主鎖を有するゴム、エピクロロヒドリン共重合体、エチレンオキサイド・エピクロロヒドリン・アリルグリシジルエーテル共重合体、プロピレンオキシド・アリルグリシジルエーテル共重合体等の、主鎖に酸素原子を有するゴム、ポリフェニルメチルシロキサン、ポリジメチルシロキサン、ポリメチルエチルシロキサン、ポリメチルブチルシロキサン等のシリコンゴム、ニトロソゴム、ポリエステルウレタン、ポリエーテルウレタン等の主鎖に炭素原子の他窒素原子及び酸素原子を有するゴム、等が挙げられる。また、これらのゴムをエポキシ等で変性したものや、シラン変性したもの、マレイン化したものも好ましい。
Next, the component (b) first elastomer will be described. (B) The first elastomer preferably has a glass transition temperature of 0 ° C. or lower, more preferably −20 ° C. or lower.
These include natural rubber, isoprene rubber, butadiene rubber, styrene / butadiene rubber, acrylonitrile / butadiene rubber, butyl rubber, chlorinated butyl rubber, brominated butyl rubber, nitrile / chloropyrene rubber, nitrile / isoprene rubber, acrylate / butadiene. Rubber, vinylpyridine / butadiene rubber, vinylpyridine / styrene / butadiene rubber, styrene / chloropyrene rubber, styrene / isoprene rubber, carboxylated styrene / butadiene rubber, carboxylated acrylonitrile / butadiene rubber, styrene / butadiene block copolymer, styrene・ Isoprene block copolymer, styrene / isoprene / styrene copolymer, styrene / ethylene / butylene / styrene copolymer, carboxylated styrene / butane Diblock rubber such as enblock copolymer, carboxylated styrene / isoprene block copolymer, styrene / propylene rubber, ethylene / propylene / diene terpolymer, ethylene / butene rubber, ethylene / butene / diene terpolymer Polymethylene type such as coalescence, chlorinated polyethylene, chlorosulfonated polyethylene, polyolefin elastomer such as ethylene / vinyl acetate copolymer, acrylic rubber, ethylene acrylic rubber, polychloroethylene trifluoride, fluoro rubber, hydrogenated nitrile / butadiene rubber, etc. Rubber having an oxygen atom in the main chain, such as a rubber having a main chain, an epichlorohydrin copolymer, an ethylene oxide / epichlorohydrin / allyl glycidyl ether copolymer, and a propylene oxide / allyl glycidyl ether copolymer The Silicone rubber such as phenylmethylsiloxane, polydimethylsiloxane, polymethylethylsiloxane, polymethylbutylsiloxane, etc., rubber having nitrogen atoms and oxygen atoms in the main chain such as nitroso rubber, polyester urethane, polyether urethane, etc. Can be mentioned. Further, those obtained by modifying these rubbers with epoxy or the like, those modified with silane, or those made maleated are also preferred.
 成分(c)の平均粒子径1μm以下で水分含有量1000ppm以下の球状シリカは、金属粉末の爆燃現象を利用して真球状酸化物微粒子を製造する方法(Vaporized Metal Combustion Method)が好ましい(以下、VMC法と略する)。
 具体的には、金属粉末を酸素の気流中に分散させ、着火することで酸化させ、その反応熱で金属及び酸化物を蒸気又は液体にし、冷却することで、微細な酸化物粒子となる方法により製造されるシリカである。
 VMC法から製造されるシリカは、真球状態の微粒子球状で、平均粒子径が0.2μmから2.0μmのシリカ群であり、シリカ同士の凝集構造をとらない。また、水分吸着も少なく、1000ppm以下を特徴とするものを用いる。
 即ち、繊維強化熱可塑性組樹脂成物は、VMC法から製造されるシリカの平均粒子径は1μm以下、より好ましくは平均粒子径0.5μmものを使用しており、本開発の繊維強化弾性体に使用される。
The spherical silica having an average particle diameter of 1 μm or less and a water content of 1000 ppm or less of the component (c) is preferably a method for producing true spherical oxide fine particles by utilizing the deflagration phenomenon of metal powder (hereinafter referred to as “Vaporized Metal Combustion Method”). (Abbreviated as VMC method).
Specifically, a method in which metal powder is dispersed in an oxygen stream, oxidized by being ignited, the metal and oxide are vaporized or liquid with the reaction heat, and cooled to form fine oxide particles. Silica produced by
Silica produced by the VMC method is a spherical group of fine spherical particles and has an average particle diameter of 0.2 μm to 2.0 μm, and does not have an agglomerated structure between silicas. In addition, a material characterized by low moisture adsorption and 1000 ppm or less is used.
That is, as the fiber reinforced thermoplastic resin composition, silica produced by the VMC method has an average particle size of 1 μm or less, more preferably an average particle size of 0.5 μm. Used for.
 シリカは、シラノール基を所有している。繊維強化熱可塑性樹脂組成物では、VMC法は10μmol/m以下のシラノール基濃度のものを用いられている。10μmol/m以上のシラノール基濃度は、高活性であり反応が進むため、繊維強化熱可塑性樹脂組成物には不適であるため使用されていない。
 成分(c)のシラノール基はカップリング剤としての機能を持っており、シランカップリング剤のアルコキシ基と或いはシランカップリング剤に水分を介してアルコキシ基からシラノール基の構造を形成したものとは容易に反応をする。また、成分(d)のアミド基とも縮合反応をするために、好ましく用いられているものを使用する。
 特に、成分(c)は、シランカップリング剤との併用、或いはシランカップリング剤と有機過酸化物の3成分の混合物等として用いることも好ましい。
Silica possesses silanol groups. In the fiber reinforced thermoplastic resin composition, a VMC method having a silanol group concentration of 10 μmol / m 3 or less is used. A silanol group concentration of 10 μmol / m 3 or more is not used because it is highly active and the reaction proceeds and is therefore unsuitable for a fiber-reinforced thermoplastic resin composition.
The silanol group of component (c) has a function as a coupling agent. What is the silanol group structure formed from the alkoxy group of the silane coupling agent and the alkoxy group through moisture in the silane coupling agent? It reacts easily. In addition, those preferably used for the condensation reaction with the amide group of component (d) are also used.
In particular, the component (c) is preferably used in combination with a silane coupling agent or as a mixture of three components of a silane coupling agent and an organic peroxide.
 成分(c)のシリカ中の水分量は、水分量としては1000ppm以下が好ましい。シリカ粒子の水分量については、表面付着、結晶水等を全て含めての含有量が1000ppm以下のものが好ましい。より好ましくは800ppm以下、特に好ましくは400ppm以下である。
 成分(c)の平均粒子径については、1μm以下が好ましい。
The water content in the silica of component (c) is preferably 1000 ppm or less as the water content. Regarding the water content of the silica particles, it is preferable that the content including all of surface adhesion, crystal water and the like is 1000 ppm or less. More preferably, it is 800 ppm or less, Especially preferably, it is 400 ppm or less.
About the average particle diameter of a component (c), 1 micrometer or less is preferable.
 シリカは、VMC法の他にも、湿式沈降法、湿式ゲル法、乾式法、粉末溶融法等があるが、VMC法以外の方法だと、いずれも水分を吸着しやすく1000ppmを超える水分量となることがある。また、乾燥後に水分量を1000ppm以下として用いても、シリカ群の凝集による不定形形状となる。粉末溶融法で得られるシリカは凝集体を形成しない傾向は強いが、平均粒子径が10μmを超えるものが多く観られる。また、粒径分布も幅広く、最大粒径が50μmを超えるものもある。 In addition to the VMC method, silica has a wet sedimentation method, a wet gel method, a dry method, a powder melting method, etc., but any method other than the VMC method can easily adsorb moisture and has a moisture content exceeding 1000 ppm. May be. Moreover, even if it uses a water content as 1000 ppm or less after drying, it will become an irregular shape by the aggregation of a silica group. Silica obtained by the powder melting method has a strong tendency not to form aggregates, but many particles having an average particle diameter exceeding 10 μm are often observed. In addition, the particle size distribution is wide and some have a maximum particle size exceeding 50 μm.
 シリカを(A)繊維強化熱可塑性樹脂組成物に使用の際に、粒子径が1μm以上であれば、押出物を調整する第3工程における、延伸及び/又は圧延する際に異物の傾向となり、成分(d)主鎖中にアミド基を有する熱可塑性ポリマーの極細な繊維の形成が不能となり好ましくない。また延伸/圧延後に繊維が得られたとしてもアスペクト比が2以上1000以下の範囲外も増加するため好ましくない。
 また、シリカの形態がシリカ群の凝集による不定形形状や塊状等の真球粒子以外の形状では、成分(d)の融点より低い温度で延伸及び/又は圧延する第3工程において、繊維を形成するうえで不安定な工程となり好ましくない。
 前記の理由より、成分(c)のシリカとしては、VMC法で製造される微細な酸化物のシリカを使用して製造された繊維強化熱可塑性樹脂組成物を好ましく用いる。
When silica is used in the (A) fiber reinforced thermoplastic resin composition, if the particle diameter is 1 μm or more, it tends to be a foreign substance during stretching and / or rolling in the third step of adjusting the extrudate, Component (d) is not preferable because it makes it impossible to form ultrafine fibers of a thermoplastic polymer having an amide group in the main chain. Even if fibers are obtained after stretching / rolling, the aspect ratio increases beyond the range of 2 to 1000, which is not preferable.
In addition, in the third step of stretching and / or rolling at a temperature lower than the melting point of the component (d) when the form of the silica is a shape other than the spherical particles such as an irregular shape or a lump shape due to the aggregation of the silica group, fibers are formed in the third step. This is not preferable because it is an unstable process.
For the above reason, as the component (c) silica, a fiber reinforced thermoplastic resin composition produced by using fine oxide silica produced by the VMC method is preferably used.
 次に、成分(d)ポリアミドを有する熱可塑性樹脂について説明する。まず、主鎖中にアミド基を有する熱可塑性ポリマー(以下ポリアミドと略する)について説明をする。
 融点は130~350℃の範囲のものが用いられ、しかも成分(a)のオレフィンの融点よりも高いものであり、より好ましくは160~265℃の範囲のものが好ましい。かかる成分(d)としては、押出し及び圧延によって強靭な繊維を与えるポリアミドが好ましい。
Next, the thermoplastic resin having component (d) polyamide will be described. First, a thermoplastic polymer having an amide group in the main chain (hereinafter abbreviated as polyamide) will be described.
The melting point is in the range of 130 to 350 ° C., and is higher than the melting point of the olefin of component (a), more preferably in the range of 160 to 265 ° C. As the component (d), a polyamide that gives tough fibers by extrusion and rolling is preferable.
 ポリアミドの具体例としては、ナイロン6、ナイロン66、ナイロン6-ナイロン66共重合体、ナイロン610、ナイロン612、ナイロン46、ナイロン11、ナイロン12、ナイロンMXD6、キシリレジアミンとアジピン酸との重縮合体、キシリレジアミンとピメリン酸との重縮合体、キシリレジアミンとスペリン酸との重縮合体、キシリレジアミンとアゼライン酸との重縮合体、キシリレジアミンとテレフタル酸との重縮合体、オクタメチレンジアミンとテレフタル酸との重縮合体、トリメチルヘキサメチレンジアミンとテレフタル酸との重縮合体、デカメチレンジアミンとテレフタル酸との重縮合体、ウンデカメチレンジアミンとテレフタル酸との重縮合体、ドデカメチレンジアミンとテレフタル酸との重縮合体、テトラメチレンジアミンとイソフタル酸の重縮合体、オクタメチレンジアミンとイソフタル酸の重縮合体、トリメチルヘキサメチレンジアミンとイソフタル酸の重縮合体、デカメチレンジアミンとイソフタル酸との重縮合体、ウンデカメチレンジアミンとイソフタル酸との重縮合体及びドデカメチレンジアミンとイソフタル酸との重縮合体等が挙げられる。 Specific examples of polyamide include nylon 6, nylon 66, nylon 6-nylon 66 copolymer, nylon 610, nylon 612, nylon 46, nylon 11, nylon 12, nylon MXD6, polycondensation of xylylenediamine and adipic acid Body, polycondensate of xylyldiamine and pimelic acid, polycondensate of xylyldiamine and speric acid, polycondensate of xylyldiamine and azelaic acid, polycondensate of xylylenediamine and terephthalic acid, Polycondensates of octamethylenediamine and terephthalic acid, polycondensates of trimethylhexamethylenediamine and terephthalic acid, polycondensates of decamethylenediamine and terephthalic acid, polycondensates of undecamethylenediamine and terephthalic acid, Tetramethyl, a polycondensate of dodecamethylenediamine and terephthalic acid Diamine and isophthalic acid polycondensate, octamethylenediamine and isophthalic acid polycondensate, trimethylhexamethylenediamine and isophthalic acid polycondensate, decamethylenediamine and isophthalic acid polycondensate, undecamethylenediamine and isophthalic acid Examples thereof include polycondensates with acids and polycondensates of dodecamethylenediamine and isophthalic acid.
 これらのポリアミドの内、特に好ましいものとしては、ナイロン6、ナイロン66、ナイロン6-ナイロン66共重合体、ナイロン610、ナイロン612、ナイロン46、ナイロン11、及びナイロン12からなる群から選ばれる1種又は2種以上のポリアミドが挙げられる。これらのポリアミドの分子量は10,000~200,000の範囲を有しているものが好ましい。 Among these polyamides, one particularly selected from the group consisting of nylon 6, nylon 66, nylon 6-nylon 66 copolymer, nylon 610, nylon 612, nylon 46, nylon 11 and nylon 12 is particularly preferable. Or 2 or more types of polyamide is mentioned. These polyamides preferably have a molecular weight in the range of 10,000 to 200,000.
 成分(d)は、その殆どが極細な繊維として上記マトリックス中に分散している。具体的には、80重量%、好ましくは90重量%以上が極細な繊維として分散する。
 成分(d)の繊維としては、平均繊維径が1μm以下、より好ましくは0.01~0.8μmの範囲である。アスペクト比は2以上1000以下、より好ましくは10~500である。
Most of the component (d) is dispersed in the matrix as ultrafine fibers. Specifically, 80% by weight, preferably 90% by weight or more is dispersed as ultrafine fibers.
The fiber of component (d) has an average fiber diameter of 1 μm or less, more preferably in the range of 0.01 to 0.8 μm. The aspect ratio is 2 or more and 1000 or less, more preferably 10 to 500.
 そして、成分(d)は、成分(a)、成分(b)、成分(c)のいずれとも、界面で結合している。これは、例えば以下のように方法で確認できる。成分(a)及び成分(b)を溶解する溶媒メチルエチルケトン、トルエン、キシレン等で繊維強化熱可塑性樹脂組成物をソックスレー等の還流器で還流し、成分(a)及び成分(b)を除去する。残った成分(c)及び成分(d)を、次に1,2-ジクロロベンゼンで攪拌を行った後、静かに放置し、浮遊する繊維と沈殿するシリカの分離を行い、回収した繊維をさらにアセトン洗浄したのち、乾燥後秤量をし、この重量をWcとする。
 そして、組成物中の成分(d)の重量をWcoに対する割合Wc/Wcoを求め、これを結合量として求める。
 この方法で得られた結合量数値から、成分(d)が成分(a)、成分(b)、成分(c)と何らかの形で結合していると考えることができる。得られた数値は、成分(d)と成分(a)、成分(b)、成分(c)との間の結合率は1~30重量%、特に5~25重量%の範囲が好ましい。
The component (d) is bonded to any of the components (a), (b), and (c) at the interface. This can be confirmed by the following method, for example. The fiber reinforced thermoplastic resin composition is refluxed with a refluxer such as Soxhlet with a solvent such as methyl ethyl ketone, toluene, xylene or the like that dissolves the component (a) and the component (b), and the component (a) and the component (b) are removed. The remaining component (c) and component (d) are then stirred with 1,2-dichlorobenzene and then allowed to stand gently to separate the suspended fibers from the precipitated silica and further collect the recovered fibers. After washing with acetone, it is weighed after drying, and this weight is defined as Wc.
And the ratio Wc / Wco with respect to Wco is calculated | required for the weight of the component (d) in a composition, and this is calculated | required as a coupling | bonding amount.
From the binding value obtained by this method, it can be considered that component (d) is combined with component (a), component (b), and component (c) in some form. As for the obtained numerical value, the bonding ratio between the component (d) and the component (a), the component (b), and the component (c) is preferably 1 to 30% by weight, particularly preferably 5 to 25% by weight.
 (A)繊維強化熱可塑性樹脂組成物の成分の割合は、成分(a)ポリオレフィンを100重量部と、成分(b)ガラス転移温度が0℃以下のゴム状ポリマーを10~600重量部と、成分(c)平均粒子径1μm以下で水分含有量1000ppm以下の球状のシリカを10~500重量部と、成分(d)主鎖中にアミド基を有する熱可塑性ポリマーの極細繊維を1~400重量部からなる組成物が好ましい。 (A) The proportion of the components of the fiber reinforced thermoplastic resin composition is as follows: component (a) 100 parts by weight of polyolefin, component (b) 10 to 600 parts by weight of rubbery polymer having a glass transition temperature of 0 ° C. or less, Component (c) 10 to 500 parts by weight of spherical silica having an average particle diameter of 1 μm or less and a water content of 1000 ppm or less, and component (d) 1 to 400 parts by weight of a thermoplastic polymer ultrafine fiber having an amide group in the main chain A composition consisting of parts is preferred.
 成分(b)が600重量部を超えると粘着性が強く、ハンドリング性に劣り、ペレット化が困難な繊維強化熱可塑性樹脂組成物となり好ましくない。
 成分(c)が10重量部以下であると弾性率が低くなり好ましくない。一方、500重量部を超えると、繊維強化熱可塑性樹脂組成物の成分(d)の極細な繊維を形成するうえで、好ましくなく、アスペクト比が2以上1000以下の占める割合が著しく低下するため、弾性率等の機械特性の再現性が悪く品質に悪影響を与える。
 成分(d)の割合が、400重量部超えると繊維強化熱可塑性樹脂組成物中で成分(d)の極細な繊維を形成しない。
 このような繊維強化熱可塑性樹脂組成物を用いても、応力の高い繊維強化弾性体が得られない。
When the component (b) exceeds 600 parts by weight, it is not preferable because the fiber-reinforced thermoplastic resin composition has strong adhesiveness, poor handling properties, and is difficult to be pelletized.
When the component (c) is 10 parts by weight or less, the elastic modulus is lowered, which is not preferable. On the other hand, if it exceeds 500 parts by weight, it is not preferable in forming the ultrafine fibers of the component (d) of the fiber-reinforced thermoplastic resin composition, and the proportion of the aspect ratio of 2 or more and 1000 or less is significantly reduced. The reproducibility of mechanical properties such as elastic modulus is poor and adversely affects quality.
When the proportion of component (d) exceeds 400 parts by weight, the fine fibers of component (d) are not formed in the fiber-reinforced thermoplastic resin composition.
Even if such a fiber-reinforced thermoplastic resin composition is used, a fiber-reinforced elastic body having a high stress cannot be obtained.
 以下に、(A)繊維強化熱可塑性樹脂組成物に使用する結合剤について説明する。結合剤の量は、成分(d)に対する結合剤の割合が、成分(d)と結合剤の合計量100重量%としたとき、0.1~20重量%、好ましくは0.2~15重量%である。結合剤の量が0.1重量%以下のときは、強固な結合が得られておらず、耐クリープ性に劣る組成物となり好ましくない。一方、結合剤が20重量%以上のときは、成分(d)のうち大半が微細な球状或いは卵状のアスペクト比2以下となり極細な繊維を形成しない。このためモジュラスに優れた組成物が得られない。 Hereinafter, the binder used in (A) the fiber-reinforced thermoplastic resin composition will be described. The amount of the binder is 0.1 to 20% by weight, preferably 0.2 to 15% by weight when the ratio of the binder to the component (d) is 100% by weight of the total amount of the component (d) and the binder. %. When the amount of the binder is 0.1% by weight or less, a strong bond is not obtained, and the composition is inferior in creep resistance, which is not preferable. On the other hand, when the binder is 20% by weight or more, most of the component (d) has a fine spherical or egg-like aspect ratio of 2 or less and does not form ultrafine fibers. For this reason, a composition excellent in modulus cannot be obtained.
 結合剤としては、シランカップリング剤、チタネートカップリング剤、ノボラック型アルキルフェノール、ホルムアルデヒド初期縮合体、レゾール型アルキルフェノールホルムアルデヒド初期縮合体、ノボラック型ホルムアルデヒド初期縮合体、レゾール型ホルムアルデヒド初期縮合体、不飽和カルボン酸及びその誘導体等の通常使用するものを用いることができる。特に好ましいのは、シランカップリング剤である。 As binders, silane coupling agents, titanate coupling agents, novolak-type alkylphenols, formaldehyde initial condensates, resol-type alkylphenol formaldehyde initial condensates, novolac-type formaldehyde initial condensates, resol-type formaldehyde initial condensates, unsaturated carboxylic acids Ordinarily used ones such as derivatives thereof can be used. Particularly preferred are silane coupling agents.
 上記カップリング剤を具体的に挙げると、シランカップリング剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β‐メトキシエトキシ)シラン、ビニルトリアセチルシラン、γ‐メタクリロキシプロピルトリメトキシシラン、β‐(3,4-エポキシシクロヘキシル)エチルメトキシシラン、γ‐グルシドキプロピルトリメトキシシラン、γ‐グルシドキプロピルメチルジメトキシシラン、γ‐グルシドキプロピルメチルジエトキシシラン、γ‐グルシドキプロピルエチルジメトキシシラン、γ‐グルシドキプロピルエチルジエトキシシラン、N‐β‐(アミノエチル)アミノプロピルトリメトキシシラン、N‐β‐(アミノエチル)アミノプロピルトリエトキシシラン、N‐β‐(アミノエチル)アミノプロピルメチルジメトキシシラン、N‐β‐(アミノエチル)アミノプロピルエチルジメトキシシラン、N‐β‐(アミノエチル)アミノプロピルエチルジエトキシシラン、γ‐アミノプロピルトリエトキシシラン、N‐フェニル-γ‐アミノプロピルトリメトキシシラン、γ-「N-(β-メタクリロキシエチル)-N,N-ジメチルアンモニューム(クロライド)」プロピルメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、及びスチルジアミノシラン等が挙げられる。好ましくは、メタクリロキシ基、アミノ基、メルカプト基、ビニル基のいずれかを有するシランカップリング剤が好適である。 Specific examples of the coupling agent include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, vinyltriacetylsilane, and γ-methacryloxypropyltrimethoxysilane. , Β- (3,4-epoxycyclohexyl) ethylmethoxysilane, γ-glucidoxypropyltrimethoxysilane, γ-glucidoxypropylmethyldimethoxysilane, γ-glucidoxypropylmethyldiethoxysilane, γ-gluci Doxypropylethyldimethoxysilane, γ-glucidoxypropylethyldiethoxysilane, N-β- (aminoethyl) aminopropyltrimethoxysilane, N-β- (aminoethyl) aminopropyltriethoxysilane, N-β- ( Aminoethyl) aminopro Pyrmethyldimethoxysilane, N-β- (aminoethyl) aminopropylethyldimethoxysilane, N-β- (aminoethyl) aminopropylethyldiethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyl Trimethoxysilane, γ- “N- (β-methacryloxyethyl) -N, N-dimethylammonium (chloride)” propylmethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, and still Examples include diaminosilane. Preferably, a silane coupling agent having any of a methacryloxy group, an amino group, a mercapto group, and a vinyl group is suitable.
 シランカップリング剤とともに有機過酸化物を併用することができる。有機過酸化物の使用量は、成分(a)100重量部に対して0.01~2.0重量部、より好ましくは0.01~0.5重量部が好適である。 An organic peroxide can be used in combination with a silane coupling agent. The amount of the organic peroxide used is preferably 0.01 to 2.0 parts by weight, more preferably 0.01 to 0.5 parts by weight, per 100 parts by weight of component (a).
 有機過酸化物としては、1分間の半減期温度が、成分(a)の融点或いは成分(d)の融点のいずれか高い温度からこの温度より20℃程度高い温度範囲のものが好ましい。具体的には1分間半減期温度が80~270℃程度のものが好適である。
 シランカップリング剤と有機過酸化物とを併用することにより、成分(a)の分子鎖上にラジカルが形成され、このラジカルがシランカップリング剤と反応することにより、成分(a)及び成分(b)の少なくとも一方と、成分(d)との各成分間の反応が促進されると考えられる。
The organic peroxide preferably has a half-life temperature of 1 minute in a temperature range higher than the melting point of the component (a) or the melting point of the component (d) by about 20 ° C. from this temperature. Specifically, a one-minute half-life temperature of about 80 to 270 ° C. is preferable.
When a silane coupling agent and an organic peroxide are used in combination, a radical is formed on the molecular chain of the component (a), and this radical reacts with the silane coupling agent, whereby the component (a) and the component ( It is considered that reaction between each component of at least one of b) and component (d) is promoted.
 但し、成分(b)に天然ゴム、イソプレンゴム、スチレン・イソプレン・スチレンブロック共重合体、エチレン・プロピレン・ジエン共重合体等を用いるときは、有機過酸化物を用いなくてもよい。前記のゴムは、混練時にメカノケミカル反応によって主鎖中の分子に切断が起こり、主鎖末端に-COO・基が発生し、過酸化物となり、有機過酸化物と同等の作用をするものと考えられるため有機過酸化物を用いなくてもよい。 However, when a natural rubber, an isoprene rubber, a styrene / isoprene / styrene block copolymer, an ethylene / propylene / diene copolymer, or the like is used for the component (b), an organic peroxide may not be used. The rubber has a mechanochemical reaction during kneading, so that molecules in the main chain are cleaved to generate —COO • groups at the ends of the main chain to become peroxides, which have the same action as organic peroxides. Since it is considered, it is not necessary to use an organic peroxide.
 有機過酸化物の使用量は、0.01~2.0重量部の範囲であるが、範囲外では、0.01重量部以下であれば反応の促進が著しく劣るため好ましくない。また2.0重量部以上を加えたときには、成分(a)、成分(b)、成分(d)等の単独若しくは各成分間で反応が過度に促進され、分子量は高分子か或いは単味成分若しくは各成分間において反応による架橋が著しく進みゲル化(塊状)状態となり、繊維強化熱可塑性樹脂組成物の製造が困難となる。 The amount of organic peroxide used is in the range of 0.01 to 2.0 parts by weight, but outside the range, 0.01 parts by weight or less is not preferable because the acceleration of the reaction is remarkably inferior. Further, when 2.0 parts by weight or more is added, the reaction is excessively promoted alone or between each component such as component (a), component (b), component (d), etc., and the molecular weight is high or simple component Alternatively, cross-linking due to reaction between the components proceeds remarkably and becomes a gelled (lumped) state, making it difficult to produce a fiber-reinforced thermoplastic resin composition.
 有機過酸化物の具体例としては、1,1-ジ-t-ブチルパーオキシ-3,3,5-トリメチルシクロヘキサン、1,1-ジ-t-ブチルパーオキシシクロヘキサン、2,2-ジ-t-ブチルパーオキシブタン、4,4-ジ-t-ブチルーパーオキシバレリン酸n-ブチルエステル、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキサン)プロパン、パーオキシネオデカン酸2,2,4-トリメチルペンチル、パーオキシオデカン酸2,2,4-トリメチルペンチル、パーオキシシネオデカン酸α‐クミル、パーオキシネオヘキサン酸t-ブチル、パーオキシピバリン酸t-ブチル、パーオキシ酢酸t-ブチル、パーオキシラウリル酸t-ブチル、パーオキシ安息香酸t-ブチル、パーオキシイソフタル酸t-ブチル等が挙げられる。中でも1分間半減期温度が、溶融混練温度ないしこの温度より20℃程度高い温度の範囲であるもの、具体的には1分半減期温度が80~270℃のものが好適である。 Specific examples of the organic peroxide include 1,1-di-t-butylperoxy-3,3,5-trimethylcyclohexane, 1,1-di-t-butylperoxycyclohexane, 2,2-di- t-butylperoxybutane, 4,4-di-t-butyl-peroxyvaleric acid n-butyl ester, 2,2-bis (4,4-di-t-butylperoxycyclohexane) propane, peroxyneodecanoic acid 2,2,4-trimethylpentyl, 2,2,4-trimethylpentyl peroxyodecanoate, α-cumyl peroxycineodecanoate, t-butyl peroxyneohexanoate, t-butyl peroxypivalate, peroxy T-butyl acetate, t-butyl peroxylaurate, t-butyl peroxybenzoate, t-butyl peroxyisophthalate, etc. It is. Of these, those having a half-life temperature of 1 minute in the range of the melt-kneading temperature or about 20 ° C. higher than this temperature, specifically those having a 1-minute half-life temperature of 80 to 270 ° C. are preferred.
 本発明の組成物(A)において、成分(a)、成分(b)、成分(c)からなるマトリックスを形成している。このマトリックスは成分(b)、成分(c)が成分(a)成分中に島状に分散した構造を採っていてもよく、また、その逆に成分(a)、成分(c)が成分(b)中に島状に分散した構造を採っていてもよい。そして、成分(a)と成分(b)及び成分(c)の3成分間で互いに結合していることが好ましい。 In the composition (A) of the present invention, a matrix composed of the component (a), the component (b), and the component (c) is formed. The matrix may have a structure in which the component (b) and the component (c) are dispersed in the form of islands in the component (a), and conversely, the component (a) and the component (c) are component ( b) A structure in which islands are dispersed may be employed. And it is preferable that it is mutually couple | bonded among three components, a component (a), a component (b), and a component (c).
 次に、(A)繊維強化熱可塑性樹脂組成物の製法について説明する。第1工程のマトリックスの調整方法としては、成分(a)、成分(b)、成分(c)、及び結合剤の溶融混練する方法は、成分(a)を結合剤と成分(a)の融点以上の温度の溶融混練を行い、ついで成分(b)、成分(c)を成分(a)の融点以上の温度の溶融混練する方法が挙げられる。溶融混練は、樹脂やゴム等に通常用いられる混練装置を用いて行うことができる。例えば、バンバリー型ミキサー、ニーダー、加圧型ニーダー、ニーダーエキストルーダー、オープンロール、短軸押出機、二軸押出機等である。特に好ましいのは、短時間で且つ連続的に溶融混練ができる二軸押出機である。 Next, (A) a method for producing a fiber-reinforced thermoplastic resin composition will be described. As a method for adjusting the matrix in the first step, the component (a), the component (b), the component (c), and the method of melt-kneading the binder include mixing the component (a) with the melting point of the binder and component (a) Examples include a method of performing melt kneading at the above temperature and then melt kneading the component (b) and the component (c) at a temperature equal to or higher than the melting point of the component (a). The melt kneading can be performed using a kneading apparatus usually used for resins, rubbers and the like. For example, a Banbury type mixer, a kneader, a pressure type kneader, a kneader extruder, an open roll, a short screw extruder, a twin screw extruder, and the like. Particularly preferred is a twin screw extruder capable of continuous melt kneading in a short time.
 第2工程について説明する。第2工程は、第1工程で得られた成分(a)、成分(b)、成分(c)及び結合剤を溶融混練したマトリックス成分と成分(d)を溶融混練する。又は、第1工程で成分(a)、成分(b)、成分(c)を溶融混練したマトリックス成分と、予め成分(d)の融点以上で混練反応させた成分(d)を溶融混練する。
 第2工程は、樹脂やゴム等の混練に使用される装置により変性する。具体的な装置としては、バンバリー型ミキサー、ニーダー、加圧型ニーダー、ニーダーエキストルーダー、オープンロール、短軸押出機、二軸押出機等である。特に好ましいのは、第1工程と同様に、短時間で且つ連続的に溶融混練ができる二軸押出機である。
The second step will be described. In the second step, the matrix component obtained by melting and kneading the component (a), component (b), component (c) and binder obtained in the first step and the component (d) are melt-kneaded. Alternatively, the matrix component obtained by melting and kneading the component (a), the component (b), and the component (c) in the first step and the component (d) previously kneaded and reacted at a melting point or higher of the component (d) are melt-kneaded.
The second step is modified by an apparatus used for kneading resin, rubber or the like. Specific apparatuses include a Banbury mixer, a kneader, a pressure kneader, a kneader extruder, an open roll, a short screw extruder, a twin screw extruder, and the like. Particularly preferred is a twin screw extruder capable of continuous melt kneading in a short time as in the first step.
 第2工程の溶融混練温度は、成分(a)及び成分(d)のいずれの融点以上の温度で溶融混練し、押出物として調整する。
 成分(d)の融点以下の温度で溶融、混練しても、混練物は成分(a)、成分(b)、成分(c)のマトリックス中に成分(d)が混練、分散されず著しく好ましくない。
The melt kneading temperature in the second step is adjusted as an extrudate by melt kneading at a temperature equal to or higher than the melting point of either component (a) or component (d).
Even when melted and kneaded at a temperature below the melting point of component (d), the kneaded product is remarkably preferable because component (d) is not kneaded or dispersed in the matrix of component (a), component (b), or component (c). Absent.
 次に、第3工程の説明をする。第3工程では、上記の第2工程の押出物を成分(d)の融点より低い温度での延伸及び/又は圧延するが、第2工程で得られた混練物を紡糸口金、或いはインフレーションダイ又はTダイからの延伸又は圧延する。
 この第3工程は、紡糸、押出によって、第2工程における混練物中の成分(d)の微粒子が繊維に変形する工程である。したがって、紡糸、押出、のいずれも成分(d)の融点以上の温度で行わなければならない。具体的には成分(d)の融点、或いは融点よりも20℃高い温度の範囲で行うことが好ましい。繊維を形成するために、前記の混練物を引き続き延伸又は圧延によって延伸処理を行い、より強固な繊維とする。したがって、延伸及び圧延は成分(d)の融点よりも低い温度で実施する。
Next, the third step will be described. In the third step, the extrudate of the second step is stretched and / or rolled at a temperature lower than the melting point of the component (d). The kneaded product obtained in the second step is a spinneret, an inflation die or Drawing or rolling from a T die.
The third step is a step in which the fine particles of the component (d) in the kneaded product in the second step are transformed into fibers by spinning and extrusion. Therefore, both spinning and extrusion must be performed at a temperature equal to or higher than the melting point of component (d). Specifically, the melting is preferably performed at a melting point of the component (d) or a temperature range 20 ° C. higher than the melting point. In order to form a fiber, the kneaded material is subsequently subjected to a stretching treatment by stretching or rolling to obtain a stronger fiber. Accordingly, stretching and rolling are performed at a temperature lower than the melting point of component (d).
 第3工程は、例えば、第2工程の混練物を押出機の紡糸口金から押出して紐状乃至糸状に紡糸し、これをドラフトを掛けつつボビン等を取り付けた巻き取機等で巻き取る。ドラフトとは押出機等の紡糸口金から出てくる混練物の押出し速度よりも巻き取り速度を速くし、巻き取ることを意味する。
 ドラフト比=巻き取り速度/紡糸口金からでる混練物速度
 ドラフト比は1.5~100の範囲が好ましく、より好ましくは2~50の範囲である。
In the third step, for example, the kneaded product of the second step is extruded from a spinneret of an extruder and spun into a string shape or a yarn shape, and wound with a winder or the like attached with a bobbin or the like while being drafted. The draft means that the winding speed is higher than the extrusion speed of the kneaded material coming out of the spinneret of an extruder or the like, and winding is performed.
Draft ratio = winding speed / speed of kneaded product from spinneret The draft ratio is preferably in the range of 1.5 to 100, more preferably in the range of 2 to 50.
 この他、第2工程の押出し物を圧延ロール等で連続的に圧延することでもできる。例えば、混練押出し物をインフレーション用ダイやTダイから押出しながら、ドラフトを掛けながらロール等で巻き取る。
 第3工程において、ドラフトを掛けて極細な繊維を形成した熱可塑性樹脂組成物は、紐状、糸状、テープ状、ペレット等色々な製品形態とすることができるが、好ましくはペレット形状がより好ましい。何故ならば、繊維強化熱可塑性樹脂組成物は、ペレットとすることにより、追加のエラストマー、即ち第2のエラストマーと均一に混練ができるからである。
In addition, the extrudate in the second step can be continuously rolled with a rolling roll or the like. For example, while extruding a kneaded extrudate from an inflation die or a T die, it is wound with a roll or the like while being drafted.
In the third step, the thermoplastic resin composition formed by drafting to form ultrafine fibers can be in various product forms such as string, thread, tape, pellet, etc., but preferably a pellet shape is more preferable. . This is because the fiber reinforced thermoplastic resin composition can be uniformly kneaded with the additional elastomer, that is, the second elastomer, by making it into pellets.
 次に、(B)第2のエラストマーについて説明する。第2のエラストマー、即ち追加のエラストマーとしては、先に繊維強化熱可塑性樹脂組成物の成分(b)の第1のエラストマーとして用いられるものと同様のものが用いられる。従って、室温でゴム状のポリマーで、所謂エラストマーと呼ばれる高分子ならどのようなのでも第2のエラストマーとして用いるが、好ましいものとしては、ガラス転移温度は0℃以下のものであり、より好ましくは-20℃以下のエラストマーが挙げられる。 Next, (B) the second elastomer will be described. As the second elastomer, that is, the additional elastomer, those similar to those used as the first elastomer of the component (b) of the fiber-reinforced thermoplastic resin composition are used. Accordingly, any polymer that is a rubber-like polymer at room temperature and is called a so-called elastomer is used as the second elastomer, and preferably has a glass transition temperature of 0 ° C. or less, more preferably − Examples include elastomers of 20 ° C. or lower.
 第2のエラストマーとしては、天然ゴム、イソプレンゴム、ブタジエンゴム、スチレン・ブタジエンゴム、アクリロニトリル・ブタジエンゴム、ブチルゴム、塩素化ブチルゴム、臭素化ブチルゴム、ニトリル・クロロピレンゴム、ニトリル・イソプレンゴム、アクルレート・ブタジエンゴム、ビニルピリジン・ブタジエンゴム、ビニルピリジン・スチレン・ブタジエンゴム、スチレン・クロロピレンゴム、スチレン・イソプレンゴム、カルボキシル化スチレン・ブタジエンゴム、カルボキシル化アクリロニトリル・ブタジエンゴム、スチレン・ブタジエンブロック共重合体、スチレン・イソプレンブロック共重合体、スチレン・イソプレン・スチレン共重合体、スチレン・エチレン・ブチレン・スチレン共重合体、カルボキシル化スチレン・ブタジエンブロック共重合体、カルボキシル化スチレン・イソプレンブロック共重合体等のジエン系ゴム、スチレン・プロピレンゴム、エチレン・プロピレン・ジエン三元共重合体、エチレン・ブテンゴム、エチレン・ブテン・ジエン三元共重合体、塩素化ポリエチレン、クロロスルフォン化ポリエチレン、エチレン・酢酸ビニル共重合体等のポリオレフィン系エラストマー、アクリルゴム、エチレンアクリルゴム、ポリ塩化三フッ素エチレン、フッ素ゴム、水素化ニトリル・ブタジエンゴム等のポリメチレン型の主鎖を有するゴム、エピクロロヒドリン共重合体、エチレンオキサイド・エピクロロヒドリン・アリルグリシジルエーテル共重合体、プロピレンオキシド・アリルグリシジルエーテル共重合体等の、主鎖に酸素原子を有するゴム、ポリフェニルメチルシロキサン、ポリジメチルシロキサン、ポリメチルエチルシロキサン、ポリメチルブチルシロキサン等のシリコンゴム、ニトロソゴム、ポリエステルウレタン、ポリエーテルウレタン等の主鎖に炭素原子の他窒素原子及び酸素原子を有するゴム、等が挙げられる。第2のエラストマーとしてはこれらのゴムを1種のみ用いてもよく、2種以上を組み合わせてもよい。
 第2のエラストマーは、第1のエラストマーと同一であってもよく異なっていてもよい。
The second elastomer includes natural rubber, isoprene rubber, butadiene rubber, styrene / butadiene rubber, acrylonitrile / butadiene rubber, butyl rubber, chlorinated butyl rubber, brominated butyl rubber, nitrile / chloropyrene rubber, nitrile / isoprene rubber, acrylate / butadiene. Rubber, vinylpyridine / butadiene rubber, vinylpyridine / styrene / butadiene rubber, styrene / chloropyrene rubber, styrene / isoprene rubber, carboxylated styrene / butadiene rubber, carboxylated acrylonitrile / butadiene rubber, styrene / butadiene block copolymer, styrene・ Isoprene block copolymer, styrene / isoprene / styrene copolymer, styrene / ethylene / butylene / styrene copolymer, carboxylated styrene / Tadiene block copolymer, diene rubber such as carboxylated styrene / isoprene block copolymer, styrene / propylene rubber, ethylene / propylene / diene terpolymer, ethylene / butene rubber, ethylene / butene / diene ternary copolymer Polymers, polyolefin elastomers such as chlorinated polyethylene, chlorosulfonated polyethylene, and ethylene / vinyl acetate copolymers, polymethylene such as acrylic rubber, ethylene acrylic rubber, polytrifluoroethylene ethylene, fluororubber, hydrogenated nitrile and butadiene rubber Rubber having a main chain of type, epichlorohydrin copolymer, ethylene oxide / epichlorohydrin / allyl glycidyl ether copolymer, propylene oxide / allyl glycidyl ether copolymer, etc., having an oxygen atom in the main chain Rubber Silicone rubber such as polyphenylmethylsiloxane, polydimethylsiloxane, polymethylethylsiloxane, polymethylbutylsiloxane, etc. Rubber having nitrogen and oxygen atoms in addition to carbon atoms in the main chain, such as nitroso rubber, polyester urethane, polyether urethane, etc. Is mentioned. As the second elastomer, only one kind of these rubbers may be used, or two or more kinds may be combined.
The second elastomer may be the same as or different from the first elastomer.
 本発明の繊維強化弾性体においては、第1のエラストマーと第2のエラストマーの合計量100重量部に対して、ポリオレフィンの割合が1~40重量部、好ましくは2~30重量部、平均粒子径1μm以下で水分量1000ppm以下の球状のシリカが1~50重量部、好ましくは5~40重量部、ポリアミドを有する熱可塑性ポリマーからなる極細な繊維の割合が1~50重量部、好ましくは2~35重量部である。
 ポリオレフィンの割合が40重量部よりも多いと、ゴム弾性のない繊維強化弾性体となり好ましくない。一方、1重量部より少ないと繊維強化弾性体の物性は、特に耐疲労性が著しい方向性を持つようになり、繊維の配向と直角の物性が低くなるから好ましくない。シリカの量が50重量部を超えると、繊維の配向が困難となり、繊維の配向と直角のモジュラス等の物性がばらつき、品質が不安定となる。シリカが1重量より低いとモジュラスが低くなり好ましくない。極細な繊維が50重量部より多いと伸びの小さな繊維強化弾性体しか得られない。一方、1重量部より少ないとモジュラスの低い繊維強化弾性体しか得られない。
In the fiber-reinforced elastic body of the present invention, the proportion of polyolefin is 1 to 40 parts by weight, preferably 2 to 30 parts by weight, with respect to the total amount of the first elastomer and the second elastomer of 100 parts by weight. 1 to 50 parts by weight, preferably 5 to 40 parts by weight of spherical silica having a water content of 1000 ppm or less and 1 μm or less, and the proportion of ultrafine fibers made of a thermoplastic polymer having polyamide is 1 to 50 parts by weight, preferably 2 to 35 parts by weight.
When the proportion of polyolefin is more than 40 parts by weight, a fiber-reinforced elastic body without rubber elasticity is not preferable. On the other hand, if the amount is less than 1 part by weight, the physical properties of the fiber-reinforced elastic body are not preferable because the fatigue resistance has a particularly directivity and the physical properties perpendicular to the fiber orientation become low. When the amount of silica exceeds 50 parts by weight, fiber orientation becomes difficult, physical properties such as modulus perpendicular to the fiber orientation vary, and the quality becomes unstable. If the silica is less than 1 weight, the modulus is low, which is not preferable. When the amount of ultrafine fibers is more than 50 parts by weight, only a fiber-reinforced elastic body having a small elongation can be obtained. On the other hand, if it is less than 1 part by weight, only a fiber-reinforced elastic body having a low modulus can be obtained.
 本発明の繊維強化弾性体は、前述の(A)繊維強化熱可塑性樹脂組成物と(B)第2のエラストマーを混練して製造する。得られる繊維強化弾性体中の第1と第2のエラストマーの合計量に対するポリオレフィン、平均粒子径1μm以下で水分量1000ppm以下の球状のシリカ及び極細な繊維の割合が上記の範囲内であれば、第2のエラストマーは限定されないが、(B)第2のエラストマーと(A)繊維強化熱可塑性樹脂組成物との重量比が20/1~0.1/1、特に10/1~0.5/1の範囲が、混練操作が行いやすく好ましい。 The fiber-reinforced elastic body of the present invention is produced by kneading the above-mentioned (A) fiber-reinforced thermoplastic resin composition and (B) the second elastomer. If the ratio of the polyolefin to the total amount of the first and second elastomers in the obtained fiber-reinforced elastic body, the spherical silica having an average particle diameter of 1 μm or less and a water content of 1000 ppm or less, and the ultrafine fibers is within the above range, The second elastomer is not limited, but the weight ratio of (B) the second elastomer and (A) the fiber reinforced thermoplastic resin composition is 20/1 to 0.1 / 1, particularly 10/1 to 0.5. A range of / 1 is preferable because the kneading operation is easy.
 (A)繊維強化熱可塑性樹脂組成物と(B)第2のエラストマーの混練温度は、繊維強化熱可塑性樹脂組成物中の極細な繊維を構成する成分(d)のポリアミドを有する熱可塑性樹脂の融点より低く、成分(a)のポリオレフィンの融点より高い温度が必要である。成分(d)のポリアミドを有する熱可塑性樹脂の融点より高い温度で混練すると、繊維強化熱可塑性樹脂組成物中の極細な繊維が融解して球状の粒子等に変形するため好ましくない。また、成分(a)のポリオレフィンより低い温度で混練すると、(A)繊維強化熱可塑性樹脂組成物中の極細な繊維の分散が悪く、繊維強化弾性が得られない。
 (A)繊維強化熱可塑性樹脂組成物と(B)第2のエラストマーの混練温度は、成分(d)のポリアミドを有する熱可塑性樹脂の融点以下、好ましくは融点の温度より20℃以下が好ましく、成分(a)のポリオレフィンの融点より高い温度、好ましくは10℃以上の高い温度である。
The kneading temperature of (A) the fiber reinforced thermoplastic resin composition and (B) the second elastomer is that of the thermoplastic resin having the polyamide of component (d) constituting the ultrafine fiber in the fiber reinforced thermoplastic resin composition. A temperature lower than the melting point and higher than the melting point of the polyolefin of component (a) is required. Kneading at a temperature higher than the melting point of the thermoplastic resin having the component (d) polyamide is not preferable because the ultrafine fibers in the fiber-reinforced thermoplastic resin composition melt and deform into spherical particles or the like. Moreover, when knead | mixing at temperature lower than the polyolefin of a component (a), dispersion | distribution of the fine fiber in (A) fiber reinforced thermoplastic resin composition is bad, and fiber reinforced elasticity is not obtained.
The kneading temperature of (A) the fiber reinforced thermoplastic resin composition and (B) the second elastomer is not higher than the melting point of the thermoplastic resin having the polyamide of component (d), preferably 20 ° C. or lower than the melting point temperature, The temperature is higher than the melting point of the polyolefin of component (a), preferably higher than 10 ° C.
 尚、前記の混練の際に、カーボンブラック等のゴム補強剤、プロセス油等のゴム軟化剤、加硫剤、加硫助剤、老化防止剤等を投入し混練する。この混練時に温度が上昇するが、成分(d)のポリアミドを有する熱可塑性樹脂の融点より高くならないように、必要に応じて温度を制御する。好ましくは145~180℃で、混練時間は限定されるものでないが、好ましくは1~10分である。このとき各種加硫剤及び加硫助剤を一緒に室温~100℃で必要量をそれぞれ混練しても良い。十分分散させてシート状に引き出す。得られたシートを成形・加硫すると繊維強化弾性体の加硫物が得られる。このときの加硫剤の量は、第1と第2のエラストマーの合計量100重量部に対して0.1~5.0重量部、特に0.5~3.0重量部の範囲が好ましい。加硫助剤の量は、第1と第2のエラストマーの合計量100重量部に対して0.01~2.0重量部、特に0.1~1.0重量部が好ましい。 In the kneading, a rubber reinforcing agent such as carbon black, a rubber softening agent such as process oil, a vulcanizing agent, a vulcanizing aid, an anti-aging agent and the like are added and kneaded. The temperature rises during the kneading, but the temperature is controlled as necessary so as not to be higher than the melting point of the thermoplastic resin having the polyamide of component (d). The kneading time is preferably 145 to 180 ° C., but is preferably 1 to 10 minutes. At this time, various vulcanizing agents and vulcanization aids may be kneaded together at a necessary amount from room temperature to 100 ° C. Fully disperse and draw into a sheet. When the obtained sheet is molded and vulcanized, a vulcanized product of a fiber reinforced elastic body is obtained. The amount of the vulcanizing agent at this time is preferably in the range of 0.1 to 5.0 parts by weight, particularly 0.5 to 3.0 parts by weight with respect to 100 parts by weight of the total amount of the first and second elastomers. . The amount of the vulcanization aid is preferably 0.01 to 2.0 parts by weight, particularly preferably 0.1 to 1.0 parts by weight, based on 100 parts by weight of the total amount of the first and second elastomers.
 加硫剤としては、公知の加硫剤、例えば硫黄、有機過酸化物、樹脂加硫剤等が用いられる。加硫助剤としては、アルデヒド・アンモニア類、アルデヒド・アミン類、グアニジン類、チオウレア類、チアゾール類、チウラム類、ジチオカルバメート類、キサンテート等が用いられる。
 本発明の繊維強化弾性体組成物に加硫剤等を添加した場合の加硫温度は、100~180℃程度が好ましい。但し、加硫温度は、繊維強化弾性体組成物中の極細な繊維を構成する熱可塑性樹脂の融点よりも低い温度である必要性がある。この熱可塑性樹脂の融点以上の温度で加硫を行うと、(A)繊維強化熱可塑性樹脂組成物の調整の段階で形成された繊維が溶解してしまい、モジュラスの高い繊維強化弾性体組成物が得られないからである。
As the vulcanizing agent, known vulcanizing agents such as sulfur, organic peroxides, resin vulcanizing agents and the like are used. As the vulcanization aid, aldehyde / ammonia, aldehyde / amine, guanidine, thiourea, thiazole, thiuram, dithiocarbamate, xanthate and the like are used.
The vulcanization temperature when a vulcanizing agent or the like is added to the fiber-reinforced elastic composition of the present invention is preferably about 100 to 180 ° C. However, the vulcanization temperature needs to be lower than the melting point of the thermoplastic resin constituting the ultrafine fibers in the fiber-reinforced elastic composition. When vulcanization is performed at a temperature equal to or higher than the melting point of this thermoplastic resin, (A) the fiber formed at the stage of adjusting the fiber-reinforced thermoplastic resin composition is dissolved, and the fiber-reinforced elastic composition having a high modulus. It is because it cannot be obtained.
 本発明の繊維強化弾性体組成物には、この他カーボンブラック、ホワイトカーボン、活性炭酸カルシウム、超微粒子珪酸マグネシュウム、クレー、亜鉛華、珪藻土、再生ゴム、粉末ゴム、エボナイト等の各種の充填剤、アミン・アルデヒド、アミン・ケトン類、アミン類、フェノール類、イミダゾール類、含硫黄系酸化防止剤、含燐系酸化防止剤等の安定剤、及び各種顔料を含んでもよい。 The fiber reinforced elastic composition of the present invention includes various fillers such as carbon black, white carbon, activated calcium carbonate, ultrafine magnesium silicate, clay, zinc white, diatomaceous earth, recycled rubber, powder rubber, ebonite, A stabilizer such as amine / aldehyde, amine / ketone, amine, phenol, imidazole, sulfur-containing antioxidant, phosphorus-containing antioxidant, and various pigments may be included.
 以下、実施例及び比較例を示して、本発明について具体的に説明するが本発明はこれらの実施例の範囲に限定されるものではない。実施例及び比較例において、繊維強化熱可塑性樹脂組成物、繊維強化弾性体は以下のようにして測定した。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to the scope of these examples. In the examples and comparative examples, the fiber reinforced thermoplastic resin composition and the fiber reinforced elastic body were measured as follows.
(1)繊維強化熱可塑性組成物中の成分(d)の分散形状の観察
 各サンプルのゴムの良溶媒、例えば第1のエラストマーがEPDMのときはo‐ジクロロベンゼンとキシレンの混合溶媒(重量比50:50)中で、100℃で還流して成分(a)オレフィン、成分(b)の第1のエラストマーを抽出、除去し、更にo‐ジクロロベンゼンで攪拌した後、静かに放置し、沈殿するシリカと浮遊する繊維に分離し、浮遊する繊維を回収し電子顕微鏡で観察した。
 一方、水添化アクリロニトリルブタジエンゴム(以下 HNBR と記載)を第1のエラストマーとして用いた繊維強化熱可塑性組成物については、溶剤メチルエチルケトンを50℃の加温下で攪拌し、HNBRを除去したのちは、前述の天然ゴムの繊維回収方法と同様な操作方法で繊維を回収後、電子顕微鏡で観察した。
(1) Observation of dispersion shape of component (d) in fiber reinforced thermoplastic composition Good solvent for rubber of each sample, for example, mixed solvent of o-dichlorobenzene and xylene (weight ratio when first elastomer is EPDM) 50:50) at 100 ° C. to extract and remove the component (a) olefin and the first elastomer of component (b), and after stirring with o-dichlorobenzene, leave it gently and precipitate. It was separated into silica and floating fibers, and the floating fibers were collected and observed with an electron microscope.
On the other hand, for a fiber reinforced thermoplastic composition using hydrogenated acrylonitrile butadiene rubber (hereinafter referred to as HNBR) as the first elastomer, the solvent methyl ethyl ketone was stirred at 50 ° C. to remove HNBR. The fibers were collected by the same operation method as the natural rubber fiber collection method described above, and then observed with an electron microscope.
(2)繊維強化弾性体のモジュラス、引っ張り強度、及び破断伸びの測定
 繊維強化弾性体を3号ダンベルに打ち抜いて、これをJISK6251に準拠して測定した。
(2) Measurement of modulus, tensile strength, and elongation at break of fiber reinforced elastic body The fiber reinforced elastic body was punched out into a No. 3 dumbbell and measured according to JISK6251.
 「繊維強化熱可塑性樹脂組成物の調整」
(サンプル1)
 成分(a)として、高密度ポリエチレン(京葉ポリエチレン製 HDPE M3800 MFR(g/10min)8)、成分(b)として、HNBR(日本ゼオン製 Zetpol2010L ムーニー粘度57.5 密度(g/cc)0.950)、成分(c)としてシリカ(アドマテックス製 SO-C2 VMC製法 シリカ二次未凝集構造 平均粒子径0.5μm )、成分(d)としてポリアミド(以下ナイロン66と記載)(宇部興産製 宇部ナイロン2026B 融点265℃ )を用いた。
 成分(a)HDPE100重量部、成分(b)HNBR100重量部、及び成分(c)シリカ40重量部を、当該成分(b)100重量部に対し0.75重量部のγ-メタクリロキシプロピルトリメトキシシラン、及び当該成分(a)に対して0.1重量部のジクミルパーオキサイドを、バンバリーミキサーを用いて、成分(a)の融点以上の170℃の温度で溶融混練した後、フィーダールーダーを用いてペレットとした。得られたペレットをマトリックス成分とした。
"Preparation of fiber reinforced thermoplastic resin composition"
(Sample 1)
As component (a), high-density polyethylene (HDPE M3800 MFR (g / 10 min) 8 made by Keiyo Polyethylene), and as component (b), HNBR (Zetpol 2010L Mooney viscosity 57.5 density (g / cc) 0.950 made by ZEON) 0.950 ), Silica as the component (c) (manufactured by SO-C2 VMC manufactured by Admatechs, silica secondary unaggregated structure average particle size 0.5 μm), and polyamide (hereinafter referred to as nylon 66) as the component (d) (Ube Nylon manufactured by Ube Industries) 2026B melting point 265 ° C.).
100 parts by weight of component (a) HDPE, 100 parts by weight of component (b) HNBR, and 40 parts by weight of component (c) of 0.75 parts by weight of γ-methacryloxypropyltrimethoxy with respect to 100 parts by weight of component (b) After melt-kneading 0.1 parts by weight of dicumyl peroxide with respect to silane and the component (a) at a temperature of 170 ° C. higher than the melting point of the component (a) using a Banbury mixer, It was used as a pellet. The obtained pellet was used as a matrix component.
 次いで、得られたペレット240重量部中の当該HNBR100重量部に対して成分(d)であるナイロン66の100重量部を、280℃に加温した二軸押出機で溶融混練を行った後紐状に押出し、その後引き取り機を用いて、ドラフト比5で引き取りつつペレタイザーでペレット化した。
 得られたペレットを、溶剤メチルエチルケトンを50℃の加温下で攪拌し、HNBRを除去したのちは、o‐ジクロロベンゼンとキシレンの混合溶媒(重量比50:50)中で100℃で還流して成分(a)オレフィンを抽出、除去し、更にo‐ジクロロベンゼンで攪拌した後、静かに放置し、沈殿するシリカと浮遊する繊維に分離し、浮遊する繊維を回収し電子顕微鏡で観察したところ、平均繊維径0.2μmの繊維であることが確認できた。
Next, 100 parts by weight of nylon 66 as the component (d) is melt-kneaded with a twin-screw extruder heated to 280 ° C. with respect to 100 parts by weight of the HNBR in 240 parts by weight of the obtained pellets. Then, it was pelletized with a pelletizer while being drawn at a draft ratio of 5 using a take-up machine.
The obtained pellet was stirred with a solvent methyl ethyl ketone at 50 ° C. to remove HNBR, and then refluxed at 100 ° C. in a mixed solvent of o-dichlorobenzene and xylene (weight ratio 50:50). The component (a) olefin was extracted and removed, and further stirred with o-dichlorobenzene, then allowed to stand gently, separated into precipitated silica and floating fibers, and the floating fibers were collected and observed with an electron microscope. It was confirmed that the fibers had an average fiber diameter of 0.2 μm.
(サンプル2)
 成分(c)のナイロン66の割合を、成分(b)のHNBR100重量部に対して240重量部に増量した以外は、サンプル1と同様にして、サンプル2を調整してペレット化した。
 得られたペレットをサンプル1と同様にして、繊維を観察したところ平均繊維径0.3μmの繊維であることを確認した。
(Sample 2)
Sample 2 was prepared and pelletized in the same manner as Sample 1, except that the proportion of the component 66 nylon 66 was increased to 240 parts by weight with respect to 100 parts by weight of the component (b) HNBR.
When the obtained pellets were observed in the same manner as in sample 1, they were confirmed to be fibers having an average fiber diameter of 0.3 μm.
(サンプル3)
 成分(c)のシリカの割合を、成分(b)のHNBR100重量部に対して100重量部に増量し、サンプル2と同様にして、サンプル3を調整してペレット化した。
 得られたペレットをサンプル1と同様にして、繊維を観察したところ平均繊維径0.3μmの繊維であることを確認した。
(Sample 3)
The ratio of the component (c) silica was increased to 100 parts by weight with respect to 100 parts by weight of the component (b) HNBR, and the sample 3 was adjusted and pelletized in the same manner as the sample 2.
When the obtained pellets were observed in the same manner as in sample 1, they were confirmed to be fibers having an average fiber diameter of 0.3 μm.
(サンプル4)
 成分(c)のシリカを未添加とした以外は、サンプル3と同様にして、サンプル4を調整してペレット化した。
 得られたペレットをサンプル1と同様にして、繊維を観察したところ平均繊維径0.2μmの繊維であることを確認した。
(Sample 4)
Sample 4 was prepared and pelletized in the same manner as Sample 3, except that the component (c) silica was not added.
When the obtained pellets were observed in the same manner as in Sample 1, the fibers were observed and confirmed to be fibers having an average fiber diameter of 0.2 μm.
(サンプル5)
 成分(a)をLDPE(宇部丸善ポリエチレン製 F522 MFR5グラム/10min.)50重量部とし、成分(b)の第1エラストマーをEPDM(JSR EP-22 ムーニー粘度42 密度(g/cc)0.86) 100重量部、成分(c)のシリカ50重量部とし、成分(d)のポリアミド6(以下ナイロン6 と記載)を100重量部として、サンプル3と同様にして、サンプル5を調整し、ペレット化した。
 得られたペレットをo‐ジクロロベンゼンとキシレンの混合溶媒(重量比50:50)中で、100℃で還流して成分(a)HDPE、成分(b)の第1のエラストマーのEPDMを抽出、除去し、更にo‐ジクロロベンゼン中で攪拌した後、静かに放置し、沈殿するシリカと浮遊する繊維に分離し、浮遊する繊維を回収し、繊維を観察したところ平均繊維径0.2μmの繊維であることを確認した。
(Sample 5)
Component (a) is 50 parts by weight of LDPE (F522 MFR 5 grams / 10 min. Manufactured by Ube Maruzen Polyethylene), and the first elastomer of component (b) is EPDM (JSR EP-22 Mooney viscosity 42 density (g / cc) 0.86. ) 100 parts by weight, 50 parts by weight of component (c) silica, 100 parts by weight of component 6 (d) polyamide 6 (hereinafter referred to as nylon 6) Turned into.
The obtained pellet was refluxed at 100 ° C. in a mixed solvent of o-dichlorobenzene and xylene (weight ratio 50:50) to extract component (a) HDPE and component (b) first elastomer EPDM, After removing and further stirring in o-dichlorobenzene, it is allowed to stand gently and separated into precipitated silica and floating fibers. The floating fibers are collected, and the fibers are observed. The fibers having an average fiber diameter of 0.2 μm It was confirmed that.
(サンプル6)
 成分(c)のシリカを使用しなかった以外は、サンプル5と同様にし、サンプル6を調整し、ペレット化した。
 得られたペレットを、サンプル5と同様にして、繊維を観察したところ平均繊維径0.2μmの繊維であることを確認した。
 サンプル1~6の組成表を表1に示す。
(Sample 6)
Sample 6 was prepared and pelletized in the same manner as Sample 5, except that the component (c) silica was not used.
When the obtained pellet was observed in the same manner as in Sample 5, the fiber was confirmed to be a fiber having an average fiber diameter of 0.2 μm.
The composition table of Samples 1 to 6 is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例1~6)
 以下に、実施例1~6及び比較例1、2を、表2を参照しつつ説明する。
 表2に示すように、実施例1~6及び比較例1、2中に示す繊維強化熱可塑性樹脂組成物、第2のエラストマー(HNBR)等の成分重量部及びカーボンブラック(FEF)、亜鉛華1号、ステアリン酸、老化防止剤(ナウガードXL-1、ノクラックMBZ)及び加硫剤パーオキサイド(パーカドクス14/40)等を表2に示す配合処方で加硫した。
 配合手順は、160℃にセットしたブラベンダープラストグラフにHNBRと繊維強化熱可塑性樹脂組成物を投入し30秒間素練りし、次いでカーボンブラック(FEF)、亜鉛華1号、ステアリン酸、老化防止剤を投入し、4分間混練後、80℃にセットしたオープンロール上でパーオキサイドを配合した。得られた配合物を160℃で30分間加硫して繊維強化弾性体組成物の加硫物を得た。
 繊維強化熱可塑性樹脂組成物中のHNBRと第2のエラストマーとして添加したHNBRの合計100重量部に対するナイロン66の繊維の割合は、5重量部~30重量部の範囲であった(実施例1~6)。
 実施例1~6の加硫物は、全てナイロン66の極細な繊維がHNBR中に均一に分散していた。
(Examples 1 to 6)
Examples 1 to 6 and Comparative Examples 1 and 2 will be described below with reference to Table 2.
As shown in Table 2, the fiber reinforced thermoplastic resin compositions shown in Examples 1 to 6 and Comparative Examples 1 and 2, parts by weight such as the second elastomer (HNBR), carbon black (FEF), zinc white No. 1, stearic acid, anti-aging agent (Naugard XL-1, Nocrack MBZ), vulcanizing peroxide (Percadox 14/40), etc. were vulcanized according to the formulation shown in Table 2.
The blending procedure is as follows: HNBR and a fiber reinforced thermoplastic resin composition are put into a Brabender plastograph set at 160 ° C. and masticated for 30 seconds, and then carbon black (FEF), zinc white No. 1, stearic acid, anti-aging agent After kneading for 4 minutes, peroxide was blended on an open roll set at 80 ° C. The resulting blend was vulcanized at 160 ° C. for 30 minutes to obtain a vulcanized product of the fiber reinforced elastic composition.
The ratio of the fibers of nylon 66 to the total of 100 parts by weight of HNBR and HNBR added as the second elastomer in the fiber-reinforced thermoplastic resin composition was in the range of 5 to 30 parts by weight (Examples 1 to 6).
In all of the vulcanizates of Examples 1 to 6, ultrafine fibers of nylon 66 were uniformly dispersed in HNBR.
「加硫物物性」
 表2から明らかなように、実施例1~6の繊維強化弾性体の加硫物物性において、引っ張り物性の100%伸長のモジュラスは8.5~23.8MPaであった。
 一方、比較例1の配合処方及び配合手順は、実施例1~6と同様に行った。その際の、引っ張り物性の100%伸長のモジュラスは5.7MPaであり、実施例1~6と比べ低モジュラスであった。これは表2中のサンプル4には成分(c)のシリカを含有していないため(表1参照)、架橋密度が低いためと考える。
 比較例2は、繊維強化熱可塑性樹脂組成物を使わずに、第2のエラストマーのHNBRを100重量部に増やしたほかは、実施例1と同様にして弾性体を調整した。得られた弾性体の引っ張り物性の100%伸長のモジュラスは3.9MPaであり、実施例1~6と比べ著しく低い値であった。
"Vulcanized physical properties"
As is apparent from Table 2, in the vulcanized physical properties of the fiber-reinforced elastic bodies of Examples 1 to 6, the modulus of 100% elongation of the tensile physical properties was 8.5 to 23.8 MPa.
On the other hand, the blending formulation and blending procedure of Comparative Example 1 were performed in the same manner as in Examples 1-6. At that time, the modulus of 100% elongation of the tensile properties was 5.7 MPa, which was lower than those of Examples 1 to 6. This is considered because sample 4 in Table 2 does not contain the component (c) silica (see Table 1), and thus has a low crosslinking density.
In Comparative Example 2, an elastic body was prepared in the same manner as in Example 1 except that the HNBR of the second elastomer was increased to 100 parts by weight without using the fiber-reinforced thermoplastic resin composition. The modulus of 100% elongation of the tensile properties of the obtained elastic body was 3.9 MPa, which was a significantly lower value than Examples 1-6.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例7~9)
 表3に示すように、実施例7~9及び比較例3、4中に示す繊維強化熱可塑性樹脂組成物(サンプル)、第2のエラストマー(EPDM)等の成分重量部及びカーボンブラック(HAF)、ナフテン油、亜鉛華1号、ステアリン酸、加硫促進剤TS、M及び硫黄等の配合処方で加硫した。
 配合手順は、140℃にセットしたブラベンダープラストグラフにEPDMと繊維強化熱可塑性樹脂組成物を投入し30秒間素練りし、次いでカーボンブラック(HAF)、ナフテン油、亜鉛華1号、ステアリン酸、を投入し、4分間混練後、60℃にセットしたオープンロール上で加硫促進剤TS、M、及び硫黄を配合した。得られた配合物を160℃で15分間加硫して繊維強化弾性体組成物の加硫物を得た。
(Examples 7 to 9)
As shown in Table 3, component weight parts such as fiber reinforced thermoplastic resin compositions (samples) and second elastomers (EPDM) shown in Examples 7 to 9 and Comparative Examples 3 and 4 and carbon black (HAF) , Naphthenic oil, zinc white No. 1, stearic acid, vulcanization accelerators TS, M, and sulfur were vulcanized.
The blending procedure was as follows: EPDM and a fiber reinforced thermoplastic resin composition were put into a Brabender plastograph set at 140 ° C. and masticated for 30 seconds, and then carbon black (HAF), naphthenic oil, zinc white No. 1, stearic acid, After mixing for 4 minutes, vulcanization accelerators TS, M, and sulfur were blended on an open roll set at 60 ° C. The obtained blend was vulcanized at 160 ° C. for 15 minutes to obtain a vulcanized product of a fiber reinforced elastic composition.
 実施例7~9は、繊維強化熱可塑性樹脂組成物中のEPDMと第2のエラストマーとして添加したEPDMの合計100重量部に対するナイロン6の繊維の割合は、7重量部~15重量部の範囲であった。
 電子顕微鏡で観察したところ、実施例7~9の加硫物は、全てナイロン6の極細な繊維がEPDM中に均一に分散していた。
In Examples 7 to 9, the ratio of the fibers of nylon 6 to the total of 100 parts by weight of EPDM and EPDM added as the second elastomer in the fiber reinforced thermoplastic resin composition is in the range of 7 to 15 parts by weight. there were.
When observed with an electron microscope, all of the vulcanizates of Examples 7 to 9 had nylon 6 ultrafine fibers uniformly dispersed in EPDM.
 実施例10は、繊維強化熱可塑性樹脂組成物中のEPDMと、第2のエラストマーとして添加したEPDM80重量部とブチルゴム「IIR」(日本ブチル株式会社 ブチル365 ML1+8(125℃)38)10重量部を加え合計100重量部とした他は、実施例7と同様に行い繊維強化弾性体を得た。
 実施例10の加硫物も、全てナイロン6の極細な繊維が、繊維強化熱可塑性樹脂組成物中のEPDMと第2のエラストマーのEPDM及びブチルゴムの合計量100重量部中に均一に分散していた。
In Example 10, EPDM in the fiber reinforced thermoplastic resin composition, 80 parts by weight of EPDM added as the second elastomer, and 10 parts by weight of butyl rubber “IIR” (Nippon Butyl Co., Ltd. Butyl 365 ML1 + 8 (125 ° C.) 38) A fiber reinforced elastic body was obtained in the same manner as in Example 7 except that the total amount was 100 parts by weight.
In the vulcanized product of Example 10 as well, all nylon 6 ultrafine fibers were uniformly dispersed in 100 parts by weight of the total amount of EPDM in the fiber reinforced thermoplastic resin composition, EPDM of the second elastomer, and butyl rubber. It was.
「加硫物物性」
 表3から明らかなように、実施例7~10の繊維強化弾性体の加硫物の引っ張り物性における100%伸長の繊維方向に対する並行方向のモジュラスは7.3~9.7MPaであった。繊維垂直方向の100%伸長モジュラスは、4.5~5.7MPaであった。引張り強さは、12.6~14.6MPaであった。
 引き裂き強度については、繊維の配向方向に対して平行方向は50~53N/mmであり、一方、繊維の配向方向に対して垂直方向は54~58N/mmであった。
 繊維の配向方向に対する垂直方向は平行方向に比べ引き裂き強度が高かった。これは、引き裂き時に配向した極細な繊維が引き裂きを抑制する効果が発現したためと考える。
"Vulcanized physical properties"
As is apparent from Table 3, the modulus in the parallel direction to the fiber direction of 100% elongation in the tensile properties of the vulcanizates of the fiber-reinforced elastic bodies of Examples 7 to 10 was 7.3 to 9.7 MPa. The 100% elongation modulus in the fiber vertical direction was 4.5 to 5.7 MPa. The tensile strength was 12.6 to 14.6 MPa.
Regarding the tear strength, the direction parallel to the fiber orientation direction was 50 to 53 N / mm, while the direction perpendicular to the fiber orientation direction was 54 to 58 N / mm.
The direction perpendicular to the fiber orientation direction had higher tear strength than the parallel direction. This is thought to be because the effect of suppressing tearing was exhibited by the fine fibers oriented during tearing.
 比較例3の配合処方及び配合手順は、実施例7と同様に行った。繊維垂直方向の100%伸長モジュラスの繊維方向に対して並行方向のモジュラスは6.2MPaであった。繊維垂直方向の100%伸長モジュラスは、3.9MPaであった。引張り強さは、10.5MPaであった。いずれも実施例7~10と比べ低い値であった。 The blending prescription and blending procedure of Comparative Example 3 were performed in the same manner as in Example 7. The modulus in the direction parallel to the fiber direction of the 100% elongation modulus in the fiber vertical direction was 6.2 MPa. The 100% elongation modulus in the fiber vertical direction was 3.9 MPa. The tensile strength was 10.5 MPa. All values were lower than those in Examples 7 to 10.
 比較例3の引き裂き強度については、繊維の配向方向に対して平行方向は43N/mmであり、一方、繊維の配向方向に対して垂直方向は48N/mmであった。引き裂き強度は、繊維の配向方向に対して垂直方向及び平行方向共に、実施例7~10と比べると低かった。この理由として、実施例7~10に使用の繊維強化熱可塑性樹脂組成物のサンプル5は、成分(c)のシリカを使用しており、このシリカのシラノールが繊維強化熱可塑性樹脂組成物中の成分(a)のLDPE、成分(b)のEPDM、成分(d)のナイロン6等と化学反応し、架橋密度が高くなり引き裂き強度が改良したものと考える。 Regarding the tear strength of Comparative Example 3, the direction parallel to the fiber orientation direction was 43 N / mm, while the direction perpendicular to the fiber orientation direction was 48 N / mm. The tear strength was low compared to Examples 7 to 10 in both the direction perpendicular to and parallel to the fiber orientation direction. This is because the sample 5 of the fiber-reinforced thermoplastic resin composition used in Examples 7 to 10 uses the silica of component (c), and the silanol of this silica is contained in the fiber-reinforced thermoplastic resin composition. The chemical reaction with the component (a) LDPE, the component (b) EPDM, the component (d) nylon 6 and the like is considered to increase the crosslink density and improve the tear strength.
 比較例4は、繊維強化熱可塑性樹脂組成物を使わずに、第2のエラストマーのEPDMを100重量部に増やした他は、実施例7と同様にして弾性体を調整した。得られた弾性体の引っ張り物性の100%伸長のモジュラスは2.8MPaであり、実施例7~10と比べ著しく低い値であった。引張り強さにつては、11.5MPaであった。いずれも実施例7~10と比べ低い値であった。
 比較例4の引き裂き強度については、41~43N/mmであり、実施例7~10と比べ著しく低い値であった。
In Comparative Example 4, an elastic body was prepared in the same manner as in Example 7, except that the fiber reinforced thermoplastic resin composition was not used and the EPDM of the second elastomer was increased to 100 parts by weight. The modulus of 100% elongation of the tensile properties of the obtained elastic body was 2.8 MPa, which was a significantly lower value than in Examples 7 to 10. The tensile strength was 11.5 MPa. All values were lower than those in Examples 7 to 10.
The tear strength of Comparative Example 4 was 41 to 43 N / mm, which was significantly lower than that of Examples 7 to 10.
 また、表3から明らかなように、硬度については、実施例7~10は76~82であり、所定の硬度を得ることができたから、剛性にも優れている。
 
Further, as apparent from Table 3, the hardness of Examples 7 to 10 is 76 to 82, and a predetermined hardness can be obtained, so that the rigidity is also excellent.

Claims (11)

  1. (a)ポリオレフィン、
    (b)第1のエラストマー、
    (c)平均粒子径1μm以下で水分量1000ppm以下の球状のシリカ、
    (d)ポリアミドを有する熱可塑性樹脂、
     からなり、成分(a)、成分(b)、成分(c)がマトリックスを構成しており、そのマトリックス中に成分(d)が平均径1μm以下で、アスペクト比が2以上1000以下の極細な繊維として分散しており、成分(a)、成分(b)、成分(c)及び成分(d)の各成分が化学結合をしている(A)繊維強化熱可塑性樹脂組成物と、
    (B)第2のエラストマーと、を混練してなることを特徴とする繊維強化弾性体。
    (A) polyolefin,
    (B) a first elastomer,
    (C) spherical silica having an average particle size of 1 μm or less and a water content of 1000 ppm or less,
    (D) a thermoplastic resin having polyamide,
    The component (a), the component (b), and the component (c) constitute a matrix, and the component (d) has an average diameter of 1 μm or less and an aspect ratio of 2 to 1000 in the matrix. (A) a fiber-reinforced thermoplastic resin composition that is dispersed as fibers, and each of the components (a), (b), (c), and (d) is chemically bonded;
    (B) A fiber-reinforced elastic body obtained by kneading a second elastomer.
  2.  成分(b)と組成物(B)の合計量が100重量部に対して、成分(a)が1~40重量部、成分(c)が1~50重量部、成分(d)からなる極細な繊維が1~50重量部であることを特徴とする請求項1に記載の繊維強化弾性体。 The total amount of the component (b) and the composition (B) is 100 parts by weight, and the component (a) is 1 to 40 parts by weight, the component (c) is 1 to 50 parts by weight, and the component (d) is extremely fine. The fiber-reinforced elastic body according to claim 1, wherein the amount of the fiber is 1 to 50 parts by weight.
  3.  成分(b)及び組成物(B)の少なくとも一方が加硫されていることを特徴とする請求項1に記載の繊維強化弾性体。 The fiber-reinforced elastic body according to claim 1, wherein at least one of the component (b) and the composition (B) is vulcanized.
  4.  組成物(A)において、成分(a)、成分(b)、成分(c)のマトリックス中に、成分(d)の80%以上が極細な繊維として分散していることを特徴とする請求項1~3のいずれか一項に記載の繊維強化弾性体。 In the composition (A), 80% or more of the component (d) is dispersed as ultrafine fibers in the matrix of the component (a), the component (b), and the component (c). 4. The fiber-reinforced elastic body according to any one of 1 to 3.
  5.  組成物(A)がシランカップリング剤を有し、組成物(A)において、成分(d)の極細な繊維が、成分(a)と、成分(b)と、成分(c)との少なくともいずれか一つの成分に、シランカップリング剤及び成分(c)の少なくとも一方を介して化学結合していることを特徴とする請求項1~4のいずれか一項に記載の繊維強化弾性体。 The composition (A) has a silane coupling agent, and in the composition (A), the ultrafine fiber of the component (d) is at least of the component (a), the component (b), and the component (c). The fiber-reinforced elastic body according to any one of claims 1 to 4, which is chemically bonded to any one of the components via at least one of a silane coupling agent and the component (c).
  6.  成分(d)の融点が130~350℃であることを特徴とする請求項1~5のいずれか一項に記載の繊維強化弾性体。 The fiber-reinforced elastic body according to any one of claims 1 to 5, wherein the melting point of the component (d) is 130 to 350 ° C.
  7.  成分(a)が、50℃以上の軟化点又は70~250℃の範囲の融点を有することを特徴とする請求項1~6のいずれか一項に記載の繊維強化弾性体。 The fiber-reinforced elastic body according to any one of claims 1 to 6, wherein the component (a) has a softening point of 50 ° C or higher or a melting point in the range of 70 to 250 ° C.
  8.  成分(b)及び組成物(B)の少なくとも一方は、加硫可能なゴムであることを特徴とする請求項1~7のいずれか一項に記載の繊維強化弾性体。 The fiber-reinforced elastic body according to any one of claims 1 to 7, wherein at least one of the component (b) and the composition (B) is a vulcanizable rubber.
  9.  成分(b)及び組成物(B)の少なくとも一方が熱可塑性エラストマーであることを特徴とする請求項1~8のいずれか一項に記載の繊維強化弾性体。 The fiber-reinforced elastic body according to any one of claims 1 to 8, wherein at least one of the component (b) and the composition (B) is a thermoplastic elastomer.
  10. (a)ポリオレフィン、
    (b)第1のエラストマー、
    (c)平均粒子径1μm以下で水分量1000ppm以下の球状のシリカ及び
    (d)ポリアミドを有する熱可塑性樹脂からなり、
     成分(a)、成分(b)、成分(c)がマトリックスを構成しており、そのマトリックス中に成分(d)が平均径1μm以下で、アスペクト比が2以上1000以下の極細な繊維として分散しており、成分(a)、成分(b)、成分(c)及び成分(d)の各成分が化学結合をしている(A)繊維強化熱可塑性樹脂組成物と、
    (B)第2のエラストマーと、を混練することを特徴とする繊維強化弾性体の製造方法。
    (A) polyolefin,
    (B) a first elastomer,
    (C) an average particle diameter of 1 μm or less and a water content of 1000 ppm or less of spherical silica and (d) a thermoplastic resin having a polyamide,
    Component (a), component (b), and component (c) constitute a matrix, and component (d) is dispersed in the matrix as ultrafine fibers having an average diameter of 1 μm or less and an aspect ratio of 2 to 1000. And (A) a fiber reinforced thermoplastic resin composition in which each component of component (a), component (b), component (c) and component (d) is chemically bonded;
    (B) A method for producing a fiber-reinforced elastic body, which comprises kneading a second elastomer.
  11. (a)ポリオレフィン、
    (b)第1のエラストマー、
    (c)平均粒子径1μm以下で水分量1000ppm以下の球状のシリカ及び
    (d)ポリアミドを有する熱可塑性樹脂からなり、
     成分(a)、成分(b)、成分(c)がマトリックスを構成しており、そのマトリックス中に成分(d)が平均径1μm以下で、アスペクト比が2以上1000以下の極細な繊維として分散しており、成分(a)、成分(b)、成分(c)及び成分(d)の各成分が化学結合をしている(A)繊維強化熱可塑性樹脂組成物と、
    (B)第2のエラストマーと、
    (C)加硫剤と、
    を混練し、次に加熱することを特徴とする繊維強化弾性体の製造方法。
    (A) polyolefin,
    (B) a first elastomer,
    (C) an average particle diameter of 1 μm or less and a water content of 1000 ppm or less of spherical silica and (d) a thermoplastic resin having a polyamide,
    Component (a), component (b), and component (c) constitute a matrix, and component (d) is dispersed in the matrix as ultrafine fibers having an average diameter of 1 μm or less and an aspect ratio of 2 to 1000. And (A) a fiber reinforced thermoplastic resin composition in which each component of component (a), component (b), component (c) and component (d) is chemically bonded;
    (B) a second elastomer;
    (C) a vulcanizing agent;
    A method for producing a fiber-reinforced elastic body comprising kneading and then heating.
PCT/JP2011/069143 2010-10-04 2011-08-25 Fiber-reinforced elastomer and method for manufacturing same WO2012046519A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-224774 2010-10-04
JP2010224774A JP2012077223A (en) 2010-10-04 2010-10-04 Fiber-reinforced elastomer and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2012046519A1 true WO2012046519A1 (en) 2012-04-12

Family

ID=45927516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069143 WO2012046519A1 (en) 2010-10-04 2011-08-25 Fiber-reinforced elastomer and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2012077223A (en)
WO (1) WO2012046519A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106336657A (en) * 2015-07-10 2017-01-18 朗盛德国有限责任公司 Thermoplastic moulding materials
WO2023280515A1 (en) * 2021-07-06 2023-01-12 Contitech Ag Process for recycling reinforced elastomer components and reinforced elastomer components containing recycled materials

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051460B2 (en) * 2012-12-04 2015-06-09 E.I. Du Pont De Nemours And Company Heat resistant hydrocarbon elastomer compositions
US9068066B2 (en) * 2012-12-04 2015-06-30 E I Du Pont De Nemours And Company Heat resistant hydrocarbon elastomer compositions
JP6440613B2 (en) * 2013-05-20 2018-12-19 古河電気工業株式会社 Heat-resistant silane cross-linked resin molded body, heat-resistant silane cross-linkable resin composition and production method thereof, heat-resistant product using heat-resistant silane cross-linked resin molded body,
CN105579741B (en) 2013-09-26 2018-11-13 阪东化学株式会社 V-type band and its manufacturing method
KR20160064176A (en) 2013-09-30 2016-06-07 반도 카가쿠 가부시키가이샤 Flat belt and production method therefor
EP3970936B1 (en) * 2019-05-17 2024-10-09 Otsuka Chemical Co., Ltd. Composite laminate and method for producing same
WO2020235343A1 (en) * 2019-05-17 2020-11-26 大塚化学株式会社 Composite laminate and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278360A (en) * 1994-04-08 1995-10-24 Ube Ind Ltd Fiber-reinforced elastomer and its production
JPH11106570A (en) * 1997-09-30 1999-04-20 Ube Ind Ltd Polyolefin-polyamide resin composition and its production
JP2001214001A (en) * 2000-02-03 2001-08-07 Ube Ind Ltd Fiber-reinforced elastic body
JP2004149634A (en) * 2002-10-29 2004-05-27 Yazaki Corp Insulating part using abrasion-resistant resin composition
JP2004149635A (en) * 2002-10-29 2004-05-27 Daimaru Sangyo Kk Polyolefin resin composition and method for producing the same
JP2008056753A (en) * 2006-08-30 2008-03-13 Daimaru Sangyo Kk Fiber-reinforced elastomer
JP2008285564A (en) * 2007-05-16 2008-11-27 Daimaru Sangyo Kk Polyolefin-polyamide resin composition and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278360A (en) * 1994-04-08 1995-10-24 Ube Ind Ltd Fiber-reinforced elastomer and its production
JPH11106570A (en) * 1997-09-30 1999-04-20 Ube Ind Ltd Polyolefin-polyamide resin composition and its production
JP2001214001A (en) * 2000-02-03 2001-08-07 Ube Ind Ltd Fiber-reinforced elastic body
JP2004149634A (en) * 2002-10-29 2004-05-27 Yazaki Corp Insulating part using abrasion-resistant resin composition
JP2004149635A (en) * 2002-10-29 2004-05-27 Daimaru Sangyo Kk Polyolefin resin composition and method for producing the same
JP2008056753A (en) * 2006-08-30 2008-03-13 Daimaru Sangyo Kk Fiber-reinforced elastomer
JP2008285564A (en) * 2007-05-16 2008-11-27 Daimaru Sangyo Kk Polyolefin-polyamide resin composition and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106336657A (en) * 2015-07-10 2017-01-18 朗盛德国有限责任公司 Thermoplastic moulding materials
WO2023280515A1 (en) * 2021-07-06 2023-01-12 Contitech Ag Process for recycling reinforced elastomer components and reinforced elastomer components containing recycled materials

Also Published As

Publication number Publication date
JP2012077223A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
WO2012046519A1 (en) Fiber-reinforced elastomer and method for manufacturing same
US6037418A (en) Resin-reinforced elastomer, process for producing same and pneumatic tire using same
JP3379208B2 (en) Fiber reinforced elastic body and method for producing the same
WO2012014676A1 (en) Fiber-reinforced thermoplastic resin composition and process for producing fiber-reinforced thermoplastic resin composition
JP3661736B2 (en) Method for producing polyolefin-polyamide resin composition
JP3622470B2 (en) Polyamide fiber reinforced rubber composition and production method thereof
JP5183046B2 (en) Fiber reinforced elastic body
JP4479124B2 (en) Rubber composition
JP2004149635A (en) Polyolefin resin composition and method for producing the same
JPH0987434A (en) Rubber composition for transmission belt
JP3326957B2 (en) Fiber reinforced thermoplastic composition and method for producing the same
WO2017111019A1 (en) Rubber composition, process for producing same, and pneumatic tire
JP3624488B2 (en) Rubber composition for hose
JP3453760B2 (en) Polyamide fiber reinforced elastic composition and method for producing the same
JPH07330961A (en) Rubber composition for tire cord coating
JPH07330962A (en) Bead filler rubber composition
JP3154390B2 (en) Method for producing fiber-reinforced elastic composition
JPH083369A (en) Rubber composition for base tread
JPH083368A (en) Composition for rubber chafer
JP4048676B2 (en) Fiber reinforced elastic body
JP3120711B2 (en) Method for producing fiber-reinforced thermoplastic resin composition
JPH07330960A (en) Belt cushion rubber composition
KR100196545B1 (en) Fine fiber-reinforced thermoplastics elastomer composition and process for producing the same
JP2006249298A (en) Rubber composition
JPH083372A (en) Tire for large-sized vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830452

Country of ref document: EP

Kind code of ref document: A1