WO2012046512A1 - 無線端末、無線通信方法、および無線通信システム - Google Patents

無線端末、無線通信方法、および無線通信システム Download PDF

Info

Publication number
WO2012046512A1
WO2012046512A1 PCT/JP2011/068658 JP2011068658W WO2012046512A1 WO 2012046512 A1 WO2012046512 A1 WO 2012046512A1 JP 2011068658 W JP2011068658 W JP 2011068658W WO 2012046512 A1 WO2012046512 A1 WO 2012046512A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
wireless
mtc
mtc terminal
terminals
Prior art date
Application number
PCT/JP2011/068658
Other languages
English (en)
French (fr)
Inventor
吉澤 淳
高野 裕昭
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US13/818,703 priority Critical patent/US9088914B2/en
Priority to CN201180047491.XA priority patent/CN103155680B/zh
Publication of WO2012046512A1 publication Critical patent/WO2012046512A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities

Definitions

  • the present invention relates to a wireless terminal, a wireless communication method, and a wireless communication system.
  • 4G Long Term Evolution
  • 3GPP Third Generation Partnership Project
  • eNodeB macrocell base station
  • HeNodeB Home eNodeB
  • femtocell base station small mobile phone base station
  • RHH remote radio head
  • a UE User Equipment: user terminal
  • a UE synchronizes a frame with the base station based on a synchronization signal transmitted from the base station, and then the UE internal oscillator is changed to the base station oscillator. Synchronize with high accuracy.
  • each UE performs time adjustment according to the distance between the base station and the UE, called Timing Advance, so that radio signals transmitted from a plurality of user terminals are simultaneously received by the base station.
  • Timing Advance is performed during a random access procedure in which a user terminal transmits a preamble toward a random access window.
  • the Timing Advance value can be obtained from the relationship between the arrival time of the preamble at the base station and the random access window.
  • Such random access is described in Patent Document 1 and Patent Document 2.
  • MTC Machine Type Communications
  • M2M Machine to Machine
  • an MTC terminal collects human electrocardiogram information and transmits the electrocardiogram information to a server using an uplink when a certain trigger condition is satisfied.
  • the vending machine functions as an MTC terminal and the server reports sales to the managed vending machine at regular intervals (for example, 30 days).
  • an object of the present invention is to provide a new and improved wireless terminal, wireless communication method, and the like that can appropriately avoid congestion due to concentration of random access, And providing a wireless communication system.
  • a storage unit that stores information on a plurality of wireless terminals that form a group in which the wireless terminal operates as a representative wireless terminal, A communication control unit that controls random access to the base station before other wireless terminals in the group, and a transmission unit that transmits information on the plurality of wireless terminals stored in the storage unit to the base station, A wireless terminal is provided.
  • Control information for controlling random access by the plurality of wireless terminals may be set based on the information regarding the plurality of wireless terminals transmitted from the transmission unit.
  • the information regarding the plurality of wireless terminals may include terminal number information of the plurality of wireless terminals.
  • the wireless terminal may further include a receiving unit that receives information on the plurality of wireless terminals from a server that manages the plurality of wireless terminals.
  • the transmission unit may transmit information on the plurality of wireless terminals to the base station in the random access process.
  • the transmitter may transmit information on the plurality of wireless terminals to the base station after the random access.
  • the group may be a group classified by an access class set in a USIM of the plurality of wireless terminals.
  • the plurality of wireless terminals forming the group may exist in a cell area of the base station.
  • a wireless communication method in a wireless terminal wherein information regarding a plurality of wireless terminals forming a group in which the wireless terminal operates as a representative wireless terminal is obtained.
  • a wireless communication method comprising: storing; controlling random access to a base station before other wireless terminals in the group; and transmitting information on the plurality of wireless terminals to the base station Is provided.
  • the wireless terminal includes a base station and a wireless terminal that operates as a representative wireless terminal of a plurality of wireless terminals that form a group.
  • a storage unit that stores information about the plurality of wireless terminals, a communication control unit that controls random access to the base station before other wireless terminals in the group, and the plurality of units stored in the storage unit
  • a wireless communication system including a transmission unit that transmits information on the wireless terminal to the base station.
  • FIG. 5 is a sequence diagram showing an operation of the radio communication system according to the first embodiment of the present invention.
  • FIG. 6 is a sequence diagram showing a modified example of the operation of the wireless communication system according to the first embodiment of the present invention. It is explanatory drawing which showed the relationship between RACH_configuration_index and a sub-frame.
  • FIG. 6 is a sequence diagram showing an operation of the wireless communication system 1 according to the second embodiment of the present invention.
  • a plurality of constituent elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numeral.
  • a plurality of configurations having substantially the same functional configuration are distinguished as necessary as MTC terminals 20A, 20B, and 20C.
  • MTC terminals 20A, 20B, and 20C are simply referred to as the MTC terminal 20.
  • FIG. 1 is an explanatory diagram showing a configuration example of the wireless communication system 1.
  • the wireless communication system 1 includes a base station 10, a core network including an MME (Mobility Management Entity) 12, an S-GW (Serving Gateway) 14, and a PDN (Packet Data Network) -GW 16.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • PDN Packet Data Network
  • the embodiment of the present invention can be applied to wireless communication apparatuses such as the base station 10 and the MTC terminal 20 shown in FIG.
  • the base station 10 may be, for example, an eNodeB, a relay node, or a Home eNodeB that is a small home base station.
  • the MTC terminal 20 is an example of a user terminal (UE: User Equipment), and the embodiment of the present invention is also applicable to a non-MTC terminal such as a mobile phone or a PC (Personal Computer).
  • the base station 10 is a radio base station that communicates with the MTC terminal 20. Although only one base station 10 is shown in FIG. 1, a large number of base stations 10 are actually connected to the core network. Although not shown in FIG. 1, the base station 10 also communicates with other user terminals such as non-MTC terminals.
  • the MME 12 is a device that controls the setting, release, and handover of a data communication session.
  • the MME 12 is connected to the base station 10 via an interface called X2.
  • the S-GW 14 is a device that performs routing and transfer of user data.
  • the PDN-GW 16 functions as a connection point with the IP service network, and transfers user data to and from the IP service network.
  • the MTC terminal 20 is a radio terminal specialized for MTC, which is discussed in 3GPP and is communication that is not directly used by humans between machines.
  • the MTC terminal 20 performs radio communication according to the application with the base station 10. Further, the MTC terminal 20 performs bidirectional communication with the MTC server 30 via the core network.
  • the MTC terminal 20 collects human electrocardiogram information and transmits the electrocardiogram information to the server using an uplink when a certain trigger condition is satisfied.
  • the vending machine functions as the MTC terminal 20 and the MTC server 30 reports sales to the managed vending machine at regular intervals (for example, 30 days).
  • FIG. 1 shows an example in which the MTC server 30 is provided in the wireless communication system 1 as an independent device, the present embodiment is not limited to such an example.
  • the function as the MTC server 30 may be implemented in the base station 10, such as an eNodeB or a relay node, the MTC terminal 20, or a non-MTC terminal. That is, a base station 10 such as an eNodeB or a relay node, an MTC terminal 20, or a non-MTC terminal may also serve as the function of the MTC server 30.
  • Such an MTC terminal 20 generally has the following characteristics as an example. However, each MTC terminal 20 does not have to have all the following characteristics, and which characteristics are dependent on an application. ⁇ There is almost no movement (Low Mobility) ⁇ Small-capacity data transfer (Online Small Data Transmission) ⁇ Ultra Low Power Consumption ⁇ Grouping and handling each MTC (Group based MTC Features)
  • FIG. 2 is an explanatory diagram showing a 4G frame format.
  • a 10 ms radio frame is composed of ten 1 ms subframes # 0 to # 9.
  • Each subframe of 1 ms is composed of two 0.5 ms slots.
  • each 0.5 ms slot is composed of 7 Ofdm symbols.
  • a synchronization signal used for frame synchronization by the UE is transmitted using the Ofdm symbol with a diagonal line in FIG. More specifically, the secondary synchronization signal (SSS) in the fifth Ofdm symbol of subframe # 0, the primary synchronization signal (PSS) in the sixth Ofdm symbol of subframe # 0, the secondary synchronization signal in the fifth Ofdm symbol of subframe # 5, A primary synchronization signal is transmitted in the sixth Ofdm symbol of subframe # 5.
  • SSS secondary synchronization signal
  • PSS primary synchronization signal
  • a primary synchronization signal is transmitted in the sixth Ofdm symbol of subframe # 5.
  • the UE acquires a 5 ms period using the primary synchronization signal, and simultaneously detects a cell number group corresponding to the current location from the three cell number groups. Thereafter, the UE acquires a radio frame period (10 ms period) using the secondary synchronization signal.
  • a ZadoffChu sequence is used as the code sequence of the synchronization signal. Since 168 types of encoded sequences are used for the cell numbers in the cell number group and two types of encoded sequences are used to obtain a radio frame period, 336 types of encoded sequences are prepared. Based on the combination of the secondary synchronization signal transmitted in subframe # 0 and the secondary synchronization signal transmitted in subframe # 5, the user terminal determines whether the received subframe is subframe # 0 or subframe # 5 Can be judged.
  • the 4G UE is connected to the base station 10 by executing a procedure called random access with the base station 10. Although details have not been determined, it is considered that a general MTC terminal is connected to the base station 10 by performing random access similar to the UE.
  • a random access flow assumed to be performed by the base station 10 and a general MTC terminal will be described with reference to FIG.
  • FIG. 3 is a sequence diagram showing random access. As shown in FIG. 3, when the MTC terminal receives the primary synchronization signal, the secondary synchronization signal, and the BCH from the base station 10 (S42), as described in “1-2. While performing frame synchronization, the ACB parameters included in the BCH are confirmed (S44). The ACB parameters will be described in detail in “1-4. ACB”.
  • the MTC terminal transmits a preamble toward a random access window in the radio frame (S46).
  • the MTC terminal sets PREAMBLE_TRANSMISSION_COUNTER indicating the number of preamble transmissions, sets backoff parameter value 0 which is a parameter related to backoff, and transmits the preamble with appropriate power.
  • the MTC terminal fails to transmit the preamble, the MTC terminal refers to these parameters and retransmits the preamble after a predetermined back-off time has elapsed. Further, the MTC terminal transmits a preamble having a pattern selected from a plurality of preamble patterns included in the BCH received from the base station 10.
  • the base station 10 calculates the Timing Advance value from the relationship between the arrival time of the preamble at the base station 10 and the random access window (S48). Then, the base station 10 transmits a random access response to the MTC terminal (S50).
  • This random access response includes, for example, uplink transmission permission data and a Timing Advance value.
  • the MTC terminal When receiving the random access response, the MTC terminal adjusts the transmission timing based on the Timing Advance value (S52), and transmits the L2 / L3 message (S54). On the other hand, when the base station 10 transmits a contention resolution message to the MTC terminal (S56), the MTC terminal and the base station 10 are connected.
  • ACB is an access restriction according to AC (Access Class) in LTE.
  • AC is a number entered in advance in USIM, and one of 10 types of numbers from 0 to 9 is assigned. Depending on the terminal, any number from 11 to 15 with higher priority is assigned.
  • AC13 is public utilities (water / gas), and terminals belonging to this AC can access with higher priority.
  • the ACB parameter is a parameter that is broadcast as system information from the base station 10 in order to realize the above-described ACB, such as AC barring factor and AC barring time.
  • AC barring factor is threshold information that is compared with a random number generated in the MTC terminal in order to determine whether transmission by the MTC terminal is possible. That is, the MTC terminal generates a random number between 0 and 1 such as 0.163, 0.2, and 0.89, and compares the generated random number with the AC barring factor. When the random number is smaller than the AC barring factor, transmission by the MTC terminal is permitted.
  • the AC barring time is time information for determining the timing at which the MTC terminal retries the process when the transmission of the MTC terminal is not permitted by comparing the random number generated in the MTC terminal with the AC barring factor. It is.
  • the MTC terminal retries random access after the elapse of time determined based on the AC barring time received from the base station 10.
  • the MTC terminal may be required to periodically connect to the base station 10 and transmit information to the MTC server via the base station 10 such as every 30 minutes or every hourly time.
  • the MTC terminals when many MTC terminals are connected to the base station 10, it is expected that random access including transmission of a preamble will be performed simultaneously. As a result, it is considered that random access concentrates and MTC congestion occurs.
  • a telemetry MTC terminal may perform unexpected / unscheduled simultaneous transmission due to a recovery immediately after a power failure, disaster, heavy rain, or the like. Also in this case, it is considered that random access concentrates and MTC congestion occurs.
  • the congestion due to the first case can be predicted in advance, so that the number of accesses from the MTC terminal can be appropriately adjusted by the above ACB, for example.
  • the base station 10 obtains statistics on periodic access increase / decrease in advance and appropriately allocates radio resources assuming a predicted access amount, so that a measure appropriate to the concentration of access can be performed to some extent. Can be taken.
  • the MTC terminal can avoid the congestion.
  • the MTC terminal can reduce the power consumption from the RAN. It is assumed that there are many cases that are not always connected to the network, and a large amount of radio resources will be consumed for reporting system information.
  • Each embodiment of the present invention is realized by grouping a plurality of MTC terminals 20 and determining a representative MTC terminal in the group. Therefore, prior to the description of the configurations of the base station 10 and the MTC terminal 20, the grouping of the MTC terminals 20 and the determination of the representative MTC terminal will be described.
  • FIG. 4 is an explanatory diagram showing a specific example of grouping of the MTC terminals 20.
  • the MTC terminals 20 located in the cell area of the same base station 10 are divided into a plurality of groups.
  • the MTC terminal 20 located in the cell area of the base station 10A is divided into MTC group 1 or MTC group 2 as shown in FIG.
  • one or more MTC terminals 20 are determined as representative MTC terminals from the plurality of MTC terminals 20 belonging to each MTC group. For example, in MTC group 2 composed of MTC terminals 20A to 20E, MTC terminal 20A is determined as the representative MTC terminal.
  • MTC terminal 20A is determined as the representative MTC terminal.
  • FIG. 5 is an explanatory diagram showing a sequence related to grouping of the MTC terminals 20.
  • each MTC terminal 20 transmits terminal information to the MTC server 30 (S62).
  • the terminal information includes information for specifying in which cell area of the base station 10 the MTC terminal 20 is located.
  • the terminal information the position information acquired by GPS or various sensors, the signal strength information of each base station 10 in the MTC terminal 20, the base station ID of the base station 10 to which the MTC terminal 20 has previously connected, and the MTC AC etc. described in USIM of the terminal 20 are mentioned.
  • the MTC server 30 groups the plurality of MTC terminals 20 based on the terminal information (S64). Specifically, the MTC server 30 groups the MTC terminals 20 for each of a plurality of MTC terminals 20 located in the cell area of the same base station 10. Here, the MTC server 30 may make the MTC terminal 20 having the same AC or the MTC terminal 20 providing the same service the same MTC group.
  • the MTC server 30 determines one or more MTC terminals 20 in each MTC group as representative MTC terminals in the MTC group (S66).
  • the MTC server 30 may determine the representative MTC terminals randomly or may determine that the representative MTC terminals are distributed based on the location information.
  • the MTC server 30 transmits the group information to the MTC terminal determined as the representative MTC terminal of each MTC group (S68). For example, if the MTC server 30 determines that the MTC terminal 20A is the representative MTC terminal of the MTC group 2, the MTC server 30 transmits group information to the MTC terminal 20A. Then, the MTC terminal 20A stores group information (S70). Note that the group information includes, for example, terminal number information of the MTC terminals 20 belonging to the MTC group.
  • the MTC server 30 notifies each MTC terminal 20 of a group number indicating the MTC group to which each MTC terminal 20 belongs (S72).
  • the method for grouping the MTC terminals 20 and the method for determining the representative MTC terminal have been described above, but the present embodiment is not limited to this example.
  • information indicating whether each MTC terminal 20 belongs to an MTC group or a representative MTC terminal may be set in each MTC terminal 20 in advance.
  • the group to which the MTC terminal 20 belongs and the representative MTC terminal may be set manually.
  • FIG. 6 is an explanatory diagram showing the configuration of the base station 10 according to the first embodiment.
  • the base station 10 includes an antenna 116, an antenna duplexer 118, a reception circuit 120, a transmission circuit 122, a reception data processing unit 132, an interface 133, a communication control unit 136, A transmission data processing unit 138 and an upper layer 140 are provided.
  • the antenna 116 receives a radio signal from the MTC terminal 20 and converts the radio signal into an electrical reception signal. At the time of reception, since the antenna 116 and the reception circuit 120 are connected via the antenna duplexer 118, the reception signal obtained by the antenna 116 is supplied to the reception circuit 120.
  • a transmission signal is supplied to the antenna 116 from the transmission circuit 122.
  • the antenna 116 transmits this transmission signal to the MTC terminal 20 as a radio signal.
  • the base station 10 may include a plurality of antennas.
  • the base station 10 can perform MIMO (Multiple Input Multiple Output) communication, diversity communication, and the like.
  • MIMO Multiple Input Multiple Output
  • the reception circuit 120 performs demodulation processing and decoding processing on the reception signal supplied from the antenna 116 and supplies the reception data after processing to the reception data processing unit 132.
  • the receiving circuit 120 functions as a receiving unit in cooperation with the antenna 116.
  • the transmission circuit 122 performs modulation processing of a control signal (PDCCH, BCH, etc.) supplied from the communication control unit 136 and a data signal (PDSCH) supplied from the transmission data processing unit 138, and transmits the processed transmission signal to an antenna. 116. As described above, the transmission circuit 122 functions as a transmission unit in cooperation with the antenna 116.
  • a control signal PDCCH, BCH, etc.
  • PDSCH data signal supplied from the transmission data processing unit 138
  • the reception data processing unit 132 analyzes the reception data supplied from the reception circuit 120 and supplies the reception data for the upper layer 140 to the interface 133. On the other hand, the reception data processing unit 132 supplies the group information from the representative MTC terminal 20 to the communication control unit 136.
  • the interface 133 is an interface with the upper layer 140.
  • the reception data is output from the interface 133 to the upper layer 140, and the transmission data is input from the upper layer 140 to the interface 133.
  • the transmission data processing unit 138 generates a data signal based on the data supplied from the interface 133 and supplies the data signal to the transmission circuit 122.
  • the communication control unit 136 controls overall communication such as resource allocation to each MTC terminal 20 and random access with the MTC terminal 20. Further, the communication control unit 136 functions as a control information setting unit that resets the ACB parameter broadcasted as system information in the BCH for each MTC group based on the group information from the representative MTC terminal 20.
  • the representative MTC terminal 20 randomly accesses the base station 10 prior to the MTC terminals 20 in the MTC group, and the terminals of the MTC terminals 20 belonging to the MTC group as group information for the base station 10 Notify number information.
  • the base station 10 can grasp the number of MTC terminals 20 that are refraining from random access. Therefore, according to the number of MTC terminals 20 that refrain from random access, the ACB parameters are reset so that random access is not concentrated. To do.
  • the communication control unit 136 may reset the AC barring factor to a smaller value as the number of terminals indicated by the terminal number information received from the representative MTC terminal 20 is larger.
  • the random number generated by the MTC terminal 20 is reset if the AC barring factor is reset from 0.5 to 0.2.
  • the probability that will be smaller than AC barring factor is reduced from 50% to 20%. In this way, by resetting the AC barring factor to a small value, the probability that the random number generated by the MTC terminal 20 will be smaller than the AC barring factor is reduced, so the concentration of random access from the MTC terminal 20 is suppressed. Is possible.
  • the communication control unit 136 sets the AC barring time so that the larger the number of terminals indicated by the terminal number information received from the representative MTC terminal 20, the later the random access retry timing determined by the AC barring time. It may be reset. According to such a configuration, the timing at which the MTC terminal 20 performs random access can be distributed, so that congestion of random access can be suppressed.
  • the communication control unit 136 When the ACB parameter is reset as described above, the communication control unit 136 describes the group number indicating the target MTC group and the ACB parameter after the reset in the system information as shown in FIG. Furthermore, the communication control unit 136 adds a reset flag indicating whether the ACB parameter is a parameter after reset based on the terminal number information. By confirming the reset flag, the MTC terminal 20 can grasp whether or not the representative MTC terminal 20 has made a random access. Therefore, the MTC terminal 20 can perform a random access after the representative MTC terminal 20.
  • FIG. 8 is an explanatory diagram showing the configuration of the MTC terminal 20 according to the first embodiment.
  • the MTC terminal 20 includes an antenna 216, an antenna duplexer 218, a reception circuit 220, a transmission circuit 222, a reception data processing unit 232, an interface 233, and a group information storage unit 234.
  • the antenna 216 receives a radio signal from the base station 10 and converts the radio signal into an electrical reception signal. At the time of reception, since the antenna 216 and the reception circuit 220 are connected via the antenna duplexer 218, the reception signal obtained by the antenna 216 is supplied to the reception circuit 220.
  • the antenna 216 and the transmission circuit 222 are connected via the antenna duplexer 218, a transmission signal is supplied from the transmission circuit 222 to the antenna 216.
  • the antenna 216 transmits this transmission signal to the base station 10 as a radio signal.
  • the MTC terminal 20 may include a plurality of antennas.
  • the MTC terminal 20 can perform MIMO communication, diversity communication, and the like.
  • the reception circuit 220 performs demodulation processing and decoding processing of the reception signal supplied from the antenna 216 and supplies the processed reception data to the reception data processing unit 232. As described above, the reception circuit 220 functions as a reception unit in cooperation with the antenna 216.
  • the transmission circuit 222 performs modulation processing of the control signal supplied from the communication control unit 236 and the data signal supplied from the transmission data processing unit 238, and supplies the processed transmission signal to the antenna 216. As described above, the transmission circuit 222 functions as a transmission unit in cooperation with the antenna 216.
  • the reception data processing unit 232 analyzes the reception data supplied from the reception circuit 220 and supplies the reception data for the upper layer to the interface 233. On the other hand, group information received when the MTC terminal 20 is determined to be the representative MTC terminal is supplied to the group information storage unit 234. The group information storage unit 234 stores group information supplied from the reception data processing unit 232.
  • the interface 233 is an interface with the upper layer 240.
  • the reception data is output from the interface 233 to the upper layer 240, and the transmission data is input from the upper layer 240 to the interface 233.
  • the upper layer 240 is a functional unit for executing an application corresponding to the MTC terminal 20.
  • examples of the application include “Metering” and “Health”.
  • the application is “Metering”
  • data indicating the amount of water or electricity used is assumed as the transmission data.
  • data indicating the current physical condition of the patient is assumed as the transmission data.
  • the transmission data processing unit 238 generates a data signal based on the data supplied from the interface 133 and supplies the data signal to the transmission circuit 222.
  • the transmission data processing unit 238 When the MTC terminal 20 operates as a representative MTC terminal, the transmission data processing unit 238 generates a data signal indicating group information stored in the group information storage unit 234 and supplies the data signal to the transmission circuit 222.
  • the communication control unit 236 controls overall communication such as transmission processing and reception processing by the MTC terminal 20 and random access. For example, the communication control unit 236 generates a random number at the time of random access, and compares the generated random number with an AC barring factor received from the base station 10. Then, the communication control unit 236 causes the transmission circuit 222 to transmit a preamble when the generated random number is smaller than the AC barring factor. On the other hand, when the generated random number is larger than the AC barring factor, the random access is retried after a time determined based on the AC barring time received from the base station 10.
  • FIG. 9 is a sequence diagram showing the operation of the wireless communication system 1 according to the first embodiment of the present invention.
  • the connection between the base station 10 and each MTC terminal 20 is realized by the random access procedure according to the present embodiment shown in FIG.
  • FIG. 9 shows a sequence when MTC terminals 20A and 20B belong to MTC group 2 and MTC terminal 20A is determined as a representative MTC terminal.
  • the representative MTC terminal 20A performs random access to the base station 10 prior to other MTC terminals 20B in the MTC group. Specifically, when the representative MTC terminal 20A receives the system information from the base station 10 (S304), the representative MTC terminal 20A confirms the ACB parameter included in the system information (S308). Then, the communication control unit 236 of the representative MTC terminal 20A determines whether or not preamble transmission is possible based on the ACB parameter, and causes the transmission circuit 222 to transmit a preamble according to the determination result (S312).
  • the base station 10 calculates the Timing Advance value from the relationship between the arrival time of the preamble to the base station 10 and the random access window (S316). Then, the base station 10 transmits a random access response to the representative MTC terminal 20A (S320).
  • This random access response includes, for example, uplink transmission permission data and a Timing Advance value.
  • the representative MTC terminal 20A When receiving the random access response, the representative MTC terminal 20A adjusts the transmission timing based on the Timing Advance value (S324), and then transmits the L2 / L3 message (S328).
  • the representative MTC terminal 20A also transmits the group information stored in the group information storage unit 234 as an L2 / L3 message. With this configuration, it is not necessary to transmit group information separately, so that a series of processing time can be shortened.
  • the base station 10 transmits a contention resolution message to the representative MTC terminal 20A (S332), whereby the representative MTC terminal 20A and the base station 10 are connected.
  • the communication control unit 136 of the base station 10 resets the ACB parameters based on the group information received from the representative MTC terminal 20A (S336). For example, the communication control unit 136 may reset the AC barring factor to a smaller value as the number of terminals indicated by the group information received from the representative MTC terminal 20A is larger. Alternatively, the communication control unit 136 resends the AC barring time so that the larger the number of terminals indicated by the group information received from the representative MTC terminal 20A, the later the random access retry timing determined by the AC barring time. It may be set.
  • the MTC terminal 20B confirms the ACB parameters after resetting with the reset flag being on with the MTC group 2 as the destination (S344). Then, the MTC terminal 20B determines whether or not preamble transmission based on the ACB parameter is possible, and transmits a preamble according to the determination result (S348).
  • the base station 10 calculates the Timing Advance value from the relationship between the arrival time of the preamble to the base station 10 and the random access window (S352). Then, the base station 10 transmits a random access response to the MTC terminal 20B (S356).
  • This random access response includes, for example, uplink transmission permission data and a Timing Advance value.
  • the MTC terminal 20B Upon receiving the random access response, the MTC terminal 20B adjusts the transmission timing based on the Timing Advance value (S360), and transmits the L2 / L3 message (S364). On the other hand, when the base station 10 transmits a contention resolution message to the MTC terminal 20B (S368), the MTC terminal 20B and the base station 10 are connected.
  • the preamble transmission timing from each MTC terminal 20 in the MTC group can be distributed according to the number of terminals in the MTC group. Therefore, it is possible to suppress random access congestion.
  • FIG. 10 is a sequence diagram showing a modified example of the operation of the wireless communication system 1 according to the first embodiment of the present invention.
  • the representative MTC terminal 20A performs random access to the base station 10 prior to other MTC terminals 20B in the MTC group.
  • the modification is different from the example shown in FIG. 9 in that the representative MTC terminal 20A does not transmit the group information together with the L2 / L3 message in S326.
  • the representative MTC terminal 20A transmits group information to the base station 10 after random access to the base station 10 (S334). Subsequently, the communication control unit 136 of the base station 10 resets the ACB parameters based on the group information received from the representative MTC terminal 20A (S336).
  • Second Embodiment> The first embodiment of the present invention has been described above. Subsequently, a second embodiment of the present invention will be described.
  • the second embodiment of the present invention has many parts in common with the first embodiment, but information that the base station 10 resets based on the group information received from the representative MTC terminal 20 is different from the first embodiment. Different. In describing the second embodiment of the present invention, first, supplementary explanation will be given for resources for the MTC terminal 20 to perform random access.
  • RACH_configuration_index The base station 10 specifies a resource for the MTC terminal 20 to transmit a preamble in random access using RACH_configuration_index. Then, the base station 10 broadcasts RACH_configuration_index as system information, and the MTC terminal 20 transmits a preamble in a subframe specified by this RACH_configuration_index.
  • FIG. 11 is an explanatory diagram showing the relationship between RACH_configuration_index and subframes. As shown in FIG. 11, each number of RACH_configuration_index is associated with one or more subframes. For example, RACH_configuration_index # 0 is associated with subframe # 1, and RACH_configuration_index # 9 is associated with subframes # 1, 4, and 7.
  • the MTC terminal 20 transmits a preamble in a random access window in any one of the plurality of subframes. Therefore, it is considered that the preamble transmission from the MTC terminal 20 is dispersed in time as the number of subframes associated with the RACH_configuration_index increases.
  • the base station 10 according to the second embodiment of the present invention resets the RACH_configuration_index based on the group information received from the representative MTC terminal 20.
  • the communication control unit 236 of the base station 10 according to the second embodiment associates RACH_configuration_index with more subframes as the number of terminals indicated by the group information received from the representative MTC terminal 20 increases. Reset to the existing RACH_configuration_index.
  • FIG. 12 is a sequence diagram showing the operation of the wireless communication system 1 according to the second embodiment of the present invention.
  • the connection between the base station 10 and each MTC terminal 20 is realized by the random access procedure according to this embodiment shown in FIG.
  • FIG. 12 shows a sequence when MTC terminals 20A and 20B belong to MTC group 2 and MTC terminal 20A is determined as a representative MTC terminal.
  • the representative MTC terminal 20A performs random access to the base station 10 prior to other MTC terminals 20B in the MTC group. Specifically, when the representative MTC terminal 20A receives the system information from the base station 10 (S404), the representative MTC terminal 20A confirms the ACB parameter and RACH_configuration_index included in the system information (S408).
  • the communication control unit 236 of the representative MTC terminal 20A determines whether or not preamble transmission is possible based on the ACB parameter, and in accordance with the determination result, the preamble is transmitted from the transmission circuit 222 in the random access window of the subframe specified by the RACH_configuration_index. Transmit (S412).
  • the base station 10 calculates the Timing Advance value from the relationship between the arrival time of the preamble to the base station 10 and the random access window (S416). Then, the base station 10 transmits a random access response to the representative MTC terminal 20A (S420).
  • This random access response includes, for example, uplink transmission permission data and a Timing Advance value.
  • the representative MTC terminal 20A When receiving the random access response, the representative MTC terminal 20A adjusts the transmission timing based on the Timing Advance value (S424), and transmits the L2 / L3 message (S428).
  • the representative MTC terminal 20A also transmits the group information stored in the group information storage unit 234 as an L2 / L3 message. With this configuration, it is not necessary to transmit group information separately, so that a series of processing time can be shortened. However, the representative MTC terminal 20A may transmit the group information separately from the L2 / L3 message after the random access.
  • the base station 10 transmits a contention resolution message to the representative MTC terminal 20A (S432), whereby the representative MTC terminal 20A and the base station 10 are connected.
  • the communication control unit 136 of the base station 10 resets the ACB parameter and the RACH_configuration_index based on the group information received from the representative MTC terminal 20A (S436). For example, the communication control unit 136 may reset RACH_configuration_index to RACH_configuration_index associated with more subframes as the number of terminals indicated by the group information received from the representative MTC terminal 20 increases.
  • the MTC terminal 20B confirms the ACB parameter after resetting and the RACH_configuration_index with the resetting flag being on, with the MTC group 2 as the destination (S444). Then, the MTC terminal 20B determines whether or not preamble transmission based on the ACB parameter is possible, and transmits a preamble in a subframe specified by the RACH_configuration_index according to the determination result (S448).
  • the base station 10 calculates the Timing Advance value from the relationship between the arrival time of the preamble to the base station 10 and the random access window (S452). Then, the base station 10 transmits a random access response to the MTC terminal 20B (S456).
  • This random access response includes, for example, uplink transmission permission data and a Timing Advance value.
  • the MTC terminal 20B When receiving the random access response, the MTC terminal 20B adjusts the transmission timing based on the Timing Advance value (S460), and transmits the L2 / L3 message (S464). On the other hand, when the base station 10 transmits a contention resolution message to the MTC terminal 20B (S468), the MTC terminal 20B and the base station 10 are connected.
  • the representative MTC terminal 20 transmits group information indicating the number of terminals in the MTC group to the base station 10, and the base station 10 sets the number of terminals indicated by the group information.
  • control information for controlling random access such as ACB parameters and RACH_configuration_index is reset.
  • the other MTC terminals 20 in the MTC group perform random access according to the reconfigured ACB parameter, RACH_configuration_index, and the like.
  • the preamble transmission timing from each MTC terminal 20 in the MTC group can be distributed according to the number of terminals in the MTC group, so that congestion of random access can be suppressed. is there.
  • each step in the processing of the base station 10 and the MTC terminal 20 in this specification does not necessarily have to be processed in time series in the order described as a sequence diagram.
  • each step in the processing of the base station 10 and the MTC terminal 20 may be processed in an order different from the order described as the sequence diagram or may be processed in parallel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】ランダムアクセスの集中による輻輳を適切に回避するための無線端末、無線通信方法、および無線通信システムを提供する。 【解決手段】無線端末であって、前記無線端末が代表無線端末として動作するグループを形成する複数の無線端末に関する情報を記憶する記憶部と、前記グループ内の他の無線端末より前に基地局へのランダムアクセスを制御する通信制御部と、前記記憶部に記憶されている前記複数の無線端末に関する情報を前記基地局に送信する送信部と、を備える無線端末。

Description

無線端末、無線通信方法、および無線通信システム
 本発明は、無線端末、無線通信方法、および無線通信システムに関する。
 現在、3GPP(Third Generation Partnership Project)において4Gの無線通信システムの規格化が進められている。4Gによれば、リレーやキャリアアグリゲーションなどの技術を用いることにより、最大通信速度の向上やセルエッジでの品質向上を実現することができる。また、HeNodeB(Home eNodeB)、フェムトセル基地局、携帯電話用小型基地局)やRHH(リモートラジオヘッド)など、eNodeB(マクロセル基地局)以外の基地局の導入によりカバレッジを向上させることも検討されている。
 このような無線通信システムにおいて、UE(User Equipment:ユーザ端末)は、基地局から送信される同期シグナルに基づいて基地局とフレームを同期し、その後、UE内部の発振機を基地局の発振機と高い精度で同期させる。また、複数のユーザ端末から送信された無線信号が基地局で同時に受信されるようにするために、各UEは、Timing Advanceと呼ばれる、基地局およびUE間の距離に応じた時間調整を行う。具体的には、Timing Advanceは、ユーザ端末がランダムアクセスウィンドウに向けてプリアンブルを送信するランダムアクセスの手続き中に行われる。上記のプリアンブルの基地局への到達時刻と上記ランダムアクセスウィンドウとの関係からTiming Advance値を取得することが可能である。なお、このようなランダムアクセスに関しては、特許文献1および特許文献2などに記載されている。
 一方、3GPPでは、MTC(Machine Type Communications)に関する議論も進められている。MTCは、一般的にM2M(Machine to Machine)と同義であり、機械と機械の間の人間が直接利用しない通信を意味する。このMTCは、主として、サーバと、人間が直接利用しないMTC端末との間で行われる。
 例えば、医療系のMTCアプリケーションとして、MTC端末が、人間の心電図情報を収集し、あるトリガ条件が満たされた場合に心電図情報をサーバにアップリンクを利用して送信することが考えられる。他のMTCアプリケーションとして、自動販売機をMTC端末として機能させ、サーバが、一定周期(例えば30日)ごとに管理下の自動販売機に対して売上を報告させることも考えられる。
特開2008-60852号公報 国際公開第2009/133599号
 しかし、上記のMTC端末が普及すると、MTC端末によるランダムアクセスの集中によりMTCの輻輳が生じることが懸念される。
 そこで、本発明は上記事情に鑑みてなされたものであり、本発明の目的は、ランダムアクセスの集中による輻輳を適切に回避することが可能な、新規かつ改良された無線端末、無線通信方法、および無線通信システムを提供することにある。
 上記課題を解決するために本発明のある観点によれば、無線端末であって、前記無線端末が代表無線端末として動作するグループを形成する複数の無線端末に関する情報を記憶する記憶部と、前記グループ内の他の無線端末より前に基地局へのランダムアクセスを制御する通信制御部と、前記記憶部に記憶されている前記複数の無線端末に関する情報を前記基地局に送信する送信部と、を備える無線端末が提供される。
 前記送信部から送信された前記複数の無線端末に関する情報に基づき、前記複数の無線端末によるランダムアクセスを制御するための制御情報が設定されてもよい。
 前記複数の無線端末に関する情報は前記複数の無線端末の端末数情報を含んでもよい。
 前記無線端末は、前記複数の無線端末を管理するサーバから前記複数の無線端末に関する情報を受信する受信部をさらに備えてもよい。
 前記送信部は、前記ランダムアクセスの課程で前記複数の無線端末に関する情報を前記基地局に送信してもよい。
 前記送信部は、前記ランダムアクセスの後に前記複数の無線端末に関する情報を前記基地局に送信してもよい。
 前記グループは、前記複数の無線端末のUSIMに設定されたアクセスクラスにより区分されるグループであってもよい。
 前記グループを形成する前記複数の無線端末は、前記基地局のセルエリア内に存在してもよい。
 また、上記課題を解決するために本発明の別の観点によれば、無線端末における無線通信方法であって、前記無線端末が代表無線端末として動作するグループを形成する複数の無線端末に関する情報を記憶するステップと、前記グループ内の他の無線端末より前に基地局へのランダムアクセスを制御するステップと、前記複数の無線端末に関する情報を前記基地局に送信するステップと、を含む無線通信方法が提供される。
 また、上記課題を解決するために本発明の別の観点によれば、基地局と、グループを形成する複数の無線端末の代表無線端末として動作する無線端末と、を備え、前記無線端末は、前記複数の無線端末に関する情報を記憶する記憶部、前記グループ内の他の無線端末より前に前記基地局へのランダムアクセスを制御する通信制御部、および、前記記憶部に記憶されている前記複数の無線端末に関する情報を前記基地局に送信する送信部、を有する無線通信システムが提供される。
 以上説明したように本発明によれば、ランダムアクセスの集中による輻輳を適切に回避することができる。
無線通信システムの構成例を示した説明図である。 4Gのフレームフォーマットを示した説明図である。 ランダムアクセスを示したシーケンス図である。 MTC端末のグループ化の具体例を示した説明図である。 MTC端末のグループ化に関するシーケンスを示した説明図である。 第1の実施形態による基地局の構成を示した説明図である。 システム情報の構成例を示した説明図である。 第1の実施形態によるMTC端末の構成を示した説明図である。 本発明の第1の実施形態による無線通信システムの動作を示したシーケンス図である。 本発明の第1の実施形態による無線通信システムの動作の変形例を示したシーケンス図である。 RACH_configuration_indexとサブフレームとの関係を示した説明図である。 本発明の第2の実施形態による無線通信システム1の動作を示したシーケンス図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の構成を、必要に応じてMTC端末20A、20Bおよび20Cのように区別する。ただし、実質的に同一の機能構成を有する複数の構成要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、MTC端末20A、20Bおよび20Cを特に区別する必要が無い場合には、単にMTC端末20と称する。
 また、以下に示す項目順序に従って当該「発明を実施するための形態」を説明する。
  1.無線通信システムの概略
   1-1.無線通信システムの構成
   1-2.フレーム同期
   1-3.ランダムアクセス
   1-4.ACB
  2.第1の実施形態
   2-1.MTC端末のグループ化
   2-2.基地局の構成
   2-3.MTC端末の構成
   2-4.無線通信システムの動作
  3.第2の実施形態
  4.まとめ
  <1.無線通信システムの概略>
  現在、3GPPにおいて4Gの無線通信システムの規格化が進められている。本発明の実施形態は、一例としてこの4Gの無線通信システムに適用することができるので、まず、4Gの無線通信システムの概略を説明する。
   [1-1.無線通信システムの構成]
 図1は、無線通信システム1の構成例を示した説明図である。図1に示したように、無線通信システム1は、基地局10と、MME(Mobility Management Entity)12、S-GW(Serving Gateway)14、およびPDN(Packet Data Network)-GW16を含むコアネットワークと、MTC端末20と、MTCサーバ30と、を備える。
 本発明の実施形態は、図1に示した基地局10およびMTC端末20などの無線通信装置に適用することができる。なお、基地局10は、例えば、eNodeB、リレーノード、または家庭用小型基地局であるHome eNodeBであってもよい。また、MTC端末20はユーザ端末(UE:User Equipment)の一例であり、本発明の実施形態は、携帯電話やPC(Personal Computer)などの非MTC端末にも適用可能である。
 基地局10は、MTC端末20と通信する無線基地局である。図1においては1台の基地局10のみを示しているが、実際には多数の基地局10がコアネットワークに接続される。また、図1においては記載を省略しているが、基地局10は非MTC端末などの他のユーザ端末とも通信する。
 MME12は、データ通信用のセッションの設定、開放やハンドオーバーの制御を行う装置である。このMME12は、基地局10とX2と呼ばれるインタフェースを介して接続される。
 S-GW14は、ユーザデータのルーティング、転送などを行う装置である。PDN-GW16は、IPサービスネットワークとの接続点として機能し、IPサービスネットワークとの間でユーザデータを転送する。
 MTC端末20は、3GPPで議論されている、機械と機械の間の人間が直接利用しない通信であるMTCに特化した無線端末である。このMTC端末20は、基地局10とアプリケーションに応じた無線通信を行う。また、MTC端末20は、コアネットワークを介してMTCサーバ30と双方向通信を行う。
 例えば、医療系のMTCアプリケーションとして、MTC端末20が、人間の心電図情報を収集し、あるトリガ条件が満たされた場合に心電図情報をサーバにアップリンクを利用して送信することが考えられる。他のMTCアプリケーションとして、自動販売機をMTC端末20として機能させ、MTCサーバ30が、一定周期(例えば30日)ごとに管理下の自動販売機に対して売上を報告させることも考えられる。なお、図1においてはMTCサーバ30が独立した装置として無線通信システム1に設けられる例を示しているが、本実施形態はかかる例に限定されない。例えば、MTCサーバ30としての機能は、eNodeBまたはリレーノードなどの基地局10、MTC端末20、または非MTC端末に実装されてもよい。すなわち、eNodeBまたはリレーノードなどの基地局10、MTC端末20、または非MTC端末が、MTCサーバ30の機能を兼務してもよい。
 このようなMTC端末20は、一例として一般的には以下の特徴を有するが、各MTC端末20が以下の全ての特徴を有する必要はなく、いずれの特徴を有するかはアプリケーションに依存する。
・移動がほとんどない(Low Mobility)
・小容量のデータ転送(Online Small Data Transmission)
・超低消費電力(Extra Low Power Consumption)
・各MTCをグルーピングしてハンドリング(Group based MTC Features)
   [1-2.フレーム同期]
 上記の基地局10およびMTC端末20は、詳細については決定されていないが、基地局10およびUE間の通信に準ずる形で無線通信を行うことが予想される。そこで、以下では、基地局10およびUE間で共有される無線フレーム、およびフレーム同期について説明する。以下で説明する内容は、基地局10およびMTC端末20間の通信に援用可能である。
 図2は、4Gのフレームフォーマットを示した説明図である。図2に示したように、10msの無線フレームは、10個の1msのサブフレーム#0~#9から構成されている。また、1msの各サブフレームは、2つの0.5msスロットで構成されている。さらに、各0.5msスロットは、7Ofdmシンボルで構成されている。
 また、図2において斜線を付したOfdmシンボルで、UEがフレーム同期のために用いる同期シグナルが送信される。より詳細には、サブフレーム#0の第5Ofdmシンボルではセカンダリー同期シグナル(SSS)、サブフレーム#0の第6Ofdmシンボルではプライマリー同期シグナル(PSS)、サブフレーム#5の第5Ofdmシンボルではセカンダリー同期シグナル、サブフレーム#5の第6Ofdmシンボルではプライマリー同期シグナルが送信される。
 UEは、プライマリー同期シグナルを用いて5ms周期を取得すると同時に、3つに分かれているセル番号グループから現在地に対応するセル番号グループを検出する。その後、UEは、セカンダリー同期シグナルを用いて無線フレーム周期(10ms周期)を取得する。
 なお、同期シグナルの符号系列にはZadoffChu系列が用いられる。セル番号グループ内のセル番号に168種類の符号化系列が用いられ、無線フレーム周期を得るために2種類の符号化系列が用いられるので、符号化系列は336種類用意される。ユーザ端末は、サブフレーム#0で送信されるセカンダリー同期シグナルとサブフレーム#5で送信されるセカンダリー同期シグナルの組み合わせに基づき、受信サブフレームがサブフレーム#0またはサブフレーム#5のいずれであるかを判断することができる。
   [1-3.ランダムアクセス]
 4GのUEは、基地局10とランダムアクセスと呼ばれる手順を実行することにより、基地局10と接続される。詳細については決定されていないが、一般的なMTC端末もUEと同様のランダムアクセスを行うことにより基地局10と接続されるものと考えられる。以下、図3を参照し、基地局10と一般的なMTC端末により行われることが想定されるランダムアクセスの流れを説明する。
 図3は、ランダムアクセスを示したシーケンス図である。図3に示したように、MTC端末は、基地局10からプライマリー同期シグナル、セカンダリー同期シグナル、およびBCHを受信すると(S42)、「1-2.フレーム同期」で説明したように、ダウンリンクのフレーム同期を行うと共に、BCHに含まれるACBパラメータを確認する(S44)。なお、ACBパラメータについては「1-4.ACB」において詳細に説明する。
 その後、MTC端末は、無線フレーム中のランダムアクセスウィンドウに向けてプリアンブルを送信する(S46)。ここで、MTC端末は、プリアンブルの送信回数を示すPREAMBLE_TRANSMISSION_CONUNTERに1をセットし、バックオフに関するパラメータであるbackoff parameter valueに0をセットし、適切なパワーでプリアンブルを送信する。MTC端末は、プリアンブルの送信に失敗した場合には、これらのパラメータを参照し、所定のバックオフ時間の経過後にプリアンブルを再送信する。また、MTC端末は、基地局10から受信されるBCHに含まれる複数のプリアンブルパターンの中から選択したパターンを有するプリアンブルを送信する。
 基地局10は、上記のプリアンブルの基地局10への到達時刻と上記ランダムアクセスウィンドウとの関係からTiming Advance値を算出する(S48)。そして、基地局10は、MTC端末に対してランダムアクセスレスポンスを送信する(S50)。このランダムアクセスレスポンスは、例えば、アップリンク送信許可データ、およびTiming Advance値を含む。
 MTC端末は、ランダムアクセスレスポンスを受信すると、Timing Advance値に基づいて送信タイミングを調整した上で(S52)、L2/L3メッセージを送信する(S54)。これに対し、基地局10がMTC端末にコンテンションレゾリューションメッセージを送信することで(S56)、MTC端末と基地局10とが接続される。
   [1-4.ACB]
 ACBは、LTEにおけるAC(Access Class)に応じたアクセス制限である。ACは、USIMに事前に記入された番号であり、0~9までの10種類の番号のいずれかが割り当てられている。なお、端末によっては、より優先度の高い11~15までのいずれかの番号が割り当てられる。例えば、AC13はpublic utilities (water/gas)であり、このACに属する端末はより優先度の高いアクセスが可能である。
 ACBパラメータは、AC barring factor、およびAC barring timeなどのように、上述のACBを実現するために基地局10からシステム情報として報知されるパラメータである。
 AC barring factorは、MTC端末による送信の可否を決定するために、MTC端末において生成された乱数と比較される閾値情報である。すなわち、MTC端末は、例えば、0.163、0.2、0.89のように0から1までの間の乱数を生成し、生成した乱数をAC barring factorと比較する。そして、乱数がAC barring factorより小さい場合にMTC端末による送信が許可される。
 一方、AC barring timeは、MTC端末において生成された乱数とAC barring factorとの比較によりMTC端末の送信が許可されなかった場合にMTC端末が当該処理を再試行するタイミングを決定するための時間情報である。MTC端末は、基地局10から受信されるこのAC barring timeに基づいて決定される時間の経過後にランダムアクセスを再試行する。
   [本発明の実施形態に至る経緯]
 ところで、上記のMTC端末が普及すると、MTC端末によるランダムアクセスの集中によりMTCの輻輳が生じることが懸念される。より具体的には、MTCの輻輳は、主に以下に示す2つのケースにおいて生じ得る。
 (第1のケース)
 MTC端末は、30分ごと、または毎時報時など、周期的に基地局10と接続し、基地局10を介してMTCサーバに情報を送信することが求められ得る。この場合、多数のMTC端末が、基地局10との接続に際し、プリアンブルの送信を含むランダムアクセスを一斉に行うことが予想される。その結果、ランダムアクセスが集中し、MTCの輻輳が生じると考えられる。
 (第2のケース)
 停電直後の復帰や、災害、大雨などによって、テレメトリーなMTC端末が、想定できない突発的/不定期な一斉送信を行う場合がある。この場合にも、ランダムアクセスが集中し、MTCの輻輳が生じると考えられる。
 上記の2つのケースのうち、第1のケースによる輻輳は事前に予測可能であるので、例えば上述のACBによりMTC端末からのアクセス数を適切に調整することができる。また、基地局10は、あらかじめ周期的なアクセスの増減に関する統計を取得し、予測されるアクセス量を想定して適切に無線リソースの配分を行うことで、アクセスの集中に対してある程度適切な処置を講ずることができる。
 しかし、第2のケースによる輻輳は、突発的/不定期な一斉送信により生じるので、輻輳を予測して事前にACBによりMTC端末によるアクセス制御を行うことが困難である。仮に、突発的/不定期な一斉送信に備え、システム情報としてACBパラメータを極めて頻繁に、あるいは瞬時的にMTC端末に通知できれば上記輻輳を回避し得るが、MTC端末は消費電力低減の観点からRANに常時接続していない場合が多いと想定されるし、システム情報の報知ために多大な無線リソースが消費されることになってしまう。
 そこで、上記事情を一着眼点にして本発明の実施形態を創作するに至った。本発明の実施形態によれば、ランダムアクセスの集中による輻輳を適切に回避することが可能である。以下、このような本発明の実施形態について詳細に説明する。
  <2.第1の実施形態>
   [2-1.MTC端末のグループ化]
 本発明の各実施形態は、複数のMTC端末20をグループ化し、グループ内の代表MTC端末を決定することにより実現される。そこで、基地局10やMTC端末20の構成の説明に先立ち、MTC端末20のグループ化や代表MTC端末の決定について説明する。
 図4は、MTC端末20のグループ化の具体例を示した説明図である。図4に示したように、同一の基地局10のセルエリア内に位置するMTC端末20が複数のグループに区分される。例えば、基地局10Aのセルエリア内に位置するMTC端末20は、図4に示したようにMTCグループ1またはMTCグループ2に区分される。
 また、各MTCグループに属する複数のMTC端末20から、1または2以上のMTC端末20が代表MTC端末に決定される。例えば、MTC端末20A~20EからなるMTCグループ2においては、MTC端末20Aが代表MTC端末に決定される。以下、このようなグループ化、および代表MTC端末の決定方法の一例を説明する。
 図5は、MTC端末20のグループ化に関するシーケンスを示した説明図である。図5に示したように、各MTC端末20は、MTCサーバ30に端末情報を送信する(S62)。ここで、端末情報は、MTC端末20がいずれの基地局10のセルエリア内に位置するかを特定するための情報を含む。例えば、端末情報としては、GPSまたは各種センサなどにより取得された位置情報、MTC端末20における各基地局10の信号強度情報、MTC端末20が以前に接続した基地局10の基地局ID、およびMTC端末20のUSIMに記載されたACなどが挙げられる。
 MTCサーバ30は、各MTC端末20から端末情報を受信すると、端末情報に基づいて複数のMTC端末20をグループ化する(S64)。具体的には、MTCサーバ30は、同一の基地局10のセルエリア内に位置する複数のMTC端末20ごとに、MTC端末20のグループ化を行う。ここで、MTCサーバ30は、同一のACを有するMTC端末20、または同一のサービスを提供するMTC端末20を同一のMTCグループにしてもよい。
 続いて、MTCサーバ30は、各MTCグループ内の1または2以上のMTC端末20をMTCグループの代表MTC端末に決定する(S66)。MTCサーバ30は、代表MTC端末をランダムに決定してもよいし、位置情報に基づいて代表MTC端末が分散するように決定してもよい。
 その後、MTCサーバ30は、各MTCグループの代表MTC端末として決定したMTC端末にグループ情報を送信する(S68)。例えば、MTCサーバ30は、MTC端末20AをMTCグループ2の代表MTC端末に決定した場合、MTC端末20Aにグループ情報を送信する。そして、MTC端末20Aはグループ情報を記憶しておく(S70)。なお、グループ情報は、一例としてMTCグループに属するMTC端末20の端末数情報を含む。
 また、MTCサーバ30は、各MTC端末20に、各MTC端末20が属するMTCグループを示すグループ番号を通知する(S72)。
 以上、MTC端末20をグループ化する方法や、代表MTC端末の決定方法について説明したが、本実施形態はかかる例に限定されない。例えば、各MTC端末20が属するMTCグループや代表MTC端末であるか否かを示す情報は事前に各MTC端末20に設定されていてもよい。または、MTC端末20の属するグループや代表MTC端末は人的に設定されてもよい。
   [2-2.基地局の構成]
 次に、図6を参照し、本発明の第1の実施形態による基地局10の構成を説明する。
 図6は、第1の実施形態による基地局10の構成を示した説明図である。図6に示したように、基地局10は、アンテナ116と、アンテナ共用器118と、受信回路120と、送信回路122と、受信データ処理部132と、インタフェース133と、通信制御部136と、送信データ処理部138と、上位レイヤ140と、を備える。
 アンテナ116は、MTC端末20から無線信号を受信し、無線信号を電気的な受信信号に変換する。受信時には、アンテナ116と受信回路120がアンテナ共用器118を介して接続されるので、アンテナ116により得られた受信信号は受信回路120に供給される。
 また、送信時には、アンテナ116と送信回路122がアンテナ共用器118を介して接続されるので、アンテナ116に送信回路122から送信信号が供給される。アンテナ116は、この送信信号を無線信号としてMTC端末20に送信する。
 なお、図6においては、説明の便宜上、1つのアンテナのみを示しているが、基地局10は複数のアンテナを備えてもよい。基地局10は、複数のアンテナを備える場合、MIMO(Multiple Input Multiple Output)通信やダイバーシティ通信などを行うことができる。
 受信回路120は、アンテナ116から供給される受信信号の復調処理および復号処理などを行い、処理後の受信データを受信データ処理部132に供給する。このように、受信回路120は、アンテナ116と協働して受信部として機能する。
 送信回路122は、通信制御部136から供給される制御信号(PDCCH、BCHなど)および送信データ処理部138から供給されるデータ信号(PDSCH)の変調処理などを行い、処理後の送信信号をアンテナ116に供給する。このように、送信回路122は、アンテナ116と協働して送信部として機能する。
 受信データ処理部132は、受信回路120から供給される受信データを解析し、上位レイヤ140用の受信データはインタフェース133に供給する。一方、受信データ処理部132は、代表MTC端末20からのグループ情報は通信制御部136に供給する。
 インタフェース133は、上位レイヤ140とのインタフェースである。受信データはインタフェース133から上位レイヤ140へ出力され、送信データは上位レイヤ140からインタフェース133へ入力される。
 送信データ処理部138は、インタフェース133から供給されるデータに基づいてデータ信号を生成し、送信回路122に供給する。
 通信制御部136は、各MTC端末20へのリソース割り当てや、MTC端末20とのランダムアクセスなどの通信全般を制御する。また、通信制御部136は、BCHにおいてシステム情報として報知するACBパラメータを、代表MTC端末20からのグループ情報に基づき、MTCグループごとに再設定する制御情報設定部として機能する。
 具体的には、本実施形態においては、MTCグループ内のMTC端末20に先立って代表MTC端末20が基地局10にランダムアクセスし、基地局10にグループ情報としてMTCグループに属するMTC端末20の端末数情報を通知する。これにより、基地局10は、ランダムアクセスを控えているMTC端末20の数を把握できるので、ランダムアクセスを控えているMTC端末20の数に応じ、ランダムアクセスが集中しないようにACBパラメータを再設定する。
 例えば、通信制御部136は、代表MTC端末20から受信される端末数情報の示す端末数が多いほど、AC barring factorを小さな値に再設定してもよい。具体例として、MTC端末20が一様分布に従って0から1までの間の乱数を生成する場合、AC barring factorを0.5から0.2に再設定すれば、MTC端末20により生成される乱数がAC barring factorより小さくなる確率は50%から20%に減少する。このように、AC barring factorを小さな値に再設定することにより、MTC端末20が生成する乱数がAC barring factorより小さくなる確率が減少するので、MTC端末20からのランダムアクセスの集中を抑制することが可能である。
 または、通信制御部136は、代表MTC端末20から受信される端末数情報の示す端末数が多いほど、AC barring timeにより決定されるランダムアクセスの再試行のタイミングが遅くなるようにAC barring timeを再設定してもよい。かかる構成によれば、MTC端末20がランダムアクセスを行うタイミングを分散させることができるので、ランダムアクセスの輻輳を抑制することが可能である。
 通信制御部136は、上述のようにACBパラメータを再設定すると、図7に示したように、対象のMTCグループを示すグループ番号、および再設定後のACBパラメータをシステム情報に記載する。さらに、通信制御部136は、ACBパラメータが端末数情報による再設定後のパラメータであるか否かを示す再設定フラグを付加する。MTC端末20は、この再設定フラグを確認することにより、代表MTC端末20がランダムアクセスをしたか否かを把握できるので、代表MTC端末20の後にランダムアクセスを行うことが可能となる。
   [2-3.MTC端末の構成]
 以上、本発明の第1の実施形態による基地局10の構成を説明した。続いて、図8を参照し、本発明の第1の実施形態によるMTC端末20の構成を説明する。
 図8は、第1の実施形態によるMTC端末20の構成を示した説明図である。図8に示したように、MTC端末20は、アンテナ216と、アンテナ共用器218と、受信回路220と、送信回路222と、受信データ処理部232と、インタフェース233と、グループ情報記憶部234と、通信制御部236と、送信データ処理部238と、上位レイヤ240と、を備える。
 アンテナ216は、基地局10から無線信号を受信し、無線信号を電気的な受信信号に変換する。受信時には、アンテナ216と受信回路220がアンテナ共用器218を介して接続されるので、アンテナ216により得られた受信信号は受信回路220に供給される。
 また、送信時には、アンテナ216と送信回路222がアンテナ共用器218を介して接続されるので、アンテナ216に送信回路222から送信信号が供給される。アンテナ216は、この送信信号を無線信号として基地局10に送信する。
 なお、図8においては、説明の便宜上、1つのアンテナのみを示しているが、MTC端末20は複数のアンテナを備えてもよい。MTC端末20は、複数のアンテナを備える場合、MIMO通信やダイバーシティ通信などを行うことができる。
 受信回路220は、アンテナ216から供給される受信信号の復調処理および復号処理などを行い、処理後の受信データを受信データ処理部232に供給する。このように、受信回路220は、アンテナ216と協働して受信部として機能する。
 送信回路222は、通信制御部236から供給される制御信号および送信データ処理部238から供給されるデータ信号などの変調処理などを行い、処理後の送信信号をアンテナ216に供給する。このように、送信回路222は、アンテナ216と協働して送信部として機能する。
 受信データ処理部232は、受信回路220から供給される受信データを解析し、上位レイヤ用の受信データはインタフェース233に供給する。一方、MTC端末20が代表MTC端末に決定された場合に受信されるグループ情報は、グループ情報記憶部234に供給する。グループ情報記憶部234は、受信データ処理部232から供給されるグループ情報を記憶する。
 インタフェース233は、上位レイヤ240とのインタフェースである。受信データはインタフェース233から上位レイヤ240へ出力され、送信データは上位レイヤ240からインタフェース233へ入力される。
 上位レイヤ240は、MTC端末20に応じたアプリケーションを実行するための機能部である。上述したように、アプリケーションとしては、「Metering」や「Health」などが挙げられる。また、アプリケーションが「Metering」である場合、送信データとしては、水道や電気の使用量を示すデータが想定される。また、アプリケーションが「Health」である場合、送信データとしては、患者の現在の身体状態を示すデータが想定される。
 送信データ処理部238は、インタフェース133から供給されるデータに基づいてデータ信号を生成し、送信回路222に供給する。また、MTC端末20が代表MTC端末として動作する場合、送信データ処理部238は、グループ情報記憶部234に記憶されているグループ情報を示すデータ信号を生成し、送信回路222に供給する。
 通信制御部236は、MTC端末20による送信処理および受信処理や、ランダムアクセスなどの通信全般を制御する。例えば、通信制御部236は、ランダムアクセスに際して乱数を生成し、生成した乱数と基地局10から受信されるAC barring factorとを比較する。そして、通信制御部236は、生成した乱数がAC barring factorより小さい場合に送信回路222にプリアンブルを送信させる。一方、生成した乱数がAC barring factorより大きかった場合、基地局10から受信されるAC barring timeに基づいて決定される時間の経過後にランダムアクセスを再試行する。
   [2-4.無線通信システムの動作]
 以上、本発明の第1の実施形態による基地局10およびMTC端末20の構成を説明した。続いて、図9を参照し、本発明の第1の実施形態による無線通信システム1の動作を説明する。
 図9は、本発明の第1の実施形態による無線通信システム1の動作を示したシーケンス図である。この図9に示す本実施形態によるランダムアクセスの手順により、基地局10と各MTC端末20との接続が実現される。なお、図9においては、MTCグループ2にMTC端末20Aおよび20Bなどが属し、MTC端末20Aが代表MTC端末として決定された場合のシーケンスを示している。
 まず、図9のS304~S332に示したように、代表MTC端末20AがMTCグループ内の他のMTC端末20Bなどに先立って基地局10に対してランダムアクセスを行う。具体的には、代表MTC端末20Aは、基地局10からシステム情報を受信すると(S304)、システム情報に含まれるACBパラメータを確認する(S308)。そして、代表MTC端末20Aの通信制御部236は、ACBパラメータに基づいてプリアンブル送信の可否を判断し、判断結果に応じて送信回路222からプリアンブルを送信させる(S312)。
 基地局10は、上記のプリアンブルの基地局10への到達時刻とランダムアクセスウィンドウとの関係からTiming Advance値を算出する(S316)。そして、基地局10は、代表MTC端末20Aに対してランダムアクセスレスポンスを送信する(S320)。このランダムアクセスレスポンスは、例えば、アップリンク送信許可データ、およびTiming Advance値を含む。
 代表MTC端末20Aは、ランダムアクセスレスポンスを受信すると、Timing Advance値に基づいて送信タイミングを調整した上で(S324)、L2/L3メッセージを送信する(S328)。ここで、代表MTC端末20Aは、グループ情報記憶部234に記憶されているグループ情報もL2/L3メッセージとして送信する。かかる構成により、グループ情報を別途送信する必要が無くなるので、一連の処理の時間短縮を図ることができる。
 これに対し、基地局10が代表MTC端末20Aにコンテンションレゾリューションメッセージを送信することで(S332)、代表MTC端末20Aと基地局10とが接続される。
 さらに、基地局10の通信制御部136は、代表MTC端末20Aから受信したグループ情報に基づいてACBパラメータを再設定する(S336)。例えば、通信制御部136は、代表MTC端末20Aから受信されるグループ情報の示す端末数が多いほど、AC barring factorを小さな値に再設定してもよい。または、通信制御部136は、代表MTC端末20Aから受信されるグループ情報の示す端末数が多いほど、AC barring timeにより決定されるランダムアクセスの再試行のタイミングが遅くなるようにAC barring timeを再設定してもよい。
 その後、再設定されたACBパラメータを含むシステム情報が基地局10からBCHにより報知されると(S340)、S344~S368に示したように、MTC端末20Bなどの他のMTC端末20が基地局10に対してランダムアクセスを行う。
 具体的には、MTC端末20Bは、MTCグループ2を宛先とし、再設定フラグがオンである再設定後のACBパラメータを確認する(S344)。そして、MTC端末20Bは、ACBパラメータに基づくプリアンブル送信の可否を判断し、判断結果に応じてプリアンブルを送信する(S348)。
 基地局10は、上記のプリアンブルの基地局10への到達時刻とランダムアクセスウィンドウとの関係からTiming Advance値を算出する(S352)。そして、基地局10は、MTC端末20Bに対してランダムアクセスレスポンスを送信する(S356)。このランダムアクセスレスポンスは、例えば、アップリンク送信許可データ、およびTiming Advance値を含む。
 MTC端末20Bは、ランダムアクセスレスポンスを受信すると、Timing Advance値に基づいて送信タイミングを調整した上で(S360)、L2/L3メッセージを送信する(S364)。これに対し、基地局10がMTC端末20Bにコンテンションレゾリューションメッセージを送信することで(S368)、MTC端末20Bと基地局10とが接続される。
 以上説明したように、第1の実施形態による無線通信システム1によれば、MTCグループ内の各MTC端末20からのプリアンブル送信タイミングを、MTCグル―プ内の端末数に応じて分散させることができるので、ランダムアクセスの輻輳を抑制することが可能である。
   (変形例)
 なお、上記ではグループ情報をL2/L3メッセージと共に送信する例を説明したが、以下に図10を参照して説明する変形例のように、代表MTC端末20Aは基地局10との接続後にグループ情報を送信してもよい。
 図10は、本発明の第1の実施形態による無線通信システム1の動作の変形例を示したシーケンス図である。まず、図10のS304~S332に示したように、代表MTC端末20AがMTCグループ内の他のMTC端末20Bなどに先立って基地局10に対してランダムアクセスを行う。当該変形例は、代表MTC端末20AがS326においてL2/L3メッセージと共にグループ情報を送信しない点で図9に示した例と異なる。
 そして、代表MTC端末20Aは、基地局10に対するランダムアクセスの後にグループ情報を基地局10に送信する(S334)。続いて、基地局10の通信制御部136は、代表MTC端末20Aから受信したグループ情報に基づいてACBパラメータを再設定する(S336)。
 その後、再設定されたACBパラメータを含むシステム情報が基地局10からBCHにより報知されると(S340)、図9に示した例と同様に、MTC端末20Bなどの他のMTC端末20が基地局10に対してランダムアクセスを行う(S344~S368)。
  <3.第2の実施形態>
 以上、本発明の第1の実施形態を説明した。続いて、本発明の第2の実施形態を説明する。本発明の第2の実施形態は、第1の実施形態と共通する部分が多いが、基地局10が代表MTC端末20から受信したグループ情報に基づいて再設定する情報が第1の実施形態と異なる。このような本発明の第2の実施形態を説明するにあたり、まず、MTC端末20がランダムアクセスを行うためのリソースについて補足する。
  (RACH_configuration_index)
 基地局10は、ランダムアクセスにおいてMTC端末20がプリンアンブルを送信するためのリソースを、RACH_configuration_indexにより指定する。そして、基地局10は、RACH_configuration_indexをシステム情報として報知し、MTC端末20は、このRACH_configuration_indexにより特定されるサブフレームにおいてプリアンブルを送信する。
 図11は、RACH_configuration_indexとサブフレームとの関係を示した説明図である。図11に示したように、RACH_configuration_indexの各番号には、1または2以上のサブフレームが対応付けられている。例えば、RACH_configuration_index#0にはサブフレーム#1が対応付けられており、RACH_configuration_index#9にはサブフレーム#1、4、および7が対応付けられている。
 ここで、RACH_configuration_indexに複数のサブフレームが対応付けられている場合、MTC端末20は、複数のサブフレームのうちのいずれかのサブフレーム内のランダムアクセスウィンドウにおいてプリアンブルを送信する。したがって、RACH_configuration_indexに対応付けられているサブフレームの数が多いほど、MTC端末20からのプリアンブル送信は時間的に分散されると考えられる。
  (第2の実施形態の説明)
 そこで、本発明の第2の実施形態による基地局10は、代表MTC端末20から受信したグループ情報に基づき、RACH_configuration_indexを再設定する。具体的には、第2の実施形態による基地局10の通信制御部236は、RACH_configuration_indexを、代表MTC端末20から受信したグループ情報の示す端末数が多いほど、より多くのサブフレームと対応付けられているRACH_configuration_indexに再設定する。以下、図12を参照し、より詳細に説明する。
 図12は、本発明の第2の実施形態による無線通信システム1の動作を示したシーケンス図である。この図12に示す本実施形態によるランダムアクセスの手順により、基地局10と各MTC端末20との接続が実現される。なお、図12においては、MTCグループ2にMTC端末20Aおよび20Bなどが属し、MTC端末20Aが代表MTC端末として決定された場合のシーケンスを示している。
 まず、図12のS404~S432に示したように、代表MTC端末20AがMTCグループ内の他のMTC端末20Bなどに先立って基地局10に対してランダムアクセスを行う。具体的には、代表MTC端末20Aは、基地局10からシステム情報を受信すると(S404)、システム情報に含まれるACBパラメータおよびRACH_configuration_indexを確認する(S408)。
 そして、代表MTC端末20Aの通信制御部236は、ACBパラメータに基づいてプリアンブル送信の可否を判断し、判断結果に応じて、RACH_configuration_indexにより特定されるサブフレームのランダムアクセスウィンドウにおいて送信回路222からプリアンブルを送信させる(S412)。
 基地局10は、上記のプリアンブルの基地局10への到達時刻とランダムアクセスウィンドウとの関係からTiming Advance値を算出する(S416)。そして、基地局10は、代表MTC端末20Aに対してランダムアクセスレスポンスを送信する(S420)。このランダムアクセスレスポンスは、例えば、アップリンク送信許可データ、およびTiming Advance値を含む。
 代表MTC端末20Aは、ランダムアクセスレスポンスを受信すると、Timing Advance値に基づいて送信タイミングを調整した上で(S424)、L2/L3メッセージを送信する(S428)。ここで、代表MTC端末20Aは、グループ情報記憶部234に記憶されているグループ情報もL2/L3メッセージとして送信する。かかる構成により、グループ情報を別途送信する必要が無くなるので、一連の処理の時間短縮を図ることができる。ただし、代表MTC端末20Aは、グループ情報をランダムアクセスの後にL2/L3メッセージと別個に送信してもよい。
 これに対し、基地局10が代表MTC端末20Aにコンテンションレゾリューションメッセージを送信することで(S432)、代表MTC端末20Aと基地局10とが接続される。
 さらに、基地局10の通信制御部136は、代表MTC端末20Aから受信したグループ情報に基づいてACBパラメータ、およびRACH_configuration_indexを再設定する(S436)。例えば、通信制御部136は、RACH_configuration_indexを、代表MTC端末20から受信したグループ情報の示す端末数が多いほど、より多くのサブフレームと対応付けられているRACH_configuration_indexに再設定してもよい。
 その後、再設定されたACBパラメータおよびRACH_configuration_indexを含むシステム情報が基地局10からBCHにより報知されると(S440)、S444~S468に示したように、MTC端末20Bなどの他のMTC端末20が基地局10に対してランダムアクセスを行う。
 具体的には、MTC端末20Bは、MTCグループ2を宛先とし、再設定フラグがオンである再設定後のACBパラメータおよびRACH_configuration_indexを確認する(S444)。そして、MTC端末20Bは、ACBパラメータに基づくプリアンブル送信の可否を判断し、判断結果に応じて、RACH_configuration_indexにより特定されるサブフレームにおいてプリアンブルを送信する(S448)。
 基地局10は、上記のプリアンブルの基地局10への到達時刻とランダムアクセスウィンドウとの関係からTiming Advance値を算出する(S452)。そして、基地局10は、MTC端末20Bに対してランダムアクセスレスポンスを送信する(S456)。このランダムアクセスレスポンスは、例えば、アップリンク送信許可データ、およびTiming Advance値を含む。
 MTC端末20Bは、ランダムアクセスレスポンスを受信すると、Timing Advance値に基づいて送信タイミングを調整した上で(S460)、L2/L3メッセージを送信する(S464)。これに対し、基地局10がMTC端末20Bにコンテンションレゾリューションメッセージを送信することで(S468)、MTC端末20Bと基地局10とが接続される。
  <4.まとめ>
 以上説明したように、本発明の実施形態によれば、代表MTC端末20がMTCグループ内の端末数を示すグループ情報を基地局10に送信し、基地局10が、グループ情報の示す端末数に応じてACBパラメータやRACH_configuration_indexなどのランダムアクセスを制御するための制御情報を再設定する。そして、MTCグループ内の他のMTC端末20は、再設定されたACBパラメータやRACH_configuration_indexなどに従ってランダムアクセスを行う。かかる構成によれば、MTCグループ内の各MTC端末20からのプリアンブル送信タイミングを、MTCグル―プ内の端末数に応じて分散させることができるので、ランダムアクセスの輻輳を抑制することが可能である。
 なお、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明の技術的範囲はかかる例に限定されない。本発明の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 例えば、本明細書の基地局10およびMTC端末20の処理における各ステップは、必ずしもシーケンス図として記載された順序に沿って時系列に処理する必要はない。例えば、基地局10およびMTC端末20の処理における各ステップは、シーケンス図として記載した順序と異なる順序で処理されても、並列的に処理されてもよい。
 また、基地局10およびMTC端末20に内蔵されるCPU、ROMおよびRAMなどのハードウェアを、上述した基地局10およびMTC端末20の各構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供される。
 10   基地局
 20   MTC端末
 30   MTCサーバ
 116、216 アンテナ
 118、218 アンテナ共用器
 120、220 受信回路
 122、222 送信回路
 132、232 受信データ処理部
 133、233 インタフェース
 134、236 通信制御部
 138、238 送信データ処理部
 140、240 上位レイヤ
 

Claims (10)

  1.  無線端末であって、
     前記無線端末が代表無線端末として動作するグループを形成する複数の無線端末に関する情報を記憶する記憶部と;
     前記グループ内の他の無線端末より前に基地局へのランダムアクセスを制御する通信制御部と;
     前記記憶部に記憶されている前記複数の無線端末に関する情報を前記基地局に送信する送信部と;
    を備える、無線端末。
  2.  前記送信部から送信された前記複数の無線端末に関する情報に基づき、前記複数の無線端末によるランダムアクセスを制御するための制御情報が設定される、請求項1に記載の無線端末。
  3.  前記複数の無線端末に関する情報は前記複数の無線端末の端末数情報を含む、請求項2に記載の無線端末。
  4.  前記複数の無線端末を管理するサーバから前記複数の無線端末に関する情報を受信する受信部をさらに備える、請求項3に記載の無線端末。
  5.  前記送信部は、前記ランダムアクセスの課程で前記複数の無線端末に関する情報を前記基地局に送信する、請求項4に記載の無線端末。
  6.  前記送信部は、前記ランダムアクセスの後に前記複数の無線端末に関する情報を前記基地局に送信する、請求項4に記載の無線端末。
  7.  前記グループは、前記複数の無線端末のUSIMに設定されたアクセスクラスにより区分されるグループである、請求項4に記載の無線端末。
  8.  前記グループを形成する前記複数の無線端末は、前記基地局のセルエリア内に存在する、請求項4に記載の無線端末。
  9.  無線端末における無線通信方法であって、
     前記無線端末が代表無線端末として動作するグループを形成する複数の無線端末に関する情報を記憶するステップと;
     前記グループ内の他の無線端末より前に基地局へのランダムアクセスを制御するステップと;
     前記複数の無線端末に関する情報を前記基地局に送信するステップと;
    を含む、無線通信方法。
  10.  基地局と;
     グループを形成する複数の無線端末の代表無線端末として動作する無線端末と;
    を備え、
     前記無線端末は、
     前記複数の無線端末に関する情報を記憶する記憶部、
     前記グループ内の他の無線端末より前に前記基地局へのランダムアクセスを制御する通信制御部、および、
     前記記憶部に記憶されている前記複数の無線端末に関する情報を前記基地局に送信する送信部、
    を有する、無線通信システム。
     
     
     
     
PCT/JP2011/068658 2010-10-07 2011-08-18 無線端末、無線通信方法、および無線通信システム WO2012046512A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/818,703 US9088914B2 (en) 2010-10-07 2011-08-18 Wireless terminal, wireless communication method, and wireless communication system
CN201180047491.XA CN103155680B (zh) 2010-10-07 2011-08-18 无线终端、无线通信方法和无线通信系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-227869 2010-10-07
JP2010227869A JP5569322B2 (ja) 2010-10-07 2010-10-07 無線端末、無線通信方法、および無線通信システム

Publications (1)

Publication Number Publication Date
WO2012046512A1 true WO2012046512A1 (ja) 2012-04-12

Family

ID=45927510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/068658 WO2012046512A1 (ja) 2010-10-07 2011-08-18 無線端末、無線通信方法、および無線通信システム

Country Status (4)

Country Link
US (1) US9088914B2 (ja)
JP (1) JP5569322B2 (ja)
CN (1) CN103155680B (ja)
WO (1) WO2012046512A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012916A (ja) * 2014-06-06 2016-01-21 ソニー株式会社 情報処理装置、情報処理方法およびプログラム
EP2928260A4 (en) * 2012-11-29 2016-07-27 Nec Corp COMMUNICATION CONTROL SYSTEM, SERVICE MANAGEMENT SERVER, MOBILE STATION, COMMUNICATION CONTROL METHOD AND TRANSFERLESS COMPUTER READABLE MEDIUM

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2490968A (en) 2011-05-20 2012-11-21 Nec Corp Sharing radio access networks fairly between multiple operators
WO2013100831A1 (en) 2011-12-29 2013-07-04 Telefonaktiebolaget L M Ericsson (Publ) A user equipment and a radio network node, and methods therein
US9282572B1 (en) * 2012-08-08 2016-03-08 Sprint Communications Company L.P. Enhanced access class barring mechanism in LTE
JP6288077B2 (ja) 2013-04-04 2018-03-07 富士通株式会社 通信システム
JP6172267B2 (ja) * 2013-05-09 2017-08-02 富士通株式会社 通信システム及び通信方法
WO2015051857A1 (en) 2013-10-11 2015-04-16 Huawei Technologies Duesseldorf Gmbh Random access resources for groups of m2m devices
GB2519341A (en) * 2013-10-18 2015-04-22 Nec Corp Data transmission from mobile radio communications device
US9635699B2 (en) * 2013-11-22 2017-04-25 Verizon Patent And Licensing Inc. M2M device retry instruction to non-peak network time
CN107210922B (zh) * 2015-01-30 2020-09-25 瑞典爱立信有限公司 用于低时延系统中的警报消息检测的方法和装置
CN107211465A (zh) * 2015-01-30 2017-09-26 瑞典爱立信有限公司 集群警报场景下启用上行链路无线电接入的方法与装置
WO2016146177A1 (en) * 2015-03-17 2016-09-22 Telefonaktiebolaget Lm Ericsson (Publ) Synchronization in wireless communications networks
CN106664641B (zh) 2015-05-15 2019-04-19 华为技术有限公司 传输公共消息的方法和相关设备
CN107534998A (zh) * 2015-05-20 2018-01-02 华为技术有限公司 Mtc设备接入方法、基站和系统
JP6566785B2 (ja) * 2015-08-25 2019-08-28 国立研究開発法人情報通信研究機構 グループチャネルアクセス方法
WO2017164789A1 (en) * 2016-03-23 2017-09-28 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for reduction of cubic metric in a concatenated block reference signal design
EP3516903B1 (en) * 2016-09-23 2022-08-17 Nokia Solutions and Networks Oy Radio configuration for machine type communications
WO2023162291A1 (ja) * 2022-02-22 2023-08-31 株式会社安川電機 通信システム及び通信端末

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196041A (ja) * 1998-01-06 1999-07-21 Nippon Telegr & Teleph Corp <Ntt> 無線マルチキャストデータ転送方法及び無線通信システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI102447B (fi) * 1996-02-06 1998-11-30 Nokia Telecommunications Oy Yhteydenmuodostusmenetelmä, tilaajapäätelaite ja radiojärjestelmä
JP4287448B2 (ja) * 2006-06-16 2009-07-01 株式会社東芝 通信装置、通信端末装置、通信システム、方法およびプログラム
JP4472674B2 (ja) 2006-08-30 2010-06-02 日本電信電話株式会社 バックオフプロトコル最適制御方法、基地局、及び、端末局
KR100872348B1 (ko) * 2007-01-11 2008-12-05 삼성전자주식회사 스패닝 트리를 이용하는 센서 네트워크 환경에서의 에너지관리 방법 및 시스템
WO2008156321A2 (en) * 2007-06-19 2008-12-24 Lg Electronics Inc. Enhancement of lte random access procedure
CN101365220B (zh) * 2007-08-10 2011-06-08 上海无线通信研究中心 协作蜂窝网络中基于用户端合作分组的随机接入方法
EP2413657B1 (en) 2008-04-28 2016-04-20 Fujitsu Limited Re-connection after connection rejection
US8750145B2 (en) * 2009-11-23 2014-06-10 Interdigital Patent Holdings, Inc. Method and apparatus for machine-to-machine communication registration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196041A (ja) * 1998-01-06 1999-07-21 Nippon Telegr & Teleph Corp <Ntt> 無線マルチキャストデータ転送方法及び無線通信システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2928260A4 (en) * 2012-11-29 2016-07-27 Nec Corp COMMUNICATION CONTROL SYSTEM, SERVICE MANAGEMENT SERVER, MOBILE STATION, COMMUNICATION CONTROL METHOD AND TRANSFERLESS COMPUTER READABLE MEDIUM
US9591526B2 (en) 2012-11-29 2017-03-07 Nec Corporation Communication control system, service management server, mobile station, communication control method, and non-transitory computer readable medium
JP2016012916A (ja) * 2014-06-06 2016-01-21 ソニー株式会社 情報処理装置、情報処理方法およびプログラム
US10448208B2 (en) 2014-06-06 2019-10-15 Sony Corporation Apparatuses, methods, and programs for controlling grouping of wireless communication apparatuses

Also Published As

Publication number Publication date
US20130155864A1 (en) 2013-06-20
CN103155680B (zh) 2016-08-10
JP2012085010A (ja) 2012-04-26
US9088914B2 (en) 2015-07-21
CN103155680A (zh) 2013-06-12
JP5569322B2 (ja) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5569322B2 (ja) 無線端末、無線通信方法、および無線通信システム
WO2012046507A1 (ja) 基地局、無線通信方法、および無線通信システム
US11006427B2 (en) Communication system, base station, and communication terminal for controlling interference from neighboring cells
US11546842B2 (en) Network selection and random access method and apparatus of machine-type communication user equipment in mobile communication system
CN107925946B (zh) 在移动通信系统中当应用非连续接收模式时使用有效定时器管理存储的系统信息的方法和装置
JP5732753B2 (ja) 無線通信装置、無線通信システムおよび無線通信方法
KR20180035607A (ko) 4g와 5g 공존 시스템에서 통신 방법 및 그 장치
CN103857037B (zh) 移动无线设备和操作方法
TWI498035B (zh) 處理接收系統資訊功能的方法及其相關通訊裝置
EP3854113A1 (en) Zone based relay control
US20220110060A1 (en) Resource reservation indication for mode 2 resource allocation with power saving
US20170245227A1 (en) Method and device for transmitting synchronization signal for device-to-device communication
CN102740374A (zh) 接入控制方法及系统
US11937289B2 (en) Mechanisms for dynamic I2V and V2V resource sharing using a shared resource pool
JP2013055393A (ja) 通信装置、通信方法、通信システムおよび基地局
CN114223147A (zh) 用于侧链路传输的拥塞控制
KR20160048651A (ko) 캠핑 셀에 따른 무선랜 망 연동 방법 및 장치
US20220061020A1 (en) Paging over sidelink
US20230269679A1 (en) Thermal efficient method to maintain cv2x timing
WO2023019382A1 (en) Adapt random selection resources

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047491.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11830445

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13818703

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11830445

Country of ref document: EP

Kind code of ref document: A1