WO2012046280A1 - Organic el display panel, method for manufacturing same, and organic el display device - Google Patents

Organic el display panel, method for manufacturing same, and organic el display device Download PDF

Info

Publication number
WO2012046280A1
WO2012046280A1 PCT/JP2010/006019 JP2010006019W WO2012046280A1 WO 2012046280 A1 WO2012046280 A1 WO 2012046280A1 JP 2010006019 W JP2010006019 W JP 2010006019W WO 2012046280 A1 WO2012046280 A1 WO 2012046280A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
organic
display panel
film thickness
Prior art date
Application number
PCT/JP2010/006019
Other languages
French (fr)
Japanese (ja)
Inventor
哲郎 近藤
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2010/006019 priority Critical patent/WO2012046280A1/en
Publication of WO2012046280A1 publication Critical patent/WO2012046280A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/341Short-circuit prevention
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating

Definitions

  • the present invention relates to an organic EL display panel, a manufacturing method thereof, and an organic EL display device.
  • An organic EL display panel included in an organic EL display device has a configuration in which an organic EL element is provided for each pixel, and emits light by utilizing an electroluminescence phenomenon of a solid fluorescent material for each organic EL element.
  • the configuration of the organic EL display panel disclosed in Patent Documents 1 and 2 will be described with reference to FIG.
  • a TFT (Thin Film Transistor) layer 902 is formed on a substrate 901 (FIG. 16 shows only a part of the source).
  • a passivation film 903 and a planarization film 904 are sequentially stacked thereon.
  • An anode 905 is formed on the planarization film 904 in a state corresponding to each pixel 900.
  • the anode 905 includes a metal layer 9051 and a transparent conductive layer 9052 that are sequentially stacked from the planarization film 904 side.
  • the anode 905 is also embedded in a contact hole 904a opened in the planarization film 904, thereby connecting to the TFT layer 902.
  • a bank 906 is formed on the planarizing film 904 so as to partition the pixel 900 and the adjacent pixel 900.
  • the bank 906 is disposed so as to cover a part of the end of the anode 905.
  • An organic functional layer 907 is stacked on the anode 905 in the region of the pixel 900 defined by the bank 905.
  • the organic functional layer 907 is a wet coating type layer and includes at least an organic light emitting layer.
  • a cathode 908 is formed on the organic functional layer 907 and the bank 906, and a sealing layer 909 is stacked so as to cover the cathode 908.
  • Patent Document 3 a proposal is made to solve the above-described problems by increasing the interval between the bank and the anode by narrowing the bank width. That is, by narrowing the bank width, the end portion of the anode is not covered with the bank, and by this configuration, the light emitting region can be widened and the thickness of the organic functional layer on the anode can be made uniform.
  • the organic functional layer is cut off at the end of the anode due to a gap between the bank and the anode, and the anode and the cathode are short-circuited. Even if no step breakage occurs, problems such as electric field concentration may occur due to the extremely thin organic functional layer. That is, as shown in FIG. 18, in the case of the configuration spacing d 9 between the end portion P 92 of the end portion P 91 and the bank 906 of the anode 955, at the end of the anode 955 (the portion indicated by the arrow K) It may occur that the anode 955 and the cathode 908 are short-circuited.
  • the anode 955 has a laminated structure of a metal layer 9551 such as a silver (Ag) layer or a silver alloy (Ag alloy) layer and an ITO (indium tin oxide) layer 9552. Since the layer 9551 is formed in the same process as the bus bar not shown, the thickness t 92 is currently formed in a thick film in accordance with the bus bar. Than this, conventionally, the thickness t 91 of the anode 955 has become thicker, when the thickness t 93 than to form a thin organic functional layer 957a, the organic functional layer disconnection in the portion indicated by the arrow K Produce.
  • a metal layer 9551 such as a silver (Ag) layer or a silver alloy (Ag alloy) layer
  • ITO indium tin oxide
  • the organic functional layer 957a and the organic functional layer 957b are discontinuous from the portion indicated by the arrow K as a boundary. In this case, there arises a problem that the anode 955 and the cathode 908 are short-circuited at the stepped portion.
  • the present invention has been made to solve the above-described problem.
  • the light emitting region is wide, the thickness of the organic functional layer in the light emitting region is maintained uniform, and the organic functional layer is not broken. Therefore, it is an object of the present invention to provide a long-life organic EL display panel, a manufacturing method thereof, and an organic EL display device having excellent light emission characteristics.
  • the organic EL display panel includes a substrate, a bank, a first electrode, an organic functional layer, and a second electrode.
  • the bank is formed above the substrate and defines an opening corresponding to a predetermined pixel area.
  • the first electrode is disposed above the substrate and includes a silver layer or a silver alloy layer, and the surface portion of the silver layer or the silver alloy layer is a reflective portion having a predetermined reflectance.
  • the organic functional layer is formed on the upper surface of the first electrode and includes at least an organic light emitting layer.
  • the second electrode is disposed above the organic functional layer, and is light that is irradiated upward from the organic functional layer and light that is irradiated downward from the organic functional layer and reflected by the reflecting portion of the first electrode. Are transparent.
  • the first electrode is disposed in the opening of the bank, the end of the first electrode being spaced apart from the end of the bank facing the opening, and the silver included in the first electrode
  • the film thickness of the layer or the silver alloy layer is a predetermined film thickness of 60 [nm] or more and 200 [nm] or less.
  • the organic functional layer has a thickness equal to or greater than a predetermined thickness of the first electrode, and is formed from the upper surface of the first electrode to the side surface of the end portion.
  • the film thickness of the silver (Ag) layer or the silver alloy (Ag alloy) layer (hereinafter referred to as “metal layer”) in the first electrode is 60 [nm].
  • the reflection part has a predetermined film thickness of 200 [nm] or less, whereby the surface portion of the metal layer of the first electrode has a predetermined reflectance with respect to the light emitted from the organic light emitting layer in the organic functional layer. It becomes.
  • the thickness of the metal layer in the first electrode is less than 60 [nm]
  • the amount of light reflected downward from the organic light emitting layer in the organic functional layer to the second electrode is reduced, and light emission Although the efficiency is reduced, high luminous efficiency can be obtained by setting the thickness of the metal layer in the first electrode to 60 [nm] or more.
  • the thickness of the organic functional layer is set to be equal to or larger than the predetermined thickness of the first electrode, and extends from the upper surface of the first electrode to the side surface of the end portion.
  • a configuration in which an organic functional layer is formed is employed.
  • the thickness of the organic functional layer is reduced by adopting the thickness of the organic functional layer with respect to the first electrode and the form of forming the organic functional layer with respect to the first electrode. It is not necessary to make it thicker than necessary, and there is no problem of a decrease in life due to an increase in electrical resistance between the first electrode and the second electrode, and at the same time, the power consumption of the organic EL display panel increases. Does not occur.
  • the organic functional layer at the end of the first electrode is not cut off or extremely thinned.
  • the light emitting region is wide, the thickness of the organic functional layer in the light emitting region is maintained uniform, and the organic functional layer is disconnected. There is no. Therefore, the organic EL display panel according to one embodiment of the present invention has a long lifetime while having excellent light emission characteristics.
  • FIG. 1 is a schematic block configuration diagram showing a configuration of an organic EL display device 1 according to Embodiment 1.
  • FIG. 2 is a schematic cross-sectional end view showing a partial configuration of an organic EL display panel 10.
  • FIG. 2 is a schematic cross-sectional end view showing a partial configuration of an organic EL display panel 10.
  • FIG. 2 is a schematic plan view showing a part of the organic EL display panel 10 extracted.
  • 2 is a schematic cross-sectional end view showing the vicinity of an end portion of an anode 105 in an organic EL display panel 10.
  • FIG. 10 is a schematic cross-sectional end view showing a mutual arrangement relationship between an anode 955 and an organic functional layer 957 in a display panel. It is a characteristic view showing the relationship between the wavelength of light and the reflectance for each film thickness of the metal layer 1051. It is a characteristic view which shows the relationship between the film thickness of the metal layer 1051 for every luminescent color, and a reflectance.
  • FIGS. 4A to 4D are schematic process diagrams showing a part of the manufacturing process of the organic EL display panel 10.
  • (A) to (c) are schematic process diagrams showing a part of the manufacturing process of the organic EL display panel 10.
  • (A), (b) is a schematic process drawing which shows a part of manufacturing process of the organic electroluminescence display panel 10.
  • 5 is a schematic cross-sectional end view showing a partial configuration of an organic EL display panel 30 according to Embodiment 2.
  • FIG. FIG. 10 is a schematic plan view showing a partial configuration of an organic EL display panel 40 according to Embodiment 3.
  • 4 is a schematic cross-sectional end view showing a partial configuration of an organic EL display panel 40.
  • FIG. It is a schematic cross section end view which shows a partial structure of the organic EL display panel which concerns on a prior art.
  • (A), (b) is a schematic cross section end view which shows the cross-sectional shape of the edge part of the organic functional layers 927 and 937 used as a problem in a prior art. It is a schematic cross-sectional end view showing the end cross-sectional shape of the organic functional layer 957 in the vicinity of the end of the anode 955 which is a problem in the related art related to improvement.
  • the organic EL display panel includes a substrate, a bank, a first electrode, an organic functional layer, and a second electrode.
  • the bank is formed above the substrate and defines an opening corresponding to a predetermined pixel area.
  • the first electrode is disposed above the substrate and includes a silver layer or a silver alloy layer, and the surface portion of the silver layer or the silver alloy layer is a reflective portion having a predetermined reflectance.
  • the organic functional layer is formed on the upper surface of the first electrode and includes at least an organic light emitting layer.
  • the second electrode is disposed above the organic functional layer, and is light that is irradiated upward from the organic functional layer and light that is irradiated downward from the organic functional layer and reflected by the reflecting portion of the first electrode. And transparent.
  • the first electrode is disposed in the opening of the bank, the end of the first electrode being spaced apart from the end of the bank facing the opening, and the silver included in the first electrode
  • the film thickness of the layer or the silver alloy layer is a predetermined film thickness of 60 [nm] or more and 200 [nm] or less.
  • the organic functional layer has a thickness equal to or greater than a predetermined thickness of the first electrode, and is formed from the upper surface of the first electrode to the side surface of the end portion.
  • peripheral edge of the first electrode is referred to as an “end”.
  • the bank which is an insulating layer covers the end portion of the first electrode as in the organic EL display panel according to the related art
  • current is applied to the end portion of the first electrode covered with the bank. It becomes difficult to flow. Therefore, a region on the first electrode that is not covered with the bank is a light emitting region. In this case, in order to increase the opening area and widen the light emitting region, it is conceivable to shift the banks to widen the region between the banks, or to reduce the bank region covering the first electrode.
  • the end of the first electrode may be exposed in the opening of the bank, and the end of the first electrode may not be covered with the bank.
  • the organic functional layer is formed at the exposed end portion of the first electrode, the organic functional layer is formed at the end portion of the first electrode when the thickness of the first electrode is larger than the thickness of the organic functional layer.
  • disconnection As described above, when the organic functional layer is disconnected, there is a problem that the first electrode and the second electrode are directly electrically connected via the portion where the disconnection occurs and are short-circuited. .
  • the thickness between the first electrode and the second electrode is increased. Since the resistance increases, a larger voltage must be applied to obtain a desired luminance. When such a large voltage is applied to cause the organic light emitting layer to emit light, the deterioration of the organic light emitting layer is promoted and the lifetime is reduced. Moreover, since it is necessary to apply a higher voltage, there arises a problem that the power consumption of the organic EL display panel is increased.
  • the film thickness of the first electrode is reduced without limitation, the reflectance decreases. Therefore, the amount of light reflected downward from the organic light emitting layer is reduced to the second electrode, and the amount of light directed to the second electrode is reduced, so that the light emission efficiency is lowered.
  • the film thickness of the silver (Ag) layer or the silver alloy (Ag alloy) layer (hereinafter referred to as “metal layer”) in the first electrode is 60 [. nm] to a predetermined film thickness of 200 [nm] or less, whereby the surface portion of the metal layer of the first electrode has a predetermined reflectance with respect to light emitted from the organic light emitting layer in the organic functional layer. It becomes a reflection part.
  • the thickness of the metal layer in the first electrode is less than 60 [nm]
  • the amount of light reflected downward from the organic light emitting layer in the organic functional layer to the second electrode is reduced, and light emission Although the efficiency is reduced, high luminous efficiency can be obtained by setting the thickness of the metal layer in the first electrode to 60 [nm] or more.
  • the thickness of the organic functional layer is set to be equal to or larger than the predetermined thickness of the first electrode, and extends from the upper surface of the first electrode to the side surface of the end portion.
  • a configuration in which an organic functional layer is formed is employed.
  • the thickness of the organic functional layer is reduced by adopting the thickness of the organic functional layer with respect to the first electrode and the form of forming the organic functional layer with respect to the first electrode.
  • the end of the first electrode and the end of the bank facing the opening are separated from each other. Similar to the technique proposed in Document 3, the thickness of the organic functional layer on the first electrode can be made uniform. Therefore, the light emission characteristics are excellent.
  • the light emitting region is wide, the thickness of the organic functional layer in the light emitting region is maintained uniform, and the organic functional layer is disconnected. There is no. Therefore, the organic EL display panel according to one embodiment of the present invention has a long lifetime while having excellent light emission characteristics.
  • the metal layer (Ag layer or Ag alloy layer)
  • the metal layer (Ag layer or Ag alloy layer)
  • the film thickness is less than 55 [nm]
  • the reflectance becomes lower than that of the first electrode including the aluminum (Al) layer or the aluminum alloy (Al alloy) layer. Therefore, as in the organic EL display panel according to one embodiment of the present invention, the high reflectance can be maintained by defining the thickness of the metal layer (Ag layer or Ag alloy layer) to be 60 [nm] or more. it can.
  • an insulating layer is disposed above the substrate, and a bank and a first electrode are disposed on the insulating layer.
  • an organic EL display panel in which an insulating layer called a planarization film is disposed above the substrate can be realized.
  • the insulating layer absorbs irregularities on the surface of the substrate and planarizes the surface, thereby ensuring the flatness of the bank and the first electrode when the bank and the first electrode are disposed on the insulating layer. be able to.
  • the first electrode does not reduce the amount of light reflected downward from the organic light emitting layer to the second electrode, and prevents the amount of light directed toward the second electrode from being reduced. it can. For this reason, the fall of luminous efficiency can be prevented.
  • the thickness of the organic light emitting layer formed in the opening of the bank can be made uniform. For this reason, variations in the thickness of the organic light emitting layer can be eliminated, and variations in light emission due to variations in the thickness of the organic light emitting layer can be eliminated, thereby realizing an organic EL display panel with uniform light emission intensity. It becomes like this.
  • the predetermined film thickness of the silver layer or the silver alloy layer included in the first electrode is 65 [nm] or more and 120 [nm] or less.
  • a configuration can be employed.
  • the film thickness of the metal layer (Ag layer or Ag alloy layer) included in the first electrode is 120 [nm]
  • the film is further reduced while suppressing the decrease in the reflectance of the first electrode. Since the thickness can be reduced, the organic functional layer formed on the upper surface of the first electrode can be further prevented from being broken at the end of the first electrode. Therefore, it is possible to more reliably prevent the first electrode and the second electrode from being directly electrically connected via the stepped portion of the organic functional layer and short-circuiting.
  • the distance between the first electrode and the second electrode is increased.
  • the resistance between the first electrode and the second electrode increases with the interval. In this case, since the amount of current flowing between the first electrode and the second electrode decreases in inverse proportion to the resistance, the amount of light emitted by the organic light emitting layer also decreases against an increase in the interval.
  • the predetermined thickness of the silver layer or silver alloy layer included in the first electrode exceeds 120 [nm], and in conjunction with this, the organic functional layer also has a thickness exceeding 120 [nm]. In this case, a decrease in light emission amount due to the organic light emitting layer is not preferable because it becomes difficult to obtain a sufficient light emission amount as an organic light emitting device.
  • the predetermined film thickness of the silver layer or the silver alloy layer included in the first electrode is defined in a range of 65 [nm] to 120 [nm]. .
  • the thickness of the organic functional layer can also be set to 120 [nm] or less, so that the thickness of the organic functional layer can be further reduced, and the voltage applied between the first electrode and the second electrode is reduced. Can be made. Therefore, an organic EL display panel having a longer lifetime can be realized.
  • the metal layer (Ag layer or Ag alloy layer) included in the first electrode has a predetermined thickness of 70 nm to 120 nm.
  • a configuration of a film thickness can be employed.
  • the thickness of the metal layer (Ag layer or Ag alloy layer) included in the first electrode is 70 [nm] or more, high reflectivity exceeding about 92 [%] is stably realized. can do.
  • the film thickness is set to 70 [nm] or more, the reflectivity exceeds 95 [%], and the first electrode including the Al layer or the Al alloy layer is employed. Compared to the above, it has optically superior characteristics.
  • an organic EL display panel having excellent optical characteristics can be realized, and the thickness of the organic functional layer can be further reduced, and the voltage applied between the first electrode and the second electrode is reduced. Can be made. Therefore, an organic EL display panel having excellent optical characteristics and a long lifetime can be realized.
  • the predetermined film thickness of the metal layer (Ag layer or Ag alloy layer) included in the first electrode is 70 [nm] or more and 100 [nm] or less. It is possible to adopt a configuration that
  • the first electrode is made as thin as possible and the first film thickness is reduced. It is possible to ensure the same reflectance as when the electrode film thickness is greater than 100 [nm]. Therefore, an organic EL display panel having excellent optical characteristics can be realized, and the thickness of the organic functional layer can be further reduced, so that the voltage applied between the first electrode and the second electrode is reduced. Thus, an organic EL display panel having excellent optical characteristics and a long lifetime can be realized.
  • a transparent conductive layer is provided between the first electrode and the organic functional layer, and the film thickness of the transparent conductive layer is 5 nm or more and 130.
  • the configuration of [nm] or less can be adopted.
  • the refractive index of the transparent conductive layer and its layer thickness, and the refractive index of the organic functional layer and its layer thickness are adjusted.
  • An optical cavity structure can be realized for light emitted from the organic light emitting layer and reflected from the reflecting surface of the first electrode.
  • the light irradiated downward from the organic functional layer reflects the distance of 5 nm that travels through the transparent conductive layer and is reflected by the reflecting portion of the first electrode.
  • a total distance of 10 [nm] can be used for the optical cavity, with a distance of 5 [nm] traveling the transmitted light through the transparent conductive layer.
  • the film thickness of the first electrode is 65 [nm]
  • the total film thickness of the first electrode and the transparent electrode is 200 [nm] by setting the film thickness of the transparent conductive layer to 130 [nm] or less.
  • the organic functional layer formed on the first electrode can be prevented from being broken at the end of the first electrode, and the first electrode and the second electrode can be used to prevent the broken portion of the organic functional layer. It is possible to prevent a short circuit due to direct electrical connection.
  • the conditions of the optical cavity of a specific wavelength can be created, so that the light extraction efficiency extracted to the outside through the second electrode can be improved, and the organic EL display with high emission luminance A panel can be realized.
  • the first electrode includes a silver (Ag) alloy layer, and the Ag alloy layer includes silver (Ag) and palladium ( It is possible to employ a configuration in which the alloy is composed of an alloy (APC alloy) containing Pd) and copper (Cu).
  • APC alloy an alloy containing Pd
  • Cu copper
  • the organic functional layer includes at least one of a charge injection layer or a charge transport layer formed on the first electrode, and is formed on the first electrode.
  • the thickness of at least one of the charge injection layer or the charge transport layer is greater than or equal to a predetermined thickness of the first electrode, and at least one of the charge injection layer or the charge transport layer extends over the upper surface and the end of the first electrode.
  • a configuration of being formed can be employed.
  • the organic functional layer is provided with an organic light emitting layer above at least one of the charge injection layer and the charge transport layer formed on the first electrode. It is also possible to adopt a configuration that is a layer.
  • the organic functional layer is a layer including a charge injection layer, a charge transport layer, and the organic light emitting layer, and the charge injection layer is formed on the first electrode. It is also possible to adopt a configuration in which the thickness of the charge injection layer is equal to or greater than a predetermined thickness of the first electrode, and the charge injection layer is formed over the upper surface and end of the first electrode. .
  • an internal angle formed by the side surface of the end portion of the first electrode and the substrate is 90 [°] or less can be employed.
  • the organic functional layer formed on the first electrode can be more reliably prevented from being broken at the end of the first electrode. It is possible to further reliably prevent the two electrodes from being short-circuited due to direct electrical connection via the stepped portion of the organic functional layer.
  • the organic EL display panel since the end of the first electrode is disposed away from the end of the bank facing the opening, the organic film is applied in the vicinity of the bank. Although it may be unstable, in the organic EL display panel according to one embodiment of the present invention, since the first electrode does not exist below the region, the region does not emit light (non-light emitting region). Therefore, in the organic EL display panel according to one embodiment of the present invention, there is little variation in coating shape in the light emitting region, the organic functional layer has a uniform film state including film thickness, and luminance unevenness in the pixel is small. The effect of long life can be obtained.
  • a configuration in which the predetermined pixel region is a region for each pixel and the bank defines the opening for each pixel may be employed. it can. That is, a so-called pixel bank configuration can be adopted as an example.
  • the predetermined pixel region is a region in which a plurality of pixels are arranged in a line, and the bank has the openings arranged in a line. It is also possible to adopt a configuration in which each pixel is defined. That is, a so-called line bank configuration can be adopted as an example.
  • An organic EL display device includes any one of the above organic EL display panels. Therefore, the organic EL display device according to one embodiment of the present invention also has a long lifetime while having excellent light emission characteristics for the same reason as described above.
  • the method for manufacturing an organic EL display panel according to an aspect of the present invention includes the following steps.
  • a first electrode including a metal layer (Ag layer or Ag alloy layer) having a predetermined reflectance is formed on a substrate.
  • a bank having an opening and defining a pixel region is formed above the substrate.
  • An organic functional layer including at least the organic light emitting layer is formed to have a film thickness equal to or larger than a predetermined film thickness of the first electrode over the upper surface and the end of the first electrode.
  • transmits the light irradiated upward from the organic light emitting layer and the light irradiated from the organic light emitting layer and reflected from the reflective surface of the 1st electrode is organic. It arrange
  • the first electrode is disposed in the opening of the bank with the end spaced from the end of the opening, and the metal layer included in the first electrode
  • the film thickness of the (Ag layer or Ag alloy layer) is a predetermined film thickness of 60 [nm] or more and 200 [nm] or less
  • the organic functional layer is a film thickness of a predetermined film thickness or more of the first electrode.
  • the predetermined thickness of the metal layer (Ag layer or Ag alloy layer) included in the first electrode is 60 nm or more and 200 nm or less.
  • the first electrode is formed so that the surface portion thereof becomes a reflection portion having a predetermined reflectance with respect to light irradiated from the organic light emitting layer in the organic functional layer.
  • the thickness of the organic functional layer is set to be equal to or larger than the predetermined thickness of the first electrode, and the end portion from the upper surface of the first electrode.
  • An organic functional layer is to be formed over the side surface.
  • the organic electroluminescence display panel manufactured is the film thickness of the organic functional layer with respect to a 1st electrode, and formation of the organic functional layer with respect to a 1st electrode
  • the organic functional layer at the end of the first electrode is not cut off or extremely thinned.
  • the power consumption of the organic EL display panel increases.
  • the end of the first electrode and the end of the bank facing the opening are separated from each other. And an organic EL display panel in which the thickness of the organic functional layer on the first electrode is uniform can be manufactured. Therefore, the organic EL display panel manufactured using the method for manufacturing an organic EL display panel according to one embodiment of the present invention has excellent light emission characteristics.
  • the light emitting region is wide, the film thickness of the organic functional layer in the light emitting region is uniformly maintained, and the step of the organic functional layer is performed.
  • the organic EL display panel produced without breakage has a long life while having excellent light emission characteristics.
  • the bank and the first electrode when the bank and the first electrode are arranged on the insulating layer by absorbing the unevenness of the substrate surface and planarizing the surface of the insulating layer, the bank and the first electrode Flatness can be ensured. Therefore, the first electrode can prevent the amount of light directed downward from the organic light emitting layer from being reflected to the second electrode and can prevent the amount of light directed to the second electrode from being reduced. A decrease in efficiency can be prevented.
  • the film thickness of the organic light emitting layer formed in the opening of the bank can be made uniform. For this reason, the film thickness variation of an organic light emitting layer can be eliminated, and the light emission variation by the film thickness variation of an organic light emitting layer can be eliminated. Therefore, a method for manufacturing an organic EL display panel having uniform light emission intensity can be realized.
  • a configuration in which a transparent conductive layer is formed on the upper surface of the first electrode in the second step can be employed.
  • the surface of the first electrode that is an electrode including an Ag layer or an Ag alloy layer is exposed when the opening is formed in the bank in the third step, and is oxidized by the developer in the developing step.
  • oxidation by other processes can be prevented.
  • the reflectance of the surface of the first electrode which is an electrode including an Ag layer or an Ag alloy layer, is not reduced, the refractive index of the transparent conductive layer and its thickness, and the refractive index of the organic functional layer and its By adjusting the layer thickness, an optical cavity structure can be realized for light emitted from the organic light emitting layer and reflected by the reflecting surface of the first electrode.
  • the fourth step by patterning the first electrode into a predetermined shape of the first electrode by wet etching, in the method for manufacturing an organic EL display panel according to an aspect of the present invention, in the fourth step, by forming the first electrode patterned into a predetermined shape by wet etching, the side surface of the end portion of the first electrode It is also possible to adopt a configuration in which the inner angle formed by the substrate is 90 [°] or less. Since wet etching is isotropic etching, it is preferable as a manufacturing method that the inner angle of the end portion of the first electrode be 90 [°] or less.
  • the organic functional layer is formed by a wet coating method such as an inkjet method, a die coating method, or a spin coating method in the above configuration. You can also.
  • a wet coating method such as an inkjet method, a die coating method, or a spin coating method is a method capable of forming a continuous organic functional layer in a large area. For this reason, when forming an organic functional layer using any of these methods, an organic functional layer having a uniform film thickness on the first electrode is obtained while preventing disconnection at the end of the first electrode. Suitable for forming.
  • the organic functional layer includes at least one of a charge injection layer or a charge transport layer formed on the first electrode, The thickness of at least one of the charge injection layer or the charge transport layer formed on the first electrode is greater than or equal to a predetermined thickness of the first electrode, and is formed from the upper surface of the first electrode to the side surface of the end portion.
  • a configuration can also be adopted.
  • the organic functional layer when the organic functional layer includes at least one of the charge injection layer and the charge transport layer, the organic functional layer has excellent charge injection properties and excellent light emission characteristics.
  • the organic functional layer can be reliably prevented from being disconnected at the end portion of the first electrode. And the second electrode can be prevented from being short-circuited.
  • the organic functional layer is a layer in which an organic light emitting layer is provided above at least one of the charge injection layer or the charge transport layer. It is also possible to adopt the configuration.
  • the organic functional layer is a layer including a charge injection layer, a charge transport layer, and an organic light emitting layer, and the charge injection layer is the first.
  • a structure in which the charge injection layer is formed on the electrode so that the thickness of the charge injection layer is greater than or equal to a predetermined thickness of the first electrode, and the charge injection layer is formed from the upper surface of the first electrode to the side surface of the end portion. Can also be adopted.
  • the organic EL display device 1 includes an organic EL display panel 10 and a drive control unit 20 connected thereto.
  • the organic EL display panel 10 is a panel using an electroluminescence phenomenon of an organic material, and a plurality of organic EL elements are arranged in a matrix, for example.
  • the drive control unit 20 is composed of four drive circuits 21 to 24 and a control circuit 25.
  • the arrangement of the drive control unit 20 with respect to the display panel 10 is not limited to this.
  • FIG. 2 is a cross-sectional end view of a part of the configuration of the organic EL display panel 10 taken along the Y-axis direction in FIG. 1, and shows an end surface of the CC ′ cross section in FIG.
  • FIG. 3 is a cross-sectional end view of a part of the configuration of the organic EL display panel 10 cut in the X-axis direction in FIG. 1, and shows an end surface of the DD ′ cross section in FIG.
  • FIG. 4 other components are not shown for easy understanding of the relationship between the anode 105 and the bank 106.
  • the organic EL display panel 10 is formed with a substrate 101 as a base.
  • a TFT (thin film transistor) layer 102, a passivation film 103, and a planarization film 104 are sequentially stacked.
  • FIG. 2 only the source or drain (SD electrode) which is a part of the configuration of the TFT layer 102 is illustrated.
  • a bank 106 that defines an opening corresponding to a pixel is formed on the planarization film 104 that is an insulating layer.
  • An anode 105 is formed in the pixel region defined by the bank 106 on the planarizing film 104.
  • the anode 105 is formed by laminating a metal layer 1051 and a transparent conductive layer 1052 in this order from the planarization film 104 side.
  • the anode 105 is also continuously formed in the contact hole 104 a opened in the planarizing film 104 and is connected to the SD electrode of the TFT layer 102.
  • the metal layer 1051 in the anode 105 is a layer made of silver (Ag) or a silver alloy (Ag alloy), and the transparent conductive layer 1052 is a layer made of ITO (indium tin oxide) or IZO (indium zinc oxide).
  • the bank 106 in the organic EL display panel 10 is a so-called pixel bank, and an element 106a extending in the X-axis direction and an element 106b extending in the Y-axis direction are integrated. Is formed.
  • Each opening defined by the bank 106 corresponds to one pixel, and the anode 105 is disposed in each opening. Note that the anode 105 in each pixel is connected to the SD electrode of the TFT layer 102 through a contact hole 104a.
  • the organic functional layer 107 is laminated on the anode 105.
  • the organic functional layer 107 is a layer including at least an organic light emitting layer, and may further include a charge injection layer, a charge transport layer, a charge injection transport layer, or the like.
  • the end of the anode 105 is in a state of being separated from the end of the bank 106 that faces the opening.
  • the organic functional layer 107 is formed in contact with the surface of the planarization film 104.
  • a cathode 108 is formed on the organic functional layer 107.
  • the cathode 108 is provided in common over all the pixels in the organic EL display panel 10, and is also formed on the bank 106.
  • a sealing layer 109 is formed on the cathode 108.
  • the DD ′ cross section of FIG. 4 is basically the same as the CC ′ cross section shown in FIG. 2 except that the contact hole 104a is not present. It has a configuration. As shown by the arrow B portion in FIG. 3, the end portion of the anode 105 is also separated from the end portion of the bank 106 facing the opening in the DD ′ cross section. As shown in FIGS. 2 and 3, the region where the anode 105 is formed in each pixel is the light emitting region 100, and the other region including the region where the bank 106 is formed is the non-light emitting region 150.
  • the organic EL display panel 10 holes are supplied from the anode 105, electrons are injected from the cathode 108, these are sent to the organic functional layer 107, and light is emitted by recombination in the organic light emitting layer.
  • the light emitted from the organic light emitting layer of the organic functional layer 107 includes a component traveling toward the cathode 108 and a component traveling toward the anode 105.
  • the light component directed toward the anode 105 is reflected by the surface on the upper side of the Z-axis and the surface layer portion of the metal layer 1051 of the anode 105 and travels toward the cathode 108.
  • the surface portion of the metal layer 1051 in the anode 105 also serves as a reflection portion having a predetermined reflectance.
  • the substrate 101 is, for example, alkali-free glass, soda glass, non-fluorescent glass, phosphate glass, boric acid glass, quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, silicone resin. Or an insulating material such as alumina.
  • Planarization film 104 is formed using an organic compound such as polyimide, polyamide, acrylic, or silicone resin material.
  • Metal layer 1051 in the anode 105 is formed using silver (Ag) or a silver alloy (Ag alloy). In the case of the organic EL display panel 10 according to this embodiment of the top emission type, it is preferable that the surface portion has high reflectivity.
  • Transparent conductive layer 1052 in the anode 105 is formed using a transparent conductive material such as ITO (indium tin oxide) or IZO (indium zinc oxide).
  • the bank 106 is formed using an organic material such as resin and has an insulating property.
  • the organic material used for forming the bank 106 include acrylic resin, polyimide resin, and novolac type phenol resin.
  • the bank 106 preferably has organic solvent resistance.
  • the bank 106 since the bank 106 may be subjected to an etching process, a baking process, or the like during the manufacturing process, the bank 106 should be formed of a highly resistant material that does not excessively deform or alter the process. Is preferred.
  • the surface can be treated with fluorine to give water repellency.
  • the bank 106 When the bank 106 is formed using a lyophilic material, the difference in lyophilicity / liquid repellency between the surface of the bank 106 and the surface of the organic functional layer 107 is reduced, and the This is because it becomes difficult to selectively hold ink containing an organic substance in the opening defined by the bank 106 in order to form the organic light emitting layer.
  • the structure of the bank 106 not only a single layer structure as shown in FIGS. 2 and 3, but also a multilayer structure of two or more layers can be adopted.
  • the above materials can be combined for each layer, and an inorganic material and an organic material can be used for each layer.
  • Organic functional layer 107 The organic light emitting layer included in the organic functional layer 107 has a function of emitting light by generating an excited state by injecting and recombining holes and electrons as described above. As a material used for forming the organic light emitting layer, it is necessary to use a light emitting organic material that can be formed by a wet printing method.
  • the oxinoid compound, perylene compound, coumarin compound, azacoumarin compound, oxazole compound, oxadiazole compound, perinone compound, pyrrolopyrrole described in Japanese Patent Publication (JP-A-5-163488) Compound, naphthalene compound, anthracene compound, fluorene compound, fluoranthene compound, tetracene compound, pyrene compound, coronene compound, quinolone compound and azaquinolone compound, pyrazoline derivative and pyrazolone derivative, rhodamine compound, chrysene compound, phenanthrene compound, cyclopentadiene compound, stilbene compound , Diphenylquinone compound, styryl compound, butadiene compound, dicyanomethylenepyran compound, dicyanomethylenethiopyran compound, fluoro Cein compound, pyrylium compound, thiapyrylium compound, seren
  • the organic functional layer 107 may include a charge injection layer interposed closer to the anode 105 than the organic light emitting layer.
  • a charge injection layer for example, a conductive polymer material such as PEDOT (a mixture of polythiophene and polystyrene sulfonic acid), or a transition such as molybdenum (Mo) oxide or tungsten (W) oxide.
  • PEDOT a mixture of polythiophene and polystyrene sulfonic acid
  • Mo molybdenum
  • W tungsten
  • a metal oxide or the like can be employed.
  • the cathode 108 is formed using, for example, ITO (indium tin oxide) or IZO (indium zinc oxide).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • permeability shall be 80 [%] or more.
  • the material used for forming the cathode 108 includes, for example, a layer structure containing an alkali metal, an alkaline earth metal, or a halide thereof, or a layer containing silver in any one of the above layers.
  • a structure in which the layers are stacked in this order can also be used.
  • the layer containing silver may be formed of silver alone, or may be formed of a silver alloy.
  • a highly transparent refractive index adjusting layer can be provided on the silver-containing layer.
  • the sealing layer 109 has a function of suppressing exposure of the organic light emitting layer or the like in the organic functional layer 107 to moisture or air.
  • SiN silicon nitride
  • SiON oxynitriding It is formed using a material such as silicon.
  • a sealing resin layer made of a resin material such as an acrylic resin or a silicone resin may be provided on a layer formed using a material such as SiN (silicon nitride) or SiON (silicon oxynitride).
  • the sealing layer 109 is preferably formed of a light transmissive material.
  • the end portion P 1 of the anode 105 is arranged with a distance d 1 away from the end portion P 2 of the bank 106 facing the opening.
  • This state is realized, for example, by reducing the width of the bank 106. Therefore, the organic EL display panel 10 can have a wider opening than the organic EL display panel according to the related art shown in FIG.
  • the organic functional layer 107 is formed on the planarizing film 104. For this reason, the anode 105 as shown in FIGS. 17 (a) and 17 (b). The problem of non-uniform thickness of the organic functional layer 107 does not occur.
  • the film thickness t 2 of the metal layer 1051 in the anode 105 is set so that the reflectance for reflecting the light irradiated from the organic light emitting layer in the organic functional layer 107 toward the cathode 108 becomes a predetermined value or more. Yes.
  • Specific thickness t 2 is in the range of 60 [nm] or more 200 [nm] or less, desirably, the lower limit value is 65 [nm], the upper limit is 120 [nm], more preferably Has a lower limit of 70 [nm] and an upper limit of 100 [nm].
  • the lower limit value of the predetermined range of the film thickness t 2 is set to 60 [nm]
  • all of red (R), green (G), and blue (B) are exemplified as illustrated in FIG.
  • a stable reflectance of 92 [%] or more can be obtained in the wavelength region.
  • the thickness t 3 of the organic functional layer 107 is set to be equal to or greater than the thickness t 1 of the anode 105 and is formed from the upper surface 105a of the anode 105 to the end side surface 105b. Yes.
  • the organic functional layer 107 does not become stepped or extremely thin at the end of the anode 105 as indicated by the arrow E portion. .
  • FIG. 6A schematically shows the anode 105 and the organic functional layer 107 according to this embodiment
  • FIG. 6B shows the anode 955 and the organic functional layer 957 according to the comparative example. Is schematically illustrated.
  • the film thickness t 3 of the organic functional layer 107 is set to a film thickness t 1 or more of the anode 105 as in the present embodiment.
  • the organic functional layer 107 is formed from the upper surface 105a of the anode 105 to the end side surface 105b.
  • the film thickness t 3 of the organic functional layer 107 is It is defined by a relative relationship with the film thickness t 1 of the anode 105 including the film thickness t 2 of the metal layer 1051.
  • the internal angle ⁇ formed by the end side surface 105b of the anode 105 and the top surfaces of the substrate 101 and the planarizing film 104 is 90 [°] or less. This also prevents the organic functional layer 107 from being disconnected at the arrow F portion.
  • the organic functional layer 107 does not break off at the end of the anode 105 as indicated by the arrow F in FIG.
  • the film thickness t 93 of the organic functional layer 957 on the anode 955 has a smaller relationship than the film thickness t 91 of the anode 955.
  • the anode 955 is formed in the same process as the bus bar (not shown) including the metal layer 9551, resulting in the film thickness t 92 of the metal layer 9551 and the film thickness t of the anode 955. 91 is thicker. Therefore, as shown in FIG. 6B, the organic functional layer 957 may break off at the arrow G portion (the end of the anode 955).
  • the organic functional layer 957 is disconnected, and the organic functional layer 957a on the upper surface 955a of the anode 955 and the organic functional layer 957b covering the end side surface 955b of the anode 955 are not continuous, and the transparent conductive layer of the anode 955 9552 is short-circuited with the cathode (not shown in FIG. 6B) at the arrow G portion.
  • organic EL display panel 10 main effects of organic EL display panel 10 and organic EL display device 1 including the same
  • the thickness t 2 of the metal layer 1051 in the anode 105 is less than 40 [nm]
  • the amount of light reflected from the organic light emitting layer in the organic functional layer 107 to the cathode 108 side decreases, although the light emission efficiency is reduced, high light emission efficiency can be obtained by setting the film thickness t 2 of the metal layer 1051 in the anode 105 to 40 [nm] or more as in this embodiment.
  • the thickness t 3 of the organic functional layer 107 is set to be equal to or larger than the thickness t 1 of the anode 105 (see FIG. 5 and the like), and the upper surface of the anode 105 A configuration in which the organic functional layer 107 is formed from 105a to the end side surface 105b is employed (see FIG. 6A).
  • the film thickness t 3 of the organic functional layer 107 with respect to the anode 105 and the above-described formation form of the organic functional layer 107 with respect to the anode 105 are employed.
  • the film thickness t 2 of the metal layer 1051 in the anode 105 can be reduced as the film thickness t 1 of the anode 105 is reduced to prevent the step breakage, and specifically, 200 [nm] or less.
  • the thickness may be preferably 120 [nm] or less, and more preferably 100 [nm] or less.
  • the end portion P 1 of the anode 105 and the end portion P 2 of the bank 106 facing the opening are separated from each other. Therefore, the light emitting region can be widened and the thickness of the organic functional layer 107 on the anode 105 can be made uniform. Therefore, the light emission characteristics are excellent.
  • the light emitting region is wide, and the film thickness t 3 of the organic functional layer 107 in the light emitting region is kept uniform.
  • the organic functional layer 107 is not broken. Therefore, the organic EL display panel 10 and the organic EL display device 1 including the same have a long life while having excellent light emission characteristics.
  • FIG. 7 is a diagram illustrating the relationship between the measured thickness of the metal layer 1051 and the reflectance at each thickness with respect to the measurement data of FIG.
  • the horizontal axis in FIG. 8 is the film thickness of the metal layer 1051
  • the vertical axis is the reflectance of the metal layer 1051.
  • measurement data for an anode containing an Al alloy is also shown as a reference example.
  • the reflectance is approximately 90 [%] in the wavelength range of 460 [nm] to 600 [nm]. That's it.
  • the reflectance is lower than 90 [%] in the wavelength region of 475 [nm] or less.
  • the reflectance was 91 [%] or more.
  • the thickness of the metal layer is 65 [nm] or more
  • the reflectance is 92 [%] or more for the blue (B) light on the shortest wavelength range side
  • the thickness is 70 [nm].
  • the reflectance is about 92 [%] to about 97 [%], and it can be seen that the influence on the reflectance is small even if the thickness is increased further.
  • the film thickness is 55 [relative to the reference sample containing an Al alloy as the metal layer.
  • the reflectance value is reversed at [nm]. From this, when considering the viewpoint of material cost, it is necessary for securing the reflectance that the film thickness of the metal layer made of Ag alloy (APC) is at least 60 [nm] or more.
  • the upper limit of the thickness t 2 of the metal layer 1051 of the anode 105 is not particularly required from the viewpoint of reflectivity as described above, but the organic functional layer 107 is disconnected as described above.
  • it is 200 [nm] or less, preferably 120 [nm] or less, and more preferably 100 [nm] or less.
  • the range of the film thickness t 2 of the metal layer 1051 in the anode 105 is 60 [nm] or more and 200 [nm] or less, preferably 65 [nm] or more and 120 [nm] or less, or 70 [nm] or more and 120. [nm] or less, and more desirably 70 [nm] or more and 100 [nm] or less, or 50 [nm] or more and 100 [nm] or less.
  • the organic functional layer 107 includes at least the organic light emitting layer.
  • the definition including variations will be described with reference to FIG.
  • the organic functional layer 107 can be a stacked structure of a charge injection layer 1071 and an organic light emitting layer 1072.
  • the charge injection layer 1071 is laminated on the transparent conductive layer 1052 in the anode 105, and the organic light emitting layer 1072 is laminated thereon.
  • the “film thickness t 3 of the organic functional layer 107” means the thickness obtained by adding the film thickness t 32 of the charge injection layer 1071 and the film thickness t 31 of the organic light emitting layer 1072. It becomes.
  • the organic functional layer 117 may be a three-layer structure including a charge injection layer 1171, an organic light emitting layer 1172, and an electron transport layer 1173.
  • the “film thickness t 13 of the organic functional layer 117” in comparison with the film thickness t 1 of the anode 105 is the sum of the film thickness t 132 of the charge injection layer 1171 and the film thickness t 131 of the organic light emitting layer 1172.
  • the thickness t 133 of the electron transport layer 1173 is not included in the comparison.
  • the organic functional layer 127 may be a laminated structure having a three-layer structure including a charge injection layer 1271, a charge transport layer 1274, and an organic light emitting layer 1272.
  • the “film thickness t 23 of the organic functional layer 127” in comparison with the film thickness t 1 of the anode 105 means the film thickness t 232 of the charge injection layer 1271, the film thickness t 234 of the charge transport layer 1274, and organic light emission. a thickness obtained by adding the thickness t 231 of the layer 1172.
  • the film thickness of the electron transport layer is compared with the film thickness t 1 of the anode 105 as described above. Shall not be included.
  • FIGS. 10 to 12 are sectional end views in main processes.
  • a substrate 101 is prepared.
  • the TFT layer 102 and the passivation film 103 are formed on the main surface 101a of the substrate 101 (see FIG. 10B).
  • the SD electrode is shown for the TFT layer 102 as described above.
  • a planarizing film 104 which is an insulating layer is formed on the main surface 103a of the passivation film 103 above the substrate 101.
  • a contact hole 104a is formed in a portion corresponding to the SD electrode of the TFT layer 102, and the passivation film 103 in the portion is also housed. The surface of the SD electrode of the TFT layer 102 is exposed at the bottom.
  • a film for forming the metal layer 1051 and a film for forming the transparent conductive layer 1052 are sequentially stacked on the main surface 104b of the planarizing film 104. Both films are also formed on the side wall surrounding the contact hole 104a. Then, this is patterned by photolithography and etching to form the anode 105 that is a stacked structure of the metal layer 1051 and the transparent conductive layer 1052 (see FIG. 10D).
  • dry etching or wet etching can be employed for patterning, but in particular, when wet etching is employed, the wet etching is isotropic etching, so Since the inner angle of the end portion can be 90 [°] or less, it is preferable.
  • a film for forming the bank 106 is formed by sputtering on the main surface of the planarizing film 104 exposed without forming the anode 105. Then, a bank 106 that defines an opening corresponding to the pixel region is formed by photolithography and wet etching (see FIG. 11A). As shown in FIG. 11A, the end of the bank 106 facing the opening is formed with a distance d 1 from the end of the anode 105.
  • the ink 1070 for forming the organic functional layer 107 is applied to the opening defined by the bank 106 including the main surface 105a of the anode 105 (see FIG. 11B). At this time, the ink 1070 does not continue between adjacent openings due to the liquid repellency of the surface of the bank 106.
  • the organic functional layer 107 is formed in the opening defined by the bank 106 by drying the ink 1070 (see FIG. 11C).
  • the organic functional layer 107 adopts a two-layer structure or a structure of three or more layers as shown in FIGS. 9A to 9C, ink application and drying for forming each layer are performed. Will be executed repeatedly.
  • the cathode 108 is formed on the entire region including the main surface 107a of the organic functional layer 107 and the surface of the bank 106 (see FIG. 12A).
  • the cathode 108 can be formed by a sputtering method or the like.
  • a sealing layer 109 is formed on the surface 108a of the cathode 108 (see FIG. 12B).
  • FIG. 13 corresponds to the sectional end view shown in FIG. 2 in the first embodiment.
  • the organic EL display according to the first embodiment is that the anode 305 has a single layer structure of a metal layer (Ag layer or Ag alloy layer). Different from the panel 10. Also in the organic EL display panel 30, the end of the anode 305 is in a state of being separated from the end of the bank 106 facing the opening, the region where the anode 305 is formed is the light emitting region 300, and the other regions are This is a non-light emitting region 350.
  • a metal layer Al layer or Ag alloy layer
  • the film thickness of the anode 305 is set in the range of 60 [nm] or more and 200 [nm] or less, and the film thickness of the organic functional layer 107 is the film of the anode 305. It is thicker than the thickness.
  • the organic functional layer 107 is formed from the upper surface of the anode 305 to the end side surface.
  • the organic EL display panel 30 according to the present embodiment and the organic EL display device including the same have the same effects as the organic EL display panel 10 and the organic EL display device 1 described above.
  • FIGS. 14 and 15 The configuration of the organic EL display panel 40 according to the third embodiment will be described with reference to FIGS. 14 and 15, focusing on the differences from the first embodiment. 14 corresponds to the plan view shown in FIG. 4 in the first embodiment, and FIG. 15 corresponds to the sectional end view shown in FIG.
  • the organic EL display panel 40 is characterized in that the bank 406 has a so-called line bank structure. That is, as shown in FIG. 14, the bank 406 is composed of a plurality of elements extending in the Y-axis direction. The plurality of elements may be continuous with each other at the end, or conversely, each may be in a separated state.
  • FIG. 15 is a schematic cross-sectional end view showing a part of the organic EL display panel 40 in FIG. As shown in FIG. 15, since the organic EL display panel 40 employs a bank 406 (see FIG. 14) having a line bank structure, the bank 406 is not interposed between adjacent pixels in the Y-axis direction.
  • the organic functional layer 407 is formed from the upper surface to the end side surface of the anode 105, and the cathode 408 and the sealing layer 409 are sequentially stacked thereon. . Therefore, also in the organic EL display panel 40, the region where the anode 105 is formed is the light emitting region 400, and the other region is the non-light emitting region 450.
  • the cross-sectional structure in the X-axis direction of FIG. 14 is not shown, but the structure is the same as that of the first embodiment. That is, in the X-axis direction, the end of the anode 105 is in a state of being separated from the end of the bank 406 facing the opening. Also in this embodiment, the thickness of the metal layer 1051 in the anode 105 is set in a range of 60 [nm] or more and 200 [nm] or less, and the thickness of the organic functional layer 407 is that of the anode 105. It is thicker than the film thickness.
  • the organic EL display panel 40 and the organic EL display device including the same according to the present embodiment have the same effects as those of the first embodiment.
  • the anodes 105 and 305 are disposed below the organic functional layers 107, 117, 127, and 407 in the Z-axis direction, that is, on the substrate 101 side.
  • the cathodes 108 and 408 are arranged above, the arrangement relationship between the anode and the cathode can be reversed upside down.
  • an electron injection layer or an electron transport layer is disposed in a region on the substrate 101 side with respect to the organic light emitting layer.
  • the "film thickness of the organic functional layer” The film thickness up to the level including the organic light emitting layer is defined by integrating from the substrate 101 side.
  • FIGS. 1 to 15 used in the description of the first, second, and third embodiments the sizes of the respective parts are not shown with strict relative values. Appropriate changes can be made upon application. Even in this case, it is necessary to define the thickness of the metal layer in the anode within the above range and to make the thickness of the organic functional layer larger than the thickness of the anode.
  • the present invention is useful for realizing a long-life organic EL display panel and an organic EL display device having excellent light emission characteristics.
  • Organic EL display panel 20. Drive control unit 21-24. Drive circuit 25.
  • Substrate 102. TFT layer 103.
  • Passivation film 104. Planarization film 105,305.
  • Anode 106,406. Bank 107,117,127,407.
  • Metal layer 1052. Transparent conductive layer 1070. Ink 1071, 1171, 1271. Charge injection layers 1072, 1172, 1272. Organic light emitting layer 1173.
  • Electron transport layer 1274. Charge transport layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

In the present invention a positive electrode (105) is disposed in a state such that an end part (P1) thereof is separated from an end part (P2) of a bank facing an opening. A positive electrode (105) has a laminated structure comprising, from a planarizing film (104) side, a metal layer (1051) comprising silver (Ag) or a silver alloy (Ag alloy) and a transparent conductive layer (1052) comprising ITO. Of these layers, the metal layer (1051) has a thickness (t2) of 60 to 200 nm inclusive, and the surface part thereof is a reflecting part having a predetermined reflectance. In addition, an organic functional layer (107) formed on top of the positive electrode (105) has a thickness (t3) that is the same as or greater than thickness (t1) of the positive electrode (105), and is formed from the top surface of the positive electrode (105) to the side surface of the end part.

Description

有機EL表示パネルとその製造方法、および有機EL表示装置Organic EL display panel, manufacturing method thereof, and organic EL display device
 本発明は、有機EL表示パネルとその製造方法、および有機EL表示装置に関する。 The present invention relates to an organic EL display panel, a manufacturing method thereof, and an organic EL display device.
 近年では、有機エレクトロルミネッセンス(EL)表示装置の研究・開発がなされている。有機EL表示装置に含まれる有機EL表示パネルは、画素単位で有機EL素子が設けられた構成を有し、有機EL素子毎に固体蛍光性物質の電界発光現象を利用して自発光する。従来技術の一例として、特許文献1,2で開示されている有機EL表示パネルの構成について、図16を用い説明する。 In recent years, research and development of organic electroluminescence (EL) display devices have been conducted. An organic EL display panel included in an organic EL display device has a configuration in which an organic EL element is provided for each pixel, and emits light by utilizing an electroluminescence phenomenon of a solid fluorescent material for each organic EL element. As an example of the prior art, the configuration of the organic EL display panel disclosed in Patent Documents 1 and 2 will be described with reference to FIG.
 図16に示すように、従来技術に係る有機EL表示パネルでは、基板901上にTFT(Thin Film Transistor)層902が形成され(図16では、一部であるソースのみを図示している)、その上にパッシベーション膜903および平坦化膜904が順に積層形成されている。平坦化膜904上には、各画素900に対応する状態で、陽極905が形成されている。陽極905は、平坦化膜904の側から順に積層形成された金属層9051と透明導電層9052とから構成されている。陽極905は、平坦化膜904に開けられたコンタクトホール904a中にも埋め込まれており、これによりTFT層902との接続が図られている。 As shown in FIG. 16, in the organic EL display panel according to the prior art, a TFT (Thin Film Transistor) layer 902 is formed on a substrate 901 (FIG. 16 shows only a part of the source). A passivation film 903 and a planarization film 904 are sequentially stacked thereon. An anode 905 is formed on the planarization film 904 in a state corresponding to each pixel 900. The anode 905 includes a metal layer 9051 and a transparent conductive layer 9052 that are sequentially stacked from the planarization film 904 side. The anode 905 is also embedded in a contact hole 904a opened in the planarization film 904, thereby connecting to the TFT layer 902.
 平坦化膜904上には、画素900と隣接する画素900との間を区画するように、バンク906が形成されている。バンク906は、陽極905の端部の一部上を覆うように配されている。バンク905で規定された画素900の領域には、陽極905上に有機機能層907が積層形成されている。有機機能層907は、湿式の塗布型層であって、少なくとも有機発光層を含む。有機機能層907上およびバンク906上には、陰極908が形成されており、さらに陰極908を覆うように封止層909が積層形成されている。 A bank 906 is formed on the planarizing film 904 so as to partition the pixel 900 and the adjacent pixel 900. The bank 906 is disposed so as to cover a part of the end of the anode 905. An organic functional layer 907 is stacked on the anode 905 in the region of the pixel 900 defined by the bank 905. The organic functional layer 907 is a wet coating type layer and includes at least an organic light emitting layer. A cathode 908 is formed on the organic functional layer 907 and the bank 906, and a sealing layer 909 is stacked so as to cover the cathode 908.
 ところで、図16に示す従来技術に係る有機EL表示装置では、バンク906が陽極905の端部を覆っているため、当該部分に電流が流れ難くなり、発光領域の減少が問題となる。また、図17(a)や図17(b)に示すように、各画素920,930における有機機能層927,937の両端部分(矢印Iおよび矢印Jで指し示す部分)において、塗布ムラに起因する厚みの不均一を生じることがある。このような現象は、発光輝度ムラの原因となり、画質の向上という観点から改善が求められる。 Incidentally, in the organic EL display device according to the prior art shown in FIG. 16, since the bank 906 covers the end portion of the anode 905, it is difficult for current to flow through the portion, and the reduction of the light emitting region becomes a problem. Further, as shown in FIGS. 17A and 17B, due to coating unevenness in both end portions (portions indicated by arrows I and J) of the organic functional layers 927 and 937 in the respective pixels 920 and 930. Thickness non-uniformity may occur. Such a phenomenon causes uneven luminance of light emission, and improvement is required from the viewpoint of improving image quality.
 これに対し、特許文献3では、バンクの幅を狭くすることにより陽極との間隔をあけ、これによって上記のような課題を解決しようとする提案がされている。即ち、バンクの幅を狭くすることで陽極の端部をバンクで覆わない構成とし、当該構成により発光領域を広くするとともに、陽極上の有機機能層の厚みを均一にできるとされている。 On the other hand, in Patent Document 3, a proposal is made to solve the above-described problems by increasing the interval between the bank and the anode by narrowing the bank width. That is, by narrowing the bank width, the end portion of the anode is not covered with the bank, and by this configuration, the light emitting region can be widened and the thickness of the organic functional layer on the anode can be made uniform.
特開平11-54286号公報Japanese Patent Laid-Open No. 11-54286 特開2004-192890号公報JP 2004-192890 A 特開2005-93421号公報JP 2005-93421 A
 しかしながら、特許文献3で提案されている技術では、バンクと陽極との間に間隔をあけたことに起因して、陽極の端部において有機機能層が段切れを生じて陽極と陰極とがショートしてしまったり、段切れを生じないまでも有機機能層の膜厚が極端に薄くなることで電界集中を生じたりするなどの問題を生じ得る。即ち、図18に示すように、陽極955の端部P91とバンク906の端部P92との間に間隔d9をあける構成の場合、陽極955の端部(矢印Kで示す部分)で陽極955と陰極908とがショートしたりすることが生じ得る。 However, in the technique proposed in Patent Document 3, the organic functional layer is cut off at the end of the anode due to a gap between the bank and the anode, and the anode and the cathode are short-circuited. Even if no step breakage occurs, problems such as electric field concentration may occur due to the extremely thin organic functional layer. That is, as shown in FIG. 18, in the case of the configuration spacing d 9 between the end portion P 92 of the end portion P 91 and the bank 906 of the anode 955, at the end of the anode 955 (the portion indicated by the arrow K) It may occur that the anode 955 and the cathode 908 are short-circuited.
 図18に示すように、陽極955は、銀(Ag)層若しくは銀合金(Ag合金)層などの金属層9551とITO(酸化インジウムスズ)層9552との積層構造を有するが、この内、金属層9551は図示を省略しているバスバーと同一行程で形成されるため、膜厚t92をバスバーに合わせて厚膜に形成しているのが現状である。これより、従来においては、陽極955の膜厚t91が厚くなっており、それよりも膜厚t93が薄い有機機能層957aを形成するとき、矢印Kで示す部分で有機機能層が段切れを生じる。即ち、矢印Kで示す部分を境にして、有機機能層957aと有機機能層957bとの間が不連続な状態となる。この場合、段切れ部分で陽極955と陰極908とがショートするという問題が生じる。 As shown in FIG. 18, the anode 955 has a laminated structure of a metal layer 9551 such as a silver (Ag) layer or a silver alloy (Ag alloy) layer and an ITO (indium tin oxide) layer 9552. Since the layer 9551 is formed in the same process as the bus bar not shown, the thickness t 92 is currently formed in a thick film in accordance with the bus bar. Than this, conventionally, the thickness t 91 of the anode 955 has become thicker, when the thickness t 93 than to form a thin organic functional layer 957a, the organic functional layer disconnection in the portion indicated by the arrow K Produce. That is, the organic functional layer 957a and the organic functional layer 957b are discontinuous from the portion indicated by the arrow K as a boundary. In this case, there arises a problem that the anode 955 and the cathode 908 are short-circuited at the stepped portion.
 なお、上記のような段切れの発生を防止するという目的で、有機機能層の膜厚を厚くするということも考えられるが、このような構成を採用する場合には、陽極955と陰極908との間での電気抵抗が増大してしまう。よって、所望の輝度を得るためには、より高い電圧を印加することが必要となり、有機機能層における有機発光層の劣化が促進され、寿命の低下という問題を生じることが考えられる。また、より高い電圧を印加することが必要となるため、有機EL表示パネルの消費電力が大きくなってしまうといった問題を生じる。 In order to prevent the occurrence of step breaks as described above, it is conceivable to increase the thickness of the organic functional layer. However, when such a configuration is adopted, the anode 955 and the cathode 908 The electrical resistance between the two increases. Therefore, in order to obtain a desired luminance, it is necessary to apply a higher voltage, and the deterioration of the organic light emitting layer in the organic functional layer is promoted, which may cause a problem that the lifetime is reduced. Moreover, since it is necessary to apply a higher voltage, there arises a problem that the power consumption of the organic EL display panel is increased.
 本発明は、上記問題を解決しようとなされたものであって、発光領域が広く、且つ、発光領域内での有機機能層の膜厚が均一に維持され、且つ、有機機能層の段切れのないことから、優れた発光特性を有しながら、長寿命な有機EL表示パネルとその製造方法、および有機EL表示装置を提供することを目的とする。 The present invention has been made to solve the above-described problem. The light emitting region is wide, the thickness of the organic functional layer in the light emitting region is maintained uniform, and the organic functional layer is not broken. Therefore, it is an object of the present invention to provide a long-life organic EL display panel, a manufacturing method thereof, and an organic EL display device having excellent light emission characteristics.
 本発明の一態様に係る有機EL表示パネルは、基板と、バンクと、第1電極と、有機機能層と、第2電極と、を含む。 The organic EL display panel according to an aspect of the present invention includes a substrate, a bank, a first electrode, an organic functional layer, and a second electrode.
 バンクは、基板の上方に形成され、所定の画素の領域に対応する開口部を規定する。 The bank is formed above the substrate and defines an opening corresponding to a predetermined pixel area.
 第1電極は、基板の上方に配置され、銀層若しくは銀合金層を含み、当該銀層若しくは銀合金層の表面部を所定の反射率を有する反射部としたものである。 The first electrode is disposed above the substrate and includes a silver layer or a silver alloy layer, and the surface portion of the silver layer or the silver alloy layer is a reflective portion having a predetermined reflectance.
 有機機能層は、第1電極の上面に形成され、有機発光層を少なくとも含む。 The organic functional layer is formed on the upper surface of the first electrode and includes at least an organic light emitting layer.
 第2電極は、有機機能層の上方に配置され、有機機能層から上方へ照射された光と、有機機能層から下方に照射された光であって第1電極の反射部で反射された光とが透過するものである。 The second electrode is disposed above the organic functional layer, and is light that is irradiated upward from the organic functional layer and light that is irradiated downward from the organic functional layer and reflected by the reflecting portion of the first electrode. Are transparent.
 本発明の一態様に係る有機EL表示パネルでは、第1電極が、バンクの開口部内において、その端部が開口部を臨むバンクの端部から離間して配置され、第1電極に含まれる銀層若しくは銀合金層の膜厚が、60[nm]以上200[nm]以下の所定の膜厚である。 In the organic EL display panel according to one aspect of the present invention, the first electrode is disposed in the opening of the bank, the end of the first electrode being spaced apart from the end of the bank facing the opening, and the silver included in the first electrode The film thickness of the layer or the silver alloy layer is a predetermined film thickness of 60 [nm] or more and 200 [nm] or less.
 また、有機機能層は、第1電極の所定の膜厚以上の膜厚であり、第1電極の上面から端部の側面にわたって形成されている。 The organic functional layer has a thickness equal to or greater than a predetermined thickness of the first electrode, and is formed from the upper surface of the first electrode to the side surface of the end portion.
 本発明の一態様に係る有機EL表示パネルでは、第1電極における銀(Ag)層若しくは銀合金(Ag合金)層(以下、「金属層」と記載する。)の膜厚を60[nm]以上200[nm]以下の所定の膜厚とし、これにより、第1電極の金属層の表面部分が、有機機能層における有機発光層から照射された光に対して所定の反射率を有する反射部となる。即ち、第1電極における金属層の膜厚を60[nm]未満とする場合には、有機機能層における有機発光層から下方に照射された光の第2電極へ反射する光量が減少し、発光効率の低下を招くが、第1電極における金属層の膜厚を60[nm]以上とすることにより、高い発光効率を得ることができる。 In the organic EL display panel according to one embodiment of the present invention, the film thickness of the silver (Ag) layer or the silver alloy (Ag alloy) layer (hereinafter referred to as “metal layer”) in the first electrode is 60 [nm]. The reflection part has a predetermined film thickness of 200 [nm] or less, whereby the surface portion of the metal layer of the first electrode has a predetermined reflectance with respect to the light emitted from the organic light emitting layer in the organic functional layer. It becomes. That is, when the thickness of the metal layer in the first electrode is less than 60 [nm], the amount of light reflected downward from the organic light emitting layer in the organic functional layer to the second electrode is reduced, and light emission Although the efficiency is reduced, high luminous efficiency can be obtained by setting the thickness of the metal layer in the first electrode to 60 [nm] or more.
 また、本発明の一態様に係る有機EL表示パネルでは、有機機能層の膜厚を、第1電極の所定の膜厚以上の膜厚とし、且つ、第1電極の上面から端部の側面にわたって有機機能層が形成されている構成を採用する。このため、本発明の一態様に係る有機EL表示パネルでは、第1電極に対する有機機能層の膜厚および第1電極に対する有機機能層の形成形態を採用することにより、有機機能層の膜厚を必要以上に厚くする必要はなく、第1電極と第2電極との間での電気抵抗の増大による寿命低下という問題を生じることはなく、同時に、有機EL表示パネルの消費電力が大きくなるという問題も生じない。 In the organic EL display panel according to one embodiment of the present invention, the thickness of the organic functional layer is set to be equal to or larger than the predetermined thickness of the first electrode, and extends from the upper surface of the first electrode to the side surface of the end portion. A configuration in which an organic functional layer is formed is employed. For this reason, in the organic EL display panel according to one embodiment of the present invention, the thickness of the organic functional layer is reduced by adopting the thickness of the organic functional layer with respect to the first electrode and the form of forming the organic functional layer with respect to the first electrode. It is not necessary to make it thicker than necessary, and there is no problem of a decrease in life due to an increase in electrical resistance between the first electrode and the second electrode, and at the same time, the power consumption of the organic EL display panel increases. Does not occur.
 また、第1電極の端部における有機機能層の段切れや極端な薄膜化を招くことがない。 Also, the organic functional layer at the end of the first electrode is not cut off or extremely thinned.
 以上より、本発明の一態様に係る有機EL表示パネルでは、発光領域が広く、且つ、発光領域内での有機機能層の膜厚が均一に維持され、且つ、有機機能層の段切れの発生がない。従って、本発明の一態様に係る有機EL表示パネルは、優れた発光特性を有しながら、長寿命である。 As described above, in the organic EL display panel according to one embodiment of the present invention, the light emitting region is wide, the thickness of the organic functional layer in the light emitting region is maintained uniform, and the organic functional layer is disconnected. There is no. Therefore, the organic EL display panel according to one embodiment of the present invention has a long lifetime while having excellent light emission characteristics.
実施の形態1に係る有機EL表示装置1の構成を示す模式ブロック構成図である。1 is a schematic block configuration diagram showing a configuration of an organic EL display device 1 according to Embodiment 1. FIG. 有機EL表示パネル10の一部構成を示す模式断面端面図である。2 is a schematic cross-sectional end view showing a partial configuration of an organic EL display panel 10. FIG. 有機EL表示パネル10の一部構成を示す模式断面端面図である。2 is a schematic cross-sectional end view showing a partial configuration of an organic EL display panel 10. FIG. 有機EL表示パネル10の一部構成を抜き出して示す模式平面図である。FIG. 2 is a schematic plan view showing a part of the organic EL display panel 10 extracted. 有機EL表示パネル10における陽極105の端部付近を示す模式断面端面図である。2 is a schematic cross-sectional end view showing the vicinity of an end portion of an anode 105 in an organic EL display panel 10. FIG. (a)は、実施の形態1に係る有機EL表示パネル10における陽極105と有機機能層107との相互の配置関係を示す模式断面端面図であり、(b)は、比較例に係る有機EL表示パネルにおける陽極955と有機機能層957との相互の配置関係を示す模式断面端面図である。(A) is a schematic cross-sectional end view showing the mutual positional relationship between the anode 105 and the organic functional layer 107 in the organic EL display panel 10 according to Embodiment 1, and (b) is an organic EL according to a comparative example. FIG. 10 is a schematic cross-sectional end view showing a mutual arrangement relationship between an anode 955 and an organic functional layer 957 in a display panel. 金属層1051の膜厚毎の光の波長と反射率との関係を示す特性図である。It is a characteristic view showing the relationship between the wavelength of light and the reflectance for each film thickness of the metal layer 1051. 発光色毎の金属層1051の膜厚と反射率との関係を示す特性図である。It is a characteristic view which shows the relationship between the film thickness of the metal layer 1051 for every luminescent color, and a reflectance. (a)は、有機機能層107が2層構造である場合の膜厚t3を定義するために用いる模式断面図であり、(b)は、有機機能層117が3層構造である場合の膜厚t13を定義するために用いる模式断面図であり、(c)は、有機機能層127に含まれる電荷注入層1271の膜厚t232を定義するために用いる模式断面図である。(A) is a schematic cross-sectional view used for defining the film thickness t 3 when the organic functional layer 107 has a two-layer structure, and (b) shows a case where the organic functional layer 117 has a three-layer structure. it is a schematic cross-sectional view used to define the thickness t 13, (c) is a schematic sectional view used to define the thickness t232 of the charge injection layer 1271 included in the organic functional layer 127. (a)~(d)は、有機EL表示パネル10の製造工程の一部を示す模式工程図である。FIGS. 4A to 4D are schematic process diagrams showing a part of the manufacturing process of the organic EL display panel 10. (a)~(c)は、有機EL表示パネル10の製造工程の一部を示す模式工程図である。(A) to (c) are schematic process diagrams showing a part of the manufacturing process of the organic EL display panel 10. (a),(b)は、有機EL表示パネル10の製造工程の一部を示す模式工程図である。(A), (b) is a schematic process drawing which shows a part of manufacturing process of the organic electroluminescence display panel 10. 実施の形態2に係る有機EL表示パネル30の一部構成を示す模式断面端面図である。5 is a schematic cross-sectional end view showing a partial configuration of an organic EL display panel 30 according to Embodiment 2. FIG. 実施の形態3に係る有機EL表示パネル40の一部構成を抜き出して示す模式平面図である。FIG. 10 is a schematic plan view showing a partial configuration of an organic EL display panel 40 according to Embodiment 3. 有機EL表示パネル40の一部構成を示す模式断面端面図である。4 is a schematic cross-sectional end view showing a partial configuration of an organic EL display panel 40. FIG. 従来技術に係る有機EL表示パネルの一部構成を示す模式断面端面図である。It is a schematic cross section end view which shows a partial structure of the organic EL display panel which concerns on a prior art. (a),(b)は、従来技術で問題となる有機機能層927,937の端部断面形状を示す模式断面端面図である。(A), (b) is a schematic cross section end view which shows the cross-sectional shape of the edge part of the organic functional layers 927 and 937 used as a problem in a prior art. 改良に係る従来技術で問題となる陽極955の端部付近での有機機能層957の端部断面形状を示す模式断面端面図である。It is a schematic cross-sectional end view showing the end cross-sectional shape of the organic functional layer 957 in the vicinity of the end of the anode 955 which is a problem in the related art related to improvement.
 [本発明の態様]
 本発明の一態様に係る有機EL表示パネルは、基板と、バンクと、第1電極と、有機機能層と、第2電極と、を含む。
[Aspect of the Invention]
The organic EL display panel according to one embodiment of the present invention includes a substrate, a bank, a first electrode, an organic functional layer, and a second electrode.
 バンクは、基板の上方に形成され、所定の画素の領域に対応する開口部を規定する。 The bank is formed above the substrate and defines an opening corresponding to a predetermined pixel area.
 第1電極は、基板の上方に配置され、銀層若しくは銀合金層を含み、当該銀層若しくは銀合金層の表面部を所定の反射率を有する反射部としたものである。 The first electrode is disposed above the substrate and includes a silver layer or a silver alloy layer, and the surface portion of the silver layer or the silver alloy layer is a reflective portion having a predetermined reflectance.
 有機機能層は、第1電極の上面に形成され、有機発光層を少なくとも含む。 The organic functional layer is formed on the upper surface of the first electrode and includes at least an organic light emitting layer.
 第2電極は、有機機能層の上方に配置され、有機機能層から上方へ照射された光と、有機機能層から下方に照射された光であって第1電極の反射部で反射された光と、を透過する。 The second electrode is disposed above the organic functional layer, and is light that is irradiated upward from the organic functional layer and light that is irradiated downward from the organic functional layer and reflected by the reflecting portion of the first electrode. And transparent.
 本発明の一態様に係る有機EL表示パネルでは、第1電極が、バンクの開口部内において、その端部が開口部を臨むバンクの端部から離間して配置され、第1電極に含まれる銀層若しくは銀合金層の膜厚が、60[nm]以上200[nm]以下の所定の膜厚である。 In the organic EL display panel according to one aspect of the present invention, the first electrode is disposed in the opening of the bank, the end of the first electrode being spaced apart from the end of the bank facing the opening, and the silver included in the first electrode The film thickness of the layer or the silver alloy layer is a predetermined film thickness of 60 [nm] or more and 200 [nm] or less.
 また、有機機能層は、第1電極の所定の膜厚以上の膜厚であり、第1電極の上面から端部の側面にわたって形成されている。 The organic functional layer has a thickness equal to or greater than a predetermined thickness of the first electrode, and is formed from the upper surface of the first electrode to the side surface of the end portion.
 なお、本明細書では、第1電極における周囲の縁部を「端部」と呼称している。 In the present specification, the peripheral edge of the first electrode is referred to as an “end”.
 ここで、従来技術に係る有機EL表示パネルのように、絶縁層であるバンクが第1電極の端部を覆った構造をとる場合、バンクで覆われた第1電極の端部には電流が流れ難くなる。このため、第1電極上であって、バンクに覆われていない領域が発光領域となる。この場合、開口面積を増大させて発光領域を広げるためには、バンクをずらして、バンク間の領域を広げることとか、第1電極を覆う前記バンクの領域を小さくすることが考えられる。 Here, when the bank which is an insulating layer covers the end portion of the first electrode as in the organic EL display panel according to the related art, current is applied to the end portion of the first electrode covered with the bank. It becomes difficult to flow. Therefore, a region on the first electrode that is not covered with the bank is a light emitting region. In this case, in order to increase the opening area and widen the light emitting region, it is conceivable to shift the banks to widen the region between the banks, or to reduce the bank region covering the first electrode.
 その場合、バンクの開口部内に第1電極の端部が露出し、第1電極の端部がバンクで覆われない場合も生ずる。この状態で、露出した第1電極の端部に有機機能層が形成されると、第1電極の厚みが有機機能層の厚みより厚い場合には、第1電極の端部で有機機能層が段切れを起こす可能性がある。このように、有機機能層に段切れを生じた場合には、第1電極と第2電極とが、上記段切れを起こした部分を介して直接電気的に接続してショートするという問題がある。 In that case, the end of the first electrode may be exposed in the opening of the bank, and the end of the first electrode may not be covered with the bank. In this state, when the organic functional layer is formed at the exposed end portion of the first electrode, the organic functional layer is formed at the end portion of the first electrode when the thickness of the first electrode is larger than the thickness of the organic functional layer. There is a possibility of disconnection. As described above, when the organic functional layer is disconnected, there is a problem that the first electrode and the second electrode are directly electrically connected via the portion where the disconnection occurs and are short-circuited. .
 あるいは、上記のように段切れを起こさない場合であっても、第1電極と第2電極の距離が電極端部で極端に薄くなると、端部で電界集中が発生し、画素内の発光に対してムラが生じてしまうといった問題が発生する。 Alternatively, even when the step does not occur as described above, when the distance between the first electrode and the second electrode becomes extremely thin at the end of the electrode, electric field concentration occurs at the end, causing light emission in the pixel. On the other hand, there arises a problem that unevenness occurs.
 ところで、上記のような有機機能層の段切れを防止するために、有機機能層の膜厚を単に厚くして第1電極上に形成する場合、第1電極と第2電極間の厚みが増大し抵抗が増えるので、所望の輝度を得るためには、より大きな電圧を印加しなければならなくなる。このように大きな電圧を印加して有機発光層を発光させると、有機発光層の劣化が促進され、寿命が低減する。また、より高い電圧を印加することが必要となるため、有機EL表示パネルの消費電力が大きくなってしまうといった問題を生じる。 By the way, in order to prevent disconnection of the organic functional layer as described above, when the organic functional layer is simply increased in thickness and formed on the first electrode, the thickness between the first electrode and the second electrode is increased. Since the resistance increases, a larger voltage must be applied to obtain a desired luminance. When such a large voltage is applied to cause the organic light emitting layer to emit light, the deterioration of the organic light emitting layer is promoted and the lifetime is reduced. Moreover, since it is necessary to apply a higher voltage, there arises a problem that the power consumption of the organic EL display panel is increased.
 一方、無制限に第1電極の膜厚を薄くする場合、反射率が低下する。そのため、有機発光層から下方へ照射された光の第2電極へ反射させる光量が低減し、第2電極に向ける光量が低減するため、発光効率が低下する。 On the other hand, when the film thickness of the first electrode is reduced without limitation, the reflectance decreases. Therefore, the amount of light reflected downward from the organic light emitting layer is reduced to the second electrode, and the amount of light directed to the second electrode is reduced, so that the light emission efficiency is lowered.
 そこで、本発明の一態様に係る有機EL表示パネルでは、第1電極における銀(Ag)層若しくは銀合金(Ag合金)層(以下、「金属層」と記載する。)の膜厚を60[nm]以上200[nm]以下の所定の膜厚とし、これにより、第1電極の金属層の表面部分が、有機機能層における有機発光層から照射された光に対して所定の反射率を有する反射部となる。即ち、第1電極における金属層の膜厚を60[nm]未満とする場合には、有機機能層における有機発光層から下方に照射された光の第2電極へ反射する光量が減少し、発光効率の低下を招くが、第1電極における金属層の膜厚を60[nm]以上とすることにより、高い発光効率を得ることができる。 Therefore, in the organic EL display panel according to one embodiment of the present invention, the film thickness of the silver (Ag) layer or the silver alloy (Ag alloy) layer (hereinafter referred to as “metal layer”) in the first electrode is 60 [. nm] to a predetermined film thickness of 200 [nm] or less, whereby the surface portion of the metal layer of the first electrode has a predetermined reflectance with respect to light emitted from the organic light emitting layer in the organic functional layer. It becomes a reflection part. That is, when the thickness of the metal layer in the first electrode is less than 60 [nm], the amount of light reflected downward from the organic light emitting layer in the organic functional layer to the second electrode is reduced, and light emission Although the efficiency is reduced, high luminous efficiency can be obtained by setting the thickness of the metal layer in the first electrode to 60 [nm] or more.
 また、本発明の一態様に係る有機EL表示パネルでは、有機機能層の膜厚を、第1電極の所定の膜厚以上の膜厚とし、且つ、第1電極の上面から端部の側面にわたって有機機能層が形成されている構成を採用する。このため、本発明の一態様に係る有機EL表示パネルでは、第1電極に対する有機機能層の膜厚および第1電極に対する有機機能層の形成形態を採用することにより、有機機能層の膜厚を必要以上に厚くする必要はなく、第1電極と第2電極との間での電気抵抗の増大による寿命低下という問題を生じることはなく、また、第1電極の端部における有機機能層の段切れや極端な薄膜化を招くことがない。有機機能層の段切れを防止するという観点から、第1電極における金属層(Ag層若しくはAg合金層)の膜厚を200[nm]以下に規定することが必要となる。 In the organic EL display panel according to one embodiment of the present invention, the thickness of the organic functional layer is set to be equal to or larger than the predetermined thickness of the first electrode, and extends from the upper surface of the first electrode to the side surface of the end portion. A configuration in which an organic functional layer is formed is employed. For this reason, in the organic EL display panel according to one embodiment of the present invention, the thickness of the organic functional layer is reduced by adopting the thickness of the organic functional layer with respect to the first electrode and the form of forming the organic functional layer with respect to the first electrode. It is not necessary to make it thicker than necessary, there is no problem of a decrease in life due to an increase in electrical resistance between the first electrode and the second electrode, and the step of the organic functional layer at the end of the first electrode No cutting or extreme thinning. From the viewpoint of preventing disconnection of the organic functional layer, it is necessary to regulate the film thickness of the metal layer (Ag layer or Ag alloy layer) in the first electrode to 200 [nm] or less.
 また、本発明の一態様に係る有機EL表示パネルでは、第1電極の端部と、開口部を臨むバンクの端部とを相互に離間させているので、発光領域を広くできるとともに、上記特許文献3で提案されている技術と同様に、第1電極上の有機機能層の厚みを均一化することができる。よって、発光特性が優れる。 Further, in the organic EL display panel according to one aspect of the present invention, the end of the first electrode and the end of the bank facing the opening are separated from each other. Similar to the technique proposed in Document 3, the thickness of the organic functional layer on the first electrode can be made uniform. Therefore, the light emission characteristics are excellent.
 以上より、本発明の一態様に係る有機EL表示パネルでは、発光領域が広く、且つ、発光領域内での有機機能層の膜厚が均一に維持され、且つ、有機機能層の段切れの発生がない。従って、本発明の一態様に係る有機EL表示パネルは、優れた発光特性を有しながら、長寿命である。 As described above, in the organic EL display panel according to one embodiment of the present invention, the light emitting region is wide, the thickness of the organic functional layer in the light emitting region is maintained uniform, and the organic functional layer is disconnected. There is no. Therefore, the organic EL display panel according to one embodiment of the present invention has a long lifetime while having excellent light emission characteristics.
 なお、特に、短波長域側(青色)の領域においては、銀(Ag)層若しくは銀合金(Ag合金)層を含む第1電極を採用する場合、金属層(Ag層若しくはAg合金層)の膜厚が55[nm]未満になると、アルミニウム(Al)層若しくはアルミニウム合金(Al合金)層を含む第1電極よりも反射率が低くなってしまう。よって、本発明の一態様に係る有機EL表示パネルのように、金属層(Ag層若しくはAg合金層)の膜厚を60[nm]以上と規定することにより、高い反射率を維持することができる。 In particular, in the short wavelength region (blue) region, when the first electrode including a silver (Ag) layer or a silver alloy (Ag alloy) layer is employed, the metal layer (Ag layer or Ag alloy layer) When the film thickness is less than 55 [nm], the reflectance becomes lower than that of the first electrode including the aluminum (Al) layer or the aluminum alloy (Al alloy) layer. Therefore, as in the organic EL display panel according to one embodiment of the present invention, the high reflectance can be maintained by defining the thickness of the metal layer (Ag layer or Ag alloy layer) to be 60 [nm] or more. it can.
 本発明の一態様に係る有機表示パネルでは、上記構成において、基板の上方に絶縁層が配置され、絶縁層上にバンク及び第1電極が配置されている、という構成を採用することができる。 In the organic display panel according to an aspect of the present invention, in the above structure, an insulating layer is disposed above the substrate, and a bank and a first electrode are disposed on the insulating layer.
 上記構成を採用する場合には、基板の上方に、平坦化膜と称せられる絶縁層を配置した有機EL表示パネルを実現できる。絶縁層は、基板表面の凹凸を吸収し、その表面を平坦化することにより、バンク及び第1電極を絶縁層上に配置する場合に、バンク及び第1電極の平坦性を確保するようにすることができる。その結果、第1電極が、有機発光層から下方へ照射された光の第2電極へ反射させる光量を低減させることがなく、第2電極に向けた光の光量が低減することを防ぐことができる。このため、発光効率の低下を防止できる。 When the above configuration is adopted, an organic EL display panel in which an insulating layer called a planarization film is disposed above the substrate can be realized. The insulating layer absorbs irregularities on the surface of the substrate and planarizes the surface, thereby ensuring the flatness of the bank and the first electrode when the bank and the first electrode are disposed on the insulating layer. be able to. As a result, the first electrode does not reduce the amount of light reflected downward from the organic light emitting layer to the second electrode, and prevents the amount of light directed toward the second electrode from being reduced. it can. For this reason, the fall of luminous efficiency can be prevented.
 また、上記構成を採用する場合には、バンクの開口部内に形成される有機発光層の膜厚を均一にすることができるようになる。このため、有機発光層の膜厚バラツキをなくすことができ、有機発光層の膜厚バラツキによる発光バラツキをすくことができるようになり、均一な発光強度の有機EL表示パネルを実現することができるようになる。 Further, when the above configuration is adopted, the thickness of the organic light emitting layer formed in the opening of the bank can be made uniform. For this reason, variations in the thickness of the organic light emitting layer can be eliminated, and variations in light emission due to variations in the thickness of the organic light emitting layer can be eliminated, thereby realizing an organic EL display panel with uniform light emission intensity. It becomes like this.
 本発明の一態様に係る有機EL表示パネルでは、上記構成において、第1電極に含まれる銀層若しくは銀合金層の所定の膜厚が、65[nm]以上120[nm]以下である、という構成を採用することができる。 In the organic EL display panel according to one embodiment of the present invention, in the above structure, the predetermined film thickness of the silver layer or the silver alloy layer included in the first electrode is 65 [nm] or more and 120 [nm] or less. A configuration can be employed.
 このように、第1電極に含まれる金属層(Ag層若しくはAg合金層)の膜厚の上限を120[nm]とすることにより、第1電極の反射率の低下を抑制しながら、さらに膜厚を薄くすることができるため、第1電極の上面に形成された有機機能層が第1電極の端部で段切れを起こすのをさらに防止できるようになる。よって、第1電極と第2電極とが有機機能層の段切れ部分を介して直接電気的に接続してショートするのをより一層確実に防止することができる。 Thus, by setting the upper limit of the film thickness of the metal layer (Ag layer or Ag alloy layer) included in the first electrode to 120 [nm], the film is further reduced while suppressing the decrease in the reflectance of the first electrode. Since the thickness can be reduced, the organic functional layer formed on the upper surface of the first electrode can be further prevented from being broken at the end of the first electrode. Therefore, it is possible to more reliably prevent the first electrode and the second electrode from being directly electrically connected via the stepped portion of the organic functional layer and short-circuiting.
 また、第1電極に含まれる銀層若しくは銀合金層の上記所定の膜厚を厚くし、これに連動して有機機能層の膜厚も大きくした場合、第1電極と第2電極間の間隔が大きくなって、その間隔に伴い第1電極と第2電極間の抵抗が大きくなる。この場合、第1電極と第2電極間に流れる電流量が前記抵抗に反比例して低下するため、有機発光層による発光量も間隔の増大に反して低下する。 Further, when the predetermined film thickness of the silver layer or the silver alloy layer included in the first electrode is increased and the film thickness of the organic functional layer is increased in conjunction with this, the distance between the first electrode and the second electrode is increased. And the resistance between the first electrode and the second electrode increases with the interval. In this case, since the amount of current flowing between the first electrode and the second electrode decreases in inverse proportion to the resistance, the amount of light emitted by the organic light emitting layer also decreases against an increase in the interval.
 特に、第1電極に含まれる銀層若しくは銀合金層の所定の膜厚を120[nm]を超えることとし、これに連動して有機機能層の膜厚も120[nm]を超える形態を採用する場合、有機発光層による発光量の低下は、有機発光デバイスとして十分な発光量を得難くなるため好ましくない。 In particular, the predetermined thickness of the silver layer or silver alloy layer included in the first electrode exceeds 120 [nm], and in conjunction with this, the organic functional layer also has a thickness exceeding 120 [nm]. In this case, a decrease in light emission amount due to the organic light emitting layer is not preferable because it becomes difficult to obtain a sufficient light emission amount as an organic light emitting device.
 本発明の一態様に係る有機EL表示パネルでは、第1電極に含まれる銀層若しくは銀合金層の上記所定の膜厚が、65[nm]以上120[nm]以下の範囲に規定されている。その結果、有機機能層の膜厚も120[nm]以下とすることができるので、有機機能層の厚みもさらに薄くすることができることとなり、第1電極と第2電極間に印加する電圧を低下させることができる。よって、さらに寿命が永い有機EL表示パネルを実現でききるようになる。 In the organic EL display panel according to an aspect of the present invention, the predetermined film thickness of the silver layer or the silver alloy layer included in the first electrode is defined in a range of 65 [nm] to 120 [nm]. . As a result, the thickness of the organic functional layer can also be set to 120 [nm] or less, so that the thickness of the organic functional layer can be further reduced, and the voltage applied between the first electrode and the second electrode is reduced. Can be made. Therefore, an organic EL display panel having a longer lifetime can be realized.
 本発明の一態様に係る有機EL表示パネルでは、上記構成において、第1電極に含まれる金属層(Ag層若しくはAg合金層)の膜厚が70[nm]以上120[nm]以下の所定の膜厚である、という構成を採用することができる。 In the organic EL display panel according to an aspect of the present invention, in the above structure, the metal layer (Ag layer or Ag alloy layer) included in the first electrode has a predetermined thickness of 70 nm to 120 nm. A configuration of a film thickness can be employed.
 このように、第1電極に含まれる金属層(Ag層若しくはAg合金層)の膜厚を70[nm]以上とする場合には、略92[%]を超える高い反射率を安定して実現することができる。特に、長波長域側(赤色)では、上記膜厚を70[nm]以上にすることにより、反射率が95[%]を超え、Al層またはAl合金層を含む第1電極を採用する場合に比べて、光学的に優れた特性を有することになる。 As described above, when the thickness of the metal layer (Ag layer or Ag alloy layer) included in the first electrode is 70 [nm] or more, high reflectivity exceeding about 92 [%] is stably realized. can do. In particular, on the long wavelength region side (red), when the film thickness is set to 70 [nm] or more, the reflectivity exceeds 95 [%], and the first electrode including the Al layer or the Al alloy layer is employed. Compared to the above, it has optically superior characteristics.
 その結果、光学特性に優れた有機EL表示パネルを実現することができ、かつ、有機機能層の厚みもさらに薄くすることが可能であり、第1電極と第2電極間に印加する電圧を低下させることができる。よって、光学特性に優れて、さらに寿命が永い有機EL表示パネルを実現でききるようになる。 As a result, an organic EL display panel having excellent optical characteristics can be realized, and the thickness of the organic functional layer can be further reduced, and the voltage applied between the first electrode and the second electrode is reduced. Can be made. Therefore, an organic EL display panel having excellent optical characteristics and a long lifetime can be realized.
 本発明の一態様に係る有機EL表示パネルでは、上記構成において、第1電極に含まれる金属層(Ag層若しくはAg合金層)の所定の膜厚が、70[nm]以上100[nm]以下である、という構成を採用することができる。 In the organic EL display panel according to one embodiment of the present invention, in the above structure, the predetermined film thickness of the metal layer (Ag layer or Ag alloy layer) included in the first electrode is 70 [nm] or more and 100 [nm] or less. It is possible to adopt a configuration that
 上記構成を採用する場合には、上記所定の膜厚を、70[nm]以上100[nm]以下の範囲に規定することにより、第1電極の膜厚を極力薄くしながら、且つ、第1電極の膜厚が100[nm]よりも厚い場合と同等の反射率を確保することができる。よって、光学特性に優れた有機EL表示パネルを実現することができ、且つ、有機機能層の厚みも、一層薄くすることができるため、第1電極と第2電極間に印加する電圧を低下させることができ、光学特性に優れて、さらに寿命が永い有機EL表示パネルを実現でききるようになる。 In the case of adopting the above configuration, by defining the predetermined film thickness within a range of 70 [nm] or more and 100 [nm] or less, the first electrode is made as thin as possible and the first film thickness is reduced. It is possible to ensure the same reflectance as when the electrode film thickness is greater than 100 [nm]. Therefore, an organic EL display panel having excellent optical characteristics can be realized, and the thickness of the organic functional layer can be further reduced, so that the voltage applied between the first electrode and the second electrode is reduced. Thus, an organic EL display panel having excellent optical characteristics and a long lifetime can be realized.
 本発明の一態様に係る有機EL表示パネルでは、上記構成において、第1電極と有機機能層との間に透明導電層が設けられており、透明導電層の膜厚が5[nm]以上130[nm]以下である、という構成を採用することができる。 In the organic EL display panel according to one embodiment of the present invention, in the above structure, a transparent conductive layer is provided between the first electrode and the organic functional layer, and the film thickness of the transparent conductive layer is 5 nm or more and 130. The configuration of [nm] or less can be adopted.
 上記構成を採用する場合には、第1電極上に透明導電層を設けることにより、透明導電層の屈折率とその層厚、及び有機機能層の屈折率とその層厚とを調整することで、有機発光層から照射された光であって第1電極の反射面から反射する光に対して、光学的キャビティ構造を実現することができる。 In the case of adopting the above configuration, by providing a transparent conductive layer on the first electrode, the refractive index of the transparent conductive layer and its layer thickness, and the refractive index of the organic functional layer and its layer thickness are adjusted. An optical cavity structure can be realized for light emitted from the organic light emitting layer and reflected from the reflecting surface of the first electrode.
 透明導電層の膜厚を5[nm]以上と規定することにより、有機機能層から下方に照射された光が透明導電層を進む5[nm]の距離と、第1電極の反射部で反射された光が透明導電層を進む5[nm]の距離との、合計10[nm]の距離を光学的キャビティに用いることができる。 By defining the film thickness of the transparent conductive layer as 5 nm or more, the light irradiated downward from the organic functional layer reflects the distance of 5 nm that travels through the transparent conductive layer and is reflected by the reflecting portion of the first electrode. A total distance of 10 [nm] can be used for the optical cavity, with a distance of 5 [nm] traveling the transmitted light through the transparent conductive layer.
 また、第1電極の膜厚を65[nm]とする場合、透明導電層の膜厚を130[nm]以下とすることで、第1電極と、透明電極の合計膜厚が200[nm]以下となり、第1電極に形成された有機機能層が第1電極の端部で段切れを起こすのを防止することができ、第1電極と第2電極とが有機機能層の段切れ部分を介して直接電気的に接続してショートするのを防止することができる。 Moreover, when the film thickness of the first electrode is 65 [nm], the total film thickness of the first electrode and the transparent electrode is 200 [nm] by setting the film thickness of the transparent conductive layer to 130 [nm] or less. The organic functional layer formed on the first electrode can be prevented from being broken at the end of the first electrode, and the first electrode and the second electrode can be used to prevent the broken portion of the organic functional layer. It is possible to prevent a short circuit due to direct electrical connection.
 また、透明電極を設けることで、特定の波長の光学キャビティの条件を作り出すことができるため、第2電極を介して外部へ取り出す光取り出し効率を向上することができ、発光輝度が高い有機EL表示パネルを実現することができるようになる。 In addition, by providing a transparent electrode, the conditions of the optical cavity of a specific wavelength can be created, so that the light extraction efficiency extracted to the outside through the second electrode can be improved, and the organic EL display with high emission luminance A panel can be realized.
 本発明の一態様に係る有機EL表示パネルでは、上記構成において、第1電極に含まれているのが銀(Ag)合金層であって、当該Ag合金層が、銀(Ag)及びパラジウム(Pd)及び銅(Cu)を含有する合金(APC合金)で構成されている、という構成を採用することができる。 In the organic EL display panel according to one embodiment of the present invention, in the above structure, the first electrode includes a silver (Ag) alloy layer, and the Ag alloy layer includes silver (Ag) and palladium ( It is possible to employ a configuration in which the alloy is composed of an alloy (APC alloy) containing Pd) and copper (Cu).
 本発明の一態様に係る有機EL表示パネルでは、上記構成において、有機機能層が、第1電極上に形成された電荷注入層あるいは電荷輸送層の少なくとも一方を含み、第1電極上に形成された電荷注入層あるいは電荷輸送層の少なくとも一方の膜厚が第1電極の所定の膜厚以上の膜厚であり、電荷注入層あるいは電荷輸送層の少なくとも一方が第1電極の上面及び端部にわたって形成されている、という構成を採用することができる。 In the organic EL display panel according to an aspect of the present invention, in the above structure, the organic functional layer includes at least one of a charge injection layer or a charge transport layer formed on the first electrode, and is formed on the first electrode. The thickness of at least one of the charge injection layer or the charge transport layer is greater than or equal to a predetermined thickness of the first electrode, and at least one of the charge injection layer or the charge transport layer extends over the upper surface and the end of the first electrode. A configuration of being formed can be employed.
 本発明の一態様に係る有機EL表示パネルでは、上記構成において、有機機能層が、第1電極上に形成された電荷注入層あるいは電荷輸送層の少なくとも一方の層の上方に有機発光層を設けた層である、という構成とすることもできる。 In the organic EL display panel according to one embodiment of the present invention, in the above structure, the organic functional layer is provided with an organic light emitting layer above at least one of the charge injection layer and the charge transport layer formed on the first electrode. It is also possible to adopt a configuration that is a layer.
 本発明の一態様に係る有機EL表示パネルでは、上記構成において、有機機能層が、電荷注入層及び電荷輸送層及び前記有機発光層を含む層であり、電荷注入層が第1電極上に形成され、電荷注入層の膜厚が第1電極の所定の膜厚以上の膜厚であり、電荷注入層が第1電極の上面及び端部にわたって形成されている、という構成を採用することもできる。 In the organic EL display panel according to one aspect of the present invention, in the above structure, the organic functional layer is a layer including a charge injection layer, a charge transport layer, and the organic light emitting layer, and the charge injection layer is formed on the first electrode. It is also possible to adopt a configuration in which the thickness of the charge injection layer is equal to or greater than a predetermined thickness of the first electrode, and the charge injection layer is formed over the upper surface and end of the first electrode. .
 本発明の一態様に係る有機EL表示パネルでは、上記構成において、第1電極の端部の側面と基板とがなす内角が90[°]以下である、という構成を採用することもできる。 In the organic EL display panel according to an aspect of the present invention, in the above configuration, a configuration in which an internal angle formed by the side surface of the end portion of the first electrode and the substrate is 90 [°] or less can be employed.
 上記構成を採用する場合には、第1電極に形成された有機機能層が第1電極の端部で段切れを起こすのをさらに確実に防止することができるようになり、第1電極と第2電極とが有機機能層の段切れ部分を介して直接電気的に接続してショートするのをより一層確実に防止することができる。 In the case of adopting the above configuration, the organic functional layer formed on the first electrode can be more reliably prevented from being broken at the end of the first electrode. It is possible to further reliably prevent the two electrodes from being short-circuited due to direct electrical connection via the stepped portion of the organic functional layer.
 また、上記構成を採用する場合には、バンクを第1電極の端部から離間させて配置させた場合、バンク近傍では不安定な塗布領域となるが、この領域の下方には、第1電極が存在していないため、非発光領域となる。そのため、発光領域では、塗布形状のばらつきが少ない有機機能層及び有機発光層となるために、画素内輝度ムラの低減、長寿命化が実現できるようになる。 Further, in the case of adopting the above configuration, when the bank is arranged apart from the end portion of the first electrode, an unstable application region is formed in the vicinity of the bank, but below this region, the first electrode Since no exists, it becomes a non-light-emitting region. For this reason, in the light emitting region, the organic functional layer and the organic light emitting layer with little variation in coating shape are obtained, so that it is possible to reduce the luminance unevenness in the pixel and extend the lifetime.
 また、上記構成を採用する場合には、第1電極の上方に配置された有機機能層が、第1電極の端部で段切れを発生するのを、より確実に防止することができるようになり、第1電極と第2電極との間でのショートの発生を確実に防止することができる。 Further, in the case of adopting the above configuration, it is possible to more reliably prevent the organic functional layer disposed above the first electrode from being broken at the end of the first electrode. Thus, occurrence of a short circuit between the first electrode and the second electrode can be reliably prevented.
 また、本発明の一態様に係る有機EL表示パネルでは、第1電極の端部を開口部を臨むバンクの端部から離間させて配置しているので、バンク近傍での有機膜の塗布状態が不安定になることが考えられるが、本発明の一態様に係る有機EL表示パネルでは、当該領域の下方には第1電極が存在しないため、発光しない領域(非発光領域)となる。よって、本発明の一態様に係る有機EL表示パネルでは、発光領域において、塗布形状のバラツキが少なく、膜厚を含む膜状態が均一な有機機能層を有し、画素内での輝度ムラが少なく、長寿命であるという効果を得ることができる。 Further, in the organic EL display panel according to one aspect of the present invention, since the end of the first electrode is disposed away from the end of the bank facing the opening, the organic film is applied in the vicinity of the bank. Although it may be unstable, in the organic EL display panel according to one embodiment of the present invention, since the first electrode does not exist below the region, the region does not emit light (non-light emitting region). Therefore, in the organic EL display panel according to one embodiment of the present invention, there is little variation in coating shape in the light emitting region, the organic functional layer has a uniform film state including film thickness, and luminance unevenness in the pixel is small. The effect of long life can be obtained.
 また、本発明の一態様に係る有機EL表示パネルでは、上記所定の画素の領域が、画素毎の領域であり、バンクが、上記開口部を画素毎に規定する、という構成を採用することができる。即ち、所謂、ピクセルバンク構成を一例として採用することができる。 In the organic EL display panel according to one aspect of the present invention, a configuration in which the predetermined pixel region is a region for each pixel and the bank defines the opening for each pixel may be employed. it can. That is, a so-called pixel bank configuration can be adopted as an example.
 また、本発明の一態様に係る有機EL表示パネルでは、上記所定の画素の領域が、複数の画素がライン状に配列された領域であり、バンクが、上記開口部をライン状に配列された複数の画素毎に規定する、という構成を採用することもできる。即ち、所謂、ラインバンク構成を一例として採用することもできる。 In the organic EL display panel according to an aspect of the present invention, the predetermined pixel region is a region in which a plurality of pixels are arranged in a line, and the bank has the openings arranged in a line. It is also possible to adopt a configuration in which each pixel is defined. That is, a so-called line bank configuration can be adopted as an example.
 本発明の一態様に係る有機EL表示装置は、上記のいずれかの有機EL表示パネルを具備したことを特徴とする。よって、本発明の一態様に係る有機EL表示装置においても、上記同様の理由より、優れた発光特性を有しながら、長寿命である。 An organic EL display device according to one embodiment of the present invention includes any one of the above organic EL display panels. Therefore, the organic EL display device according to one embodiment of the present invention also has a long lifetime while having excellent light emission characteristics for the same reason as described above.
 本発明の一態様に係る有機EL表示パネルの製造方法では、次の工程を含む。 The method for manufacturing an organic EL display panel according to an aspect of the present invention includes the following steps.
 (第1工程) 基板を準備する。 (First step) Prepare a substrate.
 (第2工程) 基板上に所定の反射率を有する金属層(Ag層若しくはAg合金層)を含む第1電極を形成する。 (Second Step) A first electrode including a metal layer (Ag layer or Ag alloy layer) having a predetermined reflectance is formed on a substrate.
 (第3工程) 基板の上方に、開口部を有し画素領域を規定するバンクを形成する。 (Third step) A bank having an opening and defining a pixel region is formed above the substrate.
 (第4工程) 有機発光層を少なくとも含む有機機能層を、第1電極の上面及び端部にわたって、第1電極の所定の膜厚以上の膜厚に形成する。 (Fourth Step) An organic functional layer including at least the organic light emitting layer is formed to have a film thickness equal to or larger than a predetermined film thickness of the first electrode over the upper surface and the end of the first electrode.
 (第5工程) 有機発光層から上方へ照射された光と、有機発光層から照射された光であって第1電極の反射面から反射した光とを、透過する透明な第2電極を有機発光層の上方に配置する。 (5th process) The transparent 2nd electrode which permeate | transmits the light irradiated upward from the organic light emitting layer and the light irradiated from the organic light emitting layer and reflected from the reflective surface of the 1st electrode is organic. It arrange | positions above a light emitting layer.
 本発明の一態様に係る有機EL表示パネルの製造方法では、第1電極を、バンクの開口部内に開口部の端部からその端部が離間して配置し、第1電極に含まれる金属層(Ag層若しくはAg合金層)の膜厚を60[nm]以上200[nm]以下の所定の膜厚とし、有機機能層が、第1電極の所定の膜厚以上の膜厚である、という特徴を有する。 In the method for manufacturing an organic EL display panel according to one aspect of the present invention, the first electrode is disposed in the opening of the bank with the end spaced from the end of the opening, and the metal layer included in the first electrode The film thickness of the (Ag layer or Ag alloy layer) is a predetermined film thickness of 60 [nm] or more and 200 [nm] or less, and the organic functional layer is a film thickness of a predetermined film thickness or more of the first electrode. Has characteristics.
 本発明の一態様に係る有機EL表示パネルの製造方法では、第1電極に含まれる金属層(Ag層若しくはAg合金層)の膜厚を60[nm]以上200[nm]以下の所定の膜厚とし、これにより、その表面部分が、有機機能層における有機発光層から照射された光に対して所定の反射率を有する反射部となる第1電極を形成する。金属層の膜厚を60[nm]以上とすることにより、表面部における反射部が高い発光効率を有する第1電極を形成することができる。 In the method for manufacturing an organic EL display panel according to one aspect of the present invention, the predetermined thickness of the metal layer (Ag layer or Ag alloy layer) included in the first electrode is 60 nm or more and 200 nm or less. Thus, the first electrode is formed so that the surface portion thereof becomes a reflection portion having a predetermined reflectance with respect to light irradiated from the organic light emitting layer in the organic functional layer. By setting the thickness of the metal layer to 60 [nm] or more, it is possible to form the first electrode in which the reflection portion on the surface portion has high light emission efficiency.
 また、本発明の一態様に係る有機EL表示パネルの製造方法では、有機機能層の膜厚を、第1電極の所定の膜厚以上の膜厚とし、且つ、第1電極の上面から端部の側面にわたって有機機能層を形成することとしている。このため、本発明の一態様に係る有機EL表示パネルの製造方法を用いる場合、製造された有機EL表示パネルは、第1電極に対する有機機能層の膜厚および第1電極に対する有機機能層の形成形態を採用することにより、有機機能層の膜厚を必要以上に厚くする必要はなく、第1電極と第2電極との間での電気抵抗の増大による寿命低下という問題を生じることはなく、また、第1電極の端部における有機機能層の段切れや極端な薄膜化を招くことがない。同時に、有機EL表示パネルの消費電力が大きくなるという問題を生じることもない。 In the method for manufacturing an organic EL display panel according to one aspect of the present invention, the thickness of the organic functional layer is set to be equal to or larger than the predetermined thickness of the first electrode, and the end portion from the upper surface of the first electrode. An organic functional layer is to be formed over the side surface. For this reason, when using the manufacturing method of the organic electroluminescence display panel which concerns on 1 aspect of this invention, the organic electroluminescence display panel manufactured is the film thickness of the organic functional layer with respect to a 1st electrode, and formation of the organic functional layer with respect to a 1st electrode By adopting the form, it is not necessary to increase the film thickness of the organic functional layer more than necessary, and there is no problem of a decrease in life due to an increase in electrical resistance between the first electrode and the second electrode, Further, the organic functional layer at the end of the first electrode is not cut off or extremely thinned. At the same time, there is no problem that the power consumption of the organic EL display panel increases.
 また、本発明の一態様に係る有機EL表示パネルの製造方法では、第1電極の端部と、開口部を臨むバンクの端部とが相互に離間するようにしているので、発光領域を広くすることができ、第1電極上の有機機能層の厚みが均一な有機EL表示パネルを製造することができる。よって、本発明の一態様に係る有機EL表示パネルの製造方法を用い製造された有機EL表示パネルは、発光特性が優れる。 Further, in the method for manufacturing an organic EL display panel according to one aspect of the present invention, the end of the first electrode and the end of the bank facing the opening are separated from each other. And an organic EL display panel in which the thickness of the organic functional layer on the first electrode is uniform can be manufactured. Therefore, the organic EL display panel manufactured using the method for manufacturing an organic EL display panel according to one embodiment of the present invention has excellent light emission characteristics.
 以上より、本発明の一態様に係る有機EL表示パネルの製造方法では、発光領域が広く、且つ、発光領域内での有機機能層の膜厚が均一に維持され、且つ、有機機能層の段切れの発生がなく、製造された有機EL表示パネルは、優れた発光特性を有しながら、長寿命である。 As described above, in the method for manufacturing an organic EL display panel according to one embodiment of the present invention, the light emitting region is wide, the film thickness of the organic functional layer in the light emitting region is uniformly maintained, and the step of the organic functional layer is performed. The organic EL display panel produced without breakage has a long life while having excellent light emission characteristics.
 本発明の一態様に係る有機EL表示パネルの製造方法では、第1工程と第2工程との間に、基板上に絶縁層を形成する工程を有する、という構成を採用することができる。 In the method for manufacturing an organic EL display panel according to one embodiment of the present invention, a configuration in which an insulating layer is formed on a substrate between the first step and the second step can be employed.
 上記構成を採用する場合には、絶縁層が基板表面の凹凸を吸収し、その表面を平坦化することにより、バンク及び第1電極を絶縁層上に配置する場合に、バンク及び第1電極の平坦性を確保するようにすることができる。よって、第1電極が、有機発光層から下方へ照射された光の第2電極へ反射させる光量を低減させることがなく、第2電極に向ける光量が低減することを防ぐことができるので、発光効率の低下を防止することができる。 In the case of adopting the above configuration, when the bank and the first electrode are arranged on the insulating layer by absorbing the unevenness of the substrate surface and planarizing the surface of the insulating layer, the bank and the first electrode Flatness can be ensured. Therefore, the first electrode can prevent the amount of light directed downward from the organic light emitting layer from being reflected to the second electrode and can prevent the amount of light directed to the second electrode from being reduced. A decrease in efficiency can be prevented.
 また、バンクの開口部内に形成される有機発光層の膜厚を均一にすることができるようになる。このため、有機発光層の膜厚バラツキをなくすことができ、有機発光層の膜厚バラツキによる発光バラツキをなくすことができるようになる。よって、均一な発光強度の有機EL表示パネルの製造方法を実現することができるようになる。 Also, the film thickness of the organic light emitting layer formed in the opening of the bank can be made uniform. For this reason, the film thickness variation of an organic light emitting layer can be eliminated, and the light emission variation by the film thickness variation of an organic light emitting layer can be eliminated. Therefore, a method for manufacturing an organic EL display panel having uniform light emission intensity can be realized.
 本発明の一態様に係る有機EL表示パネルの製造方法では、上記第2工程において、第1電極の上面に透明導電層を形成する、という構成を採用することができる。 In the method for manufacturing an organic EL display panel according to one embodiment of the present invention, a configuration in which a transparent conductive layer is formed on the upper surface of the first electrode in the second step can be employed.
 上記構成を採用する場合には、Ag層若しくはAg合金層を含む電極である第1電極の表面が、第3工程においてバンクに開口部を形成する際の露光、現像工程の現像液による酸化、あるいはその他の工程による酸化されることを防止できるようになる。また、製造過程での各種加熱工程の際の熱応力に耐えられずに、表面に凹凸ができる現象(所謂、ヒロック現象)の防止もすることができる。 In the case of adopting the above configuration, the surface of the first electrode that is an electrode including an Ag layer or an Ag alloy layer is exposed when the opening is formed in the bank in the third step, and is oxidized by the developer in the developing step. Alternatively, oxidation by other processes can be prevented. In addition, it is possible to prevent a phenomenon (so-called hillock phenomenon) in which the surface becomes uneven without being able to withstand the thermal stress during various heating steps in the manufacturing process.
 よって、Ag層若しくはAg合金層を含む電極である第1電極の表面の反射率を低下させることがなくなり、かつ、透明導電層の屈折率とその層厚、及び有機機能層の屈折率とその層厚とを調整することで、有機発光層から照射された光であって第1電極の反射面で反射された光に対して、光学的キャビティ構造を実現することができる。 Therefore, the reflectance of the surface of the first electrode, which is an electrode including an Ag layer or an Ag alloy layer, is not reduced, the refractive index of the transparent conductive layer and its thickness, and the refractive index of the organic functional layer and its By adjusting the layer thickness, an optical cavity structure can be realized for light emitted from the organic light emitting layer and reflected by the reflecting surface of the first electrode.
 その結果、有機発光層から照射された光であって第1電極の反射面で反射された光を、第2電極を介して外部へ取り出す光取り出し効率を向上することができ、発光輝度が高い有機EL表示パネルの製造方法を実現することができるようになる。 As a result, it is possible to improve the light extraction efficiency of extracting the light emitted from the organic light emitting layer and reflected by the reflecting surface of the first electrode to the outside through the second electrode, and the emission luminance is high. An organic EL display panel manufacturing method can be realized.
 第4工程において、前記第1電極をウェットエッチングにより、前記第1電極の所定の形状にパターニングすることにより、
 本発明の一態様に係る有機EL表示パネルの製造方法では、第4工程において、ウェットエッチングにより、所定の形状にパターニングされた第1電極を形成することにより、第1電極の端部の側面と基板とがなす内角を90[°]以下にする、という構成を採用することもできる。ウェットエッチングは、等方性エッチングであるため、第1電極の端部の内角を90[°]以下とすることが、製造方法として好適である。
In the fourth step, by patterning the first electrode into a predetermined shape of the first electrode by wet etching,
In the method for manufacturing an organic EL display panel according to an aspect of the present invention, in the fourth step, by forming the first electrode patterned into a predetermined shape by wet etching, the side surface of the end portion of the first electrode It is also possible to adopt a configuration in which the inner angle formed by the substrate is 90 [°] or less. Since wet etching is isotropic etching, it is preferable as a manufacturing method that the inner angle of the end portion of the first electrode be 90 [°] or less.
 この製造方法により、第1電極に形成された有機機能層が第1電極の端部で段切れを起こすのをさらに確実に防止することができ、第1電極と第2電極とが有機機能層の段切れ部分を介して直接電気的に接続してショートするのをより一層確実に防止された、有機EL表示パネルの製造方法を実現できるようになる。 By this manufacturing method, it is possible to more reliably prevent the organic functional layer formed on the first electrode from being broken at the end of the first electrode, and the first electrode and the second electrode are connected to the organic functional layer. Thus, it is possible to realize a method for manufacturing an organic EL display panel that is more reliably prevented from being short-circuited by being directly electrically connected through the stepped portion.
 なお、本発明の一態様に係る有機EL表示パネルの製造方法では、上記ウェットエッチング以外にも、ドライエッチングを用いることができることはいうまでもない。 In addition, it cannot be overemphasized that in the manufacturing method of the organic electroluminescence display panel which concerns on 1 aspect of this invention, dry etching can be used besides the said wet etching.
 本発明の一態様に係る有機EL表示パネルの製造方法では、上記構成において、有機機能層を、インクジェット法、ダイコート法、スピンコート法のいずれかの湿式塗布方法で形成する、という構成を採用することもできる。インクジェット法、ダイコート法、スピンコート法などの湿式塗布方法は、連続した有機機能層を大面積に形成することができる方法である。このため、これら方法の何れかを用い有機機能層を形成する場合には、第1電極の端部での段切れを防止しながら、第1電極上での膜厚が均一な有機機能層を形成するのに好適である。 In the method for manufacturing an organic EL display panel according to one aspect of the present invention, the organic functional layer is formed by a wet coating method such as an inkjet method, a die coating method, or a spin coating method in the above configuration. You can also. A wet coating method such as an inkjet method, a die coating method, or a spin coating method is a method capable of forming a continuous organic functional layer in a large area. For this reason, when forming an organic functional layer using any of these methods, an organic functional layer having a uniform film thickness on the first electrode is obtained while preventing disconnection at the end of the first electrode. Suitable for forming.
 本発明の一態様に係る有機EL表示パネルの製造方法では、上記構成において、有機機能層が、第1電極上に形成された電荷注入層あるいは電荷輸送層の少なくとも一方を含み、第1電極上に形成された電荷注入層あるいは電荷輸送層の少なくとも一方の膜厚が第1電極の所定の膜厚以上の膜厚であり、第1電極の上面から端部の側面にわたって形成されている、という構成を採用することもできる。このように、有機機能層に電荷注入層あるいは電荷輸送層の少なくとも一方を含む構成を採用する場合には、電荷注入性に優れ、優れた発光特性を有することができる。そして、電荷注入層あるいは電荷輸送層が第1電極の上面から端部の側面にわたって形成されているので、第1電極の端部での有機機能層の段切れが確実に防止でき、第1電極と第2電極とのショートを防止することができる。 In the method for manufacturing an organic EL display panel according to an aspect of the present invention, in the above configuration, the organic functional layer includes at least one of a charge injection layer or a charge transport layer formed on the first electrode, The thickness of at least one of the charge injection layer or the charge transport layer formed on the first electrode is greater than or equal to a predetermined thickness of the first electrode, and is formed from the upper surface of the first electrode to the side surface of the end portion. A configuration can also be adopted. As described above, when the organic functional layer includes at least one of the charge injection layer and the charge transport layer, the organic functional layer has excellent charge injection properties and excellent light emission characteristics. Since the charge injection layer or the charge transport layer is formed from the upper surface to the side surface of the end portion of the first electrode, the organic functional layer can be reliably prevented from being disconnected at the end portion of the first electrode. And the second electrode can be prevented from being short-circuited.
 本発明の一態様に係る有機EL表示パネルの製造方法では、上記構成において、有機機能層が、電荷注入層あるいは電荷輸送層の少なくとも一方の層の上方に有機発光層を設けた層である、という構成を採用することもできる。 In the method for manufacturing an organic EL display panel according to an aspect of the present invention, in the above configuration, the organic functional layer is a layer in which an organic light emitting layer is provided above at least one of the charge injection layer or the charge transport layer. It is also possible to adopt the configuration.
 また、本発明の一態様に係る有機EL表示パネルの製造方法では、上記構成において、有機機能層が、電荷注入層、電荷輸送層及び有機発光層を含む層であり、電荷注入層が第1電極上に形成され、電荷注入層の膜厚が第1電極の所定の膜厚以上の膜厚であり、電荷注入層が第1電極の上面から端部の側面にわたって形成されている、という構成を採用することもできる。 In the method for manufacturing an organic EL display panel according to one embodiment of the present invention, in the above structure, the organic functional layer is a layer including a charge injection layer, a charge transport layer, and an organic light emitting layer, and the charge injection layer is the first. A structure in which the charge injection layer is formed on the electrode so that the thickness of the charge injection layer is greater than or equal to a predetermined thickness of the first electrode, and the charge injection layer is formed from the upper surface of the first electrode to the side surface of the end portion. Can also be adopted.
 以下では、本発明を実施するための形態について、数例を用い説明する。 Hereinafter, embodiments for carrying out the present invention will be described using several examples.
 なお、以下の説明で用いる実施の形態は、本発明の構成および作用・効果を分かりやすく説明するために用いる例示であって、本発明は、その本質的部分以外に何ら以下の形態に限定を受けるものではない。 The embodiment used in the following description is an example used to explain the configuration, operation, and effect of the present invention in an easy-to-understand manner, and the present invention is not limited to the following form other than its essential part. It is not something to receive.
 [実施の形態1]
 1.有機EL表示装置1の全体構成
 以下では、発光装置の一例としての有機EL表示装置1で説明する。
[Embodiment 1]
1. Overall Configuration of Organic EL Display Device 1 Hereinafter, an organic EL display device 1 as an example of a light emitting device will be described.
 本実施の形態に係る有機EL表示装置1の全体構成について、図1を用い説明する。 The overall configuration of the organic EL display device 1 according to the present embodiment will be described with reference to FIG.
 図1に示すように、有機EL表示装置1は、有機EL表示パネル10と、これに接続された駆動制御部20とを有し構成されている。有機EL表示パネル10は、有機材料の電界発光現象を利用したパネルであり、複数の有機EL素子が、例えば、マトリクス状に配列され構成されている。駆動制御部20は、4つの駆動回路21~24と制御回路25とから構成されている。 As shown in FIG. 1, the organic EL display device 1 includes an organic EL display panel 10 and a drive control unit 20 connected thereto. The organic EL display panel 10 is a panel using an electroluminescence phenomenon of an organic material, and a plurality of organic EL elements are arranged in a matrix, for example. The drive control unit 20 is composed of four drive circuits 21 to 24 and a control circuit 25.
 なお、実際の有機EL表示装置1では、表示パネル10に対する駆動制御部20の配置については、これに限られない。 In the actual organic EL display device 1, the arrangement of the drive control unit 20 with respect to the display panel 10 is not limited to this.
 2.有機EL表示パネル10の構成
 有機EL表示パネル10の構成について、図2、図3および図4を用い説明する。図2は、有機EL表示パネル10の構成の一部を、図1におけるY軸方向に切断した断面端面図であって、図4におけるC-C‘断面の端面を示す。一方、図3は、有機EL表示パネル10の構成の一部を、図1におけるX軸方向に切断した断面端面図であって、図4におけるD-D’断面の端面を示す。
2. Configuration of Organic EL Display Panel 10 The configuration of the organic EL display panel 10 will be described with reference to FIG. 2, FIG. 3, and FIG. 2 is a cross-sectional end view of a part of the configuration of the organic EL display panel 10 taken along the Y-axis direction in FIG. 1, and shows an end surface of the CC ′ cross section in FIG. On the other hand, FIG. 3 is a cross-sectional end view of a part of the configuration of the organic EL display panel 10 cut in the X-axis direction in FIG. 1, and shows an end surface of the DD ′ cross section in FIG.
 なお、図4では、陽極105とバンク106との関係を分かりやすくするため、他の構成要素の図示を省略している。 In FIG. 4, other components are not shown for easy understanding of the relationship between the anode 105 and the bank 106.
 先ず、図2に示すように、有機EL表示パネル10は、基板101をベースとして形成されている。そして、基板101上には、TFT(薄膜トランジスタ)層102、パッシベーション膜103および平坦化膜104が順に積層形成されている。なお、図2では、TFT層102について、その構成の一部であるソースあるいはドレイン(SD電極)のみを図示している。 First, as shown in FIG. 2, the organic EL display panel 10 is formed with a substrate 101 as a base. On the substrate 101, a TFT (thin film transistor) layer 102, a passivation film 103, and a planarization film 104 are sequentially stacked. In FIG. 2, only the source or drain (SD electrode) which is a part of the configuration of the TFT layer 102 is illustrated.
 絶縁層である平坦化膜104上には、画素に対応する開口部を規定するバンク106が形成されている。また、平坦化膜104上におけるバンク106で規定された画素領域には、陽極105が形成されている。陽極105は、平坦化膜104の側から順に、金属層1051および透明導電層1052が積層され構成されている。陽極105は、平坦化膜104に開けられたコンタクトホール104a内にも連続して形成され、TFT層102のSD電極と接続されている。 On the planarization film 104 that is an insulating layer, a bank 106 that defines an opening corresponding to a pixel is formed. An anode 105 is formed in the pixel region defined by the bank 106 on the planarizing film 104. The anode 105 is formed by laminating a metal layer 1051 and a transparent conductive layer 1052 in this order from the planarization film 104 side. The anode 105 is also continuously formed in the contact hole 104 a opened in the planarizing film 104 and is connected to the SD electrode of the TFT layer 102.
 陽極105における金属層1051は、銀(Ag)若しくは銀合金(Ag合金)からなる層であり、透明導電層1052は、ITO(酸化インジウムスズ)若しくはIZO(酸化インジウム亜鉛)からなる層である。 The metal layer 1051 in the anode 105 is a layer made of silver (Ag) or a silver alloy (Ag alloy), and the transparent conductive layer 1052 is a layer made of ITO (indium tin oxide) or IZO (indium zinc oxide).
 有機EL表示パネル10におけるバンク106と陽極105との配置関係を、図4を用い説明する。 The arrangement relationship between the bank 106 and the anode 105 in the organic EL display panel 10 will be described with reference to FIG.
 図4に示すように、有機EL表示パネル10におけるバンク106は、所謂、ピクセルバンクと呼称されるものであって、X軸方向に延伸する要素106aとY軸方向に延伸する要素106bとが一体に形成されている。バンク106で規定される各開口部が一画素に該当し、陽極105が各開口部内に配されている。なお、各画素における陽極105は、コンタクトホール104aを介してTFT層102のSD電極に接続されている。 As shown in FIG. 4, the bank 106 in the organic EL display panel 10 is a so-called pixel bank, and an element 106a extending in the X-axis direction and an element 106b extending in the Y-axis direction are integrated. Is formed. Each opening defined by the bank 106 corresponds to one pixel, and the anode 105 is disposed in each opening. Note that the anode 105 in each pixel is connected to the SD electrode of the TFT layer 102 through a contact hole 104a.
 図2に戻って、陽極105上には、有機機能層107が積層形成されている。有機機能層107は、少なくとも有機発光層を含む層であって、その他に電荷注入層、電荷輸送層あるいは電荷注入輸送層などを含むものであってもよい。 2, the organic functional layer 107 is laminated on the anode 105. The organic functional layer 107 is a layer including at least an organic light emitting layer, and may further include a charge injection layer, a charge transport layer, a charge injection transport layer, or the like.
 図2の矢印A部分に示すように、本実施の形態に係る有機EL表示パネル10では、陽極105の端部が、開口部を臨むバンク106の端部から離間した状態となっており、当該離間部分では、平坦化膜104の表面に接する状態で有機機能層107が形成されている。 2, in the organic EL display panel 10 according to the present embodiment, the end of the anode 105 is in a state of being separated from the end of the bank 106 that faces the opening. In the separated portion, the organic functional layer 107 is formed in contact with the surface of the planarization film 104.
 有機機能層107上には、陰極108が形成されている。陰極108は、有機EL表示パネル10における全ての画素にわたり共通に設けられており、バンク106上にも形成されている。陰極108の上には、封止層109が形成されている。 A cathode 108 is formed on the organic functional layer 107. The cathode 108 is provided in common over all the pixels in the organic EL display panel 10, and is also formed on the bank 106. A sealing layer 109 is formed on the cathode 108.
 図3に示すように、有機EL表示パネル10では、図4のD-D‘断面についても、コンタクトホール104aがないことを除いて、図2に示すC-C’断面と基本的に同一の構成を有する。そして、図3の矢印B部分に示すように、D-D‘断面においても、陽極105の端部が、開口部を臨むバンク106の端部から離間した状態となっている。そして、図2および図3に示すように、各画素における陽極105が形成された領域が発光領域100であり、バンク106が形成された領域を含むその他の領域が非発光領域150である。 As shown in FIG. 3, in the organic EL display panel 10, the DD ′ cross section of FIG. 4 is basically the same as the CC ′ cross section shown in FIG. 2 except that the contact hole 104a is not present. It has a configuration. As shown by the arrow B portion in FIG. 3, the end portion of the anode 105 is also separated from the end portion of the bank 106 facing the opening in the DD ′ cross section. As shown in FIGS. 2 and 3, the region where the anode 105 is formed in each pixel is the light emitting region 100, and the other region including the region where the bank 106 is formed is the non-light emitting region 150.
 有機EL表示パネル10では、陽極105からホールが供給され、陰極108から電子が注入され、これらが有機機能層107へと送り込まれ、有機発光層で再結合することで光が出射される。有機機能層107の有機発光層から出射された光には、陰極108の側へと向かう成分と、陽極105の側へと向かう成分とが含まれる。陽極105の側へと向かった光成分は、陽極105における金属層1051におけるZ軸上側の表面および表層部分で反射されて陰極108の側へと向かうことになる。このように、陽極105における金属層1051の表面部は、所定の反射率を有する反射部としての役割も果たす。 In the organic EL display panel 10, holes are supplied from the anode 105, electrons are injected from the cathode 108, these are sent to the organic functional layer 107, and light is emitted by recombination in the organic light emitting layer. The light emitted from the organic light emitting layer of the organic functional layer 107 includes a component traveling toward the cathode 108 and a component traveling toward the anode 105. The light component directed toward the anode 105 is reflected by the surface on the upper side of the Z-axis and the surface layer portion of the metal layer 1051 of the anode 105 and travels toward the cathode 108. Thus, the surface portion of the metal layer 1051 in the anode 105 also serves as a reflection portion having a predetermined reflectance.
 3.有機EL表示パネル10を構成する主要材料
  a)基板101
 基板101は、例えば、無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコーン系樹脂、又はアルミナ等の絶縁性材料をベースとして形成されている。
3. Main materials constituting organic EL display panel 10 a) Substrate 101
The substrate 101 is, for example, alkali-free glass, soda glass, non-fluorescent glass, phosphate glass, boric acid glass, quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, silicone resin. Or an insulating material such as alumina.
  b)平坦化膜104
 平坦化膜104は、例えば、ポリイミド、ポリアミド、アクリル系、シリコーン系樹脂材料などの有機化合物を用い形成されている。
b) Planarization film 104
The planarization film 104 is formed using an organic compound such as polyimide, polyamide, acrylic, or silicone resin material.
  c)陽極105における金属層1051
 陽極105における金属層1051は、上記のように、銀(Ag)または銀合金(Ag合金)を用い形成されている。そして、トップエミッション型の本実施の形態に係る有機EL表示パネル10の場合には、その表面部が高い反射性を有することが好ましい。
c) Metal layer 1051 in the anode 105
As described above, the metal layer 1051 in the anode 105 is formed using silver (Ag) or a silver alloy (Ag alloy). In the case of the organic EL display panel 10 according to this embodiment of the top emission type, it is preferable that the surface portion has high reflectivity.
  d)陽極105における透明導電層1052
 陽極105における透明導電層1052は、例えば、ITO(酸化インジウムスズ)やIZO(酸化インジウム亜鉛)などの透明導電材料を用い形成されている。
d) Transparent conductive layer 1052 in the anode 105
The transparent conductive layer 1052 in the anode 105 is formed using a transparent conductive material such as ITO (indium tin oxide) or IZO (indium zinc oxide).
  e)バンク106
 バンク106は、樹脂等の有機材料を用い形成されており絶縁性を有する。バンク106の形成に用いる有機材料の例としては、アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂等があげられる。バンク106は、有機溶剤耐性を有することが好ましい。さらに、バンク106は、製造工程中において、エッチング処理、ベーク処理など施されることがあるので、それらの処理に対して過度に変形、変質などをしないような耐性の高い材料で形成されることが好ましい。また、撥水性をもたせるために、表面をフッ素処理することもできる。
e) Bank 106
The bank 106 is formed using an organic material such as resin and has an insulating property. Examples of the organic material used for forming the bank 106 include acrylic resin, polyimide resin, and novolac type phenol resin. The bank 106 preferably has organic solvent resistance. Furthermore, since the bank 106 may be subjected to an etching process, a baking process, or the like during the manufacturing process, the bank 106 should be formed of a highly resistant material that does not excessively deform or alter the process. Is preferred. In addition, the surface can be treated with fluorine to give water repellency.
 なお、バンク106を親液性の材料を用い形成した場合には、バンク106の表面と有機機能層107の表面との親液性/撥液性の差異が小さくなり、有機機能層107中の有機発光層を形成するために有機物質を含んだインクを、バンク106が規定する開口部内に選択的に保持させることが困難となってしまうためである。 When the bank 106 is formed using a lyophilic material, the difference in lyophilicity / liquid repellency between the surface of the bank 106 and the surface of the organic functional layer 107 is reduced, and the This is because it becomes difficult to selectively hold ink containing an organic substance in the opening defined by the bank 106 in order to form the organic light emitting layer.
 さらに、バンク106の構造については、図2および図3に示すような一層構造だけでなく、二層以上の多層構造を採用することもできる。この場合には、層毎に上記材料を組み合わせることもできるし、層毎に無機材料と有機材料とを用いることもできる。 Furthermore, as for the structure of the bank 106, not only a single layer structure as shown in FIGS. 2 and 3, but also a multilayer structure of two or more layers can be adopted. In this case, the above materials can be combined for each layer, and an inorganic material and an organic material can be used for each layer.
  f)有機機能層107
 有機機能層107中に含まれる有機発光層は、上述のように、ホールと電子とが注入され再結合されることにより励起状態が生成され発光する機能を有する。有機発光層の形成に用いる材料は、湿式印刷法を用い製膜できる発光性の有機材料を用いることが必要である。
f) Organic functional layer 107
The organic light emitting layer included in the organic functional layer 107 has a function of emitting light by generating an excited state by injecting and recombining holes and electrons as described above. As a material used for forming the organic light emitting layer, it is necessary to use a light emitting organic material that can be formed by a wet printing method.
 具体的には、例えば、特許公開公報(日本国・特開平5-163488号公報)に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物及びアザキノロン化合物、ピラゾリン誘導体及びピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、アンスラセン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体などの蛍光物質で形成されることが好ましい。 Specifically, for example, the oxinoid compound, perylene compound, coumarin compound, azacoumarin compound, oxazole compound, oxadiazole compound, perinone compound, pyrrolopyrrole described in Japanese Patent Publication (JP-A-5-163488) Compound, naphthalene compound, anthracene compound, fluorene compound, fluoranthene compound, tetracene compound, pyrene compound, coronene compound, quinolone compound and azaquinolone compound, pyrazoline derivative and pyrazolone derivative, rhodamine compound, chrysene compound, phenanthrene compound, cyclopentadiene compound, stilbene compound , Diphenylquinone compound, styryl compound, butadiene compound, dicyanomethylenepyran compound, dicyanomethylenethiopyran compound, fluoro Cein compound, pyrylium compound, thiapyrylium compound, serenapyrylium compound, telluropyrylium compound, aromatic ardadiene compound, oligophenylene compound, thioxanthene compound, anthracene compound, cyanine compound, acridine compound, 8-hydroxyquinoline compound metal complex, 2- It is preferably formed of a fluorescent substance such as a metal complex of a bipyridine compound, a Schiff salt and a group III metal complex, an oxine metal complex, or a rare earth complex.
 なお、有機機能層107には、有機発光層よりも陽極105側に介挿された電荷注入層が含まれることもある。この場合、電荷注入層の構成材料としては、例えば、PEDOT(ポリチオフェンとポリスチレンスルホン酸との混合物)などの導電性ポリマー材料や、あるいは、モリブデン(Mo)酸化物、タングステン(W)酸化物といった遷移金属酸化物などを採用することができる。 Note that the organic functional layer 107 may include a charge injection layer interposed closer to the anode 105 than the organic light emitting layer. In this case, as a constituent material of the charge injection layer, for example, a conductive polymer material such as PEDOT (a mixture of polythiophene and polystyrene sulfonic acid), or a transition such as molybdenum (Mo) oxide or tungsten (W) oxide. A metal oxide or the like can be employed.
  g)陰極108
 陰極108は、例えば、ITO(酸化インジウムスズ)若しくはIZO(酸化インジウム亜鉛)などを用い形成される。本実施の形態のように、トップエミッション型の有機EL表示パネル10の場合においては、光透過性の材料で形成されることが好ましい。光透過性については、透過率が80[%]以上とすることが好ましい。
g) Cathode 108
The cathode 108 is formed using, for example, ITO (indium tin oxide) or IZO (indium zinc oxide). In the case of the top emission type organic EL display panel 10 as in the present embodiment, it is preferably formed of a light transmissive material. About light transmittance, it is preferable that the transmittance | permeability shall be 80 [%] or more.
 陰極108の形成に用いる材料としては、上記の他に、例えば、アルカリ金属、アルカリ土類金属、またはそれらのハロゲン化物を含む層の構造、あるいは、前記いずれかの層に銀を含む層とをこの順で積層した構造を用いることもできる。上記において、銀を含む層は、銀単独で形成されていてもよいし、銀合金で形成されていてもよい。また、光取出し効率の向上を図るためには、当該銀を含む層の上から透明度の高い屈折率調整層を設けることもできる。 In addition to the above, the material used for forming the cathode 108 includes, for example, a layer structure containing an alkali metal, an alkaline earth metal, or a halide thereof, or a layer containing silver in any one of the above layers. A structure in which the layers are stacked in this order can also be used. In the above, the layer containing silver may be formed of silver alone, or may be formed of a silver alloy. In order to improve the light extraction efficiency, a highly transparent refractive index adjusting layer can be provided on the silver-containing layer.
  h)封止層109
 封止層109は、有機機能層107中の有機発光層などが水分に晒されたり、空気に晒されたりすることを抑制する機能を有し、例えば、SiN(窒化シリコン)、SiON(酸窒化シリコン)などの材料を用い形成される。
h) Sealing layer 109
The sealing layer 109 has a function of suppressing exposure of the organic light emitting layer or the like in the organic functional layer 107 to moisture or air. For example, SiN (silicon nitride), SiON (oxynitriding) It is formed using a material such as silicon.
 また、SiN(窒化シリコン)、SiON(酸窒化シリコン)などの材料を用い形成された層の上に、アクリル樹脂、シリコーン樹脂などの樹脂材料からなる封止樹脂層を設けてもよい。 Further, a sealing resin layer made of a resin material such as an acrylic resin or a silicone resin may be provided on a layer formed using a material such as SiN (silicon nitride) or SiON (silicon oxynitride).
 封止層109は、トップエミッション型である本実施の形態に係る有機EL表示パネル10の場合においては、光透過性の材料で形成されることが好ましい。 In the case of the organic EL display panel 10 according to the present embodiment which is a top emission type, the sealing layer 109 is preferably formed of a light transmissive material.
 4.陽極105とバンク106および有機機能層107との関係
 陽極105とバンク106および有機機能層107との関係について、図5および図6を用い説明する。
4). Relationship between Anode 105, Bank 106, and Organic Functional Layer 107 The relationship between anode 105, bank 106, and organic functional layer 107 will be described with reference to FIGS.
 図5に示すように、本実施の形態に係る有機EL表示パネル10では、陽極105の端部P1が、開口部を臨むバンク106の端部P2から間隔d1だけ離間した状態で配されている。この状態は、例えば、バンク106の幅を狭くすることにより実現されている。そのため、有機EL表示パネル10では、図16に示す従来技術に係る有機EL表示パネルに比べて開口部を広くすることができる。 As shown in FIG. 5, in the organic EL display panel 10 according to the present embodiment, the end portion P 1 of the anode 105 is arranged with a distance d 1 away from the end portion P 2 of the bank 106 facing the opening. Has been. This state is realized, for example, by reducing the width of the bank 106. Therefore, the organic EL display panel 10 can have a wider opening than the organic EL display panel according to the related art shown in FIG.
 また、間隔d1だけ離間した部分では、有機機能層107が平坦化膜104上に形成されることになり、このため、図17(a)および図17(b)に示すような、陽極105上における有機機能層107の膜厚不均一という問題を生じない。 In addition, in the portion separated by the distance d 1 , the organic functional layer 107 is formed on the planarizing film 104. For this reason, the anode 105 as shown in FIGS. 17 (a) and 17 (b). The problem of non-uniform thickness of the organic functional layer 107 does not occur.
 陽極105における金属層1051の膜厚t2は、有機機能層107における有機発光層から照射された光を陰極108の側へと反射するための反射率が所定値以上となるように設定されている。具体的な膜厚t2は、60[nm]以上200[nm]以下の範囲内であり、望ましくは、下限値が65[nm]であり、上限値が120[nm]であり、さらに望ましくは、下限値が70[nm]であり、上限値が100[nm]である。例えば、膜厚t2の所定範囲の下限値を60[nm]とする場合には、後述する図8に例示するように、赤色(R)、緑色(G)、青色(B)の全ての波長域において、92[%]以上の安定した反射率を得ることができる。 The film thickness t 2 of the metal layer 1051 in the anode 105 is set so that the reflectance for reflecting the light irradiated from the organic light emitting layer in the organic functional layer 107 toward the cathode 108 becomes a predetermined value or more. Yes. Specific thickness t 2 is in the range of 60 [nm] or more 200 [nm] or less, desirably, the lower limit value is 65 [nm], the upper limit is 120 [nm], more preferably Has a lower limit of 70 [nm] and an upper limit of 100 [nm]. For example, when the lower limit value of the predetermined range of the film thickness t 2 is set to 60 [nm], all of red (R), green (G), and blue (B) are exemplified as illustrated in FIG. A stable reflectance of 92 [%] or more can be obtained in the wavelength region.
 また、本実施の形態では、有機機能層107の膜厚t3が、陽極105の膜厚t1以上の膜厚に設定されており、陽極105の上面105aから端部側面105bにわたって形成されている。前記のような膜厚t1,t3の関係を採用することにより、矢印E部分に示すように、有機機能層107が、陽極105の端部で段切れや極端に薄肉となることがない。 In the present embodiment, the thickness t 3 of the organic functional layer 107 is set to be equal to or greater than the thickness t 1 of the anode 105 and is formed from the upper surface 105a of the anode 105 to the end side surface 105b. Yes. By adopting the relationship between the film thicknesses t 1 and t 3 as described above, the organic functional layer 107 does not become stepped or extremely thin at the end of the anode 105 as indicated by the arrow E portion. .
 有機機能層107の段切れ防止について、図6(a)および図6(b)を用い説明する。図6(a)は、本実施の形態に係る陽極105と有機機能層107とを模式的に図示したものであり、図6(b)は、比較例に係る陽極955と有機機能層957とを模式的に図示したものである。 The prevention of disconnection of the organic functional layer 107 will be described with reference to FIGS. 6A and 6B. FIG. 6A schematically shows the anode 105 and the organic functional layer 107 according to this embodiment, and FIG. 6B shows the anode 955 and the organic functional layer 957 according to the comparative example. Is schematically illustrated.
 先ず、図6(a)に示すように、本実施の形態のように、有機機能層107の膜厚t3が、陽極105の膜厚t1以上の膜厚に設定されている場合には、陽極105の上面105aから端部側面105bにわたって有機機能層107が形成されることになる。なお、上記のように、陽極105の金属層1051の膜厚t2が、反射率との関係で上記数値範囲内とすることが必要であるので、有機機能層107の膜厚t3は、金属層1051の膜厚t2を含む陽極105の膜厚t1との相対的な関係で規定される。 First, as shown in FIG. 6A, when the film thickness t 3 of the organic functional layer 107 is set to a film thickness t 1 or more of the anode 105 as in the present embodiment. The organic functional layer 107 is formed from the upper surface 105a of the anode 105 to the end side surface 105b. As described above, since the film thickness t 2 of the metal layer 1051 of the anode 105 needs to be within the above numerical range in relation to the reflectance, the film thickness t 3 of the organic functional layer 107 is It is defined by a relative relationship with the film thickness t 1 of the anode 105 including the film thickness t 2 of the metal layer 1051.
 また、図6(a)に示すように、陽極105における端部側面105bと基板101および平坦化膜104の上面とがなす内角θは、90[°]以下になっている。これによっても、矢印F部分において、有機機能層107に段切れなどを生じない。 Also, as shown in FIG. 6A, the internal angle θ formed by the end side surface 105b of the anode 105 and the top surfaces of the substrate 101 and the planarizing film 104 is 90 [°] or less. This also prevents the organic functional layer 107 from being disconnected at the arrow F portion.
 以上より、図6(a)の矢印F部分に示すように、有機機能層107が陽極105の端部で段切れなどを生じることがない。 As described above, the organic functional layer 107 does not break off at the end of the anode 105 as indicated by the arrow F in FIG.
 次に、図6(b)に示すように、比較例においては、陽極955上における有機機能層957の膜厚t93は、陽極955の膜厚t91よりも薄い関係となっている。従来技術では、陽極955が、金属層9551を含めて、図示を省略しているバスバーと同一の工程で形成することに起因して、金属層9551の膜厚t92および陽極955の膜厚t91が厚くなっている。よって、図6(b)に示すように、有機機能層957は、矢印G部分(陽極955の端部)で段切れを発生することがある。そして、有機機能層957が段切れを生じ、陽極955の上面955a上の有機機能層957aと、陽極955の端部側面955bを覆う有機機能層957bとが連続せず、陽極955の透明導電層9552が、矢印G部分で陰極(図6(b)では、図示を省略。)とがショートすることになる。 Next, as shown in FIG. 6B, in the comparative example, the film thickness t 93 of the organic functional layer 957 on the anode 955 has a smaller relationship than the film thickness t 91 of the anode 955. In the prior art, the anode 955 is formed in the same process as the bus bar (not shown) including the metal layer 9551, resulting in the film thickness t 92 of the metal layer 9551 and the film thickness t of the anode 955. 91 is thicker. Therefore, as shown in FIG. 6B, the organic functional layer 957 may break off at the arrow G portion (the end of the anode 955). Then, the organic functional layer 957 is disconnected, and the organic functional layer 957a on the upper surface 955a of the anode 955 and the organic functional layer 957b covering the end side surface 955b of the anode 955 are not continuous, and the transparent conductive layer of the anode 955 9552 is short-circuited with the cathode (not shown in FIG. 6B) at the arrow G portion.
 5.有機EL表示パネル10およびこれを備える有機EL表示装置1が有する主な効果
 本実施の形態に係る有機EL表示パネル10では、第1電極である陽極105の金属層1051(アルミニウム層若しくはアルミニウム合金層)の膜厚t2(図5などを参照。)を、40[nm]以上の所定の膜厚とし、これにより、陽極105の金属層1051の表面部分が、有機機能層107における有機発光層から照射された光に対して所定の反射率を有する反射部となる。即ち、陽極105における金属層1051の膜厚t2を40[nm]未満とする場合には、有機機能層107における有機発光層から照射された光の陰極108側へ反射する光量が減少し、発光効率の低下を招くが、本実施の形態のように、陽極105における金属層1051の膜厚t2を40[nm]以上とすることにより、高い発光効率を得ることができる。
5. Main effects of organic EL display panel 10 and organic EL display device 1 including the same In organic EL display panel 10 according to the present embodiment, metal layer 1051 (aluminum layer or aluminum alloy layer) of anode 105 serving as the first electrode. referring to a film thickness t 2 (Figure 5) a.), and 40 [nm] or more to a predetermined thickness, thereby, the surface portion of the metal layer 1051 of the anode 105, the organic light-emitting layer in the organic functional layer 107 It becomes a reflection part which has predetermined | prescribed reflectance with respect to the light irradiated from. That is, when the thickness t 2 of the metal layer 1051 in the anode 105 is less than 40 [nm], the amount of light reflected from the organic light emitting layer in the organic functional layer 107 to the cathode 108 side decreases, Although the light emission efficiency is reduced, high light emission efficiency can be obtained by setting the film thickness t 2 of the metal layer 1051 in the anode 105 to 40 [nm] or more as in this embodiment.
 また、本実施の形態に係る有機EL表示パネル10では、有機機能層107の膜厚t3を、陽極105の膜厚t1以上とし(図5などを参照。)、且つ、陽極105の上面105aから端部側面105bにわたって有機機能層107が形成されている構成を採用する(図6(a)を参照)。このため、有機EL表示パネル10では、陽極105に対する有機機能層107の膜厚t3および陽極105に対する有機機能層107の上記のような形成形態を採用することにより、有機機能層107の膜厚t3を必要以上に厚くする必要はなく、陽極105と陰極108との間での電気抵抗の増大による寿命低下という問題を生じることはなく、また、陽極105の端部における有機機能層107の段切れや極端な薄膜化を招くことがない(図5および図6(a)を参照)。なお、陽極105における金属層1051の膜厚t2を、上記段切れ防止のための陽極105の膜厚t1の低減に伴って低減することができ、具体的には、200[nm]以下、望ましくは120[nm]以下、更に望ましくは100[nm]以下とすることができる。 In the organic EL display panel 10 according to the present embodiment, the thickness t 3 of the organic functional layer 107 is set to be equal to or larger than the thickness t 1 of the anode 105 (see FIG. 5 and the like), and the upper surface of the anode 105 A configuration in which the organic functional layer 107 is formed from 105a to the end side surface 105b is employed (see FIG. 6A). For this reason, in the organic EL display panel 10, the film thickness t 3 of the organic functional layer 107 with respect to the anode 105 and the above-described formation form of the organic functional layer 107 with respect to the anode 105 are employed. It is not necessary to increase the thickness t 3 more than necessary, and there is no problem of a decrease in life due to an increase in electrical resistance between the anode 105 and the cathode 108, and the organic functional layer 107 at the end of the anode 105 is not affected. There will be no disconnection or extreme thinning (see FIGS. 5 and 6A). In addition, the film thickness t 2 of the metal layer 1051 in the anode 105 can be reduced as the film thickness t 1 of the anode 105 is reduced to prevent the step breakage, and specifically, 200 [nm] or less. The thickness may be preferably 120 [nm] or less, and more preferably 100 [nm] or less.
 また、図2、図3および図5などに示すように、有機EL表示パネル10では、陽極105の端部P1と、開口部を臨むバンク106の端部P2とを相互に離間させているので、発光領域を広くできるとともに、陽極105上の有機機能層107の厚みを均一化することができる。よって、発光特性が優れる。 As shown in FIGS. 2, 3 and 5, in the organic EL display panel 10, the end portion P 1 of the anode 105 and the end portion P 2 of the bank 106 facing the opening are separated from each other. Therefore, the light emitting region can be widened and the thickness of the organic functional layer 107 on the anode 105 can be made uniform. Therefore, the light emission characteristics are excellent.
 以上より、本実施の形態に係る有機EL表示パネル10およびこれを備える有機EL表示装置1では、発光領域が広く、且つ、発光領域内での有機機能層107の膜厚t3が均一に維持され、且つ、有機機能層107の段切れの発生がない。従って、有機EL表示パネル10およびこれを備える有機EL表示装置1は、優れた発光特性を有しながら、長寿命である。 As described above, in the organic EL display panel 10 according to the present embodiment and the organic EL display device 1 including the same, the light emitting region is wide, and the film thickness t 3 of the organic functional layer 107 in the light emitting region is kept uniform. In addition, the organic functional layer 107 is not broken. Therefore, the organic EL display panel 10 and the organic EL display device 1 including the same have a long life while having excellent light emission characteristics.
 6.陽極105における金属層1051の膜厚t2の最適範囲
 陽極105における金属層1051の膜厚t2の最適範囲について、図7および図8を用い検討結果を説明する。図7は、横軸が金属層1051の反射率を測定する際に用いた分光光度計の測定光の波長であり、縦軸が金属層1051の反射率である。図8は、図7の測定データについて、測定した金属層1051の膜厚と、各膜厚での反射率との関係を示す図である。図8の横軸が金属層1051の膜厚であり、縦軸が金属層1051の反射率である。なお、図8では、参考例として、Al合金を含む陽極についての測定データも併記する。
6). The optimum range of the film thickness t 2 of the metal layer 1051 in the anode 105 The examination results of the optimum range of the film thickness t 2 of the metal layer 1051 in the anode 105 will be described with reference to FIGS. In FIG. 7, the horizontal axis represents the wavelength of the measurement light of the spectrophotometer used when measuring the reflectance of the metal layer 1051, and the vertical axis represents the reflectance of the metal layer 1051. FIG. 8 is a diagram illustrating the relationship between the measured thickness of the metal layer 1051 and the reflectance at each thickness with respect to the measurement data of FIG. The horizontal axis in FIG. 8 is the film thickness of the metal layer 1051, and the vertical axis is the reflectance of the metal layer 1051. In FIG. 8, measurement data for an anode containing an Al alloy is also shown as a reference example.
 図7に示すように、金属層の膜厚が、60[nm]~150[nm]の各サンプルでは、460[nm]~600[nm]の波長域において、反射率が略90[%]以上となっている。 As shown in FIG. 7, in each sample having a metal layer thickness of 60 [nm] to 150 [nm], the reflectance is approximately 90 [%] in the wavelength range of 460 [nm] to 600 [nm]. That's it.
 一方、金属層の膜厚が、30[nm]~50[nm]のサンプルでは、475[nm]以下の波長域において、反射率が90[%]よりも低くなっている。 On the other hand, in the sample having a metal layer thickness of 30 [nm] to 50 [nm], the reflectance is lower than 90 [%] in the wavelength region of 475 [nm] or less.
 次に、図8に示すように、金属層の膜厚が60[nm]以上の範囲では、赤(R:図7での横軸がλ=600[nm])、緑(G:図7での横軸がλ=530[nm])、青(B:図7での横軸がλ=460[nm])の全ての波長域において、反射率が91[%]以上となった。そして、金属層の膜厚が65[nm]以上の範囲では、最も短波長域側の青色(B)の光に対しても、反射率は92[%]以上となり、膜厚が70[nm]以上の範囲では、反射率は略92[%]~97[%]前後で、それ以上に厚みを増しても反射率への影響は小さいことが分かる。 Next, as shown in FIG. 8, red (R: the horizontal axis in FIG. 7 is λ = 600 [nm]), green (G: FIG. In all the wavelength ranges of λ = 530 [nm]) and blue (B: λ = 460 [nm] in FIG. 7), the reflectance was 91 [%] or more. In the range where the thickness of the metal layer is 65 [nm] or more, the reflectance is 92 [%] or more for the blue (B) light on the shortest wavelength range side, and the thickness is 70 [nm]. In the above range, the reflectance is about 92 [%] to about 97 [%], and it can be seen that the influence on the reflectance is small even if the thickness is increased further.
 また、図8に示すように、短波長域側の青色(B:λ=460[nm])の光に対しては、金属層としてAl合金を含む参考サンプルに対して、膜厚が55[nm]を境に反射率の値が逆転している。これより、材料コストという観点を考慮するとき、Ag合金(APC)からなる金属層の膜厚は、最低でも60[nm]以上とすることが反射率の確保のために必要である。 Further, as shown in FIG. 8, for the blue light (B: λ = 460 [nm]) on the short wavelength region side, the film thickness is 55 [relative to the reference sample containing an Al alloy as the metal layer. The reflectance value is reversed at [nm]. From this, when considering the viewpoint of material cost, it is necessary for securing the reflectance that the film thickness of the metal layer made of Ag alloy (APC) is at least 60 [nm] or more.
 なお、陽極105の金属層1051の膜厚t2に関し、その上限値は、上述のように、反射率という観点からは特に規定する必要はないが、上記のように有機機能層107の段切れ防止という観点から陽極105の膜厚t2を薄くしようとすることを考慮すると、200[nm]以下、望ましくは120[nm]以下、更に望ましくは100[nm]以下である。 Note that the upper limit of the thickness t 2 of the metal layer 1051 of the anode 105 is not particularly required from the viewpoint of reflectivity as described above, but the organic functional layer 107 is disconnected as described above. In consideration of reducing the film thickness t 2 of the anode 105 from the viewpoint of prevention, it is 200 [nm] or less, preferably 120 [nm] or less, and more preferably 100 [nm] or less.
 以上より、陽極105における金属層1051の膜厚t2の範囲は、60[nm]以上200[nm]以下、望ましくは、65[nm]以上120[nm]以下、あるいは70[nm]以上120[nm]以下、更に望ましくは、70[nm]以上100[nm]以下、あるいは50[nm]以上100[nm]以下の範囲である。 Accordingly, the range of the film thickness t 2 of the metal layer 1051 in the anode 105 is 60 [nm] or more and 200 [nm] or less, preferably 65 [nm] or more and 120 [nm] or less, or 70 [nm] or more and 120. [nm] or less, and more desirably 70 [nm] or more and 100 [nm] or less, or 50 [nm] or more and 100 [nm] or less.
 なお、本実験では、金属層として、Ag合金の一種であるAPC(AgとPdとCuとからなる合金)を用いたが、他のAg合金や、さらにはAgについても、同様の結果となることを確認している。 In this experiment, APC (alloy consisting of Ag, Pd, and Cu), which is a kind of Ag alloy, was used as the metal layer, but the same result was obtained for other Ag alloys and further Ag. I have confirmed that.
 7.有機機能層についての規定
 上記では、有機機能層107について、少なくとも有機発光層を含むものとしているが、バリエーションを含めた規定について、図9を用い説明する。
7. In the above description, the organic functional layer 107 includes at least the organic light emitting layer. The definition including variations will be described with reference to FIG.
 (1) 先ず、図9(a)に示すように、有機機能層107が電荷注入層1071と有機発光層1072との積層構造体とすることができる。この場合、陽極105における透明導電層1052に対し、電荷注入層1071が積層され、その上に有機発光層1072が積層されることになる。 (1) First, as shown in FIG. 9A, the organic functional layer 107 can be a stacked structure of a charge injection layer 1071 and an organic light emitting layer 1072. In this case, the charge injection layer 1071 is laminated on the transparent conductive layer 1052 in the anode 105, and the organic light emitting layer 1072 is laminated thereon.
 なお、この構成を採用する場合には、「有機機能層107の膜厚t3」とは、電荷注入層1071の膜厚t32と有機発光層1072の膜厚t31とを足し合わせた厚みとなる。 When this configuration is adopted, the “film thickness t 3 of the organic functional layer 107” means the thickness obtained by adding the film thickness t 32 of the charge injection layer 1071 and the film thickness t 31 of the organic light emitting layer 1072. It becomes.
 (2) 次に、図9(b)に示すように、有機機能層117が電荷注入層1171、有機発光層1172および電子輸送層1173の3層構造の積層構造体とすることもできる。この場合、陽極105の膜厚t1との比較における「有機機能層117の膜厚t13」とは、電荷注入層1171の膜厚t132と有機発光層1172の膜厚t131とを足し合わせた厚みとなり、陽極105の膜厚t1との比較においては、電子輸送層1173の膜厚t133を含めないものとする。 (2) Next, as shown in FIG. 9B, the organic functional layer 117 may be a three-layer structure including a charge injection layer 1171, an organic light emitting layer 1172, and an electron transport layer 1173. In this case, the “film thickness t 13 of the organic functional layer 117” in comparison with the film thickness t 1 of the anode 105 is the sum of the film thickness t 132 of the charge injection layer 1171 and the film thickness t 131 of the organic light emitting layer 1172. In the comparison with the thickness t 1 of the anode 105, the thickness t 133 of the electron transport layer 1173 is not included in the comparison.
 (3) 次に、図9(c)に示すように、有機機能層127が電荷注入層1271、電荷輸送層1274および有機発光層1272の3層構造の積層構造体とすることもできる。この場合、陽極105の膜厚t1との比較における「有機機能層127の膜厚t23」とは、電荷注入層1271の膜厚t232と電荷輸送層1274の膜厚t234と有機発光層1172の膜厚t231とを足し合わせた厚みとなる。 (3) Next, as shown in FIG. 9C, the organic functional layer 127 may be a laminated structure having a three-layer structure including a charge injection layer 1271, a charge transport layer 1274, and an organic light emitting layer 1272. In this case, the “film thickness t 23 of the organic functional layer 127” in comparison with the film thickness t 1 of the anode 105 means the film thickness t 232 of the charge injection layer 1271, the film thickness t 234 of the charge transport layer 1274, and organic light emission. a thickness obtained by adding the thickness t 231 of the layer 1172.
 なお、図9(c)における有機発光層1272に上に電子輸送層などが介挿される場合には、上記同様に、陽極105の膜厚t1との比較においては、電子輸送層の膜厚を含めないものとする。 When an electron transport layer or the like is interposed on the organic light emitting layer 1272 in FIG. 9C, the film thickness of the electron transport layer is compared with the film thickness t 1 of the anode 105 as described above. Shall not be included.
 8.有機EL表示パネル10の製造方法
 有機EL表示パネル10の製造方法について、図10から図12を用い説明する。図10から図12は、主な工程での断面端面図である。
8). Manufacturing Method of Organic EL Display Panel 10 A manufacturing method of the organic EL display panel 10 will be described with reference to FIGS. 10 to 12 are sectional end views in main processes.
 図10(a)に示すように、基板101を準備する。 As shown in FIG. 10A, a substrate 101 is prepared.
 次に、基板101の主面101a上に対し、TFT層102およびパッシベーション膜103を形成する(図10(b)を参照)。なお、図10(b)においても、上記同様に、TFT層102についてSD電極だけを図示している。 Next, the TFT layer 102 and the passivation film 103 are formed on the main surface 101a of the substrate 101 (see FIG. 10B). In FIG. 10B as well, only the SD electrode is shown for the TFT layer 102 as described above.
 次に、基板101の上方であるパッシベーション膜103の主面103a上に、絶縁層である平坦化膜104を形成する。なお、図10(c)に示すように、平坦化膜104に対しては、TFT層102のSD電極に相当する部分にコンタクトホール104aをあけ、当該部分のパッシベーション膜103についても住居することにより、底部にTFT層102のSD電極の表面が露出するようにする。 Next, a planarizing film 104 which is an insulating layer is formed on the main surface 103a of the passivation film 103 above the substrate 101. As shown in FIG. 10C, for the planarizing film 104, a contact hole 104a is formed in a portion corresponding to the SD electrode of the TFT layer 102, and the passivation film 103 in the portion is also housed. The surface of the SD electrode of the TFT layer 102 is exposed at the bottom.
 次に、平坦化膜104の主面104bに対して、金属層1051形成のための膜と、透明導電層1052形成のための膜とを順に積層する。両膜は、コンタクトホール104aを囲む側壁にも形成される。そして、フォトリソグラフィおよびエッチングにより、これをパターニングし、金属層1051と透明導電層1052との積層構造体である陽極105を形成する(図10(d)を参照)。ここで、パターニングには、ドライエッチングおよびウェットエッチングの何れを採用することもできるが、特にウェットエッチングを採用する場合には、ウェットエッチングが等方性エッチングであることに起因して、陽極105の端部の内角を90[°]以下にすることができるので、好適である。 Next, a film for forming the metal layer 1051 and a film for forming the transparent conductive layer 1052 are sequentially stacked on the main surface 104b of the planarizing film 104. Both films are also formed on the side wall surrounding the contact hole 104a. Then, this is patterned by photolithography and etching to form the anode 105 that is a stacked structure of the metal layer 1051 and the transparent conductive layer 1052 (see FIG. 10D). Here, either dry etching or wet etching can be employed for patterning, but in particular, when wet etching is employed, the wet etching is isotropic etching, so Since the inner angle of the end portion can be 90 [°] or less, it is preferable.
 次に、陽極105が形成されずに露出した平坦化膜104の主面に対し、バンク106形成のための膜をスパッタリング法により形成する。そして、フォトリソグラフィおよびウェットエッチングにより、画素領域に対応する開口部を規定するバンク106を形成する(図11(a)を参照)。図11(a)に示すように、開口部を臨むバンク106の端部は、陽極105の端部に対し、間隔d1をあけて形成される。 Next, a film for forming the bank 106 is formed by sputtering on the main surface of the planarizing film 104 exposed without forming the anode 105. Then, a bank 106 that defines an opening corresponding to the pixel region is formed by photolithography and wet etching (see FIG. 11A). As shown in FIG. 11A, the end of the bank 106 facing the opening is formed with a distance d 1 from the end of the anode 105.
 次に、陽極105の主面105aを含む、バンク106で規定された開口部内に対し、有機機能層107形成のためのインク1070を塗布する(図11(b)を参照)。このとき、バンク106の表面の撥液性に起因して、隣接する開口部間では、インク1070が連続することはない。 Next, the ink 1070 for forming the organic functional layer 107 is applied to the opening defined by the bank 106 including the main surface 105a of the anode 105 (see FIG. 11B). At this time, the ink 1070 does not continue between adjacent openings due to the liquid repellency of the surface of the bank 106.
 次に、インク1070を乾燥することにより、バンク106で規定される開口部内に有機機能層107が形成される(図11(c)を参照)。なお、有機機能層107が、図9(a)から図9(c)に示すように、2層構造あるいは3層以上の構造を採用する場合には、各層形成のためのインク塗布と乾燥とを繰り返し実行することになる。 Next, the organic functional layer 107 is formed in the opening defined by the bank 106 by drying the ink 1070 (see FIG. 11C). In addition, when the organic functional layer 107 adopts a two-layer structure or a structure of three or more layers as shown in FIGS. 9A to 9C, ink application and drying for forming each layer are performed. Will be executed repeatedly.
 次に、有機機能層107の主面107aおよびバンク106の表面を含む全体領域に対し、陰極108を形成する(図12(a)を参照)。ここで、陰極108の形成には、スパッタリング法などを用いることができる。 Next, the cathode 108 is formed on the entire region including the main surface 107a of the organic functional layer 107 and the surface of the bank 106 (see FIG. 12A). Here, the cathode 108 can be formed by a sputtering method or the like.
 次に、陰極108の表面108a上に、封止層109を積層形成する(図12(b)を参照)。 Next, a sealing layer 109 is formed on the surface 108a of the cathode 108 (see FIG. 12B).
 [実施の形態2]
 実施の形態2に係る有機EL表示パネル30の構成について、上記実施の形態1との差異部分を中心に、図13を用い説明する。図13は、上記実施の形態1における図2で示す断面端面図に対応するものである。
[Embodiment 2]
The configuration of the organic EL display panel 30 according to the second embodiment will be described with reference to FIG. 13 with a focus on differences from the first embodiment. FIG. 13 corresponds to the sectional end view shown in FIG. 2 in the first embodiment.
 図13に示すように、本実施の形態に係る有機EL表示パネル30では、陽極305が金属層(Ag層若しくはAg合金層)の一層構造である点で上記実施の形態1に係る有機EL表示パネル10と相違する。有機EL表示パネル30でも、陽極305の端部が、開口部を臨むバンク106の端部から離間した状態となっており、陽極305が形成された領域が発光領域300であり、他の領域が非発光領域350である。 As shown in FIG. 13, in the organic EL display panel 30 according to the present embodiment, the organic EL display according to the first embodiment is that the anode 305 has a single layer structure of a metal layer (Ag layer or Ag alloy layer). Different from the panel 10. Also in the organic EL display panel 30, the end of the anode 305 is in a state of being separated from the end of the bank 106 facing the opening, the region where the anode 305 is formed is the light emitting region 300, and the other regions are This is a non-light emitting region 350.
 本実施の形態に係る有機EL表示パネル30でも、陽極305の膜厚は60[nm]以上200[nm]以下の範囲内に設定され、また、有機機能層107の膜厚が陽極305の膜厚よりも厚くなっている。そして、有機機能層107は、陽極305の上面から端部側面にわたって形成されている。 Also in the organic EL display panel 30 according to the present embodiment, the film thickness of the anode 305 is set in the range of 60 [nm] or more and 200 [nm] or less, and the film thickness of the organic functional layer 107 is the film of the anode 305. It is thicker than the thickness. The organic functional layer 107 is formed from the upper surface of the anode 305 to the end side surface.
 以上より、本実施の形態に係る有機EL表示パネル30およびこれを備える有機EL表示装置でも、上記有機EL表示パネル10および有機EL表示装置1と同様の効果を有する。 As described above, the organic EL display panel 30 according to the present embodiment and the organic EL display device including the same have the same effects as the organic EL display panel 10 and the organic EL display device 1 described above.
 [実施の形態3]
 実施の形態3に係る有機EL表示パネル40の構成について、上記実施の形態1との差異部分を中心に、図14および図15を用い説明する。図14は、上記実施の形態1における図4に示す平面図に対応するものであり、図15は、図2で示す断面端面図に対応するものである。
[Embodiment 3]
The configuration of the organic EL display panel 40 according to the third embodiment will be described with reference to FIGS. 14 and 15, focusing on the differences from the first embodiment. 14 corresponds to the plan view shown in FIG. 4 in the first embodiment, and FIG. 15 corresponds to the sectional end view shown in FIG.
 図14に示すように、本実施の形態に係る有機EL表示パネル40は、バンク406が、所謂、ラインバンク構造を有する点に特徴がある。即ち、図14に示すように、バンク406は、Y軸方向に延伸する複数条の要素により構成されている。複数条の要素は、端部において互いに連続していてもよいし、逆に、各々が分離した状態となっていてもよい。 As shown in FIG. 14, the organic EL display panel 40 according to the present embodiment is characterized in that the bank 406 has a so-called line bank structure. That is, as shown in FIG. 14, the bank 406 is composed of a plurality of elements extending in the Y-axis direction. The plurality of elements may be continuous with each other at the end, or conversely, each may be in a separated state.
 図15は、図14における有機EL表示パネル40の一部をH-H‘断面の端面を示す模式断面端面図である。図15に示すように、有機EL表示パネル40では、ラインバンク構造のバンク406(図14を参照。)を採用するため、Y軸方向における隣接画素間には、バンク406が介挿されない。 FIG. 15 is a schematic cross-sectional end view showing a part of the organic EL display panel 40 in FIG. As shown in FIG. 15, since the organic EL display panel 40 employs a bank 406 (see FIG. 14) having a line bank structure, the bank 406 is not interposed between adjacent pixels in the Y-axis direction.
 図15に示すように、本実施の形態においても、陽極105の上面から端部側面にわたって有機機能層407が形成されており、その上に陰極408および封止層409が順に積層形成されている。よって、有機EL表示パネル40においても、陽極105が形成された領域が発光領域400であり、その他の領域が非発光領域450である。 As shown in FIG. 15, also in this embodiment, the organic functional layer 407 is formed from the upper surface to the end side surface of the anode 105, and the cathode 408 and the sealing layer 409 are sequentially stacked thereon. . Therefore, also in the organic EL display panel 40, the region where the anode 105 is formed is the light emitting region 400, and the other region is the non-light emitting region 450.
 なお、有機EL表示パネル40について、図14のX軸方向の断面構造については、図示を省略しているが、当該構造は、上記実施の形態1と同様である。即ち、X軸方向においては、陽極105の端部が、開口部を臨むバンク406の端部に対して離間した状態となっている。また、本実施の形態においても、陽極105における金属層1051の膜厚は、60[nm]以上200[nm]以下の範囲内で設定されており、有機機能層407の膜厚が陽極105の膜厚よりも厚くなっている。 For the organic EL display panel 40, the cross-sectional structure in the X-axis direction of FIG. 14 is not shown, but the structure is the same as that of the first embodiment. That is, in the X-axis direction, the end of the anode 105 is in a state of being separated from the end of the bank 406 facing the opening. Also in this embodiment, the thickness of the metal layer 1051 in the anode 105 is set in a range of 60 [nm] or more and 200 [nm] or less, and the thickness of the organic functional layer 407 is that of the anode 105. It is thicker than the film thickness.
 以上より、本実施の形態に係る有機EL表示パネル40およびこれを備える有機EL表示装置でも、上記実施の形態1と同様の効果を有する。 As described above, the organic EL display panel 40 and the organic EL display device including the same according to the present embodiment have the same effects as those of the first embodiment.
 [その他の事項]
 上記実施の形態1,2,3では、有機機能層107,117,127,407に対して、Z軸方向の下方、即ち、基板101の側に陽極105,305を配置し、Z軸方向の上方に陰極108,408を配置することとしたが、陽極と陰極との配置関係を上下逆にすることもできる。この場合には、有機機能層において、有機発光層に対し基板101側となる領域に電子注入層や電子輸送層が配置されることになり、この場合も「有機機能層の膜厚」は、基板101の側から積算し、有機発光層を含むレベルまでの膜厚が規定される。
[Other matters]
In the first, second, and third embodiments, the anodes 105 and 305 are disposed below the organic functional layers 107, 117, 127, and 407 in the Z-axis direction, that is, on the substrate 101 side. Although the cathodes 108 and 408 are arranged above, the arrangement relationship between the anode and the cathode can be reversed upside down. In this case, in the organic functional layer, an electron injection layer or an electron transport layer is disposed in a region on the substrate 101 side with respect to the organic light emitting layer. In this case, the "film thickness of the organic functional layer" The film thickness up to the level including the organic light emitting layer is defined by integrating from the substrate 101 side.
 また、上記実施の形態1,2,3の説明の際に用いた図1から図15については、各部のサイズについて厳密な相対値を以って示しているわけではなく、実際の構造への適用に際して適宜の変更が可能である。この場合においても、陽極における金属層の膜厚を上記範囲内で規定し、且つ、有機機能層の膜厚を陽極の膜厚よりも厚くすることは必要である。 Further, in FIGS. 1 to 15 used in the description of the first, second, and third embodiments, the sizes of the respective parts are not shown with strict relative values. Appropriate changes can be made upon application. Even in this case, it is necessary to define the thickness of the metal layer in the anode within the above range and to make the thickness of the organic functional layer larger than the thickness of the anode.
 本発明は、優れた発光特性を有しながら、長寿命な有機EL表示パネルおよび有機EL表示装置を実現するのに有用である。 The present invention is useful for realizing a long-life organic EL display panel and an organic EL display device having excellent light emission characteristics.
   1.有機EL表示装置
  10,30,40.有機EL表示パネル
  20.駆動制御部
  21~24.駆動回路
  25.制御回路
 100,300,400.発光領域
 101.基板
 102.TFT層
 103.パッシベーション膜
 104.平坦化膜
 105,305.陽極
 106,406.バンク
 107,117,127,407.有機機能層
 108,408.陰極
 109,409.封止層
 150,350,450.非発光領域
1051.金属層
1052.透明導電層
1070.インク
1071,1171,1271.電荷注入層
1072,1172,1272.有機発光層
1173.電子輸送層
1274.電荷輸送層
1. Organic EL display 10, 30, 40. Organic EL display panel 20. Drive control unit 21-24. Drive circuit 25. Control circuit 100, 300, 400. Light emitting area 101. Substrate 102. TFT layer 103. Passivation film 104. Planarization film 105,305. Anode 106,406. Bank 107,117,127,407. Organic functional layer 108,408. Cathode 109,409. Sealing layer 150, 350, 450. Non-light emitting area 1051. Metal layer 1052. Transparent conductive layer 1070. Ink 1071, 1171, 1271. Charge injection layers 1072, 1172, 1272. Organic light emitting layer 1173. Electron transport layer 1274. Charge transport layer

Claims (20)

  1.  基板と、
     前記基板の上方に形成され、所定の画素の領域に対応する開口部を規定するバンクと、
     前記基板の上方に配置され、銀層若しくは銀合金層を含み、当該銀層若しくは銀合金層の表面部を所定の反射率を有する反射部とした第1電極と、
     前記第1電極の上面に形成され、有機発光層を少なくとも含む有機機能層と、
     前記有機機能層の上方に配置され、前記有機機能層から上方へ照射された光と、前記有機機能層から下方に照射された光であって前記第1電極の反射部で反射された光と、を透過する第2電極と、
     を含み、
     前記第1電極は、前記バンクの開口部内において、その端部が前記開口部を臨む前記バンクの端部から離間して配置され、
     前記第1電極に含まれる銀層若しくは銀合金層の膜厚は、60nm以上200nm以下の所定の膜厚であり、
     前記有機機能層は、前記第1電極の所定の膜厚以上の膜厚であり、前記第1電極の上面から前記端部の側面にわたって形成されている、
     有機EL表示パネル。
    A substrate,
    A bank formed above the substrate and defining an opening corresponding to a predetermined pixel region;
    A first electrode disposed above the substrate and including a silver layer or a silver alloy layer, wherein the surface portion of the silver layer or the silver alloy layer is a reflective portion having a predetermined reflectance;
    An organic functional layer formed on an upper surface of the first electrode and including at least an organic light emitting layer;
    Light that is disposed above the organic functional layer and is irradiated upward from the organic functional layer, and light that is irradiated downward from the organic functional layer and reflected by the reflecting portion of the first electrode; A second electrode that passes through,
    Including
    The first electrode is disposed in the opening of the bank, the end of the first electrode being spaced apart from the end of the bank facing the opening,
    The film thickness of the silver layer or silver alloy layer included in the first electrode is a predetermined film thickness of 60 nm or more and 200 nm or less,
    The organic functional layer has a thickness equal to or greater than a predetermined thickness of the first electrode, and is formed from the upper surface of the first electrode to the side surface of the end portion.
    Organic EL display panel.
  2.  前記基板の上方に絶縁層が配置され、
     前記絶縁層上に前記バンク及び前記第1電極が配置されている、
     請求項1に記載の有機EL表示パネル。
    An insulating layer is disposed above the substrate;
    The bank and the first electrode are disposed on the insulating layer;
    The organic EL display panel according to claim 1.
  3.  前記第1電極に含まれる銀層若しくは銀合金層の所定の膜厚は、65nm以上120nm以下である、
     請求項1または請求項2に記載の有機EL表示パネル。
    The predetermined film thickness of the silver layer or silver alloy layer included in the first electrode is 65 nm or more and 120 nm or less,
    The organic EL display panel according to claim 1 or 2.
  4.  前記第1電極に含まれる銀層若しくは銀合金層の膜厚が70nm以上120nm以下の所定の膜厚である、
     請求項1または請求項2に記載の有機EL表示パネル。
    The film thickness of the silver layer or silver alloy layer included in the first electrode is a predetermined film thickness of 70 nm or more and 120 nm or less,
    The organic EL display panel according to claim 1 or 2.
  5.  前記第1電極に含まれる銀層若しくは銀合金層の所定の膜厚は、70nm以上100nm以下である、
     請求項1または請求項2に記載の有機EL表示パネル。
    The predetermined film thickness of the silver layer or silver alloy layer included in the first electrode is 70 nm or more and 100 nm or less.
    The organic EL display panel according to claim 1 or 2.
  6.  前記第1電極と前記有機機能層との間には透明導電層が設けられており、
     前記透明導電層の膜厚は5nm以上130nm以下である、
     請求項1ないし請求項5のいずれか1項に記載の有機EL表示パネル。
    A transparent conductive layer is provided between the first electrode and the organic functional layer,
    The film thickness of the transparent conductive layer is 5 nm or more and 130 nm or less,
    The organic EL display panel according to any one of claims 1 to 5.
  7.  前記第1電極に含まれているのは、銀合金層であって、
     前記銀合金層は、銀及びパラジウム及び銅を含有する合金で構成されている、
     請求項1ないし請求項6のいずれか1項に記載の有機EL表示パネル。
    The first electrode includes a silver alloy layer,
    The silver alloy layer is composed of an alloy containing silver and palladium and copper,
    The organic EL display panel according to claim 1.
  8.  前記有機機能層は、前記第1電極上に形成された電荷注入層あるいは電荷輸送層の少なくとも一方を含み、
     前記第1電極上に形成された前記電荷注入層あるいは電荷輸送層の少なくとも一方は、その膜厚が前記第1電極の所定の膜厚以上の膜厚であり、前記第1電極の上面及び端部にわたって形成されている、
     請求項1ないし請求項7のいずれか1項に記載の有機EL表示パネル。
    The organic functional layer includes at least one of a charge injection layer or a charge transport layer formed on the first electrode,
    At least one of the charge injection layer or the charge transport layer formed on the first electrode has a film thickness equal to or greater than a predetermined film thickness of the first electrode, and the upper surface and edges of the first electrode. Formed over the part,
    The organic EL display panel according to claim 1.
  9.  前記有機機能層は、前記第1電極上に形成された前記電荷注入層あるいは電荷輸送層の少なくとも一方の層の上方に前記有機発光層を設けた層である、
     請求項8に記載の有機EL表示パネル。
    The organic functional layer is a layer in which the organic light emitting layer is provided above at least one of the charge injection layer or the charge transport layer formed on the first electrode.
    The organic EL display panel according to claim 8.
  10.  前記有機機能層は、電荷注入層及び電荷輸送層及び前記有機発光層を含む層であり、
     前記電荷注入層は、前記第1電極上に形成され、
     前記電荷注入層は、その膜厚が前記第1電極の所定の膜厚以上の膜厚であり、前記第1電極の上面及び端部にわたって形成されている、
     請求項1ないし請求項7のいずれか1項に記載の有機EL表示パネル。
    The organic functional layer is a layer including a charge injection layer, a charge transport layer, and the organic light emitting layer,
    The charge injection layer is formed on the first electrode;
    The charge injection layer has a film thickness equal to or greater than a predetermined film thickness of the first electrode, and is formed over the upper surface and the end of the first electrode.
    The organic EL display panel according to claim 1.
  11.  前記第1電極の端部の側面と前記基板とがなす内角が90度以下である、
     請求項1ないし請求項10のいずれか1項に記載の有機EL表示パネル。
    The internal angle formed by the side surface of the end portion of the first electrode and the substrate is 90 degrees or less.
    The organic EL display panel according to any one of claims 1 to 10.
  12.  請求項1ないし請求項11のいずれか1項に記載の有機EL表示パネルを具備した
     有機EL表示装置。
    An organic EL display device comprising the organic EL display panel according to any one of claims 1 to 11.
  13.  基板を準備する第1工程と、
     前記基板上に所定の反射率を有する銀層若しくは銀合金層を含む第1電極を形成する第2工程と、
     前記基板の上方に、開口部を有し画素領域を規定するバンクを形成する第3工程と、
     有機発光層を少なくとも含む有機機能層を、前記第1電極の上面及び端部にわたって、前記第1電極の所定の膜厚以上の膜厚に形成する第4工程と、
     前記有機発光層から上方へ照射された光と、前記有機発光層から照射された光であって前記第1電極の反射面から反射した光とを、透過する透明な第2電極を前記有機発光層の上方に配置する第5工程と、
     を含み、
     前記第1電極は、前記バンクの開口部内に前記開口部の端部からその端部が離間して配置し、前記第1電極に含まれる銀層若しくは銀合金層の膜厚が60nm以上200nm以下の所定の膜厚であり、 前記有機機能層は、前記第1電極の所定の膜厚以上の膜厚である、
     有機EL表示パネルの製造方法。
    A first step of preparing a substrate;
    Forming a first electrode including a silver layer or a silver alloy layer having a predetermined reflectance on the substrate;
    A third step of forming a bank having an opening and defining a pixel region above the substrate;
    A fourth step of forming an organic functional layer including at least an organic light emitting layer over the upper surface and the end of the first electrode in a film thickness equal to or greater than a predetermined film thickness of the first electrode;
    A transparent second electrode that transmits light emitted upward from the organic light emitting layer and light emitted from the organic light emitting layer and reflected from the reflecting surface of the first electrode transmits the organic light emission. A fifth step of placing above the layer;
    Including
    The first electrode is disposed in the opening of the bank with the end spaced from the end of the opening, and the thickness of the silver layer or silver alloy layer included in the first electrode is 60 nm or more and 200 nm or less. The organic functional layer is a film thickness equal to or greater than a predetermined film thickness of the first electrode.
    Manufacturing method of organic EL display panel.
  14.  前記第1工程と前記第2工程との間に、前記基板上に絶縁層を形成する工程を有する、
     請求項13に記載の有機EL表示パネルの製造方法。
    A step of forming an insulating layer on the substrate between the first step and the second step;
    The manufacturing method of the organic electroluminescent display panel of Claim 13.
  15.  前記第2工程において、前記第1電極の上面に透明導電層を形成する、
     請求項13または請求項14に記載の有機EL表示パネルの製造方法。
    In the second step, a transparent conductive layer is formed on the upper surface of the first electrode.
    The manufacturing method of the organic electroluminescent display panel of Claim 13 or Claim 14.
  16.  前記第4工程において、前記第1電極をウェットエッチングにより、前記第1電極の所定の形状にパターニングすることにより、
     前記第1電極の前記端部の側面と前記基板とがなす内角を90度以下に形成する、
     請求項13ないし請求項15のいずれか1項に記載の有機EL表示パネルの製造方法。
    In the fourth step, by patterning the first electrode into a predetermined shape of the first electrode by wet etching,
    Forming an internal angle formed by the side surface of the end portion of the first electrode and the substrate to be 90 degrees or less;
    The method for manufacturing an organic EL display panel according to claim 13.
  17.  前記有機機能層は、インクジェット法、ダイコート法、スピンコート法のいずれかの湿式塗布方法を用い形成される、
     請求項13ないしは請求項16のいずれか1項に記載の有機EL表示パネルの製造方法。
    The organic functional layer is formed using a wet coating method of any one of an inkjet method, a die coating method, and a spin coating method.
    The method for producing an organic EL display panel according to any one of claims 13 to 16.
  18.  前記有機機能層は、前記第1電極上に形成された電荷注入層あるいは電荷輸送層の少なくとも一方を含み、
     前記第1電極上に形成された前記電荷注入層あるいは電荷輸送層の少なくとも一方は、その膜厚が前記第1電極の所定の膜厚以上の膜厚であり、前記第1電極の上面及び端部にわたって形成されている、
     請求項13ないし請求項17のいずれか1項に記載の有機EL表示パネルの製造方法。
    The organic functional layer includes at least one of a charge injection layer or a charge transport layer formed on the first electrode,
    At least one of the charge injection layer or the charge transport layer formed on the first electrode has a film thickness equal to or greater than a predetermined film thickness of the first electrode, and the upper surface and edges of the first electrode. Formed over the part,
    The manufacturing method of the organic electroluminescent display panel of any one of Claim 13 thru | or 17.
  19.  前記有機機能層は、前記電荷注入層あるいは電荷輸送層の少なくとも一方の層の上方に前記有機発光層を設けた層である、
     請求項18に記載の有機EL表示パネルの製造方法。
    The organic functional layer is a layer in which the organic light emitting layer is provided above at least one of the charge injection layer or the charge transport layer.
    The manufacturing method of the organic electroluminescent display panel of Claim 18.
  20.  前記有機機能層は、電荷注入層及び電荷輸送層及び前記有機発光層を含む層であり、
     前記電荷注入層は、前記第1電極上に形成され、
     前記電荷注入層は、その膜厚が前記第1電極の所定の膜厚以上の膜厚であり、前記第1電極の上面及び端部にわたって形成されている、
     請求項13ないし請求項17のいずれか1項に記載の有機EL表示パネルの製造方法。
    The organic functional layer is a layer including a charge injection layer, a charge transport layer, and the organic light emitting layer,
    The charge injection layer is formed on the first electrode;
    The charge injection layer has a film thickness equal to or greater than a predetermined film thickness of the first electrode, and is formed over the upper surface and the end of the first electrode.
    The manufacturing method of the organic electroluminescent display panel of any one of Claim 13 thru | or 17.
PCT/JP2010/006019 2010-10-07 2010-10-07 Organic el display panel, method for manufacturing same, and organic el display device WO2012046280A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/006019 WO2012046280A1 (en) 2010-10-07 2010-10-07 Organic el display panel, method for manufacturing same, and organic el display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/006019 WO2012046280A1 (en) 2010-10-07 2010-10-07 Organic el display panel, method for manufacturing same, and organic el display device

Publications (1)

Publication Number Publication Date
WO2012046280A1 true WO2012046280A1 (en) 2012-04-12

Family

ID=45927305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006019 WO2012046280A1 (en) 2010-10-07 2010-10-07 Organic el display panel, method for manufacturing same, and organic el display device

Country Status (1)

Country Link
WO (1) WO2012046280A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183024A (en) * 2013-03-21 2014-09-29 Semiconductor Energy Lab Co Ltd Display device and electronic apparatus
JP2016072283A (en) * 2014-09-26 2016-05-09 パイオニア株式会社 Light emission device
JPWO2014136723A1 (en) * 2013-03-08 2017-02-09 コニカミノルタ株式会社 Organic electroluminescence device and method for manufacturing the same
CN107230688A (en) * 2016-03-25 2017-10-03 三星显示有限公司 Display device with the buckled zone that can make manufacturing defect minimum
US20220165977A1 (en) * 2020-11-24 2022-05-26 Hefei Boe Joint Technology Co., Ltd. Display panel, method for manufacturing same, and display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197027A (en) * 2004-01-05 2005-07-21 Seiko Epson Corp Manufacturing method of organic el device, organic el device, and electronic device
JP2006287078A (en) * 2005-04-04 2006-10-19 Sony Corp Organic electroluminescence element
JP2007095606A (en) * 2005-09-30 2007-04-12 Seiko Epson Corp Organic el device, its manufacturing method, and electronics device
JP2007294421A (en) * 2006-03-29 2007-11-08 Canon Inc Polychromatic organic light-emitting device
JP2008166258A (en) * 2007-01-04 2008-07-17 Samsung Sdi Co Ltd Organic electroluminescent display device and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197027A (en) * 2004-01-05 2005-07-21 Seiko Epson Corp Manufacturing method of organic el device, organic el device, and electronic device
JP2006287078A (en) * 2005-04-04 2006-10-19 Sony Corp Organic electroluminescence element
JP2007095606A (en) * 2005-09-30 2007-04-12 Seiko Epson Corp Organic el device, its manufacturing method, and electronics device
JP2007294421A (en) * 2006-03-29 2007-11-08 Canon Inc Polychromatic organic light-emitting device
JP2008166258A (en) * 2007-01-04 2008-07-17 Samsung Sdi Co Ltd Organic electroluminescent display device and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014136723A1 (en) * 2013-03-08 2017-02-09 コニカミノルタ株式会社 Organic electroluminescence device and method for manufacturing the same
JP2014183024A (en) * 2013-03-21 2014-09-29 Semiconductor Energy Lab Co Ltd Display device and electronic apparatus
JP2016072283A (en) * 2014-09-26 2016-05-09 パイオニア株式会社 Light emission device
CN107230688A (en) * 2016-03-25 2017-10-03 三星显示有限公司 Display device with the buckled zone that can make manufacturing defect minimum
CN107230688B (en) * 2016-03-25 2023-08-08 三星显示有限公司 Display device having a bending region capable of minimizing manufacturing defects
US20220165977A1 (en) * 2020-11-24 2022-05-26 Hefei Boe Joint Technology Co., Ltd. Display panel, method for manufacturing same, and display device
US11925048B2 (en) * 2020-11-24 2024-03-05 Hefei Boe Joint Technology Co., Ltd. Display panel, method for manufacturing same, and display device

Similar Documents

Publication Publication Date Title
JP2011249089A (en) Organic el display panel and method of manufacturing the same, and organic el display
JP5519537B2 (en) Organic EL display panel and manufacturing method thereof
US8624275B2 (en) Organic light-emitting panel for controlling an organic light emitting layer thickness and organic display device
KR101990312B1 (en) Organic Light Emitting Diode Display Device and Method for Manufacturing The Same
US8889474B2 (en) Organic light-emitting element and process for production thereof, and organic display panel and organic display device
JP6233888B2 (en) Organic light emitting device and manufacturing method thereof
US8946686B2 (en) Organic EL display device with a multi-layered, resin-based planarization film
KR20110126594A (en) Light-emitting element, light-emitting device comprising light-emitting element, and method for manufacturing light-emitting element
US8847250B2 (en) Organic light-emitting element and manufacturing method of the same, organic display panel, and organic display device
WO2012001727A1 (en) Organic light emitting element, method for manufacturing same, organic display panel, and organic display device
WO2013118474A1 (en) Display panel and method for manufacturing same
JP2010118509A (en) Light-emitting element
US20190326537A1 (en) Organic el display panel, organic el display device, and manufacturing method of organic display panel
US8717260B2 (en) EL display panel, EL display device provided with EL display panel, organic EL display device, and method for manufacturing EL display panel
JP5607728B2 (en) Organic EL display panel and manufacturing method thereof
WO2012046280A1 (en) Organic el display panel, method for manufacturing same, and organic el display device
JPWO2013179360A1 (en) LIGHT EMITTING ELEMENT AND DISPLAY DEVICE USING THE SAME
JP5735535B2 (en) Organic EL element, display panel and display device
US8350471B2 (en) EL display panel, EL display device provided with EL display panel, organic EL display device, and method for manufacturing EL display panel
WO2015001785A1 (en) Light emitting element, display apparatus, and light emitting element manufacturing method
JP2020035713A (en) Organic EL display panel
JP2019133835A (en) Organic el display panel and method for manufacturing the same
JP6983391B2 (en) Manufacturing method of organic EL element, organic EL display panel, and organic EL display panel
JP2022102056A (en) Self-luminous panel and manufacturing method thereof
JP2016115714A (en) Organic EL panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP