WO2012046204A1 - Particule comportant deux métaux plasmoniques - Google Patents

Particule comportant deux métaux plasmoniques Download PDF

Info

Publication number
WO2012046204A1
WO2012046204A1 PCT/IB2011/054408 IB2011054408W WO2012046204A1 WO 2012046204 A1 WO2012046204 A1 WO 2012046204A1 IB 2011054408 W IB2011054408 W IB 2011054408W WO 2012046204 A1 WO2012046204 A1 WO 2012046204A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
region
plasmonic
metallic compound
composition according
Prior art date
Application number
PCT/IB2011/054408
Other languages
English (en)
Inventor
Etienne Huguet
Luis Manuel Liz Marzan
Isabel Pastoriza-Santos
Arnaud Pierre Alain Glaria
Francisco Javier Garcia De Abajo
Original Assignee
L'oreal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'oreal filed Critical L'oreal
Publication of WO2012046204A1 publication Critical patent/WO2012046204A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/025Explicitly spheroidal or spherical shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/10Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • C09C1/627Copper
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • C09C1/64Aluminium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/65Characterized by the composition of the particulate/core
    • A61K2800/651The particulate/core comprising inorganic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/08Preparations containing skin colorants, e.g. pigments for cheeks, e.g. rouge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q3/00Manicure or pedicure preparations
    • A61Q3/02Nail coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/38Particle morphology extending in three dimensions cube-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/39Particle morphology extending in three dimensions parallelepiped-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/42(bi)pyramid-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/65Chroma (C*)

Definitions

  • the present invention relates to particles comprising at least two distinct plasmonic metals, compositions containing such particles and their use for the makeup of keratin materials, especially skin and hair.
  • WO 2007/011103 discloses colored cosmetic compositions comprising a mixture of gold nanoparticles and silver nanoparticles. The synthesis of nanoparticles comprising a gold / silver alloy and producing an orange color is described.
  • JF 2008/024677 teaches colored powders comprising gold particles dispersed in a matrix of titanium dioxide.
  • JP 2005 / 06801.9 discloses cosmetic compositions comprising nanocylindrical plasmonic particles.
  • JP 2008/088296 discloses plasmonic particles associated with polyamide particles.
  • US 2009/0022766 discloses particles having a metal core and a coating layer comprising a morphophore.
  • the make-up products may use a large quantity of pigments such as, for example, pigment pastes or iron oxides.
  • compositions having a large amount of pigments may not be completely satisfactory in terms of texture and rheology. Significant quantities of pigments may further reduce the stability and reproducibility of compacts of foundation powders or eyeshadows.
  • compositions comprising conventional pigments are not suitable for these applications.
  • the present invention aims to meet all or part of these needs.
  • the invention relates to a colored particle of size included (limits included) between 70 ntn and 1 ⁇ , preferably between 80 nm and 700 nm, better still between 90 nm and 300 nm, better still between 100 nm and 250 nm ; , comprising:
  • a first metal compound consisting of a first plasmonic metal or one of its alloys
  • a second metal compound consisting of m second plasmonic metal or one of its alloys, the second metal compound being different from the first metal compound
  • the first and second regions each having a size or thickness greater than or equal to 2 n and the first and second metal compounds together affecting the plasmonic resonance of the particle.
  • visible spectrum is used to denote the spectrum of wavelengths between 400 and 700 nm.
  • colored particle is meant a particle that reflects at least one wavelength of the. visible spectrum. In other words, a colored particle has a reflectance spectrum that has at least one peak in the visible spectrum.
  • size we must understand the smallest dimension. It can, for example, s act diameter.
  • plasmonic metal or one of its alloys it is necessary to understand a metal or an alloy capable of producing a phenomenon of plasmonic resonance in the visible spectrum.
  • a material exhibits a plasmon resonance in the visible spectrum when the conduction electrons of the material oscillate in response to the electric alternating field S of the electromagnetic radiation for a wavelength in the visible, the plasmon resonance itself generates a local electromagnetic field intense,
  • the particle's plasmon resonance spectrum has at least one resonance peak. plasmonic, different from the plasmonic resonance peaks of the first and second pure metal compounds, whose spectral position is related to the presence of the first and second metal compounds.
  • plasmonic resonance means the surface plasmon resonance occurring at the interface between a conductor, for example a metal, and a dielectric.
  • plasmonic particles having a size of between 70 ⁇ m and 1 ⁇ m comprising two metal compounds which together have an effect on the plasmonic resonance of the particles makes it possible to access a color gamut! expanded as well as obtain improved colonel effects while reducing the amount of particles implemented in comparison with plasmonic particles having only a single metal compound.
  • first and second metal compounds are both plasmonic metal alloys, they may differ by the nature of the first and second plasmonic metals and / or by the nature of the alloy compound (s) other than the first and second plasmonic metals.
  • the first and second plasmonic metals may be different.
  • each of the first and second regions has a size or a thickness as defined above can allow the particle, when irradiated with visible light, to produce a phenomenon of plasmonic resonance.
  • composition and structure of each of the first and second regions modify their impact on the plasmonic resonance of the particle and therefore the overall optical properties of the particle, when it is irradiated with visible light.
  • Each of the first and second regions may, for example, have a size or a thickness greater than or equal to 2 nm, for example between 2 nm and 1 ⁇ .
  • the first region may have a size between 30 nm and. 900 nm, preferably between 40 nm and 800 nm and more preferably between 60 and 700 nm, preferably between 70 nm and 600 nm.
  • the second region may have a size of between 2 nm and 1 ⁇ m, in particular between 2 nm and 30 nm, and even between 3 nm and 25 nm, and more preferably between 4 nm and 20 nm,
  • Sufficient size for the first and / or second regions of the particles may advantageously. conferring on the composition in which these particles are present a satisfactory opacity.
  • the distance between the first and second regions may, for example, be less than or equal to 45 nm, in particular at 30 nm, in particular at 15 nm,
  • the first and second regions may, for example, be in contact. (zero distance).
  • a small distance between the first and the second region may allow the first and second metal compounds to have an impact on the plasmonic resonance of the particle.
  • the fact that the first and second regions of the particle are close together allows the particle to exhibit at least one plasmonic resonance peak distinct from the plasmonic resonance peaks of the first and second pure metal compounds.
  • the inventors have found that the presence of such a peak of plasmon resonance can make it possible to obtain improved covering and coloring properties.
  • the invention relates, according to another of its aspects, to a colored particle having a size of between 70 nm and 1 ⁇ , preferably between 80 nm and 700 nm, better still between 90 nm and 300 nm. more preferably between 100 nm and 250 nm, comprising:
  • a first metal compound consisting of a first plasmonic metal or one of its alloys
  • a second metallic compound consisting of a. second plasmonic metal or one of its alloys, the second metal compound being different from the first metal compound
  • the invention may relate to particles of the "heart-bark” type, also called “heart-cock goose".
  • the second region may be in contact with the first region.
  • the thickness of the. second region is less than 45 nm, for example between 2 and 45 nm, especially 2 and 30 nm, better 3 and 25 nm, more preferably 4 and 20 nm.
  • the size of the first region may preferably be between 30 and 800 nm, more preferably between 40 and 700 nm, and even between 50 and 600 nm.
  • the second region may preferably be in contact with the first region.
  • the second region may be separated from the first region by one or more layer (s) having, for example, a dielectric material as specified below.
  • the invention relates, in another of its aspects, to a colored particle having a size of between 10 nm and 1 ⁇ m, comprising:
  • a first metal compound consisting of a first plasmonic metal or one of its alloys
  • a second metal compound consisting of a second plasmonic metal or one of its alloys, the second metal compound being different from the first metal compound
  • the first and second regions each having a size or thickness greater than or equal to 2 nm and the first and second metal compounds together affecting the plasmonic resonance of the particle.
  • a colored particle of size between 70 nm and 1 ⁇ comprising:
  • first metal compound consisting of a first plasmonic metal or one of its alloys
  • second metal compound consisting of. a second piasmonic metal on. one of its alloys, the second metal compound being different from the first metal compound
  • the first and second regions each having a size or a thickness greater than or equal to 2 nm, the first and second metal compounds having an effect on the piasmonic resonance of the particle
  • the invention relates, in another of its aspects, to a cosmetic composition
  • a cosmetic composition comprising:
  • the "size" corresponds to the statistical granulometric size at half of the so-called D population (0.5).
  • the cosmetic composition described above may, for example, be a hair composition intended for cosmetic treatment, in particular for make-up, especially for hair coloring. It can also be a makeup composition for eyelashes, nails, skin or lips.
  • the particles may be present in the composition in a content ranging from 0.00001% to 50% by volume, in particular from 0.0001% to 20% by volume, better still 0.01% to 15% by volume, and still more preferably 0, 1 to 10%, or even 1 to 8% by volume.
  • composition according to the invention may, in an exemplary embodiment, comprise a mixture of at least two types of piasmonic particles according to the invention.
  • the plasmonic particles can produce the same color or distinct colors when formulated in the composition.
  • composition according to the invention may comprise a mixture of at least three types of plasmonic particles according to the invention.
  • the invention relates, according to another of its aspects, to a process for the cosmetic treatment, in particular of makeup or coloring of human keratin materials, comprising the step of applying to human keratin materials to treat a composition as defined above.
  • another aspect of the invention relates to a method of making up the lips, body or facial skin, nails, hair or eyelashes comprising the step of apply on the lips, skin, nails, hair or eyelashes a composition as defined above.
  • the invention offers a particularly interesting solution to the makeup of hair, skin and lips.
  • the plasmonic metals that can be used in the context of the present invention are preferably chosen from tungsten (W), aluminum (Al), palladium (Pd), platinum (Pt) and silver (Ag). ), copper (Cu), gold (Au), chromium (Cr), zinc (Zn), rhodium (R), nickel (Ni), and (Sn).
  • the first and second plasmonic metals are selected from For, silver, platinum, nickel and copper, still better one of the metals is gold and the other is silver.
  • the first and second plasmonic metals may advantageously be chosen from gold and silver.
  • the first plasmonic metal may be gold and the second plasmonic metal may be silver or the first plasmonic metal may be silver eS. the second plasmonic metal can be gold.
  • the first metal compound may be gold and the second metal compound may be silver or the first metal compound may be silver and the second metal compound may be gold.
  • the particle according to the invention may comprise, in a third region, a third metal compound consisting of. a third plasmonic metal or one of its alloys, the third metal compound being distinct from the first and second metal compounds.
  • the third plasmonic metal may be selected from the plasmonic metals listed above.
  • the third region may, for example, have a size or a thickness greater than or equal to 2 nrn, especially at 3 nm, especially at 5 nm.
  • the third region may be in contact with the second region, or be separated by a layer of dielectric material as defined below.
  • the plasmonic particle has a third region
  • the first, second and third metal compounds together have an effect on the plasmonic resonance of the particle.
  • the size of the particle according to Pinventibn is between 70 nm and 1 ⁇ m, for example between 80 nm and 700 nm, for example between 90 nm and 300 nm. for example between 100 nm and 250 nm, for example between 110 nm and 200 nm.
  • the plasmonic particles may be of any shape, for example; cylindrical, spherical, platelet, oval or polyhedral, especially cubic, parallelepipedal or pyramidal.
  • the plasmonic particles may, for example, be of aspect ratio of between 1 and 2, for example between 1 and 1.5, for example between 1 and 1, 25, for example with an aspect ratio substantially equal to 1.
  • aspect ratio is meant the ratio of the largest dimension of the particle to the smallest dimension of the particle.
  • the plasmonic particles according to the invention have a substantially spherical shape.
  • the plasmonic particles according to the invention do not have a cylindrical tonne.
  • the particles can be further dispersed within a matrix.
  • the plasmonic particles according to the invention may comprise a dielectric material in a region distinct from the first, second and possible third region.
  • the dielectric material may be located between the first and second regions or between the second and third regions.
  • the dielectric material is located between the first and second regions.
  • the dielectric material may be in contact with the first and second regions.
  • the dielectric material can coat the first and second regions.
  • the dielectric material can coat the first and second regions.
  • the dielectric material may be on the outer periphery of the plasma particle.
  • the dielectric material may be located so as to be coated by the first region.
  • the dielectric material may be in contact with the first region.
  • the dielectric material may be between 2 .mu.m and 1000 nm.
  • the size or thickness of the region where the dielectric material is present may advantageously be less than 45 nm, preferably less than 30 nm, better still less than 15 nm, and even better , less than 5 m.
  • a small size or thickness of the region comprising the dielectric material may allow the first and second metal compounds to together affect the particle resonance.
  • the dielectric material may, for example, be chosen from:
  • inorganic compounds for example metal oxides, for example alumina, silica or titanium dioxide,
  • polymers for example polyurethane, polystyrene, polymethyl methacrylate, polymers of natural origin, and
  • the plasmonic particles according to the invention may comprise an empty region.
  • This empty region may, for example, be coated by the first region, especially when the second region coats the first region.
  • the particle according to the present invention may also be covered by an additional coating, in particular chosen from biodegradable or biocompatible materials, lipidic materials such as isoactive agents or emulsifiers, polymers, and oxides.
  • an additional coating in particular chosen from biodegradable or biocompatible materials, lipidic materials such as isoactive agents or emulsifiers, polymers, and oxides.
  • this coating may in particular comprise any natural or synthetic molecule especially chosen from lipids, carbohydrates, polysaccharides, proteins, polymers, glycoproteins, glycolipids which can be used to render the physiologically acceptable combination.
  • the biodegradable or biocompatible materials are selected from polymers made from D- or L-type monomers, lactic acid, glycolic acid, hydroxybutyric acid or malic acid.
  • this coating may in particular comprise a lipid or a mixture of lipids, synthetic or natural, optionally modified by chemical or biological means. These lipids can be neutral or positively or negatively charged
  • this coating may in particular comprise at least one polymer chosen from polyesters, polyamides, polyethers, polythioethers, polyesters, polycarbonates, polycarbamides, proteins, polysaccharides, polyaryls, preferably with molar masses (Mw) ranging from from 100 g mol to 100 g / mol.
  • this coating may in particular comprise an oxide of an element chosen from Ti, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, Si, Sn, Sb, Ta, W, Pb. , Bi and Ce, preferably the oxide is SiO 2 .
  • the particles according to the invention may, in addition, comprise surface functionalization.
  • surface functionalization can make it possible to obtain; an important affinity for keratinic substrates (for example by residual or reversible grafting or by adsorpion. o better compatibility with the formularies commonly used in cosmetics,
  • the particle is functionalized in order to improve its affinity for the substrate, in particular the skin or the hair.
  • This functionalization consists in introducing reactive functions on the surface of the particle, which will make it possible to form covalite bonds between said particle and the keratinous substrate.
  • reactive function is meant a reactive group that allows the formation of a covalent bond (by reaction with nuelophile functions, in this case sulfhydryl functions -SH) and which therefore comprises one or more nucleotides X, or one or several carbons or activated bonds.
  • nucleos are the F groups,
  • M representing a hydrogen atom, an alkali metal or alkaline earth metal or one remains ammonium
  • R.sub.1 represents a hydrogen atom, a C.sub.1 -C.sub.4 alkyl radical, a substituted or unsubstituted pherry radical, the ⁇ O.sub.3.sub.2 radical and its salts or the acetyl radical.
  • R 2, R 3 and R 4 which may be identical or different, represent a hydrogen atom, a C 1 -C 4 alkyl radical or a substituted or unsubstituted pherryl radical.
  • R 5 and R 10 which are identical or different, represent a hydrogen atom, a C 1 -C 12 alkyl, C 3 -C 12 cycloalkyl or C 5 -C 12 aryl radical, C 6 -C 26 arenyl having from 0 to 3 heteroatoms selected from S, N and O, or R1 and R6 together form a carbocycle containing from 4 to 12 atoms and n is an integer of 0 to 3.
  • the surface functionalization of these particles may, for example, comprise:
  • hydrophilic or hydrophobic polymers belonging to the families, polyacrylic, polysiloxes, polyamides, polyurethanes, polyolefins, POE, p-polyethylene, polyanionics,
  • metal coatings chosen especially from gold and silver coatings or their alloys, the coatings being distinct from the first and second regions,
  • FIGS. 1 and 1A to 1D schematically represent examples of plasmonic particles according to the invention
  • FIG. 2 represents a simulation of the colorimetric gamma * in reflectance achievable by particles according to the invention in comparison with plasmonic particles comprising only gold,
  • FIGS. 3 and 3A show reflectance-sensitive coriorimiric gamma rays by bimetallic plasmonic particles
  • FIG. 4 represents an electron microscopy analysis of particles according to the invention
  • FIG. 5 represents a particle reflectance spectrum according to the invention
  • FIG. 6 represents a comparative test on a contrast map comparing a composition comprising particles according to the invention and a composition comprising plasmonic particles of gold,
  • FIG. 7 is a comparative reflectance spectrum between particles according to the invention and plasmonic particles of gold
  • FIG. 8 represents a comparison between the reflectance spectra of compositions according to the invention and compositions comprising conventional pigments
  • FIG. 9 represents the coloration obtained by particles according to the invention in a composition.
  • FIG. 10 represents the coloration obtained by particles according to the invention formulated in a composition.
  • FIG. 1 shows an exemplary embodiment of a particle 1 according to the invention.
  • the particle 1 comprises, in a first region 2, a first piasmonic metal, the first region 2 is coated with a second piasmonic metal, different from the first, present within a second region 3.
  • the first and second plasmonic metals together affect the plasnion resonance of the particle.
  • the first and second plasmonic metals may, for example, be selected from the group of plasmonic metals listed above as being suitable for the invention.
  • the first and second plasmonic metals are preferably selected from gold and silver.
  • the particle i may comprise within the first and / or second region (s) 2 and / or 3 an optically active material
  • FIG. 1A illustrates an embodiment where the particle 1 comprises a first region 2 comprising a first plasmonic metal coated by a second region 3 comprising a second plasmonic metal, which is coated with a third region 4 comprising a third plasmonic metal,
  • the three plasmonic metals are distinct in pairs and at least two of them may be able to influence the plasmonic resonance of the particle.
  • FIG. 1B represents a variant embodiment in which the plasmonic particle 1 comprises in sound.
  • the particle 1 comprises a first region 2 comprising a first plasmonic metal, coated with a layer 5 of a dielectric material, which is coated with a second region 3 comprising a second plasmonic metal.
  • the dielectric material may, for example, be selected from the group of dielectric materials listed above.
  • the thickness e of the dielectric layer 5 is chosen such that the first and second plasmonic metals together have an effect on the plasmon resonance of the particle.
  • the dielectric layer 5 is not interposed between the first and second regions 2 and 3 but is located at the outer periphery of the particle.
  • Particle 1 may also comprise known shown in ligure 1, • a dielectric material in a region 5 in the heart of the particle 1.
  • the first region 2 surrounds the dielectric material.
  • FIG. 1C shows a variant embodiment in which the particle 1 comprises, in a first region 2, a first metal ⁇ asmomque.
  • the first region 2 is coated with a second region 3 which is, itself, coated with a layer consisting of the first metal pias onique.
  • stacks of layers that have just been described above can be applied to other geometries of particles, in particular platelet, polyhedral or cylindrical particles.
  • the particle I comprises a surface functionalization, as described above,
  • FIG. 2 represents a simulation of the gammuts that can be reached, on the one hand, by Au.sub.Ag.sub.A particles (gold coated with silver) and Ag.sup.A.sub.Au (gold-coated silver) according to the invention and, on the other hand, by plasmonic particles of gold.
  • the arrows in solid lines indicate an increase in the thickness of the particle core and the dashed arrows indicate an increase in the thickness of the particle's bark. It is found that the colorimetric gamma reagable by the particles according rinveniion is much larger than that attachable by plasmonic particles of gold,
  • Figures 3 and 3A represent the calorimetric gammut reflectance attachable by particles "heart-bark” gold / silver.
  • the thicknesses of the bark are indicated on the graduation of the horizontal axis and the thicknesses of the heart are indicated on the graduation of the vertical axis.
  • the "heart-bark" system gold / silver allow the production of a color gamut in particularly large reflectance.
  • Liquid composition on. means a composition whose viscosity can be measured.
  • a liquid composition may flow under the effect of its own weight. It may especially be liquid compositions to be applied to the lips, in particular liquid lipsticks, liquid lip glosses and liquid lip balms, for example. nail polish, eye shadows, liquid foundations, mascaras and other liquid make-up products not intended to be applied to the lips The coverage of the compositions is measured at a uniform thickness of 50 ⁇ m.
  • composition is spread on matt black and matt white contrast cards, for example LBNETA Form WPl for the matte black card and Leneta 1A for the matt white card.
  • matt black and matt white contrast cards for example LBNETA Form WPl for the matte black card and Leneta 1A for the matt white card.
  • the application can be done with an automatic trainer.
  • the solid compositions are those for which the viscosity can not be measured. It may be compositions cast in a stick or powder form, in the form of free or compact powders.
  • compositions free or compacted, the composition is applied using the same contrast cards as above, covered with a transparent tape, slightly rough, for example brand BLE DE M ® company 3M and 15025, glued by the adhesive side on the contrast cards.
  • composition is deposited on the adhesive tape so as to obtain a homogeneous deposition of 0.5 mg / cm 2 ⁇ . ⁇ .02 rag / cm 2 .
  • the sponge is for example a disposable sponge type "LANC ⁇ ME - Fhotogenie", used on the pink side.
  • the stick compositions are thus deposited once melted with a thickness of 50 ⁇ .
  • Reflectance spectra are acquired using a MINOLTA 3700-d spectrocolorimeter (measurement geometry / 80 ° and observation 065/10 °, excluding specular component mode, small aperture (C EISS)) on the black and white backgrounds. white, the contrast cards being possibly covered with BLEMDERM 3 ⁇ 4 ' as indicated above.
  • the spectra are expressed in colorimetric coordinates in CELAB space 6 within the meaning of the International Commission on Illumination according to Recommendation 15: 2004-,
  • the contrast ratio, or coverage is calculated by averaging Y on a black background, divided by the average value of Y on a white background, multiplied by 100.
  • the sample is deposited in a quartz spectroscopic tank of known thickness.
  • the opacity of the tank is measured according to the protocol above.
  • Line white light source broad spectrum 250 - 780 nr
  • a calibrated integral sphere allows the collection of the backscattered signal with the exception of specular reflection.
  • the measurement geometry is called 0 ° / d specular excluded.
  • the measured signal is independent of the angle and the spatial position of exit relative to the spectrosopic tank.
  • the signal is then sent to a spectrometer that performs the measurement in. As a function of the wavelength, it is referenced with respect to the quantity of light of the source taking into account the collection efficiency of the overall optical system.
  • the reflection spectrum thus acquired is then converted into cooriorirritic coordinates in QELab76 space within the meaning of the International Commission on Illumination according to Recommendation 15: 2004.
  • compositions according to the invention further comprise a cosmetically acceptable medium, that is to say compatible with keratinous materials such as the skin of the face or of the body, the lips, the hair, the eyelashes, the eyebrows. and nails.
  • a cosmetically acceptable medium that is to say compatible with keratinous materials such as the skin of the face or of the body, the lips, the hair, the eyelashes, the eyebrows. and nails.
  • composition may advantageously comprise a fatty phase, which may itself comprise oils and / or preferably lipophilic solvents, as well as fatty substances that are solid at room temperature, such as waxes, pasty fatty substances, gums and their mixtures. .
  • a fatty phase which may itself comprise oils and / or preferably lipophilic solvents, as well as fatty substances that are solid at room temperature, such as waxes, pasty fatty substances, gums and their mixtures.
  • volatile or nonvolatile oils which may be chosen from natural or synthetic, carbonaceous oils, hydrocarbon, fluorinated, optionally branched, alone or in admixture.
  • non-volatile oil means an oil capable of remaining on the skin at ambient temperature and atmospheric pressure for at least one hour and having in particular a vapor pressure at room temperature (25 ° C.) and atmospheric pressure, which is not zero, less than at 0.01 mmHg (1.33 Pa).
  • non-poultry carbonaceous oils in particular hydrocarbon oils, of plant, mineral, animal or synthetic origin, such as liquid paraffin (or petrolatum), squalane, hydrogenated polylsobutene (Paramide), perhydrosqualene, oil mink, macadauiia, turtle, soybean, sweet almond oil, ealophylluni, palm, grape seed, sesame, maize, arara, rapeseed, sunflower, cotton, apricot, castor oil, avocado, jojoba, olive or cereal seed, karic butter, linear, branched or cyclic esters with more than 6 carbon atoms, in particular 6 to 30 carbon atoms, such as esters of lanoiic acid, oleic acid, lauric acid, stearic acid; esters derived from acids or alcohols with a long chain (that is to say having from 6 to 2.0 carbon atoms), in particular esters of formula RCOOR * in which R represents the residue of
  • decanol, dodecanol, Foctadecanol liquid triglycerides of fatty acids with 4 to 10 carbon atoms, such as triglycerides of hepianoic or octanoic acids, triglycerides of caprylic / capric acids; linear or branched hydrocarbons of mineral or synthetic origin, such as liquid paraffins and derivatives thereof, petroleum jelly, polycecenes, hydrogenated polyisobutene such that parieam; esters and synthetic ethers, in particular of fatty acids, for example purcellin oil, isopropyl myristate, 2-ethylhexyl palmitate, oetyi-2-dodecyl stearate, erucate octyld -2-dodecyl, isostearyl isostearate; hydroxylated esters such as isostearyl lactate, oetylhydroxystearate
  • volatile compounds that may be mentioned are non-silicone volatile oils, especially C 8 -C 16 isoparaffins such as isododecane, isodecane and visohexadecane. More preferentially, mention may be made of volatile liquid canes at room temperature, volatile or otherwise, and more particularly decane, Phepiane. dodecane. isododecane, isohexadecane, cyclohexane, isodecane, and mixtures thereof.
  • the fatty phase may be present in a content ranging from 0.01 to 95%, preferably from 0.1 to 90%, more preferably from 10 to 85% by weight, relative to the total weight of the composition. and better from 30 to 80%.
  • the composition may also comprise a hydrophilic phase comprising water or a mixture of water and organic sivani (s) hydrophilic (s) such as alcohols and in particular linear or branched lower monoalcohols having from 2 to 5 carbon atoms, such as ethanol, isopropanol or n-propanol, and polyols such as glycerin, digiyeerine, propylene glycol, sorphohol peniylene glycol, and polyethylene glycols, or alternatively C 2 ethers and C 2 -C 4 aldehydes which are hydrophilic.
  • the water or the mixture of water and hydrophilic organic solvents may be present in the composition according to the invention in a content ranging from 0.1 to 80% by weight, relative to the total weight of the composition, and preferably from 1 to 70% by weight,
  • the composition according to the invention may also comprise waxes and / or gums.
  • the term "wax” is intended to mean a solid phase (25 ° C.) solid-liquid change-resistant Kpophie compound having a melting point greater than or equal to 30 ° C. at 120 ° C.
  • melting By bringing the wax to the liquid state (melting), it is possible to render it miscible with the oils possibly present and to form a homogeneous mixture nicroscopically, but by bringing the temperature of the mixture to room temperature, a reeristallization of wax in the oils of the mixture.
  • the melting point of the wax can be measured using a differential scanning calorimeter (D.S.C), for example the calorimeter sold under the name DSC 30 by the company METLER.
  • D.S.C differential scanning calorimeter
  • the waxes may be hydrocarbon-based, fluorinated and / or sulfonated and may be of vegetable, mineral, animal and synthetic origin. In particular, the waxes have a melting point greater than 25 ° C. and better still greater than 45 ° C.
  • waxes that can be used in the composition of the invention mention may be made of beeswax, Caroauba or Candelilla wax, paraffin wax, microcrystalline waxes, ceresin or pozokerite; synthetic waxes such as polyethylene or Fischer Tropsch waxes, silicone waxes such as alkyl or alkoxy dimethicone containing from 16 to 45 carbon atoms.
  • the gums are generally high molecular weight polyalkylsiloxanes (PDMS) or cellulose gums or polysaccharides and the pasty bodies are generally hydrocarbon compounds such as lanolins and derivatives thereof or PDMSs.
  • PDMS polyalkylsiloxanes
  • the composition may contain from 0.01 to 50% by weight of waxes, relative to the total weight of the composition and better still from 1 to 30% by weight.
  • composition according to the invention may further comprise one or more dyestuffs chosen from water-soluble dyes, liposolublic dyes and pulverulent dyestuffs such as pigments, pearlescent agents and flakes well known to those skilled in the art.
  • the dyestuffs may be present in the composition in a content of from 0.01 to 50% by weight, based on the weight of the composition, preferably from 0.01 to 30% by weight.
  • pigments it is necessary to include particles of any shape, white or colored, mineral or organic, insoluble in the physiological medium, intended to color the composition. By nacres, it is necessary to understand particles of any iridescent form, in particular produced by certain molluscs in their shell or else synthesized.
  • the pigments may be white or colored, mineral and / or organic.
  • inorganic pigments are titanium dioxide, optionally surface-treated, zirconium or cerium oxides, as well as oxides of zinc, iron (black, yellow or red) or chromium; manganese, ultramarine blue, chromium hydrate and ferric blue, metal powders such as aluminum powder, copper powder.
  • the pearlescent pigments can be chosen from white pearlescent pigments such as mica coated with titanium, or bismuth oxychloride, colored pearlescent pigments such as titanium mica coated with iron oxides, titanium mica coated with, for example, blue. ferric oxide or chromium oxide, titanium mica coated with an organic pigment of the aforementioned type and pearlescent pigments based on oxycMoride bismuth.
  • water-soluble dyes mention may be made of the disodium salt of the culvert, the disodium salt of the green of aizarme, the yellow of nolein, the trisodium salt of amaranth, the disodium salt of tartrazine and the onosodium salt of rhodamine.
  • the composition according to the invention may also comprise one or more fillers, in particular in a content ranging from 0.01% to 50% by weight, relative to the total weight of the composition, preferably ranging from 0.01% to 30% by weight. % in weight.
  • fillers it is necessary to include particles of any form, colorless or white, mineral or synthetic, insoluble in the medium of the composition whatever the temperature at which the composition is manufactured. These charges serve in particular to modify the rheology or the. texture of the composition.
  • the fillers may be inorganic or organic in any form, platelet-shaped, spherical or oblong, irrespective of the cresty shape (for example sheet, cubic, hexagonal, orhorhorabic, etc.).
  • talc mica> ia silica, kaolin, polyamide powders (nylon. '8') (Orgaso from Atochem), of ⁇ - ⁇ -alanine and polyéthyîène, the tétrailuoroéthylène polymer powders ( Téilon *), lauroyl -lysine, starch, boron boron, polymeric hollow microspheres such as those of polyvinylidene chloride / acrylomtrile such as Expance® (Nobel industry), copolymers of acrylic acid ( Poiytrap ® from Dow Corning) and silicone resin microbeads (Tospearls * 8, from Toshiba, for example), the polyorganosiloxane particles elasto eras, precipitated calcium carbonate, and magnesium Phydrocarbonate the bydroxyapatiie silica microspheres, hollow (SiMca Beads * from Maprecos), glass or ceramic microcapsules,
  • the composition may further comprise an additional polymer such as a film-forming polymer.
  • a film-forming polymer a. polymer capable of forming, alone or in the presence of an auxiliary film-forming agent, a continuous and adherent film on a support, in particular on keratin materials.
  • film-forming polymers that may be used in the composition of the present invention, mention may be made of synthetic polymers, of radical type or of polycondensate type, polymers of natural origin and their mixtures, in particular acrylic polymers, polyurethanes polyesters, polyamides, polyesters, cellulosic polymers such as cellulose.
  • composition according to the invention may also comprise ingredients commonly used in cosmetics, such as vitamins, thickeners, gelling agents, trace elements, softeners, sequestering agents, perfumes, alkaline or acidifying agents, preservatives , sunscreens, surfactants, antioxidants, anti-hair loss agents, anti-dandruff agents, propellants, ceramics, or mixtures thereof.
  • ingredients commonly used in cosmetics such as vitamins, thickeners, gelling agents, trace elements, softeners, sequestering agents, perfumes, alkaline or acidifying agents, preservatives , sunscreens, surfactants, antioxidants, anti-hair loss agents, anti-dandruff agents, propellants, ceramics, or mixtures thereof.
  • ingredients commonly used in cosmetics such as vitamins, thickeners, gelling agents, trace elements, softeners, sequestering agents, perfumes, alkaline or acidifying agents, preservatives , sunscreens, surfactants, antioxidants, anti-hair loss agents, anti-dandruff agents, propel
  • composition according to the invention may be in particular in the form of a suspension, a dispersion, an especially organic solution, a gel, an emulsion, in particular an oil-in-water emulsion (O / W) or a water-in-oil emulsion. / fJ), or multiple (E / H / E or polyoi / H / E or H / E / ' H), in the form of cream, paste, foam, dispersion of vesicles including ionic lipids or not, of two-phase lotion on muliphase, spray, powder, stick (stick).
  • the composition according to the invention may be a makeup composition, especially a complexion product such as a foundation, a blush or an eyeshadow; a lip product such as lipstick, lip care, lip gloss (gloss), anti-aging product; a blush, a mascara, an eyeliner; an eyebrow makeup product, a lip pencil or an eye pencil; nail product such as nail polish or nail care; a body make-up product.
  • a complexion product such as a foundation, a blush or an eyeshadow
  • a lip product such as lipstick, lip care, lip gloss (gloss), anti-aging product
  • a blush such as mascara, an eyeliner
  • an eyebrow makeup product a lip pencil or an eye pencil
  • nail product such as nail polish or nail care
  • a body make-up product especially a complexion product such as a foundation, a blush or an eyeshadow
  • a lip product such as lipstick, lip care, lip gloss (gloss), anti-aging product
  • a blush such as mascara, an eyeliner
  • an eyebrow makeup product such as nail
  • the composition according to the invention may also be a composition for protecting or caring for the skin of the face, neck, hands or body, in particular a composition for anti-wrinkles, concealer and antifatigue, for giving the skin a radiance.
  • a moisturizing or treating composition for treating the skin of the face, neck, hands or body
  • a composition for anisole or artificial tanning for giving the skin a radiance.
  • the composition according to the invention may also be a hair product, in particular for shaping, conditioning and / or making up the hair. It may be an after-shampoo, a gel, a lotion, a fixing and styling composition such as a lacquer; we still have a hair mascara.
  • the composition according to the invention finds a very particular application as a make-up composition for keratinous substances, in particular the skin of the face, the lips, the eyelashes, the nails or the hair.
  • the subject of the invention is also a process for the cosmetic treatment of keratinous substances, in particular of the skin of the body m of the face, of the skin. lips, nails, hair and / or. eyelashes, comprising the application on said materials of a cosmetic composition as defined above. It is preferably a method of making said kerato materials.
  • the process according to the invention consists of a process for the cosmetic treatment, in particular of makeup, in particular of coloring, of the hair
  • the application of the composition according to the invention can be carried out, for example, by spraying, dipping or shainpooinage.
  • composition according to the invention can be applied to the hair manually.
  • the hair may undergo a pretreatment step before application of the composition according to the invention.
  • the pretreatment of the hair may in particular make it possible to improve the adhesion of the make-up composition, especially of. coloring, with hair.
  • Example 1 Synthesis of a "core-shell" particle having a gold core 150 nm in diameter coated with a silver bark having a thickness of S nm
  • the synthesis of "core-ecoree” particles has two stages.
  • the first step consists of a synthesis of gold particles having a diameter of 150 nm implementing a slightly modified particle growth method compared to that developed by Liz-Marzan et al. (Laugmuir 2006, 22, 7007-701 G),
  • the second step consists, in turn, in the coating of the gold particles, obtained at the end of the first stage, with a silver bark.
  • HAuCU is mixed in a flask with 0.5 L of water to obtain a final gold concentration of 0.5 mM. Then, 25 ml of a hot aqueous solution containing 0.25 g of sodium citrate dihydrate (H 2 O 60 7 Na 2 ⁇ 23 ⁇ 4 0) is added to the boiling gold solution.
  • the resulting solution is then brought to boiling for 30 minutes and then placed in the refrigerator.
  • C s is the concentration of gold salt and C; the concentration of gold particles before growth.
  • Gold particles having a size of 15 nm to one liter of water comprising 15 mmol of hexadecyltrimethylammonium bromide (CTAB) and 0.25 mmol of HucuU were added at 35 ° C. in order to obtain the concentration C ; in gold particles.
  • CAB hexadecyltrimethylammonium bromide
  • the particles were centrifuged at 3500 rpm for thirty minutes.
  • the grains obtained in the centrifogaûon tubes were then placed in a test tube which was placed in a hot water bath (substantially ébuliition, T ⁇ 95 ° C) for 5 minutes.
  • test tube was then placed upright and the particles allowed to settle overnight.
  • the supernatant comprising the spherical particles has been preserved.
  • concentrations at the start of the growth reaction in HAuCL *, CTAB and ascorbic acid used were 0.5, 30 and 1 ⁇ M respectively.
  • the particles were redispersed in half of the initial volume of water and, depending on the nanoparticle concentrations, a certain volume of 0- [2- (3-mercaptopropionyl) oeno) ethyi] -0'-methylpolyetylene glycol stock solution (PEG).
  • thiol, Mw 5000, € ;;; 0.5mM) was added to obtain a final concentration of 4 molecules / m 3.
  • Hydroquinone (HQ) and silver ions (AgNOs) were added, with stirring, with a molar ratio of 1.
  • the concentrations at the beginning of the coating reaction with silver, gold, phosphate ions, HQ and silver are 0.25, 10, 0, respectively.
  • the particles were then centrifuged at 1500 rpm for 30 minutes and washed with water.
  • the purification step was repeated three times.
  • CTAB stabilizing agent hexadecyltrimethylammonium bromide
  • HQ Phydroqumone
  • the concentrations at the beginning of the coating reaction with silver, gold, glycine, CTAB, HQ and silver were 0.25, 10 , 1, 0.05 and 0.05 mM respectively
  • the a ⁇ parts were centrifuged at 1500 rpm for 30 minutes and washed with 10 mM CTAB solution,
  • the purification step was repeated three times,
  • Example 2 Synthesis of a "core-shell" particle having a gold core of 150 nm in diameter coated with a silver scum having a thickness of 1 nm
  • Example 2 uses the procedure described in Example 1 to obtain gold particles of 350 nm.
  • the concentrations at the beginning of the silver coating reaction of gold, glycine, CTAB, HQ and silver were 0.5, 10, 1, 0.05 and 0.05. mM respectively.
  • the particles were centrifuged at 1500 rpm for 30 minutes and washed with 10 mM CTAB solution.
  • Figure 4 shows an analysis in. electron microscopy of the core-shell particles synthesized in Example 2.
  • FIG. 5 represents the reflectance spectrum of the "core-shell" particles synthesized in example 2 and the spectrum corresponds to a reflectance measured on an opaque background.
  • a first solution comprising an aqueous solution having a concentration of 10 mM CTAB and gold plasminic gametes, having a diameter of 160 nm, was prepared in accordance with the protocol described in step 1 of Example 2 (for r3 ⁇ 4-160 nm) formulated at a rate of 0.005% by volume.
  • a second solution was placed in a second tank comprising the same aqueous solution with a concentration of 10 mM CTAB and plasmonic particles.
  • the plasmonic wafers according to the invention give the solution a significantly improved luminosity and a coverage (visibility white / black background) approximately identical to that obtained with the plasmonic particles of gold.
  • the benefit in terms of brightness is evaluated at
  • Figure 7 Provides a comparison of the reflectance spectra of solutions each comprising one of two types of plasmonic particles formulated at the same concentration, namely 0.1% by weight.
  • the systems are non-opaque but have the same mass traction of material (corresponding to 0.005% by volume).
  • the opacity is measured for a deposited film thickness of 500 ⁇ . Brightness, saturation and opacity measurements are provided in Table 1 below.
  • the preparations are aqueous solutions consisting of 0.05% by volume of the plasmonic particles according to the invention and of. cationic surfactant CTAB at 10 ⁇ m.
  • the reflectance spectra of FIG. 8 correspond to measurements on a black background, in other words to the energy returned by the pigments alone.
  • the comparison between the reflectance spectra makes it possible to calculate the opacity of the system.
  • FIG. 9 A photograph between a foundation base with and without the plasmonic particles synthesized in Example 2 is provided.
  • Resyn 28-2930 vinyl acetate terpolymer / erotcmic / neodecanoic terpolymer . This copolymer must be neutralized with 2-Axnino 2-Methyl I-Propanol (AMP) for solvation in absolute ethanol (EtOH) (Tg - 39 ° C).
  • AMP 2-Axnino 2-Methyl I-Propanol
  • a liquid eye shadow comprising (in g):

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cosmetics (AREA)

Abstract

La présente invention concerne une composition cosmétique comportant : un milieu cosmétiquement acceptable, et des particules colorées de taille comprise entre 70 nm et 1 μm comportant : dans une première région, un premier composé métallique consistant en un premier métal plasmonique ou un de ses alliages, et dans une seconde région distincte de la première, un second composé métallique consistant en un second métal plasmonique ou un de ses alliages, le second composé métallique, étant différent du premier composé métallique, les première et seconde régions ayant chacune une taille ou une épaisseur supérieure on égale à 2 uni et les premier et second composés métalliques ayant ensemble une incidence sur la résonance plasmonique des particules.

Description

Particme^gi n^ plasmoniques La présente invention concerne des particules comportant au moins deux métaux plasmoniques distincts, des compositions contenant de telles particules ainsi que leur utilisation pour le maquillage des matières kératiniques, notamment de la peau et des cheveux.
Descriptif* de ^a aatérleur
Le document WO 2007/011103 décrit des compositions cosmétiques colorées comportant un mélange de nanoparticules d'or et de nanoparticules d'argent, La synthèse de nanoparticules comportant un alliage or/argent et produisant une couleur orangée est décrite.
Le document JF 2008/024677 enseigne des poudres colorées comportant des particules d'or dispersées dans une matrice de dio.xyde de titane.
Le document JP 2005/06801.9 décrit des compositions cosmétiques comportant des particules plasmoniques nanocylindriques.
Le document JP 2008/088296 décrit des particules plasmoniques associées à des particules de polyamide.
Le document US 2009/0022766 décrit des particules comportant un cœur métallique ainsi qu'une couche d'enrobage comportant un flnorophore.
Le brevet. US 7,1.47,687 décrit des particules ayan un cœur d'argent enrobé par une monocouche d'or.
On connaît, en outre, les publications : M. Scfiierhom, L.M. Liz-Marzân. Synthesis of Bimetallic Colloids with Tai!ored Intermetailic Séparation. Nano Lett. 2002, .?, 13-16; Rodnguez-Gonzâlez, B.; Burrows, A.; Watanabe, M.; iely, C. J.; Liz-Marzân, L. M, Multis eîl Bimetallic AuAg Nanopartic!es: Synthesis, Structure and Optical Properties. J. Mater. Chem., 2005, 15, î 755- 1759; Fan, F.-R.; Liu, D.-Y.; Wu, Y.-F.; Duan, S.; Xie, Z.-X.; Jiang, Z.-Y.; Tian, Z.-Q. Epitaxial growth of heterogeneous meta! nanocrystals: lïom goid nano-octaliedr to palladium and si!ver nanocubes. J, ,4m. Chem. Soc. 2008, 130, 6949-6951 ; Xue, C; Miilsione, J. E.; Li, S.; Mirkin, C. A. Plasmon-Driven Synthesis of Trianguiar Core-Sheil Nanoprisms from Gold Seeds. Àngew. Chem. Int. Ed. 2007, 46, 8436-8439; liu. M,; Guyot-Sio iest, P. Synthesis and Optical Cha cîerizatîon of Au/Ag Core/Sheli Nanorods. J. Phys. Chem, B 2004, 108, 58.82-5888; Ah, C. S.; Hong, S. D.; Jang, D.-J. Préparation of Av ^Ag^n Nanorods and Charaeterization of Ί neir Surface Piasmon Résonances. J. Phys, Chem. 5 2001, 105, 7871-7873; Gao, I.,; Fan, L.; Zhang, J. Sélective Growth of Ag Nanodewdrops on Au Nanostruetures: A New type of Bimetailic Heîerosttucture. Langmuir, 2009, 25, 11844-1 1848; Rycenga, M.; Hou, KL KL; Cobïey, C. M..; Schwarte, A, G.; Camargo, P. IL C; Xia, Y, Probing t e surface-enhanced Raman scattering properties of Au-Ag nanocages ai two différent excitation wavelengms. Phys. Chem. Chem. Phys. 2009, / , 5903-5908; Mandai, M., Jaoa, N.R., Kundu, S.; Ghosh, S. ., Panigrahi, M, Pal, T. Synthesis of Aucore-Agshell type bimetailic nanoparticies for single molécule détection in solution by SERS method (2004) Journal of Nanoparticle Research, 6 (1), pp. 53-61. Ces publications décrivent des particules bi-métalliques.
Pour obtenir une couleur et une eouvnmce satisfaisante, les produits de maquillage peuvent mettre en œuvre une quantité importante de pigments comme par exemple des pâtes pigmentaires ou des oxydes de fer.
Dans le cas des oxydes de fer. cette quantité importante peut s'expliquer par la nécessité de combiner un mélange d'oxydes de fer (jaune, rouge et noir) ainsi qu'une base blanche afin d'obtenir une couleur opaque marron.
Les compositions présentant une quantité importante de pigments peuvent ne pas être complètement satisfaisantes en ternies de texture et de rhéologie. Des quantités importantes de pigments peuvent en outre, diminuer la stabilité et la reproductibilîté des compactages des poudres de fond de teint ou de fards à paupières.
Par ailleurs, certaines applications nécessitent un. dépôt de quantités faibles de pigments.
 titre illustratif de ces applications, on peut citer le maquillage des cheveux ou des cils où il peut être nécessaire de déposer., à la surface des fibres, un volume de composition restreint afin que les fibres conservent des propriétés mécaniques satisfaisantes, notamment en termes de souplesse.
Les compositions comportant des pigments conventionnels ne conviennent pas à ces applications.
Par conséquent, il existe un besoin pour diminuer la quantité de pigments incorporés dans les compositions cosmétiques tout en conservant des propriétés colonelles satisfaisantes. il existe, en outre, an besoin de disposer de compositions cosmétiques permettant l'obtention d'un maquillage satisfaisant des matières kératiniq es humaines, notamment de la peau, des cils et des cheveux.
La présente invention vise à répondre à tout ou partie de ces besoins.
Selon un premier de ses aspects, l'invention concerne une particule colorée de taille comprise (bornes incluses) entre 70 ntn et 1 μηι, de préférence entre 80 mn et 700nm, mieux entre 90 nra et 300 nm, encore mieux entre 100 nm et 250 nm;, comportant :
- dans une première région, un premier composé métallique consistant en un premier métal plasmonique ou un de ses alliages, et
- dans une seconde région distincte de la première, un second composé métallique consistant en m second métal plasmonique ou un de ses alliages, le second composé métallique étant différent du premier composé métallique,
les première et seconde régions ayant chacune une taille ou une épaisseur supérieure ou égale à 2 n et les premier et second composés métalliques ayant ensemble une incidence sur la résonance plasmonique de la particule.
Dans toute la suite, on entend par « spectre visible » le spectre de longueurs d'onde comprises entre 400 et 700 nm.
Par « particule colorée », il faut comprendre une particule qui réfléchit au moins une longueur d'onde du. spectre visible. Autrement dit, une particule colorée possède un spectre de réflectance qui comporte au moins un pic dans le spectre visible.
Par « taille » il faut comprendre la plus petite dimension. Il peut, par exemple, s' agir d'un diamètre.
Par « métal plasmonique ou un de ses alliages », il faut comprendre un métal ou un alliage apte à produire un phénomène de résonance plasmoni ue dans le spectre visible. Un matériau présente une résonance plasmonique dans le spectre visible lorsque les électrons de conduction du matériau oscillent en réponse au champ alternatif électrique S de la radiation électromagnétique pour une longueur d'onde dans le visible, La résonance plasmon génère elle-même un champ électromagnétique local intense,
Far « les premier et second composés métalliques ayant ensemble une incidence sur la résonance plasmonique de la particule », il faut comprendre que le spectre de résonance plasmonique de la particule comporte au moins un pic de résonance plasmonique, différent des pics de résonance plasmonique des premier et second composés métalliques purs, dont la position spectrale est liée à la présence des premier ci second composés métalliques .
Sauf mention contraire, on entend par « résonance plasmonique », la résonance plasmonique de surface ayant lieu à l'interface entre un conducteur, par exemple un métal, et un diélectrique.
Les inventeurs ont constaté que l'utilisation de particules plasmoniques de taille comprise entre 70 ara et i urn, comportant deux composés métalliques ayant ensemble une incidence sur la résonance plasmonique des particules permet d'accéder à un gammut colorie! élargi ainsi que d'obtenir des effets colonels améliorés tout en réduisant la quantité de particules mises en œuvre en comparaison avec des particules plasmoniques ne comportant qu'un seul composé métallique.
Lorsque les premier et second composés métalliques sont tous deux des alliages de métaux plasmoniques, ils peuvent différer de par la nature des premier et second métaux plasmoniques et/ou de par la nature du/des composées) de l'alliage autre(s) que les premier et second métaux plasmoniques.
Dans un exemple de réalisation, les premier et second métaux plasmoniques peuvent être différents.
Le fait que chacune des première et seconde régions présente une taille ou une épaisseur telle que définie ci-dessus peut permettre à la particule, lorsqu'elle est irradiée par de la lumière visible, de produire un phénomène de résonance plasmonique.
La composition et la structure de chacune des première et seconde régions modifient leur incidence sur la résonnauce plasmonique de la particule et donc les propriétés optiques globales de la particule, lorsque celle-ci est irradiée par de la lumière visible.
Chacune des première et seconde régions peut, par exemple, présenter une taille ou une épaisseur supérieure ou égale à 2 nm, par exemple comprise entre 2 nm et 1 ματκ
De préférence, la première région peut présenter une taille comprise entre 30 nm et. 900 nm, mieu entre 40 nm et 800 nm et encore mieux entre 60 et 700 nm, de préférence entre 70 nm et 600 nm. De préférence, la seconde région peut, présenter une taille comprise entre 2 nm et 1 μι», en particulier entre 2 nm et 30 nm, voire entre 3 mn et 25 nm, et encore mieux entre 4 nm et 20 nm,
Une taille suffisante pour les première et/ou seconde régions des particules peut avantageusement. conférer à la composition dans laquelle ces particules sont présentes une opacit satisfaisante.
La distance entre les première et seconde régions peut, par exemple, être inférieure ou égale à 45 nm, notamment à 30 nm, notamment à 15 nm,
Les première et seconde régions peuvent, pa exemple, être en contact. (distance nulle).
Avantageusement, une faible distance entre la première et la seconde région peut permettre aux premier et second composés métalliques d'avoir ensemble une incidence sur la résonance plasmonique de la particule. Ainsi, comme expliqué plus haut, le fait que les première et seconde réglons de la particule soient rapprochées permet à la particule de présenter au moins un pic de résonance plasmonique distinct des pics de résonance plasmonique des premier et second com posés métalliques purs.
Les inventeurs ont constaté que la présence d'un tel pic de résonance plasmonique peut permettre l'obtention de propriétés de couvrante et colorieiîes améliorées.
Indépendamment ou en combinaison avec ce qui précède, l'invention concerne, selon un autre de ses aspects, une particule colorée de taille comprise entre 70 nm et 1 μηι, de préférence entre 80 nm et 700 nm, mieux entre 90 nm et 300 nm, encore mieux entre 100 nm et 250 nm, comportant :
- dans une première région, un premier composé métallique consistant en un premier métal plasmonique ou un de ses alliages, et
- dans une seconde région, distincte de la première, un second composé métallique consistant en un. second métal plasmonique ou un de ses alliages, le second composé métallique étant différent du premier composé métallique,
les première et seconde régions ayant chacune une taille ou une épaisseur supérieure ou égale à 2 nm, la seconde régio enrobant la première région et les premier et. second composés métalliques ayant ensemble une incidence sur la résonance plasmonique de la particule. Ainsi, l'invention peut concerner des particules de type « cceur-écorce », aussi appelé « cœur- coq aille ».
La seconde région peut être au contact de la première région.
Lorsque la particule est de type « cceur-écorce », il peut être avantageux que l'épaisseur de la. seconde région soit inférieure à 45 nm, par exemple comprise entre 2 et 45 nm, notamment 2 et 30 nm, -mieux 3 et 25 .nm, encore mieux 4 et 20 nm.
Lorsque la particule est de type « cceur-écorce », la taille de la première région peut, de préférence, être comprise entre 30 et 800 nm, mieux entre 40 et 700 nm, encore m eux entre 50 et 600 nm.
Lorsque la particule est de type « cceur-écorce », la seconde région peut, de préférence, être au contact de la première région.
En variante, la seconde région peut être séparée de la première région par une ou plusieurs couche(s) comportant, par exemple, un matériau diélectrique comme précisé plus loin.
Indépendamment ou en combinaison avec ce qui précède, l'invention concerne, selon un autre de ses aspects, une particule colorée de taille comprise entre ί 10 nm et 1 um comportant :
- dans une première région, un premier composé métallique consistant en un premier métal plasmonique ou un de ses alliages, et.
- dans une seconde région distincte de la première, un second composé métallique consistant en un second métal plasmonique ou un de ses alliages, le second composé métallique étant différent du premier composé métallique,
les première et seconde régions ayant chacune une taille ou une épaisseur supérieure ou égale à 2 nm et les premier et second composés métalliques ayant ensemble une incidence sur la résonance plasmonique de la particule.
Indépendamment ou en combinaison avec ce qui précède, l'invention concerne, selon un antre de ses aspects, une particule colorée de taille comprise entre 70 nm et 1 μηι comportant :
- dans une première région un premier composé métallique consistant en un premier métal plasmonique ou un de ses alliages, et ~ dans une seconde région enrobant la première région et distincte de celle-ci, un second composé métallique consistant en. un second métal piasmonique on. un de ses alliages, le second composé métallique étant différent du premier composé métallique, les première et seconde régions ayant chacune une taille ou une épaisseur supérieure ou égale à 2 nm, les premier et second composés métalliques ayant ensemble une incidence sur la résonance piasmonique de la particule,
Indépendamment ou en combinaiso avec ce qui précède, l'invention concerne, selon un autre de ses aspects, une composition- cosmétique comportant :
~ un milieu cosmétiquement acceptable, et
- des particules telles que définies plus haut,
Lorsque plusieurs particules selon l'invention sont, présentes clans une composition, la « taille » correspond à la dimension granulométrique statistique à la moitié de la population dite D(0,5).
La composition cosmétique décrite ci-dessus peut, par exemple, être une composition capillaire destinée au traitement cosmétique, notamment au maquillage, notamment à la coloration des cheveux. Elle peut également être une composition de maquillage des cils, des ongles, de la peau ou des lèvres.
Les particules peuvent être présentes dans la composition en une teneur allant de 0,00001 % à 50% en volume, notamment 0,0001 % à 20 % en volume, mieux 0,01 % à 15 % en volume, et encore mieux 0,1 à 10 %, voire 1 à 8 % en volume.
La composition selon l'invention peut, dans un exemple de réalisation, comporter un mélange d'au moins deux types de particules piasmoniqu.es selon l'invention.
Dans ce cas, les particules plasmoniques peuvent produire la même couleur ou des couleurs distinctes lorsqu'elles sont formulées dans la composition.
La composition selon l'invention peut comporter un mélange d'au moins trois types de particules plasmoniques selon l'invention.
Indépendamment ou en combinaison avec ce qui précède, l'invention concerne, selon un autre de ses aspects, un procédé de traitement cosmétique, notamment de maquillage ou de coloration des matières kératiniques humaines, comportant l'étape consistant à appliquer sur les matières kératiniques humaines à traiter une composition telle que définie ci-dessus. mdépendamment ou en combinaison avec ce qui précède, l'invention concerne selon un autre de ses aspects, un procédé de maquillage des lèvres, de la peau du corps ou du visage, des ongles, des cheveux ou des cils comportant l'étape consistant à appliquer sur les lèvres, la peau, les ongles, les cheveux ou les cils une composition telle que définie ci- dessus.
L'invention offre une solution particulièrement intéressante au maquillage des cheveux, de la peau et des lèvres.
Métaux nlasmoniau.es
Les métaux plasmoniques pouvant être utilisés dans le cadre de la présente invention sont, de préférence, choisis parmi le tungstène (W), l'aluminium (Al), le palladium (Pd), le platine (Pt), l'argent (Ag), le cuivre (Cu), l'or (Au), le chrome (Cr), le zinc (Zn), le rhodium (R ), le nickel (Ni), l'étant (Sn).
De préférence encore, les premier et second métaux plasmoniques sont choisis parmi For, l'argent, le platine., le nickel et le cuivre, encore mieux l'un des métaux est l'or et l'autre est l'argent
Notamment lorsque la seconde région enrobe la première région, les premier et second métaux plasmoniques peuvent avantageusement être choisis parmi l'or et l'argent.
Le premier métal plasmonique peut être de l'or et le second métal plasmonique peut être de l 'argent ou le premier métal plasmonique peut être de l'argent eS. le second métal plasmonique peut être de l'or.
Le premier composé métallique peut être de l'or et le second composé métallique peut être de l'argent ou le premier composé métallique peut être de l'argent et le second composé métallique peut être de l'or.
La particule selon l'invention peut comporter, dans une troisième région, un troisième composé métallique consistant en. un troisième métal plasmonique ou un de ses alliages, le troisième composé métallique étant distinct des premier et second composés métalliques.
Le troisième métal plasmonique peut être choisi parmi les métaux plasmoniques énumérés ci-dessus.
La troisième région peut, par exemple, avoir une taille ou une épaisseur supérieure ou égale à 2 nrn, notamment à 3 nm, notamment à 5 nm. La troisième région peut être au contact de la seconde région, ou en être séparée par une couche de matériau diélectrique tel que défini ci-après.
Il est possible, lorsque la particule plasmonique comporte une troisième région que les premier, second et troisième composés métalliques aient ensemble une incidence sur la résonance plasmonique de la particule. En variante, il est possible que uniquement deux des premier, second et troisième composés métalliques aient ensemble une incidence sur la résonance plasmonique de la particule.
Agencement des première et seconde régions, forme et taille des particules plasmoniques
I M e es particules
La taille de la particule selon Pinventibn est comprise entre 70 nm et 1 pm, par exemple entre 80 nm et 700 nm, par exemple entre 90 nm et 300 nm. par exemple entre 100 nm et 250 nm, par exemple entre 110 nm et 200 nm.
Les particules plasmoniques peuvent être de toute forme, par exemple ; cylindrique, sphérique, plaquettaire, ovale ou polyédrique, notamment cubique, parallêlépipédique ou pyramidale.
Les particules plasmoniques peuvent, par exemple, être de rapport d'aspect compris entre 1 et 2, par exemple entre 1 et 1 ,5, par exemple entre 1 et 1 ,25, par exemple de rapport d'aspect sensiblement égal à 1. On entend par « rapport d'aspect », le rapport de la plus grande dimension de la particule à la plus petite dimension de la particule.
Dan un exemple préféré, les particules plasmoniques selon l'invention ont une forme sensiblement sphérique.
Dans un exemple de réalisation, les particules plasmoniques selon l'invention n'ont, pas une tonne cylindrique.
Les particules peuvent encore être dispersées au sein d'une matrice.
Matériaux diélectriques
Les particules plasmoniques selon l'invention peuvent comporter un matériau diélectrique dans une région distincte des première, seconde et de l'éventuelle troisième région.
Aucun phénomène de résonance plasmonique ne se produit dans la niasse du matériau diélectrique. Toutefois, des phénomènes de résonance plasmonique peuvent se produire à l'interface entre le diélectrique et les première et/ou seconde régions. Le matériau diélectrique peut être situé entre les première et seconde régions ou entre les seconde et troisième régions.
Notamment dans le cas où la seconde région enrobe la première région, il est possible que le matériau diélectrique soit situé entre les première et seconde régions. Dans ce cas, ie matériau diélectrique peut être au contact de la première et de la seconde région.
Dans un autre exemple de réalisation, le matériau diélectrique peut enrober les première et seconde régions.
Notamment lorsque la seconde région enrobe la première région, le matériau diélectrique peut enrober les première et seconde régions. Dans ce cas, ie matériau diélectrique peut se situer sur 1a périphérie extérieure de la particule piasrnonique.
Dans un autre exemple de réalisation, notamment lorsque la seconde région enrobe la première région, il est possible que le matériau diélectrique soit situé de telle sorte à être enrobé par la première région. Dans ce cas, le matériau diélectrique peut être au contact de la première région.
La taille ou l'épaisseur de la région où est présent, le matériau diélectrique peut être comprise entre 2 .nm et 1000 nm.
Lorsqu'elle est située entre les première et seconde régions, la taille ou l'épaisseur de la région où est présent le matériau diélectrique peut avantageusement être inférieure à 45 nm, de préférence intérieure à 30 nm, mieux inférieure à 15 nm, encore mieux, inférieure à 5 m.
Lorsqu'elle est située entre les première et seconde régions, une faible taille ou épaisseur de l région comportant le matériau diélectrique peut permettre aux premier et second composés métalliques d'avoir ensemble une incidence sur la résonance piasrnonique de la particule.
Le matériau, diélectrique peut, par exemple, être choisi parmi :
- des composés inorganiques, par exemple des oxydes métalliques, par exemple de l'alumine, de la silice ou du dioxyde de titane,
- des polymères, par exemple du polyuréthane, du polystyrène, du poîyméthacryîate de méthyle, des polymères d'origine naturelle, et
- l'éventuel solvant ou phase de dispersion des particules.
Dans un exemple de réalisation, les particules plasmoniques selon l'invention peuvent comporter une région vide. Cette région vide peut, par exemple, être enrobée par la première région notamment lorsque la seconde région enrobe la première région, .
Figure imgf000012_0001
La particule selon, la présente invention peut également être recouverte par un revêtement supplémentaire, en particulier choisi parmi les matériaux biodégradables ou biocompatibles, les matériaux lipidiques comme les iensioactifs ou les émuisifiants, les polymères, les oxydes.
Lorsque le revêtement supplémentaire comprend un matériau biodégradable ou biocompatible, ce revêtement peut notamment comprendre toute molécule naturelle ou synthétique notamment choisie parmi les lipides, les carbohydrates, les polysaccharides, les protéines, les polymères, les glycoprotéines, les glycolipides qui peuvent être utilisés pour rendre la combinaison physiologiquement acceptable. De préférence, les matériaux biodégradables ou biocompatibles sont choisis parmi les polymères fabriqués à partir des monomères de type D- ou L aetide, acide lactique, giycolique, hydroxybutyrique ou acide malique.
Lorsque le revêtement supplémentaire comprend un matériau lipidique, ce revêtement peut notamment comprendre un lipide ou u mélange de lipides, synthétiques ou naturels, éventuellement modifies par voie chimique ou biologique. Ces lipides peuvent être neutres ou chargés positivement ou négativement
Lorsque le revêtement supplémentaire comprend un polymère, ce revêtement peut notamment comprendre au moins un polymère choisi parmi les polyesters, polyamides, polyéthers, polythioéthers, poïyurées, polycarbonaies, polycarbamides, protéines, polysaccharides, poiyaryls, de préférence avec des masses molaires (Mw) allant de l OOg mol à 100000 g/mol.
Lorsque le revêtement supplémentaire comprend un oxyde, ce revêtement peut notamment comprendre un oxyde d'un élément choisi parmi Ti, Fe, Cu, Zn, Y, Zr, Nb, Mo, In, Si, Sn, Sb, Ta, W, Pb, Bi et Ce, de préférence l'oxyde est Si02.
Les particules selon l'invention peuvent, en outre, comporter une fonctionnalisation de surface.
Avantageusement, une fonctionnalisation de surface peut permettre d'obtenir ; o une affinité importante pour les substrats kératiniques (par exemple par greffage rémanent ou réversible ou encore par adsorp ion .,«), o une meilleure compatibilité avec les supports- formuktoires couramment utilisés en cosmétique,
o une association ou une organisation particulière des particules (réseaux), Avantageusement la particule est fonctionnalisée afin d'améliorer son affinité pour le substrat, notamment la peau ou les cheveux. Cette fonctionnaiisation consiste à introduire des fonctions réactives sur la surface de la particule, qui vont permettre de réaliser des liaisons covalerites entre ladite particule et le substrat kératiniquc.
Par fonction réactive, on entend un groupe réactif qui permet la formation d'une liaison covalenle (par réaction avec des fonctions nueléophîles, en l'occurrence des fonctions sulfhydriles -S H) et qui comporte donc un ou plusieurs nucleotuges X, ou bien un ou plusieurs carbones ou liaisons activées. Les nucléo&ges habituels sont les groupes F,
Cl, Br, -OSOjM, -OS02aîkyie> -OSOzaryle, -DS02N(alkyie}2j -OR 1 , S 2, •■S02R2, -S*R2R3 -SCN, -SCOOR2, -NR2R3, N*R2R3R4,
Figure imgf000013_0001
M représentant un atome d'hydrogène, un métal alcalin ou alcalino-terreux ou on reste d'ammonium,
R.i représente un atome d'hydrogène, un radical alkyle en CÏ-Ç4, un radical phérryie, substitué ou non, le radical Ρ03Ή2 et ses sels ou le radical acétyle.
R2, R3 et R4, identiques ou différents, représentent un atome d'hydrogène un radical alkyle en C1 -C4 ou un radical phérryie substitué ou non.
Parmi les groupes réactifs les plus connus, on peut notamment citer :
- les mono et dihalogénotriazines,
- les di halogène quinoxalin.es, les di alogéno pyrimidines,
- les vinyîsulfones ou leurs précurseurs β-haîogéno ou β-sulfatoéthyisulfones,
- les acryîates et méthacryîates,
- les acrylamides et méthacryiamides,
- les maléimides. et halogénomaléimides,
- les époxydes et dérivés de l'axiridine,
--· les groupes oxazolimurn, îmidazoîium ou thiazolidinium,
- les halogénures d'acides carboxyliques ou sulfoniques, - les esters,
- les carbamates,
- les anhydrides,
- les isothiocyana.es et isocyanates,
- les lactones,
- les azalactones de structure :
Figure imgf000014_0001
dans laquelle RI 5 et Rio, identiques ou différents, représentent un atome d'hydrogène, un radical aîkyle C1-CI2, cycloalkyle C3-C12, aryle C5-CÎ2, arényle C6- C26 comportant de 0 à 3 hétéroatomes choisis parmi S, N et O, ou bien RI 5 et RI 6 forment ensemble un carbocycle contenant de 4 à 12 atomes et n est un entier compris entre 0 et 3.
Des fonctionnalisai-ions de surface pouvant convenir aux particules selon l'invention sont décrites dans les publications suivantes : Michalei et al. Science 2005, 307, 538, T, Pellegrino et al, Nam Leit 2004, 4, 703, ί.-E. Jônsson et ai, Macromolecules 27, 1932 (1994), Y. Kobayashi et al., JCÏS 2003, 264, 385, Liz- arzân, et ai., Chem. Commun, 1996, 731, L. Zhang et al. Adv. funct. Mater. 2008, 18, 3834, î. Pastoriza- Santos, et ai., Cftem. Mater 2006, 18, 2465.
La fonctionnalisation de surface de ces particules peut, par exemple, comporter :
- des groupements choisis parmi les groupements -C(0)-, thiol, hydroxyle ou suifo, les groupements. -COOR où R symbolise H ou un groupement aîkyle en Cl à Cl 8, les groupements -SIX et les aminés neutres ou eatloniques,
- des polymères hydrophiles ou hydrophobes appartenant aux familles, polyacryiiques, polysilox es, polyamides, poïyurétbanes, polyoléfines, POE, p.otyeati oniques, polyanioniques,
- d'autres actifs cosmétiques tels que des antioxydants, huiles essentielles, émollients, hydratants ou vitamines, - des matériaux diélectriques notamment décrits aux paragraphes [0036] à [0039] de la demande US 2009/0022766, et
- des enrobages métalliques notamment choisis parmi les enrobages d'or et d'argent ou de leurs alliages, les enrobages étant distincts des première et seconde régions,
- Les figures 1 et 1A à 1D représentent schématiqaement des exemples de particules plasmoniques selon P invention,
- la figure 2 représente une simulation du gamma* colorimétrique en réflectance atteignable par des particules selon V invention en comparaison avec des particules plasmoniques comportant uniquement de I ' or,
- les figures 3 et 3A représentent des gammuts coioriméiriques en réflectance atteigaables par des particules plasmoniques bimétalliques,
- la figure 4 représente une analyse en microscopie électronique de particules selon l'invention,
- la figure 5 représente un spectre de réflectance de particules selon l'invention,
- la figure 6 représente un essai comparatif sur une carte de contraste comparant une composition comportant des particules selon l'invention et une composition comportant des particules plasmoniques d'or,
- la figure 7 est un spectre en réflectance comparatif entre des particules selon l'invention et des particules plasmoniques d'or,
- la figure 8 représente une comparaison entre les spectres en réflectance de compositions selon l'invention et de compositions comportant des pigments conventionnels,
- la figure 9 représente la coloration obtenue par des particules selon l'invention dans une composition.
- la figure .10 représente la coloration obtenue par des particules selon l'invention formulées clans une composition.
On a représenté à la figure 1 un exemple de réalisation d'une particule 1 selon l'invention. La particule 1 comporte, dans une première région 2, un premier métal piasmonique, la première région 2 est enrobée par un second métal piasmonique, différent du premier, présent au sein d'une seconde région 3. Les premier et second métaux plasmoniques ont ensemble une incidence sur la résonance plasnionique de la particule.
Les premier et second métaux plasmoniques peuvent, par exemple, être choisis parmi l'ensemble des métaux plasmoniques listés plus hau comme pouvant convenir à l'invention.
Les premier et second métaux plasmoniques sont, de préférence, choisis parmi l'or et l'argent.
La particule i peut comprendre au sein des première et/ou seconde région(s) 2 et/ou 3 un matériau optiquement actif,
La figure 1 A illustre une variante de réalisation où la particule 1 comporte une première régio 2 comportant un premier métal plasmonique enrobée par une seconde région 3 comportant un second métal plasmonique, laquelle est enrobée par une troisième région 4 comportant troisième métal plasmonique,
Les trois métaux plasmoniques sont distincts deux à deux et au .moins deux d'entre eux peuvent être à même d'avoir une influence sur la résonance plasmonique de la particule.
La figure 1 B représente une variante de réalisation où la particule plasmonique 1 comporte en son. sein un matériau diélectrique, La particule 1 comporte une première région 2 comportant un premier métal plasmonique, enrobée par une couche 5 d'un matériau diélectrique, laquelle est enrobée par une seconde région 3 comportant un second métal plasmonique.
Le matériau diélectrique peut, par exemple, être choisi parmi Pensemble des matériaux diélectriques listés ci -dessus.
L'épaisseur e de la couche diélectrique 5 est choisie de telle sorte à permettre que les premier et second métaux plasmoniques aient ensemble une incidence sur la résonance plasmonique de la particule.
Dans une variante non illustrée, la couche diélectrique 5 n'est pas intercalée entre les première et seconde régions 2 et 3 mais se situe en périphérie extérieure de la particule.
La particule 1 peut encore comporter, connue illustré à la ligure 1 , un matériau diélectrique au sein d'une région 5 située au cœur de la particule 1. La première région 2 enrobe le matériau diélectrique. On a représenté à la figure IC une variante de réalisation où- la particule 1 comporte, dans une première région 2, un premier métal pîasmomque. La première région 2 est enrobée d'une seconde région 3 laquelle est, elle-même, enrobée d'une couche constituée du premier métal pias onique.
Bien entendu, les empilements de couches qui viennent d'être décrits ci-dessus peuvent s'appliquer à d'autres géométries de particules, notamment plaquettaires, polyédriques ou cylindriques.
Par ailleurs, on ne sort pas du cadre de la présente invention si les particules 1 décrites ci-dessus sont elles-mêmes enrobées par d'autres couches d'enrobage.
On ne sort pas non plus du cadre de la présente invention lorsque la particule I comporte une fonctionnalisation de surface, comme décrit plus haut,
La figure 2 représente une simulation des gammuts atteignables, d'une part, par des particules Àu@Ag (or enrobé d'argent) et Ag@Àu (argent enrobé d'or) selon l'invention et, d'antre part, par des particules plasmoniqu.es d'or. Les flèches en traits plein, indiquent une augmentation de l'épaisseur du cœur de la particule et les flèches en pointillés indiquent une augmentation de l'épaisseur de i'écorce de la particule. On constate que le gammut colorimétrique atîeignable par les particules selon rinveniion est bien plus important que celui atîeignable par des particules plasmoniques d'or,
Les figures 3 et 3A représentent le gammut calorimétrique en réflectance atîeignable par des particules « cœur-écorce » or/argent. Les épaisseurs de I'écorce sont indiquées sur la graduation de l'axe horizontal et les épaisseurs du cœur sont indiquées sur la graduation de l'axe vertical. On constate que les systèmes « cœur-écorce » or/argent permettent l'obtention d'un gammut colorimétrique en réflectance particulièrement large.
Compositions liquides (à 25qC)
Par. « composition liquide », on. entend une composition dont on peut mesurer la viscosité. Une composition liquide peut s'écouler sous l'effet de son propre poids, Il peut notamment s'agir de compositions liquides à appliquer sur les lèvres, notamment les rouges à lèvres liquides, brillants à lèvres liquides et baumes à lèvres liquides, pour les vernis à ongles, les fards à paupières, les fonds de teint liquides, les mascaras et autres produits de maquillage liquides non destinés à être à appliqués sur les lèvres La couvrance des compositions est mesurée à épaisseur Unie de 50 pm.
La composition est étalée sur des cartes de contraste noir mat et blanc mat, par exemple de marque LBNETA Form WPl pour la carte noir mat et Leneta 1A pour la carte blanc mat.
L'application peut s'effectuer avec un étaîeur automatique.
Les mesures s'effectuent sur les compositions ainsi étalées.
Q V<> solides (à 25°C}
Les compositions solides sont celles dont on ne peut mesurer la viscosité.. II peut s'agir de compositions coulées en stick ou pulvérulentes, sous forme de poudres libres ou compactées,
a) Pour les compositions solides pulvérulentes, libres ou compactées, la composition est appliquée en utilisant les mêmes cartes de contraste que ci-dessus, recouvertes d'un ruban adhésif transparent, légèrement rugueux, par exemple de marque BLE DE M® de la société 3M et de référence 15025, collé par la face adhésive sur les cartes de contraste.
La composition est déposée sur le ruban adhésif de manière à obtenir un dépôt homogène de 0,5 m g/cm2 ·..· 0,02 rag/cm2.
Il est possible d'utiliser pour effectuer le dépôt une éponge chargée, avec la composition et montée sur un appareil de déliiage qui fait effectuer des mouvements prédéfinis à l'éponge. L'éponge est par exemple une éponge à usage unique de type « LANCÔME - Fhotogenie », utilisée du coté rose.
b) Les compositions en stick sont fondues, par exemple à 90°C, puis étalées à Pêtat liquide sur des cartes de contraste noir mat et blanc mat par exemple de mêmes références que ci-dessus, non recouvertes de BLENDERM'*. Le barreau d'étalement est maintenu à la même température que la composition, de façon à éviter un choc thermique.
Les compositions en stick sont ainsi déposées une fois fondues avec une épaisseur de 50 μν .
Mesures et calculs
Des spectres de réflectance sont acquis à l'aide d'un spectrocoîorimètre MINOLTA 3700-d (géométrie de mesure dlffuse/80 et observation 065/10°, mode composante spéculaire exclue, petite ouverture (C EISS)) sur les fonds noir et blanc, les cartes de contraste étant éventuellement recouvertes de BLEMDERM¾' comme indiqué ci- dessus.
Les spectres sont exprimés en coordonnées colorimétriques dans l'espace CÎELab?6 au sens de la Commission Internationale de l'Eclairage selon la recommandation 15:2004-,
Le contraste ratio, ou couvrance, est calculé en faisant la moyenne arithmétique de Y sur fond noir, divisée par la valeur moyenne de Y sur fond blanc, multiplié par 100.
L'écha tillon est déposé dans une cuve spectroscopique en quartz d'épaisseur connue. L'opacité de la cuve, est mesurée suivant le protocole ci-dessus. Line source de lumière blanche large spectre (250 - 780 nro) est collimatée et orientée perpendiculairement à la surface de la cuve. Une sphère intégrante calibrée permet la collecte du signal rétrodiffusée à l'exception de la réflexion spéculaire. La géométrie de mesure est dite 0° / d spéculaire exclu. Le signal mesuré est indépendant de l'angle et de la position spatiale de sortie par rapport à la cuve spectrosopique. Le signal est ensuite envoyé à un spectromètre qui effectue la mesure en. fonction de la longueur d'onde, celle-ci est référencée par rapport à la quantité de lumière de la source en tenant, compte de l'efficacité de collection du système optique global.
Le spectre de réflexion ainsi acquis est ensuite converti en coordonnées coioriméiriques dans l'espace QELab76 au sens de la Commission Internationale de l'Eclairage selon la recommandation 15:2004.
Les compositions cosmétiques selon l'invention comprennent, en outre, un milieu cosmétiquement acceptable, c'est-à-dire compatible avec les matières kératiniqaes telles que la peau du visage ou du corps, les lèvres, les cheveux, les cils, les sourcils et les ongles.
La composition peut avantageusement comprendre une phase grasse, qui peut elle-même comprendre des huiles et/ou des solvants de préférence iipophiles, ainsi que des corps gras solides à température ambiante tels que les cires, les corps gras pâteux, les gommes et leurs mélanges.
Parmi les constituants de la phase grasse, on peut citer les huiles, volatiles ou non, qui peuvent être choisies parmi les huiles naturelles ou synthétiques, carbonées, hydrocarbonées, fluorées, éventuellement ramifiées, seules ou en mélange.
On entend par "huile non volatile", une huile susceptible de rester sur la peau à température ambiante et pression atmosphérique au moins une heure et ayant notamment une pression de vapeur à température ambiante (25°C) et pression atmosphérique, non nulle, inférieure à 0,01 mm de Hg (1 ,33 Pa).
On. peut en particulier citer les huiles non volaille carbonées, notamment hydrocarbonées, d'origine végétale, minérale, animale ou synthétique, telles que l'huile de paraffine (ou vaseline), le squalane, le polylsobutène hydrogéné (Parîéam), le perhydrosqualène, l'huile de vison, de macadauiia, de tortue, de soja, l'huile d'amande douce, de ealophylluni, de palme, de pépins de raisin, de sésame, de maïs, d'arara, de colza, de tournesol, de coton, d'abricot, de ricin, d'avocat, de jojoba, d'olive ou de germes de céréales, de beurre de kari é les esters linéaires, ramifiés ou cycliques, ayant plus de 6 atomes de carbone, notamment 6 à 30 atomes de carbone, tels que les esters d'acide lanoiique, d'acide oléique, d'acide laurique, d'acide stéarique; les esters dérivés d'acides ou d'alcools à longue chaîne (c'est-à-dire ayant de 6 à 2.0 atomes de carbone), notamment les esters de formule RCOOR* dans laquelle R représente le reste d'un acide gras supérieur comportant de 7 à 19 atomes de carbone et R'' représente une chaîne hydrocarbonée comportant de 3 à 20 atomes de carbone, en particulier les esters en C12-C36, tels que le myristate d'isopropyle, le palmitate d'isopropyle, le stéarate de hutyîe, le laurate d'hexyle, l'aclipate de diisopropyle, l'isononanoate d'isononyle, le palmitate de 2-éthyl-h.exyle, le laurate de 2-hexyi-déeyle, le palmitate de 2-octyi-décyle, le myristate ou le lactate de 2- octyl-dodécyle, le succinate de di(2~éihyi hexyle), le malate de diisostéaryle, le îriisostêaraie de glycérine ou de di glycérine; les acides gras supérieurs, notamment en C14- C22, tels que acide myristique, Facide palmitique, l'acide stéarique, l'acide béhénique, Facide oléique, Facide linoléique, Facide linolénique ou Facide isostéarique; les alcools gras supérieurs, notamment en CI6-C22, tels que le cétanol, l'alcool oléique. l'alcool linoléique ou linolénique, Falcool isostéarique ou l'oeiyl dodécanol; et leurs mélanges.
On peut encore citer le décanol, le dodécanol, Foctadécanol, les triglycérides liquides d'acides gras de 4 à 10 atonies de carbone comme les triglycérides des acides hepianoïque ou octanoïque, les triglycérides des acides capryliqne/caprique; les hydrocarbures linéaires ou ramifiés, d'origine minérale ou synthétique tels que les huiles de paraffine et leurs dérivés, la vaseline, les polycécènes, le polyisobutène hydrogéné tel que le pariéam; les esters et les éthers de synthèse notamment d'acides gras comme par exemple l'huile de Purcellin, le myristate d'isopropyle, le palmitate d'éthyl-2~hexyle, le stéarate d'oetyi-2-dodécyle, l'érucate d'octy!-2~dodécyle, Pisostéarate d'isostéaryle ; les esters hydroxylés comme Fisostéaryi îactate, l 'oetylhydroxystéarate, Fhydroxystéarate d'ociyldodéeyîe, le diisostéarylmalaie, le citrate de triisocétyle, des hepianoates, octanoates, décanoates d'alcools gras; des esters de polyol comme le dioctanoate de propylène glycol, le diheptaaoate de néopentyîglycol, le dilsononanoate de diéinylèneglycol ; et les esters du pemaérythritol; des alcools gras ayant de 12 à 26 atomes de carbone comme Foctyidodéeanol, le 2-butyloctanol, le 2-hexyldécanol, le 2~ undécylpentadécanol .
On peut encore citer les eétones liquides à température ambiante tels que étfayléthyicétone, méthylisobutylcétone, diisobutylcétone, isophorone, la ey ohexanone, l'acétone; les éthers de propylène glycol liquides à température ambiante tels que le raonométhyléther de propylène glycol, l'acétate de monométhyïéiher de propylène glycol, le mono n-butyl éther de dipropyîène glycol ; les esters à chaîne courte (ayant de 3 à 8 atomes de carbone au total) tels que l'acétate d'éthyle, l'acétate de méthyle, l'acétate de ptopyle, Facétate de n-butyl e, l'acétate d'isopentyle; les éthers liquides à température ambiante tels que le diéihyléther, le diméthyléther ou le dichlorodiéihyléiher; les al canes liquides à température ambiante tels que le décane, l'heptane, le dodécane, l'isododécane, i'iso'hexadécane, le cyclohexane; les composés cycliques aromatiques liquides à température ambiante tels que le toluène et le xylène; les aldéhydes liquides â température ambiante tels que le henzaldéhyde, Faeètaldëhyde et leurs mélanges.
Parmi les composés volatils, on peut citer les huiles volatiles non siliconées, notamment les isoparaffines en C8-C16 comme l'isododécane, î'isodécane, Visohexadécane. Plus préférentieîlement, on peut citer les al canes liquides à température ambiante, volatils ou non, et plus particulièrement le décane, Phepiane. le dodécane. l'isododécane, l'isohexadécane, le cyclohexane, I'isodécane, et leurs mélanges.
I,a phase grasse peut être présente en une teneur allant de 0,01 à 95%, de préférence de 0,1 à 90%, de préférence encore de 10 à 85% en poids, par rapport au poids total de la composition, et mieux de 30 à 80%.
La composition peut également comprendre, une phase hydrophile comprenant de l'eau ou un mélange d'eau et de soivani(s) organiques) hydrophile(s) comme les alcools et notamment les monoalcools inférieurs linéaires ou ramifiés a ant de 2 à 5 atomes de carbone comme l'éthanol, Fisopropanoi ou le n~propanol, et les poiyols comme la glycérine, la digiyeérine, le propylène glycol, le sorhltoh le peniylène glycoî, et les poiyéthylène glycois, ou bien encore des éthers en C2 et des aldéhydes en C2-C4 hydrophiles. L'eau ou le mélange d'eau et de solvants organiques hydrophiles peut être présent dans la composition selon l'invention en une teneur allant de 0,1 à 80% en poids, par rapport au poids total de la composition, et: de préférence de I à 70% en poids,
La composition selon l'invention peut également comprendre des cires et/ou des gommes. Par cire au sens de la présente invention, on entend un composé Kpophiîe, solide à température ambiante (25 °C), à changement d'état solide/liquide réversible, ayant un point de fusion supérieur ou égal à 30 °C pouvant aller jusqu'à 120 °C. En portant la cire à l'état liquide (fusion), il est possible de la rendre miscible aux huiles éventuellement présentes et de former un mélange homogène n icroscopiquement, mais en ramenant la température du mélange à la température ambiante, on obtient une reeristallisation de la cire dans les huiles du mélange. Le point de fusion de la cire peut être mesuré à l'aide d'un calorimètre à balayage différentiel (D.S.C), par exemple le calorimètre vendu sous la dénomination DSC 30 par la société METLER.
Les cires peuvent être hydrocarbonées, fluorées et/ou sîlieonées et être d'origine végétale, minérale, animale et/00 synthétique. En particulier, les cires présentent une température de fusion supérieure à 25°C et mieux supérieure à 45 °C. Comme cire utilisable dans la composition de l'invention, on peut citer la cire d'abeilles, la cire de Caroauba ou de Candellila, la paraffine, les cires rnicroeristallines, la cérésine ou Pozokérite ; les cires synthétiques comme les cires de poiyéthylène ou de Fischer Tropsch, les cires de silicones comme les alkyl ou alkoxy-diméticone ayant de 16 à 45 atomes de carbone.
Les gommes sont généralement des poîycUœéthylsiloxanes {PDMS) à haut poids moléculaire ou des gommes de cellulose ou des polysaccharides et les corps pâteux sont généralement des composés hydrocarbonés comme les lanolines et leurs dérivés ou encore des PDMS.
La nature et la quantité des corps solides sont fonction des propriétés mécaniques et des textures recherchées. À titre indicatif, la composition peut contenir de 0,01 à 50% en poids de cires, par rapport au poids total de la composition et mieux de .1 à 30 % en poids.
La composition selon l'invention peut en outre comprendre une ou des matières colorantes choisies panni les colorants hydrosoiubies, les colorants liposolubl.es, et les matières colorantes pulvérulentes comme les pigments, les nacres, et les paillettes bien connues de l'homme du métier, Les matières colorantes peuvent être présentes, clans la composition, en une teneur allant de 0,01 à 50% en poids, par rapport au poids de la composition, de préférence de 0,01 à 30% en poids.
Par pigments, il faut comprendre des particules de toute forme, blanches ou colorées, minérales ou organiques, insolubles dans le milieu physiologique, destinées à colorer la composition. Par nacres, il faut comprendre des particules de toute forme irisées, notamment produites par certains mollusques dans leur coquille ou bien synthétisées. Les pigments peuvent être blancs ou colorés, minéraux et/ou organiques. On peut citer, parmi les pigments minéraux, le cioxyde de titane, éventuellement traité en surface, les oxydes de zirconium ou de cérium, ainsi que les oxydes de zinc, de fer (noir, jaune ou rouge) ou de chrome, le violet de manganèse, le bleu outremer, l'hydrate de chrome et le bleu ferrique, les poudres métalliques comme la poudre d'aluminium, la poudre de cuivre. Parmi les pigments organiques, on peut citer le noir de carbone, les pigments de type D & C, et les laques à base de carmin de cochenille, de baryum, strontium, calcium, aluminium. Les pigments nacrés peuvent être choisis panni les pigments nacrés blancs tels que le mica recouvert de titane, ou d'oxychîorure de bismuth, les pigments nacrés colorés tels que le mica titane recouvert avec des oxydes de fer, le mica titane recouvert avec notamment du bleu ferrique ou de l'oxyde de chrome, le mica titane recouvert avec un pigment, organique du type précité ainsi que les pigments nacrés à base d'oxycMorure de bismuth.
Parmi les colorants hydrosoiubies, on peut citer le sel disodique de ponceau, le sel disodique du vert d'aiizarme, le jaune de qu noléine, le sel trisodique d'amarante, le sel disodique de tartrazine, le sel onosodique de rhodamine. le sel disodique de fuchsine, la xanihophylle, le bleu de méthylène.
La composition selon l'invention peut comprendre en outre une ou plusieurs charges, notamment en une teneur allant de 0,01 % à 50 % en poids, par rapport au poids total de la composition, de préférence allant de 0,01 % à 30 % en poids. Par charges, il faut comprendre des particules de toute forme, incolores ou blanches, .minérales ou de synthèse, insolubles dans le milieu de la composition quelle que soit la température à laquelle la composition est fabriquée. Ces charges servent notamment à modifier ia rhéologie ou la. texture de la composition. Les charges peuvent être minérales ou organiques de toute forme, plaquettaires, sphériques ou oblongues, quelle que soit la forme cr st&Hographique (par exemple feuillet, cubique, hexagonale, orihorhorabique, etc.). On peut citer le talc, le mica> ia silice, le kaolin, les poudres de polyamide (Nylon.'8') (Orgaso de chez Àtochem), de ροΐν-β-alanine et de polyéthyîène, les poudres de polymères de tétrailuoroéthylène (Téilon*), la lauroyî -lysine, l'amidon, le n trure de bore, les microsphères creuses polymériques telles que celles de chlorure de polyvinyî dène/acrylomtrile comme l'Expanceî* (Nobel industrie), de copolymères d'acide acrylique (Poiytrap® de la société Dow Corning) et les microbilles de résine de silicone (Tospearls*8, de Toshiba, par exemple), les particules de polyorganosiloxanes élasto ères, le carbonate de calcium précipité, le carbonate et Phydrocarbonate de magnésium, l'bydroxyapatiie, les microsphères de silice, creuses (SiMca Beads* de Maprecos), les microcapsules de verre ou de céramique, les savons métalliques dérivés d'acides organiques carboxyliques ayant de 8 à 22 atomes de carbone, de préférence de 12 à 18 atomes de carbone, par exemple le stéarate de zinc, de magnésium, ou de lithium, le iaurate de zinc, le myristate de magnésium,
L composition peut comprendre en outre un polymère additionnel tel qu'un polymère filmogéne. Selon la présente invention, on entend par "polymère fîlmogène", un. polymère apte à former à lui seul ou en présence d'un agent auxiliaire de filmificat on, un film continu et adhérent sur u support, notamment sur les matières kératiniques. Parmi les polymères filmogènes susceptibles d'être utilisés dans la composition de la présente invention, on peut citer les polymères synthétiques, de type radicalaire ou de type polycondensat, les polymères d'origine naturelle et leurs mélanges, en particulier les polymères acryliques, les polyuréthanes, les polyesters, les polyamides, les poïyurées, les polymères cellulosiques comme la n îrocellulose.
La composition selon l'invention peut également comprendre des ingrédients couramment utilisés en cosmétique, tels que les vitamines, les épaississants, les gélifiants, les oligo-éléments, les adoucissants, les séquestrants, les parfums,, les agents alcaiinisanis ou acidifiants, les conservateurs, les filtres solaires, les tensioactifs, les autloxydants, les agents anti-chutes des cheveux, les agents antipelliculaires, les agents propulseurs, les cérami es, ou leurs mélanges. Bien entendu, l'homme du métier veillera, à choisir ce ou ces éventuels composés complémentaires, et/ou leur quantité, de manière telle que les propriétés avantageuses de la composition selon l'invention ne soient pas, ou substantiellement pas, altérées par l'adjonction envisagée.
La composition selon l'invention peut se présenter notamment sous forme de suspension, de dispersion, de solution notamment organique, de gel, d'émuîsion, notamment émulsion huiîe-dans-eau (H/E) oa eau-dans-huile (îi/f-J), ou multiple (E/H/E ou polyoi/H/E ou H/E/'H), sous forme de crème, de pâte, de mousse, de dispersion de vésicules notamment de lipides ioniques ou non, de lotion biphasé on muliiphase, de spray, de poudre, de stick (bâton).
L'homme du métier pourra choisir la forme galénique appropriée, ainsi que sa méthode de préparation, sur la base de ses connaissances générales, en tenant compte d'une part de la nature des constituants utilisés, notamment de leur solubilité dans le support, et d'autre part ce l'application envisagée pour la composition.
La composition selon l'invention peut être une composition de maquillage, notamment un produit pour le teint tel qu'un fond de teint, un fard à joues ou à paupières; un produit pour les lèvres tel qu'un rouge à lèvres, un soin des lèvres, un brillant à lèvres (gloss) un produit antieernes; un blush, un mascara, un eye-liner; un produit de maquillage des sourcils, un crayon à lèvres ou à yeux; un produit pour les ongles tel qu'un vernis à ongles ou un soin des ongles; un produit de maquillage du corps.
La composition selon l'invention peut également être une composition de protection ou de soin de la peau du visage, du cou, des mains ou du corps, notamment une composition antirides, anticernes, antifatigue permettant de donner un coup d'éclat à la peau, une composition hydratante ou traitante; une composition, aniisolaire ou de bronzage artificiel.
La composition selon l'invention peut être également un produit capillaire, notamment pour la mise en forme, le conditionnement et/ou le maquillage des cheveux. Elle peut être un après-shaœpoing, un gel, une lotion, une composition de fixation et de- coiffage telle qu'une laque; on encore un mascara pour cheveux.
La composition selon l'invention trouve une application toute particulière comme composition de maquillage des matières kératinlques notamment de la peau du visage, des lèvres, des cils, des ongles ou des cheveux. L'invention a encore pour objet un procédé de traitement cosmétique des matières kératiniques, notamment de la peau du corps m du visage, des. lèvres, des ongles, des cheveux et/ou . des cils, comprenant l'application sur iesdites matières d'une composition cosmétique telle que définie précédemment. Il s'agit de préférence d'un procédé de maquillage des dites matières kératioiques.
Lorsque le procédé selon l'invention consiste en un procédé de traitement cosmétique, notamment de maquillage, notamment de coloration, des cheveux, l'application de la composition selon l'invention peut se faire, par exemple, par pulvérisation, par trempage ou pa shainpooinage.
On. peut utiliser tout outil adapté à l'application de la composition sur des cheveux. On peut notamment utiliser une 'brosse on un pinceau.
En variante, la composition selon l'invention peut être appliquée sur les cheveux manuellement.
Dans un exemple de réalisation, les cheveux peuvent, subir une étape de prétraitement avant applicatio de la composition selon l'invention.
Le prétraitement des cheveux peut notamment permettre d'améliorer l'accrochage de la composition de maquillage, notamment de. coloration, aux cheveux.
¾xe|gjgj s
Exemple 1 : Synthèse d'une particule « coeur-écorce >> a ant un cœur d'or de 150 nm de diamètre enrobé par une écorce d'argent ayant une épaisseur de S nm
Toutes les expérimentations détaillées dans cet exemple ont été menées à 25°C.
La synthèse des particules « c ur-écoree » comporte deux étapes. La première étape consiste en une synthèse de particules d'or ayant un diamètre de 150 nm mettant en œuvre une méthode de croissance des particules légèrement modifiée par rapport à celle développée par Liz-Marzan et al. (cf. Laugmuir 2006, 22, 7007-701 G), La seconde étape consiste, quant à elle, en l'enrobage des particules d'or, obtenues à l'issue de la première étape, avec une écorce d'argent.
S hèse de particules ci or ayant une taille de 15 nm
On mélange dans une fiole du HAuCU avec 0,5 L d'eau afin d'obtenir une concentration finale en or de 0,5 mM. Ensuite, 25 mL d'une solution aqueuse chaude comportant 0,25 g de sodium citrate dihydraie (Hé€607Na2.2¾0) sont ajoutés à la solution d'or bouillante.
La solution résultante est ensuite portée à ébu li&on pendant 30 minutes puis est placée au réfrigéra eur.
Synthèse de particules d'or ayant une taille de 60 nm
Il est possible de relier la taille des particules après croissance (rf) à la taille des particules avant croissance (r,) via la formule suivante :
Figure imgf000027_0001
où Cs désigne la concentration en sel d'or et C; la concentration des particules d*or avant croissance.
Afin d'obtenir des particules avec u diamètre final, de 60 nm, un diamètre théorique final rf de 68 nm a été pris en compte dans la formule ci -dessus.
En prenant ff ~ 68 nm et Cs :::: 0, 25œM, on obtient une concentration Ci égale à
2,7.10"" M.
On ajoute, à 35 °Ç, des particules d'or ayant une taille de 15 nm à un litre d'eau comportant 1 5 mmol de bromure de hexadécyitrimethylanimonium (CTAB) et 0,25 mmol de HÂuCU afin d'obtenir la concentration C; en particules d'or.
Ensuite, 5 ml. d'une solutio aqueuse d'acide L- ascorbique (C6¾Q&; formulé à raison de C ~ 100 mM dans 10 mL d'eau) sont ajoutés donnant une concentration finale de 0,5 mM.
Après la réaction, les particules ont été centrifugées à 3500 tours/minute pendant trente minutes.
Le surnageant a été renié! angé avec du CTAB à 0,1 M et les particules ont été, de nouveau, centrifugées.
Les grains obtenus dans les tubes de centrifogaûon ont alors été placés dans un tube à essais lequel a été placé dans un bain d'eau chaude (pratiquement à ébuliition, T ~ 95°C) durant 5 minutes.
Le tube à essai a ensuite été placé en position verticale et les particules ont été laissées décanter durant une nuit.
Le surnageant comprenant les particules sphériques a été conservé.
S lh ^. m: J - ^ ^ u e taille de 150 nm Le même procédé de croissance que décri au paragraphe précédent a été utilisé pour faire passer. le diamètre des particules d'or de 60 nm à 150 m.
Cependant, les concentrations au début de la réaction de croissance en HAuCL*, CTAB et acide ascorbique utilisées ont été de 0,5, 30 et 1 raM respectivement.
Aucune purification n'a été nécessaire car seules des particules sphériques ont été mises en œuvre dans ce procédé.
Enrobage d 'argent de y rtic ies d Or ayant une taille de 150 nm
Deux approches différentes peuvent être utilisées selon l'agent stabilisant utilisé avec les particules d'or.
Agent stabilisant de type PEG-SH
Les particules d'or ayant une taille de 1.50 nm, obtenues précédemment, ont été centrifugées à 1500 tours/minutes et le surnageant a été jeté.
Les particules ont été redispersées dans la moitié du volume initial d'eau et, selon les concentrations en nanoparticules, un certain volume de 0-[2-(3- mercaptopropionyiaœino)ethyi]-0'-methylpolyet ylene glycol stock solution (PEG-thiol, Mw=5000, €;;;0,5mM) a été ajouté afin d'obtenir une concentration finale de 4 molécules/ m3.
Ensuite, dans une Sole, des particules d'or ont été dispersées dans une solution tampon de phosphate à un pH de 7,4,
De Phydroquinone (HQ) et des ions argent (AgNOs) ont été ajoutés, sous agitation, avec un rapport molaire de 1.
Pour une écorce d'argent de 5 nm les concentrations au début de la réaction d'enrobage par l'argent, d'or, d'ions phosphate, de HQ et d'argent sont respectivement de 0,25, 10, 0,05 et 0,05 m M
Après réaction, 5 mg de polyéihylènimine (PEL Mw :::: 25 000) ont été ajoutés afin d'éviter une agrégation des particules.
Les particules ont, ensuite, été centrifugées à 1500 tours/minutes pendant 30 minutes et lavées avec de l'eau.
L'étape de purification a été répétée trois fois.
Agent stabilisant de type CTAB (bromure 'hexadécyltriméthyl ammonium) Dans ce cas, aucune modification de ragent stabilisant n'est nécessaire. Dans une fiole, des particules d'or ont été dispersées sous agitation, dans un tampon glycine à un p.H égal à 9. 'Ensuite, après ajustement de la concentration en CTAB, des ions argent et de Phydroqumone (HQ) ont été rajoutés.
Pour une éeorce d'argent de 5 mrs, les concentrations, au début de la réaction d'enrobage par l'argent, d'or, de glycine, de CTAB, de HQ et d'argent ont été de 0,25, 10, 1 , 0,05 et 0,05 rnM respectivement
Les partie aies ont été centrifugées à 1500 tours/minute pendant 30 minutes et lavées avec une solution de CTAB à 10 .mM,
L'étape de purification a été répétée trois fois,
Exemple 2 : Synthèse d'une particule « cœur-écorce » ayant un coeur d'or de 150 nrn de diamètre enrobé par une éeorce d'argent ayant une épaisseur de 1 nm
OH reprend le protocole opératoire décrit en exemple 1 permettant d'obtenir des particules d'or de 350 nm.
Ensuite, dans une fiole de 2Ô0mL, des particules d'or ont été dispersées, sous agitation, dans un tampon glycine à un pH égal à 9. Ensuite, après ajustement de la concentration en CTAB, des ions argent et de l'hydroquinone (HQ) ont été rajoutés.
Les concentrations, au début de la réaction d'enrobage par l'argent, d'or, de glycine, de CTAB, de HQ et d'argent ont été de 0,5, 10, 1 , 0,05 et 0,05 mM respectivement.
Les particules ont été centrifugées à 1500 tours/minute pendant 30 minutes et lavées avec une solution de CTAB à 10 mM.
L'étape de purification a été répétée trois fois. . La figure 4 représente une analyse en. microscopie électronique des particules de type « cœur-écorce » synthétisées dans l'exemple 2.
La figure 5 représente le spectre de réflectance des particules « cœur-écorce » synthétisées dans l'exemple 2 et le spectre correspond à une réflectance mesurée sur fond opaque.
Figure imgf000030_0001
On a place, dans une première cuve, une première solution comprenant une solution aqueuse ayant une concentration de lOmM en CTAB et des pariicules plasrnoniques d'or, ayant un diamètre de 160 nm, préparées en suivant le protocole décrit à l'étape 1 de l'exemple 2 (pour r¾- 160 nm) formulées à raison de 0,005% en volume.
On a placé, dans une deuxième cuve, une seconde solution comprenant la même solution aqueuse ayant une concentration de lOmM en CTAB et des particules plasmoniques
Au@Ag, synthétisées à l'exemple 2, formulées à raison de 0,0005% en volume.
Ces première et seconde cuves sont superposées à une carte de contraste comportant une zone blanche et une zone noire. Les résultats sont fournis à la figure 6.
On constate que, bien qu'elles soient formulées en une quantité dix fois moindre, les pariicules plasrnoniques selon l'invention confèrent à la solution une luminosité nettement améliorée et une couvrance (visibilité fond blanc/noir) à peu prés identique à celle obtenue avec les particules plasrnoniques d'or. Le bénéfice en termes de luminosité est évalué à
20% lorsque le milieu est opaque.
Lorsque le milieu est non opaque et, à quantité de matériau identique le bénéfice eoloriroétrique est bien supérieur.
En effet, la figure 7 .fournit une comparaison des spectres de réflectance de solutions comprenant chacune un des deux types de particules plasrnoniques formulées à une même concentration, à savoir 0,1% en masse. Dans ce cas, les systèmes sont non opaques mais ont la même traction massique de matériau (correspondant à 0,005% en volume). L'opacité est mesurée pour une épaisseur de film déposé de 500 μχη. Les mesures de luminosité, saturation et opacité sont fournies dans le tableau 1 ci-dessous.
Figure imgf000030_0002
Figure imgf000031_0001
Tableau 1
Exemple 4 ; Comparaison ,, des effets colorimétriques produits, d'une part par des parti cuies,, ei nj io^n tien et, d'autre part, par des pigments conventi n els
Les préparations sont des solutions aqueuses constituées à 0,05% en volume des particules plasmoniques selon l'invention et du. tensioaciif cationique CTAB à lOm .
Différentes mesures ont été réalisée pour des épaisseurs déposées sur caries de contraste fond noir / fond blanc.
Les spectres de réflectance de la figure 8 correspondent aux mesures sur fond noir autrement dit à l'énergie renvoyée par les pigments seuls. La comparaison entre les spectres de réflectance permet de calculer l'opacité du système.
Les mesures sont effectuées sur fond noir afin que l'opacité et la lumière réfléchie ne proviennent que des pigments utilisés dans les exemples du tableau 2 ci -après :
Figure imgf000031_0002
Figure imgf000032_0001
^Mesures effectuées avec un illuminan D65 et un observateur 10°
Tableau 2
On constate que, comparativement aux pigments traditionnels, une très faible quantité de pigments plasraomques selon l'invention suffit pour obtenir une luminosité supérieure.
Exemple S : Composition cosmétique selon l'invention
Base de.fQ.nd de teint
Les teneurs indiquées dans la composition ci-dessous sont massiques.
Sulfate de magnésium 0,7 cyclopentasiloxane et disteardimonium hectorite 5,8 dimethicone 2,9 cyclopentasiîoxane .10,3 acetylated glyeol stéarate 0,5 propylene glycol 5,0 isododecane 1,9 conservateur qs
polyglyçeryl-4 isostearate et cetyl peg/ppg-l()/l dimethicone 6,55 et hexyl lanrate
Eau qsp 100%
Essai c mparatif
Une photographie entre une base de fond de teint avec et sans les particules plasmoniques synthétisées à l'exemple 2 est fournie à. la figure 9,
j Exem le j Luminos é* Saturation* j Base de fond de teint j 40 0,5
! Base de fond de teint j 58 16
Figure imgf000033_0001
'Mesures e ectu es avec un uminant D65 eî un observateur 10°. Epaisseur.™ 200
Tableau 3
L'utilisation d'une très faible quantité d particules piasmoniques selon l'invention à hauteur de 0,0028% en volume a augmenté la luminosité de la base de fond de teint de 47%.
En plus de l'augmentation de luminosité, on constate une saturation, de la couleur de la base.
Exemple 6 ;. Composition cosmétique selon l'invention
Composition capillaire gainante :
- Resyn 28-2930 25 % 12.5 g
AMP qs neutralisation 1.44 g
- EtOH, qsp 100 % 36.06 g
Resyn 28-2930 : terpolymère acétate de vinyle/aeide erotcmique/néodécanoaie de. vinyle (Tg - 39°€}„ Ce eopolymère doit être neutralisé par 2-Axnino 2-Methyl I-Propanol (AMP) pour solvatation dans î'éthanol absolu (EtOH)
Mise en œuvre de. la formule :
- 80% de Au@Ag 150/10 nm.dans la préparation à base de Resyn 28-2930 décrite ci- dessus ; soit 5 % MA de résine et 0.8 % MA de plasraon.
- application de 0.8 g de formule sur une mèche BP de i g.
- répartition à plat et avec le doigt puis séchage à l'aide d'un sèche-cheveux.
Lors de l'introduction de .la solution alcoolique de résine, on n'observe pas d'évolution de la couleur des plasmons ; c'est lors de l'application réalisée 2-3 minutes plus tard que l'on décèle sur le cheveu dans un premier temps puis en solution 2-3 minutes encore plus tard une évolution de la couleur de la formule.
Le résultat final est une mèche visiblement colorée (cf. Figure 10),
Le tableau 4 donné, c -dessous donne, quant à lut, les mesures colorimétriques effectuées à D65, 10°.
S b C* h*
Référence 48.2 3,4 9.8 10.4 70.9
41.0 1 1 ,8 13.8 18.1 49.6
Tableau 3
Exemple ,?
On prépare un fard, à paupières liquide comprenant (en g) :
Figure imgf000034_0001
Figure imgf000035_0001
Figure imgf000035_0002
L* expression « comportant unfe) » doit être comprise comme « comportant au moins un(e) ».
L'expression « eompris(e) entre » doit se comprendre comme bornes incluses.

Claims

1. Composition cosmétique comportant :
- un milieu cosmédquemeni acceptable, et
· des particules colorées de taille comprise entre 70 nm et 1 μηι, comportant : o dans une première région, un premier composé métallique consistant en un premier métal plasmonique ou un de ses alliages, et o dans une seconde région distincte de la première, un second composé métallique consistant en un second métal plasmonique ou un de ses alliages, le second composé métallique étant différent du premier composé métallique,
les première et seconde régions ayant chacune une taille ou une épaisseur supérieure ou égale à 2 nm et les premier et second composés métalliques ayant ensemble une incidence sur la résonance plasmonique des particules,
2. Composition selon la revendication. 1 , les particules présentant une distance entre les première et seconde régions inférieure ou égale à 45 nm, notamment à.30 nm, notamment à 1.5 nm.
3. Composition selon l'une quelconque des revendications précédentes, les particules ayan une taille comprise entre 80 nm et 700 nm, notamment entre 90 et 300 nm, notamment entre 00 et 250 nm, notamment entre 1 10 nm et 200 nm.
4. Composition selon l'une quelconque des revendications précédentes, la seconde région des particules enrobant la première région des particules.
5. Composition selon Tune quelconque des revendications précédentes, la seconde région, ayant une taille comprise entre 2 nm et 1 μηα, en particulier entre 2 nm et 30 n ., voire entre 3 nra e 25 nm, et encore mieux, entre 4 nm et 20 nm,
6. Composition selon l'une quelconque des revendications précédentes, la première région ayant une. taille comprise entre 30 nra et 900 nm, mieux entre 40 nm et 800 nm, mieux entre 60 nm et. 700 nm, de préférence entr 70 m et 600 nm.
7. Composition selon l'une quelconque des revendications précédentes, les première et seconde régions des particules étant au contact l'une de l'autre.
S. Composition selon l'une quelconque des revendications précédentes, les particules comportant, en outre, un matériau diélectrique.
9. Composition selon l'une quelconque des revendications précédentes, les particules comportant, dans une troisième région, un troisième composé métallique consistant en un troisième métal plasmonique ou un de ses alliages, le troisième composé métallique étant différent des premier et second composés métalliques.
10. Composition selon Tune quelconque des revendications précédentes, le premier et/ou le second et/ou l'éventuel troisième métal plasmonique des particules étant choisi(s) parmi le tungstène (W), l'aluminium (Ai), le palladium (Pd), le platine (Pt), l'argent (Àg), le cuivre (Ou), l'or (Au), le chrome (Cr). le zinc (Zn), le rhodium (Rh), le nickel (Ni) et Féiain (Su).
1 . Composition selon la revendication précédente, les premier et second composés métalliques des particules étant choisis parmi For et Γ argent, notamment le premier composé métallique étant de l'or et le second composé métallique étant de l'argent.
12. Procédé de traitement cosmétique, notamment de maquillage ou de coloration, des matières kératmiques humaines, comportant l'étape consistant à appliquer sur les matières kéraiiniques humaines à traiter une composition selon l'une quelconque des revendications 1 à 1 L
13. Procédé de maquillage des cheveux, de la peau et ou des lèvres, comportant une étape d'application sur les cheveux, lèvres et/ou peau d'une composition selon l'une quelconque des revendications 1 à 1 1.
14. Particule colorée de taille comprise entre 1 10 uni. et 1 μηα comportant :
- dans une première région, un premier composé métallique consistant en un premier métal plasmonique ou un de ses alliages, et
- dans une seconde région distincte de la première, un second composé métallique consistant en un second métal plasmonique ou un de ses alliages, le second composé métallique étant différent du premier composé métallique,
les première et seconde régions ayant chacune une taille ou une épaisseur supérieure ou égale à 2 nm et les premier et second composés métalliques ayant ensemble une incidence sur la résonance plasmonique de la particule.
15. Particule colorée de taille comprise entre 70 nm et 1 μιη comportant :
- dans une première région un premier composé métallique consistant en un premier métal plasmonique ou un de ses alliages, et - dans une seconde région enrobant la première région ei distincte de celle-ci, un second composé métallique consistant en un second métal plasxnonlque ou un de ses alliages, le second composé métallique étant différent du premier composé métallique, les première et seconde régions ayant chacune une taille ou une épaisseur supérieure ou égale à 2 nm, les premier et second composés métalliques ayant ensemble une incidence sur 1 a résonance plasmon ique de ί a parti cul e .
PCT/IB2011/054408 2010-10-07 2011-10-06 Particule comportant deux métaux plasmoniques WO2012046204A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR1058158 2010-10-07
FR1058158A FR2965719B1 (fr) 2010-10-07 2010-10-07 Particule comportant deux metaux plasmoniques
US39298310P 2010-10-14 2010-10-14
US61/392,983 2010-10-14

Publications (1)

Publication Number Publication Date
WO2012046204A1 true WO2012046204A1 (fr) 2012-04-12

Family

ID=44228318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/054408 WO2012046204A1 (fr) 2010-10-07 2011-10-06 Particule comportant deux métaux plasmoniques

Country Status (2)

Country Link
FR (1) FR2965719B1 (fr)
WO (1) WO2012046204A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170112730A1 (en) * 2015-10-22 2017-04-27 International Business Machines Corporation Plasmonic Enhancement of Absorption in Sunscreen Applications
US9883993B2 (en) 2015-09-03 2018-02-06 International Business Machines Corporation Notch filter coatings for use in sunscreen applications
US9883994B2 (en) 2015-09-03 2018-02-06 International Business Machines Corporation Implementing organic materials in sunscreen applications
US9937112B2 (en) 2015-09-03 2018-04-10 International Business Machines Corporation Doping of zinc oxide particles for sunscreen applications
US9993402B2 (en) 2015-09-03 2018-06-12 International Business Machines Corporation Sunscreen additives for enhancing vitamin D production
US10045918B2 (en) 2015-10-22 2018-08-14 International Business Machines Corporation Embedding oxide particles within separate particles for sunscreen applications
US10076475B2 (en) 2015-10-23 2018-09-18 International Business Machines Corporation Shell-structured particles for sunscreen applications
US10369092B2 (en) 2015-09-03 2019-08-06 International Business Machines Corporation Nitride-based nanoparticles for use in sunscreen applications
US10682294B2 (en) 2015-09-03 2020-06-16 International Business Machines Corporation Controlling zinc oxide particle size for sunscreen applications
US10751268B2 (en) 2015-09-03 2020-08-25 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US10952942B2 (en) 2015-09-03 2021-03-23 International Business Machines Corporation Plasmonic enhancement of zinc oxide light absorption for sunscreen applications

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008539A2 (fr) * 2001-05-25 2003-01-30 Northwestern University Nanoparticules du type noyau/coquille ne s'alliant pas
WO2005023535A2 (fr) * 2003-02-25 2005-03-17 Xmx Corporation Nanoparticules encapsulees pour l'absorption d'energie electromagnetique dans la gamme des ultraviolets
JP2005068019A (ja) 2003-08-25 2005-03-17 Mitsubishi Materials Corp 金属ナノロッド含有化粧品
US7147687B2 (en) 2001-05-25 2006-12-12 Nanosphere, Inc. Non-alloying core shell nanoparticles
WO2006132663A2 (fr) * 2004-09-30 2006-12-14 Intel Corporation Metaux et alliages de dimension nanometrique, et procedes d'assemblage de boitiers en contenant
WO2007011103A1 (fr) 2005-07-18 2007-01-25 Korea Research Institute Of Bioscience And Biotechnology Composition de pigments cosmétiques contenant des nanoparticules d’or ou d’argent
WO2007103536A2 (fr) * 2006-03-08 2007-09-13 Northwestern University Separation de phases de l'or photo-induite dans des nanoparticules a deux composants pour la formation de nanoprismes
JP2008024677A (ja) 2006-07-25 2008-02-07 Shiseido Co Ltd 着色複合粉末及びこれを配合する化粧料
WO2008025751A1 (fr) * 2006-08-30 2008-03-06 Umicore Ag & Co. Kg Particules de catalyseur du type à noyau/enveloppe comprenant des matériaux de noyau en métal ou en céramique, procédés de préparation de ces dernières
JP2008088296A (ja) 2006-10-02 2008-04-17 Ube Ind Ltd 着色ポリアミド微粒子およびその製造方法
US20090022766A1 (en) 2007-07-18 2009-01-22 Geddes Chris D Metal-enhanced fluorescence nanoparticles
WO2009096569A1 (fr) * 2008-02-01 2009-08-06 Kyushu University, National University Corporation Procédé pour produire un nanomatériau métallique et nanomatériau métallique obtenu par celui-ci

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008539A2 (fr) * 2001-05-25 2003-01-30 Northwestern University Nanoparticules du type noyau/coquille ne s'alliant pas
US7147687B2 (en) 2001-05-25 2006-12-12 Nanosphere, Inc. Non-alloying core shell nanoparticles
WO2005023535A2 (fr) * 2003-02-25 2005-03-17 Xmx Corporation Nanoparticules encapsulees pour l'absorption d'energie electromagnetique dans la gamme des ultraviolets
JP2005068019A (ja) 2003-08-25 2005-03-17 Mitsubishi Materials Corp 金属ナノロッド含有化粧品
WO2006132663A2 (fr) * 2004-09-30 2006-12-14 Intel Corporation Metaux et alliages de dimension nanometrique, et procedes d'assemblage de boitiers en contenant
WO2007011103A1 (fr) 2005-07-18 2007-01-25 Korea Research Institute Of Bioscience And Biotechnology Composition de pigments cosmétiques contenant des nanoparticules d’or ou d’argent
WO2007103536A2 (fr) * 2006-03-08 2007-09-13 Northwestern University Separation de phases de l'or photo-induite dans des nanoparticules a deux composants pour la formation de nanoprismes
JP2008024677A (ja) 2006-07-25 2008-02-07 Shiseido Co Ltd 着色複合粉末及びこれを配合する化粧料
WO2008025751A1 (fr) * 2006-08-30 2008-03-06 Umicore Ag & Co. Kg Particules de catalyseur du type à noyau/enveloppe comprenant des matériaux de noyau en métal ou en céramique, procédés de préparation de ces dernières
JP2008088296A (ja) 2006-10-02 2008-04-17 Ube Ind Ltd 着色ポリアミド微粒子およびその製造方法
US20090022766A1 (en) 2007-07-18 2009-01-22 Geddes Chris D Metal-enhanced fluorescence nanoparticles
WO2009096569A1 (fr) * 2008-02-01 2009-08-06 Kyushu University, National University Corporation Procédé pour produire un nanomatériau métallique et nanomatériau métallique obtenu par celui-ci

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
AH, C. S., HONG, S. D., JANG, D.-J.: "Preparation of AucoreAgshell Nanorods and Characterization of Their Surface Plasmon Résonances", J.PHYS.CHEM. B, vol. 105, 2001, pages 7871 - 7873
FAN, F.-R., LIU, D.-Y., WU, Y.-F., DUAN, S., XIE, Z.-X., HANG, Z.-Y., TIAN, Z.-Q.: "Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes", J. AM. CHEM. SOC., vol. 130, 2008, pages 6949 - 6951
GAO, L., FAN, L., ZHANG, J.: "Selective Growth of Ag Nanodewdrops on Au Nanostructures: A New type of Bimetallic Heterostructure", LANGMUIR, vol. 25, 2009, pages 11844 - 11848
I. PASTORIZA-SANTOS ET AL., CHEM. MATER, vol. 18, 2006, pages 2465
J.-E. JÖNSSON ET AL., MACROMOLECULES, vol. 27, 1994, pages 1932
L. ZHANG ET AL., ADV. FUNCT. MATER., vol. 18, 2008, pages 3834
LANGMUIR, vol. 22, 2006, pages 7007 - 7010
LIU, M., GUYOT-SIONNEST, P.: "Synthesis and Optical Characterization of Au/Ag Core/Shell Nanorods", J. PHYS. CHEM. B, vol. 108, 2004, pages 5882 - 5888, XP002553270, DOI: doi:10.1021/jp037644o
LIZ-MARZÁN ET AL., CHEM. COMMUN., 1996, pages 731
M.SCHIERHORN, L.M. LIZ-MARZÁN: "Synthesis of Bimetallic Colloids with Tailored Intemettallic Séparation", NANO LETT., vol. 2, 2002, pages 13 - 16
MANDAL, M., JANA, N.R., KUNDU, S., GHOSH, S.K., PANIGRAHI, M., PAL, T.: "Synthesis of Aucore'-Agshell type bimetallic nanoparticles for single molecule detection in solution by SERS method", JOURNAL OFNANOPARTICLE RESEARCH, vol. 6, no. 1, 2004, pages 53 - 61, XP019260117
MICHALET ET AL., SCIENCE, vol. 307, 2005, pages 538
RODRIGUEZ-GONZÂLEZ, B., BURROWS, A., WATANABE, M., KIELY, C. J., LIZ-MARZÁN, L. M.: "Multishell Bimetallic AuAg Nanoparticles: Synthesis, Structure and Optical Properties", J. MATER. CHEM., vol. 15, 2005, pages 1755 - 1759
RYCENGA, M., HOU, K. K., COBLEY, C. M., SCHWARTZ, A. G., CAMARGO, P. H. C., XIA, Y.: "Probing the surface-enhanced Raman scattering properties of Au-Ag nanocages at two different excitation wavelengths", PHYS. CHEM. CHEM PHYS., vol. 11, 2009, pages 5903 - 5908
T. PELLEGRINO ET AL., NANO LETT., vol. 4, 2004, pages 703
XUE, C., MILLSTONE, J. E., LI, S., MIRKIN, C. A.: "Plasmon-Driven Synthesis of Triangular Core-Shell Nanoprisms from Gold Seeds", ANGEW. CHEM. INT. ED., vol. 46, 2007, pages 8436 - 8439, XP002502581, DOI: doi:10.1002/ange.200703185
Y. KOHAYASHI ET AL., JCIS, vol. 264, 2003, pages 385

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952942B2 (en) 2015-09-03 2021-03-23 International Business Machines Corporation Plasmonic enhancement of zinc oxide light absorption for sunscreen applications
US10682294B2 (en) 2015-09-03 2020-06-16 International Business Machines Corporation Controlling zinc oxide particle size for sunscreen applications
US10682295B2 (en) 2015-09-03 2020-06-16 International Business Machines Corporation Controlling zinc oxide particle size for sunscreen applications
US9883994B2 (en) 2015-09-03 2018-02-06 International Business Machines Corporation Implementing organic materials in sunscreen applications
US9889074B2 (en) 2015-09-03 2018-02-13 International Business Machines Corporation Notch filter coatings for use in sunscreen applications
US9937112B2 (en) 2015-09-03 2018-04-10 International Business Machines Corporation Doping of zinc oxide particles for sunscreen applications
US9993402B2 (en) 2015-09-03 2018-06-12 International Business Machines Corporation Sunscreen additives for enhancing vitamin D production
US10959924B2 (en) 2015-09-03 2021-03-30 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US9883993B2 (en) 2015-09-03 2018-02-06 International Business Machines Corporation Notch filter coatings for use in sunscreen applications
US10959923B2 (en) 2015-09-03 2021-03-30 International Business Machines Corporation Plasmonic enhancement of zinc oxide light absorption for sunscreen applications
US10300001B2 (en) 2015-09-03 2019-05-28 International Business Machines Corporation Implementing organic materials in sunscreen applications
US10925819B2 (en) 2015-09-03 2021-02-23 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US10369092B2 (en) 2015-09-03 2019-08-06 International Business Machines Corporation Nitride-based nanoparticles for use in sunscreen applications
US10383799B2 (en) 2015-09-03 2019-08-20 International Business Machines Corporation Doping of zinc oxide particles for sunscreen applications
US10835463B2 (en) 2015-09-03 2020-11-17 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US10772808B2 (en) 2015-09-03 2020-09-15 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US10758464B2 (en) 2015-09-03 2020-09-01 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US10751268B2 (en) 2015-09-03 2020-08-25 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US10940101B2 (en) 2015-09-03 2021-03-09 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US10045918B2 (en) 2015-10-22 2018-08-14 International Business Machines Corporation Embedding oxide particles within separate particles for sunscreen applications
US10166176B2 (en) * 2015-10-22 2019-01-01 International Business Machines Corporation Plasmonic enhancement of absorption in sunscreen applications
US10092487B2 (en) 2015-10-22 2018-10-09 International Business Machines Corporation Plasmonic enhancement of absorption in sunscreen applications
US20170112730A1 (en) * 2015-10-22 2017-04-27 International Business Machines Corporation Plasmonic Enhancement of Absorption in Sunscreen Applications
US20170157007A1 (en) * 2015-10-22 2017-06-08 International Business Machines Corporation Plasmonic Enhancement of Absorption in Sunscreen Applications
US10660833B2 (en) 2015-10-23 2020-05-26 International Business Machines Corporation Shell-structured particles for sunscreen applications
US10660834B2 (en) 2015-10-23 2020-05-26 International Business Machines Corporation Shell-structured particles for sunscreen applications
US10653593B2 (en) 2015-10-23 2020-05-19 International Business Machines Corporation Shell-structured particles for sunscreen applications
US10632329B2 (en) 2015-10-23 2020-04-28 International Business Machines Corporation Shell-structured particles for sunscreen applications
US10076475B2 (en) 2015-10-23 2018-09-18 International Business Machines Corporation Shell-structured particles for sunscreen applications

Also Published As

Publication number Publication date
FR2965719A1 (fr) 2012-04-13
FR2965719B1 (fr) 2014-05-23

Similar Documents

Publication Publication Date Title
WO2012046204A1 (fr) Particule comportant deux métaux plasmoniques
EP1586296B1 (fr) Composition destinée à être appliquée sur la peau, les lèvres et/ou les phanères.
EP1382322B1 (fr) Composition cosmétique de maquillage
EP1799068B1 (fr) Procede de maquillage au moyen d&#39;une composition magnetique, comportant au moins un pigment interferentiel
EP1382323B1 (fr) Composition cosmétique pour le maquillage
EP1588687B1 (fr) Composition destinée à être appliquée sur la peau, les lèvres et/ou les phanères
WO2002028356A1 (fr) Utilisation notamment en maquillage d&#34;une composition cosmetique a phase continue hydrophile comprenant un pigment goniochromatique multicouche
EP1195155A2 (fr) Composition cosmétique comprenant un pigment goniochromatique
WO2012035029A2 (fr) Composition cosmétique comprenant une substance colorante, ladite substance colorante et procédé cosmétique de traitement
EP1925278A1 (fr) Gamme de compositions cosmétiques
FR3058888A1 (fr) Composition filmogene a base de pullulan, et ses utilisations dans des compositions cosmetiques pour le maquillage et/ou le soin des matieres keratiniques, de la peau et des levres
EP1763330B1 (fr) Composition destinée à la peau, aux levres ou aux ongles
EP1410785B1 (fr) Produit de maquillage associant deux compositions à base respectivement d&#39;une matière colorante photochrome et d&#39;un agent goniochromatique
EP1000604B1 (fr) Composition cosmétique à phase continue hydrophile contenant du vanadate de bismuth
EP1923040A2 (fr) Composition cosmétique comportant un pigment interferentiel et un agent de coloration sensible à un stimulus extérieur
EP1927339A2 (fr) Composition cosmétique couvrante
EP1586295B1 (fr) Composition destinée à être appliquée sur la peau, les lèvres et/ou les phanères.
FR2999421A1 (fr) Composition cosmetique contenant des pigments naturels blancs a couvrance elevee.
FR2854795A1 (fr) Composition cosmetique visant a creer une variation de couleur avec l&#39;angle d&#39;observation
EP1410786A1 (fr) Composition cosmétique associant au moins deux matières colorantes dont au moins une matière colorante photochrome
EP1302524A2 (fr) Composition de maquillage comprenant un polymère à cristaux liquides
FR3133752A1 (fr) Composition comprenant l’éthyl cellulose, un mono-alcool, une huile hydrocarbonée volatile, un alcane non volatile, un ester d’acide gras et de polyglycérol et un ester d’acide linoléique ou oléique
FR3133754A1 (fr) Composition comprenant de l’éthyl cellulose, un mono-alcool, une huile hydrocarbonée volatile, une huile alcane non volatile, un mono- ou diester d’acide gras et de polyglycérol et un alkyl benzoate
FR2908638A1 (fr) Composition cosmetique comportant au moins un agent de coloration sensible a un stimulus exterieur
FR2908641A1 (fr) Composition cosmetique comportant au moins un pigment interferentiel multicouche et au moins un pigment reflechissant a reflet metallique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11773904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11773904

Country of ref document: EP

Kind code of ref document: A1