WO2012044063A2 - 혼성 담지 메탈로센 촉매의 제조방법 - Google Patents

혼성 담지 메탈로센 촉매의 제조방법 Download PDF

Info

Publication number
WO2012044063A2
WO2012044063A2 PCT/KR2011/007143 KR2011007143W WO2012044063A2 WO 2012044063 A2 WO2012044063 A2 WO 2012044063A2 KR 2011007143 W KR2011007143 W KR 2011007143W WO 2012044063 A2 WO2012044063 A2 WO 2012044063A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
carrier
alkyl
group
aryl
Prior art date
Application number
PCT/KR2011/007143
Other languages
English (en)
French (fr)
Other versions
WO2012044063A3 (ko
Inventor
김현국
이기수
홍대식
송은경
전만성
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP11829569.0A priority Critical patent/EP2623522B1/en
Priority to US13/824,935 priority patent/US9012347B2/en
Priority to CN201180046567.7A priority patent/CN103140506B/zh
Publication of WO2012044063A2 publication Critical patent/WO2012044063A2/ko
Publication of WO2012044063A3 publication Critical patent/WO2012044063A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/02Cp or analog bridged to a non-Cp X anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Definitions

  • the present invention relates to a method for preparing a common supported metallocene catalyst.
  • the polymerization process of olepin is classified into a high pressure process, a solution process, a slurry process, and a gas phase process, and various efforts have been made to prepare an urepin polymer having desired properties by applying various metallocene catalysts to the polymerization process. It is done.
  • the polymer In the polymerization process of eleupine, the polymer is entangled on the wall surface during fouling, and fouling occurs. This phenomenon can be prevented to some extent by using a metallocene-based supported catalyst as a catalyst. In addition, when the metallocene-based supported catalyst is used, it is possible to increase the density of the olefin polymer, thereby increasing the production amount per unit volume of the semi-ungung group.
  • the present invention enables the preparation of polyolefins having high bulk density while exhibiting high activity against polymerization reaction of olefins. It is to provide a simplified process for preparing a common supported metallocene catalyst.
  • the present invention is a.
  • It provides a method for producing a common supported metallocene catalyst comprising a.
  • the carrier may include a hydroxyl group of about 2 to .4 mmol / g on the surface.
  • the molar ratio of the trialkylaluminum and alkylaluminoxane may be about 1:10 to 1:30.
  • the amount of the alkylaluminoxane supported on the carrier may be about 6 to 20 mmol / g.
  • the amount of the metallocene compound supported on the carrier may be about 0.1 to 0.5 mmol / g.
  • the supporting step of the alkylaluminoxane may be performed at a temperature of about 40 to 80 ° C.
  • the carrier may be one or more selected from the group consisting of silica, silica-alumina, and silica-magnesia.
  • the trialkylaluminum may be at least one selected from the group consisting of trimethylaluminum, triethylaluminum and tributylaluminum.
  • the alkyl aluminoxane can be at least one element selected 'from the group consisting of methyl aluminoxane, ethyl aluminoxane, butyl aluminoxane and isobutyl aluminoxane.
  • the metallocene compound may be at least one selected from the group consisting of the following Chemical Formulas 1 to 3:
  • M is a Group 4 transition metal
  • (C 5 R a ) and (C 5 R b ) are each independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, aryl, alkenyl, alkylaryl, arylalkyl, arylalkenyl and hydrocarbyl Clopentadienyl ligand, a metalloid of Group 14 metal substituted with more than one species, or cyclopentadiene, in which two adjacent carbon atoms of C 5 are connected by hydrocarbyl to form one or more rings of 4 to 16 carbon atoms.
  • Niligand Niligand;
  • Q is a halogen atom, alkyl, alkenyl, aryl, alkylaryl, arylalkyl or alkylidene;
  • p is 0 or 1;
  • M is a Group 4 transition metal
  • R 3 and R 4 are each independently hydrogen, alkyl having 1 to 20 carbon atoms, and carbon atoms
  • A is alkylene having 2 to 4 carbon atoms, alkylsilicone having 1 to 4 carbon atoms, alkylgerium having 1 to 4 carbon atoms, alkylphosphine having 1 to 4 carbon atoms or alkylamine having 1 to 4 carbon atoms;
  • Q is independently a halogen atom, alkyl having 1 to 20 carbon atoms, carbon number Alkenyl of 2 to 10, alkylaryl of 7 to 40 carbon atoms, arylalkyl of 1 to 40 carbon atoms, aryl of 6 to 20 carbon atoms, substituted or unsubstituted alkylidene of 1 to 20 carbon atoms, substituted or unsubstituted Unsubstituted amino groups, alkylalkoxy having 2 to 20 carbon atoms or arylalkoxy having 7 to 40 carbon atoms;
  • n is an integer from 0 to 10;
  • R 1 and R 2 are each independently hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, silyl having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms, and having 7 carbon atoms.
  • a metalloid of a Group 4 metal substituted with arylalkyl or hydrocarbyl of from 20 to 20; R 1 and R 2 or two R 2 may be connected to each other by an alkylidine including alkyl having 1 to 20 carbon atoms or aryl having 6 to 20 carbon atoms to form a ring;
  • R 3 is each independently hydrogen, a halogen atom, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms, arylalkyl having 7 to 20 carbon atoms, and carbon atoms. Alkoxy of 1 to 20, aryloxy or amido of 6 to 20 carbon atoms; The two of the above R 3 R 3 may form a ring or ring bangjok not control being connected to each other, and;
  • CY 1 is a substituted or unsubstituted aliphatic or aromatic ring, and the substituents substituted in CY 1 are a halogen atom, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, and having 7 to 7 carbon atoms. 20 alkylaryls, arylalkyls having 7 to 20 carbon atoms, alkoxy having 1 to 20 carbon atoms, carbon atoms 6-20 aryloxy, amido; When there are a plurality of substituents, two or more substituents in the substituents may be linked to each other to form an aliphatic or aromatic ring;
  • M is a Group 4 transition metal
  • Q 1 and Q 2 are each independently halogen, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms, arylalkyl having 7 to 20 carbon atoms, and carbon atoms.
  • the present invention also provides a common supported metallocene catalyst prepared according to the above-described method and a method for preparing polyolefin using the same.
  • the present invention it is possible to produce low cost and simplified processes for common supported metallocene catalysts that exhibit good catalytic activity for olefin polymerization. Furthermore, the common supported metallocene catalyst can be used to produce polyolefins having high bulk density and having commercially superior physical properties. [Specific contents to carry out invention]
  • the term "water content" of a carrier is defined as the percentage of the weight of water contained in the carrier relative to the total weight of the carrier.
  • the method comprising: at a temperature of about 60 to 100 ° C, process the water content of about 4% by weight of carrier ⁇ trialkylaluminum; Supporting the alkyl aluminoxane on the carrier; And it provides a method for producing a common supported metallocene catalyst comprising the step of supporting a metallocene compound on the carrier on which the alkylaluminoxane is supported.
  • a carrier having a water content of about 4 to 7% by weight is used, which is treated with trialkylaluminum at a temperature of about 60 to 100 ° C.
  • a common supported metallocene catalyst is prepared by sequentially supporting an alkylaluminoxane and a metallocene compound as a main catalyst.
  • a carrier having a water content of about 4 to 7 wt% refers to a carrier such as silica that has not undergone high temperature drying or calcining, and there may be a plurality of pores containing a certain amount of moisture in the carrier.
  • a carrier such as silica that has not undergone high temperature drying or calcining, and there may be a plurality of pores containing a certain amount of moisture in the carrier.
  • the supported catalyst obtained by the production method of one embodiment not only shows excellent activity, but also enables the production of polyolefins having a higher bulk density.
  • the previously known supported catalysts are obtained by drying or calcining a carrier having a constant moisture content at a high temperature to obtain a carrier having a moisture content of about 1% by weight or less, and then using alkylaluminoxane as a promoter and metallocene as a main catalyst. It was provided by carrying a compound or the like.
  • the high temperature drying or firing may be for forming a siloxane group or the like on the surface of the carrier to appropriately support the promoter.
  • the necessity of high temperature drying or calcination complicates the production process of the supported catalyst, and increases the production cost and energy consumption : polymerization reaction can occur only on the surface on which the promoter is supported. There was a limit to the increase in activity. In addition, it increases the surface loading of the promoter to increase In order to improve, the bulk density of polyolefin became low or the activity of a catalyst fell in many cases.
  • the supported catalyst prepared by one embodiment enables the production of polyolefins having a high bulk density while exhibiting excellent catalytic activity.
  • each step that may be included in the manufacturing method of an embodiment will be described in more detail.
  • a method for preparing a common supported metallocene catalyst includes treating a surface of a carrier having a water content of 4 to 7 wt% with trialkylaluminum. This step can proceed at a temperature of about 60 to 100 ° C, for example about 70 to 90 ° C black, about 80 to 100 ° C, in order to properly react the water in the carrier and trialkylaluminum. have.
  • a carrier controlled to have a moisture content of about 1% by weight or less by mainly drying or firing the carrier at a high temperature in order to form a highly siloxane group on the surface of the carrier was used.
  • the carrier used in the manufacturing method of one embodiment is as a water-containing in a range, for about 4 to 7 parts by weight 0/0, for example, may have a water content of about 5 to 6.5% by weight.
  • the carrier in order to achieve a minimum catalytic activity improving effect, preferably has a water content of about 4% by weight or more.
  • the carrier in addition, preferably has a water content of about 7% by weight or less in order to prevent excessive presence of moisture in the carrier, thereby degrading the activity of the catalyst.
  • the catalyst since the carrier having a moisture content of about 4 to 7% by weight may be used as it is without undergoing the above-described high temperature drying or firing process, the catalyst may be manufactured in a simplified process as well as the cost of preparing the catalyst. Can be lowered. However, as the carrier has been subjected to the calcination process, water may be added so as to have a water content in the above range, but it is more preferable to use a carrier which has not undergone the calcination process in terms of production cost of the catalyst.
  • the carrier may include about 2 to 4 mmol / g of hydroxyl groups, for example, about 2.5 to 3.5 mmol / g of hydroxyl groups, on the surface of the carrier, as the carrier exhibits a water content in the aforementioned range. .
  • Such a carrier may be at least one member selected from the group consisting of silica, silica-alumina, and silica-magnesia, and may be, for example, silica.
  • any carrier that satisfies the above water content range can be used without limitation.
  • the step of treating the carrier is a pretreatment step to increase the supporting efficiency of the alkylaluminoxane (cocatalyst) and the metallocene compound (main catalyst) to be described later and to improve the activity of the catalyst ⁇
  • the method of preparing an embodiment is in a certain range By using the carrier having a water content of and simultaneously treating the carrier with trialkylaluminum under a certain degree of silver, a highly active and supported catalyst of a high activity in a more simplified manner compared to the previous production method using a calcined carrier at high temperature Can be prepared.
  • the trialkylaluminum may be at least one selected from the group consisting of trimethylaluminum (TMA1), triethylaluminum (TEA1), and tributylaluminum (TBA1), for example, triethylaluminum (TEA1). May be).
  • TMA1 trimethylaluminum
  • TEA1 triethylaluminum
  • TSA1 tributylaluminum
  • a solvent may be used to induce smooth contact between the carrier and trialkylaluminum, and may be repeated without solvent.
  • the solvent includes aliphatic hydrocarbons such as nucleic acids, pentane and heptane; Aromatic hydrocarbons such as toluene, benzene; Hydrocarbons substituted with chlorine atoms such as dichloromethane; Ethers such as diethyl ether and tetrahydrofuran (THF); Most organic solvents such as acetone and ethyl acetate can be used.
  • a nucleic acid, heptane, toluene or dichloromethane may be used as the solvent.
  • the step of treating the carrier may be performed at a temperature of about 60 to 100 ° C., for example, to appropriately react the water in the carrier with trialkylaluminum to form a material having a promoter activity in the carrier. It may proceed at a temperature of about 70 to 90 ° C or about 80 to locrc.
  • the amount of trialkylaluminum treated in the carrier by the step may be performed to be 1:10 to 1:30, for example, 1:12 to 1:28. have.
  • the molar ratio of alkylaluminoxane to trialkylaluminum is preferably 1:10 or more, in order to enable proper reaction with water in the carrier, so that silanol groups on the surface of the carrier reacting with the alkylaluminoxane are not removed. In order to achieve this, the molar ratio is preferably 1:30 or less.
  • the step of treating the carrier may be performed by adding a solvent and a carrier to the reactor and mixing the same, followed by addition of trialkylaluminum, for about 30 minutes to 3 hours, for example, about 40 minutes to 1.5 hours or about
  • the reaction may be carried out by stirring for 1 to 2 hours with stirring.
  • the temperature range of the treatment step is not limited thereto.
  • the method for producing a common supported metallocene catalyst of one embodiment includes the step of supporting the alkyl aluminoxane on the carrier treated by the above-described method.
  • the alkyl aluminoxane (alkylaliminoxane) is a cocatalyst component to assist the activity of the metallocene compound to be described later.
  • the step may be carried out by mixing the carrier and the alkylaluminoxane in the presence or absence of a solvent and reacting with stirring.
  • the alkyl aluminoxane may be at least one member selected from the group consisting of methyl aluminoxane, ethyl aluminoxane, butyl aluminoxane and isobutyl aluminoxane.
  • the amount of the alkylaluminoxane supported on the carrier by the above step may be about 6 to 20 mmol / g, for example about 8 to 18 mmol / g or about 6 to 150 mmol / g, based on 1 g of the carrier. . In view of the contribution effect of the catalytic activity by the alkylaluminoxane, it is appropriate to fall within the above-described supported amount range.
  • the production method of one embodiment uses a carrier having a certain level of moisture content, and some of the moisture can be reacted with trialkylaluminum in the previous step.
  • the remaining moisture of the carrier and from The hydroxyl group (or silanol group) on the surface of the carrier resulting from reaction with the alkylaluminoxane, which is a promoter, can appropriately support the promoter on the surface of the carrier. Therefore, the supported catalyst obtained by the method of one embodiment can exhibit better catalytic activity.
  • a solvent may be used to induce smooth contact reaction between the carrier and the alkylaluminoxane, and may be repeated without solvent.
  • the solvent includes aliphatic hydrocarbons such as nucleic acids, pentane and heptane; Aromatic hydrocarbons such as toluene, benzene; Hydrocarbons substituted with chlorine atoms such as dichloromethane; Ethers such as diethyl ether and tetrahydrofuran (THF); Most organic solvents such as acetone and ethyl acetate can be used. For example, it can be used hexane, temtan, the toluene or dichloromethane as the solvent i.
  • the supporting step may be appropriately reacted with a hydroxyl group (or silazyl group) on the surface of the carrier and an alkylaluminoxane as a promoter to effectively support the promoter, for example, about 40 to 80 ° C., for example, about It may proceed at 40 to 70 ° C or about 50 to 80 ° C.
  • a hydroxyl group or silazyl group
  • the method of preparing a common supported metallocene catalyst of one embodiment includes the step of supporting a metallocene compound on a carrier on which the alkylaluminoxane is supported.
  • the metallocene compound is a main catalyst component capable of exhibiting activity as a catalyst together with the aforementioned alkylaluminoxane.
  • the step may be carried out by a method of reacting the carrier and the metallocene compound by mixing and stirring in the presence of a solvent.
  • the amount of the metallocene compound supported on the carrier by the above step is about 0.1 to 0.5 mmol / g, for example, about 0.1 to 0.3 mmol / g or about 0.12 to 0.4 mmol / g based on 1 g of the carrier. Can be. In consideration of the contribution effect of the catalyst activity by the metallocene compound, it is appropriate to fall within the above-described supporting amount range.
  • the supporting step of the metallocene compound is a temperature of about 0 to 100 ° C, for example about 10 to 90 ° C, about 20 to 80 ° C or about 30 to 70 ° C in terms of process efficiency improvement It can be performed in.
  • any metallocene catalyst commonly known may be used without particular limitation, and for example, one or more selected from the group consisting of the following Chemical Formulas 1 to 3 may be used:
  • M is a Group 4 transition metal
  • (C 5 R a ) and (C 5 R b ) are each independently hydrogen, alkyl, cycloalkyl, aryl, alkenyl, alkylaryl, arylalkyl, arylalkenyl and at least one member selected from the group consisting of hydrocarbyl A clofendienyl ligand, which is a metalloid of a Group 14 metal substituted with C2, or a cyclopentadienyl ligand, in which two adjacent carbon atoms of C 5 are connected by hydrocarbyl to form one or more rings of 4 to 16 carbon atoms;
  • Q is a halogen atom, alkyl, alkenyl, aryl, alkylaryl, arylalkyl or alkylidene;
  • p is 0 or 1;
  • M is a Group 4 transition metal
  • R 3 and R 4 are each independently hydrogen, alkyl having 1 to 20 carbon atoms , alkenyl having 2 to 20 carbon atoms , aryl having 6 to 20 carbon atoms , alkylaryl having 6 to 20 carbon atoms , arylalkyl having 1 to 40 carbon atoms, Alkylsilyl having 1 to 20 carbon atoms, arylsilyl having 6 to 20 carbon atoms, methoxymethyl, t-butoxymethyl, tetrahydropyranyl, tetrahydrof ranyl, 1-ethoxyethyl,
  • A is alkylene having 2 to 4 carbon atoms, alkylsilicone having 1 to 4 carbon atoms, alkylgerium having 1 to 4 carbon atoms, alkylphosphine having 1 to 4 carbon atoms or alkylamine having 1 to 4 carbon atoms;
  • Q is each independently a halogen atom, alkyl of 1 to 20 carbon atoms, alkenyl of 2 to 10 carbon atoms, alkylaryl of 7 to 40 carbon atoms, arylalkyl of 7 to 40 carbon atoms, aryl of 6 to 20 carbon atoms, substituted or unsubstituted Unsubstituted alkylidene having 1 to 20 carbon atoms, substituted or unsubstituted amino group, alkylalkoxy having 2 to 20 carbon atoms or arylalkoxy having 7 to 40 carbon atoms;
  • n is an integer from 0 to 10;
  • R 1 and R 2 are each independently hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, silyl having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms, and having 7 carbon atoms.
  • a metalloid of a Group 4 metal substituted with arylalkyl or hydrocarbyl of from 20 to 20; R 1 and R 2 or two R 2 may be connected to each other by an alkylidine including alkyl having 1 to 20 carbon atoms or aryl having 6 to 20 carbon atoms to form a ring;
  • Each R 3 independently represents hydrogen, a halogen atom, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, and having 7 to 20 carbon atoms; Alkylaryl, arylalkyl having 7 to 20 carbon atoms, alkoxy having 1 to 20 carbon atoms, aryloxy or amido having 6 to 20 carbon atoms;
  • the two of the above R 3 R 3 may form a ring or ring bangjok not connected to each other, and;
  • CY 1 is a substituted or unsubstituted aliphatic or aromatic ring, and the substituent substituted in CY 1 is a halogen atom, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, ⁇ Alkylaryl of 20 to 20, arylalkyl of 7 to 20 carbon atoms, alkoxy of 1 to 20 carbon atoms, aryloxy of 6 to 20 carbon atoms, amido;
  • two or more substituents in the substituent group may be connected to each other to form an aliphatic or aromatic ring;
  • M is a Group 4 transition metal
  • Q 1 and Q 2 are each independently halogen, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms, arylalkyl having 7 to 20 carbon atoms, and carbon atoms.
  • at least one hydrogen present in R a and R b of the metallocene compound represented by Formula 1 may be substituted with any one or more of radicals represented by Formulas a, b, and c below. :
  • Z is oxygen or sulfur
  • R and R ' are each independently selected from hydrogen, alkyl, cycloalkyl, aryl, alkenyl, alkylaryl, arylalkyl and arylalkenyl, two R's may be linked to each other to form a ring;
  • G is alkoxy, aryloxy, alkylthio, arylthio, phenyl and substituted phenyl and can be linked to R 'to form a ring;
  • Z is sulfur, G is alkoxy or aryloxy;
  • Z is oxygen or sulfur and at least one of the two Z is an oxygen atom
  • R and R ′′ are each independently hydrogen, alkyl, cycloalkyl, aryl, alkenyl, alkylaryl, arylalkyl or arylalkenyl;
  • R may be linked to R ′′ to form a ring
  • Two R ′′ may be linked to each other to form a ring unless they are a hydrogen radical
  • R and R '" are each independently hydrogen, alkyl, cycloalkyl, aryl, alkenyl, alkylaryl, arylalkyl, or arylalkenyl;
  • Two adjacent R ′ ′ may be linked to each other to form a ring
  • R is a hydrogen radical, then R "'is not all hydrogen, and if at least one of R'" is hydrogen, then R is not all hydrogen.
  • the compound represented by Formula 2 may be, for example, a compound represented by Formula 4 below.
  • Formula 4 a compound represented by Formula 4 below.
  • R 4 and R 5 are each independently hydrogen, alkyl having 1 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, or silyl having 6 to 20 carbon atoms;
  • R 6 are each independently hydrogen, alkyl having 1 to 20 carbon atoms, alkenyl having 2 to 20 carbon atoms, aryl having 6 to 20 carbon atoms, alkylaryl having 7 to 20 carbon atoms, arylalkyl having 7 to 20 carbon atoms, and 1 to 20 carbon atoms. Alkoxy, aryloxy having 6 to 20 carbon atoms, or amido having 6 to 20 carbon atoms; Wherein R 6 at least two of the R 6 may form a ring bangjok or not air is connected to each other;
  • Q 3 and Q 4 are each independently halogen, alkyl having 1 to 20 carbon atoms, alkylamido having 1 to 20 carbon atoms or arylamido having 6 to 20 carbon atoms;
  • M is a Group 4 transition metal.
  • the compound represented by Formula 3 may include a compound represented by Formula 7 below:
  • Each R 7 is independently hydrogen or methyl; Q 5 and Q 6 may each independently be methyl, dimethylamido or chloride.
  • the metallocene compound represented by Formula 3 has a narrow Cp-MN structure due to the metal site being linked by a cyclopentadienyl ligand in which an amido group is linked to a phenylene bridge in a ring form.
  • the Q J -MQ 2 angle at which the monomer approaches is characterized by keeping it wide.
  • the compound represented by Chemical Formula 2 may be used to prepare a catalyst for polymerization of an olefin monomer, but is not limited thereto and may be applied to all fields in which the transition metal compound may be used.
  • the method of preparing a common supported metallocene catalyst of one embodiment includes treating a carrier having a constant moisture content with trialkylaluminum at a predetermined temperature; Supporting the alkyl aluminoxane on the carrier; And supporting the metallocene compound on the carrier on which the alkylaluminoxane is supported.
  • the manufacturing method may be performed by further including the steps that may be commonly performed in the art before or after each step, and by the above-described steps
  • the manufacturing method is not limited.
  • a common supported metallocene catalyst prepared by the above-described method.
  • Such supported catalysts can exhibit, for example, excellent catalytic activity of at least 15 kg / g carriers, specifically 15 to 40 kg / g carriers, and can be suitably applied to prepare polyolefins by polymerizing olefinic monomers. .
  • a process for producing a polyolefin using such a common supported metallocene catalyst may include polymerizing the olefinic monomer in the presence of the supported catalyst.
  • the common supported metallocene catalyst can be used in the polymerization reaction as such.
  • the catalyst may be used as prepared as a prepolymerized catalyst by reaction with an olefinic monomer, for example, the catalyst is separately contacted with an olefinic monomer such as ethylene, propylene, 1-butene, 1-nuxene, 1-octene, and the like. It can also be prepared and used as a prepolymerized catalyst.
  • the catalyst also contains aliphatic hydrocarbon solvents having 5 to 12 carbon atoms (e.g., pentane, nucleic acids, heptanes, nonanes, decanes and their isomers and aromatic hydrocarbon solvents such as toluene and benzene, chlorine such as dichloromethane and chlorobenzene). Dilution in an atom-substituted hydrocarbon solvent, etc.) may be injected into the reaction vessel. At this time, it is preferable to use after removing a small amount of water or air that can act as a catalyst poison by adding a small amount of alkylaluminum to the solvent.
  • aliphatic hydrocarbon solvents having 5 to 12 carbon atoms (e.g., pentane, nucleic acids, heptanes, nonanes, decanes and their isomers and aromatic hydrocarbon solvents such as toluene and benzene, chlorine such as dichloromethane and chlorobenzene).
  • the polymerization reaction step may be applied to all of the slurry process, gas phase process or a mixture thereof, etc., it is preferable to perform under a reaction temperature of about 50 to 150 ° C.
  • the olefin monomer may be selected and used according to the type of the polyolefin to be prepared, preferably ethylene, propylene, 1-butene, ⁇ pentene, 4-methyl-1- pentene, 1-nuxene, 1-heptene , 1-octene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-nuxadecene, 1-aitocene, norbornene, norbornadiene, ethylidene norbornene, phenylnorbornene, Vinylnorbornene, dicyclopentadiene, 1,4-butadiene, 1-5-pentadiene, 1,6-nuxadiene, styrene, alpha-methylstyrene, divinylbenzene and
  • One or more olefinic monomers selected from the group consisting of 3-chloromethylstyrene can be used.
  • preferred embodiments are presented to help understand the invention.
  • embodiments of the following examples not intended to be limited as well, the invention to these to illustrate the invention.
  • 6-chlorohexanol was used to prepare tBu-0- (CH 2 ) 6 -Cl using the method presented in Tetrahedron Lett. 2951 (1988), whereupon NaCp was reacted to tBu- 0- (CH 2) 6 to obtain a -C 5 H 5 (yield 60%, bp 80 ° C / 0.1mmHg).
  • Zirconium was added in the same manner as above to obtain [tBu-0- (CH 2 ) 6 -C 5 H 4 ] 2 ZrCl 2 (yield 92%):
  • the reaction temperature was adjusted to -20 ° C.
  • 560 g of the synthesized 6-t-subsilicate magnesium chloride was added to the reaction vessel at a rate of 5 / min using a feeding pump.
  • the reactor temperature was slowly stirred to room temperature and stirred for 12 hours.
  • white MgCl 2 salt was produced.
  • 4 L of nucleic acid was added thereto to remove salts through labdori to obtain a filter solution. It was added to the filter in a solution obtained by removing the anti-unggi nucleic acid at 70 ° C to obtain a pale yellow liquid.
  • n -BuLi 480 was added to the reaction vessel at a rate of 5 11 / min using a feeding pump. After n-BuLi was added, the reaction mixture was stirred for 12 hours while slowly raising the temperature to room temperature. After 12 hours of reaction, an equivalent amount of methyl (6-t-buthoxy hexyl) dichlorosilane ⁇ (326 g, 350in ⁇ ) was added quickly to the reactor.
  • the yellow solution obtained was identified as methyl (6-t-butoxynucleosil) (tetramethyl CpH) t-butylaminosilane (Methyl (6-t-buthoxyhexyl) (tetramethylCpH) t-Butylaminosilane) compound by 1 H-NMR. .
  • TiCl 3 (THF) 3 10 mm was added to the dilithium salt of -78 ° C ligand synthesized in THF solution from n-BuLi and ligand dimethyl (tetramethyl CpH) t-butylaminesilane ⁇ Dimethyl (tetramethylCpH) t-Butylaminosilane ⁇ Applied quickly.
  • the reaction solution was stirred for 12 hours while slowly raising the temperature to -78 ° C. After stirring for 12 hours, an equivalent amount of PbCl 2 (10 mmol) was added to the semi-aqueous solution at room temperature, followed by stirring for 12 hours. After stirring for 12 hours, the blue vagina obtained a black solution.
  • nucleic acid was added to filter the product. After removing the nucleic acid from the resulting filter solution, the desired ([methyl (6-t-buthoxyhexyl) silyl 5-tetramethylCp) (t-Butylami ⁇ ) was removed from 1H-NMR.
  • Carrier include silica (product name: 1836 SP952X-, water content: 6 wt. 0/0, the carrier surface OH group: 3.3mmol / g support) was prepared for, was used as the original state.
  • a methylaluminoxane (MAO) solution containing about 80 mmol aluminum was added to the glass reactor and reacted overnight at about 60 ° C., followed by washing with a sufficient amount of toluene to prevent unreacted methylaluminoxane.
  • Toluene solution in which the metallocene compound according to Preparation Example 2 was dissolved was added to the silica supported on methylaluminoxane as described above, and the reaction was stirred at about 40 t for about 1 hour. Thereafter, a toluene solution in which the metallocene compound was dissolved according to Preparation Example 1 was added, and stirred at about 40 ° C. for about 1 hour to react the reaction (support amount of the metallocene compound: about 0.12 mmol / g carrier). This was washed with a sufficient amount of toluene and dried in vacuo to obtain a common supported metallocene catalyst as a solid powder.
  • a molar ratio of ⁇ 1: ⁇ with a supported amount of about 12 mmol / g of carrier, except that a methylaluminoxane (MAO) solution containing about 120 mmol aluminum was used instead of a methylaluminoxane (MAO) solution containing about 80 mmol aluminum. 1:24)
  • a common carrier metallocene catalyst was obtained under the same conditions and methods as in Example 1.
  • a molar ratio of supported MoA of about 14 mmol / g, TEA1: MA0, except that a methylaluminoxane (MAO) solution containing about 140 mmol aluminum was used instead of a solution of methylaluminoxane (MAO) containing about 80 mmol aluminum. 1:28)
  • a common carrier metallocene catalyst was obtained under the same conditions and methods as in Example 1. Comparative Example 1
  • Carrier include silica was prepared (product name: 3.3 mmol / g carrier SP952XJ836, water content: 6 wt. 0/0, the carrier surface 0H group).
  • the silica carrier was dried and calcined at 600 ° C. for 12 hours to prepare a silica carrier having a water content of 1% by weight.
  • a silica carrier having a water content of 1% by weight.
  • a methylaluminoxane (MAO) solution containing about 80 mmol of aluminum was added thereto, followed by overnight reaction at about 60 ° C.
  • the reaction was washed with a sufficient amount of toluene to remove unreacted methylaluminoxane (MAO supported amount about 8 mmol / g carrier, TEA1 not used).
  • toluene solution in which the metallocene compound according to Preparation Example 2 was dissolved was added to methyl aluminoxane-supported silica, followed by stirring at about 40 ° C. for about 1 hour. Thereafter, a toluene solution in which the metallocene compound was dissolved according to Preparation Example 1 was added, and stirred at about 40 ° C. for about 1 hour to react the reaction (support amount of the metallocene compound: about 0.12 mmol / g carrier). This was washed with a sufficient amount of toluene and dried in vacuo to obtain a common supported metallocene catalyst as a solid powder. Comparative Example 2
  • Silica as carrier product name: SP952XJ836, water content: 6 weight 0 /., Carrier surface
  • Carrier include silica (product name: 1836 SP952X-, water content: 6 wt. 0/0, the support surface OH group: 3.3 mmol / g carrier) was prepared and used as it was. After mixing about 100 ml of toluene and about 10 g of the silica, the mixture was mixed with triethylaluminum (TEA1), about 49.4 mnwl, and stirred at room temperature (about 25 ° C) for about 1 hour. The keys were treated with silica.
  • TEA1 triethylaluminum
  • the metallocene compound dissolved in the metal according to Preparation Example 2 at about 40 ° C was added a toluene solution, stirred for about one hour vigorously banung. Thereafter, the toluene solution in which the metallocene compound was dissolved according to Preparation Example 1 was added, stirred at about 40 ° C. for about 1 hour, and reacted with reaction (amount of supported metallocene compound: about 0.12 mmol / g carrier) ). This was washed with a sufficient amount of toluene and dried in vacuo to obtain a common supported metallocene catalyst as a solid powder.
  • Silica product name: SP952X-1836, water content: 6 weight 0 /., Carrier surface OH group: 3.3 mmol / g carrier
  • methylaluminoxane (MAO) solution containing about 80 mmol of aluminum, and stir overnight at about 60 ° C. , Washed with a sufficient amount of toluene to remove unreacted methylalul ' minoxane (MAO supported amount about 8 mmol / g carrier, TEA1 not used).
  • MAO supported amount about 8 mmol / g carrier, TEA1 not used.
  • toluene solution in which the metallocene compound according to Preparation Example 2 was dissolved was added to silica loaded with methylaluminoxane, followed by stirring at about 40 ° C. for about 1 hour. Then, the toluene solution in which the metallocene compound was dissolved was added to Preparation Example 1, and stirred by stirring at about 40 ° C. for about 1 hour (load amount of the metallocene compound: about 0.12 mmol / g carrier). This After washing with a sufficient amount of toluene and vacuum dried to obtain a common supported metallocene catalyst as a solid powder. Comparative Example 5
  • Silica as carrier product name: SP952X— 1836, water content: 6 weight 0 /., Carrier surface
  • TSA1 triethylaluminum
  • toluene solution in which the metallocene compound according to Preparation Example 2 was dissolved was added to the silica having methyl aluminoxane, followed by stirring at about 40 ° C. for about 1 hour. Thereafter, a toluene solution in which the metallocene compound was dissolved according to Preparation Example 1 was added, and stirred at about 40 ° C. for about 1 hour to react the reaction (support amount of the metallocene compound: about 0.12 mmol / g carrier). This was washed with a sufficient amount of toluene and dried in vacuo to obtain a common supported metallocene catalyst as a solid powder. Comparative Example 6
  • Carrier include silica was prepared (product name: 3.3 mmol / g carrier SP952XJ836, water content: 6 wt. 0/0, the carrier surface OH groups).
  • the silica carrier was dried and calcined at 600 ° C. for 12 hours to prepare a silica carrier having a water content of 1% by weight.
  • TSA1 triethylaluminum
  • MAO aluminum Methyl aluminoxane
  • toluene solution in which the metallocene compound according to Preparation Example 2 was dissolved was added to methyl aluminoxane-supported silica, followed by stirring at about 40 ° C. for about 1 hour. Thereafter, a toluene solution in which the metallocene compound was dissolved according to Preparation Example 1 was added, and stirred at about 40 ° C. for about 1 hour to react the reaction (support amount of the metallocene compound: about 0.12 mmol / g carrier). This was washed with a sufficient amount of toluene and dried in vacuo to obtain a common supported metallocene catalyst as a solid powder.
  • Experimental Example 1 Experimental Example 1
  • the polymerization reactor was equipped with a mechanical stirrer, a temperature controllable, 2 L metal alloy reactor with effective volume available at high pressure.
  • the activity of the catalyst was calculated by measuring the weight (kg) of the prepared ethylene polymer per unit weight (g) of each catalyst according to Examples 1 to 3 and Comparative Examples 1 to 6, and the results are as follows. Table 1 shows.
  • metallocene catalysts include MAO to support the water content of 4 to 7 parts by weight 0/0 to about 60 ⁇ 100 ° C and treated with a trialkylaluminum, such as TEA1, in such a support After supporting the alkyl aluminoxane such as, it is obtained by supporting the metallocene compound.
  • a trialkylaluminum such as TEA1
  • the catalysts of Examples 1 to 3 not only show excellent polymerization activity, but also exhibit excellent physical properties as the bulk density of the ethylene polymer obtained by using the catalyst is 0.38 g / ml or more, and is very commercially useful. Was confirmed.

Abstract

본 발명은 메탈로센 촉매의 제조방법에 관한 것으로서, 보다 상세하게는 소정의 온도에서, 함수율 4 내지 7 중량%인 담체를 트리알킬알루미늄으로 처리하는 단계; 상기 담체에 알킬알루미녹산을 담지시키는 단계; 및 상기 알킬알루미녹산이 담지된 담체에 메탈로센 화합물을 담지시키는 단계를 포함하는 혼성 담지 메탈로센 촉매의 제조방법에 관한 것이다. 본 발명에 따르면 올레핀의 중합 반응에 대한 높은 활성을 나타내면서도, 높은 벌크 밀도를 갖는 폴리올레핀의 제조를 가능케 하는 혼성 담지 메탈로센 촉매를 단순한 공정으로 제조할 수 있다.

Description

【명세서】
【발명의 명칭】
흔성 담지 메탈로센 촉매의 제조방법
【발명의 상세한 설명】
【기술분야】
본 발명은 흔성 담지 메탈로센 촉매의 제조방법에 관한 것이다.
【배경기술】
일반적으로 을레핀의 중합 공정은 고압 공정, 용액 공정, 슬러리 공정, 기상 공정 등으로 분류되며, 상기 중합 공정에 다양한 메탈로센계 촉매들을 적용하여 원하는 물성을 갖는 을레핀 중합체를 제조하려는 노력이 다방면으로 이루어지고 있다.
을레핀의 중합 공정에서 반웅기 지속적인 운전시 중합체가 벽면에 엉겨 붙어 파울링 (fouling) 현상이 발생하게 되는데, 상기 현상은 촉매로 메탈로센계 담지 촉매를 사용함으로써 어느 정도 방지할 수 있다. 또한, 상기 메탈로센계 담지 촉매를 사용할 경우 올레핀 중합체의 걸보기 밀도를 높일 수 있어 반웅기의 단위 부피당 생산량을 증대시킬 수 있다.
상기 메탈로센계 담지 촉매.에 대한 이전의 제조방법들은, 담체의 표면에 반웅성이 큰 실록산기 등을 형성시키기 위하여, 200 내지 800 °C에서 소성 (건조)시켜 함수율 1 중량0 /。 이하인 담체를 주로 사용하였다. 그러나, 상기 방법의 경우 담체의 소성 공정 .등으로 인해 촉매의 제조 공정이 복잡하고, 그에 따른 촉매의 활성 또한 층분하지 못한 문제점이 있다.
이 때문에, 촉매의 활성을 보다 높이고자 하는 연구가 다각적으로 진행되어 왔다. 그러나, 많은 연구에서는, 촉매의 활성을 높이고자 할 경우, 촉매의 제조 공정이 복잡해지거나, 상기 담지 촉매를 이용해 제조되는 폴리올레핀의 벌크 밀도 또는 이에 따른 제반 물성이 충분치 못하게 되는 등의 문제점이 발생하였다.
【발명의 내용】
【해결하려는 과제】
이에 본 발명은 올레핀의 중합 반옹에 대한 높은 활성을 나타내면서도, 높은 벌크 밀도를 갖는 폴리을레핀의 제조를 가능케 '하는 흔성 담지 메탈로센 촉매의 단순화된 제조방법올 제공하는 것이다.
【과제의 해결 수단】
본 발명은
약 60 내지 100°C의 온도에서, 함수율 약 4 내지 7 중량0 /。인 담체를 트리알킬알루미늄으로 처리하는 단계;
상기 담체에 알킬알루미녹산을 담지시키는 단계; 및
상기 알킬알루미녹산이 담지된 담체에 메탈로센 화합물을 담지시키는 단계
를 포함하는 흔성 담지 메탈로센 촉매의 제조방법을 제공한다.
이때, 상기 담체는 표면에 약 2 내지 .4 mmol/g의 하이드록시기를 포함하는 것일 수 있다.
또한, 상기 트리알킬알루미늄 및 알킬알루미녹산의 몰비는 약 1:10 내지 1:30일 수 있다. '
또한, 상기 담체에 대한 알킬알루미녹산의 담지량은 약 6 내지 20 mmol/g일 수 있다.
또한, 상기 담체에 대한 메탈로센 화합물의 담지량은 약 0.1 내지 0.5 mmol/g일 수 있다.
그리고, 상기 알킬알루미녹산의 담지 단계는 약 40 내지 80°C의 온도에서 진행될 수 있다.
한편, 상기 담체는 실리카, 실리카-알루미나 및 실리카-마그네시아로 이루어진 군에서 선택되는 1 종 이상일 수 있다.
또한, 상기 트리알킬알루미늄은 트리메틸알루미늄, 트리에틸알루미늄 및 트리부틸알루미늄으로 이루어진 군에서 선택되는 1 종 이상일 수 있다. 또한, 상기 알킬알루미녹산은 메틸알루미녹산, 에틸알루미녹산, 부틸알루미녹산 및 이소부틸알루미녹산으로 이루어진 군에서 '선택되는 1 종 이상일 수 있다.
그리고, 상기 메탈로센 화합물은 하기 화학식 1 내지 3으로 이루어진 군에서 선택되는 1 종 이상으로 될 수 있다:
[화학식 1] (C5Ra)p(C5Rb)MQ3 ) 상기 화학식 1에서,
M은 4족 전이금속이고;
(C5Ra) 및 (C5Rb)은 각각 독립격으로 수소, 알킬, 시클로알킬, 아릴, 알케닐, 알킬아릴, 아릴알킬, 아릴알케닐 및 하이드로카빌로 이루어 진 군에서 선택되는 1 종 이상으로 치환된 14 족 금속의 메탈로이드인 클로펜타디 에 닐 리 간드, 또는 C5의 이웃하는 두 탄소 원자가 하이드로카빌에 의해 연결되 어 탄소수 4 내지 16의 고리를 하나 이상 만드는 시클로펜타디에 닐 리 간드이며 ;
Q는 할로겐 원자, 알킬, 알케닐, 아릴, 알킬아릴, 아릴알킬 또는 알킬리 덴이고;
p는 0 또는 1 이 다;
[화학식 2]
Figure imgf000004_0001
상기 화학식 2에서 ,
M은 4족 전이금속이고;
R3 및 R4는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수
2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 40의 알킬아릴, 탄소수 7 내지 40의 아릴알킬, 탄소수 1 내지 20의 알킬실릴, 탄소수 6 내지 20의 아릴실릴, 메톡시 메틸 (methoxymethyl), t-부톡시 메틸 (t-butoxymethyl), 테트라하이드로피 라닐 (tetrahydropyranyl), 테트라하이드로퓨라닐 (tetrahydroftiranyl), 1-에톡시 에틸 (l-ethoxyethyl),
1ᅳ메틸 -1-메특시에 틸 (l -methyl-1-methoxyethyl) 또는 t-부틸 (t-tmtyl)이 고;
A는 탄소수 2 내지 4의 알킬렌, 탄소수 1 내지 4의 알킬실리콘, 탄소수 1 내지 4의 알킬게르마늄, 탄소수 1 내지 4의 알킬포스핀 또는 탄소수 1 내지 4의 알킬아민이고;
Q는 각각 독립적으로 할로겐 원자, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 10의 알케닐, 탄소수 7 내지 40의 알킬아릴, 탄 φ수 1 내지 40의 아릴알킬, 탄소수 6 내지 20의 아릴, 치환되거나 치환되지 않은 탄소수 1 내지 20의 알킬리 덴, 치환되거나 치환되지 않은 아미노기, 탄소수 2 내지 20의 알킬알콕시 또는 탄소수 7 내지 40의 아릴알콕시 이고;
m은 0 내지 10의 정수이다;
[화학식 3]
Figure imgf000005_0001
상기 화학식 3에서 ,
R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 실릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬 또는 하이드로카르빌로 치환된 4족 금속의 메탈로이드이고; 상기 R1과 R2 또는 2개의 R2가 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 20의 아릴을 포함하는 알킬리 딘에 의해 서로 연결되 어 고리를 형성 할 수 있으며 ;
R3는 각각 독립적으로 수소, 할로겐 원자, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알콕시, 탄소수 6 내지 20의 아릴옥시 또는 아미도이고; 상기 R3 중에서 2개 이상의 R3는 서로 연결되 어 지 방족 고리 또는 방향족 고리를 형성할 수 있으며 ;
CY1은 치환 또는 치환되지 않은 지방족 또는 방향족 고리 이고, 상기 CY1에서 치환되는 치환기는 할로겐 원자, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알콕시 , 탄소수 6 내지 20의 아릴옥시, 아미도이고; 상기 치환기가 복수 개일 경우에는 상기 치환기 중에서 2개 이상의 치환기가 서로 연결되어 지방족 또는 방향족 고리를 형성할 수 있으며;
M은 4족 전이금속이고;
Q1 및 Q2는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알킬아미도, 탄소수 6 내지 20의 아릴아미도 또는 탄소수 1 내지 20의 알킬리덴이다. 본 발명은 또한, 상술한 방법에 따라 제조된 흔성 담지 메탈로센 촉매 및 이를 이용한 폴리을레핀의 제조방법을 제공한다.
【발명의 효과】
본 발명에 따르면, 올레핀 중합에 대해 우수한 촉매 활성을 나타내는 흔성 담지 메탈로센 촉매를 낮은 단가 및 단순화된 공정을 제조할 수 있다. 더 나아가, 상기 흔성 담지 메탈로센 촉매를 사용하여, 높은 벌크 밀도를 나타내어 상업적으로 우수한 물성을 갖는 폴리올레핀을 제조할 수 있다. 【발명을 실시하기 위한 구체적인 내용】
이하, 발명의 구현예에 따른 흔성 담지 메탈로센 촉매의 제조방법 등에 대하여 설명하기로 한다.
그에 앞서, 본 명세서 전체에서 명시적인 언급이 없는 한, 담체의 '함수율'이라 함은 담체의 전체 중량에 대하여 담체 내에 포함되어 있는 수분의 중량을 백분율로 나타낸 것으로 정의한다. 발명의 일 구현예에 따르면, 약 60 내지 100°C의 온도에서, 함수율 약 4 내지 Ί 중량 %인 담체를 트리알킬알루미늄으로 처리하는 단계; 상기 담체에 알킬알루미녹산을 담지시키는 단계; 및 상기 알킬알루미녹산이 담지된 담체에 메탈로센 화합물을 담지시키는 단계를 포함하는 흔성 담지 메탈로센 촉매의 제조방법이 제공된다.
이러한 제조방법에서는, 약 4 내지 7 중량 %의 함수율을 갖는 담체를 사용하며, 이러한 담체를 약 60 내지 100 °C의 온도에서 트리알킬알루미늄으로 처리한다. 이후, 처리된 담체에 조촉매인 알킬알루미녹산 및 주촉매인 메탈로센 화합물을 순차 담지하여 흔성 담지 메탈로센 촉매를 제조한다. ·
후술하는 실시예에서도 뒷받침되는 바와 같이, 이러한 제조방법에 따르면 이전에 알려진 담지 촉매에 비해 우수한 촉매 활성을 나타내는 담지 촉매가 제조됨이 확인되었다. 또한, 이러한 방법으로 제조된 담지 촉매를 사용하면, 약 0.38g/ml 이상, 예를 들어, 약 0.38 내지 a42g/ml의 높은 벌크 밀도를 나타내어 상업적으로 우수한 물성을 갖는 폴리올레핀이 제조됨이 확인되었다. .
이러한 결과는 이하와 같은 작용 기전에 따른 것으로 예측된다.
약 4 내지 7 중량 %의 함수율을 갖는 담체는 고온 건조 또는 소성이 진행되지 않은 실리카 등의 담체를 지칭하는 것으로서, 이러한 담체 내에는 일정량의 수분이 포함된 다수의 기공이 존재할 수 있다. 이러한 담체를 약 60 내지 100°C의 온도, 예를 들어, 약 70 내지 90°C 혹은 약 80 내지 100°C의 온도에서, 트리알킬알루미늄으로 처리하면, 담체 내의 수분과 트리알킬알루미늄이 반응하여 조촉매와 같은 활성을 갖는 화합물이 생성될 것으로 예측된다. 이러한 생성물은 담체 내의 기공에 존재하여, 올레핀 중합시 중합 반웅이 담체 표면에서뿐 아니라 담체 내의 기공에서도 일어나도록 할 수 있다ᅳ 그 결과, 담지 촉매 상에서 중합 반웅이 일어나는 유효 면적 및 조촉매의 유효량이 크게 증가할 수 있다. 따라서, 일 구현예의 제조방법으로 얻어진 담지 촉매는 우수한 활성을 나타낼 뿐 아니라, 보다 -높은 벌크 밀도를 갖는 폴리을레핀의 제조를 가능케 한다.
한편, 이전에 알려진 담지 촉매는 일정함 함수율을 갖는 담체를 고온 건조 또는 소성하여 약 1 중량% 이하의 함수율을 갖는 담체를 얻은 후, 이러한 담체에 조촉매인 알킬알루미녹산 및 주촉매인 메탈로센 화합물 등을 담지하여 제공되었다. 상기 고온 건조 또는 소성은 담체 표면에 실록산기 등을 형성하여 조촉매 등을 적절히 담지하기 위한 것일 수 있다. 그런데, 이러한 제조방법에 따르면, 고온 건조 또는 소성의 필요성으로 인해 담지 촉매의 제조공정이 복잡해지고, 제조 단가 및 에너지 소비가 커질 뿐 아니라 : 조촉매가 담지된 표면에서만 중합 반웅이 일어날 수 있어 담지 촉매의 활성 증가에 한계가 있었다. 또한, 조촉매의 표면 담지량을 늘려 활성을 향상시키고자 하는 경우, 폴리올레핀의 벌크 밀도가 낮아지거나, 촉매의 활성이 오히려 저하되는 경우가 많았다.
이러한 이전의 제조방법에 비해, 일 구현예에 의해 제조된 담지 촉매는 우수한 촉매 활성을 나타내면서도 높은 벌크 밀도를 갖는 폴리올레핀의 제조를 가능케 한다. 이하, 일 구현예의 제조방법에 포함될 수 있는 각 단계에 대하여 보다 상세히 설명한다.
먼저, 일 구현예에 따른 흔성 담지 메탈로센 촉매의 제조방법은, 함수율 4 내지 7 중량 %인 담체의 표면을 트리알킬알루미늄으로 처리하는 단계를 포함한다. 이러한 단계는, 담체 내의 수분과, 트리알킬알루미늄을 적절히 반웅시키기 위해, 약 60 내지 100°C의 온도, 예를 들어, 약 70 내자 90 °C 흑은 약 80 내지 100°C의 온도에서 진행할 수 있다.
아전의 담지 촉매의 제조에는 담체의 표면에 반웅성이 큰 실록산기 등을 형성시키기 위하여, 담체를 고온에서 건조 또는 소성시켜 약 1중량% 이하의 함수율을 갖도록 조절된 담체를 주로 사용하였다.
그러나, 일 구현예의 제조방법에서 사용되는 담체는 일정 범위의 수분을 함유한 것으로서, 약 4 내지 7 중량0 /0, 예를 들어, 약 5 내지 6.5 중량 %의 함수율을 가질 수 있다. 이때, 최소한의 촉매 활성 향상 효과를 달성하기 위하여 상기 담체는 함수율이 약 4 중량% 이상인 것이 바람직하다. 또한, 담체에 과량의 수분이 존재하여 촉매의 활성이 오히려 저하되는 것을 방지하기 위하여 상기 담체는 함수율이 약 7 중량 % 이하인 것이 바람직하다.
일 구현예의 제조방법에서는, 상술한 고온 건조 또는 소성 과정을 거치지 않아 함수율 약 4 내지 7 중량%인 담체를 그대로 사용할 수 있기 때문에, 보다 단순화된 공정으로 촉매를 제조할 수 있을 뿐만 아니라 촉매의 제조 원가를 낮출 수 있다. 다만, 상기 담체로 소성 과정을 거친 것으로서 상기 범위의 함수율이 되도록 물을 첨가한 것을 사용할 수도 있으나, 촉매의 제조 원가 측면에서 소성 과정을 거치지 않은 담체를 사용하는 것이 보다 바람직하다. 또한, 상기 담체는 전술한 범위의 함수율을 나타냄에 따라, 담체의 표면에 약 2 내지 4 mmol/g의 하이드록시기, 예를 들어, 약 2.5 내지 3.5 mmol/g의 하이드록시기를 포함할 수 있다.
이와 같은 담체는 실리카, 실리카-알루미나 및 실리카-마그네시아로 이루어진 군에서 선택되는 1 종 이상일 수 있으며, 예를 들어, 실리카일 수 있다. 이 밖에도, 상기 함수율 범위를 만족하는 담체라면 그 구성에 제한없이 사용할 수 있다.
한편, 상기 담체의 처리 단계는 후술할 알킬알루미녹산 (조촉매) 및 메탈로센 화합물 (주촉매)의 담지 효율을 높이고 촉매의 활성을 향상시키기 위한 전처리 단계이다ᅳ 일 구현예의 제조방법은 일정 범위의 함수율을 갖는 담체를 사용함과 동시에, 일정 은도 하에 상기 담체를 트리알킬알루미늄으로 처리함으로써 , 고온에서 소성된 담체를 사용하는 이전의 제조방법과 비교하여, 보다 단순화된 방법으로 고활성의 흔성 담지 촉매를 제조할 수 있다.
여기서, 상기 트리알킬알루미늄 (trialkylaluminum)은 트리메틸알루미늄 (TMA1), 트리에틸알루미늄 (TEA1) 및 트리부틸알루미늄 (TBA1)으로 이루어진 군에서 선택되는 1 종 이상일 수 있으며, 예를 들어, 트리에틸알루미늄 (TEA1)일 수 있다.
또한, 상기 담체의 처리 단계는 담체와 트리알킬알루미늄의 원활한 접촉을 유도하기 위하여 용매가 사용될 수 있으며, 용매 없이 반웅시킬 수도 있다. 상기 용매로는 핵산, 펜탄, 헵탄과 같은 지방족 탄화수소; 를루엔, 벤젠과 같은 방향상 탄화수소; 디클로로메탄과 같은 염소원자로 치환된 탄화수소; 디에틸에테르, 테트라하이드로퓨란 (THF)과 같은 에테르계; 아세톤, 에틸아세테이트 등 대부분의 유기용매를 사용할 수 있다. 바람직하게는, 상기 용매로 핵산, 헵탄, 틀루엔 또는 디클로로메탄을 사용할 수 있다.
또한, 상술한 바와 같이, 상기 담체의 처리 단계는 담체 내의 수분과, 트리알킬알루미늄을 적절히 반응시켜 담체 내에 조촉매 활성을 갖는 물질을 형성하기 위해, 약 60 내지 100°C의 온도, 예를 들어, 약 70 내지 90°C 혹은 약 80내지 locrc의 온도에서 진행할 수 있다.
그리고, 상기 단계에 의해 담체에 처리되는 트리알킬알루미늄의 양은 특별히 제한되지 않으나, 후술할 알킬알루미녹산과의 관계에서, 트리알킬알루미늄에 대한 알킬알루미녹산의 몰비는 1:10 내지 1:30, 예를 들어, 1:12 내지 1:28이 되도록 수행할 수 있다. 담체 내의 수분과 적절하게 반응할 수 있도록 하기 위하여 트리알킬알루미늄에 대한 알킬알루미녹산의 몰비는 1:10 이상인 것이 바람직하고, 알킬알루미녹산과 반응하는 담체 표면의 실라놀기 (silanol group)가 제거되지 않도록 하기 위하여 상기 몰비는 1:30 이하인 것이 바람직하다.
또, 상기 담체의 처리 단계는 반응기에 용매 및 담체를 첨가하고 흔합한 후, 트리알킬알루미늄을 첨가하여 전술한 온도 범위에서 약 30 분 내지 3 시간, 예를 들어, 약 40 분 내지 1.5 시간 또는 약 1 시간 내지 2 시간 동안 교반하면서 반웅시키는 방법으로 수행할 수 있다. 다만, 상기 처리 단계의 온도 범위에 이에 한정되는 것은 아니다.
한편, 일 구현예의 흔성 담지 메탈로센 촉매의 제조방법은, 상술한 방법으로 처리된 담체에 알킬알루미녹산을 담지시키는 단계를 포함한다. 상기 알킬알루미녹산 (alkylaliminoxane)은 후술할 메탈로센 화합물의 활성을 보조하는 조촉매 성분이다.
상기 단계는 용매의 존재 또는 부재 하에 상기 담체와 알킬알루미녹산을 흔합하여 교반하면서 반웅시키는 방법으로 수행할 수 있다.
여기서, 상기 알킬알루미녹산은 메틸알루미녹산, 에틸알루미녹산, 부틸알루미녹산 및 이소부틸알루미녹산으로 이루어진 군에서 선택되는 1 종 이상일 수 있다.
상기 단계에 의해 담체에 담지되는 알킬알루미녹산의 담지량은 담체 1 g을 기준으로 약 6 내지 20 mmol/g, 예를 들어, 약 8 내지 18 mmol/g 또는 약 6 내지 150 mmol/g 일 수 있다. 상기 알킬알루미녹산에 의한 촉매 활성의 기여 효과를 감안하여 전술한 담지량 범위에 해당되도록 하는 것이 적절하다.
이미 상술한 바와 같이, 일 구현예의 제조 방법은 일정 수준의 함수율을 갖는 담체를 사용하며, 일부의 수분은 이전 단계에서 트리알킬알루미늄과 반웅할 수 있다. 담체의 나머지 수분 및 이로부터 기인하는 담체 표면의 하이드록시기 (또는 실라놀기)는 조촉매인 알킬알루미녹산과 반웅하여 담체 표면에 조촉매를 적절히 담지시킬 수 있다. 따라서, 일 구현예의 방법으로 얻어진 담지 촉매는 보다 우수한 촉매 활성을 나타낼 수 있다.
상기 담지 단계는 담체와 알킬알루미녹산의 원활한 접촉반웅을 유도하기 위하여 용매가 사용될 수 있으며, 용매 없이 반웅시킬 수도 있다. 상기 용매로는 핵산, 펜탄, 헵탄과 같은 지방족 탄화수소; 를루엔, 벤젠과 같은 방향상 탄화수소; 디클로로메탄과 같은 염소원자로 치환된 탄화수소; 디에틸에테르, 테트라하이드로퓨란 (THF)과 같은 에테르계; 아세톤, 에틸아세테이트 등 대부분의 유기용매를 사용할 수 있다. 예를 들어,상기 용매로 헥산, 템탄, 를루엔 또는 디클로로메탄을 사용할 수 있다.
또한, 상기 담지 단계는 담체 표면의 하이드록시기 (또는 실라 ^기)와 조촉매인 알킬알루미녹산을 적절히 반웅시켜, 조촉매를 효과적으로 담지시키기 위하여, 약 40 내지 80°C, 예를 들어, 약 40 내지 70°C 또는 약 50 내지 80°C에서 진행될 수 있다.
한편, 일 구현예의 흔성 담지 메탈로센 촉매의 제조방법은, 상기 알킬알루미녹산이 담지된 담체에 메탈로센 화합물을 담지시키는 단계를 포함한다.
상기 메탈로센 화합물은 전술한 알킬알루미녹산과 함께 촉매로써의 활성을 나타낼 수 있도록 하는 주촉매 성분이다.
상기 단계는 용매의 존재 하에 상기 담체와 메탈로센 화합물을 흔합하여 교반하면서 반응시키는 방법으로 수행할 수 있다.
이때, 상기 단계에 의해 담체에 담지되는 메탈로센 화합물의 담지량은 담체 1 g을 기준으로 약 0.1 내지 0.5 mmol/g, 예를 들어, 약 0.1 내지 0.3 mmol/g 또는 약 0.12 내지 0.4 mmol/g일 수 있다. 상기 메탈로센 화합물에 의한 촉매 활성의 기여 효과를 감안하여 전술한 담지량 범위에 해당되도록 하는 것이 적절하다.
또한, 상기 메탈로센 화합물의 담지 단계는 공정 효율 향상의 측면에서 약 0 내지 100 °C, 예를 들어, 약 10 내지 90 °C, 약 20 내지 80 °C 또는 약 30 내지 70 °C의 온도에서 수행될 수 있다. 여기서, 상기 메탈로센 화합물로는 통상적으로 알려진 임의의 메탈로센 촉매를 별다른 제한 없이 사용할 수 있으며, 예를 들어, 하기 화학식 1 내지 3으로 이루어진 군에서 선택되는 1 종 이상을 사용할 수 있다:
[화학식 1]
(C5Ra)p(C5Rb)MQ3_p 상기 화학식 1에서,
M은 4족 전이금속이고;
(C5Ra) 및 (C5Rb)은 각각 독립적으로 수소, 알킬, 시클로알킬, 아릴, 알케닐, 알킬아릴, 아릴알킬, 아릴알케닐 및 하이드로카빌로 이루어진 군에서 선택되는 1 종 이상으로 치환된 14 족 금속의 메탈로이드인 클로펜타디에닐 리간드, 또는 C5의 이웃하는 두 탄소 원자가 하이드로카빌에 의해 연결되어 탄소수 4 내지 16의 고리를 하나 이상 만드는 시클로펜타디에닐 리간드이며;
Q는 할로겐 원자, 알킬, 알케닐, 아릴, 알킬아릴, 아릴알킬 또는 알킬리덴이고;
p는 0 또는 1 이다;
[화학식 2]
Figure imgf000012_0001
상기 화학식 2에서,
M은 4족 전이금속이고;
R3 및 R4는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 ·6 내지 20의 아릴, 탄소수 Ί 내지 40의 알킬아릴, 탄소수 1 내지 40의 아릴알킬, 탄소수 1 내지 20의 알킬실릴, 탄소수 6 내지 20의 아릴실릴, 메특시메틸 (methoxymethyl), t-부톡시 메틸 (t-butoxymethyl), 테트라하이드로피 라닐 (tetrahydropyranyl), 테트라하이드로퓨라닐 (tetrahydrof ranyl), 1-에톡시 에 틸 (1-ethoxyethyl),
1-메틸 -1-메특시에 틸 (l-methyl-1-methoxyethyl) 또는 t-부틸 (t-butyl)이고;
A는 탄소수 2 내지 4의 알킬렌, 탄소수 1 내지 4의 알킬실리콘, 탄소수 1 내지 4의 알킬게르마늄, 탄소수 1 내지 4의 알킬포스핀 또는 탄소수 1 내지 4의 알킬아민이고;
Q는 각각 독립적으로 할로겐 원자, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 10의 알케닐, 탄소수 7 내지 40의 알킬아릴, 탄소수 7 내지 40의 아릴알킬, 탄소수 6 내지 20의 아릴, 치환되거나 치환되지 않은 탄소수 1 내지 20의 알킬리 덴, 치환되거나 치환되지 않은 아미노기, 탄소수 2 내지 20의 알킬알콕시 또는 탄소수 7 내지 40의 아릴알콕시 이 고;
m은 0 내지 10의 정수이다;
[화학식 3]
Figure imgf000013_0001
상기 화학식 3에서,
R1 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 실릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬 또는 하이드로카르빌로 치환된 4족 금속의 메탈로이드이고; 상기 R1과 R2 또는 2개의 R2가 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 20의 아릴을 포함하는 알킬리딘에 의해 서로 연결되 어 고리를 형성할 수 있으며 ;
R3는 각각 독립 적으로 수소, 할로겐 원자, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알콕시, 탄소수 6 내지 20의 아릴옥시 또는 아미도이고; 상기 R3 중에서 2개 이상의 R3는 서로 연결되어 지 방족 고리 또는 방향족 고리를 형성할 수 있으며 ;
CY1은 치환 또는 치환되지 않은 지 방족 또는 방향족 고리 이고, 상기 CY1에서 치환되는 치환기는 할로겐 원자, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 Ί 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알콕시, 탄소수 6 내지 20의 아릴옥시 , 아미도이고; 상기 치환기 가 복수 개 일 경우에는 상기 치환기 증에서 2개 이상의 치환기가 서로 연결되 어 지 방족 또는 방향족 고리를 형성할 수 있으며 ;
M은 4족 전이금속이 고;
Q1 및 Q2는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알킬아미도, 탄소수 6 내지 20의 아릴아미도 또는 탄소수 1 내지 20의 알킬리 덴이다. 이 때, 상기 화학식 1로 표시되는 메탈로센 화합물의 Ra 및 Rb 중에 존재하는 적어도 어느 하나의 수소는 하기 화학식 a, 화학식 b 및 화학식 c로 표시 되는 라디칼 중에서 어느 하나 이상으로 치환될 수 있다:
[회 :학식 a]
Figure imgf000014_0001
상기 화학식 a에서,
Z는 산소 또는 황이고;
R 및 R'는 각각 독립적으로 수소, 알킬, 시클로알킬, 아릴, 알케닐, 알킬아릴, 아릴알킬 및 아릴알케닐 중에서 선택되며 , 두 개의 R'는 서로 연결되 어 고리를 형성할 수 있고;
G는 알콕시 , 아릴옥시 , 알킬티오, 아릴티오, 페닐 및 치환된 페닐이며, R'와 연결되어 고리를 형성할 수 있으며 ; Z가 황이면, G는 알콕시 또는 아릴옥시이고;
G가 알킬티오, 아릴티오, 페닐 또는 치환된 페닐이면 ,Ζ는 산소이다; [화학식 b]
IR" Z
—— C—— Z—— FT
!R 상기 화학식 b에서,
Z는 산소 또는 황이고, 두 개의 Z 중 적어도 어느 하나는 산소 원자이며;
R 및 R"는 각각 독립적으로 수소, 알킬, 시클로알킬, 아릴, 알케닐, 알킬아릴, 아릴알킬 또는 아릴알케닐이며;
R은 R"와 연결되어 고리를 형성할 수 있고;
두 개의 R"는 수소 라디칼이 아니면 서로 연결되어 고리를 형성할 수 있다;
[화학식 c]
R R
C- -0— C
R R 상기 화학식 c에서
R 및 R '"는 각각 독립적으로 수소, 알킬, 시클로알킬, 아릴, 알케닐, 알킬아릴, 아릴알킬, 또는 아릴알케닐이며;
인접한 두 개의 R"'는 서로 연결되어 고리를 형성할 수 있고;
R 중에서 적어도 하나가 수소 라디칼이면, R "'는 모두 수소가 아니며, R'" 중에서 적어도 하나가 수소이면, R은 모두 수소가아니다.
또한, 상기 화학식 2로 표시되는 화합물은, 예를 들어, 하기 화학식 4로 표시되는 화합물일 수 있다. . [화학식 4]
Figure imgf000016_0001
또한, 상기 화학식 3으로 표시되는 화합물로서, 금속 주위의 전자적 : 입체적 환경의 제어를 위해 좀 더 선호되는 화합물들로는 하기 화학식 5 또는 화학식 6으로 표시되는 화합물일 수 있다.
. [화학식 5]
Figure imgf000016_0002
[화학식 6]
Figure imgf000016_0003
상기 화학식 5 및 화학식 6에서 ,
R4 및 R5는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 6 내지 20의 아릴 또는 탄소수 6 내지 20의 실릴이고;
R6은 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알콕시 , 탄소수 6 내지 20의 아릴옥시, 또는 탄소수 6 내지 20의 아미도이며 ; 상기 R6 중에서 2개 이상의 R6은 서로 연결되 어 지 방족 또는 방향족 고리를 형성할 수 있고;
Q3 및 Q4는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 1 내지 20의 알킬아미도 또는 탄소수 6 내지 20의 아릴아미도이 고;
M은 4족 전이금속이다.
보다 바람직하게는, 상기 화학식 3으로 표시 되는 화합물은 하기 화학식 7로 표시되는 화합물을 포함할 수 있다:
[화학식 7]
Figure imgf000018_0001
Figure imgf000018_0002
상기 화학식 7에서,
R7은 각각 독립적으로 수소 또는 메틸이며; Q5 및 Q6은 각각 독립적으로 메틸, 디메틸아미도 또는 클로라이드일 수 있다.
특히, 상기 화학식 3으로 표시되는 메탈로센 화합물은 페닐렌 브릿지에 고리 형태로 연결되어 있는 아미도 그룹이 도입된 시클로펜타디에닐 리간드에 의해 금속 자리가 연결되어 있어 구조적으로 Cp-M-N 각도는 좁고, 단량체가 접근하는 QJ-M-Q2 각도는 넓게 유지하는 특징을 가진다.
또한, 실리콘 브릿지에 의해 연결된 CGC 구조와는 달리, 상기 화학식 2로 표시되는 화합물 구조에서는 고리 형태의 결합에 의해 Cp, 페닐렌 브릿지 및 질소가 금속 자리와 함께 더욱 안정하고 단단한 5각형의 링 구조로 이루어져 있다. 즉, 아미도기의 질소 원자가 페닐렌 브릿지와 고리 형태로 2개의 결합에 의해 연결되어 보다 견고한 착화합물 구조를 가지게 된다. 또한, 시클로펜타디에닐 고리 및 퀴놀린계 고리에 다양한 치환체를 도입할 수 있는데, 이는 궁극적으로 금속 주위의 전자적, 입체적 환경을 쉽게 제어함으로써 생성되는 폴리올레핀의 구조 및 물성 등을 조절할 수 있다. 따라서, 상기 화학식 2로 표시되는 화합물을 올레핀 단량체의 중합용 촉매를 제조하는데 사용할 수 있지만 이에 한정되지는 않으며 기타 상기 전이금속 화합물이 사용될 수 있는 모든 분야에 적용이 가능하다. 이와 같이, 일 구현예의 흔성 담지 메탈로센 촉매의 제조방법은 일정한 함수율을 갖는 담체를 소정 온도에서 트리알킬알루미늄으로 처리하는 단계; 상기 담체에 알킬알루미녹산을 담지시키는 단계; 및 상기 알킬알루미녹산이 담지된 담체에 메탈로센 화합물을 담지시키는 단계를 포함하는 방법으로 수행될 수 있다. 다만, 상기 제조방법은 전술한 단계들 이외에도, 상기 각 단계의 이전 또는 이후에 발명의 기술분야에서 통상적으로 수행될 수 있는 단계를 더욱 포함하여 수행될 수 있으며, 상술한 단계들에 의해 일 구현예의 제조 방법이 한정되는 것은 아니다. 한편, 발명의 다른 구현예에 따라, 상술한 방법으로 제조된 흔성 담지 메탈로센 촉매가 제공된다. 이러한 담지 촉매는, 예를 들어, 15kg/g담체 이상, 구체적으로 15 내지 40kg/g담체의 우수한 촉매 활성을 나타낼 수 있고, 을레핀계 단량체를 중합하여 폴리올레핀을 제조하는데 매우 적합하게 적용될 수 있다. .
발명의 또 다른 구현예에 따르면, 이러한 흔성 담지 메탈로센 촉매를 사용한 폴리올레핀의 제조방법이 제공된다. 이러한 제조방법은 상기 담지 촉매의 존재 하에, 올레핀계 단량체를 중합 반웅시키는 단계를 포함할 수 있다. ·
여기서, 상기 흔성 담지 메탈로센 촉매는 그 자체로서 중합 반웅에 사용될 수 있다. 또한, 상기 촉매는 올레핀계 단량체와 접촉 반웅시켜 예비 중합된 촉매로 제조한 것으로 사용할 수도 있으며, 예컨대 촉매를 별도로 에틸렌, 프로필렌, 1-부텐, 1-핵센, 1-옥텐 등과 같은 올레핀계 단량체와 접촉시켜 예비 중합된 촉매로 제조하여 사용할 수도 있다. 또한, 상기 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매 (예를 들면, 펜탄, 핵산, 헵탄, 노난, 데칸 및 이들의 이성질체와 틀루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소 원자로 치환된 탄화수소 용매 등)에 희석시켜 반웅기에 주입할 수 있다. 이때, 상기 용매에 소량의 알킬알루미늄을 첨가함으로써 촉매 독 (catalyst poison)으로 작용할 수 있는 소량의 물 또는 공기 등을 제거한 후에 사용하는 것이 바람직하다.
한편, 상기 중합 반응 단계는 슬러리 공정, 기상 공정 또는 이들의 흔합 공정 등을 모두 적용할 수 있으며, 반웅 온도 약 50 내지 150°C 하에서 수행하는 것이 바람직하다.
이때, 상기 올레핀계 단량체는 제조하고자 하는 폴리올레핀의 종류에 따라 선택하여 사용할 수 있으며, 바람직하게는 에틸렌, 프로필렌, 1-부텐, μ펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1—테트라데센, 1-핵사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1,4-부타디엔, 1-5-펜타디엔, 1,6-핵사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및
3-클로로메틸스티렌으로 이루어진 군에서 선택되는 1 종 이상의 올레핀계 단량체를 사용할 수 있다. 이하, 발명의 이해를 돕기 위하여 바람직한 실시예들을 제시한다. 그러나 하기의 실시예들은 발명을 예시하기 위한' 것일 뿐, 발명을 이들만으로 한정하는 것은 아니다.
제조예 1: 메탈로센 화합물의 제조
6-클로로핵사놀 (6-chlorohexanol)을 사용하여 문헌 (Tetrahedron Lett. 2951 (1988))에 제시된 방법으로 tBu-0-(CH2)6-Cl을 제조하고, 여기에 NaCp를 반웅시켜 tBu-0-(CH2)6-C5H5를 얻었다 (수율 60%, b.p. 80 °C/0.1mmHg). 상기와 동일한 방법으로 지르코늄을 붙여 [tBu-0-(CH2)6-C5H4]2ZrCl2을 얻었다 (수율 92 %):
Ή NMR (300 MHz, CDC13): 6.28 (t, J = 2.6 Hz, 2H), 6.19 (t, J = 2.6 Hz, 2H), 3.31 (t, 6.6Hz, 2H), 2.62 (t, J = 8Hz), 1.7- 1.3 (m, 8H), 1.17 (s, 9H); ' NMR (CDC13): 135.09, 116.66, 112.28, 72.42, 61.52, 30.66, 30.61, 30.14, 29.18,27.58,26.00.
제조예 2: 메탈로센 화합물의 제조
상온에서 50g의 Mg(s)를 반응기 (10 L)에 가한 후, THF 300 ^을 가하였다. I2 0.5g을 가한 후, 반응기 온도를 5( C로 유지하였다. 반응기 온도가 안정화된 후 250g의 6-t-부록시핵실 클로라이드 (6-t-buthoxyhexyl chloride)를 피딩 펌프 (feeding pump)를 이용하여 5 m,/min의 속도로 반웅기에 가하였다. 6-t-부록시핵실 클로라이드를 가함에 따라 반웅기 온도가 4 ~ 5°C정도 상승하는 것을 관찰하였다. 계속적으로 6-t-부특시핵실 클로라이드을 가하면서 12시간 교반하였다. 반웅 12시간 후 검은색의 반웅 용액을 얻었다. 생성된 검은색의 용액 2»1£를 취한 뒤 물을 가하여 유기층을 얻어 1H-NMR을 통해 6-t-부록시핵산 (6-t-buthoxyhexane)을 확인하였다. 상기
6-t-부록시핵산으로부터 그리냐드 (Gringanni) 반웅이 잘 진행되었음을 알 수 있었다. 그리하여 6-t-부록시핵실 마그네슘 클로라이드 (6-t-buthoxyhexyl magnesium chloride)를 합성하였다.
MeSiCl3 500g과 1L의 THF를 반웅기에 가한 후 반웅기 온도를 -20°C까지 넁각하였다. 합성한 6-t-부특시핵실 마그네슘 클로라이드 중 560g을 피딩 펌프를 이용하여 5 /min의 속도로 반웅기에 가하였다. 그리냐드 시약 (Grignard reagent)의 피딩 (feeding)이 끝난 후 반응기 온도를 천천히 상온으로 을리면서 12시간 동안 교반하였다. 반웅 12시간 후 흰색의 MgCl2 염이 생성되는 것을 확인하였다. 여기에 핵산 4L을 가하여 랩도리 (labdori)을 통해 염을 제거하여 필터 용액을 얻었다. 얻은 필터 용액을 반웅기에 가한 후 70°C에서 핵산을 제거하여 엷은 노란색의 액체를 얻었다. 얻은 액체를 1H-NMR을 통해 원하는 메틸 (6-t-부특시 핵실)디클로로실란 {Methyl(6-t-buthoxy hexyl)dichlorosilane} 화합물임을 확인하였다.
Ή-NMR (CDC13): 3.3 (t, 2H), 1.5 (m, 3H), 1.3 (m, 5H), 1.2 (s, 9H), 1.1 (m, 2H); 0.7 (s, 3H)
테트라메틸시클로펜타디엔 (tetmmethylcyclopentadiene) 1.2mol(150g)과 2.4L의 THF를 반웅기에 가한 후 반웅기 온도를 -20°C로 냉각하였다. n-BuLi 480 을 피딩 펌프를 이용하여 5 11 /min의 속도로 반웅기에 가하였다. n-BuLi을 가한 후 반웅기 온도를 천천히 상온으로 올리면서 12시간 교반하였다. 반웅 12시간 후, 당량의 메틸 (6-t-부특시 핵실)디클로로실란 {Methyl(6-t-buthoxy hexyl)dichlorosilane} (326g, 350inᅳ)을 빠르게 반웅기에 가하였다. 반응기 온도를 천천히 상온으로 올리면서 12시간 교반한 후 다시 반웅기 온도를 0°C로 넁각시킨 후 2 당량의 t-BuNH2을 가하였다. 반웅기 은도를 천천히 상온으로 올리면서 12시간 교반하였다. 반응 12시간 후 THF을 제거하고 4L의 핵산을 가하여 랩도리를 통해 염을 제거한 필터용액을 얻었다. 필터용액을 다시 반웅기에 가한 후, 핵산을 70°C에서 제거하여 노란색의 용액을 얻었다. 얻을 노란색의 용액을 1H-NMR을 통해 메틸 (6-t-부톡시핵실) (테트라메틸 CpH)t-부틸아미노실란 (Methyl(6-t-buthoxyhexyl) (tetramethylCpH)t-Butylaminosilane) 화합물임을 확인하였다.
n-BuLi과 리간드 디메틸 (테트라메틸 CpH)t-부틸아민실란 {Dimethyl(tetramethylCpH)t-Butylaminosilane}로부터 THF 용액에서 합성한 -78°C의 리간드의 디리튬염에 TiCl3(THF)3 10mm이을 빠르게 가하였다. 반웅용액을 천천히 -78°C에서 상온으로 올리면서 12시간 교반하였다. 12시간 교반 후, 상온에서 당량의 PbCl2(10mmol)를 반웅용액에 가한 후 12시간 교반하였다. 12시간 교반 후, 푸른색을 띠는 질은 검은색의 용액을 얻었다. 생성된 반웅용액에서 THF를 제거한 후 핵산을 가하여 생성물을 필터하였다. 얻을 필터용액에서 핵산을 제거한 후, 1H-NMR로부터 원하는 ([methyl(6-t-buthoxyhexyl)silyl 5-tetramethylCp)(t-Butylami^
(tBu-0-(CH2)6)(CH3)Si(C5(CH3)4)(tBu-N)TiCl2임을 확인하였다.
1H-NMR (CDC13): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H), 1.8 ~ 0.8 (m), 1.4 (s, 9H), 1.2(s, 9H), 0.7 (s, 3H) 실시예 1
담체로는 실리카 (제품명: SP952X— 1836, 함수율: 6 중량0 /0, 담체 표면 OH기: 3.3mmol/g담체)를 준비하였고, 원상태 그대로 사용하였다.
유리 반웅기에 를루엔 약 100 ml 및 상기 실리카 약 10 g을 넣고 흔합한 후, 트리에틸알루미늄 (TEA1) 약 5 mmol을 가하여 약 80 °C에서 약 1 시간 동안 교반하면서 반웅시키는 방법으로 실리카를 처리하였다.
이어서, 상기 유리 반응기에 약 80 mmol 알루미늄이 들어 있는 메틸알루미녹산 (MAO) 용액을 가하여 약 60 °C에서 밤새 (overnight) 반웅시킨 후, 층분한 양의 를루엔으로 세척하여 반웅하지 않은 메틸알루미녹산을 제거하였다 (MAO 담지량 약 8 1101/§담체/^八1: ᅀ0의 몰비 =1:16).
상기와 같이 메틸알루미녹산이 담지된 실리카에 상기 제조예 2에 따른 메탈로센 화합물이 녹아 있는 틀루엔 용액을 가하여 약 40 t에서 약 1 시간 동안 교반하여 반웅시켰다. 그 후 상기 제조예 1에 따른 메탈로센 화합물이 녹아있는 를루엔 용액을 가하여 약 40 °C에서 약 1 시간 동안 교반하여 반웅시켰다 (메탈로센 화합물의 담지량: 약 0.12 mmol/g담체). 이를 충분한 양의 를루엔으로 세척한 후 진공 건조하여 고체 분말인 흔성 담지 메탈로센 촉매를 얻었다. 실시예 2
약 80 mmol 알루미늄이 들어 있는 메틸알루미녹산 (MAO) 용액 대신 약 120 mmol 알루미늄이 들어 있는 메틸알루미녹산 (MAO) 용액을 사용한 것을 제외하고는 (MAO 담지량 약 12 mmol/g담체, ΤΕΑ1:ΜΑΟ의 몰비 = 1:24) 실시예 1과 동일한 조건 및 방법으로 흔성 담체 메탈로센 촉매를 얻었다. 실시예 3
약 80 mmol 알루미늄이 들어 있는 메틸알루미녹산 (MAO) 용액 대신 약 140 mmol 알루미늄이 들어 있는 메틸알루미녹산 (MAO) 용액을 사용한 것을 제외하고는 (MAO 담지량 약 14 mmol/g담체, TEA1:MA0의 몰비 = 1:28) 실시예 1과 동일한 조건 및 방법으로 흔성 담체 메탈로센 촉매를 얻었다. 비교예 1
담체로는 실리카 (제품명: SP952XJ836, 함수율: 6 중량0 /0, 담체 표면 0H기: 3.3 mmol/g담체)를 준비하였다. 이러한 실리카 담체를 600°C에서 12 시간 동안 건조 및 소성하여 함수율 : 1 중량%인 실리카 담체를 준비하였다. 유리 반웅기에 를루엔 약 100 ml 및 상기 실리카 약 10 g을 넣고 흔합한 후, 약 80 mmol 알루미늄이 들어 있는 메틸알루미녹산 (MAO) 용액을 가하여 약 60 °C에서 밤새 (overnight) 반응시킨 후, 충분한 양의 를루엔으로 세척하여 반웅하지 않은 메틸알루미녹산을 제거하였다 (MAO 담지량 약 8 mmol/g담체, TEA1 미사용).
' 상기와 같이 메틸알루미녹산이 담지된 실리카에 상기 제조예 2에 따른 메탈로센 화합물이 녹아 있는 를루엔 용액을 가하여 약 40 °C에서 약 1 시간 동안 교반하여 반웅시켰다. 그 후 상기 제조예 1에 따른 메탈로센 화합물이 녹아있는 를루엔 용액을 가하여 약 40 °C에서 약 1 시간 동안 교반하여 반웅시켰다 (메탈로센 화합물의 담지량: 약 0.12 mmol/g담체). 이를 충분한 양의 를루엔으로 세척한 후 진공 건조하여 고체 분말인 흔성 담지 메탈로센 촉매를 얻었다. 비교예 2
담체로는 실리카 (제품명: SP952XJ836, 함수율: 6 중량0 /。, 담체 표면
OH기: 3.3 mmol/g담체)를 준비하였고, 원상태 그대로 사용하였다.
유리 반웅기에 를루엔 약 100 ml 및 상기 실리카 약 10 g을 넣고 흔합한 후, 트리에틸알루미늄 (TEA1) 약 49.4 mm이을 가하여 상온 (약 25 °C)에서 약 1 시간 동안 교반하면서 반웅시키는 방법으로 실리카를 처리하였다 (TEA1 담지량 약 4.94 mmol/g담체, MAO 미사용).
상기와 같이 처리된 실리카에 상기 제조예 2에 따른 메탈로센 화합물이 녹아 있는 를루엔 용액을 가하여 약 40 °C에서 약 1 시간 동안 교반하여 반웅시켰다. 그 후 상기 제조예 1에 따른 메탈로센 화합물이 녹아있는 를루엔 용액을 가하여 약 40 °C에서 약 1 시간 동안 교반하여 반웅시켰다 (메탈로센 화합물의 담지량: 약 0.12 mmol/g담체). 이를 층분한 양의 를루엔으로 세척한 후 진공 건조하여 고체 분말인 흔성 담지 메탈로센 촉매를 얻었다. 비교예 3
담체로는 실리카 (제품명: SP952X— 1836, 함수율: 6 중량0 /0, 담체 표면 OH기 : 3.3 mmol/g담체)를 준비하였고, 원상태 그대로 사용하였다. 유리 반웅기에 를루엔 약 100 ml 및 상기 실리카 약 10 g을 넣고 흔합한 후, 트리 에 틸알루미늄 (TEA1) 약 49.4 mnwl을 가하여 상온 (약 25 °C)에서 약 1 시 간 동안 교반하면서 반웅시 키 는 방법으로 실리 카를 처 리하였다.
이어서, 상기 유리 반웅기에 약 80 mmol 알루미늄이 들어 있는 메틸알루미녹산 (MAO) 용액을 가하여 약 60 °C에서 밤새 (overnight) 반응시 킨 후, 층분한 양의 를루엔으로 세척하여 반웅하지 않은 메틸알루미녹산을 제거하였다 (MAO 담지 량 약 8 mmol/g담체, ΤΕΑ1:ΜΑΟ의 몰비 = 약 5:8).
상기 와 같이 메틸알루미녹산이 담지된 실리 카에 상기 제조예 2에 따른 메탈로센 화합물이 녹아 있는 를루엔 용액을' 가하여 약 40 °C에서 약 1 시간 동안 교반하여 반웅시 켰다. 그 후 상기 제조예 1에 따른 메탈로센 화합물이 녹아있는 를루엔 용액을 가하여 약 40 °C에서 약 1 시 간 동안 교반하여 반웅시 켰다 (메탈로센 화합물의 담지 량: 약 0.12 mmol/g담체). 이를 층분한 양의 를루엔으로 세척 한 후 진공 건조하여 고체 분말인 흔성 담지 메탈로센 촉매를 얻었다ᅳ 비교예 4
담체로는 실리카 (제품명 : SP952X— 1836, 함수율: 6 중량0 /。, 담체 표면 OH기 : 3.3 mmol/g담체)를 준비하였고, 원상태 그대로 사용하였다.
유리 반웅기에 를루엔 약 100 ml 및 상기 실리카 약 10 g을 넣고 흔합한 후, 약 80 mmol 알루미늄이 들어 있는 메틸알루미녹산 (MAO) 용액을 가하여 약 60 °C에서 밤새 (overnight) 반웅시 킨 후, 충분한 양의 를루엔으로 세척하여 반웅하지 않은 메틸알루'미녹산을 제거하였다 (MAO 담지량 약 8 mmol/g담체, TEA1 미사용).
상기와 같이 메틸알루미녹산이 담지된 실리카에 상기 제조예 2에 따른 메탈로센 화합물이 녹아 있는 를루엔 용액을 가하여 약 40 °C에서 약 1 시 간 동안 교반하여 반응시 켰다. 그 후 상기 제조예 1에 따론 메탈로센 화합물이 녹아있는 를루엔 용액을 가하여 약 40 °C에서 약 1 시간 동안 교반하여 반웅시 켰다 (메탈로센 화합물의 담지량: 약 0.12 mmol/g담체). 이를 충분한 양의 를루엔으로 세척한 후 진공 건조하여 고체 분말인 흔성 담지 메탈로센 촉매를 얻었다. 비교예 5
담체로는 실리카 (제품명: SP952X— 1836, 함수율: 6 중량0 /。, 담체 표면
OH기: 3.3mmol/g담체)를 준비하였고, 원상태 그대로 사용하였다.
유리 반응기에 를루엔 약 100 ml 및 상기 실리카 약 10 g을 넣고 흔합한 후, 트리에틸알루미늄 (TEA1) 약 5 mm이을 가하여 상온 (약 25 °C)에서 약 1 시간 동안 교반하면서 반웅시키는 방법으로 실리카를 처리하였다.
이어서, 상기 유리 반웅기에 약 80 mmol 알루미늄이 들어 있는 메틸알루미녹산 (MAO) 용액을 가하여 약 60 °C에서 밤새 (overnight) 반웅시킨 후, 층분한 양의 롤루엔으로 세척하여 반웅하지 않은 메틸알루미녹산을 제거하였다 (MAO 담지량 약 8mmol/g담체, ΤΕΑ1:ΜΑΟ의 몰비 = 1:16).
상기와 같이 메틸알루미녹산이 담지된 실리카에 상기 제조예 2에 따른 메탈로센 화합물이 녹아 있는 를루엔 용액을 가하여 약 40 °C에서 약 1 시간 동안 교반하여 반웅시켰다. 그 후 상기 제조예 1에 따른 메탈로센 화합물이 녹아있는 를루엔 용액을 가하여 약 40 °C에서 약 1 시간 동안 교반하여 반웅시켰다 (메탈로센 화합물의 담지량: 약 0.12 mmol/g담체). 이를 층분한 양의 를루엔으로 세척한 후 진공 건조하여 고체 분말인 흔성 담지 메탈로센 촉매를 얻었다. 비교예 6
담체로는 실리카 (제품명: SP952XJ836, 함수율: 6 중량0 /0, 담체 표면 OH기: 3.3 mmol/g담체)를 준비하였다. 이러한 실리카 담체를 600°C에서 12시간 동안 건조 및 소성하여 함수율: 1 중량%인 실리카 담체를 준비하였다.
유리 반웅기에 를루엔 약 100 ml 및 상기 실리카 약 10 g을 넣고 흔합한 후, 트리에틸알루미늄 (TEA1) 약 5 mm이을 가하여 약 80 °C에서 약 1 시간 동안 교반하면서 반웅시키는 방법으로 실리카를 처리하였다.
이어서, 상기 유리 반웅기에 약 80 mmol 알루미늄이 들어 있는 메틸알루미녹산 (MAO) 용액을 가하여 약 60 °C에서 밤새 (overnight) 반웅시킨 후, 층분한 양의 를루엔으로 세척하여 반웅하지 않은 메틸알루미녹산을 제거하였다 (MAO 담지량 약 8mmol/g담체, ΤΕΑ1:ΜΑΟ의 몰비 =1:16).
' 상기와 같이 메틸알루미녹산이 담지된 실리카에 상기 제조예 2에 따른 메탈로센 화합물이 녹아 있는 를루엔 용액을 가하여 약 40 °C에서 약 1 시간 동안 교반하여 반웅시켰다. 그 후 상기 제조예 1에 따른 메탈로센 화합물이 녹아있는 를루엔 용액을 가하여 약 40 °C에서 약 1 시간 동안 교반하여 반웅시켰다 (메탈로센 화합물의 담지량: 약 0.12 mmol/g담체). 이를 충분한 양의 를루엔으로 세척한 후 진공 건조하여 고체 분말인 흔성 담지 메탈로센 촉매를 얻었다. 실험예
상기 실시예 1 내지 3 및 비교예 1 내지 6에서 각각 제조한 담지 촉매 20 mg을 드라이박스에서 정량하여 50 ml의 유리병에 각각 담은 후, 고무 격막으로 밀봉하고 드라이 박스에서 꺼내어 올레핀 중합 반옹에 사용할 촉매를 준비하였다.
중합용 반웅기로는 기계식 교반기가 장착되어 있고 온도 조절이 가능하며 고압에서 이용 가능한 유효부피 2 L의 금속 합금 반응기를 이용하였다.
상기 반웅기에 0.5 mmol 트리에틸알루미늄 (TEA1)이 들어 있는 핵산 1
L와 1-핵센 20 ml를 주입하고, 상기 준비된 각각의 담지 촉매를 반응기에 공기 접촉 없이 투입한 후, 80 °C에서 기체 에틸렌 단량체를 40 kgf/cuf의 압력으로 계속적으로 가하면서 1 시간 동안 중합 반응을 진행하였다. 중합 반웅은 교반을 멈춘 후 에틸렌을 배기시켜 제거함으로써 완료시켰다. 그 후 중합 용매를 여과시켜 대부분을 제거한 후 70 °C의 오븐에서 4 시간 동안 건조시켜 에틸렌 중합체를 얻었다.
이때, 실시예 1 내지 3 및 비교예 1 내지 6에 따른 각각의 촉매 단위 중량 (g)당 제조된 에틸렌 중합체의 중량 (kg)을 측정함으로써 촉매의 활성 (activity)를 계산하였고, 그 결과를 하기 표 1에 나타내었다.
또한, 각 촉매를 사용하여 제조된 에틸렌 중합체의 벌크 밀도 (bulk density)를 측정하여 그 결과를 하기 표 1에 나타내었다.
【표 1】
Figure imgf000028_0001
상술한 바와 같이, 실시예 1 내지 3의 흔성 담지 메탈로센 촉매는 함수율 4 내지 7 중량0 /0의 담체를 약 60~100°C에서 TEA1과 같은 트리알킬알루미늄으로 처리하고, 이러한 담체에 MAO와 같은 알킬알루미녹산을 담지한 후, 메탈로센 화합물을 담지시켜 얻어진 것이다. 상기 표 1을 참조하면, 상기 실시예 1 내지 3의 촉매는 우수한 중합 활성을 나타낼 뿐 아니라, 이러한 촉매를 사용해 얻어진 에틸렌 중합체의 벌크 밀도가 0.38g/ml 이상으로서 우수한 물성을 나타내며, 상업적으로 매우 유용한 것임이 확인되었다.
이에 비해, 트리알킬알루미늄 또는 알킬알루미녹산의 어느 하나로만 처리되어 제조된 비교예 1, 2 및 4의 촉매는 실시예 1 내지 3에 비해 촉매 활성이 매우 낮음이 확인되었다. 또한, 비교예 3 및 5를 참고하면, TEA1의 처리 온도를 상온으로 낮추는 경우에도, TEA1의 처리에 따른 촉매의 활성 증가가 거의 나타나지 않아 열악한 촉매 활성이 나타나거나 에틸렌 중합체의 벌크 밀도가 충분치 못함이 확인되었다.
부가하여, 비교예 1 및 6을 참고하면, 소성에 의해 함수율이 낮은 담체를 사용하여 촉매를 제조하는 경우에도, 실시예 1 내지 3에 비해 촉매의 활성이 매우 낮게 나타남이 확인되었다.

Claims

【특허청구범위】
【청구항 1】
60 내지 100°C의 온도에서, 함수율 4 내지 7 중량0 /0인 담체를 트리알킬알루미늄으로 처리하는 단계;
상기 담체에 알킬알루미녹산을 담지시키는 단계; 및
상기 알킬알루미녹산이 담지된 담체에 메탈로센 화합물을 담지시키는 단계
를 포함하는 흔성 담지 메탈로센 촉매의 제조방법.
【청구항 2]
게 1 항에 있어서,
상기 담체는 표면에 2 내지 4mmol/g의 하이드록시기를 포함하는 흔성 담지 메탈로센 촉매의 제조방법.
【청구항 3】
제 1 항에 있어서,
상기 트리알킬알루미늄 및 알킬알루미녹산의 몰비는 1:10 내지 1:30인 흔성 담지 메탈로센 촉매의 제조방법.
【청구항 4】
겨 11 항에 있어서,
상기 담체에 대한 알킬알루미녹산의 담지량은 6 내지 20 mmol/g인 흔성 담지 메탈로센 촉매의 제조방법.
【청구항 5】
제 1 항에 있어서,
상기 담체에 대한 메탈로센 화합물의 담지량은 0.1 내지 으5 mmol/g인 흔성 담지 메탈로센 촉매의 제조방법.
【청구항 6】
제 1 항에 있어서,
상기 알킬알루미녹산의 담지 단계는 40 내지 80°C의 은도에서 진행되는 흔성 담지 메탈로센 촉매의 제조방법.
【청구항 7]
게 1 항에 있어서, 상기 담체는 실리카, 실리카-알루미나 및 실리카-마그네시아로 이루어진 군에서 선택되는 1 종 이상인 흔성 담지 메탈로센 촉매의 제조방법.
【청구항 8】
제 1 항에 있어서,
상기 트리알킬알루미늄은 트리메틸알루미늄, 트리에틸알루미늄 및 트리부틸알루미늄으로 이루어진 군에서 선택되는 1 종 이상인 흔성 담지 메탈로센 촉매의 제조방법.
【청구항 9】
제 1 항에 있어서,
상기 알킬알루미녹산은 메틸알루미녹산, 에틸알루미녹산, 부틸알루미녹산 및 이소부틸알루미녹산으로 이루어진 군에서 선택되는 1 종 이상인 흔성 담지 메탈로센 촉매의 제조방법.
【청구항 10]
게 1 항에 있어서,
상기 메탈로센 화합물은 하기 화학식 1 내지 3으로 이루어진 군에서 선택되는 1 종 이상인 흔성 담지 메탈로센 촉매의 제조방법:
[화학식 1]
(C5Ra)p{C5Rb)MQ3^ 상기 화학식 1에서,
M은 4족 전이금속이고;
(C5Ra) 및 (C5Rb)은 각각 독립적으로 수소, 알킬, 시클로알킬, 아릴, 알케닐, 알킬아릴, 아릴알킬, 아릴알케닐 및 하이드로카빌로 이루어진 군에서 선택되는 1 종 이상으로 치환된 14 족 금속의 메탈로이드인 클로펜타디에닐 리간드, 또는 C5의 이웃하는 두 탄소 원자가 하이드로카빌에 의해 연결되어 탄소수 4 내지 16의 고리를 하나 이상 만드는 시클로펜타디에닐 리간드이며;
Q는 할로겐 원자, 알킬, 알케닐, 아릴, 알킬아릴, 아릴알킬 또는 알킬리덴이고;
p는 0 또는 1 이다; [화학식 2]
Figure imgf000031_0001
상기 화학식 2에서 ,
M은 4족 전이금속이고;
R3 및 R4는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수
2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 40의 알킬아릴, 탄소수 7 내지 40의 아릴알킬, 탄소수 1 내지 20의 알킬실릴, 탄소수 6 내지 20의 아릴실릴, 메특시 메틸 (methoxymethyl), t-부록시 메틸 (t-butoxymethyl), 테트라하이드로피 라닐 (tetrahydropymnyl), 테트라하이드로퓨라닐 (tetrahydroforanyl), 1 -에특시쎄틸 (1-ethoxyethyl),
1ᅵ메 틸ᅭ 1 -메특시에 틸 ( 1 -methyl- 1 -methoxyethyl) 또는 t-부틸 (t-butyl)이고;
A는 탄소수 2 내지 4의 알킬렌, 탄소수 1 내지 4의 알킬실리콘, 탄소수 1 내지 4의 알킬게르마늄, 탄소수 1 내지 4의 알킬포스핀 또는 탄소수 1 내지 4의 알킬아민이고;
Q는 각각 독립적으로 할로겐 원자, 탄소수 1 내지 20의 알킬, 탄소수
2 내지 10의 알케닐, 탄소수 7 내지 40의 알킬아릴, 소수 7 내지 40의 아릴알킬, 탄소수 6 내지 20의 아릴, 치환되 거나 치환되지 않은 탄소수 1 내지 20의 알킬리 덴, 치환되거나 치환되지 않은 아미노기 , 탄소수 2 내지 20의 알킬알콕시 또는 탄소수 7 내지 40의 아릴알콕시 이고;
m은 0 내지 10의 정수이다;
[화학식 3]
Figure imgf000032_0001
상기 화학식 3에서,
R' 및 R2는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 6 내지 20의 실릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬 또는 하이드로카르빌로 치환된 4족 금속의 메탈로이드이고; 상기 R1과 R2 또는 2개의 R2가 탄소수 1 내지 20의 알킬 또는 탄소수 6 내지 20의 아릴을 포함하는 알킬리딘에 의 해 서로 연결되 어 고리를 형성할 수 있으며 ;
R3는 각각 독립적으로 수소, 할로겐 원자, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알콕시, 탄소수 6 내지 20의 아릴옥시 또는 아미도이고; 상기 R3 중에서 2개 이상의 R3는 서로 연결되 어 지방족 고리 또는 방향족 고리를 형성할 수 있으며 ;
CY1은 치환 또는 치환되지 않은 지 방족 또는 방향족 고리 이고, 상기 CY1에서 치환되는 치환기는 할로겐 원자, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알콕시, 탄소수 6 내지 20의 아릴옥시 , 아미도이고; 상기 치환기가 복수 개일 경우에는 상기 치환기 중에서 2개 이상의 치환기 가 서로 연결되 어 지 방족 또는 방향족 고리를 형성할 수 있으며 ;
M은 4족 전이금속이고;
Q1 및 Q2는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬, 탄소수 2 내지 20의 알케닐, 탄소수 6 내지 20의 아릴, 탄소수 7 내지' 20의 알킬아릴, 탄소수 7 내지 20의 아릴알킬, 탄소수 1 내지 20의 알킬아미도, 탄소수 6 내지 20의 아릴아미도 또는 탄소수 1 내지 20의 알킬리덴이다.
【청구항 11]
제 1 항 내지 제 10 항 중 어느 한 항의 방법에 따라 제조된 흔성 담지 메탈로센 촉매.
【청구항 12】
제 11 항에 따른 촉매의 존재 하에 올레핀계 단량체를 중합 반웅시키는 단계를 포함하는 폴리올레핀의 제조방법.
PCT/KR2011/007143 2010-09-29 2011-09-28 혼성 담지 메탈로센 촉매의 제조방법 WO2012044063A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11829569.0A EP2623522B1 (en) 2010-09-29 2011-09-28 Preparation method of hybrid supported metallocene catalyst
US13/824,935 US9012347B2 (en) 2010-09-29 2011-09-28 Method for preparing supported hybrid metallocene catalyst
CN201180046567.7A CN103140506B (zh) 2010-09-29 2011-09-28 制备负载型复合金属茂催化剂的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0094504 2010-09-29
KR20100094504 2010-09-29

Publications (2)

Publication Number Publication Date
WO2012044063A2 true WO2012044063A2 (ko) 2012-04-05
WO2012044063A3 WO2012044063A3 (ko) 2012-06-14

Family

ID=45893653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007143 WO2012044063A2 (ko) 2010-09-29 2011-09-28 혼성 담지 메탈로센 촉매의 제조방법

Country Status (5)

Country Link
US (1) US9012347B2 (ko)
EP (1) EP2623522B1 (ko)
KR (1) KR101485568B1 (ko)
CN (1) CN103140506B (ko)
WO (1) WO2012044063A2 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2984111A4 (en) * 2013-04-11 2016-11-30 Exxonmobil Chem Patents Inc PROCESS FOR THE PRODUCTION OF POLYOLEFINS USING METALLOCENE POLYMERIZATION CATALYSTS AND COPOLYMERS OBTAINED THEREBY
KR101721194B1 (ko) 2013-11-28 2017-03-29 주식회사 엘지화학 담지 메탈로센 촉매의 제조방법
KR102405286B1 (ko) * 2017-12-06 2022-06-02 주식회사 엘지화학 메탈로센 담지 촉매의 제조방법, 상기 제조방법으로 제조된 메탈로센 담지 촉매, 및 이를 제조하여 제조한 폴리프로필렌
CN115250620A (zh) * 2020-11-30 2022-10-28 株式会社Lg化学 茂金属负载型催化剂的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912075A (en) * 1987-12-17 1990-03-27 Exxon Chemical Patents Inc. Method for preparing a supported metallocene-alumoxane catalyst for gas phase polymerization
US4935397A (en) * 1988-09-28 1990-06-19 Exxon Chemical Patents Inc. Supported metallocene-alumoxane catalyst for high pressure polymerization of olefins and a method of preparing and using the same
US5057475A (en) * 1989-09-13 1991-10-15 Exxon Chemical Patents Inc. Mono-Cp heteroatom containing group IVB transition metal complexes with MAO: supported catalyst for olefin polymerization
DE59500269D1 (de) * 1995-09-13 1997-07-03 Witco Gmbh Verfahren zur Herstellung von Metallocen-Katalysatorsystemen auf inerten Trägermaterialien unter Verwendung von Gasphasenreaktoren
KR100235180B1 (ko) * 1996-12-31 1999-12-15 윤덕용 메탈로센 액상담지 촉매 및 그의 제조방법
EP1548023B1 (de) * 1999-12-23 2013-08-14 Basell Polyolefine GmbH Übergangsmetallverbindung, Katalysatorsystem und seine Verwendung zur Polymerisation und Copolymerisation von Olefinen
KR100579843B1 (ko) * 2003-04-01 2006-05-12 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 그의 제조방법과 이를 이용한폴리올레핀의 제조방법
KR100753478B1 (ko) 2005-02-15 2007-08-31 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리에틸렌 공중합체의 제조방법
CN101679540B (zh) * 2007-05-02 2012-09-05 Lg化学株式会社 聚烯烃及其制备方法
MX2010002085A (es) * 2007-08-29 2010-03-26 Albemarle Corp Activaciones de catalizador de aluminoxano derivados de agentes precursores de cation dialquilaluminio, procesos para su elaboracion, y su uso en catalizadores y polimerizacion de olefinas.
KR101071400B1 (ko) 2007-12-14 2011-10-07 주식회사 엘지화학 혼성 담지 메탈로센 촉매, 이의 제조 방법 및 혼성 담지메탈로센 촉매를 이용한 폴리올레핀의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623522A4
TETRAHEDRON LETT., 1988, pages 2951

Also Published As

Publication number Publication date
CN103140506A (zh) 2013-06-05
EP2623522A4 (en) 2014-06-25
EP2623522A2 (en) 2013-08-07
KR101485568B1 (ko) 2015-01-28
EP2623522B1 (en) 2018-08-29
WO2012044063A3 (ko) 2012-06-14
KR20120061029A (ko) 2012-06-12
CN103140506B (zh) 2015-06-10
US9012347B2 (en) 2015-04-21
US20130253154A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
KR101050791B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
JP6314223B2 (ja) 担持メタロセン触媒の製造方法
JP5671750B2 (ja) 担持メタロセン触媒の製造方法及びそれを用いたポリオレフィンの製造方法
JP6236155B2 (ja) メタロセン化合物、これを含む触媒組成物およびこれを用いるオレフィン系重合体の製造方法
JP6282341B2 (ja) 混成担持メタロセン触媒
KR20170106110A (ko) 혼성 담지 메탈로센 촉매의 제조방법, 상기 제조방법으로 제조된 혼성 담지 메탈로센 촉매, 및 이를 이용하는 폴리올레핀의 제조방법
US11767377B2 (en) Metallocene-supported catalyst and method of preparing polyolefin using the same
JP6440832B2 (ja) メタロセン化合物、メタロセン担持触媒およびこれを用いるポリオレフィンの製造方法
KR102028736B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
JP6511151B2 (ja) ポリオレフィンの製造方法
KR101116701B1 (ko) 담지 메탈로센 촉매, 이의 제조방법, 및 이를 이용한 폴리올레핀의 제조방법
WO2016122017A1 (ko) 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
WO2012044063A2 (ko) 혼성 담지 메탈로센 촉매의 제조방법
KR101725351B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
JP4344100B2 (ja) 助触媒を再使用するオレフィン重合方法
EP3330296B1 (en) Method for preparing supported metallocene catalyst
KR20150136282A (ko) 혼성 담지 메탈로센 촉매의 제조방법
WO2016204457A1 (ko) 폴리올레핀의 제조 방법
KR20170065977A (ko) 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR101949456B1 (ko) 혼성 담지 메탈로센 촉매의 제조 방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
WO2015056974A1 (ko) 혼성 담지 메탈로센 촉매의 제조방법
KR20220017199A (ko) 전이 금속 화합물, 이의 제조방법, 및 이를 포함하는 촉매 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046567.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829569

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011829569

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13824935

Country of ref document: US