WO2012043774A1 - Composition for organic electroluminescent element; organic electroluminescent element, charge transport layer, light-emitting layer, and film using said composition; method for forming light-emitting layer, and method for forming charge transport layer - Google Patents

Composition for organic electroluminescent element; organic electroluminescent element, charge transport layer, light-emitting layer, and film using said composition; method for forming light-emitting layer, and method for forming charge transport layer Download PDF

Info

Publication number
WO2012043774A1
WO2012043774A1 PCT/JP2011/072482 JP2011072482W WO2012043774A1 WO 2012043774 A1 WO2012043774 A1 WO 2012043774A1 JP 2011072482 W JP2011072482 W JP 2011072482W WO 2012043774 A1 WO2012043774 A1 WO 2012043774A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
ring
antioxidant
organic electroluminescent
Prior art date
Application number
PCT/JP2011/072482
Other languages
French (fr)
Japanese (ja)
Inventor
林 直之
佳奈 山本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012043774A1 publication Critical patent/WO2012043774A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers

Definitions

  • the present invention relates to a composition for an organic electroluminescent device, and a film, a light emitting layer, a charge transport layer, an organic electroluminescent device, a method for forming a light emitting layer, and a method for forming a charge transport layer using the composition.
  • organic electroluminescent elements such as organic electroluminescent elements (hereinafter also referred to as OLEDs and organic EL elements) and transistors using organic semiconductors.
  • the organic electroluminescence device is expected to be developed as a lighting application as a solid light-emitting large-area full-color display device or an inexpensive large-area surface light source.
  • an organic electroluminescent element is composed of an organic layer including a light emitting layer and a pair of counter electrodes sandwiching the organic layer. When a voltage is applied to such an organic electroluminescence device, electrons are injected from the cathode and holes are injected from the anode into the organic layer. The electrons and holes recombine in the light emitting layer, and light is emitted by releasing energy as light when the energy level returns from the conduction band to the valence band.
  • An organic EL element can be produced by forming a light emitting layer and other organic layers by, for example, a dry method such as vapor deposition or a wet method such as coating.
  • wet methods are attracting attention from the viewpoint of productivity. ing.
  • the liquid composition used in the wet method such as coating is manufactured or stored stably and formed into a film by the atmosphere (oxygen).
  • problems such as a change in physical properties and a decrease in performance of an organic EL device produced using the composition due to the change in physical properties have arisen.
  • Patent Document 1 adds an antioxidant to a liquid containing an organic functional material and a solvent, thereby suppressing a change in physical properties due to the atmosphere (oxygen), and a liquid composition. It discloses that the stability of things can be improved. Further, it is disclosed that an excellent device with high reliability can be provided by manufacturing various devices using such a liquid composition.
  • Patent Document 2 in an organic EL device containing a light emitting material and a hole transport material in the same or different organic layers, at least one of the organic layers containing the hole transport material contains an antioxidant and a light stabilizer. It is disclosed that an organic EL device having a long lifetime can be obtained by containing at least one of the agents and reducing attenuation of luminance and increase of driving voltage.
  • antioxidants used in the invention of Patent Document 1
  • sulfur-based antioxidants specifically described phenolic antioxidants, sulfur-based antioxidants and phosphoric acid-based antioxidants
  • Patent Document 2 None of the phenolic antioxidants, hindered amine light stabilizers and benzophenone light stabilizers used are those that are not evaporated or decomposed by heating during film formation of the composition in the production of organic EL elements.
  • the antioxidant and the light stabilizer remain in the film after film formation.
  • These antioxidants and light stabilizers are insulators or compounds with extremely low mobility, and adversely affect carrier mobility, so that they remain in the film, thereby reducing the organic EL device performance such as external quantum efficiency. Is known and needs improvement.
  • an object of the present invention is to solve the above problems and achieve the following object. That is, the present invention uses an antioxidant that can be evaporated or decomposed by heating, and the antioxidant is evaporated or decomposed by heating at the time of film formation of the composition in the production of an organic electroluminescent device.
  • the antioxidant does not substantially remain in the film after film formation It aims at providing the composition for organic electroluminescent elements which show
  • composition for organic electroluminescent elements of this invention is a coating liquid for light emitting layer formation
  • an effect of preventing the fall of PL (photoluminescence) quantum yield in addition to said effect is an object to provide a composition for a light emitting device.
  • Another object of the present invention is to select and use an antioxidant (specifically, a liquid antioxidant) having a shape suitable as an antioxidant, so that a composition for an organic electroluminescent element (coating liquid) is used.
  • a composition for an organic electroluminescence device capable of preventing clogging due to precipitation of an antioxidant.
  • Still another object of the present invention is to provide a film, a light emitting layer, a charge transport layer, an organic electroluminescent device, a method for forming a light emitting layer, and a method for forming a charge transport layer using the above composition.
  • the present inventors have conducted extensive research and have used an antioxidant capable of evaporating or decomposing by heating, and heating when forming the composition in the production of an organic electroluminescent device.
  • an antioxidant capable of evaporating or decomposing by heating, and heating when forming the composition in the production of an organic electroluminescent device.
  • a composition for an organic electroluminescent device wherein an antioxidant (A) that can be evaporated or decomposed by heating is added to a liquid containing an organic material (B) and a solvent (C),
  • a composition for an organic electroluminescence device wherein the antioxidant (A) evaporates or decomposes by heating when forming the film of the composition in the production of an organic electroluminescence device.
  • composition for organic electroluminescent elements according to any one of [1] to [3] above, wherein the antioxidant (A) is an alkylene glycol derivative, an amino alcohol derivative or oxalic acid.
  • the organic material (B) contains a light emitting material and a host material.
  • the light emitting material is an iridium complex and the host material is a carbazole derivative.
  • the organic material (B) contains a charge transport material.
  • the solvent (C) contains at least one selected from the group consisting of 2-butanone, butyl lactate, amyl lactate, isoamyl lactate and 2-n-butoxyethanol, [5] or [6]
  • a light emitting layer formed by applying the composition according to any one of [5], [6] and [8] and heating the applied composition.
  • a method for forming a light emitting layer which comprises applying the composition according to any one of [5], [6] and [8], and heating the applied composition.
  • a method for forming a charge transport layer comprising applying the composition according to [7] or [9] above and heating the applied composition.
  • an antioxidant that can be evaporated or decomposed by heating is used, and the antioxidant is evaporated or decomposed by heating at the time of film formation of the composition in the production of an organic electroluminescent element.
  • the antioxidant does not substantially remain in the film after film formation, the storage stability of the composition is improved by using the antioxidant itself (and the coating liquid for forming the light emitting layer).
  • an organic electroluminescent element composition (coating liquid) can be obtained by selecting and using an antioxidant having a shape suitable as an antioxidant (specifically, a liquid antioxidant).
  • an antioxidant having a shape suitable as an antioxidant (specifically, a liquid antioxidant).
  • a composition for an organic electroluminescent device that can be easily mixed into the organic electroluminescent device and can be prevented from being clogged due to precipitation of an antioxidant.
  • the substituent group A and the substituent group B are defined as follows.
  • An alkyl group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, isopropyl, tert-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.
  • alkenyl groups preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl , Allyl, 2-butenyl, 3-pentenyl, etc.
  • alkynyl groups preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl ,
  • pyridyloxy pyrazyloxy, pyrimidyloxy, quinolyloxy, etc.
  • an acyl group preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 12 carbon atoms.
  • Benzoyl, formyl, pivaloyl, etc. an alkoxycarbonyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms such as methoxycarbonyl, ethoxy Carbonyl, etc.), an aryloxycarbonyl group (preferably Has 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonyl.
  • an alkoxycarbonyl group preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms such as methoxycarbonyl, ethoxy Carbonyl, etc.
  • an aryloxycarbonyl group preferably Has 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonyl.
  • An acyloxy group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as acetoxy, benzoyloxy, etc.), an acylamino group (preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, particularly preferably 2-10 carbon atoms, and examples thereof include acetylamino, benzoylamino and the like, and alkoxycarbonylamino groups (preferably having 2-2 carbon atoms).
  • an aryloxycarbonylamino group preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, for example phenyloxycarbonyl And sulfonylamino groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino and benzenesulfonylamino).
  • an aryloxycarbonylamino group preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, for example phenyloxycarbonyl And sulfonylamino groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino and benzenesulfonylamino).
  • a sulfamoyl group (preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, phenyl Sulfamoyl, etc.), carbamoyl groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as carbamoyl, methylcarbamoyl, diethylcarbamoyl, Phenylcarbamoyl etc.), alkylthio group ( Preferably, it has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio, ethylthio, etc.), an arylthio group (preferably 6 to 30 carbon atoms).
  • a sulfinyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfinyl and benzenesulfinyl.
  • a ureido group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), phosphoric acid
  • An amide group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as diethyl phosphoric acid amide and phenyl phosphoric acid amide), a hydroxy group , Mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, heterocyclic group ( An aromatic heterocyclic group is also included, preferably having 1 to 30 carbon atoms, more preferably
  • Is for example, a nitrogen atom, oxygen atom, sulfur atom, phosphorus atom, silicon atom, selenium atom, tellurium atom, specifically pyridyl, pyrazinyl, pyrimidyl, pyridazinyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, oxazolyl, thiazolyl, And isoxazolyl, isothiazolyl, quinolyl, furyl, thienyl, selenophenyl, tellurophenyl, piperidyl, piperidino, morpholino, pyrrolidyl, pyrrolidino, benzoxazolyl, benzoimidazolyl, benzothiazolyl, carbazolyl group, azepinyl group, silolyl group and the like.
  • a silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, and examples thereof include trimethylsilyl and triphenylsilyl).
  • a aryloxy group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, such as trimethylsilyloxy, triphenylsilyloxy, etc.), phosphoryl group (for example, A diphenylphosphoryl group, a dimethylphosphoryl group, etc.).
  • These substituents may be further substituted, and examples of the further substituent include a group selected from the substituent group A described above.
  • the substituent substituted by the substituent may be further substituted, and examples of the further substituent include a group selected from the substituent group A described above.
  • the substituent substituted by the substituent substituted by the substituent may be further substituted, and examples of the further substituent include a group selected from the substituent group A described above.
  • alkyl group preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, isopropyl, tert-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.
  • alkenyl groups preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl , Allyl, 2-butenyl, 3-pentenyl, etc.
  • alkynyl groups preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl , 3-pentynyl, etc.
  • aryl groups preferably having 6 to 30 carbon atoms, more
  • the substituent substituted by the substituent may be further substituted, and examples of the further substituent include a group selected from the substituent group B described above.
  • the substituent substituted by the substituent substituted by the substituent may be further substituted, and examples of the further substituent include a group selected from the substituent group B described above.
  • composition for organic electroluminescent elements of the present invention is an organic material obtained by adding an antioxidant that can be evaporated or decomposed by heating to a liquid containing an organic material and a solvent.
  • the antioxidant is evaporated or decomposed by heating when the composition is formed in the production of the organic electroluminescent element.
  • the use of the composition of the present invention has the effect of improving the storage stability of the composition (and preventing the decrease in PL quantum yield in the case of a coating solution for forming a light emitting layer), as well as durability and external quantum. The reason why the effect of preventing the degradation of the organic EL element performance such as the efficiency can be obtained is not clear, but is estimated as follows.
  • the composition of the present invention contains an antioxidant, so that an organic material (specifically, a light emitting material and a host material described later) accompanying heating and drying when forming the film of the composition in the production of an organic electroluminescent element is used. Oxidation of the charge transport layer material, etc.). Further, when the composition of the present invention is a coating solution for forming a light emitting layer, it is possible to suppress decomposition of the light emitting material such as a phosphorescent light emitting material and the like accompanying heating, and prevent a decrease in PL quantum yield. be able to.
  • an organic material specifically, a light emitting material and a host material described later
  • the phosphorescent material is an iridium complex having acetylacetonate (acac), which will be described later, as a ligand.
  • the antioxidant according to the present invention is evaporated or decomposed by heating at the time of film formation of the composition in the production of an organic electroluminescence device, so that the antioxidant is substantially contained in the film after film formation. No longer remains.
  • Antioxidants are insulators or compounds with extremely low mobility, and adversely affect carrier mobility, so that they remain in the film to reduce the organic EL device performance such as external quantum efficiency. It is presumed that the organic EL element performance such as external quantum efficiency can be prevented from deteriorating because it does not substantially remain in the film after film formation.
  • the antioxidant does not substantially remain in the film due to evaporation or the antioxidant decomposes to have the original structure. It means that the antioxidant does not substantially remain in the film.
  • the antioxidant (which has the same structure as that contained in the composition) is based on the total solid content in the film after film formation, It is a state in which only 1000 ppm or less remains, preferably the remaining amount is 100 ppm or less, more preferably the remaining amount is 10 ppm or less, and most preferably 0 ppm (that is, no antioxidant remains in the film). .
  • the composition according to the present invention is preferably a composition for an organic electroluminescent device, more preferably a composition for forming a light emitting layer or a charge transport layer, and further preferably a light emitting layer, a hole injection layer or a hole transport. It is a composition for layer formation.
  • a composition for layer formation preferably a composition for layer formation.
  • Antioxidant (A) that can be evaporated or decomposed by heating
  • the composition of the present invention contains an antioxidant that can be evaporated or decomposed by heating (hereinafter also referred to as “antioxidant (A)”).
  • the antioxidant (A) evaporates or decomposes by heating when forming the composition of the present invention in the production of an organic electroluminescent device, and a known antioxidant satisfying this condition can be used. is there.
  • the heating temperature in forming the composition in the production of the organic electroluminescent device is generally within a temperature range that does not adversely affect the performance of the organic electroluminescent device, specifically 25 ° C. to 220 ° C. It is preferably 80 ° C. to 220 ° C., more preferably 150 ° C. to 220 ° C.
  • the antioxidant (A) evaporates or decomposes at the heating temperature when the composition is formed in the production of the organic electroluminescence device as described above.
  • the antioxidant (A) is preferably evaporated or decomposed by heating at 80 ° C. to 220 ° C. under atmospheric pressure, more preferably 150 ° C. to 220 ° C., and further preferably 180 ° C. to 220 ° C.
  • the antioxidant (A) it is preferable to use an antioxidant that is liquid at 25 ° C. (room temperature).
  • a liquid antioxidant By using a liquid antioxidant, mixing with the organic electroluminescent element composition (coating liquid) is facilitated, and clogging due to precipitation of the antioxidant can be prevented.
  • the viscosity at 25 ° C. (room temperature) is preferably 0.5 to 30 mPa ⁇ s, more preferably 1 to 25 mPa ⁇ s from the viewpoint of liquid feeding property. More preferably, it is ⁇ 20 mPa ⁇ s.
  • the viscosity can be measured with a B-type rotational viscometer.
  • the antioxidant (A) is [1-1] an antioxidant that can be evaporated by heating (hereinafter also referred to as “antioxidant (A-1)”), or [1-2] heating. It is an antioxidant that can be decomposed by (hereinafter, also referred to as “antioxidant (A-2)”). Each will be described below. Commercially available antioxidants are described in the antioxidant handbook (published by Taiseisha).
  • Antioxidant capable of being evaporated by heating (A-1)
  • the antioxidant (A-1) is liquid at 25 ° C. (room temperature).
  • the preferred viscosity range of the antioxidant (A-1) is the same as the preferred viscosity range when the above-mentioned antioxidant (A) is in a liquid state.
  • the antioxidant (A-1) is preferably evaporated by heating at 80 ° C. to 220 ° C. under atmospheric pressure, more preferably 150 ° C. to 220 ° C., and further preferably 180 ° C. to 220 ° C. .
  • antioxidant (A-1) examples include alkylene glycol derivatives such as ethylene glycol derivatives and propylene glycol derivatives, amino alcohol derivatives and the like, preferably alkylene glycol derivatives, more preferably ethylene glycol derivatives.
  • the ethylene glycol derivative is a compound having a partial structure represented by — (CH 2 ) 2 O—, and is preferably represented by the following general formula (EG).
  • R EG and R EG ′ each independently represents an alkyl group.
  • n EG represents an integer of 1 or more.
  • the alkyl group represented by R EG and R EG ′ is a linear or branched alkyl group, and is preferably a linear chain.
  • the alkyl group represented by R EG and R EG ′ preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and most preferably a methyl group.
  • n EG is an integer of 1 or more. From the viewpoint of boiling point, n EG is preferably an integer of 1 to 3.
  • Examples of the ethylene glycol derivative represented by the above general formula (EG) as the antioxidant (A-1) include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, triethylene glycol dimethyl ether, diethylene glycol diester.
  • Examples thereof include butyl ether, diethylene glycol butyl methyl ether, diethylene glycol ethyl methyl ether, and the like, preferably 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, diethylene glycol butyl methyl ether, and diethylene glycol ethyl methyl ether.
  • propylene glycol derivative examples include propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, and tripropylene glycol dimethyl ether. Preferred are propylene glycol dimethyl ether and dipropylene glycol dimethyl ether.
  • amino alcohol derivatives include triethanolamine, diethylethanolamine dibutylethanolamine, N-methyldiethanolamine, and the like, preferably triethanolamine and diethylethanolamine.
  • Antioxidant capable of being decomposed by heating is an antioxidant in which decomposition products generated by heating do not adversely affect the organic electroluminescence device. When the antioxidant is decomposed, it is volatilized as a low molecular weight compound. Therefore, the decomposition product of the antioxidant does not adversely affect the device.
  • the antioxidant (A-2) may be liquid at 25 ° C. (room temperature) or solid. A preferable viscosity range when the antioxidant (A-2) is in a liquid state is the same as the preferable viscosity range when the above-mentioned antioxidant (A) is in a liquid state.
  • the antioxidant (A-2) is preferably decomposed by heating at 80 ° C. to 220 ° C. under atmospheric pressure, more preferably 150 ° C. to 220 ° C., further preferably 180 ° C. to 220 ° C. .
  • antioxidant (A-2) is oxalic acid.
  • Oxalic acid is a compound that acts with a weak reducing agent and can be decomposed at 189.5 ° C.
  • carbon monoxide, carbon dioxide, and low boiling point formic acid (boiling point 100.8 ° C.) are generated as decomposition products, they can be easily volatilized by heating.
  • the antioxidant (A) is preferably the above-mentioned alkylene glycol derivative, amino alcohol derivative or oxalic acid.
  • the solubility parameter of the antioxidant (A) is preferably 7.0 to 13.0 in the composition of the present invention. According to this, since the antioxidant (A) has sufficient solubility in the solvent, it is compatible with the organic material and sufficiently dispersed, and phase separation does not occur even after film formation. And when an organic material contains a light emitting material, it can suppress that light emission nonuniformity arises because antioxidant (A) is fully disperse
  • the solubility parameter is 7.0 to 13.0. It is preferable to use the antioxidant (A) which is more preferably 8.5 to 13.0. On the other hand, when the organic material includes a light emitting material (light emitting layer forming material), it is preferable that the solubility parameter is 7.0 to 13.0, more preferably 7.5 to 10.5. It is desirable to use the agent (A).
  • the solubility of the antioxidant (A) in the solvent described later is preferably 0.001% or more. According to this, since the antioxidant (A) has sufficient solubility in the solvent, it is compatible with the organic material and sufficiently dispersed, and phase separation does not occur even after film formation. And when an organic material contains a light emitting material, it can suppress that light emission nonuniformity arises because antioxidant (A) is fully disperse
  • the organic material is a hole injection material or a hole transport material
  • an antioxidant (A) having a solubility in a solvent of 0.001% or more, preferably 5% or more it is desirable to use an antioxidant (A) having a solubility in a solvent of 0.001% or more, preferably 5% or more.
  • antioxidant (A) may be used independently and may be used in combination of 2 or more type.
  • the content of the antioxidant (A) in the composition is preferably 0.1 to 10% by mass based on the total solid content of the composition when the antioxidant (A) is in a solid state, More preferably, the content is 0.1 to 5% by mass, and still more preferably 0.2 to 3% by mass.
  • the antioxidant (A) is a liquid
  • the concentration of the antioxidant (A) in the composition is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, and still more preferably 5%. ⁇ 20% by weight.
  • the antioxidant (A) of the present invention it is preferable to use a purified product.
  • purification treatment specifically, (1) column purification treatment of silica gel, alumina, cationic ion exchange resin, anionic ion exchange resin, etc., (2) anhydrous sodium sulfate, anhydrous calcium sulfate, magnesium sulfate, strontium sulfate, Dehydration treatment of barium sulfate, barium oxide, calcium oxide, magnesium oxide, molecular sieves, zeolite, etc. (3) Distillation treatment, (4) Bubbling treatment with inert gas (nitrogen, argon), etc. (5) Filtration, centrifugal sedimentation Arbitrary methods such as impurity removal treatment by (6) recrystallization and the like can be used. A purification method by column purification treatment, dehydration treatment, filtration, and recrystallization is more preferable.
  • Organic material (B) contains an organic material (hereinafter also referred to as “organic material (B)”).
  • organic material (B) a well-known organic material can be used if it is an organic material which functions in an organic electroluminescent element.
  • the composition of the present invention preferably contains a light emitting material and a host material as the organic material (B). Thereby, the composition which can provide the element which has favorable storage stability and was excellent in PL quantum yield and external quantum efficiency is obtained.
  • the light emitting material is an iridium (Ir) complex described later and the host material is a carbazole derivative described later.
  • the composition of the present invention preferably contains a charge transport material as the organic material (B).
  • a charge transport material as the organic material (B).
  • Examples of the light-emitting material used as the organic material (B) include a fluorescent light-emitting material and a phosphorescent light-emitting material. [0164], paragraph numbers [0088] to [0090] of JP-A-2007-266458, and the matters described in these publications can be applied to the present invention.
  • Examples of phosphorescent light-emitting materials that can be used in the present invention include US Pat. / 19373A2, JP-A No. 2001-247859, JP-A No. 2002-302671, JP-A No. 2002-117978, JP-A No. 2003-133074, JP-A No. 2002-1235076, JP-A No. 2003-123684, JP-A No. 2002-170684, EP No. 121157, JP-A No. 2002 -226495, JP 2002-234894, JP 2001-247859, JP 2001-298470, JP 2002-1736 4.
  • Phosphorescent compounds and the like can be mentioned.
  • more preferable light emitting materials include Ir complex, Pt complex, Cu complex, Re complex, W complex, Rh complex, Ru complex, Pd complex, Os complex, Eu complex, Tb complex, Examples thereof include phosphorescent metal complex compounds such as Gd complexes, Dy complexes, and Ce complexes.
  • an Ir complex, a Pt complex, or a Re complex among which an Ir complex or a Pt complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond. Or Re complexes are preferred. Furthermore, from the viewpoints of luminous efficiency, driving durability, chromaticity and the like, an Ir complex and a Pt complex are particularly preferable, and an Ir complex is most preferable.
  • iridium complex represented by the following general formula (E-1) As the phosphorescent material in the present invention, it is preferable to use an iridium complex represented by the following general formula (E-1) or a platinum complex represented by the following general formula (C-1).
  • Z 1 and Z 2 each independently represent a carbon atom or a nitrogen atom.
  • a 1 represents an atomic group that forms a 5- or 6-membered heterocycle with Z 1 and a nitrogen atom.
  • B 1 represents an atomic group that forms a 5- or 6-membered ring with Z 2 and a carbon atom.
  • (XY) represents a monoanionic bidentate ligand.
  • n E1 represents an integer of 1 to 3.
  • n E1 represents an integer of 1 to 3, preferably 2 or 3.
  • Z 1 and Z 2 each independently represent a carbon atom or a nitrogen atom.
  • Z 1 and Z 2 are preferably carbon atoms.
  • a 1 represents an atomic group that forms a 5- or 6-membered heterocycle with Z 1 and a nitrogen atom.
  • the 5- or 6-membered heterocycle containing A 1 , Z 1 and a nitrogen atom includes a pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, triazole ring, oxadiazole Ring, thiadiazole ring and the like.
  • the 5- or 6-membered heterocycle formed by A 1 , Z 1 and a nitrogen atom is preferably a pyridine ring, a pyrazine ring, an imidazole ring, or a pyrazole.
  • the 5- or 6-membered heterocycle formed by the A 1 , Z 1 and the nitrogen atom may have a substituent, and as the substituent on the carbon atom, the substituent group A is on the nitrogen atom.
  • the substituent group B can be applied as the substituent.
  • Preferred substituents on carbon are alkyl groups, perfluoroalkyl groups, aryl groups, aromatic heterocyclic groups, dialkylamino groups, diarylamino groups, alkoxy groups, cyano groups, and fluorine atoms.
  • the substituent is appropriately selected for controlling the emission wavelength and potential, but in the case of shortening the wavelength, an electron donating group, a fluorine atom, and an aromatic ring group are preferable.
  • an electron donating group, a fluorine atom, and an aromatic ring group are preferable.
  • an alkyl group, a dialkylamino group, an alkoxy group, A fluorine atom, an aryl group, an aromatic heterocyclic group and the like are selected.
  • an electron withdrawing group is preferable, and for example, a cyano group, a perfluoroalkyl group, or the like is selected.
  • the substituent on nitrogen is preferably an alkyl group, an aryl group, or an aromatic heterocyclic group, and an alkyl group or an aryl group is preferable from the viewpoint of the stability of the complex.
  • the substituents may be linked to form a condensed ring, and the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, and a pyrazole. Ring, thiophene ring, furan ring and the like. These formed rings may have a substituent, and examples of the substituent include the substituent on the carbon atom and the substituent on the nitrogen atom.
  • B 1 represents a 5- or 6-membered ring containing Z 2 and a carbon atom.
  • Examples of the 5- or 6-membered ring formed by B 1 , Z 2 and a carbon atom include a benzene ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, a triazine ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, Examples include a triazole ring, an oxadiazole ring, a thiadiazole ring, a thiophene ring, and a furan ring.
  • the benzene ring, pyridine ring, pyrazine ring, imidazole ring, pyrazole is preferable as the 5- or 6-membered ring formed by B 1 , Z 2 and carbon atom.
  • the 5- or 6-membered ring formed of B 1 , Z 2 and a carbon atom may have a substituent, and the substituent group A is a substituent on a nitrogen atom as the substituent on the carbon atom.
  • the substituent group B can be applied.
  • Preferred substituents on carbon are alkyl groups, perfluoroalkyl groups, aryl groups, aromatic heterocyclic groups, dialkylamino groups, diarylamino groups, alkoxy groups, cyano groups, and fluorine atoms.
  • the substituent is appropriately selected for controlling the emission wavelength and potential, but in the case of increasing the wavelength, an electron donating group and an aromatic ring group are preferable, for example, an alkyl group, a dialkylamino group, an alkoxy group, an aryl group, An aromatic heterocyclic group or the like is selected.
  • an electron withdrawing group is preferable, and for example, a fluorine atom, a cyano group, a perfluoroalkyl group, and the like are selected.
  • the substituent on nitrogen is preferably an alkyl group, an aryl group, or an aromatic heterocyclic group, and an alkyl group or an aryl group is preferable from the viewpoint of the stability of the complex.
  • the substituents may be linked to form a condensed ring, and the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, and a pyrazole. Ring, thiophene ring, furan ring and the like.
  • These formed rings may have a substituent, and examples of the substituent include the substituent on the carbon atom and the substituent on the nitrogen atom.
  • a 5- or 6-membered heterocyclic substituent formed by A 1 , Z 1 and a nitrogen atom and a 5- or 6-membered substituent formed by B 1 , Z 2 and a carbon atom are linked. Then, the same condensed ring as described above may be formed.
  • Examples of the ligand represented by (XY) include various known ligands used in conventionally known metal complexes. For example, “Photochemistry and Photophysics of Coordination Compounds” Springer-Verlag H. Published by Yersin in 1987, “Organometallic Chemistry-Fundamentals and Applications-”
  • the ligands described in Akio Yamamoto's book published by Akio Yamamoto in 1982, etc. for example, halogen ligands (preferably chlorine ligands), Nitrogen heteroaryl ligands (for example, bipyridyl, phenanthroline, etc.), diketone ligands (for example, acetylacetone, etc.) can be mentioned.
  • the ligands represented by (XY) are preferably the following general formulas (l-1) to (1-14), but the present invention is not limited to these.
  • Rx, Ry and Rz each independently represents a hydrogen atom or a substituent.
  • Rx, Ry, and Rz represent a substituent
  • substituents include a substituent selected from the substituent group A.
  • Rx and Rz are each independently an alkyl group, a perfluoroalkyl group, a fluorine atom or an aryl group, more preferably an alkyl group having 1 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, A fluorine atom and an optionally substituted phenyl group are most preferred, and a methyl group, an ethyl group, a trifluoromethyl group, a fluorine atom and a phenyl group are most preferred.
  • Ry is preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, a fluorine atom or an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an optionally substituted phenyl group. And most preferably a hydrogen atom or a methyl group. Since these ligands are considered not to be sites where charge is transported in the device or electrons are concentrated by excitation, Rx, Ry, and Rz may be chemically stable substituents. Will not be affected. Since complex synthesis is easy, (I-1), (I-4) and (I-5) are preferred, and (I-1) is most preferred.
  • Ligands having these ligands can be synthesized in the same manner as in known synthesis examples by using corresponding ligand precursors.
  • ligand precursors for example, in the same manner as described in International Publication No. 2009-073245, page 46, it can be synthesized by the following method using commercially available difluoroacetylacetone.
  • the ligand represented by (XY) is preferably a diketone or a picolinic acid derivative, and is acetylacetonate (acac) shown below from the viewpoint of obtaining stability of the complex and high luminous efficiency. Most preferred.
  • a preferred embodiment of the Ir complex represented by the general formula (E-1) is an Ir complex represented by the general formula (E-2).
  • a E1 to A E8 each independently represent a nitrogen atom or C—R E.
  • R E represents a hydrogen atom or a substituent.
  • (XY) represents a monoanionic bidentate ligand.
  • n E2 represents an integer of 1 to 3.
  • a E1 to A E8 each independently represents a nitrogen atom or C—R E.
  • R E represents a hydrogen atom or a substituent, and R E may be connected to each other to form a ring.
  • Examples of the ring formed include the same ring as the condensed ring described in the general formula (E-1).
  • Examples of the substituent represented by R E we are the same as those mentioned above substituent group A.
  • a E1 ⁇ A E4 is C-R E, if A E1 ⁇ A E4 is C-R E, preferably a hydrogen atom R E of A E3, alkyl group, aryl group, amino group, An alkoxy group, an aryloxy group, a fluorine atom, or a cyano group, more preferably a hydrogen atom, an alkyl group, an amino group, an alkoxy group, an aryloxy group, or a fluorine atom, and particularly preferably a hydrogen atom or a fluorine atom.
  • R E of A E1 , A E2 and A E4 is preferably a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom or a cyano group, more preferably a hydrogen atom, An alkyl group, an amino group, an alkoxy group, an aryloxy group, or a fluorine atom, particularly preferably a hydrogen atom.
  • a E5 to A E8 are preferably C—R E , and when A E5 to A E8 are C—R E , R E is preferably a hydrogen atom, alkyl group, perfluoroalkyl group, aryl group, aromatic A heterocyclic group, a dialkylamino group, a diarylamino group, an alkyloxy group, a cyano group, or a fluorine atom, more preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, an aryl group, a dialkylamino group, a cyano group, Or a fluorine atom, and more preferably a hydrogen atom, an alkyl group, a trifluoromethyl group, or a fluorine atom.
  • a E6 is preferably a nitrogen atom.
  • (X-Y) and n E2 of the general formula in (E1) (X-Y) , and has the same meaning as n E1 preferable ranges are also the same.
  • a more preferred form of the compound represented by the general formula (E-2) is a compound represented by the following general formula (E-3).
  • R T1 , R T2 , R T3 , R T4 , R T5 , R T6 and R T7 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, —CN, a perfluoroalkyl group, a trifluorovinyl group, —CO 2 R, —C (O) R, —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group or a heteroaryl group, and further a substituent Z may be included.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • A represents CR ′ or a nitrogen atom
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, —CN, a perfluoroalkyl group, a trifluorovinyl group, —CO 2 R, —C (O ) R, —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group or a heteroaryl group, which may further have a substituent Z.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • R T1 to R T7 and R ′ may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl or heteroaryl.
  • the condensed 4- to 7-membered ring may further have a substituent Z.
  • a case where a ring is condensed with R T1 and R T7 , or R T5 and R T6 to form a benzene ring is preferable, and a case where a ring is condensed with R T5 and R T6 to form a benzene ring is particularly preferable.
  • the substituents Z are each independently a halogen atom, —R ′′, —OR ′′, —N (R ′′) 2 , —SR ′′, —C (O) R ′′, —C (O) OR ′′, —C ( O) represents N (R ′′) 2 , —CN, —NO 2 , —SO 2 , —SOR ′′, —SO 2 R ′′, or —SO 3 R ′′, and each R ′′ independently represents a hydrogen atom, alkyl Represents a group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • (XY) represents a monoanionic bidentate ligand.
  • n E3 represents an integer of 1 to 3.
  • the alkyl group may have a substituent, may be saturated or unsaturated, and examples of the group that may be substituted include the above-described substituent Z.
  • the alkyl group represented by R T1 to R T7 and R ′ is preferably an alkyl group having 1 to 8 carbon atoms in total, more preferably an alkyl group having 1 to 6 carbon atoms in total, such as methyl Group, ethyl group, i-propyl group, cyclohexyl group, t-butyl group and the like.
  • the cycloalkyl group may have a substituent, may be saturated or unsaturated, and examples of the group that may be substituted include the above-described substituent Z.
  • the cycloalkyl group represented by R T1 to R T7 and R ′ is preferably a cycloalkyl group having 4 to 7 ring members, more preferably a cycloalkyl group having 5 to 6 carbon atoms in total, A cyclopentyl group, a cyclohexyl group, etc. are mentioned.
  • the alkenyl group represented by R T1 to R T7 and R ′ preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms.
  • vinyl, allyl Examples include 1-propenyl, 1-isopropenyl, 1-butenyl, 2-butenyl, 3-pentenyl and the like.
  • the alkynyl group represented by R T1 to R T7 and R ′ preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms.
  • R T1 to R T7 and R ′ preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms.
  • Examples of the perfluoroalkyl group represented by R T1 to R T7 and R ′ include those in which all the hydrogen atoms of the aforementioned alkyl group are replaced with fluorine atoms.
  • the aryl group represented by R T1 to R T7 and R ′ is preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, such as a phenyl group, a tolyl group, or a naphthyl group.
  • the heteroaryl group represented by R T1 to R T7 and R ′ is preferably a heteroaryl group having 5 to 8 carbon atoms, more preferably a 5- or 6-membered substituted or unsubstituted heteroaryl group.
  • Groups such as pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, triazinyl, quinolinyl, isoquinolinyl, quinazolinyl, cinnolinyl, phthalazinyl, quinoxalinyl, pyrrolyl, indolyl, furyl, benzofuryl , Thienyl group, benzothienyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, triazolyl group, oxazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl group, isothiazolyl group, benzis
  • R T1 to R T7 and R ′ are preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluoro group, an aryl group or a heteroaryl group, more preferably A hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a fluoro group, and an aryl group are preferable, and a hydrogen atom, an alkyl group, and an aryl group are more preferable.
  • substituent Z an alkyl group, an alkoxy group, a fluoro group, a cyano group, and a dialkylamino group are preferable, and a hydrogen atom is more preferable.
  • R T1 to R T7 and R ′ may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl, or heteroaryl;
  • the condensed 4- to 7-membered ring may further have a substituent Z.
  • the definition and preferred range of cycloalkyl, aryl, and heteroaryl formed are the same as the cycloalkyl group, aryl group, and heteroaryl group defined by R T1 to R T7 and R ′.
  • A represents CR ′, and among R T1 to R T7 and R ′, 0 to 2 are alkyl groups or phenyl groups, and the rest are all hydrogen atoms, and R T1 to R T7 , And R ′ are particularly preferably a case where 0 to 2 are alkyl groups and the rest are all hydrogen atoms.
  • n E3 is preferably 2 or 3.
  • the type of ligand in the complex is preferably composed of 1 to 2 types, more preferably 1 type.
  • the ligand consists of two types from the viewpoint of ease of synthesis.
  • (XY) has the same meaning as (XY) in formula (E-1), and the preferred range is also the same.
  • One preferred form of the compound represented by the general formula (E-3) is a compound represented by the following general formula (E-4).
  • R T1 to R T4 , A, (XY) and n E4 in the general formula (E-4) are R T1 to R T4 , A, (XY) and n E3 in the general formula (E-3).
  • the preferred range is also the same.
  • R 1 ′ to R 5 ′ are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, cyano group, perfluoroalkyl group, trifluorovinyl group, —CO 2 R, —C (O) R , —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group or a heteroaryl group, and optionally having a substituent Z.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • R 1 ′ to R 5 ′ may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl, or heteroaryl;
  • the condensed 4- to 7-membered ring may further have a substituent Z.
  • Z is independently a halogen atom, —R ′′, —OR ′′, —N (R ′′) 2 , —SR ′′, —C (O) R ′′, —C (O) OR ′′, —C (O) N (R ") 2, -CN , -NO 2, -SO 2, -SOR", - SO 2 R “, or -SO 3 R” represents, R "are each independently a hydrogen atom, an alkyl group, A perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group is represented.
  • R 1 ′ to R 5 ′ are the same as R T1 to R T7 and R ′ in formula (E-3).
  • A represents CR ′, and 0 to 2 of R T1 to R T4 , R ′, and R 1 ′ to R 5 ′ are alkyl groups or phenyl groups, and the rest are all hydrogen atoms.
  • R T1 to R T4 , R ′, and R 1 ′ to R 5 ′ are more preferably a case where 0 to 2 are alkyl groups and the rest are all hydrogen atoms.
  • Another preferred embodiment of the compound represented by the general formula (E-3) is a compound represented by the following general formula (E-5).
  • R T2 to R T6 , A, (XY) and n E5 in the general formula (E-5) are R T2 to R T6 , A, (XY) and n E3 in the general formula (E-3).
  • the preferred range is also the same.
  • R 6 ′ to R 8 ′ are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, cyano group, perfluoroalkyl group, trifluorovinyl group, —CO 2 R, —C (O) R , —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group or a heteroaryl group, and optionally having a substituent Z.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
  • R T5 , R T6 , R 6 ′ to R 8 ′ may be combined with each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl or It is a heteroaryl, and the condensed 4- to 7-membered ring may further have a substituent Z.
  • Z is independently a halogen atom, —R ′′, —OR ′′, —N (R ′′) 2 , —SR ′′, —C (O) R ′′, —C (O) OR ′′, —C (O) N (R ") 2, -CN , -NO 2, -SO 2, -SOR", - SO 2 R “, or -SO 3 R” represents, R "are each independently a hydrogen atom, an alkyl group, A perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group is represented.
  • R 6 ′ to R 8 ′ are the same as R T1 to R T7 and R ′ in formula (E-3).
  • A represents CR ′, and among R T2 to R T6 , R ′, and R 6 ′ to R 8 ′, 0 to 2 are alkyl groups or phenyl groups, and the rest are all hydrogen atoms.
  • R T2 to R T6 , R ′, and R 6 ′ to R 8 ′ are more preferably a case where 0 to 2 are alkyl groups and the rest are all hydrogen atoms.
  • Another preferred embodiment of the compound represented by the general formula (E-1) is a case represented by the following general formula (E-6).
  • R 1a to R 1k each independently represent a hydrogen atom, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, cyano group, perfluoroalkyl group, trifluorovinyl group, —CO 2 R, —C (O) R, —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group, or a heteroaryl group, which may further have a substituent Z.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group. Any two of R 1a to R 1k may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl, or heteroaryl; The 7-membered ring may further have a substituent Z.
  • Z is independently a halogen atom, —R ′′, —OR ′′, —N (R ′′) 2 , —SR ′′, —C (O) R ′′, —C (O) OR ′′, —C (O) N (R ") 2, -CN , -NO 2, -SO 2, -SOR", - SO 2 R “, or -SO 3 R” represents, R "are each independently a hydrogen atom, an alkyl group, A perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group is represented.
  • (XY) represents a monoanionic bidentate ligand.
  • n E6 represents an integer of 1 to 3.
  • R 1a to R 1k are the same as those in R T1 to R T7 and R ′ in the general formula (E-3). Further, it is particularly preferred that 0 to 2 of R 1a to R 1k are alkyl groups or phenyl groups and the rest are all hydrogen atoms, and 0 to 2 of R 1a to R 1k are alkyl groups and the rest are all hydrogen atoms. More preferably, it is an atom. The case where R 1j and R 1k are linked to form a single bond is particularly preferable.
  • the preferred range of (XY) and n E6 is the same as (XY) and n E3 in general formula (E-3).
  • a more preferable form of the compound represented by the general formula (E-6) is a case represented by the following general formula (E-7).
  • R 1a to R 1i are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, cyano group, perfluoroalkyl group, trifluorovinyl group, —CO 2 R, —C (O) R, —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group, or a heteroaryl group, which may further have a substituent Z.
  • Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group. Any one of R 1a to R 1i may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is a cycloalkyl group, an aryl group, or a heteroaryl group; The condensed 4- to 7-membered ring may further have a substituent Z.
  • Z is independently a halogen atom, —R ′′, —OR ′′, —N (R ′′) 2 , —SR ′′, —C (O) R ′′, —C (O) OR ′′, —C (O) N (R ") 2, -CN , -NO 2, -SO 2, -SOR", - SO 2 R “, or -SO 3 R” represents, R "are each independently a hydrogen atom, an alkyl group, A perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group is represented.
  • (XY) represents a monoanionic bidentate ligand.
  • n E7 represents an integer of 1 to 3.
  • R 1a ⁇ R 1i definition and preferable ranges of R 1a ⁇ R 1i are the same as R 1a ⁇ R 1i in the formula (E-6). Further, it is particularly preferable that 0 to 2 of R 1a to R 1i are alkyl groups or aryl groups and the rest are all hydrogen atoms.
  • the definitions and preferred ranges of (XY) and n E7 are the same as (XY) and n E3 in general formula (E-3).
  • the compounds exemplified as the compound represented by the general formula (E-1) can be synthesized by the method described in JP2009-99783A, various methods described in US Pat. No. 7,279,232 and the like. After synthesis, it is preferable to purify by sublimation purification after purification by column chromatography, recrystallization or the like. By sublimation purification, not only can organic impurities be separated, but inorganic salts and residual solvents can be effectively removed.
  • the iridium complex as the organic material (B) may be used alone or in combination of two or more.
  • the content of the iridium complex as the organic material (B) in the composition is preferably 2 to 30% by mass, more preferably 5 to 20% by mass, and still more preferably 5%, based on the total solid content of the composition. To 15% by mass.
  • the platinum complex that can be used as the phosphorescent material is preferably a platinum complex represented by the following general formula (C-1).
  • Q 1 , Q 2 , Q 3 and Q 4 each independently represent a ligand coordinated to Pt.
  • L 1 , L 2 and L 3 are each independently a single bond or a divalent linking group. Represents.
  • Q 1 , Q 2 , Q 3 and Q 4 each independently represent a ligand coordinated to Pt.
  • the bond between Q 1 , Q 2 , Q 3 and Q 4 and Pt may be any of a covalent bond, an ionic bond, a coordinate bond, and the like.
  • a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, and a phosphorus atom are preferable, and in Q ⁇ 1 >, Q ⁇ 2 >, Q ⁇ 3 > and Q ⁇ 4 >
  • a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, and a phosphorus atom are preferable, and in Q ⁇ 1 >, Q ⁇ 2 >, Q ⁇ 3 > and Q ⁇ 4 >
  • at least one is preferably a carbon atom, more preferably two are carbon atoms, particularly preferably two are carbon atoms and two are nitrogen atoms.
  • Q 1 , Q 2 , Q 3 and Q 4 bonded to Pt by a carbon atom may be an anionic ligand or a neutral ligand, and the anionic ligand is a vinyl ligand, Aromatic hydrocarbon ring ligand (eg benzene ligand, naphthalene ligand, anthracene ligand, phenanthrene ligand etc.), heterocyclic ligand (eg furan ligand, thiophene ligand, pyridine) Ligand, pyrazine ligand, pyrimidine ligand, pyridazine ligand, triazine ligand, thiazole ligand, oxazole ligand, pyrrole ligand, imidazole ligand, pyrazole ligand, triazole And a condensed ring containing them (for example, quinoline ligand, benzothiazole ligand, etc.).
  • a carbene ligand is mentioned as a neutral ligand.
  • Q 1 , Q 2 , Q 3 and Q 4 bonded to Pt with a nitrogen atom may be neutral ligands or anionic ligands, and as neutral ligands, nitrogen-containing aromatic hetero Ring ligand (pyridine ligand, pyrazine ligand, pyrimidine ligand, pyridazine ligand, triazine ligand, imidazole ligand, pyrazole ligand, triazole ligand, oxazole ligand, Examples include thiazole ligands and condensed rings containing them (for example, quinoline ligands, benzimidazole ligands), amine ligands, nitrile ligands, and imine ligands.
  • anionic ligands include amino ligands, imino ligands, nitrogen-containing aromatic heterocyclic ligands (pyrrole ligands, imidazole ligands, triazole ligands, and condensed rings containing them) (For example, indole ligand, benzimidazole ligand, etc.)).
  • Q 1 , Q 2 , Q 3 and Q 4 bonded to Pt with an oxygen atom may be neutral ligands or anionic ligands, and neutral ligands are ether ligands, Examples include ketone ligands, ester ligands, amide ligands, oxygen-containing heterocyclic ligands (furan ligands, oxazole ligands and condensed rings containing them (benzoxazole ligands, etc.)). It is done.
  • the anionic ligand include an alkoxy ligand, an aryloxy ligand, a heteroaryloxy ligand, an acyloxy ligand, a silyloxy ligand, and the like.
  • Q 1 , Q 2 , Q 3 and Q 4 bonded to Pt with a sulfur atom may be neutral ligands or anionic ligands, and neutral ligands include thioether ligands, Examples include thioketone ligands, thioester ligands, thioamide ligands, sulfur-containing heterocyclic ligands (thiophene ligands, thiazole ligands and condensed rings containing them (such as benzothiazole ligands)). It is done.
  • the anionic ligand include an alkyl mercapto ligand, an aryl mercapto ligand, and a heteroaryl mercapto ligand.
  • Q 1 , Q 2 , Q 3 and Q 4 bonded to Pt with a phosphorus atom may be neutral ligands or anionic ligands, and neutral ligands include phosphine ligands, Examples include phosphate ester ligands, phosphite ester ligands, and phosphorus-containing heterocyclic ligands (phosphinin ligands, etc.).
  • Anionic ligands include phosphino ligands and phosphinyl ligands.
  • phosphoryl ligands The groups represented by Q 1 , Q 2 , Q 3, and Q 4 may have a substituent, and those listed as the substituent group A can be appropriately applied as the substituent.
  • substituents may be connected to each other (when Q 3 and Q 4 are connected, a Pt complex of a cyclic tetradentate ligand is formed).
  • the group represented by Q 1 , Q 2 , Q 3 and Q 4 is preferably an aromatic hydrocarbon ring ligand bonded to Pt with a carbon atom, and an aromatic heterocyclic ligand bonded to Pt with a carbon atom.
  • L 1 , L 2 and L 3 represent a single bond or a divalent linking group.
  • the divalent linking group represented by L 1 , L 2 and L 3 include alkylene groups (methylene, ethylene, propylene, etc.), arylene groups (phenylene, naphthalenediyl), heteroarylene groups (pyridinediyl, thiophenediyl, etc.) ), Imino group (—NR L —) (such as phenylimino group), oxy group (—O—), thio group (—S—), phosphinidene group (—PR L —) (such as phenylphosphinidene group), silylene (-SiR L R L '-) ( dimethylsilylene group, a diphenylsilylene group), or the like combinations thereof.
  • R L and R L ′ each independently represents a hydrogen atom or a substituent, and preferably represents a hydrogen atom, an alkyl group, or an aryl group. These linking groups may further have a substituent.
  • L 1 , L 2 and L 3 are preferably a single bond, an alkylene group, an arylene group, a heteroarylene group, an imino group, an oxy group, a thio group or a silylene group.
  • a single bond, an alkylene group, an arylene group or an imino group still more preferably a single bond, an alkylene group or an arylene group, still more preferably a single bond, a methylene group or a phenylene group, still more preferably.
  • Single bond, disubstituted methylene group more preferably single bond, dimethylmethylene group, diethylmethylene group, diisobutylmethylene group, dibenzylmethylene group, ethylmethylmethylene group, methylpropylmethylene group, isobutylmethylmethylene group, diphenyl Methylene group, methylphenylmethylene group, cyclohexanediyl group, A lopentanediyl group, a fluorenediyl group, and a fluoromethylmethylene group.
  • L 1 is particularly preferably a dimethylmethylene group, a diphenylmethylene group, or a cyclohexanediyl group, and most preferably a dimethylmethylene group.
  • L 2 and L 3 are most preferably a single bond.
  • platinum complexes represented by the general formula (C-1) a platinum complex represented by the following general formula (C-2) is more preferable.
  • L 21 represents a single bond or a divalent linking group.
  • a 21 and A 22 each independently represents a carbon atom or a nitrogen atom.
  • Z 21 and Z 22 each independently represent a nitrogen-containing aromatic heterocyclic ring.
  • Z 23 and Z 24 each independently represents a benzene ring or an aromatic heterocycle.
  • L 21 has the same meaning as L 1 in formula (C-1), and the preferred range is also the same.
  • a 21 and A 22 each independently represent a carbon atom or a nitrogen atom. Of A 21, A 22, Preferably, at least one is a carbon atom, it A 21, A 22 are both carbon atoms are preferred from the standpoint of emission quantum yield stability aspects and complexes of the complex .
  • Z 21 and Z 22 each independently represent a nitrogen-containing aromatic heterocycle.
  • the nitrogen-containing aromatic heterocycle represented by Z 21 and Z 22 include a pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, triazole ring, oxadiazole ring, Examples include thiadiazole rings.
  • the ring represented by Z 21 and Z 22 is preferably a pyridine ring, a pyrazine ring, an imidazole ring or a pyrazole ring, more preferably a pyridine ring.
  • the nitrogen-containing aromatic heterocycle represented by Z 21 and Z 22 may have a substituent, and the substituent group A is a substituent on a carbon atom, and the substituent on a nitrogen atom is The substituent group B can be applied.
  • the substituent on the carbon atom is preferably an alkyl group, a perfluoroalkyl group, an aryl group, an aromatic heterocyclic group, a dialkylamino group, a diarylamino group, an alkoxy group, a cyano group, or a fluorine atom.
  • the substituent is appropriately selected for controlling the emission wavelength and potential, but in the case of shortening the wavelength, an electron donating group, a fluorine atom, and an aromatic ring group are preferable.
  • an alkyl group, a dialkylamino group, an alkoxy group, A fluorine atom, an aryl group, an aromatic heterocyclic group and the like are selected.
  • an electron withdrawing group is preferable, and for example, a cyano group, a perfluoroalkyl group, and the like are selected.
  • the substituent on the nitrogen atom is preferably an alkyl group, an aryl group, or an aromatic heterocyclic group, and an alkyl group or an aryl group is preferable from the viewpoint of the stability of the complex.
  • the substituents may be linked to form a condensed ring, and the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, and a pyrazole. Ring, thiophene ring, furan ring and the like.
  • Z 23 and Z 24 each independently represent a benzene ring or an aromatic heterocycle.
  • the nitrogen-containing aromatic heterocycle represented by Z 23 and Z 24 include pyridine ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, triazole ring, oxadi Examples include an azole ring, a thiadiazole ring, a thiophene ring, and a furan ring.
  • the ring represented by Z 23 and Z 24 is preferably a benzene ring, a pyridine ring, a pyrazine ring, an imidazole ring, a pyrazole ring, or a thiophene ring, More preferred are a benzene ring, a pyridine ring and a pyrazole ring, and still more preferred are a benzene ring and a pyridine ring.
  • the benzene ring and nitrogen-containing aromatic heterocycle represented by Z 23 and Z 24 may have a substituent.
  • the substituent group A is substituted on the nitrogen atom.
  • the substituent group B can be applied as the group.
  • Preferred substituents on carbon are alkyl groups, perfluoroalkyl groups, aryl groups, aromatic heterocyclic groups, dialkylamino groups, diarylamino groups, alkoxy groups, cyano groups, and fluorine atoms.
  • the substituent is appropriately selected for controlling the emission wavelength and potential, but in the case of increasing the wavelength, an electron donating group and an aromatic ring group are preferable, for example, an alkyl group, a dialkylamino group, an alkoxy group, an aryl group, An aromatic heterocyclic group or the like is selected.
  • an electron withdrawing group is preferable, and for example, a fluorine atom, a cyano group, a perfluoroalkyl group, and the like are selected.
  • the substituent on the nitrogen atom is preferably an alkyl group, an aryl group, or an aromatic heterocyclic group, and an alkyl group or an aryl group is preferable from the viewpoint of the stability of the complex.
  • the substituents may be linked to form a condensed ring, and the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, and a pyrazole. Ring, thiophene ring, furan ring and the like.
  • platinum complexes represented by the general formula (C-2) one of the more preferred embodiments is a platinum complex represented by the following general formula (C-4).
  • a 401 to A 414 each independently represents C—R or a nitrogen atom.
  • R represents a hydrogen atom or a substituent.
  • L 41 represents a single bond or a divalent linking group.
  • a 401 to A 414 each independently represents C—R or a nitrogen atom.
  • R represents a hydrogen atom or a substituent.
  • substituent represented by R those exemplified as the substituent group A can be applied.
  • a 401 to A 406 are preferably C—R, and Rs may be connected to each other to form a ring.
  • R in A 402 and A 405 is preferably a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom, or a cyano group.
  • R in A 401 , A 403 , A 404 and A 406 is preferably a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom or a cyano group, more preferably a hydrogen atom or an amino group.
  • L 41 has the same meaning as L 1 in formula (C-1), and the preferred range is also the same.
  • the number of N is preferably 0 to 2, and more preferably 0 to 1.
  • a 408 or A 412 is preferably a nitrogen atom, and both A 408 and A 412 are more preferably nitrogen atoms.
  • R in A 408 and A 412 is preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom, A cyano group, more preferably a hydrogen atom, a perfluoroalkyl group, an alkyl group, an aryl group, a fluorine atom or a cyano group, and particularly preferably a hydrogen atom, a phenyl group, a perfluoroalkyl group or a cyano group.
  • R in A 407 , A 409 , A 411 and A 413 is preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom or a cyano group, more preferably Of these, a hydrogen atom, a perfluoroalkyl group, a fluorine atom, and a cyano group are preferable, and a hydrogen atom, a phenyl group, and a fluorine atom are particularly preferable.
  • R in A 410 and A 414 is preferably a hydrogen atom or a fluorine atom, and more preferably a hydrogen atom.
  • platinum complexes represented by the general formula (C-2) one of the more preferred embodiments is a platinum complex represented by the following general formula (C-5).
  • a 501 to A 512 each independently represents C—R or a nitrogen atom, R represents a hydrogen atom or a substituent, and L 51 represents a single bond or a divalent linkage. Represents a group.
  • a 501 to A 506 and L 51 have the same meanings as A 401 to A 406 and L 41 in formula (C-4), and preferred ranges are also the same.
  • R represents a hydrogen atom or a substituent.
  • substituent represented by R those exemplified as the substituent group A can be applied.
  • R is preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, an aryl group, an aromatic heterocyclic group, Dialkylamino group, diarylamino group, alkyloxy group, cyano group, fluorine atom, more preferably hydrogen atom, alkyl group, perfluoroalkyl group, aryl group, dialkylamino group, cyano group, fluorine atom, more preferably , Hydrogen atom, alkyl group, trifluoromethyl group, fluorine atom.
  • substituents may be linked to form a condensed ring structure.
  • At least one of A 507 , A 508 and A 509 and A 510 , A 511 and A 512 is preferably a nitrogen atom, and particularly preferably A 510 or A 507 is a nitrogen atom.
  • platinum complexes represented by the general formula (C-1) another more preferable embodiment is a platinum complex represented by the following general formula (C-6).
  • L 61 represents a single bond or a divalent linking group.
  • a 61 independently represents a carbon atom or a nitrogen atom.
  • Z 61 and Z 62 each independently represent a nitrogen-containing aromatic heterocyclic ring.
  • Z 63 independently represents a benzene ring or an aromatic heterocycle, and Y is an anionic acyclic ligand bonded to Pt.
  • L 61 has the same meaning as L 1 in formula (C-1), and the preferred range is also the same.
  • a 61 represents a carbon atom or a nitrogen atom. In view of the stability of the complex and the light emission quantum yield of the complex, A 61 is preferably a carbon atom.
  • Z 61 and Z 62 are synonymous with Z 21 and Z 22 in the general formula (C-2), respectively, and preferred ranges thereof are also the same.
  • Z 63 has the same meaning as Z 23 in formula (C-2), and the preferred range is also the same.
  • Y is an anionic acyclic ligand that binds to Pt.
  • An acyclic ligand is one in which atoms bonded to Pt do not form a ring in the form of a ligand.
  • a carbon atom, a nitrogen atom, an oxygen atom, and a sulfur atom are preferable, a nitrogen atom and an oxygen atom are more preferable, and an oxygen atom is the most preferable.
  • a vinyl ligand is mentioned as Y couple
  • Examples of Y bonded to Pt with an oxygen atom include an alkoxy ligand, an aryloxy ligand, a heteroaryloxy ligand, an acyloxy ligand, a silyloxy ligand, a carboxyl ligand, a phosphate ligand, Examples thereof include sulfonic acid ligands.
  • Examples of Y bonded to Pt with a sulfur atom include alkyl mercapto ligands, aryl mercapto ligands, heteroaryl mercapto ligands, and thiocarboxylic acid ligands.
  • the ligand represented by Y may have a substituent, and those listed as the substituent group A can be appropriately applied as the substituent. Moreover, substituents may be connected to each other.
  • the ligand represented by Y is preferably a ligand bonded to Pt with an oxygen atom, more preferably an acyloxy ligand, an alkyloxy ligand, an aryloxy ligand, a heteroaryloxy ligand. , A silyloxy ligand, and more preferably an acyloxy ligand.
  • platinum complexes represented by the general formula (C-6) one of more preferred embodiments is a platinum complex represented by the following general formula (C-7).
  • a 701 to A 710 each independently represents C—R or a nitrogen atom, R represents a hydrogen atom or a substituent, L 71 represents a single bond or a divalent linking group, Y represents An anionic acyclic ligand that binds to Pt.
  • L 71 has the same meaning as L 61 in formula (C-6), and the preferred range is also the same.
  • a 701 to A 710 have the same meanings as A 401 to A 410 in formula (C-4), and preferred ranges are also the same.
  • Y has the same meaning as Y in formula (C-6), and the preferred range is also the same.
  • platinum complex represented by the general formula (C-1) include [0143] to [0152], [0157] to [0158], and [0162] to [0168] of JP-A-2005-310733.
  • Examples of the platinum complex compound represented by the general formula (C-1) include Journal of Organic Chemistry 53,786, (1988), G.S. R. Newkome et al. ), Page 789, method described in left column 53 to right column 7, line 790, method described in left column 18 to 38, method 790, method described in right column 19 to 30 and The combination, Chemische Berichte 113, 2749 (1980), H.C. Lexy et al.), Page 2752, lines 26 to 35, and the like.
  • a ligand or a dissociated product thereof and a metal compound are mixed with a solvent (for example, a halogen solvent, an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, a nitrile solvent, an amide solvent, a sulfone solvent,
  • a solvent for example, a halogen solvent, an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, a nitrile solvent, an amide solvent, a sulfone solvent
  • a base inorganic and organic bases such as sodium methoxide, t-butoxypotassium, triethylamine, potassium carbonate, etc.
  • a base inorganic and organic bases such as sodium methoxide, t-butoxypotassium, triethylamine, potassium carbonate, etc.
  • the platinum complex as an organic material (B) may be used independently, and may be used in combination of 2 or more type.
  • the content of the platinum complex as the organic material (B) in the composition is preferably 2 to 50% by mass, more preferably 5 to 40% by mass, and still more preferably 10%, based on the total solid content of the composition. ⁇ 40% by weight.
  • Host material is a compound that causes energy transfer from its excited state to a light-emitting material, and as a result, causes the light-emitting material to emit light.
  • Specific examples include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives.
  • Fluorenone derivatives Fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide oxide Derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, heterocycles such as naphthalene and perylene Carboxylic anhydride, phthalocyanine derivatives, metal complexes of 8-quinolinol derivatives, metal phthalocyanines, metal complexes having benzoxazole, benzothiazole, etc.
  • a host compound may be used individually by 1 type, or may use 2 or more types together.
  • the host material is preferably a carbazole derivative or an imidazole derivative, and more preferably a carbazole derivative.
  • the carbazole derivative is preferably a carbazole derivative represented by the following general formula (V).
  • R 51 to R 58 are a hydrogen atom, a deuterium atom, or a substituent, and R 51 to R 58 may form a condensed ring between adjacent substituents.
  • the substituents represented by R 51 to R 58 are not particularly limited, and examples thereof include alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, amino groups, alkoxy groups, aryloxy groups, and heterocyclic oxy groups.
  • R 51 to R 58 are preferably a hydrogen atom, a deuterium atom, an alkyl group, an aryl group, a heteroaryl group, a halogen group, a cyano group, or a silyl group, and more preferably a hydrogen atom, a deuterium atom, an alkyl group, a hetero group An aryl group, a halogen group, a cyano group, and a silyl group, particularly preferably a hydrogen atom, a deuterium atom, an alkyl group, a heteroaryl group, and a silyl group.
  • R 51 to R 58 may be further substituted with other substituents, and these substituents may be bonded to each other to form a ring.
  • the alkyl group for R 51 to R 58 is preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n-octyl, cyclopropyl, cyclopentyl, cyclohexyl, 1-adamantyl, trifluoromethyl, More preferred are methyl, isopropyl, tert-butyl, n-octyl, cyclopentyl, cyclohexyl, 1-adamantyl and trifluoromethyl, and particularly preferred are tert-butyl, cyclohexyl, 1-adamantyl and trifluoromethyl. These substituents may be further substituted with other substituents, and these substituents may be bonded to each other to form a ring.
  • the heteroaryl group of R 51 to R 58 is preferably imidazolyl, pyrazolyl, pyridyl, quinolyl, isoquinolinyl, pyrrolyl, indolyl, furyl, thienyl, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl, more preferably imidazolyl.
  • the silyl group of R 51 to R 58 is preferably trimethylsilyl, triethylsilyl, triisopropylsilyl, methyldiphenylsilyl, dimethyl-tert-butylsilyl, dimethylphenylsilyl, diphenyl-tert-butylsilyl, triphenylsilyl, more preferably trimethylsilyl.
  • These substituents may be further substituted with other substituents, and these substituents may be bonded to each other to form a ring.
  • n 51 is preferably 2 to 4, more preferably 2 to 3, and particularly preferably 2.
  • the linking group represented by A is preferably alkylene, arylene, heteroarylene, or silylene, more preferably arylene or heteroarylene, and particularly preferably arylene.
  • These linking groups include, for example, These may be further substituted with the substituents represented by R 51 to R 58 described above.
  • Arylene is preferably phenylene, naphthylene, biphenylene or terphenylene, more preferably phenylene or biphenylene, and particularly preferably phenylene.
  • phenylene is 1,2,3,4,5,6-hexasubstituted phenylene, 1,2,4,5-tetrasubstituted phenylene, 1,3,5-trisubstituted phenylene, 1,2-disubstituted phenylene 1,3-disubstituted phenylene, 1,4-disubstituted phenylene, more preferably 1,2-disubstituted phenylene, 1,3-disubstituted phenylene, 1,4-disubstituted phenylene, Preferred are 1,3-disubstituted phenylene and 1,4-disubstituted phenylene.
  • the heteroarylene is preferably disubstituted pyridylene or disubstituted N-phenylcarbazolylene, more preferably 2,6-disubstituted pyridylene, 3,5-disubstituted pyridylene, or 3,6-disubstituted N-phenyl.
  • Carbazolylene particularly preferably 3,6-disubstituted N-phenylcarbazolylene. Examples of the compound having a carbazole group include the following compounds.
  • the carbazole derivative is preferably a carbazole derivative having an asymmetric structure represented by the following general formula (Acz).
  • R As represents a tert-butyl group, a tert-amyl group, or a trimethylsilyl group.
  • a host material may be used independently and may be used in combination of 2 or more type.
  • the content of the host material in the composition is preferably 50 to 95% by mass, more preferably 60 to 95% by mass, and still more preferably 70 to 95% by mass, based on the total solid content of the composition.
  • charge transport material examples include a hole injection material, a hole transport material, an electron injection material, an electron transport material, an exciton block material, a hole block material, and an electron block material.
  • Examples of the charge transport material include polyarylamine, polyfluorene, polythiophene, polyphenylene vinylene, polyvinyl carbazole, etc.
  • polyarylamine, polyfluorene, polyvinyl carbazole are preferable, and polyarylamine Polyfluorene is more preferable.
  • Specific examples of the polyarylamine include PTPDES represented by the following structural formula (n is the number of repetitions of the structure in parentheses, and is an integer), PTPDES-2, PTTPDBA, PTPAES (Chemipro Kasei brand name) Etc.
  • an arylamine derivative having at least one polymerizable group (hereinafter also referred to as “arylamine derivative (B)”) is preferable.
  • arylamine derivative (B) a known compound can be used as long as it is an amine compound having an aryl group as a substituent and further having at least one polymerizable group.
  • the polymerizable group possessed by the arylamine derivative (B) is not particularly limited, and examples thereof include a radical polymerizable group or a cationic polymerizable group.
  • cationically polymerizable groups such as epoxy group, oxetanyl group, oxazolyl group, vinyloxy group, alkenyl group, alkynyl group, acrylic ester (acryloyl group), methacrylic ester (methacryloyl group), acrylamide, methacryl Radical polymerizable groups such as amide, vinyl ether and vinyl ester are preferred.
  • a radical polymerizable group is preferable and an alkenyl group or an alkynyl group is more preferable from the viewpoint that synthesis is easy and the polymerization reaction proceeds favorably.
  • alkenyl group the group which has a double bond in the arbitrary positions of an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkoxy group, and a silicon atom containing group is mentioned, for example.
  • C 2-12 is preferable, and C 2-6 is more preferable.
  • a vinyl group, an allyl group, etc. are mentioned, and a vinyl group is preferable from the viewpoint of ease of polymerization control and mechanical strength.
  • alkynyl group examples include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkoxy group, and a group having a triple bond at an arbitrary position of a silicon atom-containing group. Of these, C 2-12 is preferable, and C 2-6 is more preferable. From the viewpoint of ease of polymerization controllability, an ethynyl group is preferred. Among these, from the viewpoint of reactivity, the polymerizable group of the arylamine derivative (B) is preferably either a vinyl group or an allyl group, and most preferably a vinyl group. The arylamine derivative (B) preferably has at least two polymerizable groups from the viewpoint of film hardness and solvent resistance.
  • the arylamine derivative (B) is preferably a compound represented by the following general formula (1) or general formula (2) from the viewpoint of device durability.
  • R 1 and R 1 ′ each independently represent a polymerizable group.
  • R 2 and R 2 ′ each independently represent a hydrogen atom or a substituent.
  • R and R ′ each independently represents a polymerizable group.
  • R 1 and R 1 ′ in the general formula (1) and the polymerizable group represented by R and R ′ in the general formula (2) are as follows.
  • the arylamine derivative (B) is the same as described for the polymerizable group.
  • the polymerizable group represented by R and R ′ is preferably substituted at the 3-position or 5-position of the benzene ring from the viewpoint of external quantum efficiency.
  • R 2 and R 2 ′ each independently represent a hydrogen atom or a substituent.
  • R 2 and R 2 ′ examples include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkoxy group, a silicon atom-containing group having 1 to 12 carbon atoms, preferably carbon. It is an alkyl group of the number 1-5.
  • R 2 and R 2 ′ are preferably hydrogen atoms from the viewpoint of high mobility.
  • the composition according to the present invention is applied on a hole injection layer containing an iridium (Ir) complex to form a charge transport layer.
  • the iridium (Ir) complex preferably has a polymerizable group from the viewpoint of efficiency.
  • the polymerizable group include alkoxysilanes other than those described for the arylamine derivative (B).
  • Specific examples of the Ir complex contained in the hole injection layer include the following Ir complexes, but the present invention is not limited to these.
  • the formation of the charge transport layer according to the present invention on a hole injection layer containing an Ir complex contributes to improvement in light emission efficiency and device durability.
  • the charge transport materials may be used alone or in combination of two or more.
  • the content of the charge transport material in the composition is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and still more preferably 98 to 100% by mass, based on the total solid content of the composition.
  • solvent (C) examples of the solvent (hereinafter also referred to as “solvent (C)”) that can be used in preparing the composition by dissolving the above-described components include, for example, aromatic hydrocarbon solvents, alcohol solvents, and ketone solvents. Known organic solvents such as solvents, aliphatic hydrocarbon solvents, amide solvents, ester solvents and the like can be mentioned.
  • aromatic hydrocarbon solvent examples include benzene, toluene, xylene, trimethylbenzene, tetramethylbenzene, cumeneethylbenzene, methylpropylbenzene, methylisopropylbenzene, and the like, and toluene, xylene, cumene, and trimethylbenzene are more preferable. .
  • alcohol solvents examples include methanol, ethanol, 2-n-butoxyethanol, butanol, benzyl alcohol, and cyclohexanol. 2-n-butoxyethanol, butanol, benzyl alcohol, and cyclohexanol are more preferable as ketone solvents.
  • Examples of the aliphatic hydrocarbon solvent include pentane, hexane, octane, decane and the like, and octane and decane are preferable.
  • Examples of amide solvents include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone and the like. N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidinone are preferred.
  • ester solvent examples include methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, pentyl acetate, isopentyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl.
  • the above solvents may be used alone or in combination of two or more.
  • the solvent (C) is selected from the group consisting of the above-mentioned alcohol solvents, ketone solvents and ester solvents. It preferably contains at least one, and more preferably contains at least one selected from the group consisting of 2-butanone, butyl lactate, amyl lactate, isoamyl lactate and 2-n-butoxyethanol.
  • the solvent (C) may be the above-mentioned ketone-based material. It preferably contains a solvent, more preferably contains cyclohexanone and NMP (N-methylpyrrolidone), and more preferably contains cyclohexanone.
  • the solvent (C) of the present invention is preferably a purified product.
  • the purification treatment specifically, (1) column purification treatment of silica gel, alumina, cationic ion exchange resin, anionic ion exchange resin, etc., (2) anhydrous sodium sulfate, anhydrous calcium sulfate, magnesium sulfate, strontium sulfate, Dehydration treatment of barium sulfate, barium oxide, calcium oxide, magnesium oxide, molecular sieves, zeolite, etc.
  • the present invention also relates to a film formed by applying the composition of the present invention and heating the applied composition.
  • the composition of the present invention contains a light emitting material and a host material as the organic material (B)
  • the present invention is a light emitting layer formed by applying the composition and heating the applied composition.
  • the present invention further relates to a method for forming a light emitting layer, which comprises applying the composition of the present invention and heating the applied composition.
  • the composition of the present invention contains a charge transport material as the organic material (B)
  • the present invention is a charge transport layer formed by applying the composition and heating the applied composition.
  • the present invention further relates to a method for forming a charge transport layer, which comprises applying the composition of the present invention and heating the applied composition.
  • the light emitting layer is preferably used in a thickness of 10 to 200 nm, more preferably in a thickness of 20 to 80 nm. Such a film thickness can be obtained by setting the solid content concentration in the composition to an appropriate range to give an appropriate viscosity and improving the coating property and film forming property.
  • the charge transport layer is preferably used in a thickness of 5 to 50 nm, more preferably in a thickness of 5 to 40 nm. Such a film thickness can be obtained by setting the solid content concentration in the composition to an appropriate range to give an appropriate viscosity and improving the coating property and film forming property.
  • the charge transport layer is preferably a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an exciton block layer, a hole block layer, or an electron block layer, more preferably a hole injection layer. , A hole transport layer.
  • the total solid content in the composition of the present invention is generally 1 to 20% by mass, more preferably 1 to 10% by mass, and further preferably 2 to 10% by mass.
  • the viscosity of the composition of the present invention is generally 1 to 30 mPa ⁇ s, more preferably 1.5 to 20 mPa ⁇ s, and still more preferably 1.5 to 15 mPa ⁇ s.
  • the composition of the present invention is used by dissolving the above components in a predetermined organic solvent, filtering the solution, and then applying the solution on a predetermined support or layer as follows.
  • the pore size of the filter used for filter filtration is 2.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, and still more preferably 0.3 ⁇ m or less made of polytetrafluoroethylene, polyethylene, or nylon.
  • the coating method of the composition of the present invention is not particularly limited, and can be formed by any conventionally known coating method. Examples thereof include an ink jet method, a spray coating method, a spin coating method, a bar coating method, a transfer method, and a printing method.
  • the heating temperature after coating is generally 80 ° C to 220 ° C, more preferably 100 ° C to 200 ° C, still more preferably 100 ° C to 180 ° C.
  • the heating time is generally 1 minute to 60 minutes, preferably 2 minutes to 30 minutes, more preferably 5 minutes to 30 minutes.
  • a vacuum drying method may be used to promote drying of the high boiling point solvent.
  • the application and drying are preferably performed at a low oxygen concentration and a low dew point temperature.
  • oxygen concentration 1000 ppm or less is preferable, More preferably, it is 100 ppm or less, More preferably, it is 10 ppm or less.
  • the dew point temperature is preferably ⁇ 40 ° C. or lower, more preferably ⁇ 60 ° C. or lower, and further preferably ⁇ 80 ° C. or lower.
  • coating and drying it is preferable to carry out in the glove box which maintained the above-mentioned oxygen concentration and dew point temperature.
  • the organic electroluminescent device of the present invention will be described in detail.
  • the organic electroluminescent element in the present invention has a light emitting layer or a charge transport layer formed from the composition of the present invention.
  • the organic electroluminescent device according to the present invention is an organic electroluminescent device having a pair of electrodes including an anode and a cathode on a substrate, and at least one organic layer between the electrodes, It has the light emitting layer or charge transport layer formed from the composition of this invention as one organic layer.
  • the organic electroluminescent element of the present invention may further have an organic layer in addition to the light emitting layer or the charge transport layer.
  • at least one of the anode and the cathode is preferably transparent or translucent.
  • FIG. 1 shows an example of the configuration of an organic electroluminescent device according to the present invention.
  • a light emitting layer 6 is sandwiched between an anode 3 and a cathode 9 on a support substrate 2.
  • a hole injection layer 4, a hole transport layer 5, a light emitting layer 6, a hole block layer 7, and an electron transport layer 8 are laminated in this order between the anode 3 and the cathode 9.
  • the substrate used in the present invention is preferably a substrate that does not scatter or attenuate light emitted from the organic layer.
  • a substrate that does not scatter or attenuate light emitted from the organic layer In the case of an organic material, it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, and workability.
  • the anode usually only needs to have a function as an electrode for supplying holes to the organic layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials.
  • the anode is usually provided as a transparent anode.
  • the cathode usually has a function as an electrode for injecting electrons into the organic layer, and there is no particular limitation on the shape, structure, size, etc., and it is known depending on the use and purpose of the light-emitting element.
  • the electrode material can be selected as appropriate.
  • Organic layer in the present invention will be described.
  • each organic layer is formed by a solution coating process such as a dry film forming method such as an evaporation method or a sputtering method, a transfer method, a printing method, a spin coating method, a bar coating method, an ink jet method, or a spray method. Any of these can be suitably formed.
  • a solution coating process such as a dry film forming method such as an evaporation method or a sputtering method, a transfer method, a printing method, a spin coating method, a bar coating method, an ink jet method, or a spray method. Any of these can be suitably formed.
  • any one of the organic layers is particularly preferably formed by a wet method.
  • the other layers can be formed by appropriately selecting a dry method or a wet method.
  • the organic layer can be easily increased in area, and a light-emitting element having high luminance and excellent light emission efficiency can be obtained efficiently at low cost, which is preferable.
  • Vapor deposition, sputtering, etc. can be used as dry methods, and dipping, spin coating, dip coating, casting, die coating, roll coating, bar coating, gravure coating, and spray coating as wet methods.
  • An ink jet method or the like can be used.
  • These film forming methods can be appropriately selected according to the material of the organic layer.
  • the film is formed by a wet method, it may be dried after the film is formed. Drying is performed by selecting conditions such as temperature and pressure so that the coating layer is not damaged.
  • the coating solution used in the wet film-forming method (coating process) usually comprises an organic layer material and a solvent for dissolving or dispersing it.
  • a solvent is not specifically limited, What is necessary is just to select according to the material used for an organic layer.
  • Specific examples of solvents include halogen solvents (chloroform, carbon tetrachloride, dichloromethane, 1,2-dichloroethane, chlorobenzene, etc.), ketone solvents (acetone, diethyl ketone, n-propyl methyl ketone, 2-butanone, cyclohexanone, etc.) ), Aromatic solvents (benzene, toluene, xylene, etc.), ester solvents (ethyl acetate, n-propyl acetate, n-butyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, diethyl carbonate, etc.),
  • the light emitting layer contains the above-described light emitting material, but may further contain a phosphorescent compound as another light emitting material.
  • the phosphorescent compound is not particularly limited as long as it is a compound that can emit light from triplet excitons.
  • an orthometalated complex or a porphyrin complex is preferably used, and an orthometalated complex is more preferably used.
  • a porphyrin platinum complex is preferred.
  • the phosphorescent compounds may be used alone or in combination of two or more.
  • the ortho-metalated complex referred to in the present invention refers to Akio Yamamoto's “Organic Metal Chemistry Fundamentals and Applications”, pages 150 and 232, Hankabo (1982), H.C. Yersin's “Photochemistry and Photophysics of Coordination Compounds”, pages 71 to 77 and pages 135 to 146, Springer-Verlag (1987), etc.
  • the ligand forming the orthometalated complex is not particularly limited, but a 2-phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2- (2-thienyl) pyridine derivative, a 2- (1-naphthyl) pyridine derivative or A 2-phenylquinoline derivative is preferred. These derivatives may have a substituent.
  • any transition metal can be used.
  • rhodium, platinum, gold, iridium, ruthenium, palladium and the like can be preferably used. Of these, iridium is particularly preferable.
  • An organic layer containing such an orthometalated complex is excellent in light emission luminance and light emission efficiency. Specific examples of ortho-metalated complexes are also described in paragraphs 0152 to 0180 of Japanese Patent Application No. 2000-254171.
  • the orthometalated complex used in the present invention is Inorg. Chem. 30, 1685, 1991, Inorg. Chem. 27, 3464, 1988, Inorg. Chem. 33, 545, 1994, Inorg. Chim. Acta, 181, 245, 1991; Organomet. Chem. , 335, 293, 1987; Am. Chem. Soc. , 107, 1431, 1985 and the like.
  • the contents of the light-emitting material and the phosphorescent compound in the light-emitting layer are not particularly limited, but are, for example, 0.1 to 70% by mass, and preferably 1 to 20% by mass. If the content of the light emitting material and the phosphorescent compound is less than 0.1% by mass or exceeds 70% by mass, the effect may not be sufficiently exhibited.
  • the light emitting layer contains the above-mentioned host material, but may further contain a host compound as necessary.
  • the host compound is a compound that causes energy transfer from the excited state to the phosphorescent compound, and as a result, causes the phosphorescent compound to emit light.
  • Specific examples include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives.
  • the thickness of the light emitting layer is preferably 10 to 200 nm, more preferably 20 to 80 nm. When the thickness exceeds 200 nm, the driving voltage may increase. When the thickness is less than 10 nm, the light emitting element may be short-circuited.
  • the organic electroluminescent element of the present invention preferably has at least one of a hole injection layer and a hole transport layer.
  • the hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side.
  • the hole injection layer and the hole transport layer are preferably formed from the composition of the present invention each containing a hole injection material and a hole transport material as the organic material (B).
  • the hole injection layer and the hole transport layer are described in detail, for example, in JP-A-2008-270736 and JP-A-2007-266458, and the matters described in these publications can be applied to the present invention.
  • the organic electroluminescent element of the present invention may have an electron injection layer and an electron transport layer.
  • the electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side.
  • the electron injection material and the electron transport material used for these layers may be a low molecular compound or a high molecular compound.
  • the electron injection layer and the electron transport layer are described in detail, for example, in JP-A-2008-270736 and JP-A-2007-266458, and the matters described in these publications can be applied to the present invention.
  • the hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side.
  • a hole blocking layer can be provided as an organic layer adjacent to the light emitting layer on the cathode side.
  • organic compounds constituting the hole blocking layer include aluminum (III) bis (2-methyl-8-quinolinolato) 4-phenylphenolate (Aluminum (III) bis (2-methyl-8-quinolinato) 4- aluminum complexes such as phenylphenolate (abbreviated as BAlq), triazole derivatives, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (2,9-Dimethyl-4,7-diphenyl-1,10-) phenanthroline derivatives such as phenanthroline (abbreviated as BCP), triphenylene derivatives, carbazole derivatives, and the like.
  • the thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
  • the hole blocking layer may have a single layer structure made of one or more of the materials described above, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
  • the electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side.
  • an electron blocking layer can be provided as an organic layer adjacent to the light emitting layer on the anode side.
  • the thickness of the electron blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
  • the electron blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
  • the exciton blocking layer is a layer formed at one or both of the interface between the light emitting layer and the hole transport layer, or the interface between the light emitting layer and the electron transport layer, and the excitons generated in the light emitting layer are holes. It is a layer that diffuses into the transport layer and the electron transport layer and prevents deactivation without emitting light.
  • the exciton blocking layer is preferably made of a carbazole derivative.
  • the organic electroluminescence device of the present invention has a protective layer described in JP-A-7-85974, 7-192866, 8-22891, 10-275682, 10-106746, etc. Also good.
  • the protective layer is formed on the uppermost surface of the light emitting element.
  • the top surface refers to the outer surface of the back electrode, and the base material, the back electrode, the organic layer, and the transparent electrode are laminated in this order. In some cases, it refers to the outer surface of the transparent electrode.
  • the shape, size, thickness and the like of the protective layer are not particularly limited.
  • the material for forming the protective layer is not particularly limited as long as it has a function of suppressing intrusion or permeation of a light-emitting element such as moisture or oxygen into the element. Silicon, germanium oxide, germanium dioxide or the like can be used.
  • the method for forming the protective layer is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular sensing epitaxy, cluster ion beam, ion plating, plasma polymerization, plasma CVD, laser CVD Thermal CVD method, coating method, etc. can be applied.
  • the organic electroluminescent element is preferably provided with a sealing layer for preventing moisture and oxygen from entering.
  • a material for forming the sealing layer a copolymer of tetrafluoroethylene and at least one comonomer, a fluorinated copolymer having a cyclic structure in the copolymer main chain, polyethylene, polypropylene, polymethyl methacrylate, polyimide, Polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, chlorotrifluoroethylene or a copolymer of dichlorodifluoroethylene and another comonomer, a water-absorbing substance having a water absorption of 1% or more, a water absorption of 0.
  • metal In, Sn, Pb, Au, Cu, Ag, Al, Tl, Ni, etc.
  • metal oxide MgO, SiO, SiO 2 , Al 2 O 3 , GeO, NiO, CaO, BaO, Fe 2 O 3 , Y 2 O 3, TiO 2 , etc.
  • metal fluorides M F 2, LiF, AlF 3, CaF 2 , etc.
  • liquid fluorinated carbon perfluoroalkane, perfluoro amines, perfluoroether, etc.
  • the liquid fluorinated carbon as dispersed adsorbent moisture or oxygen, etc. Can be used.
  • the organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. Obtainable.
  • the driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-290080, JP-A-7-134558, JP-A-8-234585, and JP-A-8-2441047.
  • the driving methods described in each publication, Japanese Patent No. 2784615, US Pat. Nos. 5,828,429, 6023308, and the like can be applied.
  • Example 1-1 A mixed solvent A was prepared by dissolving 20 parts by mass of an antioxidant: 1,2-dimethoxyethane (boiling point 85 ° C.) in 80 parts by mass of 2-butanone for electronic industry.
  • a light-emitting layer coating solution A was prepared by dissolving 98 parts by mass of a mixed solvent A, 1.8 parts by mass of a carbazole host having the following structural formula H-1 and 0.2 parts by mass of an Ir complex having the following structural formula E-1. .
  • Luminescence prepared by adding molecular sieve (trade name: Molecular sieve 3A 1/16, manufactured by Wako Pure Chemical Industries, Ltd.) to the light-emitting layer coating liquid A, and filtering using a syringe filter having a pore size of 0.22 ⁇ m in a glove box.
  • the layer coating solution is spin-coated in a glove box (dew point -60 ° C., oxygen concentration 10 ppm), dried at 120 ° C. for 30 minutes and annealed at 160 ° C. for 10 minutes. Formed on a substrate.
  • Example 2-1 Antioxidant described in Example 1-1 Luminescent layer coating solution B was prepared by changing 1,2-dimethoxyethane to bis (2-methoxyethyl) ether (boiling point 162 ° C.), and the annealing temperature was 165 A light emitting layer single film was formed in the same manner as in Example 1-1 except that the temperature was changed to ° C.
  • ITO Indium Tin Oxide
  • etching and cleaning were performed.
  • the substrate on which the ITO film was formed was placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes.
  • the following layers were formed on this glass substrate. Note that spin coating, drying, and annealing were performed in a glove box (dew point -60 ° C., oxygen concentration 10 ppm).
  • N represents the number of repetitions of the structure in parentheses and is an integer.) 2 parts by mass Is spin-coated with a hole injection layer coating solution dissolved or dispersed in 98 parts by mass of cyclohexanone for electronics industry (manufactured by Kanto Chemical), dried at 120 ° C. for 10 minutes, and annealed at 160 ° C. for 60 minutes. A hole injection layer having a thickness of 40 nm was formed.
  • Example 1-2 On the formed hole injection layer, a light emitting layer made of the light emitting layer coating solution A was formed in the same manner as in Example 1-1.
  • Example 2-2 On the formed hole injection layer, a light emitting layer made of the light emitting layer coating solution B was formed in the same manner as in Example 2-1.
  • BAlq Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminum- (III)
  • BAlq was deposited on the light-emitting layer by a vacuum deposition method, thereby forming an electron having a thickness of 40 nm.
  • a transport layer was formed.
  • lithium fluoride LiF
  • metal aluminum was vapor-deposited on the electron injection layer to form a cathode having a thickness of 70 nm.
  • the produced laminate was put in a glove box substituted with argon gas, and sealed using a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
  • a mixed solvent D in which 48 parts by mass of butyl lactate, 32 parts by mass of 2-n-butoxyethanol, and 20 parts by mass of an antioxidant: bis (2-methoxyethyl) ether were prepared.
  • a light-emitting layer coating solution D was prepared by dissolving 98 parts by mass of the mixed solvent D, 1.8 parts by mass of the carbazole host having the above structural formula H-1 and 0.2 parts by mass of the Ir complex having the following structural formula E-2. .
  • Example 2 A light emitting layer coating solution E was prepared in the same manner as in Example 3 except that a mixed solvent E was prepared by mixing 60 parts by mass of butyl lactate and 40 parts by mass of 2-n-butoxyethanol without adding an antioxidant. did.
  • Example 3 was excellent in storage stability.
  • Dimatics material printer DMP-2831 (manufactured by FUJIFILM Corporation) was filled with the light emitting layer coating liquid D, and an IJ discharge test was conducted. As a result, it was confirmed that droplets could be discharged from the nozzle without maintenance (purge process).
  • Example 4 Provide of organic electroluminescence device> After depositing ITO (Indium Tin Oxide) as a positive electrode on a 0.7 mm thick, 25 mm square glass substrate to a thickness of 150 nm, etching and cleaning were performed. The substrate on which the ITO film was formed was placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. The following layers were formed on this glass substrate. Note that spin coating, drying, and annealing were performed in a glove box (dew point -60 ° C., oxygen concentration 10 ppm).
  • ITO Indium Tin Oxide
  • N represents the number of repetitions of the structure in parentheses and is an integer.) 2 parts by mass Was spin-coated with a hole injection layer coating solution dissolved in or dispersed in 80 parts by mass of cyclohexanone for electronics industry (manufactured by Kanto Chemical Co., Ltd.) and 18 parts by mass of bis (2-methoxyethyl) ether, and then at 120 ° C. for 10 minutes.
  • a hole injection layer having a thickness of 40 nm was formed by drying and annealing at 165 ° C. for 60 minutes.
  • the host compound H-1 and an Ir complex of the following structural formula E-3 were formed at a mass ratio of 95: 5 and a thickness of 30 nm by vacuum deposition.
  • BAlq (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminum- (III)) having the above structure is deposited on the light emitting layer by a vacuum deposition method. A 40 nm electron transport layer was formed.
  • lithium fluoride LiF
  • metal aluminum was vapor-deposited on the electron injection layer to form a cathode having a thickness of 70 nm.
  • the produced laminate was put in a glove box substituted with argon gas, and sealed using a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
  • Example 5-1 A mixed solvent F in which 10 parts by mass of an antioxidant: propylene glycol dimethyl ether (boiling point 97 ° C.) was dissolved in 90 parts by mass of 2-butanone for electronic industry was prepared.
  • a light emitting layer coating solution F was prepared by dissolving 98 parts by mass of a mixed solvent F, 1.8 parts by mass of a carbazole host having the following structural formula H-2, and 0.2 parts by mass of an Ir complex having the following structural formula E-4. . Thereafter, a light emitting layer single film was formed in the same manner as in Example 1-1.
  • Example 6-1 A mixed solvent G was prepared by dissolving 5 parts by mass of an antioxidant: triethanolamine (boiling point 208 ° C.) in 95 parts by mass of 2-butanone for electronics industry.
  • a light emitting layer coating solution G was prepared by dissolving 98 parts by mass of the mixed solvent G, 1.8 parts by mass of the carbazole host having the structural formula H-2, and 0.2 parts by mass of the Ir complex having the structural formula E-4. .
  • Luminescence prepared by adding molecular sieve (trade name: Molecular sieve 3A 1/16, manufactured by Wako Pure Chemical Industries, Ltd.) to the light-emitting layer coating solution G and filtering with a syringe filter having a pore size of 0.22 ⁇ m in a glove box.
  • the layer coating solution is spin-coated in a glove box (dew point -60 ° C., oxygen concentration 10 ppm), dried at 120 ° C. for 30 minutes and vacuum dried at 160 ° C. for 20 minutes. Formed
  • Example 5-2 An organic electroluminescent element was produced in the same manner as in Example 1-2, except that a light emitting layer composed of the light emitting layer coating solution F was formed in the same manner as in Example 5-1.
  • Example 6-2 An organic electroluminescent element was produced in the same manner as in Example 1-2, except that a light emitting layer composed of the light emitting layer coating solution G was formed in the same manner as in Example 6-1.
  • Comparative Example 4-2 An organic electroluminescent element was produced in the same manner as in Example 1-2, except that a light emitting layer composed of the light emitting layer coating solution H was formed as in Comparative Example 4-1.
  • the light emitting layer coating solution added with the antioxidant according to the present invention was used for Comparative Example 4 using the light emitting layer coating solution not added with the antioxidant according to the present invention.
  • Examples 5 and 6 were excellent in both PL quantum yield and external quantum efficiency.
  • Example 7 (Storage stability of luminescent layer coating solution) (Example 7) A mixed solvent I in which 95 parts by mass of 2-butanone for electronic industry and an antioxidant: oxalic acid (decomposition temperature 189.5 ° C.) were dissolved was prepared. A light emitting layer coating solution I was prepared by dissolving 98 parts by mass of the mixed solvent I, 1.82 parts by mass of the following structural formula host H-3, and 0.18 parts by mass of an Ir complex having the following structural formula E-5.
  • Example 7 was excellent in storage stability.
  • an antioxidant that can be evaporated or decomposed by heating is used, and the antioxidant is evaporated or decomposed by heating at the time of film formation of the composition in the production of an organic electroluminescent element.
  • the antioxidant does not substantially remain in the film after film formation, the storage stability of the composition is improved by using the antioxidant itself (and the coating liquid for forming the light emitting layer).
  • an organic electroluminescent element composition (coating liquid) can be obtained by selecting and using an antioxidant having a shape suitable as an antioxidant (specifically, a liquid antioxidant).
  • an antioxidant having a shape suitable as an antioxidant (specifically, a liquid antioxidant).
  • a composition for an organic electroluminescent device that can be easily mixed into the organic electroluminescent device and can be prevented from being clogged due to precipitation of an antioxidant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A composition for an organic electroluminescent element in which an antioxidant agent capable of evaporating or decomposing by being heated is added to a liquid body containing an organic material and a solvent, wherein the antioxidant agent evaporates or decomposes by means of heat generated when forming the composition into a film during the process of producing an organic electroluminescent element. An organic electroluminescent element, charge transport layer, light-emitting layer, and film using the aforementioned composition, a method for forming a light-emitting layer, and a method for forming a charge transport layer.

Description

有機電界発光素子用組成物、並びに、該組成物を用いた膜、発光層、電荷輸送層、有機電界発光素子、発光層の形成方法及び電荷輸送層の形成方法Composition for organic electroluminescent device, and film, light emitting layer, charge transport layer, organic electroluminescent device, method for forming light emitting layer, and method for forming charge transport layer using the composition
 本発明は、有機電界発光素子用組成物、並びに、該組成物を用いた膜、発光層、電荷輸送層、有機電界発光素子、発光層の形成方法及び電荷輸送層の形成方法に関する。 The present invention relates to a composition for an organic electroluminescent device, and a film, a light emitting layer, a charge transport layer, an organic electroluminescent device, a method for forming a light emitting layer, and a method for forming a charge transport layer using the composition.
 有機材料を利用したデバイスとして、有機電界発光素子(以下、OLED、有機EL素子ともいう)、有機半導体を利用したトランジスタなどの研究が活発に行われている。特に、有機電界発光素子は、固体発光型の大面積フルカラー表示素子や安価な大面積な面光源としての照明用途としての発展が期待されている。一般に有機電界発光素子は発光層を含む有機層及び該有機層を挟んだ一対の対向電極から構成される。このような有機電界発光素子に電圧を印加すると、有機層に陰極から電子が注入され陽極から正孔が注入される。この電子と正孔が発光層において再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出することにより発光が得られる。 Research has been actively conducted on devices using organic materials, such as organic electroluminescent elements (hereinafter also referred to as OLEDs and organic EL elements) and transistors using organic semiconductors. In particular, the organic electroluminescence device is expected to be developed as a lighting application as a solid light-emitting large-area full-color display device or an inexpensive large-area surface light source. In general, an organic electroluminescent element is composed of an organic layer including a light emitting layer and a pair of counter electrodes sandwiching the organic layer. When a voltage is applied to such an organic electroluminescence device, electrons are injected from the cathode and holes are injected from the anode into the organic layer. The electrons and holes recombine in the light emitting layer, and light is emitted by releasing energy as light when the energy level returns from the conduction band to the valence band.
 有機EL素子は、発光層及びその他の有機層を、例えば蒸着などの乾式法又は塗布などの湿式法により成膜することで作製することができるが、生産性などの観点から湿式法が注目されている。
 しかしながら、塗布などの湿式法による製造工程は通常、大気環境下で行われるので、大気(酸素)により、塗布などの湿式法で用いられる液状体組成物製造時や保存安定時、及び成膜時において物性の変化が生じたり、物性の変化に起因して該組成物を使用して製造される有機EL素子の性能が低下したりする等の問題が生じるようになった。例えば、塗布による有機EL素子の作製において、有機材料を含有する有機EL素子用塗布液を塗布後、160℃において加熱乾燥することにより、該有機材料が酸化し、この酸化に伴い成膜後の膜中の酸素濃度が上昇することが確認されている。
 このような問題に対処すべく、例えば特許文献1は有機機能材料と溶媒とを含有する液状体に酸化防止剤を添加することにより、大気(酸素)に起因する物性変化を抑え、液状体組成物の安定性を向上できることを開示している。またこのような液状体組成物を用いて各種素子を製造することにより、信頼性の高い優れた素子を提供することができることが開示されている。
 また特許文献2には、発光材料と正孔輸送材料とを同一又は異なる有機層に含有する有機EL素子において、該正孔輸送材料を含有する有機層の少なくとも1層が酸化防止剤及び光安定剤のうち少なくとも1種を含有することにより、輝度の減衰と駆動電圧の上昇が小さく長寿命化の有機EL素子が得られることが開示されている。
An organic EL element can be produced by forming a light emitting layer and other organic layers by, for example, a dry method such as vapor deposition or a wet method such as coating. However, wet methods are attracting attention from the viewpoint of productivity. ing.
However, since a manufacturing process using a wet method such as coating is usually performed in an atmospheric environment, the liquid composition used in the wet method such as coating is manufactured or stored stably and formed into a film by the atmosphere (oxygen). However, problems such as a change in physical properties and a decrease in performance of an organic EL device produced using the composition due to the change in physical properties have arisen. For example, in the production of an organic EL element by coating, an organic EL element coating solution containing an organic material is coated and then heated and dried at 160 ° C. to oxidize the organic material. It has been confirmed that the oxygen concentration in the film increases.
In order to cope with such a problem, for example, Patent Document 1 adds an antioxidant to a liquid containing an organic functional material and a solvent, thereby suppressing a change in physical properties due to the atmosphere (oxygen), and a liquid composition. It discloses that the stability of things can be improved. Further, it is disclosed that an excellent device with high reliability can be provided by manufacturing various devices using such a liquid composition.
Further, in Patent Document 2, in an organic EL device containing a light emitting material and a hole transport material in the same or different organic layers, at least one of the organic layers containing the hole transport material contains an antioxidant and a light stabilizer. It is disclosed that an organic EL device having a long lifetime can be obtained by containing at least one of the agents and reducing attenuation of luminance and increase of driving voltage.
 しかしながら、特許文献1の発明において使用される酸化防止剤として、具体的に記載されるフェノール系酸化防止剤、硫黄系酸化防止剤及びリン酸系酸化防止剤、並びに、特許文献2の実施例において使用されるフェノール系酸化防止剤、ヒンダードアミン系光安定剤及びベンゾフェノン系光安定剤はいずれも、有機EL素子の作製において組成物を成膜する際の加熱によって蒸発若しくは分解するものではないため、これら酸化防止剤及び光安定剤は成膜後の膜中に残存する。これら酸化防止剤及び光安定剤は絶縁体若しくは極めて移動度が低い化合物であり、キャリア移動度に悪影響を与えるため、膜中に残存することで外部量子効率等の有機EL素子性能を低下させることが知られており、改善が求められている。 However, as the antioxidant used in the invention of Patent Document 1, specifically described phenolic antioxidants, sulfur-based antioxidants and phosphoric acid-based antioxidants, and in Examples of Patent Document 2 None of the phenolic antioxidants, hindered amine light stabilizers and benzophenone light stabilizers used are those that are not evaporated or decomposed by heating during film formation of the composition in the production of organic EL elements. The antioxidant and the light stabilizer remain in the film after film formation. These antioxidants and light stabilizers are insulators or compounds with extremely low mobility, and adversely affect carrier mobility, so that they remain in the film, thereby reducing the organic EL device performance such as external quantum efficiency. Is known and needs improvement.
日本国特開2004-88094号公報Japanese Unexamined Patent Publication No. 2004-88094 日本国特許第3944274号明細書Japanese Patent No. 3944274 Specification
 特許文献1及び2で具体的に記載又は使用される、酸化防止剤及び光安定剤は有機EL素子の作製において組成物を成膜する際の加熱によって蒸発若しくは分解するものではないため、これら酸化防止剤及び光安定剤が成膜後の膜中に残存することにより、外部量子効率等の有機EL素子性能が低下するという問題があり、その改善が求められていた。 Since the antioxidant and the light stabilizer specifically described or used in Patent Documents 1 and 2 are not evaporated or decomposed by heating at the time of film formation of the composition in the production of an organic EL device, these oxidation agents are used. When the inhibitor and the light stabilizer remain in the film after film formation, there is a problem that the performance of the organic EL element such as external quantum efficiency is lowered, and an improvement thereof has been demanded.
 本発明は、上記の問題点を解決し、以下の目的を達成することを課題とする。
 即ち、本発明は、加熱により蒸発若しくは分解が可能な酸化防止剤を使用し、有機電界発光素子の作製において該組成物を成膜する際の加熱により、前記酸化防止剤が蒸発若しくは分解して、成膜後の膜中に該酸化防止剤が実質的に残存しないことで、酸化防止剤を使用すること自体による組成物の保存安定性の向上の効果に加え、耐久性や外部量子効率等の有機EL素子性能の低下を防止するという効果を奏する、有機電界発光素子用組成物を提供することを目的とする。また本発明の有機電界発光素子用組成物が発光層形成用の塗布液である場合には、上記の効果に加え、PL(フォトルミネッセンス)量子収率の低下の防止の効果を奏する、有機電界発光素子用組成物を提供することを目的とする。
 また本発明の別の目的は、酸化防止剤として適した形状の酸化防止剤(具体的には、液状の酸化防止剤)を選択して用いることで、有機電界発光素子用組成物(塗布液)への混合が容易であり、かつ酸化防止剤の析出による目詰まりが防止可能な有機電界発光素子用組成物を提供することである。
 また本発明の更に別の目的は、上記組成物を用いた膜、発光層、電荷輸送層、有機電界発光素子、発光層の形成方法及び電荷輸送層の形成方法を提供することである。
An object of the present invention is to solve the above problems and achieve the following object.
That is, the present invention uses an antioxidant that can be evaporated or decomposed by heating, and the antioxidant is evaporated or decomposed by heating at the time of film formation of the composition in the production of an organic electroluminescent device. In addition to the effect of improving the storage stability of the composition by using the antioxidant itself, durability, external quantum efficiency, etc., because the antioxidant does not substantially remain in the film after film formation It aims at providing the composition for organic electroluminescent elements which show | plays the effect of preventing the fall of organic EL element performance of this. Moreover, when the composition for organic electroluminescent elements of this invention is a coating liquid for light emitting layer formation, there exists an effect of preventing the fall of PL (photoluminescence) quantum yield in addition to said effect. It is an object to provide a composition for a light emitting device.
Another object of the present invention is to select and use an antioxidant (specifically, a liquid antioxidant) having a shape suitable as an antioxidant, so that a composition for an organic electroluminescent element (coating liquid) is used. And a composition for an organic electroluminescence device capable of preventing clogging due to precipitation of an antioxidant.
Still another object of the present invention is to provide a film, a light emitting layer, a charge transport layer, an organic electroluminescent device, a method for forming a light emitting layer, and a method for forming a charge transport layer using the above composition.
 上記状況を鑑み、本発明者らは、鋭意研究を行なったところ、加熱により蒸発若しくは分解が可能な酸化防止剤を使用し、有機電界発光素子の作製において該組成物を成膜する際の加熱により、前記酸化防止剤が蒸発若しくは分解して、成膜後の膜中に該酸化防止剤が実質的に残存しないことで、上記課題を解決できることを見出した。 In view of the above situation, the present inventors have conducted extensive research and have used an antioxidant capable of evaporating or decomposing by heating, and heating when forming the composition in the production of an organic electroluminescent device. Thus, it has been found that the above-mentioned problems can be solved by the fact that the antioxidant is evaporated or decomposed and the antioxidant does not substantially remain in the film after film formation.
 即ち、前記課題を解決するための手段は以下の通りである。 That is, the means for solving the above-mentioned problems are as follows.
 〔1〕有機材料(B)と溶媒(C)とを含有する液状体に、加熱により蒸発若しくは分解が可能な酸化防止剤(A)を添加した、有機電界発光素子用組成物であって、有機電界発光素子の作製において該組成物を成膜する際の加熱により、前記酸化防止剤(A)が蒸発若しくは分解する、有機電界発光素子用組成物。
 〔2〕前記酸化防止剤(A)が、80℃~220℃の加熱により蒸発若しくは分解する、上記〔1〕に記載の有機電界発光素子用組成物。
 〔3〕前記酸化防止剤(A)が、25℃で液状である、上記〔1〕又は〔2〕に記載の有機電界発光素子用組成物。
 〔4〕前記酸化防止剤(A)が、アルキレングリコール誘導体、アミノアルコール誘導体又はシュウ酸である、上記〔1〕~〔3〕のいずれか一項に記載の有機電界発光素子用組成物。
 〔5〕前記有機材料(B)として、発光材料及びホスト材料を含有する、上記〔1〕~〔4〕のいずれか一項に記載の有機電界発光素子用組成物。
 〔6〕前記発光材料がイリジウム錯体であり、前記ホスト材料がカルバゾール誘導体である、上記〔5〕に記載の有機電界発光素子用組成物。
 〔7〕前記有機材料(B)として、電荷輸送材料を含有する、上記〔1〕~〔4〕のいずれか一項に記載の有機電界発光素子用組成物。
 〔8〕前記溶媒(C)として、2-ブタノン、乳酸ブチル、乳酸アミル、乳酸イソアミル及び2-n-ブトキシエタノールからなる群より選択される少なくとも一種を含有する、上記〔5〕又は〔6〕に記載の有機電界発光素子用組成物。
 〔9〕前記溶媒(C)として、シクロヘキサノンを含有する、上記〔7〕に記載の有機電界発光素子用組成物。
 〔10〕上記〔1〕~〔9〕のいずれか一項に記載の組成物を塗布し、塗布された該組成物を加熱することにより形成された膜。
 〔11〕上記〔5〕、〔6〕及び〔8〕のいずれか一項に記載の組成物を塗布し、塗布された該組成物を加熱することにより形成された発光層。
 〔12〕上記〔7〕又は〔9〕に記載の組成物を塗布し、塗布された該組成物を加熱することにより形成された電荷輸送層。
 〔13〕上記〔11〕に記載の発光層を有する有機電界発光素子。
 〔14〕上記〔12〕に記載の電荷輸送層を有する有機電界発光素子。
 〔15〕上記〔5〕、〔6〕及び〔8〕のいずれか一項に記載の組成物を塗布し、塗布された該組成物を加熱することを含む、発光層の形成方法。
 〔16〕上記〔7〕又は〔9〕に記載の組成物を塗布し、塗布された該組成物を加熱することを含む、電荷輸送層の形成方法。
[1] A composition for an organic electroluminescent device, wherein an antioxidant (A) that can be evaporated or decomposed by heating is added to a liquid containing an organic material (B) and a solvent (C), A composition for an organic electroluminescence device, wherein the antioxidant (A) evaporates or decomposes by heating when forming the film of the composition in the production of an organic electroluminescence device.
[2] The composition for organic electroluminescent elements as described in [1] above, wherein the antioxidant (A) is evaporated or decomposed by heating at 80 ° C. to 220 ° C.
[3] The composition for organic electroluminescent elements according to the above [1] or [2], wherein the antioxidant (A) is liquid at 25 ° C.
[4] The composition for organic electroluminescent elements according to any one of [1] to [3] above, wherein the antioxidant (A) is an alkylene glycol derivative, an amino alcohol derivative or oxalic acid.
[5] The composition for an organic electroluminescent element according to any one of [1] to [4], wherein the organic material (B) contains a light emitting material and a host material.
[6] The composition for an organic electroluminescent element according to the above [5], wherein the light emitting material is an iridium complex and the host material is a carbazole derivative.
[7] The composition for an organic electroluminescent element according to any one of [1] to [4], wherein the organic material (B) contains a charge transport material.
[8] The solvent (C) contains at least one selected from the group consisting of 2-butanone, butyl lactate, amyl lactate, isoamyl lactate and 2-n-butoxyethanol, [5] or [6] The composition for organic electroluminescent elements as described in 2.
[9] The composition for organic electroluminescent elements according to [7] above, containing cyclohexanone as the solvent (C).
[10] A film formed by applying the composition according to any one of [1] to [9] and heating the applied composition.
[11] A light emitting layer formed by applying the composition according to any one of [5], [6] and [8] and heating the applied composition.
[12] A charge transport layer formed by applying the composition according to [7] or [9] and heating the applied composition.
[13] An organic electroluminescence device having the light emitting layer according to [11].
[14] An organic electroluminescent device having the charge transport layer according to [12].
[15] A method for forming a light emitting layer, which comprises applying the composition according to any one of [5], [6] and [8], and heating the applied composition.
[16] A method for forming a charge transport layer, comprising applying the composition according to [7] or [9] above and heating the applied composition.
 本発明によれば、加熱により蒸発若しくは分解が可能な酸化防止剤を使用し、有機電界発光素子の作製において該組成物を成膜する際の加熱により、前記酸化防止剤が蒸発若しくは分解して、成膜後の膜中に該酸化防止剤が実質的に残存しないことで、酸化防止剤を使用すること自体による組成物の保存安定性の向上(及び発光層形成用の塗布液である場合には、PL量子収率の低下の防止)といった効果に加え、耐久性や外部量子効率等の有機EL素子性能の低下を防止するという効果を奏する、有機電界発光素子用組成物を提供することができる。
 また、本発明によれば、酸化防止剤として適した形状の酸化防止剤(具体的には、液状の酸化防止剤)を選択して用いることで、有機電界発光素子用組成物(塗布液)への混合が容易であり、かつ酸化防止剤の析出による目詰まりが防止可能な有機電界発光素子用組成物を提供することができる。
 更に、本発明によれば、上記組成物を用いた膜、発光層、電荷輸送層、有機電界発光素子、発光層の形成方法及び電荷輸送層の形成方法を提供することができる。
According to the present invention, an antioxidant that can be evaporated or decomposed by heating is used, and the antioxidant is evaporated or decomposed by heating at the time of film formation of the composition in the production of an organic electroluminescent element. In addition, since the antioxidant does not substantially remain in the film after film formation, the storage stability of the composition is improved by using the antioxidant itself (and the coating liquid for forming the light emitting layer). To provide a composition for an organic electroluminescent device that has the effect of preventing deterioration of organic EL device performance such as durability and external quantum efficiency in addition to the effect of preventing reduction of PL quantum yield. Can do.
In addition, according to the present invention, an organic electroluminescent element composition (coating liquid) can be obtained by selecting and using an antioxidant having a shape suitable as an antioxidant (specifically, a liquid antioxidant). Thus, it is possible to provide a composition for an organic electroluminescent device that can be easily mixed into the organic electroluminescent device and can be prevented from being clogged due to precipitation of an antioxidant.
Furthermore, according to the present invention, it is possible to provide a film, a light emitting layer, a charge transport layer, an organic electroluminescent element, a light emitting layer forming method and a charge transport layer forming method using the above composition.
本発明に係る有機電界発光素子の層構成の一例を示す概略図である。It is the schematic which shows an example of the layer structure of the organic electroluminescent element which concerns on this invention.
 以下、本発明について詳細に説明する。なお、本明細書において「~」はその前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。 Hereinafter, the present invention will be described in detail. In the present specification, “to” indicates a range including the numerical values described before and after the values as a minimum value and a maximum value, respectively.
 本発明において、置換基群A及び置換基群Bを以下のように定義する。
(置換基群A)
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばメチル、エチル、イソプロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニル、p-メチルフェニル、ナフチル、アントラセニルなどが挙げられる。)、アミノ基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~10であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノ、ジフェニルアミノ、ジトリルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばメトキシ、エトキシ、ブトキシ、2-エチルヘキシロキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシなどが挙げられる。)、ヘテロ環オキシ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、キノリルオキシなどが挙げられる。)、アシル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~30、より好ましくは炭素数7~20、特に好ましくは炭素数7~12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0~30、より好ましくは炭素数0~20、特に好ましくは炭素数0~12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニルチオなどが挙げられる。)、ヘテロ環チオ基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばピリジルチオ、2-ベンズイミダゾリルチオ、2-ベンズオキサゾリルチオ、2-ベンズチアゾリルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(芳香族ヘテロ環基も包含し、好ましくは炭素数1~30、より好ましくは炭素数1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子、セレン原子、テルル原子であり、具体的にはピリジル、ピラジニル、ピリミジル、ピリダジニル、ピロリル、ピラゾリル、トリアゾリル、イミダゾリル、オキサゾリル、チアゾリル、イソキサゾリル、イソチアゾリル、キノリル、フリル、チエニル、セレノフェニル、テルロフェニル、ピペリジル、ピペリジノ、モルホリノ、ピロリジル、ピロリジノ、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、カルバゾリル基、アゼピニル基、シロリル基などが挙げられる。)、シリル基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24であり、例えばトリメチルシリル、トリフェニルシリルなどが挙げられる。)、シリルオキシ基(好ましくは炭素数3~40、より好ましくは炭素数3~30、特に好ましくは炭素数3~24であり、例えばトリメチルシリルオキシ、トリフェニルシリルオキシなどが挙げられる。)、ホスホリル基(例えばジフェニルホスホリル基、ジメチルホスホリル基などが挙げられる。)が挙げられる。これらの置換基は更に置換されてもよく、更なる置換基としては、以上に説明した置換基群Aから選択される基を挙げることができる。また、置換基に置換した置換基は更に置換されてもよく、さらなる置換基としては、以上に説明した置換基群Aから選択される基を挙げることができる。また、置換基に置換した置換基に置換した置換基は更に置換されてもよく、さらなる置換基としては、以上に説明した置換基群Aから選択される基を挙げることができる。
In the present invention, the substituent group A and the substituent group B are defined as follows.
(Substituent group A)
An alkyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, isopropyl, tert-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), alkenyl groups (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl , Allyl, 2-butenyl, 3-pentenyl, etc.), alkynyl groups (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl , 3-pentynyl, etc.), aryl groups (preferably having 6 to 30 carbon atoms, more preferably carbon 6 to 20, particularly preferably 6 to 12 carbon atoms, such as phenyl, p-methylphenyl, naphthyl, anthracenyl, etc.), amino group (preferably 0 to 30 carbon atoms, more preferably 0 carbon atoms) To 20 and particularly preferably 0 to 10 carbon atoms, such as amino, methylamino, dimethylamino, diethylamino, dibenzylamino, diphenylamino, ditolylamino, etc.), alkoxy groups (preferably having 1 to 30 carbon atoms). More preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methoxy, ethoxy, butoxy, 2-ethylhexyloxy, etc.), an aryloxy group (preferably 6 to 6 carbon atoms). 30, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, And aryloxy, 1-naphthyloxy, 2-naphthyloxy, etc.), heterocyclic oxy groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms). For example, pyridyloxy, pyrazyloxy, pyrimidyloxy, quinolyloxy, etc.), an acyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 12 carbon atoms). , Benzoyl, formyl, pivaloyl, etc.), an alkoxycarbonyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms such as methoxycarbonyl, ethoxy Carbonyl, etc.), an aryloxycarbonyl group (preferably Has 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, and examples thereof include phenyloxycarbonyl. ), An acyloxy group (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as acetoxy, benzoyloxy, etc.), an acylamino group (preferably 2-30 carbon atoms, more preferably 2-20 carbon atoms, particularly preferably 2-10 carbon atoms, and examples thereof include acetylamino, benzoylamino and the like, and alkoxycarbonylamino groups (preferably having 2-2 carbon atoms). 30, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 12 carbon atoms, such as methoxycarbonylamino, etc.), an aryloxycarbonylamino group (preferably having 7 to 30 carbon atoms, more preferably 7 to 20 carbon atoms, particularly preferably 7 to 12 carbon atoms, for example phenyloxycarbonyl And sulfonylamino groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methanesulfonylamino and benzenesulfonylamino). ), A sulfamoyl group (preferably having 0 to 30 carbon atoms, more preferably 0 to 20 carbon atoms, particularly preferably 0 to 12 carbon atoms, such as sulfamoyl, methylsulfamoyl, dimethylsulfamoyl, phenyl Sulfamoyl, etc.), carbamoyl groups (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as carbamoyl, methylcarbamoyl, diethylcarbamoyl, Phenylcarbamoyl etc.), alkylthio group ( Preferably, it has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as methylthio, ethylthio, etc.), an arylthio group (preferably 6 to 30 carbon atoms). More preferably 6 to 20 carbon atoms, particularly preferably 6 to 12 carbon atoms, such as phenylthio, etc.), a heterocyclic thio group (preferably 1 to 30 carbon atoms, more preferably 1 to carbon atoms). 20, particularly preferably 1 to 12 carbon atoms, such as pyridylthio, 2-benzimidazolylthio, 2-benzoxazolylthio, 2-benzthiazolylthio, etc.), a sulfonyl group (preferably having 1 carbon atom) To 30, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms such as mesyl and tosyl). A sulfinyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, and examples thereof include methanesulfinyl and benzenesulfinyl. ), A ureido group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as ureido, methylureido, phenylureido, etc.), phosphoric acid An amide group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 12 carbon atoms, such as diethyl phosphoric acid amide and phenyl phosphoric acid amide), a hydroxy group , Mercapto group, halogen atom (eg fluorine atom, chlorine atom, bromine atom, iodine atom), cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, heterocyclic group ( An aromatic heterocyclic group is also included, preferably having 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms. Is, for example, a nitrogen atom, oxygen atom, sulfur atom, phosphorus atom, silicon atom, selenium atom, tellurium atom, specifically pyridyl, pyrazinyl, pyrimidyl, pyridazinyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, oxazolyl, thiazolyl, And isoxazolyl, isothiazolyl, quinolyl, furyl, thienyl, selenophenyl, tellurophenyl, piperidyl, piperidino, morpholino, pyrrolidyl, pyrrolidino, benzoxazolyl, benzoimidazolyl, benzothiazolyl, carbazolyl group, azepinyl group, silolyl group and the like. A silyl group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, and examples thereof include trimethylsilyl and triphenylsilyl). A aryloxy group (preferably having 3 to 40 carbon atoms, more preferably 3 to 30 carbon atoms, particularly preferably 3 to 24 carbon atoms, such as trimethylsilyloxy, triphenylsilyloxy, etc.), phosphoryl group (for example, A diphenylphosphoryl group, a dimethylphosphoryl group, etc.). These substituents may be further substituted, and examples of the further substituent include a group selected from the substituent group A described above. Moreover, the substituent substituted by the substituent may be further substituted, and examples of the further substituent include a group selected from the substituent group A described above. Moreover, the substituent substituted by the substituent substituted by the substituent may be further substituted, and examples of the further substituent include a group selected from the substituent group A described above.
(置換基群B)
 アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~20、特に好ましくは炭素数1~10であり、例えばメチル、エチル、イソプロピル、tert-ブチル、n-オクチル、n-デシル、n-ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばビニル、アリル、2-ブテニル、3-ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばプロパルギル、3-ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12であり、例えばフェニル、p-メチルフェニル、ナフチル、アントラセニルなどが挙げられる。)、シアノ基、ヘテロ環基(芳香族ヘテロ環基も包含し、好ましくは炭素数1~30、より好ましくは炭素数1~12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、リン原子、ケイ素原子、セレン原子、テルル原子であり、具体的にはピリジル、ピラジニル、ピリミジル、ピリダジニル、ピロリル、ピラゾリル、トリアゾリル、イミダゾリル、オキサゾリル、チアゾリル、イソキサゾリル、イソチアゾリル、キノリル、フリル、チエニル、セレノフェニル、テルロフェニル、ピペリジル、ピペリジノ、モルホリノ、ピロリジル、ピロリジノ、ベンゾオキサゾリル、ベンゾイミダゾリル、ベンゾチアゾリル、カルバゾリル基、アゼピニル基、シロリル基などが挙げられる。)これらの置換基は更に置換されてもよく、更なる置換基としては、前記置換基群Bから選択される基を挙げることができる。また、置換基に置換した置換基は更に置換されてもよく、さらなる置換基としては、以上に説明した置換基群Bから選択される基を挙げることができる。また、置換基に置換した置換基に置換した置換基は更に置換されてもよく、さらなる置換基としては、以上に説明した置換基群Bから選択される基を挙げることができる。
(Substituent group B)
An alkyl group (preferably having 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, such as methyl, ethyl, isopropyl, tert-butyl, n-octyl, n-decyl, n-hexadecyl, cyclopropyl, cyclopentyl, cyclohexyl, etc.), alkenyl groups (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as vinyl , Allyl, 2-butenyl, 3-pentenyl, etc.), alkynyl groups (preferably having 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, particularly preferably 2 to 10 carbon atoms, such as propargyl , 3-pentynyl, etc.), aryl groups (preferably having 6 to 30 carbon atoms, more preferably carbon 6 to 20, particularly preferably 6 to 12 carbon atoms, such as phenyl, p-methylphenyl, naphthyl, anthracenyl, etc.), cyano group, heterocyclic group (including aromatic heterocyclic group, Has 1 to 30 carbon atoms, more preferably 1 to 12 carbon atoms, and examples of the hetero atom include a nitrogen atom, an oxygen atom, a sulfur atom, a phosphorus atom, a silicon atom, a selenium atom, and a tellurium atom. Is pyridyl, pyrazinyl, pyrimidyl, pyridazinyl, pyrrolyl, pyrazolyl, triazolyl, imidazolyl, oxazolyl, thiazolyl, isoxazolyl, isothiazolyl, quinolyl, furyl, thienyl, selenophenyl, tellurophenyl, piperidyl, piperidino, morpholino, pyrrolidyl, pyrrolidino, benzoxazolid Le, benzoimida Ryl, benzothiazolyl, carbazolyl group, azepinyl group, silylyl group, etc.) These substituents may be further substituted, and examples of further substituents include groups selected from the substituent group B. Can do. Moreover, the substituent substituted by the substituent may be further substituted, and examples of the further substituent include a group selected from the substituent group B described above. Moreover, the substituent substituted by the substituent substituted by the substituent may be further substituted, and examples of the further substituent include a group selected from the substituent group B described above.
 本発明の有機電界発光素子用組成物(以下単に“組成物”とも言う)は、有機材料と溶媒とを含有する液状体に、加熱により蒸発若しくは分解が可能な酸化防止剤を添加した、有機電界発光素子用組成物であって、有機電界発光素子の作製において該組成物を成膜する際の加熱により、前記酸化防止剤が蒸発若しくは分解する。
 本発明の組成物の使用が、組成物の保存安定性の向上(及び発光層形成用の塗布液である場合には、PL量子収率の低下の防止)という効果と共に、耐久性や外部量子効率等の有機EL素子性能の低下を防止する効果を奏することができる理由は定かではないが、以下のように推測される。
 本発明の組成物は酸化防止剤を含有することで、有機電界発光素子の作製において該組成物を成膜する際の加熱乾燥に伴う有機材料(具体的には、後述の発光材料、ホスト材料、電荷輸送層用材料等)の酸化を防ぐことができる。また本発明の組成物が発光層形成用の塗布液である場合には、燐光発光材料等の発光材料の酸化及び加熱に伴う分解を抑制することができ、PL量子収率の低下を防止することができる。特に、燐光発光材料が後述のアセチルアセトネート(acac)等を配位子として有するイリジウム錯体である場合に、この効果が顕著である。
 また本発明に係る酸化防止剤が、有機電界発光素子の作製において該組成物を成膜する際の加熱により、蒸発若しくは分解することで、前記酸化防止剤は成膜後の膜中に実質的に残存しなくなる。酸化防止剤は絶縁体若しくは移動度が極めて低い化合物であり、キャリア移動度に悪影響を与えるため、膜中に残存することで外部量子効率等の有機EL素子性能を低下させるが、本発明においては成膜後の膜中に実質的に残存しなくなるので、外部量子効率等の有機EL素子性能の低下が防止できるものと推測される。
The composition for organic electroluminescent elements of the present invention (hereinafter also simply referred to as “composition”) is an organic material obtained by adding an antioxidant that can be evaporated or decomposed by heating to a liquid containing an organic material and a solvent. In the composition for an electroluminescent element, the antioxidant is evaporated or decomposed by heating when the composition is formed in the production of the organic electroluminescent element.
The use of the composition of the present invention has the effect of improving the storage stability of the composition (and preventing the decrease in PL quantum yield in the case of a coating solution for forming a light emitting layer), as well as durability and external quantum. The reason why the effect of preventing the degradation of the organic EL element performance such as the efficiency can be obtained is not clear, but is estimated as follows.
The composition of the present invention contains an antioxidant, so that an organic material (specifically, a light emitting material and a host material described later) accompanying heating and drying when forming the film of the composition in the production of an organic electroluminescent element is used. Oxidation of the charge transport layer material, etc.). Further, when the composition of the present invention is a coating solution for forming a light emitting layer, it is possible to suppress decomposition of the light emitting material such as a phosphorescent light emitting material and the like accompanying heating, and prevent a decrease in PL quantum yield. be able to. In particular, this effect is remarkable when the phosphorescent material is an iridium complex having acetylacetonate (acac), which will be described later, as a ligand.
Further, the antioxidant according to the present invention is evaporated or decomposed by heating at the time of film formation of the composition in the production of an organic electroluminescence device, so that the antioxidant is substantially contained in the film after film formation. No longer remains. Antioxidants are insulators or compounds with extremely low mobility, and adversely affect carrier mobility, so that they remain in the film to reduce the organic EL device performance such as external quantum efficiency. It is presumed that the organic EL element performance such as external quantum efficiency can be prevented from deteriorating because it does not substantially remain in the film after film formation.
 ここで、“膜中に実質的に残存しない”とは、酸化防止剤が蒸発することにより膜中に実質的に残存しないこと、又は、酸化防止剤が分解することにより、元の構造を有する酸化防止剤が膜中に実質的に残存しないことを意味する。具体的には、成膜後の膜中において、酸化防止剤(組成物中に含まれていた状態と同じ構造を有するものをいう)が成膜後の膜中の全固形分を基準として、1000ppm以下のみ残存する状態であり、好ましくは残存量が100ppm以下であり、より好ましくは残存量が10ppm以下であり、最も好ましくは0ppm(すなわち、酸化防止剤が膜中に残存しないこと)である。 Here, “substantially does not remain in the film” means that the antioxidant does not substantially remain in the film due to evaporation or the antioxidant decomposes to have the original structure. It means that the antioxidant does not substantially remain in the film. Specifically, in the film after film formation, the antioxidant (which has the same structure as that contained in the composition) is based on the total solid content in the film after film formation, It is a state in which only 1000 ppm or less remains, preferably the remaining amount is 100 ppm or less, more preferably the remaining amount is 10 ppm or less, and most preferably 0 ppm (that is, no antioxidant remains in the film). .
 本発明に係る組成物は、好ましくは有機電界発光素子用組成物であり、より好ましくは発光層又は電荷輸送層形成用組成物であり、更に好ましくは発光層、正孔注入層又は正孔輸送層形成用組成物である。以下、この組成物の構成を説明する。 The composition according to the present invention is preferably a composition for an organic electroluminescent device, more preferably a composition for forming a light emitting layer or a charge transport layer, and further preferably a light emitting layer, a hole injection layer or a hole transport. It is a composition for layer formation. Hereinafter, the structure of this composition is demonstrated.
 [1]加熱により蒸発若しくは分解が可能な酸化防止剤(A)
 本発明の組成物は、加熱により蒸発若しくは分解が可能な酸化防止剤(以下、“酸化防止剤(A)”ともいう)を含有する。酸化防止剤(A)は、有機電界発光素子の作製において本発明の組成物を成膜する際の加熱により、蒸発若しくは分解するものであり、この条件を満たす公知の酸化防止剤が使用可能である。なお有機電界発光素子の作製において組成物を成膜する際の加熱の温度は、一般的に有機電界発光素子の性能に悪影響を与えない温度範囲であり、具体的には25℃~220℃が好ましく、より好ましくは80℃~220℃であり、更に好ましくは150℃~220℃である。
[1] Antioxidant (A) that can be evaporated or decomposed by heating
The composition of the present invention contains an antioxidant that can be evaporated or decomposed by heating (hereinafter also referred to as “antioxidant (A)”). The antioxidant (A) evaporates or decomposes by heating when forming the composition of the present invention in the production of an organic electroluminescent device, and a known antioxidant satisfying this condition can be used. is there. Note that the heating temperature in forming the composition in the production of the organic electroluminescent device is generally within a temperature range that does not adversely affect the performance of the organic electroluminescent device, specifically 25 ° C. to 220 ° C. It is preferably 80 ° C. to 220 ° C., more preferably 150 ° C. to 220 ° C.
 酸化防止剤(A)は、上記で説明したような有機電界発光素子の作製において組成物を成膜する際の加熱の温度において蒸発若しくは分解するものである。酸化防止剤(A)は、大気圧下、80℃~220℃の加熱により蒸発若しくは分解することが好ましく、より好ましくは150℃~220℃であり、更に好ましくは180℃~220℃である。 The antioxidant (A) evaporates or decomposes at the heating temperature when the composition is formed in the production of the organic electroluminescence device as described above. The antioxidant (A) is preferably evaporated or decomposed by heating at 80 ° C. to 220 ° C. under atmospheric pressure, more preferably 150 ° C. to 220 ° C., and further preferably 180 ° C. to 220 ° C.
 酸化防止剤(A)としては、25℃(室温)で液状である酸化防止剤を用いることが好ましい。液状の酸化防止剤を用いることにより、有機電界発光素子用組成物(塗布液)への混合が容易となり、かつ酸化防止剤の析出による目詰まりを防止することが可能となる。
 液状の酸化防止剤としては、25℃(室温)における粘度が、送液性の観点から、0.5~30mPa・sであることが好ましく、1~25mPa・sであることがより好ましく、3~20mPa・sであることが更に好ましい。粘度はB型回転粘度計によって測定可能である。
As the antioxidant (A), it is preferable to use an antioxidant that is liquid at 25 ° C. (room temperature). By using a liquid antioxidant, mixing with the organic electroluminescent element composition (coating liquid) is facilitated, and clogging due to precipitation of the antioxidant can be prevented.
As the liquid antioxidant, the viscosity at 25 ° C. (room temperature) is preferably 0.5 to 30 mPa · s, more preferably 1 to 25 mPa · s from the viewpoint of liquid feeding property. More preferably, it is ˜20 mPa · s. The viscosity can be measured with a B-type rotational viscometer.
 酸化防止剤(A)は、[1-1]加熱により蒸発が可能な酸化防止剤(以下、“酸化防止剤(A-1)”ともいう)であるか、又は、[1-2]加熱により分解が可能な酸化防止剤(以下、“酸化防止剤(A-2)”ともいう)である。以下にそれぞれについて説明する。なお、市販の酸化防止剤については、酸化防止剤ハンドブック(大成社発刊)に記載されている。 The antioxidant (A) is [1-1] an antioxidant that can be evaporated by heating (hereinafter also referred to as “antioxidant (A-1)”), or [1-2] heating. It is an antioxidant that can be decomposed by (hereinafter, also referred to as “antioxidant (A-2)”). Each will be described below. Commercially available antioxidants are described in the antioxidant handbook (published by Taiseisha).
 [1-1]加熱により蒸発が可能な酸化防止剤(A-1)
 酸化防止剤(A-1)は、25℃(室温)で液状である。酸化防止剤(A-1)の好ましい粘度範囲は、前述の酸化防止剤(A)が液状である場合の好ましい粘度範囲と同様である。また酸化防止剤(A-1)は、大気圧下、80℃~220℃の加熱により蒸発することが好ましく、より好ましくは150℃~220℃であり、更に好ましくは180℃~220℃である。
[1-1] Antioxidant capable of being evaporated by heating (A-1)
The antioxidant (A-1) is liquid at 25 ° C. (room temperature). The preferred viscosity range of the antioxidant (A-1) is the same as the preferred viscosity range when the above-mentioned antioxidant (A) is in a liquid state. The antioxidant (A-1) is preferably evaporated by heating at 80 ° C. to 220 ° C. under atmospheric pressure, more preferably 150 ° C. to 220 ° C., and further preferably 180 ° C. to 220 ° C. .
 酸化防止剤(A-1)としては、エチレングリコール誘導体、プロピレングリコール誘導体等のアルキレングリコール誘導体、アミノアルコール誘導体等が挙げられ、好ましくはアルキレングリコール誘導体、より好ましくはエチレングリコール誘導体である。
 エチレングリコール誘導体は、-(CHO-で表される部分構造を有する化合物であり、下記一般式(EG)で表されることが好ましい。
Examples of the antioxidant (A-1) include alkylene glycol derivatives such as ethylene glycol derivatives and propylene glycol derivatives, amino alcohol derivatives and the like, preferably alkylene glycol derivatives, more preferably ethylene glycol derivatives.
The ethylene glycol derivative is a compound having a partial structure represented by — (CH 2 ) 2 O—, and is preferably represented by the following general formula (EG).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記一般式(EG)中、
 REG及びREG’はそれぞれ独立に、アルキル基を表す。
 nEGは、1以上の整数を表す。
In the above general formula (EG),
R EG and R EG ′ each independently represents an alkyl group.
n EG represents an integer of 1 or more.
 REG及びREG’で表されるアルキル基は、直鎖又は分岐鎖のアルキル基であり、直鎖であることが好ましい。REG及びREG’で表されるアルキル基は、好ましくは炭素数1~10であり、より好ましくは炭素数1~6であり、最も好ましくはメチル基である。 The alkyl group represented by R EG and R EG ′ is a linear or branched alkyl group, and is preferably a linear chain. The alkyl group represented by R EG and R EG ′ preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and most preferably a methyl group.
 nEGは、1以上の整数である。沸点の観点から、nEGは、1~3の整数であることが好ましい。 n EG is an integer of 1 or more. From the viewpoint of boiling point, n EG is preferably an integer of 1 to 3.
 上記一般式(EG)で表される、酸化防止剤(A-1)としてのエチレングリコール誘導体としては、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールエチルメチルエーテル等が挙げられ、好ましくは、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールエチルメチルエーテルである。 Examples of the ethylene glycol derivative represented by the above general formula (EG) as the antioxidant (A-1) include 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, triethylene glycol dimethyl ether, diethylene glycol diester. Examples thereof include butyl ether, diethylene glycol butyl methyl ether, diethylene glycol ethyl methyl ether, and the like, preferably 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, diethylene glycol butyl methyl ether, and diethylene glycol ethyl methyl ether.
 プロピレングリコール誘導体としては、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル等が挙げられ、好ましくは、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテルである。 Examples of the propylene glycol derivative include propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, and tripropylene glycol dimethyl ether. Preferred are propylene glycol dimethyl ether and dipropylene glycol dimethyl ether.
 アミノアルコール誘導体としては、トリエタノールアミン、ジエチルエタノールアミンジブチルエタノールアミン、N-メチルジエタノールアミン等が挙げられ、好ましくは、トリエタノールアミン、ジエチルエタノールアミンである。 Examples of amino alcohol derivatives include triethanolamine, diethylethanolamine dibutylethanolamine, N-methyldiethanolamine, and the like, preferably triethanolamine and diethylethanolamine.
 [1-2]加熱により分解が可能な酸化防止剤(A-2)
 酸化防止剤(A-2)は、加熱により生成する分解物が有機電界発光素子に悪影響を与えない酸化防止剤である。酸化防止剤は分解することにより、低分子化合物として揮発することとなるので、酸化防止剤の分解物は素子に悪影響を与えない。酸化防止剤(A-2)は、25℃(室温)で液状であっても、固体状であってもよい。酸化防止剤(A-2)が液状である場合の好ましい粘度範囲は、前述の酸化防止剤(A)が液状である場合の好ましい粘度範囲と同様である。また酸化防止剤(A-2)は、大気圧下、80℃~220℃の加熱により分解することが好ましく、より好ましくは150℃~220℃であり、更に好ましくは180℃~220℃である。
[1-2] Antioxidant capable of being decomposed by heating (A-2)
Antioxidant (A-2) is an antioxidant in which decomposition products generated by heating do not adversely affect the organic electroluminescence device. When the antioxidant is decomposed, it is volatilized as a low molecular weight compound. Therefore, the decomposition product of the antioxidant does not adversely affect the device. The antioxidant (A-2) may be liquid at 25 ° C. (room temperature) or solid. A preferable viscosity range when the antioxidant (A-2) is in a liquid state is the same as the preferable viscosity range when the above-mentioned antioxidant (A) is in a liquid state. The antioxidant (A-2) is preferably decomposed by heating at 80 ° C. to 220 ° C. under atmospheric pressure, more preferably 150 ° C. to 220 ° C., further preferably 180 ° C. to 220 ° C. .
 酸化防止剤(A-2)としては、シュウ酸が挙げられる。なお、シュウ酸は弱い還元剤と作用し、かつ、189.5℃で分解が可能な化合物である。更に、分解物として、気体の一酸化炭素、二酸化炭素や、低沸点のギ酸(沸点100.8℃)が発生するものの、加熱により容易に、揮発が可能である。また、酸素や水の発生がなく、有機電界発光素子への影響が小さいと予想される。 An example of the antioxidant (A-2) is oxalic acid. Oxalic acid is a compound that acts with a weak reducing agent and can be decomposed at 189.5 ° C. Furthermore, although carbon monoxide, carbon dioxide, and low boiling point formic acid (boiling point 100.8 ° C.) are generated as decomposition products, they can be easily volatilized by heating. Moreover, there is no generation | occurrence | production of oxygen and water, and it is estimated that the influence on an organic electroluminescent element is small.
 酸化防止剤(A)は、上述のアルキレングリコール誘導体、アミノアルコール誘導体又はシュウ酸であることが好ましい。 The antioxidant (A) is preferably the above-mentioned alkylene glycol derivative, amino alcohol derivative or oxalic acid.
 酸化防止剤(A)が固体状である場合、本発明の組成物において、前記酸化防止剤(A)の溶解パラメーターは7.0~13.0であることが好ましい。これによれば、酸化防止剤(A)は溶媒に対して十分な溶解性を有するので、有機材料と相溶し、十分に分散され、成膜後においても相分離が生じない。そして、有機材料が発光材料を含む場合には、酸化防止剤(A)が十分に分散されることによって発光ムラが生じるのを抑えることができる。 When the antioxidant (A) is solid, the solubility parameter of the antioxidant (A) is preferably 7.0 to 13.0 in the composition of the present invention. According to this, since the antioxidant (A) has sufficient solubility in the solvent, it is compatible with the organic material and sufficiently dispersed, and phase separation does not occur even after film formation. And when an organic material contains a light emitting material, it can suppress that light emission nonuniformity arises because antioxidant (A) is fully disperse | distributed.
 ここで、有機材料が正孔注入材料又は正孔輸送材料(正孔注入層形成用材料又は正孔輸送層形成用材料)である場合には、溶解パラメーターが7.0~13.0であることが好ましく、より好ましくは8.5~13.0である酸化防止剤(A)を用いることが望ましい。一方、有機材料が発光材料(発光層形成用材料)を含む場合には、溶解パラメーターが7.0~13.0であることが好ましく、より好ましくは7.5~10.5である酸化防止剤(A)を用いることが望ましい。 Here, when the organic material is a hole injection material or a hole transport material (a hole injection layer forming material or a hole transport layer forming material), the solubility parameter is 7.0 to 13.0. It is preferable to use the antioxidant (A) which is more preferably 8.5 to 13.0. On the other hand, when the organic material includes a light emitting material (light emitting layer forming material), it is preferable that the solubility parameter is 7.0 to 13.0, more preferably 7.5 to 10.5. It is desirable to use the agent (A).
 酸化防止剤(A)が固体状である場合、本発明の組成物において、前記酸化防止剤(A)の後述の溶媒に対する溶解度は0.001%以上であることが好ましい。これによれば、酸化防止剤(A)は溶媒に対して十分な溶解性を有するので、有機材料と相溶し、十分に分散され、成膜後においても相分離が生じない。そして、有機材料が発光材料を含む場合には、酸化防止剤(A)が十分に分散されることによって発光ムラが生じるのを抑えることができる。 When the antioxidant (A) is in a solid state, in the composition of the present invention, the solubility of the antioxidant (A) in the solvent described later is preferably 0.001% or more. According to this, since the antioxidant (A) has sufficient solubility in the solvent, it is compatible with the organic material and sufficiently dispersed, and phase separation does not occur even after film formation. And when an organic material contains a light emitting material, it can suppress that light emission nonuniformity arises because antioxidant (A) is fully disperse | distributed.
 ここで、有機材料が正孔注入材料又は正孔輸送材料である場合には、溶媒に対する溶解度が0.001%以上好ましくは5%以上である酸化防止剤(A)を用いることが望ましい。また、有機材料が発光材料を含む場合にも、溶媒に対する溶解度が0.001%以上好ましくは5%以上である酸化防止剤(A)を用いることが望ましい。 Here, when the organic material is a hole injection material or a hole transport material, it is desirable to use an antioxidant (A) having a solubility in a solvent of 0.001% or more, preferably 5% or more. Also, when the organic material includes a light emitting material, it is desirable to use an antioxidant (A) having a solubility in a solvent of 0.001% or more, preferably 5% or more.
 本発明において、酸化防止剤(A)は単独で用いてもよいし、2種以上組み合わせて用いてもよい。
 酸化防止剤(A)の組成物中の含有量は、酸化防止剤(A)が固体状である場合には、組成物の全固形分を基準として、0.1~10質量%が好ましく、より好ましくは0.1~5質量%、更に好ましくは0.2~3質量%である。
 酸化防止剤(A)が液状体である場合には、酸化防止剤(A)の組成物中の濃度は、1~50質量%が好ましく、より好ましくは2~30質量%、更に好ましくは5~20質量%である。
 本発明の酸化防止剤(A)は、精製処理したものを用いるのが好ましい。精製処理として、具体的には、(1)シリカゲル、アルミナ、カチオン性イオン交換樹脂、アニオン性イオン交換樹脂等のカラム精製処理、(2)無水硫酸ナトリウム、無水硫酸カルシウム、硫酸マグネシウム、硫酸ストロンチウム、硫酸バリウム、酸化バリウム、酸化カルシウム、酸化マグネシウム、モレキュラーシーブス、ゼオライト等の脱水処理、(3)蒸留処理、(4)不活性ガス(窒素、アルゴン)等によるバブリング処理、(5)濾過、遠心沈降等による不純物の除去処理、(6)再結晶等、任意の方法を用いることができる。より好ましくは、カラム精製処理、脱水処理、濾過、再結晶による精製方法である。
In this invention, antioxidant (A) may be used independently and may be used in combination of 2 or more type.
The content of the antioxidant (A) in the composition is preferably 0.1 to 10% by mass based on the total solid content of the composition when the antioxidant (A) is in a solid state, More preferably, the content is 0.1 to 5% by mass, and still more preferably 0.2 to 3% by mass.
When the antioxidant (A) is a liquid, the concentration of the antioxidant (A) in the composition is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, and still more preferably 5%. ~ 20% by weight.
As the antioxidant (A) of the present invention, it is preferable to use a purified product. As the purification treatment, specifically, (1) column purification treatment of silica gel, alumina, cationic ion exchange resin, anionic ion exchange resin, etc., (2) anhydrous sodium sulfate, anhydrous calcium sulfate, magnesium sulfate, strontium sulfate, Dehydration treatment of barium sulfate, barium oxide, calcium oxide, magnesium oxide, molecular sieves, zeolite, etc. (3) Distillation treatment, (4) Bubbling treatment with inert gas (nitrogen, argon), etc. (5) Filtration, centrifugal sedimentation Arbitrary methods such as impurity removal treatment by (6) recrystallization and the like can be used. A purification method by column purification treatment, dehydration treatment, filtration, and recrystallization is more preferable.
 [2]有機材料(B)
 本発明の組成物は、有機材料(以下、“有機材料(B)”ともいう)を含有する。有機材料(B)としては、有機電界発光素子において機能する有機材料であれば公知の有機材料が使用可能である。
 本発明の一態様として、本発明の組成物は、有機材料(B)として発光材料及びホスト材料を含有することが好ましい。これにより、良好な保存安定性を有すると共に、PL量子収率及び外部量子効率に優れた素子を提供可能な組成物が得られる。なお、EL素子の耐久性、効率の観点から、前記発光材料が後述のイリジウム(Ir)錯体であり、前記ホスト材料が後述のカルバゾール誘導体であることがより好ましい。
 また本発明の別の一態様として、本発明の組成物は、有機材料(B)として電荷輸送材料を含有することが好ましい。これにより、良好な保存安定性を有すると共に、外部量子効率に優れた素子を提供可能な組成物が得られる。
 以下、有機材料(B)として使用される、発光材料、ホスト材料及び電荷輸送材料について説明する。
[2] Organic material (B)
The composition of the present invention contains an organic material (hereinafter also referred to as “organic material (B)”). As an organic material (B), a well-known organic material can be used if it is an organic material which functions in an organic electroluminescent element.
As one embodiment of the present invention, the composition of the present invention preferably contains a light emitting material and a host material as the organic material (B). Thereby, the composition which can provide the element which has favorable storage stability and was excellent in PL quantum yield and external quantum efficiency is obtained. Note that, from the viewpoint of durability and efficiency of the EL element, it is more preferable that the light emitting material is an iridium (Ir) complex described later and the host material is a carbazole derivative described later.
As another embodiment of the present invention, the composition of the present invention preferably contains a charge transport material as the organic material (B). Thereby, a composition having good storage stability and capable of providing a device having excellent external quantum efficiency can be obtained.
Hereinafter, the light emitting material, the host material, and the charge transport material used as the organic material (B) will be described.
 [2-1]発光材料
 有機材料(B)として使用される、発光材料としては、蛍光発光材料や燐光発光材料が挙げられ、これらは例えば、特開2008-270736号公報の段落番号[0100]~[0164]、特開2007-266458号公報の段落番号[0088]~[0090]に詳述されており、これら公報の記載の事項を本発明に適用することができる。
[2-1] Light-Emitting Material Examples of the light-emitting material used as the organic material (B) include a fluorescent light-emitting material and a phosphorescent light-emitting material. [0164], paragraph numbers [0088] to [0090] of JP-A-2007-266458, and the matters described in these publications can be applied to the present invention.
 本発明に使用できる燐光発光材料としては、例えば、US6303238B1、US6097147、WO00/57676、WO00/70655、WO01/08230、WO01/39234A2、WO01/41512A1、WO02/02714A2、WO02/15645A1、WO02/44189A1、WO05/19373A2、特開2001-247859、特開2002-302671、特開2002-117978、特開2003-133074、特開2002-235076、特開2003-123982、特開2002-170684、EP1211257、特開2002-226495、特開2002-234894、特開2001-247859、特開2001-298470、特開2002-173674、特開2002-203678、特開2002-203679、特開2004-357791、特開2006-256999、特開2007-19462、特開2007-84635、特開2007-96259等の特許文献に記載の燐光発光化合物などが挙げられ、中でも、更に好ましい発光材料としては、Ir錯体、Pt錯体、Cu錯体、Re錯体、W錯体、Rh錯体、Ru錯体、Pd錯体、Os錯体、Eu錯体、Tb錯体、Gd錯体、Dy錯体、及びCe錯体等の燐光発光性金属錯体化合物が挙げられる。特に好ましくは、Ir錯体、Pt錯体、又はRe錯体であり、中でも金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含むIr錯体、Pt錯体、又はRe錯体が好ましい。更に、発光効率、駆動耐久性、色度等の観点で、Ir錯体、Pt錯体が特に好ましく、Ir錯体が最も好ましい。 Examples of phosphorescent light-emitting materials that can be used in the present invention include US Pat. / 19373A2, JP-A No. 2001-247859, JP-A No. 2002-302671, JP-A No. 2002-117978, JP-A No. 2003-133074, JP-A No. 2002-1235076, JP-A No. 2003-123684, JP-A No. 2002-170684, EP No. 121157, JP-A No. 2002 -226495, JP 2002-234894, JP 2001-247859, JP 2001-298470, JP 2002-1736 4. JP 2002-203678, JP 2002-203679, JP 2004-357799, JP 2006-256999, JP 2007-19462, JP 2007-84635, JP 2007-96259, etc. Phosphorescent compounds and the like can be mentioned. Among them, more preferable light emitting materials include Ir complex, Pt complex, Cu complex, Re complex, W complex, Rh complex, Ru complex, Pd complex, Os complex, Eu complex, Tb complex, Examples thereof include phosphorescent metal complex compounds such as Gd complexes, Dy complexes, and Ce complexes. Particularly preferred is an Ir complex, a Pt complex, or a Re complex, among which an Ir complex or a Pt complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond. Or Re complexes are preferred. Furthermore, from the viewpoints of luminous efficiency, driving durability, chromaticity and the like, an Ir complex and a Pt complex are particularly preferable, and an Ir complex is most preferable.
 本発明における燐光発光材料としては、以下に示す一般式(E-1)で表されるイリジウム錯体、又は以下の一般式(C-1)で表される白金錯体を用いることが好ましい。 As the phosphorescent material in the present invention, it is preferable to use an iridium complex represented by the following general formula (E-1) or a platinum complex represented by the following general formula (C-1).
 一般式(E-1)について説明する。 The general formula (E-1) will be described.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(E-1)中、Z及びZはそれぞれ独立に、炭素原子又は窒素原子を表す。
 AはZと窒素原子と共に5又は6員のヘテロ環を形成する原子群を表す。
 BはZと炭素原子と共に5又は6員環を形成する原子群を表す。
 (X-Y)はモノアニオン性の二座配位子を表す。
 nE1は1~3の整数を表す。
In general formula (E-1), Z 1 and Z 2 each independently represent a carbon atom or a nitrogen atom.
A 1 represents an atomic group that forms a 5- or 6-membered heterocycle with Z 1 and a nitrogen atom.
B 1 represents an atomic group that forms a 5- or 6-membered ring with Z 2 and a carbon atom.
(XY) represents a monoanionic bidentate ligand.
n E1 represents an integer of 1 to 3.
 nE1は1~3の整数を表し、好ましくは2又は3である。
 Z及びZはそれぞれ独立に、炭素原子又は窒素原子を表す。Z及びZとして好ましくは炭素原子である。
n E1 represents an integer of 1 to 3, preferably 2 or 3.
Z 1 and Z 2 each independently represent a carbon atom or a nitrogen atom. Z 1 and Z 2 are preferably carbon atoms.
 AはZと窒素原子と共に5又は6員のヘテロ環を形成する原子群を表す。A、Z及び窒素原子を含む5又は6員のヘテロ環としては、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環などが挙げられる。
 錯体の安定性、発光波長制御及び発光量子収率の観点から、A、Z及び窒素原子で形成される5又は6員のヘテロ環として好ましくは、ピリジン環、ピラジン環、イミダゾール環、ピラゾール環であり、より好ましくはピリジン環、イミダゾール環、ピラジン環であり、更に好ましくはピリジン環、イミダゾール環であり、最も好ましくはピリジン環である。
A 1 represents an atomic group that forms a 5- or 6-membered heterocycle with Z 1 and a nitrogen atom. The 5- or 6-membered heterocycle containing A 1 , Z 1 and a nitrogen atom includes a pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, triazole ring, oxadiazole Ring, thiadiazole ring and the like.
From the viewpoint of the stability of the complex, emission wavelength control, and emission quantum yield, the 5- or 6-membered heterocycle formed by A 1 , Z 1 and a nitrogen atom is preferably a pyridine ring, a pyrazine ring, an imidazole ring, or a pyrazole. A ring, more preferably a pyridine ring, an imidazole ring and a pyrazine ring, still more preferably a pyridine ring and an imidazole ring, and most preferably a pyridine ring.
 前記A、Z及び窒素原子で形成される5又は6員のヘテロ環は置換基を有していてもよく、炭素原子上の置換基としては前記置換基群Aが、窒素原子上の置換基としては前記置換基群Bが適用できる。炭素上の置換基として好ましくはアルキル基、ペルフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルコキシ基、シアノ基、フッ素原子である。 The 5- or 6-membered heterocycle formed by the A 1 , Z 1 and the nitrogen atom may have a substituent, and as the substituent on the carbon atom, the substituent group A is on the nitrogen atom. The substituent group B can be applied as the substituent. Preferred substituents on carbon are alkyl groups, perfluoroalkyl groups, aryl groups, aromatic heterocyclic groups, dialkylamino groups, diarylamino groups, alkoxy groups, cyano groups, and fluorine atoms.
 置換基は発光波長や電位の制御のために適宜選択されるが、短波長化させる場合には電子供与性基、フッ素原子、芳香環基が好ましく、例えばアルキル基、ジアルキルアミノ基、アルコキシ基、フッ素原子、アリール基、芳香族ヘテロ環基などが選択される。また長波長化させる場合には電子求引性基が好ましく、例えばシアノ基、ペルフルオロアルキル基などが選択される。 The substituent is appropriately selected for controlling the emission wavelength and potential, but in the case of shortening the wavelength, an electron donating group, a fluorine atom, and an aromatic ring group are preferable. For example, an alkyl group, a dialkylamino group, an alkoxy group, A fluorine atom, an aryl group, an aromatic heterocyclic group and the like are selected. In the case of increasing the wavelength, an electron withdrawing group is preferable, and for example, a cyano group, a perfluoroalkyl group, or the like is selected.
 窒素上の置換基として好ましくは、アルキル基、アリール基、芳香族ヘテロ環基であり、錯体の安定性の観点からアルキル基、アリール基が好ましい。
 前記置換基同士は連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、チオフェン環、フラン環などが挙げられる。これら形成される環は置換基を有していてもよく、置換基としては前述の炭素原子上の置換基、窒素原子上の置換基が挙げられる。
The substituent on nitrogen is preferably an alkyl group, an aryl group, or an aromatic heterocyclic group, and an alkyl group or an aryl group is preferable from the viewpoint of the stability of the complex.
The substituents may be linked to form a condensed ring, and the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, and a pyrazole. Ring, thiophene ring, furan ring and the like. These formed rings may have a substituent, and examples of the substituent include the substituent on the carbon atom and the substituent on the nitrogen atom.
 BはZと炭素原子を含む5又は6員環を表す。B、Z及び炭素原子で形成される5又は6員環としては、ベンゼン環、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環、チオフェン環、フラン環などが挙げられる。
 錯体の安定性、発光波長制御及び発光量子収率の観点からB、Z及び炭素原子で形成される5又は6員環として好ましくは、ベンゼン環、ピリジン環、ピラジン環、イミダゾール環、ピラゾール環、チオフェン環であり、より好ましくはベンゼン環、ピリジン環、ピラゾール環であり、更に好ましくはベンゼン環、ピリジン環である。
B 1 represents a 5- or 6-membered ring containing Z 2 and a carbon atom. Examples of the 5- or 6-membered ring formed by B 1 , Z 2 and a carbon atom include a benzene ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, a triazine ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, Examples include a triazole ring, an oxadiazole ring, a thiadiazole ring, a thiophene ring, and a furan ring.
From the viewpoint of the stability of the complex, emission wavelength control and emission quantum yield, the benzene ring, pyridine ring, pyrazine ring, imidazole ring, pyrazole is preferable as the 5- or 6-membered ring formed by B 1 , Z 2 and carbon atom. A ring and a thiophene ring, more preferably a benzene ring, a pyridine ring and a pyrazole ring, and still more preferably a benzene ring and a pyridine ring.
 前記B、Z及び炭素原子で形成される5又は6員環は置換基を有していてもよく、炭素原子上の置換基としては前記置換基群Aが、窒素原子上の置換基としては前記置換基群Bが適用できる。炭素上の置換基として好ましくはアルキル基、ペルフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルコキシ基、シアノ基、フッ素原子である。 The 5- or 6-membered ring formed of B 1 , Z 2 and a carbon atom may have a substituent, and the substituent group A is a substituent on a nitrogen atom as the substituent on the carbon atom. As the above, the substituent group B can be applied. Preferred substituents on carbon are alkyl groups, perfluoroalkyl groups, aryl groups, aromatic heterocyclic groups, dialkylamino groups, diarylamino groups, alkoxy groups, cyano groups, and fluorine atoms.
 置換基は発光波長や電位の制御のために適宜選択されるが、長波長化させる場合には電子供与性基、芳香環基が好ましく、例えばアルキル基、ジアルキルアミノ基、アルコキシ基、アリール基、芳香族ヘテロ環基などが選択される。また短波長化させる場合には電子求引性基が好ましく、例えばフッ素原子、シアノ基、ペルフルオロアルキル基などが選択される。 The substituent is appropriately selected for controlling the emission wavelength and potential, but in the case of increasing the wavelength, an electron donating group and an aromatic ring group are preferable, for example, an alkyl group, a dialkylamino group, an alkoxy group, an aryl group, An aromatic heterocyclic group or the like is selected. In order to shorten the wavelength, an electron withdrawing group is preferable, and for example, a fluorine atom, a cyano group, a perfluoroalkyl group, and the like are selected.
 窒素上の置換基として好ましくは、アルキル基、アリール基、芳香族ヘテロ環基であり、錯体の安定性の観点からアルキル基、アリール基が好ましい。前記置換基同士は連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、チオフェン環、フラン環などが挙げられる。これら形成される環は置換基を有していてもよく、置換基としては前述の炭素原子上の置換基、窒素原子上の置換基が挙げられる。
 また前記A、Z及び窒素原子で形成される5又は6員のヘテロ環の置換基と、前記B、Z及び炭素原子で形成される5又は6員環の置換基とが連結して、前述と同様の縮合環を形成していてもよい。
The substituent on nitrogen is preferably an alkyl group, an aryl group, or an aromatic heterocyclic group, and an alkyl group or an aryl group is preferable from the viewpoint of the stability of the complex. The substituents may be linked to form a condensed ring, and the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, and a pyrazole. Ring, thiophene ring, furan ring and the like. These formed rings may have a substituent, and examples of the substituent include the substituent on the carbon atom and the substituent on the nitrogen atom.
In addition, a 5- or 6-membered heterocyclic substituent formed by A 1 , Z 1 and a nitrogen atom and a 5- or 6-membered substituent formed by B 1 , Z 2 and a carbon atom are linked. Then, the same condensed ring as described above may be formed.
 (X-Y)で表される配位子としては、従来公知の金属錯体に用いられる種々の公知の配位子があるが、例えば、「Photochemistry and Photophysics of Coordination Compounds」Springer-Verlag社 H.Yersin著 1987年発行、「有機金属化学-基礎と応用-」裳華房社 山本明夫著 1982年発行等に記載の配位子(例えば、ハロゲン配位子(好ましくは塩素配位子)、含窒素ヘテロアリール配位子(例えば、ビピリジル、フェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)が挙げられる。
 (X-Y)で表される配位子としては下記一般式(l-1)~(l-14)が好ましいが、本発明はこれらに限定されない。
Examples of the ligand represented by (XY) include various known ligands used in conventionally known metal complexes. For example, “Photochemistry and Photophysics of Coordination Compounds” Springer-Verlag H. Published by Yersin in 1987, “Organometallic Chemistry-Fundamentals and Applications-” The ligands described in Akio Yamamoto's book published by Akio Yamamoto in 1982, etc. (for example, halogen ligands (preferably chlorine ligands), Nitrogen heteroaryl ligands (for example, bipyridyl, phenanthroline, etc.), diketone ligands (for example, acetylacetone, etc.) can be mentioned.
The ligands represented by (XY) are preferably the following general formulas (l-1) to (1-14), but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 *は一般式(E-1)におけるイリジウムへの配位位置を表す。Rx、Ry及びRzはそれぞれ独立に水素原子又は置換基を表す。 * Represents the coordination position to iridium in the general formula (E-1). Rx, Ry and Rz each independently represents a hydrogen atom or a substituent.
 Rx、Ry及びRzが置換基を表す場合、該置換基としては前記置換基群Aから選ばれる置換基が挙げられる。好ましくは、Rx、Rzはそれぞれ独立にアルキル基、ペルフルオロアルキル基、フッ素原子、アリール基のいずれかであり、より好ましくは炭素数1~4のアルキル基、炭素数1~4のペルフルオロアルキル基、フッ素原子、置換されていても良いフェニル基であり、最も好ましくはメチル基、エチル基、トリフルオロメチル基、フッ素原子、フェニル基である。Ryは好ましくは水素原子、アルキル基、ペルフルオロアルキル基、フッ素原子、アリール基のいずれかであり、より好ましくは水素原子、炭素数1~4のアルキル基、置換されていても良いフェニル基であり、最も好ましくは水素原子、メチル基のいずれかである。これら配位子は素子中で電荷を輸送したり、励起によって電子が集中する部位ではないと考えられるため、Rx、Ry、Rzは化学的に安定な置換基であれば良く、本発明の効果にも影響を及ぼさない。錯体合成が容易であるため好ましくは(I-1)、(I-4)、(I-5)であり、最も好ましくは(I-1)である。これらの配位子を有する錯体は、対応する配位子前駆体を用いることで公知の合成例と同様に合成できる。例えば国際公開2009-073245号46ページに記載の方法と同様に、市販のジフルオロアセチルアセトンを用いて以下に示す方法で合成する事ができる。
 (X-Y)で表される配位子として好ましくは、ジケトン類あるいはピコリン酸誘導体であり、錯体の安定性と高い発光効率が得られる観点から以下に示されるアセチルアセトネート(acac)であることが最も好ましい。
When Rx, Ry, and Rz represent a substituent, examples of the substituent include a substituent selected from the substituent group A. Preferably, Rx and Rz are each independently an alkyl group, a perfluoroalkyl group, a fluorine atom or an aryl group, more preferably an alkyl group having 1 to 4 carbon atoms, a perfluoroalkyl group having 1 to 4 carbon atoms, A fluorine atom and an optionally substituted phenyl group are most preferred, and a methyl group, an ethyl group, a trifluoromethyl group, a fluorine atom and a phenyl group are most preferred. Ry is preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, a fluorine atom or an aryl group, more preferably a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an optionally substituted phenyl group. And most preferably a hydrogen atom or a methyl group. Since these ligands are considered not to be sites where charge is transported in the device or electrons are concentrated by excitation, Rx, Ry, and Rz may be chemically stable substituents. Will not be affected. Since complex synthesis is easy, (I-1), (I-4) and (I-5) are preferred, and (I-1) is most preferred. Complexes having these ligands can be synthesized in the same manner as in known synthesis examples by using corresponding ligand precursors. For example, in the same manner as described in International Publication No. 2009-073245, page 46, it can be synthesized by the following method using commercially available difluoroacetylacetone.
The ligand represented by (XY) is preferably a diketone or a picolinic acid derivative, and is acetylacetonate (acac) shown below from the viewpoint of obtaining stability of the complex and high luminous efficiency. Most preferred.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 *はイリジウムへの配位位置を表す。 * Represents the coordination position to iridium.
 一般式(E-1)で表されるIr錯体の好ましい態様は、一般式(E-2)で表されるIr錯体である。 A preferred embodiment of the Ir complex represented by the general formula (E-1) is an Ir complex represented by the general formula (E-2).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(E-2)中、AE1~AE8はそれぞれ独立に、窒素原子又はC-Rを表す。
 Rは水素原子又は置換基を表す。
 (X-Y)はモノアニオン性の二座配位子を表す。
 nE2は1~3の整数を表す。
In general formula (E-2), A E1 to A E8 each independently represent a nitrogen atom or C—R E.
R E represents a hydrogen atom or a substituent.
(XY) represents a monoanionic bidentate ligand.
n E2 represents an integer of 1 to 3.
 AE1~AE8はそれぞれ独立に、窒素原子又はC-Rを表す。Rは水素原子又は置換基を表し、R同士が互いに連結して環を形成していてもよい。形成される環としては、前述の一般式(E-1)において述べた縮合環と同様のものが挙げられる。Rで表される置換基としては、前記置換基群Aとして挙げたものが適用できる。
 AE1~AE4として好ましくはC-Rであり、AE1~AE4がC-Rである場合に、AE3のRとして好ましくは水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子、又はシアノ基であり、より好ましくは水素原子、アルキル基、アミノ基、アルコキシ基、アリールオキシ基、又はフッ素原子であり、特に好ましく水素原子、又はフッ素原子であり、AE1、AE2及びAE4のRとして好ましくは水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子、又はシアノ基であり、より好ましくは水素原子、アルキル基、アミノ基、アルコキシ基、アリールオキシ基、又はフッ素原子であり、特に好ましく水素原子である。
A E1 to A E8 each independently represents a nitrogen atom or C—R E. R E represents a hydrogen atom or a substituent, and R E may be connected to each other to form a ring. Examples of the ring formed include the same ring as the condensed ring described in the general formula (E-1). Examples of the substituent represented by R E, we are the same as those mentioned above substituent group A.
Preferred as A E1 ~ A E4 is C-R E, if A E1 ~ A E4 is C-R E, preferably a hydrogen atom R E of A E3, alkyl group, aryl group, amino group, An alkoxy group, an aryloxy group, a fluorine atom, or a cyano group, more preferably a hydrogen atom, an alkyl group, an amino group, an alkoxy group, an aryloxy group, or a fluorine atom, and particularly preferably a hydrogen atom or a fluorine atom. And R E of A E1 , A E2 and A E4 is preferably a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom or a cyano group, more preferably a hydrogen atom, An alkyl group, an amino group, an alkoxy group, an aryloxy group, or a fluorine atom, particularly preferably a hydrogen atom.
 AE5~AE8として好ましくはC-Rであり、AE5~AE8がC-Rである場合に、Rとして好ましくは水素原子、アルキル基、ペルフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルキルオキシ基、シアノ基、又はフッ素原子であり、より好ましくは、水素原子、アルキル基、ペルフルオロアルキル基、アリール基、ジアルキルアミノ基、シアノ基、又はフッ素原子であり、更に好ましくは、水素原子、アルキル基、トリフルオロメチル基、又はフッ素原子である。また可能な場合は置換基同士が連結して縮環構造を形成してもよい。発光波長を短波長側にシフトさせる場合、AE6が窒素原子であることが好ましい。
 (X-Y)、及びnE2は一般式(E-1)における(X-Y)、及びnE1と同義であり好ましい範囲も同様である。
A E5 to A E8 are preferably C—R E , and when A E5 to A E8 are C—R E , R E is preferably a hydrogen atom, alkyl group, perfluoroalkyl group, aryl group, aromatic A heterocyclic group, a dialkylamino group, a diarylamino group, an alkyloxy group, a cyano group, or a fluorine atom, more preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, an aryl group, a dialkylamino group, a cyano group, Or a fluorine atom, and more preferably a hydrogen atom, an alkyl group, a trifluoromethyl group, or a fluorine atom. If possible, the substituents may be linked to form a condensed ring structure. When the emission wavelength is shifted to the short wavelength side, A E6 is preferably a nitrogen atom.
(X-Y), and n E2 of the general formula in (E1) (X-Y) , and has the same meaning as n E1 preferable ranges are also the same.
 前記一般式(E-2)で表される化合物のより好ましい形態は、下記一般式(E-3)で表される化合物である。 A more preferred form of the compound represented by the general formula (E-2) is a compound represented by the following general formula (E-3).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(E-3)中、RT1、RT2、RT3、RT4、RT5、RT6及びRT7は、それぞれ独立に水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、-CN、ペルフルオロアルキル基、トリフルオロビニル基、-COR、-C(O)R、-NR、-NO、-OR、ハロゲン原子、アリール基又はヘテロアリール基を表し、更に置換基Zを有していてもよい。Rはそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 AはCR’又は窒素原子を表し、R’は水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、-CN、ペルフルオロアルキル基、トリフルオロビニル基、-COR、-C(O)R、-NR、-NO、-OR、ハロゲン原子、アリール基又はヘテロアリール基を表し、更に置換基Zを有していてもよい。Rはそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 RT1~RT7、及びR’は、任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル、アリール又はヘテロアリールであり、該縮合4~7員環は更に置換基Zを有していてもよい。これらのうち、RT1とRT7、又はRT5とRT6で縮環してベンゼン環を形成する場合が好ましく、RT5とRT6で縮環してベンゼン環を形成する場合が特に好ましい。
 置換基Zはそれぞれ独立に、ハロゲン原子、-R”、-OR”、-N(R”)、-SR”、-C(O)R”、-C(O)OR”、-C(O)N(R”)、-CN、-NO、-SO、-SOR”、-SOR”、又は-SOR”を表し、R”はそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 (X-Y)は、モノアニオン性の二座配位子を表す。nE3は1~3の整数を表す。
In general formula (E-3), R T1 , R T2 , R T3 , R T4 , R T5 , R T6 and R T7 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, —CN, a perfluoroalkyl group, a trifluorovinyl group, —CO 2 R, —C (O) R, —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group or a heteroaryl group, and further a substituent Z may be included. Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
A represents CR ′ or a nitrogen atom, and R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, —CN, a perfluoroalkyl group, a trifluorovinyl group, —CO 2 R, —C (O ) R, —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group or a heteroaryl group, which may further have a substituent Z. Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
R T1 to R T7 and R ′ may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl or heteroaryl. The condensed 4- to 7-membered ring may further have a substituent Z. Among these, a case where a ring is condensed with R T1 and R T7 , or R T5 and R T6 to form a benzene ring is preferable, and a case where a ring is condensed with R T5 and R T6 to form a benzene ring is particularly preferable.
The substituents Z are each independently a halogen atom, —R ″, —OR ″, —N (R ″) 2 , —SR ″, —C (O) R ″, —C (O) OR ″, —C ( O) represents N (R ″) 2 , —CN, —NO 2 , —SO 2 , —SOR ″, —SO 2 R ″, or —SO 3 R ″, and each R ″ independently represents a hydrogen atom, alkyl Represents a group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
(XY) represents a monoanionic bidentate ligand. n E3 represents an integer of 1 to 3.
 アルキル基としては、置換基を有していてもよく、飽和であっても不飽和であってもよく、置換してもよい基としては、前述の置換基Zを挙げることができる。RT1~RT7、及びR’で表されるアルキル基として、好ましくは総炭素原子数1~8のアルキル基であり、より好ましくは総炭素原子数1~6のアルキル基であり、例えばメチル基、エチル基、i-プロピル基、シクロヘキシル基、t-ブチル基等が挙げられる。
 シクロアルキル基としては、置換基を有していてもよく、飽和であっても不飽和であってもよく、置換してもよい基としては、前述の置換基Zを挙げることができる。RT1~RT7、及びR’で表されるシクロアルキル基として、好ましくは環員数4~7のシクロアルキル基であり、より好ましくは総炭素原子数5~6のシクロアルキル基であり、例えばシクロペンチル基、シクロヘキシル基等が挙げられる。
 RT1~RT7、及びR’で表されるアルケニル基としては好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばビニル、アリル、1-プロペニル、1-イソプロペニル、1-ブテニル、2-ブテニル、3-ペンテニルなどが挙げられる。
 RT1~RT7、及びR’で表されるアルキニル基としては、好ましくは炭素数2~30、より好ましくは炭素数2~20、特に好ましくは炭素数2~10であり、例えばエチニル、プロパルギル、1-プロピニル、3-ペンチニルなどが挙げられる。
The alkyl group may have a substituent, may be saturated or unsaturated, and examples of the group that may be substituted include the above-described substituent Z. The alkyl group represented by R T1 to R T7 and R ′ is preferably an alkyl group having 1 to 8 carbon atoms in total, more preferably an alkyl group having 1 to 6 carbon atoms in total, such as methyl Group, ethyl group, i-propyl group, cyclohexyl group, t-butyl group and the like.
The cycloalkyl group may have a substituent, may be saturated or unsaturated, and examples of the group that may be substituted include the above-described substituent Z. The cycloalkyl group represented by R T1 to R T7 and R ′ is preferably a cycloalkyl group having 4 to 7 ring members, more preferably a cycloalkyl group having 5 to 6 carbon atoms in total, A cyclopentyl group, a cyclohexyl group, etc. are mentioned.
The alkenyl group represented by R T1 to R T7 and R ′ preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms. For example, vinyl, allyl, Examples include 1-propenyl, 1-isopropenyl, 1-butenyl, 2-butenyl, 3-pentenyl and the like.
The alkynyl group represented by R T1 to R T7 and R ′ preferably has 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms, and particularly preferably 2 to 10 carbon atoms. For example, ethynyl, propargyl , 1-propynyl, 3-pentynyl and the like.
 RT1~RT7、及びR’で表されるペルフルオロアルキル基は、前述のアルキル基の全ての水素原子がフッ素原子に置き換えられたものが挙げられる。 Examples of the perfluoroalkyl group represented by R T1 to R T7 and R ′ include those in which all the hydrogen atoms of the aforementioned alkyl group are replaced with fluorine atoms.
 RT1~RT7、及びR’で表されるアリール基としては、好ましくは、炭素数6から30の置換若しくは無置換のアリール基、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。 The aryl group represented by R T1 to R T7 and R ′ is preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, such as a phenyl group, a tolyl group, or a naphthyl group.
 RT1~RT7、及びR’で表されるヘテロアリール基としては、好ましくは、炭素数5~8のヘテロアリール基であり、より好ましくは、5又は6員の置換若しくは無置換のヘテロアリール基であり、例えば、ピリジル基、ピラジニル基、ピリダジニル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、キナゾリニル基、シンノリニル基、フタラジニル基、キノキサリニル基、ピロリル基、インドリル基、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基、ピラゾリル基、イミダゾリル基、ベンズイミダゾリル基、トリアゾリル基、オキサゾリル基、ベンズオキサゾリル基、チアゾリル基、ベンゾチアゾリル基、イソチアゾリル基、ベンズイソチアゾリル基、チアジアゾリル基、イソオキサゾリル基、ベンズイソオキサゾリル基、ピロリジニル基、ピペリジニル基、ピペラジニル基、イミダゾリジニル基、チアゾリニル基、スルホラニル基、カルバゾリル基、ジベンゾフリル基、ジベンゾチエニル基、7ピリドインドリル基などが挙げられる。好ましい例としては、ピリジル基、ピリミジニル基、イミダゾリル基、チエニル基であり、より好ましくは、ピリジル基、ピリミジニル基である。 The heteroaryl group represented by R T1 to R T7 and R ′ is preferably a heteroaryl group having 5 to 8 carbon atoms, more preferably a 5- or 6-membered substituted or unsubstituted heteroaryl group. Groups such as pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, triazinyl, quinolinyl, isoquinolinyl, quinazolinyl, cinnolinyl, phthalazinyl, quinoxalinyl, pyrrolyl, indolyl, furyl, benzofuryl , Thienyl group, benzothienyl group, pyrazolyl group, imidazolyl group, benzimidazolyl group, triazolyl group, oxazolyl group, benzoxazolyl group, thiazolyl group, benzothiazolyl group, isothiazolyl group, benzisothiazolyl group, thiadiazolyl group, isoxazolyl group , Lens benzisoxazolyl group, a pyrrolidinyl group, a piperidinyl group, a piperazinyl group, an imidazolidinyl group, a thiazolinyl group, a sulfolanyl group, a carbazolyl group, a dibenzofuryl group, dibenzothienyl group, such as 7 pyrido-indolyl group. Preferred examples include pyridyl group, pyrimidinyl group, imidazolyl group, and thienyl group, and more preferred are pyridyl group and pyrimidinyl group.
 RT1~RT7、及びR’として好ましくは、水素原子、アルキル基、シアノ基、トリフルオロメチル基、ペルフルオロアルキル基、ジアルキルアミノ基、フルオロ基、アリール基、ヘテロアリール基であり、より好ましくは水素原子、アルキル基、シアノ基、トリフルオロメチル基、フルオロ基、アリール基であり、更に好ましくは、水素原子、アルキル基、アリール基である。置換基Zとしては、アルキル基、アルコキシ基、フルオロ基、シアノ基、ジアルキルアミノ基が好ましく、水素原子がより好ましい。 R T1 to R T7 and R ′ are preferably a hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a perfluoroalkyl group, a dialkylamino group, a fluoro group, an aryl group or a heteroaryl group, more preferably A hydrogen atom, an alkyl group, a cyano group, a trifluoromethyl group, a fluoro group, and an aryl group are preferable, and a hydrogen atom, an alkyl group, and an aryl group are more preferable. As the substituent Z, an alkyl group, an alkoxy group, a fluoro group, a cyano group, and a dialkylamino group are preferable, and a hydrogen atom is more preferable.
 RT1~RT7、及びR’は任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル、アリール又はヘテロアリールであり、該縮合4~7員環は更に置換基Zを有していてもよい。形成されるシクロアルキル、アリール、ヘテロアリールの定義及び好ましい範囲はRT1~RT7、及びR’で定義したシクロアルキル基、アリール基、ヘテロアリール基と同じである。
 またAがCR’を表すと共に、RT1~RT7、及びR’のうち、0~2つがアルキル基又はフェニル基で、残りが全て水素原子である場合が特に好ましく、RT1~RT7、及びR’のうち、0~2つがアルキル基で、残りが全て水素原子である場合が特に好ましい。
Any two of R T1 to R T7 and R ′ may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl, or heteroaryl; The condensed 4- to 7-membered ring may further have a substituent Z. The definition and preferred range of cycloalkyl, aryl, and heteroaryl formed are the same as the cycloalkyl group, aryl group, and heteroaryl group defined by R T1 to R T7 and R ′.
Further, it is particularly preferable that A represents CR ′, and among R T1 to R T7 and R ′, 0 to 2 are alkyl groups or phenyl groups, and the rest are all hydrogen atoms, and R T1 to R T7 , And R ′ are particularly preferably a case where 0 to 2 are alkyl groups and the rest are all hydrogen atoms.
 nE3は2又は3であることが好ましい。錯体中の配位子の種類は1~2種類から構成されることが好ましく、更に好ましくは1種類である。錯体分子内に反応性基を導入する際には合成容易性という観点から配位子が2種類からなることも好ましい。
 (X-Y)は、一般式(E-1)における(X-Y)と同義であり好ましい範囲も同様である。
n E3 is preferably 2 or 3. The type of ligand in the complex is preferably composed of 1 to 2 types, more preferably 1 type. When introducing a reactive group into the complex molecule, it is also preferred that the ligand consists of two types from the viewpoint of ease of synthesis.
(XY) has the same meaning as (XY) in formula (E-1), and the preferred range is also the same.
 前記一般式(E-3)で表される化合物の好ましい形態の一つは、下記一般式(E-4)で表される化合物である。 One preferred form of the compound represented by the general formula (E-3) is a compound represented by the following general formula (E-4).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(E-4)におけるRT1~RT4、A、(X-Y)及びnE4は、一般式(E-3)におけるRT1~RT4、A、(X-Y)及びnE3と同義であり、好ましい範囲も同様である。R’~R’はそれぞれ独立に水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、シアノ基、ペルフルオロアルキル基、トリフルオロビニル基、-COR、-C(O)R、-NR、-NO、-OR、ハロゲン原子、アリール基又はヘテロアリール基を表し、更に置換基Zを有していてもよい。Rはそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 R’~R’は、任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル、アリール又はヘテロアリールであり、該縮合4~7員環は更に置換基Zを有していてもよい。
 Zはそれぞれ独立に、ハロゲン原子、-R”、-OR”、-N(R”)、-SR”、-C(O)R”、-C(O)OR”、-C(O)N(R”)、-CN、-NO、-SO、-SOR”、-SOR”、又は-SOR”を表し、R”はそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 また、R’~R’における好ましい範囲は、一般式(E-3)におけるRT1~RT7、R’と同様である。またAがCR’を表すと共に、RT1~RT4、R’、及びR’~R’のうち、0~2つがアルキル基又はフェニル基で残りが全て水素原子である場合が特に好ましく、RT1~RT4、R’、及びR’~R’のうち、0~2つがアルキル基で残りが全て水素原子である場合が更に好ましい。
R T1 to R T4 , A, (XY) and n E4 in the general formula (E-4) are R T1 to R T4 , A, (XY) and n E3 in the general formula (E-3). The preferred range is also the same. R 1 ′ to R 5 ′ are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, cyano group, perfluoroalkyl group, trifluorovinyl group, —CO 2 R, —C (O) R , —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group or a heteroaryl group, and optionally having a substituent Z. Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
Any one of R 1 ′ to R 5 ′ may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl, or heteroaryl; The condensed 4- to 7-membered ring may further have a substituent Z.
Z is independently a halogen atom, —R ″, —OR ″, —N (R ″) 2 , —SR ″, —C (O) R ″, —C (O) OR ″, —C (O) N (R ") 2, -CN , -NO 2, -SO 2, -SOR", - SO 2 R ", or -SO 3 R" represents, R "are each independently a hydrogen atom, an alkyl group, A perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group is represented.
Further, preferred ranges for R 1 ′ to R 5 ′ are the same as R T1 to R T7 and R ′ in formula (E-3). Particularly preferably, A represents CR ′, and 0 to 2 of R T1 to R T4 , R ′, and R 1 ′ to R 5 ′ are alkyl groups or phenyl groups, and the rest are all hydrogen atoms. , R T1 to R T4 , R ′, and R 1 ′ to R 5 ′ are more preferably a case where 0 to 2 are alkyl groups and the rest are all hydrogen atoms.
 前記一般式(E-3)で表される化合物の好ましい別の形態は、下記一般式(E-5)で表される化合物である。 Another preferred embodiment of the compound represented by the general formula (E-3) is a compound represented by the following general formula (E-5).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(E-5)におけるRT2~RT6、A、(X-Y)及びnE5は、一般式(E-3)におけるRT2~RT6、A、(X-Y)及びnE3と同義であり、好ましい範囲も同様である。R’~R’はそれぞれ独立に水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、シアノ基、ペルフルオロアルキル基、トリフルオロビニル基、-COR、-C(O)R、-NR、-NO、-OR、ハロゲン原子、アリール基又はヘテロアリール基を表し、更に置換基Zを有していてもよい。Rはそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 RT5、RT6、R’~R’は、任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル、アリール又はヘテロアリールであり、該縮合4~7員環は更に置換基Zを有していてもよい。
 Zはそれぞれ独立に、ハロゲン原子、-R”、-OR”、-N(R”)、-SR”、-C(O)R”、-C(O)OR”、-C(O)N(R”)、-CN、-NO、-SO、-SOR”、-SOR”、又は-SOR”を表し、R”はそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 また、R’~R’における好ましい範囲は、一般式(E-3)におけるRT1~RT7、R’と同様である。またAがCR’を表すと共に、RT2~RT6、R’、及びR’~R’のうち、0~2つがアルキル基又はフェニル基で残りが全て水素原子である場合が特に好ましく、RT2~RT6、R’、及びR’~R’のうち、0~2つがアルキル基で残りが全て水素原子である場合が更に好ましい。
R T2 to R T6 , A, (XY) and n E5 in the general formula (E-5) are R T2 to R T6 , A, (XY) and n E3 in the general formula (E-3). The preferred range is also the same. R 6 ′ to R 8 ′ are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, cyano group, perfluoroalkyl group, trifluorovinyl group, —CO 2 R, —C (O) R , —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group or a heteroaryl group, and optionally having a substituent Z. Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
R T5 , R T6 , R 6 ′ to R 8 ′ may be combined with each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl or It is a heteroaryl, and the condensed 4- to 7-membered ring may further have a substituent Z.
Z is independently a halogen atom, —R ″, —OR ″, —N (R ″) 2 , —SR ″, —C (O) R ″, —C (O) OR ″, —C (O) N (R ") 2, -CN , -NO 2, -SO 2, -SOR", - SO 2 R ", or -SO 3 R" represents, R "are each independently a hydrogen atom, an alkyl group, A perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group is represented.
In addition, preferred ranges for R 6 ′ to R 8 ′ are the same as R T1 to R T7 and R ′ in formula (E-3). Particularly preferably, A represents CR ′, and among R T2 to R T6 , R ′, and R 6 ′ to R 8 ′, 0 to 2 are alkyl groups or phenyl groups, and the rest are all hydrogen atoms. , R T2 to R T6 , R ′, and R 6 ′ to R 8 ′ are more preferably a case where 0 to 2 are alkyl groups and the rest are all hydrogen atoms.
 一般式(E-1)で表される化合物の好ましい別の形態は、下記一般式(E-6)で表される場合である。 Another preferred embodiment of the compound represented by the general formula (E-1) is a case represented by the following general formula (E-6).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(E-6)中、R1a~R1kは、それぞれ独立に水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、シアノ基、ペルフルオロアルキル基、トリフルオロビニル基、-COR、-C(O)R、-NR、-NO、-OR、ハロゲン原子、アリール基又はヘテロアリール基を表し、更に置換基Zを有していてもよい。Rはそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 R1a~R1kは、任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル、アリール又はヘテロアリールであり、該縮合4~7員環は更に置換基Zを有していてもよい。
 Zはそれぞれ独立に、ハロゲン原子、-R”、-OR”、-N(R”)、-SR”、-C(O)R”、-C(O)OR”、-C(O)N(R”)、-CN、-NO、-SO、-SOR”、-SOR”、又は-SOR”を表し、R”はそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 (X-Y)は、モノアニオン性の二座配位子を表す。
 nE6は1~3の整数を表す。
In general formula (E-6), R 1a to R 1k each independently represent a hydrogen atom, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, cyano group, perfluoroalkyl group, trifluorovinyl group, —CO 2 R, —C (O) R, —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group, or a heteroaryl group, which may further have a substituent Z. Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
Any two of R 1a to R 1k may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is cycloalkyl, aryl, or heteroaryl; The 7-membered ring may further have a substituent Z.
Z is independently a halogen atom, —R ″, —OR ″, —N (R ″) 2 , —SR ″, —C (O) R ″, —C (O) OR ″, —C (O) N (R ") 2, -CN , -NO 2, -SO 2, -SOR", - SO 2 R ", or -SO 3 R" represents, R "are each independently a hydrogen atom, an alkyl group, A perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group is represented.
(XY) represents a monoanionic bidentate ligand.
n E6 represents an integer of 1 to 3.
 一般式(E-6)において、R1a~R1kの好ましい範囲は、一般式(E-3)におけるRT1~RT7、R’におけるものと同様である。またR1a~R1kのうち、0~2つがアルキル基又はフェニル基で残りが全て水素原子である場合が特に好ましく、R1a~R1kのうち、0~2つがアルキル基で残りが全て水素原子である場合が更に好ましい。
 R1jとR1kとが連結し単結合を形成する場合が特に好ましい。
 (X-Y)、及びnE6の好ましい範囲は、一般式(E-3)における(X-Y)、及びnE3と同様である。
In the general formula (E-6), preferred ranges of R 1a to R 1k are the same as those in R T1 to R T7 and R ′ in the general formula (E-3). Further, it is particularly preferred that 0 to 2 of R 1a to R 1k are alkyl groups or phenyl groups and the rest are all hydrogen atoms, and 0 to 2 of R 1a to R 1k are alkyl groups and the rest are all hydrogen atoms. More preferably, it is an atom.
The case where R 1j and R 1k are linked to form a single bond is particularly preferable.
The preferred range of (XY) and n E6 is the same as (XY) and n E3 in general formula (E-3).
 一般式(E-6)で表される化合物のより好ましい形態は、下記一般式(E-7)で表される場合である。 A more preferable form of the compound represented by the general formula (E-6) is a case represented by the following general formula (E-7).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(E-7)中、R1a~R1iは、それぞれ独立に水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、シアノ基、ペルフルオロアルキル基、トリフルオロビニル基、-COR、-C(O)R、-NR、-NO、-OR、ハロゲン原子、アリール基又はヘテロアリール基を表し、更に置換基Zを有していてもよい。Rはそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 R1a~R1iは、任意の2つが互いに結合して縮合4~7員環を形成してもよく、該縮合4~7員環は、シクロアルキル基、アリール基又はヘテロアリール基であり、該縮合4~7員環は更に置換基Zを有していてもよい。
 Zはそれぞれ独立に、ハロゲン原子、-R”、-OR”、-N(R”)、-SR”、-C(O)R”、-C(O)OR”、-C(O)N(R”)、-CN、-NO、-SO、-SOR”、-SOR”、又は-SOR”を表し、R”はそれぞれ独立に、水素原子、アルキル基、ペルハロアルキル基、アルケニル基、アルキニル基、ヘテロアルキル基、アリール基又はヘテロアリール基を表す。
 (X-Y)は、モノアニオン性の二座配位子を表す。
 nE7は1~3の整数を表す。
In general formula (E-7), R 1a to R 1i are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkenyl group, alkynyl group, cyano group, perfluoroalkyl group, trifluorovinyl group, —CO 2 R, —C (O) R, —NR 2 , —NO 2 , —OR, a halogen atom, an aryl group, or a heteroaryl group, which may further have a substituent Z. Each R independently represents a hydrogen atom, an alkyl group, a perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group.
Any one of R 1a to R 1i may be bonded to each other to form a condensed 4- to 7-membered ring, and the condensed 4- to 7-membered ring is a cycloalkyl group, an aryl group, or a heteroaryl group; The condensed 4- to 7-membered ring may further have a substituent Z.
Z is independently a halogen atom, —R ″, —OR ″, —N (R ″) 2 , —SR ″, —C (O) R ″, —C (O) OR ″, —C (O) N (R ") 2, -CN , -NO 2, -SO 2, -SOR", - SO 2 R ", or -SO 3 R" represents, R "are each independently a hydrogen atom, an alkyl group, A perhaloalkyl group, an alkenyl group, an alkynyl group, a heteroalkyl group, an aryl group or a heteroaryl group is represented.
(XY) represents a monoanionic bidentate ligand.
n E7 represents an integer of 1 to 3.
 一般式(E-7)中、R1a~R1iの定義や好ましい範囲は一般式(E-6)におけるR1a~R1iと同様である。またR1a~R1iのうち、0~2つがアルキル基又はアリール基で残りが全て水素原子である場合が特に好ましい。(X-Y)、及びnE7の定義や好ましい範囲は一般式(E-3)における(X-Y)、及びnE3と同様である。 In the formula (E-7), definition and preferable ranges of R 1a ~ R 1i are the same as R 1a ~ R 1i in the formula (E-6). Further, it is particularly preferable that 0 to 2 of R 1a to R 1i are alkyl groups or aryl groups and the rest are all hydrogen atoms. The definitions and preferred ranges of (XY) and n E7 are the same as (XY) and n E3 in general formula (E-3).
 一般式(E-1)で表される化合物の好ましい具体例を以下に列挙するが、以下に限定されるものではない。 Preferred specific examples of the compound represented by the general formula (E-1) are listed below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記一般式(E-1)で表される化合物として例示した化合物は、特開2009-99783号公報に記載の方法や、米国特許7279232号等に記載の種々の方法で合成できる。合成後、カラムクロマトグラフィー、再結晶等による精製を行った後、昇華精製により精製することが好ましい。昇華精製により、有機不純物を分離できるだけでなく、無機塩や残留溶媒等を効果的に取り除くことができる。 The compounds exemplified as the compound represented by the general formula (E-1) can be synthesized by the method described in JP2009-99783A, various methods described in US Pat. No. 7,279,232 and the like. After synthesis, it is preferable to purify by sublimation purification after purification by column chromatography, recrystallization or the like. By sublimation purification, not only can organic impurities be separated, but inorganic salts and residual solvents can be effectively removed.
 本発明において、有機材料(B)としてのイリジウム錯体は単独で用いてもよいし、2種以上組み合わせて用いてもよい。
 上記有機材料(B)としてのイリジウム錯体の組成物中の含有量は、組成物の全固形分を基準として、2~30質量%が好ましく、より好ましくは5~20質量%、更に好ましくは5~15質量%である。
In the present invention, the iridium complex as the organic material (B) may be used alone or in combination of two or more.
The content of the iridium complex as the organic material (B) in the composition is preferably 2 to 30% by mass, more preferably 5 to 20% by mass, and still more preferably 5%, based on the total solid content of the composition. To 15% by mass.
 燐光発光材料として用いることができる白金錯体として好ましくは、下記一般式(C-1)で表される白金錯体である。 The platinum complex that can be used as the phosphorescent material is preferably a platinum complex represented by the following general formula (C-1).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式中、Q、Q、Q及びQはそれぞれ独立にPtに配位する配位子を表す。L、L及びLはそれぞれ独立に単結合又は二価の連結基を表す。) (In the formula, Q 1 , Q 2 , Q 3 and Q 4 each independently represent a ligand coordinated to Pt. L 1 , L 2 and L 3 are each independently a single bond or a divalent linking group. Represents.)
 一般式(C-1)について説明する。Q、Q、Q及びQはそれぞれ独立にPtに配位する配位子を表す。この時、Q、Q、Q及びQとPtの結合は、共有結合、イオン結合、配位結合などいずれであっても良い。Q、Q、Q及びQ中のPtに結合する原子としては、炭素原子、窒素原子、酸素原子、硫黄原子、リン原子が好ましく、Q、Q、Q及びQ中のPtに結合する原子の内、少なくとも一つが炭素原子であることが好ましく、二つが炭素原子であることがより好ましく、二つが炭素原子で、二つが窒素原子であることが特に好ましい。
 炭素原子でPtに結合するQ、Q、Q及びQとしては、アニオン性の配位子でも中性の配位子でもよく、アニオン性の配位子としてはビニル配位子、芳香族炭化水素環配位子(例えばベンゼン配位子、ナフタレン配位子、アントラセン配位子、フェナントレン配位子など)、ヘテロ環配位子(例えばフラン配位子、チオフェン配位子、ピリジン配位子、ピラジン配位子、ピリミジン配位子、ピリダジン配位子、トリアジン配位子、チアゾール配位子、オキサゾール配位子、ピロール配位子、イミダゾール配位子、ピラゾール配位子、トリアゾール配位子及び、それらを含む縮環体(例えばキノリン配位子、ベンゾチアゾール配位子など))が挙げられる。中性の配位子としてはカルベン配位子が挙げられる。
 窒素原子でPtに結合するQ、Q、Q及びQとしては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としては含窒素芳香族ヘテロ環配位子(ピリジン配位子、ピラジン配位子、ピリミジン配位子、ピリダジン配位子、トリアジン配位子、イミダゾール配位子、ピラゾール配位子、トリアゾール配位子、オキサゾール配位子、チアゾール配位子及びそれらを含む縮環体(例えばキノリン配位子、ベンゾイミダゾール配位子など))、アミン配位子、ニトリル配位子、イミン配位子が挙げられる。アニオン性の配位子としては、アミノ配位子、イミノ配位子、含窒素芳香族ヘテロ環配位子(ピロール配位子、イミダゾール配位子、トリアゾール配位子及びそれらを含む縮環体(例えはインドール配位子、ベンゾイミダゾール配位子など))が挙げられる。
 酸素原子でPtに結合するQ、Q、Q及びQとしては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としてはエーテル配位子、ケトン配位子、エステル配位子、アミド配位子、含酸素ヘテロ環配位子(フラン配位子、オキサゾール配位子及びそれらを含む縮環体(ベンゾオキサゾール配位子など))が挙げられる。アニオン性の配位子としては、アルコキシ配位子、アリールオキシ配位子、ヘテロアリールオキシ配位子、アシルオキシ配位子、シリルオキシ配位子などが挙げられる。
 硫黄原子でPtに結合するQ、Q、Q及びQとしては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としてはチオエーテル配位子、チオケトン配位子、チオエステル配位子、チオアミド配位子、含硫黄ヘテロ環配位子(チオフェン配位子、チアゾール配位子及びそれらを含む縮環体(ベンゾチアゾール配位子など))が挙げられる。アニオン性の配位子としては、アルキルメルカプト配位子、アリールメルカプト配位子、ヘテロアリールメルカプト配位子などが挙げられる。
 リン原子でPtに結合するQ、Q、Q及びQとしては、中性の配位子でもアニオン性の配位子でもよく、中性の配位子としてはホスフィン配位子、リン酸エステル配位子、亜リン酸エステル配位子、含リンヘテロ環配位子(ホスフィニン配位子など)が挙げられ、アニオン性の配位子としては、ホスフィノ配位子、ホスフィニル配位子、ホスホリル配位子などが挙げられる。
 Q、Q、Q及びQで表される基は、置換基を有していてもよく、置換基としては前記置換基群Aとして挙げたものが適宜適用できる。また置換基同士が連結していても良い(QとQが連結した場合、環状四座配位子のPt錯体になる)。
The general formula (C-1) will be described. Q 1 , Q 2 , Q 3 and Q 4 each independently represent a ligand coordinated to Pt. At this time, the bond between Q 1 , Q 2 , Q 3 and Q 4 and Pt may be any of a covalent bond, an ionic bond, a coordinate bond, and the like. As an atom couple | bonded with Pt in Q < 1 >, Q < 2 >, Q < 3 > and Q < 4 >, a carbon atom, a nitrogen atom, an oxygen atom, a sulfur atom, and a phosphorus atom are preferable, and in Q < 1 >, Q < 2 >, Q < 3 > and Q < 4 > Of the atoms bonded to Pt, at least one is preferably a carbon atom, more preferably two are carbon atoms, particularly preferably two are carbon atoms and two are nitrogen atoms.
Q 1 , Q 2 , Q 3 and Q 4 bonded to Pt by a carbon atom may be an anionic ligand or a neutral ligand, and the anionic ligand is a vinyl ligand, Aromatic hydrocarbon ring ligand (eg benzene ligand, naphthalene ligand, anthracene ligand, phenanthrene ligand etc.), heterocyclic ligand (eg furan ligand, thiophene ligand, pyridine) Ligand, pyrazine ligand, pyrimidine ligand, pyridazine ligand, triazine ligand, thiazole ligand, oxazole ligand, pyrrole ligand, imidazole ligand, pyrazole ligand, triazole And a condensed ring containing them (for example, quinoline ligand, benzothiazole ligand, etc.). A carbene ligand is mentioned as a neutral ligand.
Q 1 , Q 2 , Q 3 and Q 4 bonded to Pt with a nitrogen atom may be neutral ligands or anionic ligands, and as neutral ligands, nitrogen-containing aromatic hetero Ring ligand (pyridine ligand, pyrazine ligand, pyrimidine ligand, pyridazine ligand, triazine ligand, imidazole ligand, pyrazole ligand, triazole ligand, oxazole ligand, Examples include thiazole ligands and condensed rings containing them (for example, quinoline ligands, benzimidazole ligands), amine ligands, nitrile ligands, and imine ligands. Examples of anionic ligands include amino ligands, imino ligands, nitrogen-containing aromatic heterocyclic ligands (pyrrole ligands, imidazole ligands, triazole ligands, and condensed rings containing them) (For example, indole ligand, benzimidazole ligand, etc.)).
Q 1 , Q 2 , Q 3 and Q 4 bonded to Pt with an oxygen atom may be neutral ligands or anionic ligands, and neutral ligands are ether ligands, Examples include ketone ligands, ester ligands, amide ligands, oxygen-containing heterocyclic ligands (furan ligands, oxazole ligands and condensed rings containing them (benzoxazole ligands, etc.)). It is done. Examples of the anionic ligand include an alkoxy ligand, an aryloxy ligand, a heteroaryloxy ligand, an acyloxy ligand, a silyloxy ligand, and the like.
Q 1 , Q 2 , Q 3 and Q 4 bonded to Pt with a sulfur atom may be neutral ligands or anionic ligands, and neutral ligands include thioether ligands, Examples include thioketone ligands, thioester ligands, thioamide ligands, sulfur-containing heterocyclic ligands (thiophene ligands, thiazole ligands and condensed rings containing them (such as benzothiazole ligands)). It is done. Examples of the anionic ligand include an alkyl mercapto ligand, an aryl mercapto ligand, and a heteroaryl mercapto ligand.
Q 1 , Q 2 , Q 3 and Q 4 bonded to Pt with a phosphorus atom may be neutral ligands or anionic ligands, and neutral ligands include phosphine ligands, Examples include phosphate ester ligands, phosphite ester ligands, and phosphorus-containing heterocyclic ligands (phosphinin ligands, etc.). Anionic ligands include phosphino ligands and phosphinyl ligands. And phosphoryl ligands.
The groups represented by Q 1 , Q 2 , Q 3, and Q 4 may have a substituent, and those listed as the substituent group A can be appropriately applied as the substituent. Moreover, substituents may be connected to each other (when Q 3 and Q 4 are connected, a Pt complex of a cyclic tetradentate ligand is formed).
 Q、Q、Q及びQで表される基として好ましくは、炭素原子でPtに結合する芳香族炭化水素環配位子、炭素原子でPtに結合する芳香族ヘテロ環配位子、窒素原子でPtに結合する含窒素芳香族ヘテロ環配位子、アシルオキシ配位子、アルキルオキシ配位子、アリールオキシ配位子、ヘテロアリールオキシ配位子、シリルオキシ配位子であり、より好ましくは、炭素原子でPtに結合する芳香族炭化水素環配位子、炭素原子でPtに結合する芳香族ヘテロ環配位子、窒素原子でPtに結合する含窒素芳香族ヘテロ環配位子、アシルオキシ配位子、アリールオキシ配位子であり、更に好ましくは炭素原子でPtに結合する芳香族炭化水素環配位子、炭素原子でPtに結合する芳香族ヘテロ環配位子、窒素原子でPtに結合する含窒素芳香族ヘテロ環配位子、アシルオキシ配位子である。 The group represented by Q 1 , Q 2 , Q 3 and Q 4 is preferably an aromatic hydrocarbon ring ligand bonded to Pt with a carbon atom, and an aromatic heterocyclic ligand bonded to Pt with a carbon atom. A nitrogen-containing aromatic heterocyclic ligand bonded to Pt with a nitrogen atom, an acyloxy ligand, an alkyloxy ligand, an aryloxy ligand, a heteroaryloxy ligand, a silyloxy ligand, and more Preferably, an aromatic hydrocarbon ring ligand bonded to Pt by a carbon atom, an aromatic heterocyclic ligand bonded to Pt by a carbon atom, a nitrogen-containing aromatic heterocyclic ligand bonded to Pt by a nitrogen atom , An acyloxy ligand, an aryloxy ligand, more preferably an aromatic hydrocarbon ring ligand bonded to Pt with a carbon atom, an aromatic heterocyclic ligand bonded to Pt with a carbon atom, a nitrogen atom Containing Pt Containing aromatic heterocyclic ligand, an acyloxy ligand.
 L、L及びLは、単結合又は二価の連結基を表す。L、L及びLで表される二価の連結基としては、アルキレン基(メチレン、エチレン、プロピレンなど)、アリーレン基(フェニレン、ナフタレンジイル)、ヘテロアリーレン基(ピリジンジイル、チオフェンジイルなど)、イミノ基(-NR-)(フェニルイミノ基など)、オキシ基(-O-)、チオ基(-S-)、ホスフィニデン基(-PR-)(フェニルホスフィニデン基など)、シリレン基(-SiR’-)(ジメチルシリレン基、ジフェニルシリレン基など)、又はこれらを組み合わせたものが挙げられる。ここで、R及びR’は各々独立して水素原子又は置換基を表し、水素原子、アルキル基又はアリール基を表すことが好ましい。これらの連結基は、更に置換基を有していてもよい。
 錯体の安定性及び発光量子収率の観点から、L、L及びLとして好ましくは単結合、アルキレン基、アリーレン基、ヘテロアリーレン基、イミノ基、オキシ基、チオ基、シリレン基であり、より好ましくは単結合、アルキレン基、アリーレン基、イミノ基であり、更に好ましくは単結合、アルキレン基、アリーレン基であり、更に好ましくは、単結合、メチレン基、フェニレン基であり、更に好ましくは単結合、ジ置換のメチレン基であり、更に好ましくは単結合、ジメチルメチレン基、ジエチルメチレン基、ジイソブチルメチレン基、ジベンジルメチレン基、エチルメチルメチレン基、メチルプロピルメチレン基、イソブチルメチルメチレン基、ジフェニルメチレン基、メチルフェニルメチレン基、シクロヘキサンジイル基、シクロペンタンジイル基、フルオレンジイル基、フルオロメチルメチレン基である。
 Lは特に好ましくはジメチルメチレン基、ジフェニルメチレン基、シクロヘキサンジイル基であり、最も好ましくはジメチルメチレン基である。
 L及びLとして最も好ましくは単結合である。
L 1 , L 2 and L 3 represent a single bond or a divalent linking group. Examples of the divalent linking group represented by L 1 , L 2 and L 3 include alkylene groups (methylene, ethylene, propylene, etc.), arylene groups (phenylene, naphthalenediyl), heteroarylene groups (pyridinediyl, thiophenediyl, etc.) ), Imino group (—NR L —) (such as phenylimino group), oxy group (—O—), thio group (—S—), phosphinidene group (—PR L —) (such as phenylphosphinidene group), silylene (-SiR L R L '-) ( dimethylsilylene group, a diphenylsilylene group), or the like combinations thereof. Here, R L and R L ′ each independently represents a hydrogen atom or a substituent, and preferably represents a hydrogen atom, an alkyl group, or an aryl group. These linking groups may further have a substituent.
From the viewpoint of the stability of the complex and the emission quantum yield, L 1 , L 2 and L 3 are preferably a single bond, an alkylene group, an arylene group, a heteroarylene group, an imino group, an oxy group, a thio group or a silylene group. More preferably a single bond, an alkylene group, an arylene group or an imino group, still more preferably a single bond, an alkylene group or an arylene group, still more preferably a single bond, a methylene group or a phenylene group, still more preferably. Single bond, disubstituted methylene group, more preferably single bond, dimethylmethylene group, diethylmethylene group, diisobutylmethylene group, dibenzylmethylene group, ethylmethylmethylene group, methylpropylmethylene group, isobutylmethylmethylene group, diphenyl Methylene group, methylphenylmethylene group, cyclohexanediyl group, A lopentanediyl group, a fluorenediyl group, and a fluoromethylmethylene group.
L 1 is particularly preferably a dimethylmethylene group, a diphenylmethylene group, or a cyclohexanediyl group, and most preferably a dimethylmethylene group.
L 2 and L 3 are most preferably a single bond.
 一般式(C-1)で表される白金錯体のうち、より好ましくは下記一般式(C-2)で表される白金錯体である。 Of the platinum complexes represented by the general formula (C-1), a platinum complex represented by the following general formula (C-2) is more preferable.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式中、L21は単結合又は二価の連結基を表す。A21、A22はそれぞれ独立に炭素原子又は窒素原子を表す。Z21、Z22はそれぞれ独立に含窒素芳香族ヘテロ環を表す。Z23、Z24はそれぞれ独立にベンゼン環又は芳香族ヘテロ環を表す。) (In the formula, L 21 represents a single bond or a divalent linking group. A 21 and A 22 each independently represents a carbon atom or a nitrogen atom. Z 21 and Z 22 each independently represent a nitrogen-containing aromatic heterocyclic ring. Z 23 and Z 24 each independently represents a benzene ring or an aromatic heterocycle.
 一般式(C-2)について説明する。L21は、前記一般式(C-1)中のLと同義であり、また好ましい範囲も同様である。 The general formula (C-2) will be described. L 21 has the same meaning as L 1 in formula (C-1), and the preferred range is also the same.
 A21、A22はそれぞれ独立に炭素原子又は窒素原子を表す。A21、A22の内、少なくとも一方は炭素原子であることが好ましく、A21、A22が共に炭素原子であることが、錯体の安定性の観点及び錯体の発光量子収率の観点から好ましい。 A 21 and A 22 each independently represent a carbon atom or a nitrogen atom. Of A 21, A 22, Preferably, at least one is a carbon atom, it A 21, A 22 are both carbon atoms are preferred from the standpoint of emission quantum yield stability aspects and complexes of the complex .
 Z21、Z22は、それぞれ独立に含窒素芳香族ヘテロ環を表す。Z21、Z22で表される含窒素芳香族ヘテロ環としては、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環などが挙げられる。錯体の安定性、発光波長制御及び発光量子収率の観点から、Z21、Z22で表される環として好ましくは、ピリジン環、ピラジン環、イミダゾール環、ピラゾール環であり、より好ましくはピリジン環、イミダゾール環、ピラゾール環であり、更に好ましくはピリジン環、ピラゾール環であり、特に好ましくはピリジン環である。 Z 21 and Z 22 each independently represent a nitrogen-containing aromatic heterocycle. Examples of the nitrogen-containing aromatic heterocycle represented by Z 21 and Z 22 include a pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, triazole ring, oxadiazole ring, Examples include thiadiazole rings. From the viewpoint of the stability of the complex, emission wavelength control and emission quantum yield, the ring represented by Z 21 and Z 22 is preferably a pyridine ring, a pyrazine ring, an imidazole ring or a pyrazole ring, more preferably a pyridine ring. , An imidazole ring and a pyrazole ring, more preferably a pyridine ring and a pyrazole ring, and particularly preferably a pyridine ring.
 前記Z21、Z22で表される含窒素芳香族ヘテロ環は置換基を有していてもよく、炭素原子上の置換基としては前記置換基群Aが、窒素原子上の置換基としては前記置換基群Bが適用できる。炭素原子上の置換基として好ましくはアルキル基、ペルフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルコキシ基、シアノ基、フッ素原子である。置換基は発光波長や電位の制御のために適宜選択されるが、短波長化させる場合には電子供与性基、フッ素原子、芳香環基が好ましく、例えばアルキル基、ジアルキルアミノ基、アルコキシ基、フッ素原子、アリール基、芳香族ヘテロ環基などが選択される。また長波長化させる場合には電子求引性基が好ましく、例えばシアノ基、ペルフルオロアルキル基などが選択される。窒素原子上の置換基として好ましくは、アルキル基、アリール基、芳香族ヘテロ環基であり、錯体の安定性の観点からアルキル基、アリール基が好ましい。前記置換基同士は連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、チオフェン環、フラン環などが挙げられる。 The nitrogen-containing aromatic heterocycle represented by Z 21 and Z 22 may have a substituent, and the substituent group A is a substituent on a carbon atom, and the substituent on a nitrogen atom is The substituent group B can be applied. The substituent on the carbon atom is preferably an alkyl group, a perfluoroalkyl group, an aryl group, an aromatic heterocyclic group, a dialkylamino group, a diarylamino group, an alkoxy group, a cyano group, or a fluorine atom. The substituent is appropriately selected for controlling the emission wavelength and potential, but in the case of shortening the wavelength, an electron donating group, a fluorine atom, and an aromatic ring group are preferable. For example, an alkyl group, a dialkylamino group, an alkoxy group, A fluorine atom, an aryl group, an aromatic heterocyclic group and the like are selected. Further, when the wavelength is increased, an electron withdrawing group is preferable, and for example, a cyano group, a perfluoroalkyl group, and the like are selected. The substituent on the nitrogen atom is preferably an alkyl group, an aryl group, or an aromatic heterocyclic group, and an alkyl group or an aryl group is preferable from the viewpoint of the stability of the complex. The substituents may be linked to form a condensed ring, and the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, and a pyrazole. Ring, thiophene ring, furan ring and the like.
 Z23、Z24は、それぞれ独立にベンゼン環又は芳香族ヘテロ環を表す。Z23、Z24で表される含窒素芳香族ヘテロ環としては、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、オキサジアゾール環、チアジアゾール環、チオフェン環、フラン環などが挙げられる。錯体の安定性、発光波長制御及び発光量子収率の観点からZ23、Z24で表される環として好ましくは、ベンゼン環、ピリジン環、ピラジン環、イミダゾール環、ピラゾール環、チオフェン環であり、より好ましくはベンゼン環、ピリジン環、ピラゾール環であり、更に好ましくはベンゼン環、ピリジン環である。 Z 23 and Z 24 each independently represent a benzene ring or an aromatic heterocycle. Examples of the nitrogen-containing aromatic heterocycle represented by Z 23 and Z 24 include pyridine ring, pyrimidine ring, pyrazine ring, pyridazine ring, triazine ring, imidazole ring, pyrazole ring, oxazole ring, thiazole ring, triazole ring, oxadi Examples include an azole ring, a thiadiazole ring, a thiophene ring, and a furan ring. From the viewpoint of stability of the complex, emission wavelength control and emission quantum yield, the ring represented by Z 23 and Z 24 is preferably a benzene ring, a pyridine ring, a pyrazine ring, an imidazole ring, a pyrazole ring, or a thiophene ring, More preferred are a benzene ring, a pyridine ring and a pyrazole ring, and still more preferred are a benzene ring and a pyridine ring.
 前記Z23、Z24で表されるベンゼン環、含窒素芳香族ヘテロ環は置換基を有していてもよく、炭素原子上の置換基としては前記置換基群Aが、窒素原子上の置換基としては前記置換基群Bが適用できる。炭素上の置換基として好ましくはアルキル基、ペルフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルコキシ基、シアノ基、フッ素原子である。置換基は発光波長や電位の制御のために適宜選択されるが、長波長化させる場合には電子供与性基、芳香環基が好ましく、例えばアルキル基、ジアルキルアミノ基、アルコキシ基、アリール基、芳香族ヘテロ環基などが選択される。また短波長化させる場合には電子求引性基が好ましく、例えばフッ素原子、シアノ基、ペルフルオロアルキル基などが選択される。窒素原子上の置換基として好ましくは、アルキル基、アリール基、芳香族ヘテロ環基であり、錯体の安定性の観点からアルキル基、アリール基が好ましい。前記置換基同士は連結して縮合環を形成していてもよく、形成される環としては、ベンゼン環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、チオフェン環、フラン環などが挙げられる。 The benzene ring and nitrogen-containing aromatic heterocycle represented by Z 23 and Z 24 may have a substituent. As the substituent on the carbon atom, the substituent group A is substituted on the nitrogen atom. The substituent group B can be applied as the group. Preferred substituents on carbon are alkyl groups, perfluoroalkyl groups, aryl groups, aromatic heterocyclic groups, dialkylamino groups, diarylamino groups, alkoxy groups, cyano groups, and fluorine atoms. The substituent is appropriately selected for controlling the emission wavelength and potential, but in the case of increasing the wavelength, an electron donating group and an aromatic ring group are preferable, for example, an alkyl group, a dialkylamino group, an alkoxy group, an aryl group, An aromatic heterocyclic group or the like is selected. For shortening the wavelength, an electron withdrawing group is preferable, and for example, a fluorine atom, a cyano group, a perfluoroalkyl group, and the like are selected. The substituent on the nitrogen atom is preferably an alkyl group, an aryl group, or an aromatic heterocyclic group, and an alkyl group or an aryl group is preferable from the viewpoint of the stability of the complex. The substituents may be linked to form a condensed ring, and the formed ring includes a benzene ring, a pyridine ring, a pyrazine ring, a pyridazine ring, a pyrimidine ring, an imidazole ring, an oxazole ring, a thiazole ring, and a pyrazole. Ring, thiophene ring, furan ring and the like.
 一般式(C-2)で表される白金錯体のうち、より好ましい態様の一つは下記一般式(C-4)で表される白金錯体である。 Of the platinum complexes represented by the general formula (C-2), one of the more preferred embodiments is a platinum complex represented by the following general formula (C-4).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(一般式(C-4)中、A401~A414はそれぞれ独立にC-R又は窒素原子を表す。Rは水素原子又は置換基を表す。L41は単結合又は二価の連結基を表す。) (In the general formula (C-4), A 401 to A 414 each independently represents C—R or a nitrogen atom. R represents a hydrogen atom or a substituent. L 41 represents a single bond or a divalent linking group. To express.)
 一般式(C-4)について説明する。
 A401~A414はそれぞれ独立にC-R又は窒素原子を表す。Rは水素原子又は置換基を表す。
 Rで表される置換基としては、前記置換基群Aとして挙げたものが適用できる。
 A401~A406として好ましくはC-Rであり、R同士が互いに連結して環を形成していても良い。A401~A406がC-Rである場合に、A402、A405のRとして好ましくは水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子、シアノ基であり、より好ましくは水素原子、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子であり、特に好ましくは水素原子、フッ素原子である。A401、A403、A404、A406のRとして好ましくは水素原子、アルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子、シアノ基であり、より好ましくは水素原子、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子であり、特に好ましく水素原子である。
 L41は、前記一般式(C-1)中のLと同義であり、また好ましい範囲も同様である。
The general formula (C-4) will be described.
A 401 to A 414 each independently represents C—R or a nitrogen atom. R represents a hydrogen atom or a substituent.
As the substituent represented by R, those exemplified as the substituent group A can be applied.
A 401 to A 406 are preferably C—R, and Rs may be connected to each other to form a ring. When A 401 to A 406 are C—R, R in A 402 and A 405 is preferably a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom, or a cyano group. More preferably a hydrogen atom, an amino group, an alkoxy group, an aryloxy group or a fluorine atom, and particularly preferably a hydrogen atom or a fluorine atom. R in A 401 , A 403 , A 404 and A 406 is preferably a hydrogen atom, an alkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom or a cyano group, more preferably a hydrogen atom or an amino group. Group, an alkoxy group, an aryloxy group and a fluorine atom, and particularly preferably a hydrogen atom.
L 41 has the same meaning as L 1 in formula (C-1), and the preferred range is also the same.
 A407~A414としては、A407~A410とA411~A414のそれぞれにおいて、N(窒素原子)の数は、0~2が好ましく、0~1がより好ましい。発光波長を短波長側にシフトさせる場合、A408及びA412のいずれかが窒素原子であることが好ましく、A408とA412が共に窒素原子であることが更に好ましい。
 A407~A414がC-Rを表す場合に、A408、A412のRとして好ましくは水素原子、アルキル基、ペルフルオロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子、シアノ基であり、より好ましくは水素原子、ペルフルオロアルキル基、アルキル基、アリール基、フッ素原子、シアノ基であり、特に好ましくは、水素原子、フェニル基、ペルフルオロアルキル基、シアノ基である。A407、A409、A411、A413のRとして好ましくは水素原子、アルキル基、ペルフルオロアルキル基、アリール基、アミノ基、アルコキシ基、アリールオキシ基、フッ素原子、シアノ基であり、より好ましくは水素原子、ペルフルオロアルキル基、フッ素原子、シアノ基であり、特に好ましく水素原子、フェニル基、フッ素原子である。A410、A414のRとして好ましくは水素原子、フッ素原子であり、より好ましくは水素原子である。A407~A409、A411~A413のいずれかがC-Rを表す場合に、R同士が互いに連結して環を形成していても良い。
As A 407 to A 414 , in each of A 407 to A 410 and A 411 to A 414 , the number of N (nitrogen atoms) is preferably 0 to 2, and more preferably 0 to 1. When shifting the emission wavelength to the short wavelength side, either A 408 or A 412 is preferably a nitrogen atom, and both A 408 and A 412 are more preferably nitrogen atoms.
When A 407 to A 414 represent C—R, R in A 408 and A 412 is preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom, A cyano group, more preferably a hydrogen atom, a perfluoroalkyl group, an alkyl group, an aryl group, a fluorine atom or a cyano group, and particularly preferably a hydrogen atom, a phenyl group, a perfluoroalkyl group or a cyano group. R in A 407 , A 409 , A 411 and A 413 is preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, an aryl group, an amino group, an alkoxy group, an aryloxy group, a fluorine atom or a cyano group, more preferably Of these, a hydrogen atom, a perfluoroalkyl group, a fluorine atom, and a cyano group are preferable, and a hydrogen atom, a phenyl group, and a fluorine atom are particularly preferable. R in A 410 and A 414 is preferably a hydrogen atom or a fluorine atom, and more preferably a hydrogen atom. When any of A 407 to A 409 and A 411 to A 413 represents CR, Rs may be connected to each other to form a ring.
 一般式(C-2)で表される白金錯体のうち、より好ましい態様の一つは下記一般式(C-5)で表される白金錯体である。 Of the platinum complexes represented by the general formula (C-2), one of the more preferred embodiments is a platinum complex represented by the following general formula (C-5).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 (一般式(C-5)中、A501~A512は、それぞれ独立に、C-R又は窒素原子を表す。Rは水素原子又は置換基を表す。L51は単結合又は二価の連結基を表す。) (In the general formula (C-5), A 501 to A 512 each independently represents C—R or a nitrogen atom, R represents a hydrogen atom or a substituent, and L 51 represents a single bond or a divalent linkage. Represents a group.)
 一般式(C-5)について説明する。A501~A506及びL51は、前記一般式(C-4)におけるA401~A406及びL41と同義であり、好ましい範囲も同様である。 The general formula (C-5) will be described. A 501 to A 506 and L 51 have the same meanings as A 401 to A 406 and L 41 in formula (C-4), and preferred ranges are also the same.
 A507、A508及びA509とA510、A511及びA512は、及びそれぞれ独立に、C-R又は窒素原子を表す。Rは水素原子又は置換基を表す。Rで表される置換基としては、前記置換基群Aとして挙げたものが適用できる。A507、A508及びA509とA510、A511及びA512がC-Rである場合に、Rとして好ましくは水素原子、アルキル基、ペルフルオロアルキル基、アリール基、芳香族へテロ環基、ジアルキルアミノ基、ジアリールアミノ基、アルキルオキシ基、シアノ基、フッ素原子であり、より好ましくは、水素原子、アルキル基、ペルフルオロアルキル基、アリール基、ジアルキルアミノ基、シアノ基、フッ素原子、更に好ましくは、水素原子、アルキル基、トリフルオロメチル基、フッ素原子である。また可能な場合は置換基同士が連結して、縮環構造を形成してもよい。A507、A508及びA509とA510、A511及びA512のうち少なくとも一つは窒素原子であることが好ましく、特にA510又はA507が窒素原子であることが好ましい。 A 507 , A 508 and A 509 and A 510 , A 511 and A 512 and each independently represent C—R or a nitrogen atom. R represents a hydrogen atom or a substituent. As the substituent represented by R, those exemplified as the substituent group A can be applied. When A 507 , A 508 and A 509 and A 510 , A 511 and A 512 are CR , R is preferably a hydrogen atom, an alkyl group, a perfluoroalkyl group, an aryl group, an aromatic heterocyclic group, Dialkylamino group, diarylamino group, alkyloxy group, cyano group, fluorine atom, more preferably hydrogen atom, alkyl group, perfluoroalkyl group, aryl group, dialkylamino group, cyano group, fluorine atom, more preferably , Hydrogen atom, alkyl group, trifluoromethyl group, fluorine atom. Further, when possible, substituents may be linked to form a condensed ring structure. At least one of A 507 , A 508 and A 509 and A 510 , A 511 and A 512 is preferably a nitrogen atom, and particularly preferably A 510 or A 507 is a nitrogen atom.
 一般式(C-1)で表される白金錯体のうち、より好ましい別の態様は下記一般式(C-6)で表される白金錯体である。 Among the platinum complexes represented by the general formula (C-1), another more preferable embodiment is a platinum complex represented by the following general formula (C-6).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 (式中、L61は単結合又は二価の連結基を表す。A61はそれぞれ独立に炭素原子又は窒素原子を表す。Z61、Z62はそれぞれ独立に含窒素芳香族ヘテロ環を表す。Z63はそれぞれ独立にベンゼン環又は芳香族ヘテロ環を表す。YはPtに結合するアニオン性の非環状配位子である。) (In the formula, L 61 represents a single bond or a divalent linking group. A 61 independently represents a carbon atom or a nitrogen atom. Z 61 and Z 62 each independently represent a nitrogen-containing aromatic heterocyclic ring. Z 63 independently represents a benzene ring or an aromatic heterocycle, and Y is an anionic acyclic ligand bonded to Pt.)
 一般式(C-6)について説明する。L61は、前記一般式(C-1)中のLと同義であり、また好ましい範囲も同様である。 The general formula (C-6) will be described. L 61 has the same meaning as L 1 in formula (C-1), and the preferred range is also the same.
 A61は炭素原子又は窒素原子を表す。錯体の安定性の観点及び錯体の発光量子収率の観点からA61は炭素原子であることが好ましい。 A 61 represents a carbon atom or a nitrogen atom. In view of the stability of the complex and the light emission quantum yield of the complex, A 61 is preferably a carbon atom.
 Z61、Z62は、それぞれ前記一般式(C-2)におけるZ21、Z22と同義であり、また好ましい範囲も同様である。Z63は、前記一般式(C-2)におけるZ23と同義であり、また好ましい範囲も同様である。 Z 61 and Z 62 are synonymous with Z 21 and Z 22 in the general formula (C-2), respectively, and preferred ranges thereof are also the same. Z 63 has the same meaning as Z 23 in formula (C-2), and the preferred range is also the same.
 YはPtに結合するアニオン性の非環状配位子である。非環状配位子とはPtに結合する原子が配位子の状態で環を形成していないものである。Y中のPtに結合する原子としては、炭素原子、窒素原子、酸素原子、硫黄原子が好ましく、窒素原子、酸素原子がより好ましく、酸素原子が最も好ましい。
 炭素原子でPtに結合するYとしてはビニル配位子が挙げられる。窒素原子でPtに結合するYとしてはアミノ配位子、イミノ配位子が挙げられる。酸素原子でPtに結合するYとしては、アルコキシ配位子、アリールオキシ配位子、ヘテロアリールオキシ配位子、アシルオキシ配位子、シリルオキシ配位子、カルボキシル配位子、リン酸配位子、スルホン酸配位子などが挙げられる。硫黄原子でPtに結合するYとしては、アルキルメルカプト配位子、アリールメルカプト配位子、ヘテロアリールメルカプト配位子、チオカルボン酸配位子などが挙げられる。
 Yで表される配位子は、置換基を有していてもよく、置換基としては前記置換基群Aとして挙げたものが適宜適用できる。また置換基同士が連結していても良い。
Y is an anionic acyclic ligand that binds to Pt. An acyclic ligand is one in which atoms bonded to Pt do not form a ring in the form of a ligand. As an atom couple | bonded with Pt in Y, a carbon atom, a nitrogen atom, an oxygen atom, and a sulfur atom are preferable, a nitrogen atom and an oxygen atom are more preferable, and an oxygen atom is the most preferable.
A vinyl ligand is mentioned as Y couple | bonded with Pt by a carbon atom. Examples of Y bonded to Pt with a nitrogen atom include an amino ligand and an imino ligand. Examples of Y bonded to Pt with an oxygen atom include an alkoxy ligand, an aryloxy ligand, a heteroaryloxy ligand, an acyloxy ligand, a silyloxy ligand, a carboxyl ligand, a phosphate ligand, Examples thereof include sulfonic acid ligands. Examples of Y bonded to Pt with a sulfur atom include alkyl mercapto ligands, aryl mercapto ligands, heteroaryl mercapto ligands, and thiocarboxylic acid ligands.
The ligand represented by Y may have a substituent, and those listed as the substituent group A can be appropriately applied as the substituent. Moreover, substituents may be connected to each other.
 Yで表される配位子として好ましくは酸素原子でPtに結合する配位子であり、より好ましくはアシルオキシ配位子、アルキルオキシ配位子、アリールオキシ配位子、ヘテロアリールオキシ配位子、シリルオキシ配位子であり、更に好ましくはアシルオキシ配位子である。 The ligand represented by Y is preferably a ligand bonded to Pt with an oxygen atom, more preferably an acyloxy ligand, an alkyloxy ligand, an aryloxy ligand, a heteroaryloxy ligand. , A silyloxy ligand, and more preferably an acyloxy ligand.
 一般式(C-6)で表される白金錯体のうち、より好ましい態様の一つは下記一般式(C-7)で表される白金錯体である。 Of the platinum complexes represented by the general formula (C-6), one of more preferred embodiments is a platinum complex represented by the following general formula (C-7).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式中、A701~A710は、それぞれ独立に、C-R又は窒素原子を表す。Rは水素原子又は置換基を表す。L71は単結合又は二価の連結基を表す。YはPtに結合するアニオン性の非環状配位子である。) (Wherein A 701 to A 710 each independently represents C—R or a nitrogen atom, R represents a hydrogen atom or a substituent, L 71 represents a single bond or a divalent linking group, Y represents An anionic acyclic ligand that binds to Pt.)
 一般式(C-7)について説明する。L71は、前記一般式(C-6)中のL61と同義であり、また好ましい範囲も同様である。A701~A710は一般式(C-4)におけるA401~A410と同義であり、また好ましい範囲も同様である。Yは一般式(C-6)におけるYと同義であり、また好ましい範囲も同様である。 The general formula (C-7) will be described. L 71 has the same meaning as L 61 in formula (C-6), and the preferred range is also the same. A 701 to A 710 have the same meanings as A 401 to A 410 in formula (C-4), and preferred ranges are also the same. Y has the same meaning as Y in formula (C-6), and the preferred range is also the same.
 一般式(C-1)で表される白金錯体として具体的には、特開2005-310733号公報の〔0143〕~〔0152〕、〔0157〕~〔0158〕、〔0162〕~〔0168〕に記載の化合物、特開2006-256999号公報の〔0065〕~〔0083〕に記載の化合物、特開2006-93542号公報の〔0065〕~〔0090〕に記載の化合物、特開2007-73891号公報の〔0063〕~〔0071〕に記載の化合物、特開2007-324309号公報の〔0079〕~〔0083〕に記載の化合物、特開2006-93542号公報の〔0065〕~〔0090〕に記載の化合物、特開2007-96255号公報の〔0055〕~〔0071〕に記載の化合物、特開2006-313796号公報の〔0043〕~〔0046〕が挙げられ、その他以下に例示する白金錯体が挙げられる。 Specific examples of the platinum complex represented by the general formula (C-1) include [0143] to [0152], [0157] to [0158], and [0162] to [0168] of JP-A-2005-310733. The compounds described in JP-A-2006-256999, [0065] to [0083], the compounds described in JP-A-2006-93542, [0065] to [0090], JP-A-2007-73891 Nos. [0063] to [0071] in Japanese Patent Publication No. JP-A-2007-324309, Nos. [0079] to [0083] in Japanese Unexamined Patent Publication No. 2007-324309, No. [0065] to [0090] in Japanese Unexamined Patent Publication No. 2006-93542 Compounds described in JP-A-2007-96255, compounds described in [0055] to [0071], JP-A-2006-313796 [0043] include - [0046], platinum complexes exemplified other following can be mentioned.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 一般式(C-1)で表される白金錯体化合物は、例えば、Journal of Organic Chemistry 53,786,(1988)、G.R.Newkome et al.)の、789頁、左段53行~右段7行に記載の方法、790頁、左段18行~38行に記載の方法、790頁、右段19行~30行に記載の方法及びその組み合わせ、Chemische Berichte 113,2749(1980)、H.Lexyほか)の、2752頁、26行~35行に記載の方法等、種々の手法で合成できる。
 例えば、配位子、又はその解離体と金属化合物を溶媒(例えば、ハロゲン系溶媒、アルコール系溶媒、エーテル系溶媒、エステル系溶媒、ケトン系溶媒、ニトリル系溶媒、アミド系溶媒、スルホン系溶媒、スルホキサイド系溶媒、水などが挙げられる)の存在下、若しくは、溶媒非存在下、塩基の存在下(無機、有機の種々の塩基、例えば、ナトリウムメトキシド、t-ブトキシカリウム、トリエチルアミン、炭酸カリウムなどが挙げられる)、若しくは、塩基非存在下、室温以下、若しくは加熱し(通常の加熱以外にもマイクロウェーブで加熱する手法も有効である)得ることができる。
Examples of the platinum complex compound represented by the general formula (C-1) include Journal of Organic Chemistry 53,786, (1988), G.S. R. Newkome et al. ), Page 789, method described in left column 53 to right column 7, line 790, method described in left column 18 to 38, method 790, method described in right column 19 to 30 and The combination, Chemische Berichte 113, 2749 (1980), H.C. Lexy et al.), Page 2752, lines 26 to 35, and the like.
For example, a ligand or a dissociated product thereof and a metal compound are mixed with a solvent (for example, a halogen solvent, an alcohol solvent, an ether solvent, an ester solvent, a ketone solvent, a nitrile solvent, an amide solvent, a sulfone solvent, In the presence of a sulfoxide solvent, water, etc., or in the absence of a solvent, in the presence of a base (inorganic and organic bases such as sodium methoxide, t-butoxypotassium, triethylamine, potassium carbonate, etc.) Or in the absence of a base, at room temperature or below, or by heating (in addition to normal heating, a method of heating with a microwave is also effective).
 本発明において、有機材料(B)としての白金錯体は単独で用いてもよいし、2種以上組み合わせて用いてもよい。
 上記有機材料(B)としての白金錯体の組成物中の含有量は、組成物の全固形分を基準として、2~50質量%が好ましく、より好ましくは5~40質量%、更に好ましくは10~40質量%である。
In this invention, the platinum complex as an organic material (B) may be used independently, and may be used in combination of 2 or more type.
The content of the platinum complex as the organic material (B) in the composition is preferably 2 to 50% by mass, more preferably 5 to 40% by mass, and still more preferably 10%, based on the total solid content of the composition. ~ 40% by weight.
 [2-2]ホスト材料
 ホスト材料とは、その励起状態から発光材料へエネルギー移動が起こり、その結果、該発光材料を発光させる化合物である。その具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリデン化合物、ポルフィリン化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体、メタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール等を配位子とする金属錯体、ポリシラン化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等が挙げられる。ホスト化合物は1種単独で使用しても2種以上を併用してもよい。
 このうち、耐久性の観点から、ホスト材料としてはカルバゾール誘導体、イミダゾール誘導体であることが好ましく、カルバゾール誘導体であることがより好ましい。
[2-2] Host material A host material is a compound that causes energy transfer from its excited state to a light-emitting material, and as a result, causes the light-emitting material to emit light. Specific examples include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives. , Fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide oxide Derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, heterocycles such as naphthalene and perylene Carboxylic anhydride, phthalocyanine derivatives, metal complexes of 8-quinolinol derivatives, metal phthalocyanines, metal complexes having benzoxazole, benzothiazole, etc. as ligands, polysilane compounds, poly (N-vinylcarbazole) derivatives, aniline copolymers , Conductive polymers such as thiophene oligomers and polythiophenes, polythiophene derivatives, polyphenylene derivatives, polyphenylene vinylene derivatives, polyfluorene derivatives, and the like. A host compound may be used individually by 1 type, or may use 2 or more types together.
Among these, from the viewpoint of durability, the host material is preferably a carbazole derivative or an imidazole derivative, and more preferably a carbazole derivative.
 〔カルバゾール誘導体〕
 前記カルバゾール誘導体としては、下記一般式(V)で表されるカルバゾール誘導体であることが好ましい。
[Carbazole derivative]
The carbazole derivative is preferably a carbazole derivative represented by the following general formula (V).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(一般式(V)中、R51~R58は水素原子、重水素原子、若しくは、置換基であり、R51~R58は隣接する置換基どうしで縮合環を形成しても良い。Aは連結基を表し、n51は2~6の整数を表す。) (In the general formula (V), R 51 to R 58 are a hydrogen atom, a deuterium atom, or a substituent, and R 51 to R 58 may form a condensed ring between adjacent substituents. Represents a linking group, and n 51 represents an integer of 2 to 6.)
 R51~R58で表される置換基としては特に限定されないが、例えば、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アミノ基、アルコキシ基、アリールオキシ基、ヘテロ環オキシ基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルホニル基、スルフィニル基、ウレイド基、リン酸アミド基、ヒドロキシ基、メルカプト基、ハロゲン原子、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基、シリル基、シリルオキシ基などが挙げられる。これらの置換基は、更に他の置換基によって置換されてもよく、また、これらの置換基同士が結合し、環を形成していてもよい。 The substituents represented by R 51 to R 58 are not particularly limited, and examples thereof include alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, amino groups, alkoxy groups, aryloxy groups, and heterocyclic oxy groups. , Acyl group, alkoxycarbonyl group, aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, heterocyclic thio group Sulfonyl group, sulfinyl group, ureido group, phosphoric acid amide group, hydroxy group, mercapto group, halogen atom, cyano group, sulfo group, carboxyl group, nitro group, hydroxamic acid group, sulfino group, hydrazino group, imino group, hetero Group, a silyl group, such as silyloxy group. These substituents may be further substituted with other substituents, and these substituents may be bonded to each other to form a ring.
 R51~R58として好ましくは水素原子、重水素原子、アルキル基、アリール基、ヘテロアリール基、ハロゲン基、シアノ基、シリル基であり、より好ましくは水素原子、重水素原子、アルキル基、ヘテロアリール基、ハロゲン基、シアノ基、シリル基であり、特に好ましくは水素原子、重水素原子、アルキル基、ヘテロアリール基、シリル基である。R51~R58は、更に他の置換基によって置換されてもよく、また、これらの置換基同士が結合し、環を形成していてもよい。 R 51 to R 58 are preferably a hydrogen atom, a deuterium atom, an alkyl group, an aryl group, a heteroaryl group, a halogen group, a cyano group, or a silyl group, and more preferably a hydrogen atom, a deuterium atom, an alkyl group, a hetero group An aryl group, a halogen group, a cyano group, and a silyl group, particularly preferably a hydrogen atom, a deuterium atom, an alkyl group, a heteroaryl group, and a silyl group. R 51 to R 58 may be further substituted with other substituents, and these substituents may be bonded to each other to form a ring.
 R51~R58のアルキル基として好ましくはメチル、エチル、n-プロピル、イソプロピル、n-ブチル、tert-ブチル、n-オクチル、シクロプロピル、シクロペンチル、シクロヘキシル、1-アダマンチル、トリフルオロメチルであり、より好ましくはメチル、イソプロピル、tert-ブチル、n-オクチル、シクロペンチル、シクロヘキシル、1-アダマンチル、トリフルオロメチルであり、特に好ましくはtert-ブチル、シクロヘキシル、1-アダマンチル、トリフルオロメチルである。これらの置換基は、更に他の置換基によって置換されてもよく、また、これらの置換基同士が結合し、環を形成していてもよい。 The alkyl group for R 51 to R 58 is preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, n-octyl, cyclopropyl, cyclopentyl, cyclohexyl, 1-adamantyl, trifluoromethyl, More preferred are methyl, isopropyl, tert-butyl, n-octyl, cyclopentyl, cyclohexyl, 1-adamantyl and trifluoromethyl, and particularly preferred are tert-butyl, cyclohexyl, 1-adamantyl and trifluoromethyl. These substituents may be further substituted with other substituents, and these substituents may be bonded to each other to form a ring.
 R51~R58のヘテロアリール基として好ましくはイミダゾリル、ピラゾリル、ピリジル、キノリル、イソキノリニル、ピロリル、インドリル、フリル、チエニル、ベンズオキサゾリル、ベンズイミダゾリル、ベンズチアゾリル、カルバゾリル、アゼピニルであり、より好ましくはイミダゾリル、ピラゾリル、キノリル、インドリル、フリル、チエニル、ベンズイミダゾリル、カルバゾリル、アゼピニルであり、特に好ましくはインドリル、フリル、チエニル、ベンズイミダゾリル、カルバゾリル、アゼピニルである。これらの置換基は、更に他の置換基によって置換されてもよく、縮環構造を形成していてもよく、また、これらの置換基同士が結合し、環を形成していてもよい。 The heteroaryl group of R 51 to R 58 is preferably imidazolyl, pyrazolyl, pyridyl, quinolyl, isoquinolinyl, pyrrolyl, indolyl, furyl, thienyl, benzoxazolyl, benzimidazolyl, benzthiazolyl, carbazolyl, azepinyl, more preferably imidazolyl. , Pyrazolyl, quinolyl, indolyl, furyl, thienyl, benzimidazolyl, carbazolyl and azepinyl, particularly preferably indolyl, furyl, thienyl, benzimidazolyl, carbazolyl and azepinyl. These substituents may be further substituted with other substituents, may form a condensed ring structure, or these substituents may be bonded to each other to form a ring.
 R51~R58のシリル基として好ましくはトリメチルシリル、トリエチルシリル、トリイソプロピルシリル、メチルジフェニルシリル、ジメチル-tert-ブチルシリル、ジメチルフェニルシリル、ジフェニル-tert-ブチルシリル、トリフェニルシリルであり、より好ましくはトリメチルシリル、トリイソプロピルシリル、ジメチル‐tert-ブチルシリル、ジフェニル-tert-ブチルシリル、トリフェニルシリルであり、特に好ましくはトリメチルシリル、ジメチル-tert-ブチルシリル、トリフェニルシリルである。これらの置換基は、更に他の置換基によって置換されてもよく、また、これらの置換基同士が結合し、環を形成していてもよい。 The silyl group of R 51 to R 58 is preferably trimethylsilyl, triethylsilyl, triisopropylsilyl, methyldiphenylsilyl, dimethyl-tert-butylsilyl, dimethylphenylsilyl, diphenyl-tert-butylsilyl, triphenylsilyl, more preferably trimethylsilyl. , Triisopropylsilyl, dimethyl-tert-butylsilyl, diphenyl-tert-butylsilyl, and triphenylsilyl, particularly preferably trimethylsilyl, dimethyl-tert-butylsilyl, and triphenylsilyl. These substituents may be further substituted with other substituents, and these substituents may be bonded to each other to form a ring.
 n51として好ましくは、2~4であり、より好ましくは、2~3であり、特に好ましくは2である。 n 51 is preferably 2 to 4, more preferably 2 to 3, and particularly preferably 2.
 Aで表される連結基としては、好ましくは、アルキレン、アリーレン、ヘテロアリーレン、シリレンであり、より好ましくは、アリーレン、ヘテロアリーレンであり、特に好ましくは、アリーレンであり、これらの連結基は、例えば、前述のR51~R58で表される置換基により、更に置換されていても良い。 The linking group represented by A is preferably alkylene, arylene, heteroarylene, or silylene, more preferably arylene or heteroarylene, and particularly preferably arylene. These linking groups include, for example, These may be further substituted with the substituents represented by R 51 to R 58 described above.
 アリーレンとして好ましくは、フェニレン、ナフチレン、ビフェニレン、ターフェニレンであり、より好ましくは、フェニレン、ビフェニレンであり、特に好ましくは、フェニレンである。 Arylene is preferably phenylene, naphthylene, biphenylene or terphenylene, more preferably phenylene or biphenylene, and particularly preferably phenylene.
 フェニレンとして好ましくは、1,2,3,4,5,6‐六置換フェニレン、1,2,4,5‐四置換フェニレン、1,3,5‐三置換フェニレン、1,2‐二置換フェニレン、1,3‐二置換フェニレン、1,4‐二置換フェニレンであり、より好ましくは、1,2‐二置換フェニレン、1,3‐二置換フェニレン、1,4‐二置換フェニレンであり、特に好ましくは、1,3‐二置換フェニレン、1,4‐二置換フェニレンである。 Preferable phenylene is 1,2,3,4,5,6-hexasubstituted phenylene, 1,2,4,5-tetrasubstituted phenylene, 1,3,5-trisubstituted phenylene, 1,2-disubstituted phenylene 1,3-disubstituted phenylene, 1,4-disubstituted phenylene, more preferably 1,2-disubstituted phenylene, 1,3-disubstituted phenylene, 1,4-disubstituted phenylene, Preferred are 1,3-disubstituted phenylene and 1,4-disubstituted phenylene.
 ヘテロアリーレンとして好ましくは、二置換ピリジレン、二置換N-フェニルカルバゾリレンであり、より好ましくは、2,6-二置換ピリジレン、3,5-二置換ピリジレン、3,6-二置換N-フェニルカルバゾリレンであり、特に好ましくは、3,6-二置換N-フェニルカルバゾリレンである。
 カルバゾール基を有する化合物としては、例えば以下に示す化合物が挙げられる。
The heteroarylene is preferably disubstituted pyridylene or disubstituted N-phenylcarbazolylene, more preferably 2,6-disubstituted pyridylene, 3,5-disubstituted pyridylene, or 3,6-disubstituted N-phenyl. Carbazolylene, particularly preferably 3,6-disubstituted N-phenylcarbazolylene.
Examples of the compound having a carbazole group include the following compounds.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 前記カルバゾール誘導体としては、下記一般式(Acz)で表される非対称構造のカルバゾール誘導体であることも好ましい。 The carbazole derivative is preferably a carbazole derivative having an asymmetric structure represented by the following general formula (Acz).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 一般式(ACz)中、RAsはtert-ブチル基、tert-アミル基、又はトリメチルシリル基を表す。 In the general formula (ACz), R As represents a tert-butyl group, a tert-amyl group, or a trimethylsilyl group.
 本発明において、ホスト材料は単独で用いてもよいし、2種以上組み合わせて用いてもよい。
 ホスト材料の組成物中の含有量は、組成物の全固形分を基準として、50~95質量%が好ましく、より好ましくは60~95質量%、更に好ましくは70~95質量%である。
In this invention, a host material may be used independently and may be used in combination of 2 or more type.
The content of the host material in the composition is preferably 50 to 95% by mass, more preferably 60 to 95% by mass, and still more preferably 70 to 95% by mass, based on the total solid content of the composition.
 [2-3]電荷輸送材料
 電荷輸送材料としては、正孔注入材料、正孔輸送材料、電子注入材料、電子輸送材料、励起子ブロック材料、正孔ブロック材料、電子ブロック材料等が挙げられる。
[2-3] Charge transport material Examples of the charge transport material include a hole injection material, a hole transport material, an electron injection material, an electron transport material, an exciton block material, a hole block material, and an electron block material.
 電荷輸送材料としては、ポリアリールアミン、ポリフルオレン、ポリチオフェン、ポリフェニレンビニレン、ポリビニルカルバゾール等が挙げられ、このうち、素子耐久性の観点から、ポリアリールアミン、ポリフルオレン、ポリビニルカルバゾールが好ましく、ポリアリールアミン、ポリフルオレンがより好ましい。
 ポリアリールアミンの具体例としては、下記構造式で表されるPTPDES(nは括弧内の構造の繰り返し数を意味し、整数である。)、PTPDES-2、PTTPDBA、PTPAES(ケミプロ化成商品名)等が挙げられる。
Examples of the charge transport material include polyarylamine, polyfluorene, polythiophene, polyphenylene vinylene, polyvinyl carbazole, etc. Among these, from the viewpoint of device durability, polyarylamine, polyfluorene, polyvinyl carbazole are preferable, and polyarylamine Polyfluorene is more preferable.
Specific examples of the polyarylamine include PTPDES represented by the following structural formula (n is the number of repetitions of the structure in parentheses, and is an integer), PTPDES-2, PTTPDBA, PTPAES (Chemipro Kasei brand name) Etc.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 電荷輸送材料としては、少なくとも一つの重合性基を有するアリールアミン誘導体(以下、“アリールアミン誘導体(B)”ともいう)も好ましい。アリールアミン誘導体(B)としては、アリール基を置換基として有するアミン化合物であって、更に少なくとも一つの重合性基を有するものであれば、公知の化合物が使用可能である。アリールアミン誘導体(B)が有する重合性基としては、特に限定されず、ラジカル重合性基又はカチオン重合性基などが挙げられる。より具体的には、エポキシ基、オキセタニル基、オキサゾリル基、ビニルオキシ基などのカチオン重合性基や、アルケニル基、アルキニル基、アクリル酸エステル(アクリロイル基)、メタクリル酸エステル(メタクリロイル基)、アクリルアミド、メタクリルアミド、ビニルエーテル、ビニルエステルなどのラジカル重合性基が好ましい。なかでも、合成が容易であり、重合反応が良好に進行する点から、ラジカル重合性基が好ましく、アルケニル基又はアルキニル基がより好ましい。 As the charge transporting material, an arylamine derivative having at least one polymerizable group (hereinafter also referred to as “arylamine derivative (B)”) is preferable. As the arylamine derivative (B), a known compound can be used as long as it is an amine compound having an aryl group as a substituent and further having at least one polymerizable group. The polymerizable group possessed by the arylamine derivative (B) is not particularly limited, and examples thereof include a radical polymerizable group or a cationic polymerizable group. More specifically, cationically polymerizable groups such as epoxy group, oxetanyl group, oxazolyl group, vinyloxy group, alkenyl group, alkynyl group, acrylic ester (acryloyl group), methacrylic ester (methacryloyl group), acrylamide, methacryl Radical polymerizable groups such as amide, vinyl ether and vinyl ester are preferred. Of these, a radical polymerizable group is preferable and an alkenyl group or an alkynyl group is more preferable from the viewpoint that synthesis is easy and the polymerization reaction proceeds favorably.
 なお、アルケニル基としては、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルコキシ基、ケイ素原子含有基の任意の位置に2重結合を有する基が挙げられる。なかでも、炭素数2~12が好ましく、更に炭素数2~6が好ましい。例えば、ビニル基、アリル基などが挙げられ、重合制御性の容易さ、機械強度の観点から、ビニル基が好ましい。
 アルキニル基としては、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルコキシ基、ケイ素原子含有基の任意の位置に3重結合を有する基が挙げられる。なかでも、炭素数2~12が好ましく、更に炭素数2~6が好ましい。重合制御性の容易さの観点から、エチニル基が好ましい。
 なかでも、反応性の観点から、アリールアミン誘導体(B)が有する重合性基は、ビニル基及びアリル基のいずれかであることが好ましく、ビニル基であることが最も好ましい。
 アリールアミン誘導体(B)は、膜硬度や耐溶剤性の観点から、少なくとも二つの重合性基を有することが好ましい。
In addition, as an alkenyl group, the group which has a double bond in the arbitrary positions of an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkoxy group, and a silicon atom containing group is mentioned, for example. Of these, C 2-12 is preferable, and C 2-6 is more preferable. For example, a vinyl group, an allyl group, etc. are mentioned, and a vinyl group is preferable from the viewpoint of ease of polymerization control and mechanical strength.
Examples of the alkynyl group include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkoxy group, and a group having a triple bond at an arbitrary position of a silicon atom-containing group. Of these, C 2-12 is preferable, and C 2-6 is more preferable. From the viewpoint of ease of polymerization controllability, an ethynyl group is preferred.
Among these, from the viewpoint of reactivity, the polymerizable group of the arylamine derivative (B) is preferably either a vinyl group or an allyl group, and most preferably a vinyl group.
The arylamine derivative (B) preferably has at least two polymerizable groups from the viewpoint of film hardness and solvent resistance.
 アリールアミン誘導体(B)は、下記一般式(1)又は一般式(2)で表わされる化合物であることが、素子の耐久性の観点で好ましい。 The arylamine derivative (B) is preferably a compound represented by the following general formula (1) or general formula (2) from the viewpoint of device durability.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
(式中、R及びR’は、それぞれ独立に重合性基を表す。R及びR’は、それぞれ独立に水素原子又は置換基を表す。) (In the formula, R 1 and R 1 ′ each independently represent a polymerizable group. R 2 and R 2 ′ each independently represent a hydrogen atom or a substituent.)
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
(式中、R及びR’は、それぞれ独立に重合性基を表す。) (In the formula, R and R ′ each independently represents a polymerizable group.)
 上記一般式(1)中のR及びR’で表される重合性基、並びに、上記一般式(2)中のR及びR’で表される重合性基の具体例及び好ましい範囲は、アリールアミン誘導体(B)が有する重合性基について説明したものと同様である。
 R及びR’で表される重合性基は、ベンゼン環の3位又は5位に置換することが、外部量子効率の観点から好ましい。
 R及びR’は、それぞれ独立に水素原子又は置換基を表す。R及びR’で表される置換基としては、炭素数1~12の、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルコキシ基、ケイ素原子含有基等が挙げられ、好ましくは炭素数1~5のアルキル基である。
 R及びR’は、水素原子であることが高移動度の観点で好ましい。
Specific examples and preferred ranges of the polymerizable group represented by R 1 and R 1 ′ in the general formula (1) and the polymerizable group represented by R and R ′ in the general formula (2) are as follows. The arylamine derivative (B) is the same as described for the polymerizable group.
The polymerizable group represented by R and R ′ is preferably substituted at the 3-position or 5-position of the benzene ring from the viewpoint of external quantum efficiency.
R 2 and R 2 ′ each independently represent a hydrogen atom or a substituent. Examples of the substituent represented by R 2 and R 2 ′ include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, an alkoxy group, a silicon atom-containing group having 1 to 12 carbon atoms, preferably carbon. It is an alkyl group of the number 1-5.
R 2 and R 2 ′ are preferably hydrogen atoms from the viewpoint of high mobility.
 次にラジカル重合性基を有するアリールアミン誘導体の具体例を示すが、本発明はこれらに限定されない。 Next, specific examples of the arylamine derivative having a radical polymerizable group will be shown, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 また本発明に係る組成物は、イリジウム(Ir)錯体を含む正孔注入層上に塗布され、電荷輸送層を形成することが、効率、耐久性の観点で好ましい。また該イリジウム(Ir)錯体は重合性基を有することが効率の観点でより好ましい。重合性基としては、アリールアミン誘導体(B)で説明したものの他に、アルコキシシランが挙げられる。正孔注入層に含まれるIr錯体の具体例としては、以下に記載するIr錯体が挙げられるが、本発明はこれらに限定されるものではない。 In addition, it is preferable from the viewpoint of efficiency and durability that the composition according to the present invention is applied on a hole injection layer containing an iridium (Ir) complex to form a charge transport layer. The iridium (Ir) complex preferably has a polymerizable group from the viewpoint of efficiency. Examples of the polymerizable group include alkoxysilanes other than those described for the arylamine derivative (B). Specific examples of the Ir complex contained in the hole injection layer include the following Ir complexes, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 本発明に係る電荷輸送層を、Ir錯体を含む正孔注入層上に形成することで、発光効率と素子耐久性の向上に寄与する。 The formation of the charge transport layer according to the present invention on a hole injection layer containing an Ir complex contributes to improvement in light emission efficiency and device durability.
 本発明において、電荷輸送材料は単独で用いてもよいし、2種以上組み合わせて用いてもよい。
 電荷輸送材料の組成物中の含有量は、組成物の全固形分を基準として、90~100質量%が好ましく、より好ましくは95~100質量%、更に好ましくは98~100質量%である。
In the present invention, the charge transport materials may be used alone or in combination of two or more.
The content of the charge transport material in the composition is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and still more preferably 98 to 100% by mass, based on the total solid content of the composition.
 [3]溶媒(C)
 前記各成分を溶解させて組成物を調製する際に使用することができる溶媒(以下、“溶媒(C)”ともいう)としては、例えば、芳香族炭化水素系溶媒、アルコール系溶媒、ケトン系溶媒、脂肪族炭化水素系溶媒、アミド系溶媒、エステル系溶媒等の公知の有機溶媒を挙げることができる。
[3] Solvent (C)
Examples of the solvent (hereinafter also referred to as “solvent (C)”) that can be used in preparing the composition by dissolving the above-described components include, for example, aromatic hydrocarbon solvents, alcohol solvents, and ketone solvents. Known organic solvents such as solvents, aliphatic hydrocarbon solvents, amide solvents, ester solvents and the like can be mentioned.
 芳香族炭化水素系溶媒としては、例えば、ベンゼン、トルエン、キシレン、トリメチルベンゼン、テトラメチルベンゼン、クメンエチルベンゼン、メチルプロピルベンゼン、メチルイソプロピルベンゼン等が挙げられ、トルエン、キシレン、クメン、トリメチルベンゼンがより好ましい。 Examples of the aromatic hydrocarbon solvent include benzene, toluene, xylene, trimethylbenzene, tetramethylbenzene, cumeneethylbenzene, methylpropylbenzene, methylisopropylbenzene, and the like, and toluene, xylene, cumene, and trimethylbenzene are more preferable. .
 アルコール系溶媒としては、メタノール、エタノール、2-n-ブトキシエタノール、ブタノール、ベンジルアルコール、シクロヘキサノール等が挙げられ、2-n-ブトキシエタノール、ブタノール、ベンジルアルコール、シクロヘキサノールがより好ましい
 ケトン系溶媒としては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、アセトン、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、2-ブタノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、プロピレンカーボネート、NMP(N-メチルピロリドン)等が挙げられ、2-ブタノン、シクロヘキサノン、メチルイソブチルケトン、プロピレンカーボネート、NMP(N-メチルピロリドン)が好ましい。
 脂肪族炭化水素系溶媒としては、ペンタン、ヘキサン、オクタン、デカン等が挙げられ、オクタン、デカンが好ましい。
 アミド系溶媒としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、1、3-ジメチル-2-イミダゾリジノン等が挙げられ、N-メチル-2-ピロリドン、1、3-ジメチル-2-イミダゾリジノンが好ましい。
 エステル系溶媒としては、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸ペンチル、酢酸イソペンチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチルー3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル、乳酸アミル、乳酸イソアミル等が挙げられ、乳酸ブチル、乳酸アミル、乳酸イソアミルが好ましい。
 本発明に於いては、上記溶剤を単独で使用してもよいし、2種類以上を併用してもよい。
Examples of alcohol solvents include methanol, ethanol, 2-n-butoxyethanol, butanol, benzyl alcohol, and cyclohexanol. 2-n-butoxyethanol, butanol, benzyl alcohol, and cyclohexanol are more preferable as ketone solvents. 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, acetone, 4-heptanone, 1-hexanone, 2-hexanone, 2-butanone, diisobutylketone, cyclohexanone, methylcyclohexanone, phenylacetone, methylisobutylketone , Acetylacetone, acetonylacetone, ionone, diacetonyl alcohol, acetylcarbinol, acetophenone, methyl naphthyl ketone, isophorone, propylene carbonate, NMP (N-methylpyrrolidone) and the like, and 2-butanone, cyclohexanone, methyl isobutyl ketone, propylene carbonate, and NMP (N-methylpyrrolidone) are preferable.
Examples of the aliphatic hydrocarbon solvent include pentane, hexane, octane, decane and the like, and octane and decane are preferable.
Examples of amide solvents include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, 1,3-dimethyl-2-imidazolidinone and the like. N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidinone are preferred.
Examples of the ester solvent include methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, pentyl acetate, isopentyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl. Ether acetate, ethyl-3-ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl formate, ethyl formate, butyl formate, propyl formate, ethyl lactate, butyl lactate, propyl lactate, amyl lactate And isoamyl lactate, and the like, and butyl lactate, amyl lactate, and isoamyl lactate are preferable.
In the present invention, the above solvents may be used alone or in combination of two or more.
 本発明の組成物が、有機材料(B)として発光材料及びホスト材料を含有する場合、溶媒(C)としては、上述のアルコール系溶媒、ケトン系溶媒及びエステル系溶媒からなる群より選択される少なくとも一種を含有することが好ましく、2-ブタノン、乳酸ブチル、乳酸アミル、乳酸イソアミル及び2-n-ブトキシエタノールからなる群より選択される少なくとも一種を含有することがより好ましい。これら溶媒(C)を酸化防止剤(A)と共に使用することにより、本来は保存安定性に優れない溶媒(例えば、乳酸ブチル、乳酸イソアミル等)を使用した場合においても、本発明の組成物の保存安定性が向上する。
 また本発明の組成物が、有機材料(B)として電荷輸送材料を含有する場合、外部量子効率等の有機EL素子性能の低下を防止する観点から、溶媒(C)としては、上述のケトン系溶媒を含有することが好ましく、シクロヘキサノン、NMP(N-メチルピロリドン)を含有することがより好ましく、シクロヘキサノンを含有することが更に好ましい。外部量子効率の低下を防止する効果は、シクロヘキサノン(bp=155℃)、NMP(N-メチルピロリドン)(bp=202℃)等の高沸点溶媒を使用した際の乾燥時に有効である。
 本発明の溶媒(C)は、精製処理されたものを用いるのが好ましい。精製処理として、具体的には、(1)シリカゲル、アルミナ、カチオン性イオン交換樹脂、アニオン性イオン交換樹脂等のカラム精製処理、(2)無水硫酸ナトリウム、無水硫酸カルシウム、硫酸マグネシウム、硫酸ストロンチウム、硫酸バリウム、酸化バリウム、酸化カルシウム、酸化マグネシウム、モレキュラーシーブス、ゼオライト等の脱水処理、(3)蒸留処理、(4)不活性ガス(窒素、アルゴン)等によるバブリング処理、(5)濾過、遠心沈降等による不純物の除去処理等、任意の方法を用いることができる。より好ましくは、カラム精製処理、脱水処理、濾過による精製方法である。
When the composition of the present invention contains a light emitting material and a host material as the organic material (B), the solvent (C) is selected from the group consisting of the above-mentioned alcohol solvents, ketone solvents and ester solvents. It preferably contains at least one, and more preferably contains at least one selected from the group consisting of 2-butanone, butyl lactate, amyl lactate, isoamyl lactate and 2-n-butoxyethanol. By using these solvents (C) together with the antioxidant (A), even when a solvent that is originally not excellent in storage stability (for example, butyl lactate, isoamyl lactate, etc.) is used, Storage stability is improved.
In addition, when the composition of the present invention contains a charge transport material as the organic material (B), from the viewpoint of preventing deterioration of the organic EL device performance such as external quantum efficiency, the solvent (C) may be the above-mentioned ketone-based material. It preferably contains a solvent, more preferably contains cyclohexanone and NMP (N-methylpyrrolidone), and more preferably contains cyclohexanone. The effect of preventing a decrease in external quantum efficiency is effective at the time of drying when a high boiling point solvent such as cyclohexanone (bp = 155 ° C.), NMP (N-methylpyrrolidone) (bp = 202 ° C.) is used.
The solvent (C) of the present invention is preferably a purified product. As the purification treatment, specifically, (1) column purification treatment of silica gel, alumina, cationic ion exchange resin, anionic ion exchange resin, etc., (2) anhydrous sodium sulfate, anhydrous calcium sulfate, magnesium sulfate, strontium sulfate, Dehydration treatment of barium sulfate, barium oxide, calcium oxide, magnesium oxide, molecular sieves, zeolite, etc. (3) Distillation treatment, (4) Bubbling treatment with inert gas (nitrogen, argon), (5) Filtration, centrifugal sedimentation Arbitrary methods, such as the removal process of the impurity by etc., can be used. A purification method by column purification treatment, dehydration treatment, and filtration is more preferable.
 [4]膜の形成
 本発明は、本発明の組成物を塗布し、塗布された該組成物を加熱することにより形成された膜にも関する。
 本発明の組成物が、有機材料(B)として発光材料及びホスト材料を含有する場合、本発明は、前記組成物を塗布し、塗布された該組成物を加熱することにより形成された発光層にも関する。更に本発明は、本発明の組成物を塗布し、塗布された該組成物を加熱することを含む、発光層の形成方法にも関する。
 また本発明の組成物が、有機材料(B)として電荷輸送材料を含有する場合、本発明は、前記組成物を塗布し、塗布された該組成物を加熱することにより形成された電荷輸送層にも関する。更に本発明は、本発明の組成物を塗布し、塗布された該組成物を加熱することを含む、電荷輸送層の形成方法にも関する。
[4] Formation of film The present invention also relates to a film formed by applying the composition of the present invention and heating the applied composition.
When the composition of the present invention contains a light emitting material and a host material as the organic material (B), the present invention is a light emitting layer formed by applying the composition and heating the applied composition. Also related. The present invention further relates to a method for forming a light emitting layer, which comprises applying the composition of the present invention and heating the applied composition.
When the composition of the present invention contains a charge transport material as the organic material (B), the present invention is a charge transport layer formed by applying the composition and heating the applied composition. Also related. The present invention further relates to a method for forming a charge transport layer, which comprises applying the composition of the present invention and heating the applied composition.
 発光層としては、膜厚10~200nmで使用されることが好ましく、膜厚20~80nmで使用されることがより好ましい。組成物中の固形分濃度を適切な範囲に設定して適度な粘度をもたせ、塗布性、成膜性を向上させることにより、このような膜厚とすることができる。
 電荷輸送層としては、膜厚5~50nmで使用されることが好ましく、膜厚5~40nmで使用されることがより好ましい。組成物中の固形分濃度を適切な範囲に設定して適度な粘度をもたせ、塗布性、成膜性を向上させることにより、このような膜厚とすることができる。
 電荷輸送層としては、正孔注入層、正孔輸送層、電子注入層、電子輸送層、励起子ブロック層、正孔ブロック層、電子ブロック層であることが好ましく、より好ましくは正孔注入層、正孔輸送層である。
 本発明の組成物中の全固形分濃度は、一般的には1~20質量%、より好ましくは1~10質量%、更に好ましくは2~10質量%である。
 本発明の組成物中の粘度は、一般的には1~30mPa・s、より好ましくは1.5~20mPa・s、更に好ましくは1.5~15mPa・sである。
The light emitting layer is preferably used in a thickness of 10 to 200 nm, more preferably in a thickness of 20 to 80 nm. Such a film thickness can be obtained by setting the solid content concentration in the composition to an appropriate range to give an appropriate viscosity and improving the coating property and film forming property.
The charge transport layer is preferably used in a thickness of 5 to 50 nm, more preferably in a thickness of 5 to 40 nm. Such a film thickness can be obtained by setting the solid content concentration in the composition to an appropriate range to give an appropriate viscosity and improving the coating property and film forming property.
The charge transport layer is preferably a hole injection layer, a hole transport layer, an electron injection layer, an electron transport layer, an exciton block layer, a hole block layer, or an electron block layer, more preferably a hole injection layer. , A hole transport layer.
The total solid content in the composition of the present invention is generally 1 to 20% by mass, more preferably 1 to 10% by mass, and further preferably 2 to 10% by mass.
The viscosity of the composition of the present invention is generally 1 to 30 mPa · s, more preferably 1.5 to 20 mPa · s, and still more preferably 1.5 to 15 mPa · s.
 本発明の組成物は、上記の成分を所定の有機溶媒に溶解し、フィルター濾過した後、次のように所定の支持体又は層上に塗布して用いる。フィルター濾過に用いるフィルターのポアサイズは2.0μm以下、より好ましくは0.5μm以下、更に好ましくは0.3μm以下のポリテトラフロロエチレン製、ポリエチレン製、ナイロン製のものが好ましい。 The composition of the present invention is used by dissolving the above components in a predetermined organic solvent, filtering the solution, and then applying the solution on a predetermined support or layer as follows. The pore size of the filter used for filter filtration is 2.0 μm or less, more preferably 0.5 μm or less, and still more preferably 0.3 μm or less made of polytetrafluoroethylene, polyethylene, or nylon.
 本発明の組成物の塗布方法は特に限定されず、従来公知のいかなる塗布方法によっても形成可能である。例えば、インクジェット法、スプレーコート法、スピンコート法、バーコート法、転写法、印刷法等が挙げられる。
 塗布後の加熱温度は一般的に80℃~220℃であり、より好ましくは100℃~200℃であり、更に好ましくは100℃~180℃である。加熱時間は一般的に1分~60分であり、好ましくは2分~30分が好ましく、より好ましくは5分~30分である。更に、高沸点溶媒の乾燥を促進させるため、真空乾燥法を用いてもよい。
 なお、塗布及び乾燥は、低酸素濃度、低露点温度で行うことが好ましい。酸素濃度としては、1000ppm以下が好ましく、より好ましくは100ppm以下、更に好ましくは10ppm以下である。また、露点温度としては、-40℃以下が好ましく、より好ましくは-60℃以下、更に好ましくは-80℃以下である。なお、塗布及び乾燥については、前述の酸素濃度、露点温度を維持したグローブボックス中で行うことが好ましい。
The coating method of the composition of the present invention is not particularly limited, and can be formed by any conventionally known coating method. Examples thereof include an ink jet method, a spray coating method, a spin coating method, a bar coating method, a transfer method, and a printing method.
The heating temperature after coating is generally 80 ° C to 220 ° C, more preferably 100 ° C to 200 ° C, still more preferably 100 ° C to 180 ° C. The heating time is generally 1 minute to 60 minutes, preferably 2 minutes to 30 minutes, more preferably 5 minutes to 30 minutes. Furthermore, a vacuum drying method may be used to promote drying of the high boiling point solvent.
The application and drying are preferably performed at a low oxygen concentration and a low dew point temperature. As oxygen concentration, 1000 ppm or less is preferable, More preferably, it is 100 ppm or less, More preferably, it is 10 ppm or less. The dew point temperature is preferably −40 ° C. or lower, more preferably −60 ° C. or lower, and further preferably −80 ° C. or lower. In addition, about application | coating and drying, it is preferable to carry out in the glove box which maintained the above-mentioned oxygen concentration and dew point temperature.
 [5]有機電界発光素子
 本発明における有機電界発光素子について詳細に説明する。
 本発明における有機電界発光素子は、本発明の組成物から形成される発光層又は電荷輸送層を有する。
 より具体的には、本発明における有機電界発光素子は、基板上に、陽極及び陰極を含む一対の電極と、該電極間に少なくとも一層の有機層を有する有機電界発光素子であって、該少なくとも一層の有機層として本発明の組成物から形成される発光層又は電荷輸送層を有する。
[5] Organic electroluminescent device The organic electroluminescent device of the present invention will be described in detail.
The organic electroluminescent element in the present invention has a light emitting layer or a charge transport layer formed from the composition of the present invention.
More specifically, the organic electroluminescent device according to the present invention is an organic electroluminescent device having a pair of electrodes including an anode and a cathode on a substrate, and at least one organic layer between the electrodes, It has the light emitting layer or charge transport layer formed from the composition of this invention as one organic layer.
 本発明の有機電界発光素子において、発光層又は電荷輸送層以外にも更に有機層を有していてもよい。
 発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は、透明若しくは半透明であることが好ましい。
 図1は、本発明に係る有機電界発光素子の構成の一例を示している。
 図1に示される本発明に係る有機電界発光素子10は、支持基板2上において、陽極3と陰極9との間に発光層6が挟まれている。具体的には、陽極3と陰極9との間に正孔注入層4、正孔輸送層5、発光層6、正孔ブロック層7、及び電子輸送層8がこの順に積層されている。
The organic electroluminescent element of the present invention may further have an organic layer in addition to the light emitting layer or the charge transport layer.
In view of the properties of the light-emitting element, at least one of the anode and the cathode is preferably transparent or translucent.
FIG. 1 shows an example of the configuration of an organic electroluminescent device according to the present invention.
In the organic electroluminescent element 10 according to the present invention shown in FIG. 1, a light emitting layer 6 is sandwiched between an anode 3 and a cathode 9 on a support substrate 2. Specifically, a hole injection layer 4, a hole transport layer 5, a light emitting layer 6, a hole block layer 7, and an electron transport layer 8 are laminated in this order between the anode 3 and the cathode 9.
<有機層の構成>
 前記有機層の層構成としては、特に制限はなく、有機電界発光素子の用途、目的に応じて適宜選択することができるが、前記透明電極上に又は後述の背面電極上に形成されるのが好ましい。この場合、有機層は、前記透明電極又は後述の背面電極上の前面又は一面に形成される。
 有機層の形状、大きさ、及び厚み等については、特に制限はなく、目的に応じて適宜選択することができる。
<Structure of organic layer>
There is no restriction | limiting in particular as a layer structure of the said organic layer, Although it can select suitably according to the use and objective of an organic electroluminescent element, It is formed on the said transparent electrode or the below-mentioned back electrode. preferable. In this case, the organic layer is formed on the front surface or one surface of the transparent electrode or the back electrode described later.
There is no restriction | limiting in particular about the shape of a organic layer, a magnitude | size, thickness, etc., According to the objective, it can select suitably.
 具体的な層構成として、下記が挙げられるが本発明はこれらの構成に限定されるものではない。
 ・陽極/正孔輸送層/発光層/電子輸送層/陰極
 ・陽極/正孔輸送層/発光層/ブロック層/電子輸送層/陰極
 ・陽極/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/陰極
 ・陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
 ・陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 ・陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/陰極
 ・陽極/正孔注入層/正孔輸送層/発光層/ブロック層/電子輸送層/電子注入層/陰極
 ・陽極/正孔注入層/正孔輸送層/励起子ブロック層/発光層/電子輸送層/電子注入層/陰極
 有機電界発光素子の素子構成、基板、陰極及び陽極については、例えば、特開2008-270736号公報に詳述されており、該公報に記載の事項を本発明に適用することができる。
Specific examples of the layer configuration include the following, but the present invention is not limited to these configurations.
Anode / hole transport layer / light-emitting layer / electron transport layer / cathode Anode / hole transport layer / light-emitting layer / block layer / electron transport layer / cathode Anode / hole transport layer / light-emitting layer / block layer / electron Transport layer / electron injection layer / cathode ・ Anode / hole injection layer / light emitting layer / electron transport layer / electron injection layer / cathode ・ Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection Layer / Cathode ・ Anode / Hole injection layer / Hole transport layer / Light emitting layer / Block layer / Electron transport layer / Cathode ・ Anode / Hole injection layer / Hole transport layer / Light emitting layer / Block layer / Electron transport layer / Electron injection layer / cathode ・ Anode / hole injection layer / hole transport layer / exciton block layer / light emitting layer / electron transport layer / electron injection layer / cathode For device configuration of organic electroluminescent device, substrate, cathode and anode For example, it is described in detail in Japanese Patent Laid-Open No. 2008-270736, and matters described in the gazette It can be applied to the present invention.
<基板>
 本発明で使用する基板としては、有機層から発せられる光を散乱又は減衰させない基板であることが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
<Board>
The substrate used in the present invention is preferably a substrate that does not scatter or attenuate light emitted from the organic layer. In the case of an organic material, it is preferable that it is excellent in heat resistance, dimensional stability, solvent resistance, electrical insulation, and workability.
<陽極>
 陽極は、通常、有機層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
<Anode>
The anode usually only needs to have a function as an electrode for supplying holes to the organic layer, and there is no particular limitation on the shape, structure, size, etc., depending on the use and purpose of the light-emitting element, It can select suitably from well-known electrode materials. As described above, the anode is usually provided as a transparent anode.
<陰極>
 陰極は、通常、有機層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
<Cathode>
The cathode usually has a function as an electrode for injecting electrons into the organic layer, and there is no particular limitation on the shape, structure, size, etc., and it is known depending on the use and purpose of the light-emitting element. The electrode material can be selected as appropriate.
 基板、陽極、陰極については、特開2008-270736号公報の段落番号〔0070〕~〔0089〕に記載の事項を本発明に適用することができる。 Regarding the substrate, anode, and cathode, the matters described in paragraph numbers [0070] to [0089] of JP-A-2008-270736 can be applied to the present invention.
<有機層>
 本発明における有機層について説明する。
<Organic layer>
The organic layer in the present invention will be described.
〔有機層の形成〕
 本発明の有機電界発光素子において、各有機層は、蒸着法やスパッタリング法等の乾式成膜法、転写法、印刷法、スピンコート法、バーコート法、インクジェット法、スプレー法等の溶液塗布プロセスのいずれによっても好適に形成することができる。
[Formation of organic layer]
In the organic electroluminescent device of the present invention, each organic layer is formed by a solution coating process such as a dry film forming method such as an evaporation method or a sputtering method, a transfer method, a printing method, a spin coating method, a bar coating method, an ink jet method, or a spray method. Any of these can be suitably formed.
 本発明の組成物から形成される発光層又は電荷輸送層の他、有機層のいずれか一層は湿式法により成膜することが特に好ましい。また、他の層については乾式法又は湿式法を適宜選択して成膜することができる。湿式法を用いると有機層を容易に大面積化することができ、高輝度で発光効率に優れた発光素子が低コストで効率よく得られ、好ましい。乾式法としては蒸着法、スパッタリング法等が使用でき、湿式法としてはディッピング法、スピンコート法、ディップコート法、キャスト法、ダイコート法、ロールコート法、バーコート法、グラビアコート法、スプレーコート法、インクジェット法等が使用可能である。これらの成膜法は有機層の材料に応じて適宜選択できる。湿式法により製膜した場合は製膜した後に乾燥してよい。乾燥は塗布層が損傷しないように温度、圧力等の条件を選択して行う。 In addition to the light emitting layer or the charge transport layer formed from the composition of the present invention, any one of the organic layers is particularly preferably formed by a wet method. The other layers can be formed by appropriately selecting a dry method or a wet method. When the wet method is used, the organic layer can be easily increased in area, and a light-emitting element having high luminance and excellent light emission efficiency can be obtained efficiently at low cost, which is preferable. Vapor deposition, sputtering, etc. can be used as dry methods, and dipping, spin coating, dip coating, casting, die coating, roll coating, bar coating, gravure coating, and spray coating as wet methods. An ink jet method or the like can be used. These film forming methods can be appropriately selected according to the material of the organic layer. When the film is formed by a wet method, it may be dried after the film is formed. Drying is performed by selecting conditions such as temperature and pressure so that the coating layer is not damaged.
 上記湿式製膜法(塗布プロセス)で用いる塗布液は通常、有機層の材料と、それを溶解又は分散するための溶剤からなる。溶剤は特に限定されず、有機層に用いる材料に応じて選択すればよい。溶剤の具体例としては、ハロゲン系溶剤(クロロホルム、四塩化炭素、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン等)、ケトン系溶剤(アセトン、ジエチルケトン、n-プロピルメチルケトン、2-ブタノン、シクロヘキサノン等)、芳香族系溶剤(ベンゼン、トルエン、キシレン等)、エステル系溶剤(酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン、炭酸ジエチル等)、エーテル系溶剤(テトラヒドロフラン、ジオキサン等)、アミド系溶剤(ジメチルホルムアミド、ジメチルアセトアミド等)、ジメチルスルホキシド、アルコール系溶剤(メタノール、プロパノール、ブタノールなど)、水等が挙げられる。
 なお、塗布液中の溶剤に対する固形分量は特に制限はなく、塗布液の粘度も製膜方法に応じて任意に選択することができる。
The coating solution used in the wet film-forming method (coating process) usually comprises an organic layer material and a solvent for dissolving or dispersing it. A solvent is not specifically limited, What is necessary is just to select according to the material used for an organic layer. Specific examples of solvents include halogen solvents (chloroform, carbon tetrachloride, dichloromethane, 1,2-dichloroethane, chlorobenzene, etc.), ketone solvents (acetone, diethyl ketone, n-propyl methyl ketone, 2-butanone, cyclohexanone, etc.) ), Aromatic solvents (benzene, toluene, xylene, etc.), ester solvents (ethyl acetate, n-propyl acetate, n-butyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, diethyl carbonate, etc.), ether Examples thereof include system solvents (tetrahydrofuran, dioxane, etc.), amide solvents (dimethylformamide, dimethylacetamide, etc.), dimethyl sulfoxide, alcohol solvents (methanol, propanol, butanol, etc.), water and the like.
The solid content with respect to the solvent in the coating solution is not particularly limited, and the viscosity of the coating solution can be arbitrarily selected according to the film forming method.
〔発光層〕
 本発明の有機電界発光素子において、発光層は上述の発光材料を含有するが、その他の発光材料として、燐光発光性化合物を更に含有してもよい。燐光発光性化合物は、三重項励起子から発光することができる化合物であれば特に限定されることはない。燐光発光性化合物としては、オルトメタル化錯体又はポルフィリン錯体を用いるのが好ましく、オルトメタル化錯体を用いるのがより好ましい。ポルフィリン錯体の中ではポルフィリン白金錯体が好ましい。燐光発光性化合物は単独で使用しても2種以上を併用してもよい。
[Light emitting layer]
In the organic electroluminescent element of the present invention, the light emitting layer contains the above-described light emitting material, but may further contain a phosphorescent compound as another light emitting material. The phosphorescent compound is not particularly limited as long as it is a compound that can emit light from triplet excitons. As the phosphorescent compound, an orthometalated complex or a porphyrin complex is preferably used, and an orthometalated complex is more preferably used. Of the porphyrin complexes, a porphyrin platinum complex is preferred. The phosphorescent compounds may be used alone or in combination of two or more.
 本発明でいうオルトメタル化錯体とは、山本明夫著「有機金属化学 基礎と応用」,150頁及び232頁,裳華房社(1982年)、H. Yersin著「Photochemistry and Photophysics of Coordination Compounds」,71~77頁及び135~146頁,Springer-Verlag社(1987年)等に記載されている化合物群の総称である。オルトメタル化錯体を形成する配位子は特に限定されないが、2-フェニルピリジン誘導体、7,8-ベンゾキノリン誘導体、2-(2-チエニル)ピリジン誘導体、2-(1-ナフチル)ピリジン誘導体又は2-フェニルキノリン誘導体であるのが好ましい。これら誘導体は置換基を有してもよい。また、これらのオルトメタル化錯体形成に必須の配位子以外に他の配位子を有していてもよい。オルトメタル化錯体を形成する中心金属としては、遷移金属であればいずれも使用可能であり、本発明ではロジウム、白金、金、イリジウム、ルテニウム、パラジウム等を好ましく用いることができる。中でもイリジウムが特に好ましい。このようなオルトメタル化錯体を含む有機層は、発光輝度及び発光効率に優れている。オルトメタル化錯体については、特願2000-254171号の段落番号0152~0180にもその具体例が記載されている。 The ortho-metalated complex referred to in the present invention refers to Akio Yamamoto's “Organic Metal Chemistry Fundamentals and Applications”, pages 150 and 232, Hankabo (1982), H.C. Yersin's “Photochemistry and Photophysics of Coordination Compounds”, pages 71 to 77 and pages 135 to 146, Springer-Verlag (1987), etc. The ligand forming the orthometalated complex is not particularly limited, but a 2-phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2- (2-thienyl) pyridine derivative, a 2- (1-naphthyl) pyridine derivative or A 2-phenylquinoline derivative is preferred. These derivatives may have a substituent. Moreover, you may have another ligand other than these essential ligands for ortho metalation complex formation. As the central metal forming the orthometalated complex, any transition metal can be used. In the present invention, rhodium, platinum, gold, iridium, ruthenium, palladium and the like can be preferably used. Of these, iridium is particularly preferable. An organic layer containing such an orthometalated complex is excellent in light emission luminance and light emission efficiency. Specific examples of ortho-metalated complexes are also described in paragraphs 0152 to 0180 of Japanese Patent Application No. 2000-254171.
 本発明で用いるオルトメタル化錯体は、Inorg.Chem.,30,1685,1991、Inorg.Chem.,27,3464,1988、Inorg.Chem.,33,545,1994、Inorg.Chim.Acta,181,245,1991、J.Organomet.Chem.,335,293,1987、J.Am.Chem.Soc.,107,1431,1985等に記載の公知の手法で合成することができる。 The orthometalated complex used in the present invention is Inorg. Chem. 30, 1685, 1991, Inorg. Chem. 27, 3464, 1988, Inorg. Chem. 33, 545, 1994, Inorg. Chim. Acta, 181, 245, 1991; Organomet. Chem. , 335, 293, 1987; Am. Chem. Soc. , 107, 1431, 1985 and the like.
 発光層中の上述の発光材料及び燐光発光性化合物の含有量は特に制限されないが、例えば0.1~70質量%であり、1~20質量%であるのが好ましい。上述の発光材料及び燐光発光性化合物の含有量が0.1質量%未満であるか、又は70質量%を超えると、その効果が十分に発揮されない場合がある。 The contents of the light-emitting material and the phosphorescent compound in the light-emitting layer are not particularly limited, but are, for example, 0.1 to 70% by mass, and preferably 1 to 20% by mass. If the content of the light emitting material and the phosphorescent compound is less than 0.1% by mass or exceeds 70% by mass, the effect may not be sufficiently exhibited.
 本発明において、発光層は上述のホスト材料を含有するが、必要に応じて更にホスト化合物を含有してもよい。 In the present invention, the light emitting layer contains the above-mentioned host material, but may further contain a host compound as necessary.
 上記ホスト化合物とは、その励起状態から燐光発光性化合物へエネルギー移動が起こり、その結果、該燐光発光性化合物を発光させる化合物である。その具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリデン化合物、ポルフィリン化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体、メタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール等を配位子とする金属錯体、ポリシラン化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等が挙げられる。ホスト化合物は1種単独で使用しても2種以上を併用してもよい。 The host compound is a compound that causes energy transfer from the excited state to the phosphorescent compound, and as a result, causes the phosphorescent compound to emit light. Specific examples include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives. , Fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide oxide Derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, heterocycles such as naphthalene and perylene Carboxylic anhydride, phthalocyanine derivative, metal complex of 8-quinolinol derivative, metal phthalocyanine, metal complex having benzoxazole or benzothiazole as a ligand, polysilane compound, poly (N-vinylcarbazole) derivative, aniline copolymer , Conductive polymers such as thiophene oligomers and polythiophenes, polythiophene derivatives, polyphenylene derivatives, polyphenylene vinylene derivatives, polyfluorene derivatives, and the like. A host compound may be used individually by 1 type, or may use 2 or more types together.
 発光層の厚みは10~200nmとするのが好ましく、20~80nmとするのがより好ましい。厚みが200nmを超えると駆動電圧が上昇する場合があり、10nm未満であると発光素子が短絡する場合がある。 The thickness of the light emitting layer is preferably 10 to 200 nm, more preferably 20 to 80 nm. When the thickness exceeds 200 nm, the driving voltage may increase. When the thickness is less than 10 nm, the light emitting element may be short-circuited.
(正孔注入層、正孔輸送層)
 本発明の有機電界発光素子は、正孔注入層及び正孔輸送層の少なくとも一方を有することが好ましい。正孔注入層及び正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。正孔注入層及び正孔輸送層は、有機材料(B)として正孔注入材料及び正孔輸送材料をそれぞれ含有する本発明の組成物から形成されることが好ましい。
 正孔注入層、正孔輸送層については、例えば、特開2008-270736、特開2007-266458に詳述されており、これらの公報に記載の事項を本発明に適用することができる。
(Hole injection layer, hole transport layer)
The organic electroluminescent element of the present invention preferably has at least one of a hole injection layer and a hole transport layer. The hole injection layer and the hole transport layer are layers having a function of receiving holes from the anode or the anode side and transporting them to the cathode side. The hole injection layer and the hole transport layer are preferably formed from the composition of the present invention each containing a hole injection material and a hole transport material as the organic material (B).
The hole injection layer and the hole transport layer are described in detail, for example, in JP-A-2008-270736 and JP-A-2007-266458, and the matters described in these publications can be applied to the present invention.
(電子注入層、電子輸送層)
 本発明の有機電界発光素子は、電子注入層、及び電子輸送層を有してもよい。電子注入層、及び電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。これらの層に用いる電子注入材料、電子輸送材料は低分子化合物であっても高分子化合物であってもよい。
 電子注入層、電子輸送層については、例えば、特開2008-270736、特開2007-266458に詳述されており、これらの公報に記載の事項を本発明に適用することができる。
(Electron injection layer, electron transport layer)
The organic electroluminescent element of the present invention may have an electron injection layer and an electron transport layer. The electron injection layer and the electron transport layer are layers having a function of receiving electrons from the cathode or the cathode side and transporting them to the anode side. The electron injection material and the electron transport material used for these layers may be a low molecular compound or a high molecular compound.
The electron injection layer and the electron transport layer are described in detail, for example, in JP-A-2008-270736 and JP-A-2007-266458, and the matters described in these publications can be applied to the present invention.
(正孔ブロック層)
 正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機層として、正孔ブロック層を設けることができる。
 正孔ブロック層を構成する有機化合物の例としては、アルミニウム(III)ビス(2-メチル-8-キノリノラート)4-フェニルフェノレート(Aluminum(III)bis(2-methyl-8-quinolinato)4-phenylphenolate(BAlqと略記する))等のアルミニウム錯体、トリアゾール誘導体、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline(BCPと略記する))等のフェナントロリン誘導体、トリフェニレン誘導体、カルバゾール誘導体等が挙げられる。
 正孔ブロック層の厚さとしては、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。
 正孔ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
(Hole blocking layer)
The hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side. In the present invention, a hole blocking layer can be provided as an organic layer adjacent to the light emitting layer on the cathode side.
Examples of organic compounds constituting the hole blocking layer include aluminum (III) bis (2-methyl-8-quinolinolato) 4-phenylphenolate (Aluminum (III) bis (2-methyl-8-quinolinato) 4- aluminum complexes such as phenylphenolate (abbreviated as BAlq), triazole derivatives, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (2,9-Dimethyl-4,7-diphenyl-1,10-) phenanthroline derivatives such as phenanthroline (abbreviated as BCP), triphenylene derivatives, carbazole derivatives, and the like.
The thickness of the hole blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
The hole blocking layer may have a single layer structure made of one or more of the materials described above, or may have a multilayer structure made of a plurality of layers having the same composition or different compositions.
(電子ブロック層)
 電子ブロック層は、陰極側から発光層に輸送された電子が、陽極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陽極側で隣接する有機層として、電子ブロック層を設けることができる。
 電子ブロック層を構成する有機化合物の例としては、例えば前述の正孔輸送材料として挙げたものが適用できる。
 電子ブロック層の厚さとしては、1nm~500nmであるのが好ましく、5nm~200nmであるのがより好ましく、10nm~100nmであるのが更に好ましい。
 電子ブロック層は、上述した材料の一種又は二種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
(Electronic block layer)
The electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing through to the anode side. In the present invention, an electron blocking layer can be provided as an organic layer adjacent to the light emitting layer on the anode side.
As an example of the organic compound constituting the electron blocking layer, for example, those mentioned as the hole transport material described above can be applied.
The thickness of the electron blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and even more preferably 10 nm to 100 nm.
The electron blocking layer may have a single layer structure composed of one or more of the above-described materials, or may have a multilayer structure composed of a plurality of layers having the same composition or different compositions.
(励起子ブロック層の説明)
 励起子ブロック層は、発光層と正孔輸送層の界面、若しくは発光層と電子輸送層の界面のいずれか一方、又は両方に形成する層であり、発光層中で生成した励起子が正孔輸送層や電子輸送層へ拡散し、発光することなく失活するのを防止する層のことである。励起子ブロック層としては、カルバゾール誘導体からなることが好ましい。
(Description of exciton block layer)
The exciton blocking layer is a layer formed at one or both of the interface between the light emitting layer and the hole transport layer, or the interface between the light emitting layer and the electron transport layer, and the excitons generated in the light emitting layer are holes. It is a layer that diffuses into the transport layer and the electron transport layer and prevents deactivation without emitting light. The exciton blocking layer is preferably made of a carbazole derivative.
〔その他の有機層〕
 本発明の有機電界発光素子は、特開平7-85974号、同7-192866号、同8-22891号、同10-275682号、同10-106746号等に記載の保護層を有していてもよい。保護層は発光素子の最上面に形成する。ここで最上面とは、基材、透明電極、有機層及び背面電極をこの順に積層する場合には背面電極の外側表面を指し、基材、背面電極、有機層及び透明電極をこの順に積層する場合には透明電極の外側表面を指す。保護層の形状、大きさ、厚み等は特に限定されない。保護層をなす材料は、水分や酸素等の発光素子を劣化させ得るものが素子内に侵入又は透過するのを抑制する機能を有しているものであれば特に限定されず、酸化ケイ素、二酸化ケイ素、酸化ゲルマニウム、二酸化ゲルマニウム等が使用できる。
[Other organic layers]
The organic electroluminescence device of the present invention has a protective layer described in JP-A-7-85974, 7-192866, 8-22891, 10-275682, 10-106746, etc. Also good. The protective layer is formed on the uppermost surface of the light emitting element. Here, when the base material, the transparent electrode, the organic layer, and the back electrode are laminated in this order, the top surface refers to the outer surface of the back electrode, and the base material, the back electrode, the organic layer, and the transparent electrode are laminated in this order. In some cases, it refers to the outer surface of the transparent electrode. The shape, size, thickness and the like of the protective layer are not particularly limited. The material for forming the protective layer is not particularly limited as long as it has a function of suppressing intrusion or permeation of a light-emitting element such as moisture or oxygen into the element. Silicon, germanium oxide, germanium dioxide or the like can be used.
 保護層の形成方法は特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子センエピタキシ法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等が適用できる。 The method for forming the protective layer is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular sensing epitaxy, cluster ion beam, ion plating, plasma polymerization, plasma CVD, laser CVD Thermal CVD method, coating method, etc. can be applied.
〔封止〕
 また、有機電界発光素子には水分や酸素の侵入を防止するための封止層を設けるのが好ましい。封止層を形成する材料としては、テトラフルオロエチレンと少なくとも1種のコモノマーとの共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリユリア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレン又はジクロロジフルオロエチレンと他のコモノマーとの共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質、金属(In、Sn、Pb、Au、Cu、Ag、Al、Tl、Ni等)、金属酸化物(MgO、SiO、SiO、Al、GeO、NiO、CaO、BaO、Fe、Y、TiO等)、金属フッ化物(MgF、LiF、AlF、CaF等)、液状フッ素化炭素(パーフルオロアルカン、パーフルオロアミン、パーフルオロエーテル等)、該液状フッ素化炭素に水分や酸素の吸着剤を分散させたもの等が使用可能である。
[Sealing]
The organic electroluminescent element is preferably provided with a sealing layer for preventing moisture and oxygen from entering. As a material for forming the sealing layer, a copolymer of tetrafluoroethylene and at least one comonomer, a fluorinated copolymer having a cyclic structure in the copolymer main chain, polyethylene, polypropylene, polymethyl methacrylate, polyimide, Polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, chlorotrifluoroethylene or a copolymer of dichlorodifluoroethylene and another comonomer, a water-absorbing substance having a water absorption of 1% or more, a water absorption of 0. 1% or less moisture-proof material, metal (In, Sn, Pb, Au, Cu, Ag, Al, Tl, Ni, etc.), metal oxide (MgO, SiO, SiO 2 , Al 2 O 3 , GeO, NiO, CaO, BaO, Fe 2 O 3 , Y 2 O 3, TiO 2 , etc.), metal fluorides (M F 2, LiF, AlF 3, CaF 2 , etc.), liquid fluorinated carbon (perfluoroalkane, perfluoro amines, perfluoroether, etc.), the liquid fluorinated carbon as dispersed adsorbent moisture or oxygen, etc. Can be used.
 本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト~15ボルト)、又は直流電流を印加することにより、発光を得ることができる。 The organic electroluminescence device of the present invention emits light by applying a direct current (which may include an alternating current component as necessary) voltage (usually 2 to 15 volts) or a direct current between the anode and the cathode. Obtainable.
 本発明の有機電界発光素子の駆動方法については、特開平2-148687号、同6-301355号、同5-29080号、同7-134558号、同8-234685号、同8-241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。 The driving method of the organic electroluminescence device of the present invention is described in JP-A-2-148687, JP-A-6-301355, JP-A-5-290080, JP-A-7-134558, JP-A-8-234585, and JP-A-8-2441047. The driving methods described in each publication, Japanese Patent No. 2784615, US Pat. Nos. 5,828,429, 6023308, and the like can be applied.
 以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の主旨から逸脱しない限り適宜変更することができる。従って本発明の範囲は以下の具体例に制限されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. The materials, reagents, substance amounts and ratios, operations, and the like shown in the following examples can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following specific examples.
〔発光層塗布液への酸化防止剤の添加〕
<PL量子収率の測定>
 1.1mmの厚み、25mm角の石英ガラス基板上をアルカリ洗浄し、リンスしたのち、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。このガラス上に以下の実施例1-1、2-1及び比較例1-1で調製した発光層塗布液を用い、実施例1-1に記載の方法で発光層単膜を形成した。
 絶対PL量子収率測定装置C9920-02(浜松ホトニクス株式会社製)を用いて、形成した発光層単膜のPL量子収率を測定した。なお、リファレンスとしては、成膜されていない石英ガラスを用いた。
[Addition of antioxidant to light-emitting layer coating solution]
<Measurement of PL quantum yield>
A quartz glass substrate having a thickness of 1.1 mm and a 25 mm square was alkali washed and rinsed, and then ultrasonically washed in 2-propanol, followed by UV-ozone treatment for 30 minutes. A single light emitting layer film was formed on this glass by the method described in Example 1-1 using the light emitting layer coating solutions prepared in Examples 1-1 and 2-1 and Comparative Example 1-1 below.
Using an absolute PL quantum yield measuring apparatus C9920-02 (manufactured by Hamamatsu Photonics Co., Ltd.), the PL quantum yield of the formed light emitting layer single film was measured. As a reference, quartz glass on which no film was formed was used.
(実施例1-1)
 電子工業用2-ブタノン80質量部に、酸化防止剤:1,2-ジメトキシエタン(沸点85℃)20質量部を溶解させた混合溶媒Aを調製した。混合溶媒A98質量部と、下記構造式H-1のカルバゾールホスト1.8質量部と、下記構造式E-1のIr錯体0.2質量部とを溶解し、発光層塗布液Aを調製した。
 発光層塗布液Aにモレキュラーシーブ(商品名:モレキュラーシーブ3A 1/16、和光純薬株式会社製)を添加し、グローブボックス中で孔径0.22μmのシリンジフィルターを用いて濾過して調製した発光層塗布液を、グローブボックス(露点-60℃、酸素濃度10ppm)中でスピンコートし、120℃で30分間乾燥と160℃で10分アニール処理をして、厚み50nmの発光層単膜をガラス基板上に形成した。
Example 1-1
A mixed solvent A was prepared by dissolving 20 parts by mass of an antioxidant: 1,2-dimethoxyethane (boiling point 85 ° C.) in 80 parts by mass of 2-butanone for electronic industry. A light-emitting layer coating solution A was prepared by dissolving 98 parts by mass of a mixed solvent A, 1.8 parts by mass of a carbazole host having the following structural formula H-1 and 0.2 parts by mass of an Ir complex having the following structural formula E-1. .
Luminescence prepared by adding molecular sieve (trade name: Molecular sieve 3A 1/16, manufactured by Wako Pure Chemical Industries, Ltd.) to the light-emitting layer coating liquid A, and filtering using a syringe filter having a pore size of 0.22 μm in a glove box. The layer coating solution is spin-coated in a glove box (dew point -60 ° C., oxygen concentration 10 ppm), dried at 120 ° C. for 30 minutes and annealed at 160 ° C. for 10 minutes. Formed on a substrate.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(実施例2-1)
 実施例1-1に記載の酸化防止剤:1,2-ジメトキシエタンをビス(2-メトキシエチル)エーテル(沸点162℃)に変更して発光層塗布液Bを調製し、かつアニール温度を165℃に変更した以外には、実施例1-1と同様に発光層単膜を形成した。
Example 2-1
Antioxidant described in Example 1-1: Luminescent layer coating solution B was prepared by changing 1,2-dimethoxyethane to bis (2-methoxyethyl) ether (boiling point 162 ° C.), and the annealing temperature was 165 A light emitting layer single film was formed in the same manner as in Example 1-1 except that the temperature was changed to ° C.
(比較例1-1)
 実施例1-1に記載の酸化防止剤を添加せずに、発光層塗布液Cを調製した以外には、実施例1-1と同様に発光層単膜を形成した。
(Comparative Example 1-1)
A light emitting layer single film was formed in the same manner as in Example 1-1 except that the light emitting layer coating solution C was prepared without adding the antioxidant described in Example 1-1.
<有機電界発光素子の作製>
 0.7mmの厚み、25mm角のガラス基板上に陽極としてITO(Indium Tin Oxide)を厚み150nmにスパッタリング蒸着したのち、エッチング及び洗浄した。ITOを成膜した基板を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。このガラス基板上に以下の各層を形成した。
 なお、スピンコートと乾燥、アニール処理は、グローブボックス(露点-60℃、酸素濃度10ppm)内で行った。
 次に、陽極(ITO)上に、前記構造式で表されるPTPDES(ケミプロ化成製、重量平均分子量=13000。nは括弧内の構造の繰り返し数を意味し、整数である。)2質量部を、電子工業用シクロヘキサノン(関東化学製)98質量部に溶解又は分散させた正孔注入層塗布液をスピンコートした後、120℃で10分間乾燥し、160℃で60分間アニール処理することで、厚み40nmの正孔注入層を形成した。
<Production of organic electroluminescence device>
After depositing ITO (Indium Tin Oxide) as a positive electrode on a 0.7 mm thick, 25 mm square glass substrate to a thickness of 150 nm, etching and cleaning were performed. The substrate on which the ITO film was formed was placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. The following layers were formed on this glass substrate.
Note that spin coating, drying, and annealing were performed in a glove box (dew point -60 ° C., oxygen concentration 10 ppm).
Next, on the anode (ITO), PTPDES represented by the above structural formula (manufactured by Chemipro Kasei Co., Ltd., weight average molecular weight = 13000. N represents the number of repetitions of the structure in parentheses and is an integer.) 2 parts by mass Is spin-coated with a hole injection layer coating solution dissolved or dispersed in 98 parts by mass of cyclohexanone for electronics industry (manufactured by Kanto Chemical), dried at 120 ° C. for 10 minutes, and annealed at 160 ° C. for 60 minutes. A hole injection layer having a thickness of 40 nm was formed.
(実施例1-2)
 形成した正孔注入層上に、実施例1-1と同様に発光層塗布液Aからなる発光層を形成した。
Example 1-2
On the formed hole injection layer, a light emitting layer made of the light emitting layer coating solution A was formed in the same manner as in Example 1-1.
(実施例2-2)
 形成した正孔注入層上に、実施例2-1と同様に発光層塗布液Bからなる発光層を形成した。
(Example 2-2)
On the formed hole injection layer, a light emitting layer made of the light emitting layer coating solution B was formed in the same manner as in Example 2-1.
(比較例1-2)
 形成した正孔注入層上に、比較例1-1と同様に発光層塗布液Cからなる発光層を形成した。
(Comparative Example 1-2)
On the formed hole injection layer, a light emitting layer made of the light emitting layer coating liquid C was formed in the same manner as in Comparative Example 1-1.
(電子輸送層/電子注入層/陰極/封止)
 次に、発光層上に、BAlq(Bis-(2-methyl-8-quinolinolato)-4-(phenyl-phenolate)-aluminium-(III))を真空蒸着法にて蒸着して、厚み40nmの電子輸送層を形成した。
(Electron transport layer / electron injection layer / cathode / sealing)
Next, BAlq (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminum- (III)) was deposited on the light-emitting layer by a vacuum deposition method, thereby forming an electron having a thickness of 40 nm. A transport layer was formed.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 次に、電子輸送層上にフッ化リチウム(LiF)を蒸着して、厚み1nmの電子注入層を形成した。
 次に、電子注入層上に金属アルミニウムを蒸着し、厚み70nmの陰極を形成した。
 作製した積層体を、アルゴンガスで置換したグローブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。
Next, lithium fluoride (LiF) was deposited on the electron transport layer to form an electron injection layer having a thickness of 1 nm.
Next, metal aluminum was vapor-deposited on the electron injection layer to form a cathode having a thickness of 70 nm.
The produced laminate was put in a glove box substituted with argon gas, and sealed using a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
(素子性能の評価)
 <外部量子効率の測定>
 東陽テクニカ株式会社製ソースメジャーユニット2400を用いて、直流電圧を各素子に印加し、発光させた。発光スペクトル及び輝度はトプコン社製スペクトルアナライザーSR-3を用いて測定し、これらの数値をもとに電流が10mA/cmにおける外部量子効率を輝度換算法により算出した。
 実施例1-1、2-1及び比較例1-1で測定したPL量子収率の結果と、実施例1-2、2-2及び比較例1-2で作成した素子について測定した外部量子効率の結果を、下記表1中の実施例1、2及び比較例1にそれぞれ記載した。
(Evaluation of device performance)
<Measurement of external quantum efficiency>
Using a source measure unit 2400 manufactured by Toyo Technica Co., Ltd., a direct current voltage was applied to each element to emit light. The emission spectrum and luminance were measured using a spectrum analyzer SR-3 manufactured by Topcon Corporation, and the external quantum efficiency at a current of 10 mA / cm 2 was calculated by the luminance conversion method based on these numerical values.
Results of PL quantum yield measured in Examples 1-1, 2-1 and Comparative Example 1-1, and external quantum measured for devices prepared in Examples 1-2, 2-2 and Comparative Example 1-2 The efficiency results are shown in Examples 1 and 2 and Comparative Example 1 in Table 1 below.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
 表1の結果から明らかなように、本発明に係る酸化防止剤を添加しない発光層塗布液を使用した比較例1に対し、本発明に係る酸化防止剤を添加した発光層塗布液を使用した実施例1及び2は、PL量子収率及び外部量子効率の両方に優れていた。 As is clear from the results in Table 1, the light emitting layer coating solution to which the antioxidant according to the present invention was added was used for Comparative Example 1 in which the light emitting layer coating solution to which the antioxidant according to the present invention was not added was used. Examples 1 and 2 were excellent in both PL quantum yield and external quantum efficiency.
(発光層塗布液の保存安定性)
(実施例3)
 乳酸ブチル48質量部、2-n-ブトキシエタノール32質量部、及び酸化防止剤:ビス(2-メトキシエチル)エーテル20質量部を溶解させた混合溶媒Dを調製した。混合溶媒D98質量部と、上記構造式H-1のカルバゾールホスト1.8質量部と、下記構造式E-2のIr錯体0.2質量部とを溶解し、発光層塗布液Dを調製した。
(Storage stability of luminescent layer coating solution)
(Example 3)
A mixed solvent D in which 48 parts by mass of butyl lactate, 32 parts by mass of 2-n-butoxyethanol, and 20 parts by mass of an antioxidant: bis (2-methoxyethyl) ether were prepared. A light-emitting layer coating solution D was prepared by dissolving 98 parts by mass of the mixed solvent D, 1.8 parts by mass of the carbazole host having the above structural formula H-1 and 0.2 parts by mass of the Ir complex having the following structural formula E-2. .
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(比較例2)
 酸化防止剤を添加せずに、乳酸ブチル60質量部、2-n-ブトキシエタノール40質量部を混合した混合溶媒Eを調製した以外には、実施例3と同様に発光層塗布液Eを調製した。
(Comparative Example 2)
A light emitting layer coating solution E was prepared in the same manner as in Example 3 except that a mixed solvent E was prepared by mixing 60 parts by mass of butyl lactate and 40 parts by mass of 2-n-butoxyethanol without adding an antioxidant. did.
<保存安定性試験>
 各塗布液を調液後、モレキュラーシーブ(商品名:モレキュラーシーブ3A 1/16、和光純薬株式会社製)を添加し、グローブボックス中で孔径0.22μmのシリンジフィルターを用いて濾過して調製した発光層塗布液を、グローブボックス中でスピンコートし、120℃で30分間乾燥と200℃で10分アニール処理をして、厚み50nmの発光層単膜をガラス基板上に形成した。
 塗布液D及びEを遮光された瓶を用い、酸素濃度10ppm以下、露点-60℃以下のグローブボックス中で3ヵ月間保管を行った。再度、グローブボックス中で孔径0.22μmのシリンジフィルターを用いて濾過して、グローブボックス中でスピンコートし、120℃で30分間乾燥と200℃で10分アニール処理をして、厚み50nmの発光層単膜をガラス基板上に形成した。
 発光層塗布液の調液後に形成した発光層単膜、及び調液から3ヶ月間保管後の発光層塗布液により形成した発光層単膜について、実施例1-1、2-1及び比較例1-1と同様にPL量子収率を測定した。結果を、調液後のものを“初期”、3ヶ月間保管後のものを“3ヶ月”及び“初期”の値に対する“3ヶ月”の値の割合を“残存率”として表2に示した。
<Storage stability test>
After preparing each coating solution, molecular sieve (trade name: Molecular Sieve 3A 1/16, manufactured by Wako Pure Chemical Industries, Ltd.) is added and prepared by filtering using a syringe filter with a pore size of 0.22 μm in a glove box. The light emitting layer coating solution was spin coated in a glove box, dried at 120 ° C. for 30 minutes and annealed at 200 ° C. for 10 minutes to form a light emitting layer single film having a thickness of 50 nm on a glass substrate.
The coating liquids D and E were stored for 3 months in a glove box having an oxygen concentration of 10 ppm or less and a dew point of -60 ° C. or less using a light-shielded bottle. Filter again using a syringe filter with a pore size of 0.22 μm in the glove box, spin coat in the glove box, dry at 120 ° C. for 30 minutes and anneal at 200 ° C. for 10 minutes to emit light with a thickness of 50 nm A single layer film was formed on a glass substrate.
Examples 1-1, 2-1 and Comparative Examples for the light-emitting layer single film formed after the preparation of the light-emitting layer coating liquid and the light-emitting layer single film formed by the light-emitting layer coating liquid stored for 3 months after the preparation The PL quantum yield was measured in the same manner as in 1-1. The results are shown in Table 2 as “residual rate” as the ratio of “3 months” to “initial” after preparation, “3 months” after storage for 3 months, and “initial” values. It was.
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
 表2の結果から明らかなように、本発明に係る酸化防止剤を添加しない発光層塗布液を使用した比較例2に対し、本発明に係る酸化防止剤を添加した発光層塗布液を使用した実施例3は、保存安定性に優れていた。 As is clear from the results in Table 2, the light emitting layer coating solution added with the antioxidant according to the present invention was used for Comparative Example 2 using the light emitting layer coating solution without adding the antioxidant according to the present invention. Example 3 was excellent in storage stability.
(IJ吐出試験)
 ダイマティックス・マテリアルプリンター:DMP-2831(富士フイルム株式会社製)に発光層塗布液Dを充填し、IJ吐出試験を行った。
 その結果、メンテナンス(パージ処理)することなく、ノズルより液滴が吐出できるのを確認できた。
(IJ discharge test)
Dimatics material printer: DMP-2831 (manufactured by FUJIFILM Corporation) was filled with the light emitting layer coating liquid D, and an IJ discharge test was conducted.
As a result, it was confirmed that droplets could be discharged from the nozzle without maintenance (purge process).
〔正孔注入層塗布液への酸化防止剤の添加〕
(実施例4)
<有機電界発光素子の作製>
 0.7mmの厚み、25mm角のガラス基板上に陽極としてITO(Indium Tin Oxide)を厚み150nmにスパッタリング蒸着したのち、エッチング及び洗浄した。ITOを成膜した基板を洗浄容器に入れ、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。このガラス基板上に以下の各層を形成した。
 なお、スピンコートと乾燥、アニール処理は、グローブボックス(露点-60℃、酸素濃度10ppm)内で行った。
 次に、陽極(ITO)上に、前記構造式で表されるPTPDES(ケミプロ化成製、重量平均分子量=13000。nは括弧内の構造の繰り返し数を意味し、整数である。)2質量部を、電子工業用シクロヘキサノン(関東化学製)80質量部、及びビス(2-メトキシエチル)エーテル18質量部に溶解又は分散させた正孔注入層塗布液をスピンコートした後、120℃で10分間乾燥し、165℃で60分間アニール処理することで、厚み40nmの正孔注入層を形成した。
 次に、発光層として、上記ホスト化合物H-1と、下記構造式E-3のIr錯体とを質量比95:5で、厚さ30nmを真空蒸着により形成した。
[Addition of antioxidant to hole injection layer coating solution]
Example 4
<Production of organic electroluminescence device>
After depositing ITO (Indium Tin Oxide) as a positive electrode on a 0.7 mm thick, 25 mm square glass substrate to a thickness of 150 nm, etching and cleaning were performed. The substrate on which the ITO film was formed was placed in a cleaning container, subjected to ultrasonic cleaning in 2-propanol, and then subjected to UV-ozone treatment for 30 minutes. The following layers were formed on this glass substrate.
Note that spin coating, drying, and annealing were performed in a glove box (dew point -60 ° C., oxygen concentration 10 ppm).
Next, on the anode (ITO), PTPDES represented by the above structural formula (manufactured by Chemipro Kasei Co., Ltd., weight average molecular weight = 13000. N represents the number of repetitions of the structure in parentheses and is an integer.) 2 parts by mass Was spin-coated with a hole injection layer coating solution dissolved in or dispersed in 80 parts by mass of cyclohexanone for electronics industry (manufactured by Kanto Chemical Co., Ltd.) and 18 parts by mass of bis (2-methoxyethyl) ether, and then at 120 ° C. for 10 minutes. A hole injection layer having a thickness of 40 nm was formed by drying and annealing at 165 ° C. for 60 minutes.
Next, as the light emitting layer, the host compound H-1 and an Ir complex of the following structural formula E-3 were formed at a mass ratio of 95: 5 and a thickness of 30 nm by vacuum deposition.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
(電子輸送層/電子注入層/陰極/封止)
 次に、発光層上に、上記構造のBAlq(Bis-(2-methyl-8-quinolinolato)-4-(phenyl-phenolate)-aluminium-(III))を真空蒸着法にて蒸着して、厚み40nmの電子輸送層を形成した。
(Electron transport layer / electron injection layer / cathode / sealing)
Next, BAlq (Bis- (2-methyl-8-quinolinolato) -4- (phenyl-phenolate) -aluminum- (III)) having the above structure is deposited on the light emitting layer by a vacuum deposition method. A 40 nm electron transport layer was formed.
 次に、電子輸送層上にフッ化リチウム(LiF)を蒸着して、厚み1nmの電子注入層を形成した。
 次に、電子注入層上に金属アルミニウムを蒸着し、厚み70nmの陰極を形成した。
 作製した積層体を、アルゴンガスで置換したグローブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。
Next, lithium fluoride (LiF) was deposited on the electron transport layer to form an electron injection layer having a thickness of 1 nm.
Next, metal aluminum was vapor-deposited on the electron injection layer to form a cathode having a thickness of 70 nm.
The produced laminate was put in a glove box substituted with argon gas, and sealed using a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.).
(比較例3)
 ビス(2-メトキシエチル)エーテルを添加しない以外には、実施例4と同様に有機電界発光素子を作製した。
(Comparative Example 3)
An organic electroluminescent device was produced in the same manner as in Example 4 except that bis (2-methoxyethyl) ether was not added.
(素子耐久性の評価)
 <外部量子効率の測定>
 実施例4及び比較例3で作製した素子について、実施例1-2、2-2及び比較例1-2と同様に外部量子効率を測定した。
 <駆動耐久性>
 輝度500cd/mになるように電流密度を調整し、輝度が半減するまでの時間(hour)を測定した。
 以上の結果を表3に示す。
(Evaluation of element durability)
<Measurement of external quantum efficiency>
For the devices fabricated in Example 4 and Comparative Example 3, the external quantum efficiency was measured in the same manner as in Examples 1-2, 2-2 and Comparative Example 1-2.
<Driving durability>
The current density was adjusted so that the luminance was 500 cd / m 2 , and the time until the luminance was reduced by half was measured.
The above results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
 表3の結果から明らかなように、本発明に係る酸化防止剤を添加しない正孔注入層塗布液を使用した比較例3に対し、本発明に係る酸化防止剤を添加した正孔注入層塗布液を使用した実施例4は、外部量子効率及び耐久性の両方に優れていた。 As is apparent from the results in Table 3, the hole injection layer coating with the addition of the antioxidant according to the present invention was performed on the comparative example 3 using the hole injection layer coating solution without the addition of the antioxidant according to the present invention. Example 4 using the liquid was excellent in both external quantum efficiency and durability.
〔発光層塗布液への酸化防止剤の添加〕
<PL量子収率の測定>
 1.1mmの厚み、25mm角の石英ガラス基板上をアルカリ洗浄し、リンスしたのち、2-プロパノール中で超音波洗浄した後、30分間UV-オゾン処理を行った。このガラス上に以下の実施例5-1、6-1及び比較例4-1で調製した発光層塗布液を用い、以下に記載の方法で発光層単膜を形成した。
 絶対PL量子収率測定装置C9920-02(浜松ホトニクス株式会社製)を用いて、形成した発光層単膜のPL量子収率を測定した。なお、リファレンスとしては、成膜されていない石英ガラスを用いた。
[Addition of antioxidant to light-emitting layer coating solution]
<Measurement of PL quantum yield>
A quartz glass substrate having a thickness of 1.1 mm and a 25 mm square was alkali washed and rinsed, and then ultrasonically washed in 2-propanol, followed by UV-ozone treatment for 30 minutes. A light emitting layer single film was formed on this glass by the method described below using the light emitting layer coating solutions prepared in Examples 5-1 and 6-1 and Comparative Example 4-1.
Using an absolute PL quantum yield measuring apparatus C9920-02 (manufactured by Hamamatsu Photonics Co., Ltd.), the PL quantum yield of the formed light emitting layer single film was measured. As a reference, quartz glass on which no film was formed was used.
(実施例5-1)
 電子工業用2-ブタノン90質量部に、酸化防止剤:プロピレングリコールジメチルエーテル(沸点97℃)10質量部を溶解させた混合溶媒Fを調製した。混合溶媒F98質量部と、下記構造式H-2のカルバゾールホスト1.8質量部と、下記構造式E-4のIr錯体0.2質量部とを溶解し、発光層塗布液Fを調製した。
 以降は、実施例1-1と同様に発光層単膜を形成した。
Example 5-1
A mixed solvent F in which 10 parts by mass of an antioxidant: propylene glycol dimethyl ether (boiling point 97 ° C.) was dissolved in 90 parts by mass of 2-butanone for electronic industry was prepared. A light emitting layer coating solution F was prepared by dissolving 98 parts by mass of a mixed solvent F, 1.8 parts by mass of a carbazole host having the following structural formula H-2, and 0.2 parts by mass of an Ir complex having the following structural formula E-4. .
Thereafter, a light emitting layer single film was formed in the same manner as in Example 1-1.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
(実施例6-1)
 電子工業用2-ブタノン95質量部に、酸化防止剤:トエリエタノールアミン(沸点208℃)5質量部を溶解させた混合溶媒Gを調製した。混合溶媒G98質量部と、上記構造式H-2のカルバゾールホスト1.8質量部と、上記構造式E-4のIr錯体0.2質量部とを溶解し、発光層塗布液Gを調製した。
 発光層塗布液Gにモレキュラーシーブ(商品名:モレキュラーシーブ3A 1/16、和光純薬株式会社製)を添加し、グローブボックス中で孔径0.22μmのシリンジフィルターを用いて濾過して調製した発光層塗布液を、グローブボックス(露点-60℃、酸素濃度10ppm)中でスピンコートし、120℃で30分間乾燥と160℃で20分間真空乾燥をして、厚み50nmの発光層単膜をガラス基板上に形成した。
Example 6-1
A mixed solvent G was prepared by dissolving 5 parts by mass of an antioxidant: triethanolamine (boiling point 208 ° C.) in 95 parts by mass of 2-butanone for electronics industry. A light emitting layer coating solution G was prepared by dissolving 98 parts by mass of the mixed solvent G, 1.8 parts by mass of the carbazole host having the structural formula H-2, and 0.2 parts by mass of the Ir complex having the structural formula E-4. .
Luminescence prepared by adding molecular sieve (trade name: Molecular sieve 3A 1/16, manufactured by Wako Pure Chemical Industries, Ltd.) to the light-emitting layer coating solution G and filtering with a syringe filter having a pore size of 0.22 μm in a glove box. The layer coating solution is spin-coated in a glove box (dew point -60 ° C., oxygen concentration 10 ppm), dried at 120 ° C. for 30 minutes and vacuum dried at 160 ° C. for 20 minutes. Formed on a substrate.
(比較例4-1)
 実施例5-1に記載の酸化防止剤を添加せずに、発光層塗布液Hを調製した以外には、実施例5-1と同様に発光層単膜を形成した。
(Comparative Example 4-1)
A light emitting layer single film was formed in the same manner as in Example 5-1, except that the light emitting layer coating solution H was prepared without adding the antioxidant described in Example 5-1.
<有機電界発光素子の作製>
(実施例5-2)
 実施例5-1と同様に発光層塗布液Fからなる発光層を形成した以外には、実施例1-2と同様に有機電界発光素子を作製した。
<Production of organic electroluminescence device>
(Example 5-2)
An organic electroluminescent element was produced in the same manner as in Example 1-2, except that a light emitting layer composed of the light emitting layer coating solution F was formed in the same manner as in Example 5-1.
(実施例6-2)
 実施例6-1と同様に発光層塗布液Gからなる発光層を形成した以外には、実施例1-2と同様に有機電界発光素子を作製した。
(Example 6-2)
An organic electroluminescent element was produced in the same manner as in Example 1-2, except that a light emitting layer composed of the light emitting layer coating solution G was formed in the same manner as in Example 6-1.
(比較例4-2)
 比較例4-1と同様に発光層塗布液Hからなる発光層を形成した以外には、実施例1-2と同様に有機電界発光素子を作製した。
(Comparative Example 4-2)
An organic electroluminescent element was produced in the same manner as in Example 1-2, except that a light emitting layer composed of the light emitting layer coating solution H was formed as in Comparative Example 4-1.
(素子性能の評価)
 <外部量子効率の測定>
 東陽テクニカ株式会社製ソースメジャーユニット2400を用いて、直流電圧を各素子に印加し、発光させた。発光スペクトル及び輝度はトプコン社製スペクトルアナライザーSR-3を用いて測定し、これらの数値をもとに電流が10mA/cmにおける外部量子効率を輝度換算法により算出した。
 実施例5-1、6-1及び比較例4-1で測定したPL量子収率の結果と、実施例5-2、6-2及び比較例4-2で作成した素子について測定した外部量子効率の結果を、下記表4中の実施例5、6及び比較例4にそれぞれ記載した。
(Evaluation of device performance)
<Measurement of external quantum efficiency>
Using a source measure unit 2400 manufactured by Toyo Technica Co., Ltd., a direct current voltage was applied to each element to emit light. The emission spectrum and luminance were measured using a spectrum analyzer SR-3 manufactured by Topcon Corporation, and the external quantum efficiency at a current of 10 mA / cm 2 was calculated by the luminance conversion method based on these numerical values.
Results of PL quantum yield measured in Examples 5-1 and 6-1 and Comparative Example 4-1, and external quantum measured for devices prepared in Examples 5-2 and 6-2 and Comparative Example 4-2 The efficiency results are shown in Examples 5 and 6 and Comparative Example 4 in Table 4 below.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 表4の結果から明らかなように、本発明に係る酸化防止剤を添加しない発光層塗布液を使用した比較例4に対し、本発明に係る酸化防止剤を添加した発光層塗布液を使用した実施例5及び6は、PL量子収率及び外部量子効率の両方に優れていた。 As is clear from the results in Table 4, the light emitting layer coating solution added with the antioxidant according to the present invention was used for Comparative Example 4 using the light emitting layer coating solution not added with the antioxidant according to the present invention. Examples 5 and 6 were excellent in both PL quantum yield and external quantum efficiency.
(発光層塗布液の保存安定性)
(実施例7)
 電子工業用2-ブタノン95質量部、酸化防止剤:シュウ酸(分解温度189.5℃)を溶解させた混合溶媒Iを調製した。混合溶媒I98質量部と、下記構造式ホストH-3の1.82質量部と、下記構造式E-5のIr錯体0.18質量部とを溶解し、発光層塗布液Iを調製した。
(Storage stability of luminescent layer coating solution)
(Example 7)
A mixed solvent I in which 95 parts by mass of 2-butanone for electronic industry and an antioxidant: oxalic acid (decomposition temperature 189.5 ° C.) were dissolved was prepared. A light emitting layer coating solution I was prepared by dissolving 98 parts by mass of the mixed solvent I, 1.82 parts by mass of the following structural formula host H-3, and 0.18 parts by mass of an Ir complex having the following structural formula E-5.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
(比較例5)
 実施例7に記載の酸化防止剤を添加しない以外には、実施例7と同様に発光層塗布液Jを調製した。
(Comparative Example 5)
A light emitting layer coating solution J was prepared in the same manner as in Example 7 except that the antioxidant described in Example 7 was not added.
<保存安定性試験>
 200℃で10分のアニール処理を、210℃で20分のアニール処理に変更した以外には、実施例3及び比較例2と同様に評価を行った。結果を表5に示した。
<Storage stability test>
Evaluation was performed in the same manner as in Example 3 and Comparative Example 2 except that the annealing treatment at 200 ° C. for 10 minutes was changed to the annealing treatment at 210 ° C. for 20 minutes. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 表5の結果から明らかなように、本発明に係る酸化防止剤を添加しない発光層塗布液を使用した比較例5に対し、本発明に係る酸化防止剤を添加した発光層塗布液を使用した実施例7は、保存安定性に優れていた。 As is clear from the results in Table 5, the light emitting layer coating solution added with the antioxidant according to the present invention was used for Comparative Example 5 using the light emitting layer coating solution not added with the antioxidant according to the present invention. Example 7 was excellent in storage stability.
 本発明によれば、加熱により蒸発若しくは分解が可能な酸化防止剤を使用し、有機電界発光素子の作製において該組成物を成膜する際の加熱により、前記酸化防止剤が蒸発若しくは分解して、成膜後の膜中に該酸化防止剤が実質的に残存しないことで、酸化防止剤を使用すること自体による組成物の保存安定性の向上(及び発光層形成用の塗布液である場合には、PL量子収率の低下の防止)といった効果に加え、耐久性や外部量子効率等の有機EL素子性能の低下を防止するという効果を奏する、有機電界発光素子用組成物を提供することができる。
 また、本発明によれば、酸化防止剤として適した形状の酸化防止剤(具体的には、液状の酸化防止剤)を選択して用いることで、有機電界発光素子用組成物(塗布液)への混合が容易であり、かつ酸化防止剤の析出による目詰まりが防止可能な有機電界発光素子用組成物を提供することができる。
 更に、本発明によれば、上記組成物を用いた膜、発光層、電荷輸送層、有機電界発光素子、発光層の形成方法及び電荷輸送層の形成方法を提供することができる。
According to the present invention, an antioxidant that can be evaporated or decomposed by heating is used, and the antioxidant is evaporated or decomposed by heating at the time of film formation of the composition in the production of an organic electroluminescent element. In addition, since the antioxidant does not substantially remain in the film after film formation, the storage stability of the composition is improved by using the antioxidant itself (and the coating liquid for forming the light emitting layer). To provide a composition for an organic electroluminescent device that has the effect of preventing deterioration of organic EL device performance such as durability and external quantum efficiency in addition to the effect of preventing reduction of PL quantum yield. Can do.
In addition, according to the present invention, an organic electroluminescent element composition (coating liquid) can be obtained by selecting and using an antioxidant having a shape suitable as an antioxidant (specifically, a liquid antioxidant). Thus, it is possible to provide a composition for an organic electroluminescent device that can be easily mixed into the organic electroluminescent device and can be prevented from being clogged due to precipitation of an antioxidant.
Furthermore, according to the present invention, it is possible to provide a film, a light emitting layer, a charge transport layer, an organic electroluminescent element, a light emitting layer forming method and a charge transport layer forming method using the above composition.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年09月30日出願の日本特許出願(特願2010-223261)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Japanese Patent Application No. 2010-223261) filed on Sep. 30, 2010, the contents of which are incorporated herein by reference.
2・・・基板
3・・・陽極
4・・・正孔注入層
5・・・正孔輸送層
6・・・発光層
7・・・正孔ブロック層
8・・・電子輸送層
9・・・陰極
10・・・有機電界発光素子
DESCRIPTION OF SYMBOLS 2 ... Substrate 3 ... Anode 4 ... Hole injection layer 5 ... Hole transport layer 6 ... Light emitting layer 7 ... Hole block layer 8 ... Electron transport layer 9 ...・ Cathode 10: Organic electroluminescent device

Claims (16)

  1.  有機材料(B)と溶媒(C)とを含有する液状体に、加熱により蒸発若しくは分解が可能な酸化防止剤(A)を添加した、有機電界発光素子用組成物であって、有機電界発光素子の作製において該組成物を成膜する際の加熱により、前記酸化防止剤(A)が蒸発若しくは分解する、有機電界発光素子用組成物。 An organic electroluminescent composition comprising an organic material (B) and a solvent (C), a liquid containing an antioxidant (A) that can be evaporated or decomposed by heating. A composition for an organic electroluminescence device, wherein the antioxidant (A) evaporates or decomposes by heating at the time of film formation of the composition in the production of the device.
  2.  前記酸化防止剤(A)が、80℃~220℃の加熱により蒸発若しくは分解する、請求項1に記載の有機電界発光素子用組成物。 The composition for organic electroluminescent elements according to claim 1, wherein the antioxidant (A) is evaporated or decomposed by heating at 80 ° C to 220 ° C.
  3.  前記酸化防止剤(A)が、25℃で液状である、請求項1又は2に記載の有機電界発光素子用組成物。 The composition for organic electroluminescent elements according to claim 1 or 2, wherein the antioxidant (A) is liquid at 25 ° C.
  4.  前記酸化防止剤(A)が、アルキレングリコール誘導体、アミノアルコール誘導体又はシュウ酸である、請求項1~3のいずれか一項に記載の有機電界発光素子用組成物。 The composition for an organic electroluminescent element according to any one of claims 1 to 3, wherein the antioxidant (A) is an alkylene glycol derivative, an amino alcohol derivative or oxalic acid.
  5.  前記有機材料(B)として、発光材料及びホスト材料を含有する、請求項1~4のいずれか一項に記載の有機電界発光素子用組成物。 The composition for an organic electroluminescent element according to any one of claims 1 to 4, comprising a light emitting material and a host material as the organic material (B).
  6.  前記発光材料がイリジウム錯体であり、前記ホスト材料がカルバゾール誘導体である、請求項5に記載の有機電界発光素子用組成物。 The composition for an organic electroluminescent element according to claim 5, wherein the light emitting material is an iridium complex, and the host material is a carbazole derivative.
  7.  前記有機材料(B)として、電荷輸送材料を含有する、請求項1~4のいずれか一項に記載の有機電界発光素子用組成物。 The composition for organic electroluminescent elements according to any one of claims 1 to 4, comprising a charge transport material as the organic material (B).
  8.  前記溶媒(C)として、2-ブタノン、乳酸ブチル、乳酸アミル、乳酸イソアミル及び2-n-ブトキシエタノールからなる群より選択される少なくとも一種を含有する、請求項5又は6に記載の有機電界発光素子用組成物。 The organic electroluminescence according to claim 5 or 6, containing at least one selected from the group consisting of 2-butanone, butyl lactate, amyl lactate, isoamyl lactate and 2-n-butoxyethanol as the solvent (C). Device composition.
  9.  前記溶媒(C)として、シクロヘキサノンを含有する、請求項7に記載の有機電界発光素子用組成物。 The composition for organic electroluminescent elements according to claim 7, comprising cyclohexanone as the solvent (C).
  10.  請求項1~9のいずれか一項に記載の組成物を塗布し、塗布された該組成物を加熱することにより形成された膜。 A film formed by applying the composition according to any one of claims 1 to 9 and heating the applied composition.
  11.  請求項5、6及び8のいずれか一項に記載の組成物を塗布し、塗布された該組成物を加熱することにより形成された発光層。 A light emitting layer formed by applying the composition according to any one of claims 5, 6 and 8, and heating the applied composition.
  12.  請求項7又は9に記載の組成物を塗布し、塗布された該組成物を加熱することにより形成された電荷輸送層。 A charge transport layer formed by applying the composition according to claim 7 or 9 and heating the applied composition.
  13.  請求項11に記載の発光層を有する有機電界発光素子。 The organic electroluminescent element which has a light emitting layer of Claim 11.
  14.  請求項12に記載の電荷輸送層を有する有機電界発光素子。 An organic electroluminescent device having the charge transport layer according to claim 12.
  15.  請求項5、6及び8のいずれか一項に記載の組成物を塗布し、塗布された該組成物を加熱することを含む、発光層の形成方法。 A method for forming a light emitting layer, comprising applying the composition according to any one of claims 5, 6, and 8, and heating the applied composition.
  16.  請求項7又は9に記載の組成物を塗布し、塗布された該組成物を加熱することを含む、電荷輸送層の形成方法。 A method for forming a charge transport layer, comprising applying the composition according to claim 7 or 9 and heating the applied composition.
PCT/JP2011/072482 2010-09-30 2011-09-29 Composition for organic electroluminescent element; organic electroluminescent element, charge transport layer, light-emitting layer, and film using said composition; method for forming light-emitting layer, and method for forming charge transport layer WO2012043774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010223261A JP5645576B2 (en) 2010-09-30 2010-09-30 Composition for organic electroluminescent device, and film, light emitting layer, charge transport layer, organic electroluminescent device, method for forming light emitting layer, and method for forming charge transport layer using the composition
JP2010-223261 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043774A1 true WO2012043774A1 (en) 2012-04-05

Family

ID=45893211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072482 WO2012043774A1 (en) 2010-09-30 2011-09-29 Composition for organic electroluminescent element; organic electroluminescent element, charge transport layer, light-emitting layer, and film using said composition; method for forming light-emitting layer, and method for forming charge transport layer

Country Status (2)

Country Link
JP (1) JP5645576B2 (en)
WO (1) WO2012043774A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190764A1 (en) * 2012-06-20 2013-12-27 パナソニック株式会社 Method for manufacturing organic el element, organic el element, organic el display panel, organic el display device, and organic el light emitting device
KR20150026880A (en) 2013-08-28 2015-03-11 스미또모 가가꾸 가부시키가이샤 A liquid composition containing a phosphorescent material
JP2015093938A (en) * 2013-11-12 2015-05-18 三菱化学株式会社 Composition for organic electroluminescent element, organic electroluminescent element, display device, and illumination device
US10964902B2 (en) 2016-01-28 2021-03-30 Sumitomo Chemical Company, Limited Film production method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2535795A (en) * 2015-02-27 2016-08-31 Cambridge Display Tech Ltd Ink
JP5874860B1 (en) * 2015-03-24 2016-03-02 三菱化学株式会社 Composition for organic electroluminescent device and method for producing organic electroluminescent device
JP6934586B2 (en) * 2016-01-19 2021-09-15 株式会社Joled Manufacturing method of ink for organic EL and manufacturing method of organic EL device
KR20200003068A (en) * 2017-05-03 2020-01-08 메르크 파텐트 게엠베하 Formulations of Organic Functional Materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039297A (en) * 2002-06-28 2004-02-05 Fuji Photo Film Co Ltd Method of manufacturing light emitting element
JP2004143387A (en) * 2002-10-28 2004-05-20 Seiko Epson Corp Water-based ink
JP2005310403A (en) * 2004-04-16 2005-11-04 Toppan Printing Co Ltd Manufacturing method and manufacturing device of organic el display device
JP2009545844A (en) * 2006-08-01 2009-12-24 ケンブリッジ ディスプレイ テクノロジー リミテッド Photoelectric device manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039297A (en) * 2002-06-28 2004-02-05 Fuji Photo Film Co Ltd Method of manufacturing light emitting element
JP2004143387A (en) * 2002-10-28 2004-05-20 Seiko Epson Corp Water-based ink
JP2005310403A (en) * 2004-04-16 2005-11-04 Toppan Printing Co Ltd Manufacturing method and manufacturing device of organic el display device
JP2009545844A (en) * 2006-08-01 2009-12-24 ケンブリッジ ディスプレイ テクノロジー リミテッド Photoelectric device manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190764A1 (en) * 2012-06-20 2013-12-27 パナソニック株式会社 Method for manufacturing organic el element, organic el element, organic el display panel, organic el display device, and organic el light emitting device
US9209401B2 (en) 2012-06-20 2015-12-08 Joled Inc Method for manufacturing organic EL element, organic EL element, organic EL display panel, organic EL display apparatus, and organic EL light-emitting apparatus
KR20150026880A (en) 2013-08-28 2015-03-11 스미또모 가가꾸 가부시키가이샤 A liquid composition containing a phosphorescent material
JP2015093938A (en) * 2013-11-12 2015-05-18 三菱化学株式会社 Composition for organic electroluminescent element, organic electroluminescent element, display device, and illumination device
US10964902B2 (en) 2016-01-28 2021-03-30 Sumitomo Chemical Company, Limited Film production method
US11770941B2 (en) 2016-01-28 2023-09-26 Sumitomo Chemical Company, Limited Film production method

Also Published As

Publication number Publication date
JP2013165089A (en) 2013-08-22
JP5645576B2 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5770441B2 (en) Material for organic electroluminescence device and organic electroluminescence device
JP5645576B2 (en) Composition for organic electroluminescent device, and film, light emitting layer, charge transport layer, organic electroluminescent device, method for forming light emitting layer, and method for forming charge transport layer using the composition
JP5847420B2 (en) Organic electroluminescent device and compound
JP4751954B1 (en) Organic electroluminescence device
JP5814031B2 (en) Organic electroluminescent device and material for organic electroluminescent device having dibenzothiophene structure or dibenzofuran structure
JP4729643B1 (en) Organic electroluminescence device
JP4691611B1 (en) Organic electroluminescence device
JP2011176258A (en) Organic electroluminescent element and charge transport material
WO2011024976A1 (en) Organic electroluminescent element
JP5722000B2 (en) Charge transport material and organic electroluminescent device
JP5507381B2 (en) Organic electroluminescent device and compound
JP5763309B2 (en) Organic electroluminescent device and compound
JP5859881B2 (en) Sublimation purification method of host material for forming light emitting layer of organic electroluminescence device
JP4637270B1 (en) Organic electroluminescence device
JP5636244B2 (en) Organic electroluminescence device
JP2019016809A (en) Host material of organic electroluminescent element, organic electroluminescent element, light-emitting device, display device, and luminaire
JP6059193B2 (en) Organic electroluminescent element, display device, lighting device, and manufacturing method of organic electroluminescent element.
JP4637271B1 (en) Organic electroluminescence device
JP5642011B2 (en) Method for producing organic electroluminescent device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829327

Country of ref document: EP

Kind code of ref document: A1