WO2012043530A1 - Vehicle control device and vehicle control method - Google Patents

Vehicle control device and vehicle control method Download PDF

Info

Publication number
WO2012043530A1
WO2012043530A1 PCT/JP2011/071995 JP2011071995W WO2012043530A1 WO 2012043530 A1 WO2012043530 A1 WO 2012043530A1 JP 2011071995 W JP2011071995 W JP 2011071995W WO 2012043530 A1 WO2012043530 A1 WO 2012043530A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
vehicle
stop
restart
time
Prior art date
Application number
PCT/JP2011/071995
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 大森
陽介 橋本
政義 武田
雪生 森
Original Assignee
株式会社 アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アドヴィックス filed Critical 株式会社 アドヴィックス
Priority to CN201180046184.XA priority Critical patent/CN103124838B/en
Priority to DE112011103318.4T priority patent/DE112011103318B4/en
Publication of WO2012043530A1 publication Critical patent/WO2012043530A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18118Hill holding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • F02N11/0837Environmental conditions thereof, e.g. traffic, weather or road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0625Fuel consumption, e.g. measured in fuel liters per 100 kms or miles per gallon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/10Safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/12Parameters used for control of starting apparatus said parameters being related to the vehicle exterior
    • F02N2200/124Information about road conditions, e.g. road inclination or surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present application relates to a vehicle control device and a vehicle control method for automatically stopping and automatically restarting an engine.
  • the vehicle control device described in Patent Document 1 automatically stops the engine on condition that the brake depression amount is equal to or greater than the first threshold X, and automatically operates the engine on condition that the brake depression amount is equal to or smaller than the second threshold Y. To restart. Furthermore, the vehicle control device of Patent Document 1 is proposed to make the first threshold and the second threshold variable according to the vehicle speed.
  • an AT car (automatic car) equipped with an automatic transmission with a torque converter generates a thrust in the forward direction of the vehicle due to a creep phenomenon even when the engine is idle.
  • the creep phenomenon is a phenomenon in which, in an AT car, when the shift lever is in the traveling position, the vehicle advances slowly even without depressing the accelerator pedal. The creep phenomenon occurs because the torque converter transmits some power to the drive wheels even when the engine is idle.
  • the object of the present application is to preferably avoid slipping of the vehicle at the time of stopping on a slope while avoiding unnecessary stopping of the engine which can not contribute to fuel saving as much as possible in a vehicle performing automatic stop and restart of the engine. It is providing a vehicle control device and a vehicle control method that can be prevented.
  • the vehicle control device of the present application includes stop control for automatically stopping an engine (12) of the vehicle, and restart control for automatically restarting the engine (12). I do.
  • the first control unit (55, S11) configured to determine whether or not the vehicle control device determines that "the execution condition of the stop control is satisfied”; and "the execution condition of the stop control is satisfied”
  • a stop control unit (55, S15) configured to permit the stop of the engine (12) when determined.
  • the vehicle control device is configured to determine whether or not “the slippage of the vehicle after stopping occurs is generated” when traveling on a slope with the vehicle in a state where the engine (12) is stopped.
  • Judgment unit (55, S21); when it is determined that "slipping occurs", restart of the engine (12) by the time the sloping lowering distance (L) of the vehicle exceeds the allowable distance (La) And a restart control (55) configured to allow initiation of restart of the engine (12) such that The vehicle control device is further configured to predict fuel savings (Tes) that can be saved in the engine stop period from the stop of the engine (12) to the restart before the stop of the engine (12).
  • a third determination unit (55, S12, S13) is provided.
  • the third determination unit determines that “the fuel saving amount (Tes) is not less than the set value (T1) set according to the fuel consumption amount required for the restart of the engine (12) It is comprised so that it may determine whether it is. If it is determined that "the fuel saving amount (Tes) is less than the set value (T1)", the stop control unit (55) determines that the engine (12) does not meet the condition for executing the stop control. ) Is configured not to allow the suspension of.
  • the engine stop period it is possible to predict the fuel saving amount saved in the engine stop period from the engine stop to the restart before the engine stop. If it is determined that "the predicted fuel saving amount is less than the set value set according to the fuel consumption amount required to restart the engine", the engine will be stopped even if the condition for executing the stop control is satisfied. Stop is not allowed. For this reason, it is possible to preferably prevent the slippage of the vehicle at the time of stopping on the uphill road while avoiding unnecessary stop of the engine which can not contribute to the fuel saving as much as possible.
  • the vehicle includes a brake operating unit (15).
  • the vehicle control device further includes a fourth determination unit (55, S14).
  • the fourth determination unit (55, S14) sets “the braking force (Apmc according to the operation amount of the brake operation unit (15) is equal to or more than a threshold (Ag) that can suppress the slippage of the vehicle after It is configured to determine whether or not "secured”.
  • the stop control unit (55) determines that "the fuel saving amount (Tes) is the setting value (T1)". Even if it is determined that “less than or equal to,” the engine (12) is configured to be permitted to stop.
  • the determination that "the braking force corresponding to the amount of operation of the brake operation unit is secured at or above the threshold that can suppress slippage after stopping the vehicle" can suppress slippage when stopping. It means that the braking force is secured. In this case, the engine is not restarted to suppress slippage. Therefore, even if it is determined that "the fuel saving amount is less than the set value", the engine stop is permitted. For this reason, the frequency of stopping the engine increases, so it is possible to obtain a further improvement in fuel consumption.
  • the third determination unit (55, S12, S13) is configured to obtain an estimated engine stoppable time (Tes) as a time from a stop of the engine (12) to a restart. .
  • the third determination unit (55, S12, S13) determines whether or not the “fuel saving amount is equal to or more than the set value”, the engine stoppable estimated time (Tes) indicates the set value, and It is comprised so that it may carry out by judging whether it is more than the setting time (T1) converted into the idle time of the engine (12).
  • the estimated engine stoppable time from the stop of the engine to the restart is equal to or longer than the set time of idle time conversion. Therefore, for example, it is not necessary to acquire the fuel injection amount of the fuel injection device that injects the fuel into the fuel chamber of the engine. That is, by using the detection value of an existing sensor such as a vehicle speed sensor provided in the vehicle, the determination value necessary for the determination can be acquired relatively easily. For this reason, the processing required for the determination does not have to be complicated.
  • the vehicle includes vehicle speed detection units (SE3 to SE6).
  • the third determination unit (55) generates the vehicle body speed (VS) detected by the vehicle speed detection unit (SE3 to SE6) by time differentiation of the vehicle body speed (VS). It is configured to obtain a vehicle body speed differential value (DVS).
  • the third determination unit (55) divides the vehicle speed by a value obtained by removing the acceleration (Aet) corresponding to the engine torque which disappears due to the stop of the engine from the vehicle speed differential value (DVS), It is comprised so that the said engine stop possibility estimated time (Tes) may be calculated.
  • the engine stop estimated expected time can be obtained by dividing the vehicle speed by a value obtained by subtracting the acceleration for the engine torque which disappears from the stop of the engine from the vehicle speed differential value. That is, the expected engine stoppable time can be obtained by considering the disappearance of the engine torque. Therefore, the third determination unit can perform determination with relatively high accuracy.
  • the vehicle control method performs stop control for automatically stopping the engine (12) of the vehicle and restart control for automatically restarting the engine (12).
  • it is determined whether "the execution condition of the stop control is satisfied” and "when the execution condition of the stop control is satisfied”, the engine (12) is selected. And allowing the suspension.
  • the vehicle control method further determines whether or not "slipping of the vehicle after stopping occurs” (55, S21) when traveling on a slope with the vehicle in a state where the engine (12) is stopped. When it is determined that "slipping occurs”, the restart of the engine (12) is completed by the time the sling lowering distance (L) of the vehicle exceeds the allowable distance (La); And (12) initiating a restart.
  • the method further comprises predicting, before stopping the engine (12), the fuel savings that can be saved in the stopping period between the stopping of the engine (12) and the restarting; Determining whether or not Tes) is equal to or greater than a set value (T1) set in accordance with the fuel consumption required for the restart of the engine (12).
  • Tes the fuel saving amount
  • T1 the set value
  • the vehicle control method of Have it is possible to obtain the same function and effect as the vehicle control device.
  • FIG. 1 The block diagram which shows an example of the vehicle carrying the control apparatus of one Embodiment.
  • the hydraulic-circuit figure which shows an example of the damping device shown in FIG.
  • the flowchart which shows an engine stop control routine.
  • the flowchart which shows an engine restart control routine.
  • the model side view which shows the force which acts on the vehicle which stops on a slope.
  • the timing chart when braking acceleration is larger than gradient acceleration. Timing chart when not stopping the engine.
  • FIGS 1-8 illustrate one embodiment.
  • the forward direction of the vehicle will be described as the front of the vehicle.
  • the vehicle according to the present embodiment has a so-called idle stop function in order to improve the fuel efficiency and the emission performance. That is, the idle stop function automatically stops the engine in response to the establishment of the predetermined stop condition while the vehicle is traveling, and then automatically restarts the engine in response to the establishment of the predetermined start condition. Therefore, in this vehicle, the engine is automatically stopped during deceleration or stop by the driver's brake operation.
  • the vehicle is a front wheel drive vehicle, and in the present embodiment, four wheels, that is, the right front wheel FR, the left front wheel FL, the right rear wheel RR, and the front wheels FR and FL of the left rear wheel RL. Acts as a drive wheel.
  • a vehicle transmits a driving force generated by the driving force generator 13 to the front wheels FR and FL, and a driving force generator 13 having an engine 12 that generates a driving force according to the amount of operation of the accelerator pedal 11 by the driver.
  • a driving force transmission device 14 The vehicle is also provided with a braking device 16 for applying a braking force corresponding to the amount of operation of the brake pedal 15 by the driver to each of the wheels FR, FL, RR, and RL.
  • the driving force generation device 13 is provided with a fuel injection device (not shown) which is disposed in the vicinity of an intake port (not shown) of the engine 12 and has an injector for injecting fuel to the engine 12.
  • the driving force generator 13 is driven based on the control of the engine ECU 17 having a CPU, a ROM, a RAM, and the like (not shown).
  • the engine ECU means an electronic control unit for an engine.
  • the engine ECU 17 is electrically connected to an accelerator opening sensor SE1 disposed in the vicinity of the accelerator pedal 11 and for detecting an operation amount of the accelerator pedal 11 by the driver, that is, an accelerator opening AP.
  • the engine ECU 17 calculates the accelerator opening based on the detection signal from the accelerator opening sensor SE1, and controls the driving force generator 13 based on the calculated accelerator opening and the like.
  • the driving force transmission device 14 controls the automatic transmission 18, the differential gear 19 that appropriately distributes the driving force transmitted from the output shaft of the automatic transmission 18 and transmits it to the front wheels FR and FL, and the automatic transmission 18 And an AT-ECU (not shown).
  • the automatic transmission 18 includes a hydraulic drive power transmission mechanism 20 having a torque converter 20 a as an example of a fluid coupling, and a transmission mechanism 21.
  • the braking device 16 comprises a hydraulic pressure generator 28 and a brake actuator 31 having two hydraulic circuits 29 and 30.
  • FIG. 2 shows the brake actuator 31 by a two-dot chain line.
  • the hydraulic pressure generator 28 has a master cylinder 25, a booster 26 and a reservoir 27.
  • the respective hydraulic circuits 29, 30 are connected to the master cylinder 25 of the hydraulic pressure generating device 28, respectively.
  • a wheel cylinder 32a for the right front wheel FR and a wheel cylinder 32d for the left rear wheel RL are connected to the first hydraulic circuit 29, and a wheel cylinder 32b for the left front wheel FL is connected to the second hydraulic circuit 30.
  • a wheel cylinder 32c for the right rear wheel RR are connected.
  • the booster 26 is connected to an intake manifold (not shown) that generates negative pressure when the engine 12 is driven.
  • the booster 26 uses the pressure difference between the negative pressure generated in the intake manifold and the atmospheric pressure to boost the operation force of the brake pedal 15 by the driver, that is, the depression force.
  • Master cylinder 25 generates a master cylinder pressure PMC according to the operation of brake pedal 15 by the driver, that is, the brake operation.
  • the brake fluid is supplied from the master cylinder 25 through the hydraulic circuits 29, 30 into the wheel cylinders 32a to 32d.
  • a braking force corresponding to the wheel cylinder pressure PWC in the wheel cylinders 32a to 32d is applied to the wheels FR, FL, RR, and RL.
  • the hydraulic circuits 29, 30 are connected to the master cylinder 25 through the conduits 33, 34, respectively, and in the middle of the conduits 33, 34, normally open linear solenoid valves 35a, 35b.
  • the linear solenoid valves 35a and 35b are adjusting valves.
  • the linear solenoid valves 35a, 35b include a valve seat, a valve body, an electromagnetic coil, and an urging member such as a coil spring. The biasing member biases the valve body away from the valve seat.
  • the valve body is displaced in accordance with the current value supplied from the brake ECU 55 described later to the electromagnetic coil. That is, the wheel cylinder pressure PWC in the wheel cylinders 32a to 32d is maintained at a hydraulic pressure corresponding to the value of the current supplied to the linear solenoid valves 35a, 35b.
  • a pressure sensor SE2 for detecting a master cylinder pressure PMC is provided at a position closer to the master cylinder 25 than the linear solenoid valve 35a in the pipe line 33.
  • the pressure sensor SE2 outputs a detection signal of a value corresponding to the master cylinder pressure PMC to the brake ECU 55.
  • the pressure increasing valves 37a, 37b, 37c which are normally open solenoid valves, are branched from the conduits 33, 34 connected to the master cylinder 25 and are connected to the wheel cylinders 32a to 32d in the middle of the conduits 36a to 36d.
  • the pressure increasing valves 37a, 37b, 37c and 37d are activated when the pressure increase of each wheel cylinder pressure PWC is restricted, and the pressure reducing valves 38a, 38b, 38c and 38d are activated when the wheel cylinder pressure PWC is decreased.
  • reservoirs 39, 40 for temporarily storing the brake fluid that has flowed out from the wheel cylinders 32a-32d through the pressure reducing valves 38a-38d, and pumps 42, 43 operated based on the rotation of the motor 41. And are connected.
  • the reservoirs 39 and 40 are connected to the pumps 42 and 43 through the conduits 44 and 45, and are connected to the master cylinder 25 through the conduits 46 and 47, respectively.
  • the conduits 46 and 47 are connected to the conduits 33 and 34 at a position closer to the master cylinder 25 than the linear solenoid valves 35a and 35b.
  • the pipelines 48, 49 extending from the discharge ports of the pumps 42, 43 are connected to connection portions 50, 51 on a communication path connecting the pressure increase valves 37a to 37d and the linear solenoid valves 35a, 35b.
  • the pumps 42 and 43 suck the brake fluid from the reservoirs 39 and 40 and the master cylinder 25 through the pipelines 44, 45, 46 and 47 when the motor 41 rotates, and the brake fluid sucked is pipelines 48 and 49. To discharge.
  • the brake ECU 55 means a brake electronic control unit.
  • An acceleration sensor SE7 for detecting an acceleration in a direction is electrically connected.
  • the acceleration sensor is also referred to as a G sensor.
  • the brake ECU 55 is electrically connected to a brake switch SW1 for detecting whether the brake pedal 15 is operated.
  • the valves 35a, 35b, 37a to 37d, 38a to 38d, and the motor 41 are electrically connected to the brake ECU 55 as an output system.
  • the acceleration sensor SE7 outputs a signal that gives a positive value when the vehicle stops on an uphill road, and outputs a signal that gives a negative value when the vehicle stops on a downhill road Be done.
  • the brake ECU 55 is a digital computer comprising a CPU, a ROM, a RAM, etc. (not shown); a driver circuit (not shown) for operating the valves 35a, 35b, 37a to 37d, 38a to 38d; It has a motor driver circuit (not shown) for operation.
  • ROM Read Only Memory
  • various control processes for example, routines for engine stop control and engine restart control as idle stop processes to be described later, various threshold values, setting values and the like are stored in advance.
  • the RAM also stores various types of information that can be appropriately rewritten while the ignition switch (not shown) of the vehicle is on.
  • ECUs including the engine ECU 17 and the brake ECU 55 are connected to each other via a bus 56 so as to transmit and receive various information and various control commands as shown in FIG.
  • information related to the accelerator opening AP of the accelerator pedal 11 is appropriately transmitted from the engine ECU 17 to the brake ECU 55, while the brake ECU 55 is a control command for permitting the engine 12 to be automatically stopped.
  • a stop command, a restart command as a control command to permit automatic restart of the engine 12, and the like are transmitted to the engine ECU 17.
  • FIG. 5 shows the relationship of the force acting on the vehicle stopping on the uphill road.
  • the slope of the uphill road ie, the inclination angle
  • the gravity acting on the vehicle is “g”
  • the vehicle is pulled backward by the force “g ⁇ sin ⁇ ” by the action of gravity g.
  • the force Fg is a component in the vehicle backward direction of the gravity g acting on the vehicle, that is, a component in the road surface direction, and changes in accordance with the road surface gradient ⁇ .
  • a braking force Fpmc corresponding to the master cylinder pressure PMC acts on the vehicle as a force against the force Fg.
  • the force Fg and the braking force Fpmc are compared, and if Fpmc ⁇ Fg, the vehicle may be slipped down.
  • the acceleration to the rear of the vehicle obtained by dividing the force Fg by the vehicle body weight M is defined as a gradient acceleration Ag. That is, M means a vehicle body mass as a unit system.
  • An acceleration obtained by dividing the braking force Fpmc by the vehicle body weight M is defined as a braking acceleration Apmc. If Apmc ⁇ Ag holds, it is determined that there is a possibility that slippage may occur.
  • the gradient acceleration Ag is calculated by subtracting the vehicle body speed differential value DVS from the vehicle body acceleration G calculated based on the detection signal from the acceleration sensor SE7.
  • the vehicle speed differential value DVS is obtained by temporally differentiating the vehicle speed VS calculated based on the detection signals of the wheel speed sensors SE3 to SE6.
  • the vehicle body acceleration G calculated based on the detection signal of the acceleration sensor SE7 includes a gradient acceleration Ag which is a vehicle longitudinal direction component of the gravitational acceleration acting on the vehicle.
  • the vehicle speed differential value DVS obtained by time differentiating the vehicle speed VS of the vehicle does not include the gradient acceleration Ag. Therefore, by subtracting the vehicle body speed differential value DVS from the vehicle body acceleration G, the gradient acceleration Ag is obtained.
  • the braking acceleration Apmc used to determine the presence or absence of the slippage during traveling before the vehicle is stopped.
  • the vehicle body acceleration G calculated based on the detection signal from the acceleration sensor SE7 fluctuates with the fluctuation of the master cylinder pressure PMC, that is, the fluctuation of the braking force on the wheels FR, FL, RR, and RL. Therefore, in the present embodiment, by focusing on the correspondence between the master cylinder pressure and the vehicle body acceleration G, the braking acceleration Apmc as a value corresponding to the master cylinder pressure PMC is acquired based on the vehicle body acceleration G. Be done. That is, master cylinder pressure PMC means a braking force.
  • the engine 12 is stopped before the vehicle stops to prevent the slip of the vehicle. Restart in advance. The restart of the engine 12 applies creep torque to the vehicle to prevent the vehicle from slipping down.
  • the fuel saving amount Fd saved by the idle stop is smaller than the fuel consumption amount Fst consumed by the restart of the engine 12 after the idle stop, the fuel consumption amount is increased by stopping the idle. Fuel consumption will deteriorate. Therefore, in the present embodiment, when the execution condition of the engine stop control is satisfied, the fuel saving amount Fd which can be saved by the idle stop by the automatic stop of the engine 12 and the fuel consumption amount Fst at the restart of the engine 12 are calculated. Compare. When the fuel saving amount Fd is equal to or more than the fuel consumption amount Fst, the engine 12 is stopped to implement idle stop.
  • the present embodiment does not compare the fuel saving amount Fd with the fuel consumption amount Fst, but the predicted idle stop time from the stop to the restart of the engine 12 is assumed as the estimated engine stoppable time Tes. calculate. Then, in the present embodiment, the set time T1 obtained by converting the fuel consumption amount Fc at the time of restart of the engine 12 into the idle time is compared with the estimated engine stoppable time Tes.
  • the fuel consumption Fid per unit time when the engine 12 is idle is approximately uniquely determined by the type of vehicle. However, the idle rotation speed of the engine 12 changes between when the air conditioner mounted on the vehicle is driven and when it is not driven.
  • the setting time T1 is set based on the upper limit value in the change range of the idle rotation speed, that is, the fuel consumption Fid per unit time at the idle rotation speed at the time of driving the air conditioner.
  • this embodiment can adopt a configuration in which it is determined whether the air conditioner is driven or not driven, and the value of the set time T1 is switched according to the determination result.
  • the fuel consumption Fst at engine restart is also uniquely determined by the vehicle type.
  • the fuel consumption amount Fst at engine restart changes according to the engine operation mode
  • the fuel consumption amount Fst according to the operation mode may be adopted.
  • a value obtained by converting the fuel consumption amount Fst at engine restart into the idle time is calculated as the set time T1 as the time having the fuel efficiency improvement effect.
  • the set time T1 is given by the following equation.
  • T1 Fst / Fid (1)
  • the engine stoppable estimated time Tes is an estimated time or predicted time in which the engine 12 can be kept stopped from the stop time of the engine 12 to the restart time, and is given by the following equation.
  • Tes VS / (DVS + Aet) (2)
  • VS is a vehicle speed
  • DVS is a vehicle speed differential value
  • Aet is an engine torque acceleration.
  • the vehicle speed derivative value DVS takes a positive value in the process of deceleration of the vehicle, that is, in the process of increasing the acceleration in the backward direction of the vehicle, in calculation.
  • the engine torque acceleration Aet takes a positive value in the engine operating state. The engine torque acceleration Aet will be described later.
  • the engine 12 is stopped when the engine stoppable estimated time Tes is equal to or longer than the set time T1, that is, when TesesT1 is satisfied.
  • the engine stoppable predicted time Tes is less than the set time T1
  • the automatic stop of the engine 12 that is, the idle stop, rather deteriorates the fuel efficiency, so the automatic stop of the engine 12 itself is not performed.
  • the slippage lowering determination condition that is, Apmc ⁇ Ag
  • the braking force Apmc is equal to or higher than the gradient acceleration Ag
  • the braking force condition by which the braking force sufficient to suppress the slippage of the vehicle is secured If Ag Ag is established, the engine 12 is not restarted to prevent slippage. For this reason, in the present embodiment, it is determined whether or not Apmc ⁇ Ag is established whether a braking force sufficient to suppress slippage of the vehicle can be secured when the vehicle is stopped.
  • the engine 12 is allowed to stop if the braking force condition, that is, ApmcmcAg, is satisfied even if the condition for the engine stoppable estimated time Tes, that is, TesTT1 is not satisfied.
  • “other idle stop condition” excluding the condition of the engine stoppable predicted time Tes, that is, Tes ⁇ T1 and the braking force condition, that is, ApmcAgAg, is set.
  • the "other IS condition”, that is, the “other idle stop condition” is that "the brake switch SW1 is on”, that is, the brake switch is on; "master cylinder pressure PMC exceeds the specified pressure P1 That is, that each condition that PMC> P1 is satisfied; and that the vehicle speed VS is less than the prescribed speed V1, for example, 20 km / h is satisfied that each condition that VS ⁇ V1 is satisfied is AND condition.
  • the "other idle stop condition” may be changed to an appropriate condition such as eliminating one of the brake switch on condition and the master cylinder pressure condition.
  • FIGS. 6 to 8 show timing charts of control modes of the present embodiment.
  • the signal of the brake switch SW1 before stopping the vehicle on the uphill, the master cylinder pressure PMC, the vehicle acceleration G output from the acceleration sensor SE7, the engine rotation speed, the vehicle speed VS, and the vehicle speed differential value DVS Shows the transition of In the present embodiment, the wheel speed is used as the vehicle speed VS.
  • the vehicle body speed VS can be obtained by adding an integrated value obtained by integrating wheel acceleration, which is a time differential value of the wheel speed, for each unit time to the previous wheel speed.
  • the vehicle acceleration G and the vehicle speed differential value DVS are shown to be different in positive and negative states from the vehicle acceleration G detected by the acceleration sensor SE7 and the calculated vehicle speed differential value DVS. That is, in FIG. 6 to FIG. 8, the vehicle body acceleration G and the vehicle body speed differential value DVS are shown such that the rear direction of the vehicle takes a negative value.
  • FIG. 6 is a timing chart in the case where the engine 12 is stopped because the condition for the estimated engine stoppable time Tes to be the set time T1 or more is satisfied.
  • the vehicle is traveling with the engine 12 being driven.
  • the vehicle acceleration G during traveling of the vehicle includes acceleration components such as acceleration Ag corresponding to the gradient; acceleration Aet corresponding to the engine torque, ie, creep torque acceleration; and acceleration Ad corresponding to the drag. Including. Assuming that the acceleration acting on the front of the vehicle is "positive” and the acceleration acting on the rear of the vehicle is "negative", the gradient acceleration Ag is negative, the engine torque acceleration Aet is positive, and the acceleration Ad is a negative value. As a result of these accelerations being applied to the vehicle, the vehicle acceleration G is detected by the acceleration sensor SE7.
  • the acceleration sensor SE7 outputs the acceleration in the backward direction of the vehicle as a positive value for the sake of convenience of calculation, unlike the positive / negative of the actual acceleration in FIG.
  • the acceleration Ad corresponding to the drag means a negative acceleration due to running resistance between the wheel and the road surface.
  • the brake switch SW1 When the driver operates the brake pedal 15 at time t1 while the vehicle is traveling, that is, the brake switch SW1 is turned on when the driver depresses the brake pedal 15, the master cylinder pressure PMC is increased by this brake operation, and the braking force is applied to the wheels. Be done. As a result, the vehicle speed VS starts to decrease from time t1. At this time, the braking acceleration Apmc for the master cylinder pressure PMC is applied to the vehicle as a negative acceleration in the direction opposite to the traveling direction, that is, in the backward direction, so the vehicle body acceleration G is an acceleration for the respective master cylinder pressure PMC. Apmc decreases and takes a negative value. Further, the master cylinder pressure PMC reaches the defined pressure P1 by the brake operation.
  • the vehicle speed VS is decelerated at a change rate equal to the vehicle acceleration G reduced by the application of the braking acceleration Apmc. In FIG. 6, G ⁇ 0. Eventually, the vehicle speed VS becomes less than or equal to the specified speed V1.
  • the engine stoppable estimated time Tes is a stop time of the engine 12, that is, from the present time when it is assumed that the engine 12 is restarted to prevent a slip of the vehicle after stopping when the engine 12 is stopped. Calculated as the time between the start of restart. That is, the engine stoppable estimated time Tes is calculated as the time that is expected to be capable of holding the engine 12 in the stop state.
  • the vehicle body when decelerating with the vehicle acceleration G to which the acceleration Aet corresponding to the engine torque is added It corresponds to the speed.
  • the dashed-two dotted line in FIG. 6 shows the speed profile in the case of decelerating by the vehicle body acceleration G to which the acceleration Aet for engine torque was added.
  • the engine stoppable estimated time Tes is calculated on the assumption of the deceleration process in the engine stop state.
  • the engine stoppable expected time Tes and the set time T1 are compared, and if Tes> T1 holds, the fuel efficiency improvement effect is obtained, so the engine 12 is stopped from time t2. As a result, the engine rotational speed decreases from time t2 and eventually becomes zero. When the engine rotation speed becomes zero, the engine torque component disappears, so the actual vehicle speed VS decreases along the solid line in FIG. 6 in the same manner as the expected vehicle speed. In the period from time t2 to time t3, the engine stoppable estimated time Tes may be calculated using the variable acceleration Aet according to the gradually decreasing engine torque.
  • the engine 12 is stopped even if the estimated engine stoppable time Tes is shorter than the set time T1, that is, Tes ⁇ T1. This is because it is not necessary to restart the engine 12 for the purpose of preventing slippage after stopping. In the present embodiment, the engine 12 is also stopped even when it is not necessary to restart the engine when the vehicle is stopped.
  • the engine restart start time is determined so that the slippage lowering distance L can be suppressed to the allowable distance La or less.
  • the predicted time T2 sequentially calculated in the deceleration process of the vehicle after the engine stop reaches the restart required time Teng as the time required from the restart start of the engine 12 to the restart end.
  • the required time for restart Teng which is predetermined for each vehicle, decreases, restart of the engine 12 is started.
  • the restart of the engine 12 is completed before the slippage lowering distance L reaches the allowable distance La.
  • the brake ECU 55 executes the idle stop control routine at predetermined intervals, for example, every 0.01 second.
  • an engine restart control routine The engine restart control in the idle stop control routine is performed when the master cylinder pressure PMC becomes lower than the specified pressure Px when the operation amount of the brake pedal 15 returns below the specified amount, or the accelerator opening AP> 0.
  • the engine 12 is restarted when a predetermined restart condition such as time is satisfied.
  • the engine restart control in the present embodiment includes slip reduction prevention control that prevents slippage of the vehicle after stopping.
  • the engine restart control routine shown in FIG. 4 shows a part of the engine stop control that restarts the engine 12 for slippage prevention control.
  • the brake ECU 55 executes an engine stop control routine shown in FIG. 3 while the vehicle is traveling in the engine operating state.
  • the engine stop control routine is a process for stop control that permits the automatic stop of the engine 12 when a predetermined stop condition is satisfied.
  • step S11 the brake ECU 55 first determines whether “other idle stop conditions” (other IS conditions) are satisfied. If the "other idle stop condition” is satisfied, the process proceeds to step S12. If the “other idle stop condition” is not satisfied, the routine is ended.
  • the “other idle stop condition” corresponds to the execution condition of the stop control, and the brake ECU 55 that determines whether the “other idle stop condition” is satisfied also functions as a first determination unit. .
  • Step S11 corresponds to a first determination step.
  • step S12 the brake ECU 55 calculates an estimated engine stoppable time Tes.
  • the brake ECU 55 determines whether or not "the estimated engine stoppable time Tes is equal to or longer than a set time T1 at which the fuel efficiency improvement effect is achieved", that is, Tes T T1. If Tes ⁇ T1 is established, the process proceeds to step S15, and if Tes ⁇ T1 is not established, the process proceeds to step S14.
  • the brake ECU 55 also functions as a third determination unit by determining the engine stoppable estimated time Tes and determining whether Tes ⁇ T1 holds. Steps S12 and S13 correspond to a third determination step.
  • step S15 the stop of the engine 12 is permitted. That is, the brake ECU 55 transmits a stop command to the engine ECU 17. As a result, the engine ECU 17 stops the engine 12.
  • the brake ECU 55 that permits the engine 12 to stop also functions as a stop control unit. Step S15 corresponds to the stop control step.
  • the brake ECU 55 determines whether or not "the braking acceleration Apmc is equal to or higher than the gradient acceleration Ag as a threshold value" in step S14. That is, it is determined whether Apmc ⁇ Ag holds.
  • the establishment of Apmc ⁇ Ag means that a braking force sufficient to prevent slippage without restarting the engine 12 is secured. Therefore, if Apmc ⁇ Ag, the brake ECU 55 proceeds to step S15 and permits the engine 12 to stop. That is, the brake ECU 55 transmits a stop command to the engine ECU 17. As a result, the engine ECU 17 stops the engine 12.
  • the brake ECU 55 that determines whether Apmc ⁇ Ag holds also functions as a fourth determination unit. Step S14 corresponds to a fourth determination step.
  • step S14 when it is determined in step S14 that Apmc ⁇ Ag is not established, the routine ends. In this case, stopping of the engine 12 is not permitted. That is, since the fuel efficiency improvement effect by idle stop can not be obtained, the stop of the engine 12 is not permitted.
  • the timing chart shown in FIG. 6 describes the process when TesTT1 as the process when stopping the engine 12. If the driver operates the brake pedal 15 at time t1 while the vehicle is traveling with the engine operating condition, the brake switch SW1 is turned on and the master cylinder pressure PMC rises to reach the specified pressure P1. By applying a braking force corresponding to master cylinder pressure PMC to wheels FR, FL, RR, and RL, the vehicle decelerates, and the vehicle speed VS becomes equal to or less than a specified speed V1. As a result, at time t2, "other idle stop conditions" are satisfied. That is, each condition of brake switch ON; master cylinder pressure PMC> prescribed pressure P1; and vehicle body speed VS ⁇ prescribed speed V1 is satisfied under the AND condition.
  • an engine stoppable estimated time Tes is next obtained, and it is determined whether Tes ⁇ T1 is satisfied. If Tes ⁇ T1 holds, the engine 12 is stopped from time t2. As a result, the engine torque component disappears by time t3, and the vehicle speed VS decreases along the solid line in FIG. At time t4, the vehicle stops.
  • This engine restart control routine is for permitting automatic restart of the engine 12 for the purpose of suppressing slippage of the vehicle after stopping within the allowable range when a predetermined restart condition is satisfied. Processing.
  • the engine restart control routine shown in FIG. 4 is repeatedly executed by the brake ECU 55 at a constant control cycle, for example, every 0.01 seconds, while traveling uphill with the engine 12 stopped.
  • step S21 the brake ECU 55 determines whether “slipping of the vehicle occurs after stopping” by comparing the braking acceleration Apmc and the gradient acceleration Ag. That is, it is determined whether Apmc ⁇ Ag holds.
  • the brake ECU 55 determines whether Apmc ⁇ Ag holds or not also functions as a second determination unit.
  • Step S21 corresponds to a second determination step.
  • the brake ECU 55 permits the restart of the engine 12 in step S24. That is, the brake ECU 55 transmits a restart command to the engine ECU 17.
  • the engine ECU 17 When the engine ECU 17 receives the restart command, the engine ECU 17 restarts the engine 12 and transmits a signal to the effect that the restart processing has been completed to the brake ECU 55.
  • the brake ECU 55 that has received the signal from the engine ECU 17 determines that the restart of the engine 12 is completed.
  • the estimated engine stoppable time Tes is smaller than the set time T1, that is, Tes ⁇ T1.
  • the timing chart in the case where the braking force capable of suppressing the slippage drop is secured is shown as the braking acceleration Apmc is larger than the gradient acceleration Ag.
  • the braking acceleration Apmc is larger than the gradient acceleration Ag, a braking force sufficient to prevent slippage is secured. Therefore, there is no need to restart the engine 12 for the purpose of preventing slippage. Therefore, at time t13 when Apmc> Ag is established, the stop of the engine 12 is permitted. As a result, from time t13, the engine rotational speed decreases and eventually becomes zero. When the engine rotational speed becomes zero at time 14, the engine torque disappears. Therefore, the actual vehicle speed VS decreases along the solid line in FIG. 7 as expected. Since a relatively strong braking force is secured when the vehicle is stopped at time t15, the vehicle does not slip down even if the engine 12 is not restarted.
  • FIG. 8 shows a timing chart when the engine is not stopped.
  • the brake pedal 15 is operated at time t21 while the vehicle is traveling in the engine operating state, the brake switch SW1 is turned on, and the master cylinder pressure PMC rises to reach the defined pressure P1.
  • Tes> T1 is established by using the engine stoppable estimated time Tes assumed to stop at time t24. In the example of FIG. 8, since Tes> T1 is not established, the fuel consumption improvement effect can not be obtained even if the engine 12 is stopped.
  • the master cylinder pressure PMC is relatively small at about the prescribed pressure P1, that is, the braking acceleration Apmc is smaller than the gradient acceleration Ag, so that the braking force that can suppress the slippage is not secured. For this reason, in order to prevent slippage of the vehicle after stopping, a creep torque is required. Thus, the engine 12 is not stopped. The actual vehicle speed VS decreases along the solid line in FIG. 8 because the acceleration Aet corresponding to the engine torque does not disappear. Since the creep torque is given by the engine 12 continuing the driving after the stop, the slippage of the vehicle does not occur.
  • the brake ECU 55 for automatically stopping the engine 12 and automatically restarting the fuel consumption Fd is equal to or more than the fuel consumption Fst required to restart the engine 12 when the “other idle stop condition” is satisfied. It is determined whether or not.
  • the fuel saving amount Fd means the amount of fuel that can be saved in the engine stop period, that is, the idle stop time from the engine stop to the restart of the engine 12 performed for the purpose of preventing slippage after stopping. If the fuel saving amount Fd is the fuel consumption amount Fst or more, the brake ECU 55 permits the engine 12 to stop. Therefore, for example, when it is possible to secure only the engine stop period in which the fuel consumption Fst is larger than the fuel saving amount Fd, the engine 12 can not be stopped. Therefore, the fuel consumption improvement effect can be further obtained as compared with the conventional case.
  • the brake ECU 55 is an estimated value of the engine stop period from the engine stop to the restart of the engine 12 performed for the purpose of preventing slippage after stopping when the "other idle stop conditions" are satisfied.
  • An engine stoppable estimated time Tes is calculated.
  • the brake ECU 55 determines whether the estimated engine stoppable time Tes is equal to or longer than the set time T1. That is, the brake ECU 55 does not directly compare the fuel saving amount Fd with the fuel consumption amount Fst.
  • the brake ECU 55 uses the fuel consumption amount Fid per unit time in the idle state of the engine 12 to convert the fuel amounts Fd and Fst into time corresponding to the idle time, respectively, to obtain the estimated engine stoppable time Tes.
  • the set time T1 is obtained.
  • the brake ECU 55 compares the estimated engine stoppable time Tes with the set time T1. Therefore, the brake ECU 55 does not obtain the fuel saving amount Fd and the fuel consumption amount Fst, but uses the estimated engine stoppable time Tes, which is a time conversion value thereof, and the setting time T1 to obtain the fuel saving amount Fd It can be determined indirectly that it is Fst or more. Therefore, in the present embodiment, the determination can be made by a relatively simple process using the engine stoppable estimated time Tes which can be acquired by calculating from the detection results of the existing wheel speed sensors SE3 to SE6.
  • the brake ECU 55 When the fuel saving amount is less than the fuel consumption amount, the brake ECU 55 generates a gradient acceleration Ag corresponding to the force Fg of the gradient component of gravity acting on the vehicle according to the operation amount of the brake pedal 15, that is, the stepping amount.
  • the braking acceleration Apmc is determined from the master cylinder pressure PMC. If Apmc ⁇ Ag, it is determined that slipping does not occur after the vehicle is stopped, and the engine 12 is permitted to stop. That is, when the braking force capable of resisting the force Fg of the gradient component of gravity acting on the vehicle when the vehicle is stopped, the stop of the engine 12 is permitted. Therefore, the fuel consumption improvement effect can be obtained by increasing the implementation frequency of the idle stop.
  • restart of the engine 12 is started so as to be completed by the time the vehicle is stopped. More specifically, when a slippage of the vehicle is predicted to occur, restart of the engine 12 is started when the predicted time T2 until the vehicle stops reaches the required restart time Teng. For this reason, slippage of the vehicle does not occur after stopping, and slippage after stopping of the vehicle on the uphill road can be suitably prevented.
  • the brake ECU 55 determines whether or not a slippage occurs after the vehicle is stopped, a braking acceleration Apmc determined from the master cylinder pressure PMC according to the operation amount of the brake pedal 15, ie, the depression amount, the vehicle acceleration G and the vehicle speed This is performed using gradient acceleration Ag determined from the difference with the differential value DVS.
  • the brake ECU 55 determines that "a slip of the vehicle occurs". Therefore, it is possible to accurately determine the necessity of restarting the engine 12 for the purpose of preventing slippage of the vehicle.
  • the estimated engine stoppable time Tes obtained by converting the fuel saving amount Fd and the set value F1 corresponding to the fuel consumption Fc into idle time is compared with the set time T1.
  • the fuel injection device has an injector for injecting fuel into the combustion chamber of the engine 12.
  • the fuel saving amount Fd is calculated by multiplying the amount of fuel consumed per unit time under the engine idle condition by the fuel injection device by the engine stop time from the stop of the engine 12 to the restart.
  • the memory of the brake ECU 55 stores a set value F1 corresponding to the actual fuel consumption amount Fc acquired at engine start.
  • the brake ECU 55 functioning as the third determination unit is configured to determine whether the fuel reduction amount Fd obtained by the above calculation is equal to or greater than the set value F1.
  • the engine 12 is allowed to stop. Instead of this, the engine may not be stopped. That is, at least when the fuel consumption is to be deteriorated, the engine 12 may not be stopped.
  • the allowable amount ⁇ may be set with respect to the fuel consumption Fc.
  • an allowable time T ⁇ corresponding to the allowable amount ⁇ may be set with respect to the estimated engine stoppable time Tes. Then, the third determination unit may be configured to determine that FdFFc + F ⁇ or Tes ⁇ T1 + T ⁇ .
  • the determination condition of the third determination unit may be Fd ⁇ Fc ⁇ F ⁇ or Tes ⁇ T1 ⁇ T ⁇ .
  • the set value may be a value set according to the fuel consumption at the time of engine restart, and may be a value in which a predetermined allowable value is considered with respect to the fuel consumption and the conversion time of the fuel consumption. .
  • the braking acceleration Apmc is compared with the gradient acceleration Ag, that is, the threshold value, at the time of the slip down determination.
  • the braking force may be compared with the threshold value as the force Fg of the vehicle longitudinal direction component of the gravity acting on the vehicle, that is, the road surface direction component.
  • master cylinder pressure PMC may be compared with a threshold as a force equivalent to master cylinder pressure of force Fg.
  • the braking acceleration Apmc may be acquired based on the master cylinder pressure PMC detected by the pressure sensor SE2.
  • the memory of the brake ECU 55 stores, for example, a map (not shown) indicating the correspondence between the master cylinder pressure PMC and the braking acceleration Apmc or the braking force Fpmc.
  • the brake ECU 55 acquires the braking acceleration Apmc or the braking force Fpmc by referring to the map based on the master cylinder pressure PMC. Then, the brake ECU 55 may be configured to determine the presence or absence of slippage by comparing the braking acceleration Apmc with the gradient acceleration Ag, or by comparing the braking force Fpmc with the force Fg.
  • the slippage of the vehicle at the time of stopping on the uphill may be allowed if it is small. That is, the allowable distance La is set to La ⁇ 0, and the engine 12 is restarted while the slippage lowering distance L is within the allowable distance La. It is determined whether or not a slippage of the vehicle after the stoppage occurs while traveling uphill while the engine 12 is stopping. When it is predicted that "slipping occurs", restart of the engine 12 is started so as to be completed by the time the sling lowering distance L of the vehicle exceeds the allowable distance La.
  • the brake ECU 55 permits start of restart of the engine 12 when the predicted time T2 represented by the sum of the time Ta and the time Tb reaches the required restart time Teng.
  • the larger the road surface gradient ⁇ the larger the value of the allowable distance La may be set.
  • the allowable distance La is set to “0” until the road surface gradient ⁇ reaches a constant value, and the allowable distance La is increased according to the increase of the road surface gradient ⁇ after the road surface gradient ⁇ exceeds a constant value.
  • the allowable distance La is the one described in the above embodiment. When these configurations are adopted, it is preferable to calculate the estimated engine stoppable time Tes by the following equation.
  • Tes VS / (DVS + Aet) + Tb-Teng (4)
  • the engine 12 is restarted to add creep torque to the braking force to prevent the vehicle from slipping down.
  • the gradient acceleration Ag is larger than the sum of the creep acceleration Ac due to creep torque and the braking acceleration Apmc, that is, if Ac + Apmc ⁇ Ag, then a slippage occurs. Therefore, when Ac + Apmc ⁇ Ag holds, a configuration may be adopted in which brake pressure is applied to prevent slippage. Specifically, when Ac + Apmc ⁇ Ag holds, the motor 41 is driven to drive the pumps 42 and 43.
  • the vehicle slips down after stopping based on the braking acceleration Apmc determined from the master cylinder pressure PMC according to the operation force of the brake pedal 15, ie, the pedaling force, and the detection result of the vehicle body acceleration G. It was like that. It is also possible to change this and make the same determination based on other detected values. For example, it is possible to confirm the braking force and the braking acceleration of the vehicle by using the operation amount of the brake pedal 15, that is, the detection value of the depression amount instead of the detection value of the master cylinder pressure PMC. In this case, a sensor for detecting the amount of depression of the brake pedal 15 is provided to the vehicle.
  • the acceleration by the brake can also be confirmed by removing the acceleration generated by the engine by the vehicle acceleration G, the acceleration by the rolling resistance, the road surface gradient acceleration, the acceleration by the air resistance or the like from the vehicle acceleration G. Further, it is also possible to perform the above determination by providing a sensor for detecting the pitch of the vehicle body and grasping the road surface gradient ⁇ by a signal from the sensor.
  • the vehicle speed VS and the vehicle speed differential value DVS are used. This may be modified to use wheel speed and wheel acceleration. As the vehicle body speed, it is possible to use one calculated using at least one of the wheel speed sensors SE3 to SE6 or a value acquired by a car navigation system.
  • Vehicles are not limited to two-wheel drive vehicles.
  • the vehicle control device of the present invention can be similarly applied to vehicles of other drive systems such as four-wheel drive vehicles.
  • T1 setting time which is an example of setting value.
  • Road surface gradient. L ... slip down distance. La ... allowable distance.
  • VS body speed.
  • DVS body speed derivative value.
  • Ag gradient acceleration.
  • Fpmc braking force.
  • Apmc braking acceleration.
  • Aet engine torque acceleration.
  • Fd Fuel savings.
  • Fst Fuel consumption.
  • F1 setting value. Teng ... required time to restart.

Abstract

In the present invention, a first determination unit determines whether or not the conditions are met for execution of automatic stopping control of a vehicle engine. If it is determined that the conditions are met for execution of stopping control, a stopping control unit permits engine stopping. A second determination unit determines whether or not slipping down of the vehicle will occur after stopping during sloped-road driving by a vehicle with the engine in a stopped state. If it is determined that slipping down will occur, a restarting control unit permits initiation of engine restarting so that engine restarting finishes before the slip-down distance of the vehicle exceeds a permissible distance. Before engine stopping, a third determination unit predicts the amount of fuel savings that it is possible to save in the period of engine stoppage from engine stopping to restarting, and determines whether or not the amount of fuel savings is at least a set value set in accordance with the amount of fuel consumption required for engine restarting. If it is determined that the amount of fuel savings is less than the set value, the stopping control unit does not permit engine stopping even if the conditions for execution of stopping control are met.

Description

車両制御装置および車両制御方法Vehicle control apparatus and vehicle control method
 本願は、エンジンを自動停止したり自動再始動したりするための車両制御装置と車両制御方法とに関する。 The present application relates to a vehicle control device and a vehicle control method for automatically stopping and automatically restarting an engine.
 周知のように、信号待ちのような停車中にエンジンを自動停止したり、運転者の発進操作に応じてエンジンを自動再始動したりすることで、燃料消費の節約や排気エミッションの向上を図るエンジン自動停止再始動装置が実用されている。近年には、停車以前の車両の減速中にエンジンを停止させる装置も提案されている。 As is well known, fuel consumption is reduced and exhaust emissions are improved by automatically stopping the engine while the vehicle is stopped, such as waiting for a signal, or automatically restarting the engine according to the driver's start operation. Automatic engine stop and restart devices have been put to practical use. In recent years, a device for stopping the engine while the vehicle is decelerating before stopping is also proposed.
 特許文献1に記載の車両制御装置は、ブレーキ踏量が第1閾値X以上であることを条件にエンジンを自動停止し、ブレーキ踏量が第2閾値Y以下であることを条件にエンジンを自動再始動する。さらに特許文献1の車両制御装置は、それら第1閾値と第2閾値とを車速に応じて可変にする、と提案されている。 The vehicle control device described in Patent Document 1 automatically stops the engine on condition that the brake depression amount is equal to or greater than the first threshold X, and automatically operates the engine on condition that the brake depression amount is equal to or smaller than the second threshold Y. To restart. Furthermore, the vehicle control device of Patent Document 1 is proposed to make the first threshold and the second threshold variable according to the vehicle speed.
特開2003-35175号公報JP 2003-35175 A
 ところで、トルクコンバータ付き自動変速機を搭載するAT車(オートマチック車)は、エンジンのアイドル時にも、クリープ現象による車両前方向への推力を発生している。クリープ現象は、AT車において、シフトレバーが走行位置にあるときにアクセルペダルを踏込まなくても車両がゆっくりと前進する現象である。クリープ現象は、エンジンのアイドル時にもトルクコンバータが若干の動力を駆動輪側に伝達するために発生する。 By the way, an AT car (automatic car) equipped with an automatic transmission with a torque converter generates a thrust in the forward direction of the vehicle due to a creep phenomenon even when the engine is idle. The creep phenomenon is a phenomenon in which, in an AT car, when the shift lever is in the traveling position, the vehicle advances slowly even without depressing the accelerator pedal. The creep phenomenon occurs because the torque converter transmits some power to the drive wheels even when the engine is idle.
 登坂路での停車中も、エンジンが運転されていれば、クリープ現象によるトルクつまりクリープトルクが作用しているため、比較的小さいブレーキ踏量で車両のズリ下がりを防止することができる。しかし、登坂路での停車中のエンジンが自動停止されていれば、クリープトルクが作用しないため、ブレーキ踏量が小さいと、重力に抗し切れずに車両が坂路をズリ下がることがあると考えられる。またエンジン再始動の際には相対的に多くの燃料が消費されるため、燃料節減つまり燃費向上の観点からは、エンジンの不要な停止は極力回避されることが望ましい。 If the engine is operated while the vehicle is stopped on the uphill, torque due to the creep phenomenon, that is, creep torque is acting, so it is possible to prevent the vehicle from slipping down with a relatively small amount of brake depression. However, creep torque does not work if the engine on a hill slope is stopped automatically, so if the brake stepping amount is small, it is thought that the vehicle may slip down the slope without resisting gravity. Be In addition, since a relatively large amount of fuel is consumed at the time of engine restart, it is desirable that unnecessary stop of the engine be avoided as much as possible from the viewpoint of fuel saving, that is, improvement of fuel consumption.
 本願の目的は、エンジンの自動停止や自動再始動を行う車両において、燃料節減に寄与しえないエンジンの不要な停止を極力回避しつつ、登坂路での停車時における車両のズリ下がりを好適に防止することができる車両制御装置と車両制御方法とを提供することにある。 The object of the present application is to preferably avoid slipping of the vehicle at the time of stopping on a slope while avoiding unnecessary stopping of the engine which can not contribute to fuel saving as much as possible in a vehicle performing automatic stop and restart of the engine. It is providing a vehicle control device and a vehicle control method that can be prevented.
 上記課題を解決するため、本願の車両制御装置は、車両のエンジン(12)を自動的に停止させるための停止制御と、前記エンジン(12)を自動的に再始動させるための再始動制御とを行う。前記車両制御装置は、「前記停止制御の実行条件が成立した」か否か判定するように構成された第1判定部(55、S11)と;「前記停止制御の実行条件が成立する」と判定された場合には、前記エンジン(12)の停止を許可するように構成された停止制御部(55、S15)とを有する。さらに車両制御装置は、前記エンジン(12)が停止された状態での前記車両による坂路走行時に、「停車後の前記車両のズリ下がりが発生する」か否か判定するように構成された第2判定部(55、S21)と;「前記ズリ下がりが発生する」と判定されたときには、前記車両のズリ下がり距離(L)が許容距離(La)を超えるまでに前記エンジン(12)の再始動が完了するように、前記エンジン(12)の再始動の開始を許可するように構成された再始動制御部(55)とを有する。車両制御装置はさらに、前記エンジン(12)の停止前に、前記エンジン(12)の停止から前記再始動までのエンジン停止期間で節減しうる燃料節減量(Tes)を予測するように構成された第3判定部(55、S12、S13)を有する。前記第3判定部(55、S12、S13)は、「前記燃料節減量(Tes)が、前記エンジン(12)の前記再始動に要する燃料消費量に応じて設定された設定値(T1)以上である」か否か判定するように構成される。「前記燃料節減量(Tes)が前記設定値(T1)未満である」と判定された場合には前記停止制御部(55)は、前記停止制御の実行条件が成立しても前記エンジン(12)の停止を許可しないように構成されている。 In order to solve the above problems, the vehicle control device of the present application includes stop control for automatically stopping an engine (12) of the vehicle, and restart control for automatically restarting the engine (12). I do. The first control unit (55, S11) configured to determine whether or not the vehicle control device determines that "the execution condition of the stop control is satisfied"; and "the execution condition of the stop control is satisfied" And a stop control unit (55, S15) configured to permit the stop of the engine (12) when determined. Furthermore, the vehicle control device is configured to determine whether or not “the slippage of the vehicle after stopping occurs is generated” when traveling on a slope with the vehicle in a state where the engine (12) is stopped. Judgment unit (55, S21); when it is determined that "slipping occurs", restart of the engine (12) by the time the sloping lowering distance (L) of the vehicle exceeds the allowable distance (La) And a restart control (55) configured to allow initiation of restart of the engine (12) such that The vehicle control device is further configured to predict fuel savings (Tes) that can be saved in the engine stop period from the stop of the engine (12) to the restart before the stop of the engine (12). A third determination unit (55, S12, S13) is provided. The third determination unit (55, S12, S13) determines that “the fuel saving amount (Tes) is not less than the set value (T1) set according to the fuel consumption amount required for the restart of the engine (12) It is comprised so that it may determine whether it is. If it is determined that "the fuel saving amount (Tes) is less than the set value (T1)", the stop control unit (55) determines that the engine (12) does not meet the condition for executing the stop control. ) Is configured not to allow the suspension of.
 上記構成によれば、エンジンの停止前に、エンジンの停止から再始動までのエンジン停止期間で節減される燃料節減量が予測される。「予測された燃料節減量が、エンジンの再始動に要する燃料消費量に応じて設定された設定値未満である」と判定された場合には、停止制御の実行条件が成立しても、エンジンの停止が許可されない。このため燃料節減に寄与しえないエンジンの不要な停止を極力回避しつつ、登坂路での停車時における車両のズリ下がりを好適に防止することができる。 According to the above configuration, it is possible to predict the fuel saving amount saved in the engine stop period from the engine stop to the restart before the engine stop. If it is determined that "the predicted fuel saving amount is less than the set value set according to the fuel consumption amount required to restart the engine", the engine will be stopped even if the condition for executing the stop control is satisfied. Stop is not allowed. For this reason, it is possible to preferably prevent the slippage of the vehicle at the time of stopping on the uphill road while avoiding unnecessary stop of the engine which can not contribute to the fuel saving as much as possible.
 本願の一態様では、前記車両はブレーキ操作部(15)を備える。前記車両制御装置はさらに第4判定部(55、S14)を備える。前記第4判定部(55、S14)は、「前記ブレーキ操作部(15)の操作量に応じた制動力(Apmc)が、停車後の前記車両のズリ下がりを抑えうる閾値(Ag)以上に確保されている」か否か判定するように構成される。「前記制動力(Apmc)が前記閾値(Ag)以上に確保されている」と判定された場合には前記停止制御部(55)は、「前記燃料節減量(Tes)が前記設定値(T1)未満である」と判定された場合でも、前記エンジン(12)の停止を許可するように構成されている。 In one aspect of the present application, the vehicle includes a brake operating unit (15). The vehicle control device further includes a fourth determination unit (55, S14). The fourth determination unit (55, S14) sets “the braking force (Apmc according to the operation amount of the brake operation unit (15) is equal to or more than a threshold (Ag) that can suppress the slippage of the vehicle after It is configured to determine whether or not "secured". When it is determined that "the braking force (Apmc) is secured above the threshold (Ag)", the stop control unit (55) determines that "the fuel saving amount (Tes) is the setting value (T1)". Even if it is determined that “less than or equal to,” the engine (12) is configured to be permitted to stop.
 上記構成によれば、「ブレーキ操作部の操作量に応じた制動力が、停車後のズリ下がりを抑えうる閾値以上に確保されている」と判定されたことは、停車時にズリ下がりを抑えうる制動力が確保されることを意味する。この場合には、ズリ下がりを抑えるためのエンジンの再始動が行われない。このため、「燃料節減量が設定値未満」と判定された場合でも、エンジンの停止が許可される。このためエンジンの停止頻度が増えるため、さらなる燃費向上効果を得ることができる。 According to the above configuration, the determination that "the braking force corresponding to the amount of operation of the brake operation unit is secured at or above the threshold that can suppress slippage after stopping the vehicle" can suppress slippage when stopping. It means that the braking force is secured. In this case, the engine is not restarted to suppress slippage. Therefore, even if it is determined that "the fuel saving amount is less than the set value", the engine stop is permitted. For this reason, the frequency of stopping the engine increases, so it is possible to obtain a further improvement in fuel consumption.
 本願の一態様では、前記第3判定部(55、S12、S13)は、前記エンジン(12)の停止から再始動までの時間としてのエンジン停止可能予想時間(Tes)を求めるように構成される。前記第3判定部(55、S12、S13)は、「前記燃料節減量が前記設定値以上である」か否かの判定を、前記エンジン停止可能予想時間(Tes)が、前記設定値を前記エンジン(12)のアイドル時間に換算した設定時間(T1)以上であるか否か判定することによって行うように構成されている。 In one aspect of the present application, the third determination unit (55, S12, S13) is configured to obtain an estimated engine stoppable time (Tes) as a time from a stop of the engine (12) to a restart. . The third determination unit (55, S12, S13) determines whether or not the “fuel saving amount is equal to or more than the set value”, the engine stoppable estimated time (Tes) indicates the set value, and It is comprised so that it may carry out by judging whether it is more than the setting time (T1) converted into the idle time of the engine (12).
 上記構成によれば、「エンジンの停止から再始動までのエンジン停止可能予想時間が、アイドル時間換算の設定時間以上である」か否かが判定される。このためたとえばエンジンの燃料室内へ燃料を噴射する燃料噴射装置の燃料噴射量を取得するなどしなくてもよい。つまり車両に設けられた既存のセンサたとえば車速センサ等の検出値を用いることで、判定に必要な判定値は比較的簡単に取得される。このため判定に必要な処理は、複雑にならずに済む。 According to the above configuration, it is determined whether or not "the estimated engine stoppable time from the stop of the engine to the restart is equal to or longer than the set time of idle time conversion". Therefore, for example, it is not necessary to acquire the fuel injection amount of the fuel injection device that injects the fuel into the fuel chamber of the engine. That is, by using the detection value of an existing sensor such as a vehicle speed sensor provided in the vehicle, the determination value necessary for the determination can be acquired relatively easily. For this reason, the processing required for the determination does not have to be complicated.
 本願の一態様では、前記車両は車速検出部(SE3~SE6)を有する。前記第3判定部(55)は、前記車速検出部(SE3~SE6)によって検出された車体速度(VS)を取得するように、かつ前記車体速度(VS)が時間微分されることで生成する車体速度微分値(DVS)を取得するように構成される。前記前記第3判定部(55)は、前記エンジンの停止によって消滅するエンジントルク分の加速度(Aet)を前記車体速度微分値(DVS)から除いた値で、前記車体速度を除算することで、前記エンジン停止可能予想時間(Tes)を算出するように構成されている。 In one aspect of the present application, the vehicle includes vehicle speed detection units (SE3 to SE6). The third determination unit (55) generates the vehicle body speed (VS) detected by the vehicle speed detection unit (SE3 to SE6) by time differentiation of the vehicle body speed (VS). It is configured to obtain a vehicle body speed differential value (DVS). The third determination unit (55) divides the vehicle speed by a value obtained by removing the acceleration (Aet) corresponding to the engine torque which disappears due to the stop of the engine from the vehicle speed differential value (DVS), It is comprised so that the said engine stop possibility estimated time (Tes) may be calculated.
 上記構成によれば、車体速度微分値から、エンジンの停止によって消滅するエンジントルク分の加速度を除いた値で、車体速度を除算することでエンジン停止可能予想時間は求められる。つまりエンジン停止可能予想時間は、エンジントルクの消滅分を考慮することで求められる。よって第3判定部は、比較的精度の高い判定を行うことができる。 According to the above-described configuration, the engine stop estimated expected time can be obtained by dividing the vehicle speed by a value obtained by subtracting the acceleration for the engine torque which disappears from the stop of the engine from the vehicle speed differential value. That is, the expected engine stoppable time can be obtained by considering the disappearance of the engine torque. Therefore, the third determination unit can perform determination with relatively high accuracy.
 本願の車両制御方法は、車両のエンジン(12)を自動的に停止させるための停止制御と、前記エンジン(12)を自動的に再始動させるための再始動制御とを行う。前記車両制御方法は、「前記停止制御の実行条件が成立した」か否か判定することと;「前記停止制御の実行条件が成立する」と判定された場合には、前記エンジン(12)の停止を許可することとを有する。車両制御方法はさらに、前記エンジン(12)が停止された状態での前記車両による坂路走行時に、「停車後の前記車両のズリ下がりが発生する」か否か判定すること(55、S21)と;「前記ズリ下がりが発生する」と判定されたときには、前記車両のズリ下がり距離(L)が許容距離(La)を超えるまでに前記エンジン(12)の再始動が完了するように、前記エンジン(12)の再始動を開始することとを有する。車両制御方法はさらに、前記エンジン(12)の停止前に、前記エンジン(12)の停止から前記再始動までの停止期間で節減しうる燃料節減量を予測することと;「前記燃料節減量(Tes)が、前記エンジン(12)の前記再始動に要する燃料消費量に応じて設定された設定値(T1)以上である」か否か判定することとを有する。車両制御方法はさらに、「前記燃料節減量(Tes)が前記設定値(T1)未満である」と判定された場合には、前記停止制御の実行条件が成立しても前記エンジン(12)の停止を許可しないことを有する。上記構成によれば、上記車両制御装置と同様の作用効果を得ることができる。 The vehicle control method according to the present application performs stop control for automatically stopping the engine (12) of the vehicle and restart control for automatically restarting the engine (12). In the vehicle control method, it is determined whether "the execution condition of the stop control is satisfied" and "when the execution condition of the stop control is satisfied", the engine (12) is selected. And allowing the suspension. The vehicle control method further determines whether or not "slipping of the vehicle after stopping occurs" (55, S21) when traveling on a slope with the vehicle in a state where the engine (12) is stopped. When it is determined that "slipping occurs", the restart of the engine (12) is completed by the time the sling lowering distance (L) of the vehicle exceeds the allowable distance (La); And (12) initiating a restart. The method further comprises predicting, before stopping the engine (12), the fuel savings that can be saved in the stopping period between the stopping of the engine (12) and the restarting; Determining whether or not Tes) is equal to or greater than a set value (T1) set in accordance with the fuel consumption required for the restart of the engine (12). In the vehicle control method, when it is determined that "the fuel saving amount (Tes) is less than the set value (T1)", even if the execution condition of the stop control is satisfied, the vehicle control method of Have to not allow the stop. According to the above configuration, it is possible to obtain the same function and effect as the vehicle control device.
一実施形態の制御装置を搭載する車両の一例を示すブロック図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which shows an example of the vehicle carrying the control apparatus of one Embodiment. 図1に示す制動装置の一例を示す液圧回路図。The hydraulic-circuit figure which shows an example of the damping device shown in FIG. エンジン停止制御ルーチンを示すフローチャート。The flowchart which shows an engine stop control routine. エンジン再始動制御ルーチンを示すフローチャート。The flowchart which shows an engine restart control routine. 登坂路で停車する車両に作用する力を示す模式側面図。The model side view which shows the force which acts on the vehicle which stops on a slope. エンジンを停止する場合つまりTes≧T1の場合のタイミングチャート。The timing chart in the case of stopping an engine, ie, in the case of Tes> = T1, is shown. 勾配加速度よりも制動加速度のほうが大きい場合のタイミングチャート。The timing chart when braking acceleration is larger than gradient acceleration. エンジンを停止しない場合のタイミングチャート。Timing chart when not stopping the engine.
 図1~図8は、一実施形態を説明する。以下における本明細書中の説明においては、車両の前進方向を、車両前方として説明する。 Figures 1-8 illustrate one embodiment. In the following description in the present specification, the forward direction of the vehicle will be described as the front of the vehicle.
 本実施形態の車両は、燃費性能やエミッション性能を向上させるべく、いわゆるアイドルストップ機能を有している。すなわちアイドルストップ機能は、車両走行中に所定の停止条件の成立に応じてエンジンを自動的に停止させ、その後、所定の始動条件の成立に応じてエンジンを自動的に再始動させる。そのため、この車両では、運転手によるブレーキ操作による減速中または停車中に、エンジンが自動的に停止される。 The vehicle according to the present embodiment has a so-called idle stop function in order to improve the fuel efficiency and the emission performance. That is, the idle stop function automatically stops the engine in response to the establishment of the predetermined stop condition while the vehicle is traveling, and then automatically restarts the engine in response to the establishment of the predetermined start condition. Therefore, in this vehicle, the engine is automatically stopped during deceleration or stop by the driver's brake operation.
 次に、アイドルストップ機能を有する車両の一例を説明する。 Next, an example of a vehicle having an idle stop function will be described.
 図1に示すように、車両は前輪駆動車であり、複数すなわち本実施形態では4つの車輪すなわち右前輪FR、左前輪FL、右後輪RR、および左後輪RLのうちの前輪FR,FLが駆動輪として機能する。こうした車両は、運転手によるアクセルペダル11の操作量に応じた駆動力を発生するエンジン12を有する駆動力発生装置13と、前記駆動力発生装置13で発生した駆動力を前輪FR,FLに伝達する駆動力伝達装置14とを備えている。また車両には、運転手によるブレーキペダル15の操作量に応じた制動力を各車輪FR,FL,RR,RLに付与するための制動装置16が設けられている。 As shown in FIG. 1, the vehicle is a front wheel drive vehicle, and in the present embodiment, four wheels, that is, the right front wheel FR, the left front wheel FL, the right rear wheel RR, and the front wheels FR and FL of the left rear wheel RL. Acts as a drive wheel. Such a vehicle transmits a driving force generated by the driving force generator 13 to the front wheels FR and FL, and a driving force generator 13 having an engine 12 that generates a driving force according to the amount of operation of the accelerator pedal 11 by the driver. And a driving force transmission device 14. The vehicle is also provided with a braking device 16 for applying a braking force corresponding to the amount of operation of the brake pedal 15 by the driver to each of the wheels FR, FL, RR, and RL.
 駆動力発生装置13は、エンジン12の吸気ポート(図示略)近傍に配置され、且つエンジン12に燃料を噴射するインジェクタを有する燃料噴射装置(図示略)を備えている。こうした駆動力発生装置13は、図示しないCPU、ROM、およびRAMなどを有するエンジンECU17の制御に基づき駆動する。エンジンECUは、エンジン用電子制御装置を意味する。このエンジンECU17には、アクセルペダル11の近傍に配置され且つ運転手によるアクセルペダル11の操作量すなわちアクセル開度APを検出するためのアクセル開度センサSE1が電気的接続されている。エンジンECU17は、アクセル開度センサSE1からの検出信号に基づきアクセル開度を算出し、前記算出したアクセル開度などに基づき駆動力発生装置13を制御する。 The driving force generation device 13 is provided with a fuel injection device (not shown) which is disposed in the vicinity of an intake port (not shown) of the engine 12 and has an injector for injecting fuel to the engine 12. The driving force generator 13 is driven based on the control of the engine ECU 17 having a CPU, a ROM, a RAM, and the like (not shown). The engine ECU means an electronic control unit for an engine. The engine ECU 17 is electrically connected to an accelerator opening sensor SE1 disposed in the vicinity of the accelerator pedal 11 and for detecting an operation amount of the accelerator pedal 11 by the driver, that is, an accelerator opening AP. The engine ECU 17 calculates the accelerator opening based on the detection signal from the accelerator opening sensor SE1, and controls the driving force generator 13 based on the calculated accelerator opening and the like.
 駆動力伝達装置14は、自動変速機18と、前記自動変速機18の出力軸から伝達された駆動力を適宜配分して前輪FR,FLに伝達するディファレンシャルギヤ19と、自動変速機18を制御する図示しないAT-ECUとを備えている。自動変速機18は、流体継手の一例としてトルクコンバータ20aを有する流体式駆動力伝達機構20と、変速機構21とを備えている。 The driving force transmission device 14 controls the automatic transmission 18, the differential gear 19 that appropriately distributes the driving force transmitted from the output shaft of the automatic transmission 18 and transmits it to the front wheels FR and FL, and the automatic transmission 18 And an AT-ECU (not shown). The automatic transmission 18 includes a hydraulic drive power transmission mechanism 20 having a torque converter 20 a as an example of a fluid coupling, and a transmission mechanism 21.
 図1および図2に示すように、制動装置16は液圧発生装置28と、2つの液圧回路29,30を有するブレーキアクチュエータ31とを備えている。図2は、ブレーキアクチュエータ31を二点鎖線で示す。液圧発生装置28は、マスタシリンダ25、ブースタ26、およびリザーバ27を有する。各液圧回路29,30は、液圧発生装置28のマスタシリンダ25にそれぞれ接続されている。第1液圧回路29には、右前輪FR用のホイールシリンダ32aおよび左後輪RL用のホイールシリンダ32dが接続されると共に、第2液圧回路30には、左前輪FL用のホイールシリンダ32bおよび右後輪RR用のホイールシリンダ32cが接続されている。 As shown in FIGS. 1 and 2, the braking device 16 comprises a hydraulic pressure generator 28 and a brake actuator 31 having two hydraulic circuits 29 and 30. FIG. 2 shows the brake actuator 31 by a two-dot chain line. The hydraulic pressure generator 28 has a master cylinder 25, a booster 26 and a reservoir 27. The respective hydraulic circuits 29, 30 are connected to the master cylinder 25 of the hydraulic pressure generating device 28, respectively. A wheel cylinder 32a for the right front wheel FR and a wheel cylinder 32d for the left rear wheel RL are connected to the first hydraulic circuit 29, and a wheel cylinder 32b for the left front wheel FL is connected to the second hydraulic circuit 30. And a wheel cylinder 32c for the right rear wheel RR are connected.
 液圧発生装置28においてブースタ26は、エンジン12の駆動時に負圧が発生する図示しないインテークマニホールドに接続されている。ブースタ26は、インテークマニホールド内に発生する負圧と大気圧との圧力差を利用し、運転手によるブレーキペダル15の操作力つまり踏力を倍力する。 In the fluid pressure generating device 28, the booster 26 is connected to an intake manifold (not shown) that generates negative pressure when the engine 12 is driven. The booster 26 uses the pressure difference between the negative pressure generated in the intake manifold and the atmospheric pressure to boost the operation force of the brake pedal 15 by the driver, that is, the depression force.
 マスタシリンダ25は、運転手によるブレーキペダル15の操作すなわちブレーキ操作に応じたマスタシリンダ圧PMCを発生する。その結果、マスタシリンダ25から液圧回路29,30を介してホイールシリンダ32a~32d内に、ブレーキ液が供給される。すると車輪FR,FL,RR,RLには、ホイールシリンダ32a~32d内のホイールシリンダ圧PWCに応じた制動力が付与される。 Master cylinder 25 generates a master cylinder pressure PMC according to the operation of brake pedal 15 by the driver, that is, the brake operation. As a result, the brake fluid is supplied from the master cylinder 25 through the hydraulic circuits 29, 30 into the wheel cylinders 32a to 32d. Then, a braking force corresponding to the wheel cylinder pressure PWC in the wheel cylinders 32a to 32d is applied to the wheels FR, FL, RR, and RL.
 ブレーキアクチュエータ31において各液圧回路29,30は、管路33,34を通じてマスタシリンダ25にそれぞれ接続されており、各管路33,34の途中には、常開型のリニア電磁弁35a,35bがそれぞれ設けられている。つまりリニア電磁弁35a,35bは、調整弁である。リニア電磁弁35a,35bは、弁座、弁体、電磁コイル、および付勢部材たとえばコイルスプリングを備えている。付勢部材は弁体を、弁座から離間する方向に付勢する。弁体は、後述するブレーキECU55から電磁コイルに供給される電流値に応じて変位する。すなわちホイールシリンダ32a~32d内のホイールシリンダ圧PWCは、リニア電磁弁35a,35bへの供給電流値に応じた液圧に維持される。 In the brake actuator 31, the hydraulic circuits 29, 30 are connected to the master cylinder 25 through the conduits 33, 34, respectively, and in the middle of the conduits 33, 34, normally open linear solenoid valves 35a, 35b. Are provided respectively. That is, the linear solenoid valves 35a and 35b are adjusting valves. The linear solenoid valves 35a, 35b include a valve seat, a valve body, an electromagnetic coil, and an urging member such as a coil spring. The biasing member biases the valve body away from the valve seat. The valve body is displaced in accordance with the current value supplied from the brake ECU 55 described later to the electromagnetic coil. That is, the wheel cylinder pressure PWC in the wheel cylinders 32a to 32d is maintained at a hydraulic pressure corresponding to the value of the current supplied to the linear solenoid valves 35a, 35b.
 また管路33においてリニア電磁弁35aよりもマスタシリンダ25側の位置には、マスタシリンダ圧PMCを検出するための圧力センサSE2が設けられている。この圧力センサSE2からは、マスタシリンダ圧PMCに応じた値の検出信号が、ブレーキECU55に出力される。 A pressure sensor SE2 for detecting a master cylinder pressure PMC is provided at a position closer to the master cylinder 25 than the linear solenoid valve 35a in the pipe line 33. The pressure sensor SE2 outputs a detection signal of a value corresponding to the master cylinder pressure PMC to the brake ECU 55.
 マスタシリンダ25に繋がる管路33,34から分岐して各ホイールシリンダ32a~32dに接続された管路36a~36dの途中には、常開型の電磁弁よりなる増圧弁37a,37b,37c,37dと、常閉型の電磁弁よりなる減圧弁38a,38b,38c,38dとが設けられている。増圧弁37a,37b,37c,37dは各ホイールシリンダ圧PWCの増圧を規制するときに作動され、減圧弁38a,38b,38c,38dは各ホイールシリンダ圧PWCを減圧させるときに作動される。 The pressure increasing valves 37a, 37b, 37c, which are normally open solenoid valves, are branched from the conduits 33, 34 connected to the master cylinder 25 and are connected to the wheel cylinders 32a to 32d in the middle of the conduits 36a to 36d. There are provided 37d and pressure reducing valves 38a, 38b, 38c and 38d consisting of normally closed solenoid valves. The pressure increasing valves 37a, 37b, 37c and 37d are activated when the pressure increase of each wheel cylinder pressure PWC is restricted, and the pressure reducing valves 38a, 38b, 38c and 38d are activated when the wheel cylinder pressure PWC is decreased.
 また液圧回路29,30には、ホイールシリンダ32a~32dから減圧弁38a~38dを介して流出したブレーキ液を一時貯留するリザーバ39,40と、モータ41の回転に基づき作動するポンプ42,43とが接続されている。各リザーバ39,40は、管路44,45を通じてポンプ42,43に接続されると共に、管路46,47等を通じてマスタシリンダ25にそれぞれ接続されている。管路46,47は、リニア電磁弁35a,35bよりもマスタシリンダ25側の位置で管路33,34に接続される。またポンプ42,43の吐出口から延びる管路48,49は、増圧弁37a~37dとリニア電磁弁35a,35bとの間を繋ぐ連通路上の接続部50,51に接続されている。ポンプ42,43は、モータ41が回転した場合に、リザーバ39,40およびマスタシリンダ25側から管路44,45,46,47を通じてブレーキ液を吸入し、吸入したブレーキ液を管路48,49へ吐出する。 In the hydraulic circuits 29, 30, reservoirs 39, 40 for temporarily storing the brake fluid that has flowed out from the wheel cylinders 32a-32d through the pressure reducing valves 38a-38d, and pumps 42, 43 operated based on the rotation of the motor 41. And are connected. The reservoirs 39 and 40 are connected to the pumps 42 and 43 through the conduits 44 and 45, and are connected to the master cylinder 25 through the conduits 46 and 47, respectively. The conduits 46 and 47 are connected to the conduits 33 and 34 at a position closer to the master cylinder 25 than the linear solenoid valves 35a and 35b. The pipelines 48, 49 extending from the discharge ports of the pumps 42, 43 are connected to connection portions 50, 51 on a communication path connecting the pressure increase valves 37a to 37d and the linear solenoid valves 35a, 35b. The pumps 42 and 43 suck the brake fluid from the reservoirs 39 and 40 and the master cylinder 25 through the pipelines 44, 45, 46 and 47 when the motor 41 rotates, and the brake fluid sucked is pipelines 48 and 49. To discharge.
 次に、ブレーキアクチュエータ31の駆動を制御するブレーキECU55を説明する。ブレーキECU55は、ブレーキ用電子制御装置を意味する。 Next, the brake ECU 55 that controls the drive of the brake actuator 31 will be described. The brake ECU 55 means a brake electronic control unit.
 図2に示すように、ブレーキECU55には入力系として、圧力センサSE2、各車輪FR,FL,RR,RLの車輪速度を検出するための車輪速度センサSE3,SE4,SE5,SE6、車両の前後方向における加速度を検出するための加速度センサSE7が電気的接続されている。加速度センサは、Gセンサともいう。またブレーキECU55には、ブレーキペダル15が操作されているか否か検出するためのブレーキスイッチSW1が電気的接続されている。またブレーキECU55には出力系として、各弁35a,35b,37a~37d,38a~38d、およびモータ41などが電気的接続されている。加速度センサSE7からは、車両が登坂路で停車する際には正の値になるような信号が出力される一方、車両が降坂路で停車する際には負の値になるような信号が出力される。 As shown in FIG. 2, the pressure sensor SE2 and wheel speed sensors SE3, SE4, SE5, SE6 for detecting the wheel speeds of the respective wheels FR, FL, RR, RL as input systems to the brake ECU 55, front and rear of the vehicle An acceleration sensor SE7 for detecting an acceleration in a direction is electrically connected. The acceleration sensor is also referred to as a G sensor. The brake ECU 55 is electrically connected to a brake switch SW1 for detecting whether the brake pedal 15 is operated. Further, the valves 35a, 35b, 37a to 37d, 38a to 38d, and the motor 41 are electrically connected to the brake ECU 55 as an output system. The acceleration sensor SE7 outputs a signal that gives a positive value when the vehicle stops on an uphill road, and outputs a signal that gives a negative value when the vehicle stops on a downhill road Be done.
 またブレーキECU55は、図示しないCPU、ROM、およびRAMなどから構成されるデジタルコンピュータ;各弁35a,35b,37a~37d,38a~38dを作動させるための図示しない弁用ドライバ回路;およびモータ41を作動させるための図示しないモータドライバ回路を有している。デジタルコンピュータのROMには、各種制御処理たとえば後述するアイドルストップ処理としてのエンジン停止制御およびエンジン再始動制御等のルーチンや各種閾値や設定値などが予め記憶されている。またRAMには、車両の図示しないイグニッションスイッチがオンである間に適宜書替えられる各種の情報などがそれぞれ記憶される。 The brake ECU 55 is a digital computer comprising a CPU, a ROM, a RAM, etc. (not shown); a driver circuit (not shown) for operating the valves 35a, 35b, 37a to 37d, 38a to 38d; It has a motor driver circuit (not shown) for operation. In the ROM of the digital computer, various control processes, for example, routines for engine stop control and engine restart control as idle stop processes to be described later, various threshold values, setting values and the like are stored in advance. The RAM also stores various types of information that can be appropriately rewritten while the ignition switch (not shown) of the vehicle is on.
 本実施形態の車両において、エンジンECU17およびブレーキECU55を含むECU同士は、図1に示すように、各種情報および各種制御指令を送受信できるようにバス56を介して互いに接続されている。たとえばエンジンECU17からは、アクセルペダル11のアクセル開度APに関する情報などがブレーキECU55に適宜送信される一方、ブレーキECU55からは、エンジン12を自動的に停止させることを許可する旨の制御指令としての停止指令や、エンジン12を自動的に再始動させることを許可する旨の制御指令としての再始動指令などが、エンジンECU17に送信される。 In the vehicle of the present embodiment, ECUs including the engine ECU 17 and the brake ECU 55 are connected to each other via a bus 56 so as to transmit and receive various information and various control commands as shown in FIG. For example, information related to the accelerator opening AP of the accelerator pedal 11 is appropriately transmitted from the engine ECU 17 to the brake ECU 55, while the brake ECU 55 is a control command for permitting the engine 12 to be automatically stopped. A stop command, a restart command as a control command to permit automatic restart of the engine 12, and the like are transmitted to the engine ECU 17.
 図5は、登坂路で停車中の車両に作用する力の関係を示している。ここで登坂路の勾配つまり傾斜角を「θ」とし、車両に作用する重力を「g」とすると、車両は重力gの作用によって、「g・sinθ」の力Fgで後方に引かれることになる。この力Fgは、車両に作用する重力gの車両後方向の成分つまり路面方向成分であり、路面勾配θに応じて変化する。 FIG. 5 shows the relationship of the force acting on the vehicle stopping on the uphill road. Here, assuming that the slope of the uphill road, ie, the inclination angle, is “θ” and the gravity acting on the vehicle is “g”, the vehicle is pulled backward by the force “g · sin θ” by the action of gravity g. Become. The force Fg is a component in the vehicle backward direction of the gravity g acting on the vehicle, that is, a component in the road surface direction, and changes in accordance with the road surface gradient θ.
 また図5に示すように、力Fgに抗する力として車両には、マスタシリンダ圧PMCに応じた制動力Fpmcが働く。車両が坂路で停止した状態において、力Fgと制動力Fpmcとを比較し、Fpmc<Fgであると、車両のズリ下がりが発生する虞がある。 Further, as shown in FIG. 5, a braking force Fpmc corresponding to the master cylinder pressure PMC acts on the vehicle as a force against the force Fg. When the vehicle stops on a slope, the force Fg and the braking force Fpmc are compared, and if Fpmc <Fg, the vehicle may be slipped down.
 本実施形態では、力Fgを車体重量Mで除算することで得られる車両後方への加速度を、勾配加速度Agと定義する。つまりMは、単位系としては車体質量を意味する。制動力Fpmcを車体重量Mで除算することで得られる加速度を、制動加速度Apmcと定義する。Apmc<Agが成立すると、ズリ下がりが発生する虞があると判定するようにしている。 In the present embodiment, the acceleration to the rear of the vehicle obtained by dividing the force Fg by the vehicle body weight M is defined as a gradient acceleration Ag. That is, M means a vehicle body mass as a unit system. An acceleration obtained by dividing the braking force Fpmc by the vehicle body weight M is defined as a braking acceleration Apmc. If Apmc <Ag holds, it is determined that there is a possibility that slippage may occur.
 ここでズリ下がり防止制御を行う場合には、ズリ下がりの有無の判定に用いる勾配加速度Agを、停車前の走行中に取得しておく必要がある。本実施形態では、加速度センサSE7からの検出信号に基づき算出される車体加速度Gから、車体速度微分値DVSを差引くことで、勾配加速度Agを算出するようにしている。車体速度微分値DVSは、車輪速度センサSE3~SE6の検出信号に基づき算出される車体速度VSを、時間微分することで得られる。加速度センサSE7の検出信号に基づき算出された車体加速度Gは、車両に作用する重力加速度の車両前後方向成分である勾配加速度Agを含む。一方、車両の車体速度VSを時間微分することで得られる車体速度微分値DVSは、勾配加速度Agを含まない。このため車体加速度Gから車体速度微分値DVSを差引くことで、勾配加速度Agが取得される。 Here, when the slippage fall prevention control is performed, it is necessary to acquire the gradient acceleration Ag used to determine the presence or absence of the slippage fall during traveling before the vehicle is stopped. In this embodiment, the gradient acceleration Ag is calculated by subtracting the vehicle body speed differential value DVS from the vehicle body acceleration G calculated based on the detection signal from the acceleration sensor SE7. The vehicle speed differential value DVS is obtained by temporally differentiating the vehicle speed VS calculated based on the detection signals of the wheel speed sensors SE3 to SE6. The vehicle body acceleration G calculated based on the detection signal of the acceleration sensor SE7 includes a gradient acceleration Ag which is a vehicle longitudinal direction component of the gravitational acceleration acting on the vehicle. On the other hand, the vehicle speed differential value DVS obtained by time differentiating the vehicle speed VS of the vehicle does not include the gradient acceleration Ag. Therefore, by subtracting the vehicle body speed differential value DVS from the vehicle body acceleration G, the gradient acceleration Ag is obtained.
 またズリ下がり防止制御では、ズリ下がりの有無の判定に用いる制動加速度Apmcを、停車前の走行中に取得しておく必要がある。加速度センサSE7からの検出信号に基づき算出される車体加速度Gは、マスタシリンダ圧PMCの変動、すなわち車輪FR,FL,RR,RLに対する制動力の変動に伴い変動する。そこで本実施形態では、マスタシリンダ圧と車体加速度Gとの間には対応関係があることに着目することで、マスタシリンダ圧PMCに対応する値としての制動加速度Apmcが、車体加速度Gに基づき取得される。つまりマスタシリンダ圧PMCは、制動力を意味する。制動加速度Apmcは、マスタシリンダ圧PMCに応じて車輪FR,FL,RR,RLに付与される制動力Fpmcを、車体重量Mで除算することで得られる加速度に相当する。詳しくはクリープトルクに相当する加速度成分であるクリープ加速度Acと、ドラッグ分つまり走行抵抗等に相当する加速度成分である抵抗加速度Adと、勾配加速度Agとを、車体加速度Gから除くことで制動加速度Apmcが算出される。計算式としてはApmc=G-Ac+Ad+Agである。勾配加速度Agと制動加速度Apmcとを比較し、Apmc<Agである場合には、車両のズリ下がりが発生する虞があると判定される。本実施形態では、Apmc<Agが成立することで、「停車後に車両のズリ下がりが発生する虞がある」と予測された場合には、車両のズリ下がりを防止するため、停車までにエンジン12を事前に再始動させる。このエンジン12の再始動によって、車両にクリープトルクを与えて車両のズリ下がりを防止する。 Further, in the slippage fall prevention control, it is necessary to acquire the braking acceleration Apmc used to determine the presence or absence of the slippage during traveling before the vehicle is stopped. The vehicle body acceleration G calculated based on the detection signal from the acceleration sensor SE7 fluctuates with the fluctuation of the master cylinder pressure PMC, that is, the fluctuation of the braking force on the wheels FR, FL, RR, and RL. Therefore, in the present embodiment, by focusing on the correspondence between the master cylinder pressure and the vehicle body acceleration G, the braking acceleration Apmc as a value corresponding to the master cylinder pressure PMC is acquired based on the vehicle body acceleration G. Be done. That is, master cylinder pressure PMC means a braking force. The braking acceleration Apmc corresponds to an acceleration obtained by dividing the braking force Fpmc applied to the wheels FR, FL, RR, and RL according to the master cylinder pressure PMC by the vehicle body weight M. More specifically, the braking acceleration Apmc is eliminated by removing from the vehicle body acceleration G the creep acceleration Ac, which is an acceleration component corresponding to the creep torque, and the resistance acceleration Ad, which is an acceleration component corresponding to a drag amount, that is, a traveling resistance. Is calculated. As a calculation formula, Apmc = G-Ac + Ad + Ag. The gradient acceleration Ag is compared with the braking acceleration Apmc. If Apmc <Ag, it is determined that there is a possibility that the vehicle will slip down. In the present embodiment, by satisfying Apmc <Ag, when it is predicted that “a slip of the vehicle may occur after stopping” is predicted, the engine 12 is stopped before the vehicle stops to prevent the slip of the vehicle. Restart in advance. The restart of the engine 12 applies creep torque to the vehicle to prevent the vehicle from slipping down.
 ところで、エンジン12の停止から再始動までのアイドルストップ時間が短い場合には、次のような問題が起こりうる。つまりアイドルストップによって節減される燃料節減量Fdが、アイドルストップの後のエンジン12の再始動で消費される燃料消費量Fstよりも少ない場合には、アイドルストップすることで却って燃料消費量が増加して燃費を悪化させることになる。このため本実施形態では、エンジン停止制御の実行条件が成立した場合には、エンジン12の自動停止によるアイドルストップによって節減できる燃料節減量Fdと、エンジン12の再始動時の燃料消費量Fstとを比較する。そして燃料節減量Fdが燃料消費量Fst以上である場合に、エンジン12を停止させることでアイドルストップを実施するようにしている。 By the way, when the idle stop time from stop to restart of the engine 12 is short, the following problems may occur. That is, when the fuel saving amount Fd saved by the idle stop is smaller than the fuel consumption amount Fst consumed by the restart of the engine 12 after the idle stop, the fuel consumption amount is increased by stopping the idle. Fuel consumption will deteriorate. Therefore, in the present embodiment, when the execution condition of the engine stop control is satisfied, the fuel saving amount Fd which can be saved by the idle stop by the automatic stop of the engine 12 and the fuel consumption amount Fst at the restart of the engine 12 are calculated. Compare. When the fuel saving amount Fd is equal to or more than the fuel consumption amount Fst, the engine 12 is stopped to implement idle stop.
 具体的には本実施形態は、燃料節減量Fdと燃料消費量Fstとを比較するのではなく、エンジン12の停止から再始動までの予測されるアイドルストップ時間を、エンジン停止可能予想時間Tesとして算出する。そして本実施形態は、エンジン12の再始動時の燃料消費量Fcをアイドル時間に換算することで得られた設定時間T1を、エンジン停止可能予想時間Tesと比較する。エンジン12のアイドル時における単位時間当たりの燃料消費量Fidは、車種によっておおよそ一義的に決まっている。但し車両に装備されたエアコンディショナの駆動時と非駆動時とで、エンジン12のアイドル回転速度は変化する。そのため本実施形態は、アイドル回転速度の変化範囲のうちの上限値つまりエアコンディショナ駆動時のアイドル回転速度のときの単位時間当たりの燃料消費量Fidに基づき、設定時間T1を設定している。もちろん本実施形態は、エアコンディショナが駆動か非駆動か判別し、判別結果に応じて設定時間T1の値を切換える構成を採用することもできる。 Specifically, the present embodiment does not compare the fuel saving amount Fd with the fuel consumption amount Fst, but the predicted idle stop time from the stop to the restart of the engine 12 is assumed as the estimated engine stoppable time Tes. calculate. Then, in the present embodiment, the set time T1 obtained by converting the fuel consumption amount Fc at the time of restart of the engine 12 into the idle time is compared with the estimated engine stoppable time Tes. The fuel consumption Fid per unit time when the engine 12 is idle is approximately uniquely determined by the type of vehicle. However, the idle rotation speed of the engine 12 changes between when the air conditioner mounted on the vehicle is driven and when it is not driven. Therefore, in the present embodiment, the setting time T1 is set based on the upper limit value in the change range of the idle rotation speed, that is, the fuel consumption Fid per unit time at the idle rotation speed at the time of driving the air conditioner. Of course, this embodiment can adopt a configuration in which it is determined whether the air conditioner is driven or not driven, and the value of the set time T1 is switched according to the determination result.
 またエンジン再始動時の燃料消費量Fstも、車種によっておおよそ一義的に決まっている。もちろん本実施形態は、エンジン運転モードに応じてエンジン再始動時の燃料消費量Fstが変化する場合には、運転モードに応じた燃料消費量Fstを採用してもよい。但し本実施形態は、エンジン再始動時の燃料消費量Fstをアイドル時間に換算した値を、燃費向上効果を有する時間としての設定時間T1として算出する。設定時間T1は、次式で与えられる。
T1=Fst/Fid … (1)
 またエンジン停止可能予想時間Tesは、エンジン12の停止時点から再始動時点までエンジン12を停止状態に保持できる予想時間つまり予測時間であり、次式によって与えられる。
Tes=VS/(DVS+Aet)…(2)
ここでVSは車体速度であり、DVSは車体速度微分値であり、Aetはエンジントルク加速度である。但し本例では、車体速度微分値DVSは計算上、車両の減速過程つまり車両後方向への加速度が増加する過程で、正の値をとる。またエンジントルク加速度Aetは、エンジン運転状態で正の値をとる。エンジントルク加速度Aetは後述する。
In addition, the fuel consumption Fst at engine restart is also uniquely determined by the vehicle type. Of course, in the present embodiment, when the fuel consumption amount Fst at engine restart changes according to the engine operation mode, the fuel consumption amount Fst according to the operation mode may be adopted. However, in the present embodiment, a value obtained by converting the fuel consumption amount Fst at engine restart into the idle time is calculated as the set time T1 as the time having the fuel efficiency improvement effect. The set time T1 is given by the following equation.
T1 = Fst / Fid (1)
Further, the engine stoppable estimated time Tes is an estimated time or predicted time in which the engine 12 can be kept stopped from the stop time of the engine 12 to the restart time, and is given by the following equation.
Tes = VS / (DVS + Aet) (2)
Here, VS is a vehicle speed, DVS is a vehicle speed differential value, and Aet is an engine torque acceleration. However, in the present embodiment, the vehicle speed derivative value DVS takes a positive value in the process of deceleration of the vehicle, that is, in the process of increasing the acceleration in the backward direction of the vehicle, in calculation. Further, the engine torque acceleration Aet takes a positive value in the engine operating state. The engine torque acceleration Aet will be described later.
 本実施形態は、エンジン停止可能予想時間Tesが設定時間T1以上の場合つまりTes≧T1が成立したときに、エンジン12を停止させるようにしている。エンジン停止可能予想時間Tesが設定時間T1未満の場合には、エンジン12の自動停止つまりアイドルストップが却って燃費を悪化させるため、エンジン12の自動停止そのものを行わない。 In this embodiment, the engine 12 is stopped when the engine stoppable estimated time Tes is equal to or longer than the set time T1, that is, when TesesT1 is satisfied. When the engine stoppable predicted time Tes is less than the set time T1, the automatic stop of the engine 12, that is, the idle stop, rather deteriorates the fuel efficiency, so the automatic stop of the engine 12 itself is not performed.
 但しズリ下がり判定条件つまりApmc<Agが不成立の場合には、すなわち制動加速度Apmcが勾配加速度Ag以上であって、車両のズリ下がりを抑制しうるだけの制動力が確保される制動力条件つまりApmc≧Agが成立した場合には、ズリ下がり防止のためのエンジン12の再始動は行われない。このため本実施形態は、停車時に車両のズリ下がりを抑制しうるだけの制動力が確保されるか否かを、Apmc≧Agが成立するか否かによって判定する。本実施形態は、エンジン停止可能予想時間Tesの条件つまりTes≧T1が不成立でも、制動力条件つまりApmc≧Agが成立した場合には、エンジン12の停止を許可するようにしている。 However, when the slippage lowering determination condition, that is, Apmc <Ag, does not hold, that is, the braking force Apmc is equal to or higher than the gradient acceleration Ag, and the braking force condition by which the braking force sufficient to suppress the slippage of the vehicle is secured If Ag Ag is established, the engine 12 is not restarted to prevent slippage. For this reason, in the present embodiment, it is determined whether or not Apmc ≧ Ag is established whether a braking force sufficient to suppress slippage of the vehicle can be secured when the vehicle is stopped. In this embodiment, the engine 12 is allowed to stop if the braking force condition, that is, ApmcmcAg, is satisfied even if the condition for the engine stoppable estimated time Tes, that is, TesTT1 is not satisfied.
 本実施形態では、エンジン停止制御の実行条件として、エンジン停止可能予想時間Tesの条件つまりTes≧T1と制動力条件つまりApmc≧Agとを除いた「その他のアイドルストップ条件」が設定されている。「その他のIS条件」つまり「その他のアイドルストップ条件」は、具体的には「ブレーキスイッチSW1がオンしていること」つまりブレーキスイッチオンであること;「マスタシリンダ圧PMCが規定圧P1を超えていること」つまりPMC>P1が成立すること;および「車体速度VSが規定速度V1たとえば20km/h以下になっていること」つまりVS≦V1が成立することといった各条件がアンド条件で成立することである。もちろん「その他のアイドルストップ条件」は、ブレーキスイッチオン条件とマスタシリンダ圧条件のうちの一方を無くすなど、適宜な条件に変更してもよい。 In the present embodiment, as the execution condition of the engine stop control, “other idle stop condition” excluding the condition of the engine stoppable predicted time Tes, that is, Tes ≧ T1 and the braking force condition, that is, ApmcAgAg, is set. Specifically, the "other IS condition", that is, the "other idle stop condition", is that "the brake switch SW1 is on", that is, the brake switch is on; "master cylinder pressure PMC exceeds the specified pressure P1 That is, that each condition that PMC> P1 is satisfied; and that the vehicle speed VS is less than the prescribed speed V1, for example, 20 km / h is satisfied that each condition that VS ≦ V1 is satisfied is AND condition. It is. Of course, the "other idle stop condition" may be changed to an appropriate condition such as eliminating one of the brake switch on condition and the master cylinder pressure condition.
 図6~図8は、こうした本実施形態の制御態様のタイミングチャートを示している。各図には、登坂路での車両の停車前におけるブレーキスイッチSW1の信号、マスタシリンダ圧PMC、加速度センサSE7から出力される車体加速度G、エンジン回転速度、車体速度VS、および車体速度微分値DVSの推移を示している。本実施形態では、車体速度VSには車輪速度を用いる。車体速度VSは、車輪速度の時間微分値である車輪加速度を単位時間毎に積算した積算値を、前回の車輪速度に加算することで求められる。図6~図8では、車体加速度Gと車体速度微分値DVSは、加速度センサSE7によって検出される車体加速度Gや計算上の車体速度微分値DVSとは、正負が異なるように示されている。つまり図6~図8では、車体加速度Gと車体速度微分値DVSとは、それぞれ車両後方向が負の値をとるように示されている。 6 to 8 show timing charts of control modes of the present embodiment. In each figure, the signal of the brake switch SW1 before stopping the vehicle on the uphill, the master cylinder pressure PMC, the vehicle acceleration G output from the acceleration sensor SE7, the engine rotation speed, the vehicle speed VS, and the vehicle speed differential value DVS Shows the transition of In the present embodiment, the wheel speed is used as the vehicle speed VS. The vehicle body speed VS can be obtained by adding an integrated value obtained by integrating wheel acceleration, which is a time differential value of the wheel speed, for each unit time to the previous wheel speed. In FIGS. 6 to 8, the vehicle acceleration G and the vehicle speed differential value DVS are shown to be different in positive and negative states from the vehicle acceleration G detected by the acceleration sensor SE7 and the calculated vehicle speed differential value DVS. That is, in FIG. 6 to FIG. 8, the vehicle body acceleration G and the vehicle body speed differential value DVS are shown such that the rear direction of the vehicle takes a negative value.
 図6を用いて、アイドルストップ処理を説明する。図6は、エンジン停止可能予想時間Tesが設定時間T1以上になる条件を満たしたためにエンジン12を停止させる場合のタイミングチャートである。図6において、時刻t0では、車両はエンジン12が運転された状態で走行している。 The idle stop processing will be described with reference to FIG. FIG. 6 is a timing chart in the case where the engine 12 is stopped because the condition for the estimated engine stoppable time Tes to be the set time T1 or more is satisfied. In FIG. 6, at time t0, the vehicle is traveling with the engine 12 being driven.
 図6に示すように、車両走行中における車体加速度Gは、勾配分の加速度Agと;エンジントルク分の加速度Aetつまりクリープトルク加速度に相当するものと;およびドラッグ分の加速度Adといったそれぞれ加速度成分を含む。車両前方に作用する加速度を「正」とし、車両後方に作用する加速度を「負」とすると、勾配加速度Agが負、エンジントルク加速度Aetが正、ドラッグ分の加速度Adが負の値である。これら加速度がそれぞれ車両に加わった結果として、加速度センサSE7によって車体加速度Gが検出される。但し本実施形態の加速度センサSE7は、図6における実際の加速度の正負とは異なり、計算の便宜上、車両後方向の加速度を正の値として出力する。ドラッグ分の加速度Adは、車輪と路面との間の走行抵抗などによる負の加速度を意味する。 As shown in FIG. 6, the vehicle acceleration G during traveling of the vehicle includes acceleration components such as acceleration Ag corresponding to the gradient; acceleration Aet corresponding to the engine torque, ie, creep torque acceleration; and acceleration Ad corresponding to the drag. Including. Assuming that the acceleration acting on the front of the vehicle is "positive" and the acceleration acting on the rear of the vehicle is "negative", the gradient acceleration Ag is negative, the engine torque acceleration Aet is positive, and the acceleration Ad is a negative value. As a result of these accelerations being applied to the vehicle, the vehicle acceleration G is detected by the acceleration sensor SE7. However, the acceleration sensor SE7 according to the present embodiment outputs the acceleration in the backward direction of the vehicle as a positive value for the sake of convenience of calculation, unlike the positive / negative of the actual acceleration in FIG. The acceleration Ad corresponding to the drag means a negative acceleration due to running resistance between the wheel and the road surface.
 この車両走行中において、時刻t1で、運転手がブレーキペダル15を操作するとつまり踏込むと、ブレーキスイッチSW1がオンするとともに、このブレーキ操作によってマスタシリンダ圧PMCが上昇し、車輪に制動力が付与される。この結果、時刻t1から車体速度VSが低下し始める。このとき、マスタシリンダ圧PMC分の制動加速度Apmcが、車両に対して進行方向とは反対方向つまり後方向に負の加速度として加わるため、車体加速度Gは、その時々のマスタシリンダ圧PMC分の加速度Apmcだけ小さくなり、負の値をとる。またブレーキ操作によってマスタシリンダ圧PMCは規定圧P1に到達する。 When the driver operates the brake pedal 15 at time t1 while the vehicle is traveling, that is, the brake switch SW1 is turned on when the driver depresses the brake pedal 15, the master cylinder pressure PMC is increased by this brake operation, and the braking force is applied to the wheels. Be done. As a result, the vehicle speed VS starts to decrease from time t1. At this time, the braking acceleration Apmc for the master cylinder pressure PMC is applied to the vehicle as a negative acceleration in the direction opposite to the traveling direction, that is, in the backward direction, so the vehicle body acceleration G is an acceleration for the respective master cylinder pressure PMC. Apmc decreases and takes a negative value. Further, the master cylinder pressure PMC reaches the defined pressure P1 by the brake operation.
 車体速度VSは、制動加速度Apmcが加わって小さくなった車体加速度Gに等しい変化率で減速する。図6ではG<0である。やがて車体速度VSは、規定速度V1以下になる。 The vehicle speed VS is decelerated at a change rate equal to the vehicle acceleration G reduced by the application of the braking acceleration Apmc. In FIG. 6, G <0. Eventually, the vehicle speed VS becomes less than or equal to the specified speed V1.
 車両の走行減速中の時刻t2の時点で、「その他のアイドルストップ条件」が成立すると、続いてエンジン停止可能予想時間Tesが算出される。エンジン停止可能予想時間Tesは、エンジン12を停止させた場合に、停車後に車両のズリ下がりを防止するためにエンジン12の再始動を行うと仮定した場合の、エンジン12の停止時点つまり現時点から、再始動が開始されるまでの間の時間として算出される。すなわちエンジン停止可能予想時間Tesは、エンジン12を停止状態に保持可能と予想される時間として算出される。 When the "other idle stop condition" is satisfied at time t2 while the vehicle is decelerating, the engine stoppable estimated time Tes is calculated. The engine stoppable estimated time Tes is a stop time of the engine 12, that is, from the present time when it is assumed that the engine 12 is restarted to prevent a slip of the vehicle after stopping when the engine 12 is stopped. Calculated as the time between the start of restart. That is, the engine stoppable estimated time Tes is calculated as the time that is expected to be capable of holding the engine 12 in the stop state.
 時刻t2において車輪速度センサSE3~SE6のうちの少なくとも一つの検出信号から得られる車体速度VSは、エンジン停止前であるため、エンジントルク分の加速度Aetが加わった車体加速度Gで減速する場合の車体速度に相当する。図6における二点鎖線は、エンジントルク分の加速度Aetが加わった車体加速度Gで減速する場合の速度プロファイルを示す。本実施形態では、エンジン停止可能予想時間Tesは、エンジン停止状態における減速過程を想定して算出する。このため図6の二点鎖線の速度プロファイルに対して、エンジン停止状態で消滅するエンジントルク分の加速度Aetを除いた車体加速度つまり「DVS+Aet」で減速する場合を想定することで、エンジン停止可能予想時間Tesを算出する。 Since the vehicle speed VS obtained from the detection signal of at least one of the wheel speed sensors SE3 to SE6 at time t2 is before the stop of the engine, the vehicle body when decelerating with the vehicle acceleration G to which the acceleration Aet corresponding to the engine torque is added It corresponds to the speed. The dashed-two dotted line in FIG. 6 shows the speed profile in the case of decelerating by the vehicle body acceleration G to which the acceleration Aet for engine torque was added. In the present embodiment, the engine stoppable estimated time Tes is calculated on the assumption of the deceleration process in the engine stop state. For this reason, it is possible to predict that the engine can be stopped by decelerating the vehicle speed obtained by excluding the acceleration Aet corresponding to the engine torque which disappears in the engine stop state with respect to the two-dot chain line speed profile of FIG. Calculate time Tes.
 このため車体速度VSの時間微分である車体速度微分値DVSから、消滅するエンジントルク分の加速度Aetを除き、エンジン停止可能予想時間Tesを、前記(2)式で示した計算式 Tes=VS/(DVS+Aet)によって算出する。但しこの計算式上において、車両減速過程でDVS>0であり、かつAet>0である。 For this reason, the acceleration Aet corresponding to the disappearing engine torque is eliminated from the vehicle body velocity derivative value DVS which is a time derivative of the vehicle body velocity VS, and the calculation formula Tes = VS / Calculated by (DVS + Aet). However, in this formula, DVS> 0 and Aet> 0 in the vehicle deceleration process.
 このエンジン停止可能予想時間Tesと設定時間T1とを比較し、Tes>T1が成立すれば、燃費向上効果が得られるため、時刻t2からエンジン12が停止される。この結果、時刻t2からエンジン回転速度は低下し、やがてゼロになる。エンジン回転速度がゼロになると、エンジントルク分が消滅するため、実際の車体速度VSは、予想の車体速度と同じように図6における実線に沿って低下する。時刻t2~t3の期間においては、徐々に低下するエンジントルク分に応じた可変の加速度Aetを用いて、エンジン停止可能予想時間Tesを算出してもよい。 The engine stoppable expected time Tes and the set time T1 are compared, and if Tes> T1 holds, the fuel efficiency improvement effect is obtained, so the engine 12 is stopped from time t2. As a result, the engine rotational speed decreases from time t2 and eventually becomes zero. When the engine rotation speed becomes zero, the engine torque component disappears, so the actual vehicle speed VS decreases along the solid line in FIG. 6 in the same manner as the expected vehicle speed. In the period from time t2 to time t3, the engine stoppable estimated time Tes may be calculated using the variable acceleration Aet according to the gradually decreasing engine torque.
 図7のタイミングチャートに示すように、ブレーキペダル15の操作量が大きいため、制動加速度Apmcが勾配加速度Agよりも大きい場合、つまり停車後に車両のズリ下がりを防止できるだけの制動力が確保される場合には、仮にエンジン停止可能予想時間Tesが設定時間T1よりも短くてもつまりTes<T1でも、本実施形態はエンジン12を停止させる。なぜならば、停車後にズリ下がりの防止を目的とするエンジン12の再始動が不要だからである。本実施形態では、このように停車時にエンジン再始動が不要な場合も、エンジン12が停止される。 As shown in the timing chart of FIG. 7, since the operation amount of the brake pedal 15 is large, the braking acceleration Apmc is larger than the gradient acceleration Ag, that is, the braking force sufficient to prevent slippage of the vehicle after stopping is secured. In the present embodiment, the engine 12 is stopped even if the estimated engine stoppable time Tes is shorter than the set time T1, that is, Tes <T1. This is because it is not necessary to restart the engine 12 for the purpose of preventing slippage after stopping. In the present embodiment, the engine 12 is also stopped even when it is not necessary to restart the engine when the vehicle is stopped.
 本実施形態では、エンジン再始動開始時期は、ズリ下がり距離Lが許容距離La以下に抑えられるように決められる。現時点から、停車後のズリ下がり距離Lが許容距離Laに至るまでに要する予測時間T2は、現時点から停車までに要する時間Taと、停車後に車両のズリ下がり距離Lが許容距離Laに至るまでに要する時間Tbとの和として求められる。つまりT2=Ta+Tbである。時間Taは、車体速度VSを車体速度微分値DVSで除算することで求められる。つまりTa=VS/DVSである。また時間Tbは、路面勾配θと時間Tbとの対応関係を示した図示しないマップを用いて求められる。本実施形態では、一例として許容距離Laをゼロとしている。つまりLa=0である。このため予測時間T2は、T2=VS/DVSによって算出される。 In the present embodiment, the engine restart start time is determined so that the slippage lowering distance L can be suppressed to the allowable distance La or less. From the present time, the estimated time T2 required for the slippage lowering distance L after the stop to reach the allowable distance La is the time Ta required from the current point to the stop and the slippage lowering distance L of the vehicle after the stop to the allowable distance La It is obtained as the sum of the required time Tb. That is, T2 = Ta + Tb. The time Ta can be obtained by dividing the vehicle speed VS by the vehicle speed differential value DVS. That is, Ta = VS / DVS. Further, the time Tb can be obtained using a map (not shown) that indicates the correspondence between the road surface gradient θ and the time Tb. In the present embodiment, the allowable distance La is zero as an example. That is, La = 0. Therefore, the predicted time T2 is calculated by T2 = VS / DVS.
 本実施形態は、エンジン停止後における車両の減速過程において逐次算出される予測時間T2が、エンジン12の再始動開始から再始動終了までに必要な時間としての再始動必要時間Tengに達した時点で、エンジン12の再始動の開始を許可するようになっている。詳細には、車両の停止までの予測時間T2は、車体速度VSが減少していくに従い、減少していく。予め車両毎に定められた再始動必要時間Tengまで小さくなると、エンジン12の再始動が開始される。このため本実施形態では、ズリ下がり距離Lが許容距離Laに達するまでにエンジン12の再始動が完了する。このように本実施形態は、車体速度VSが許容範囲内でできるだけ小さくなるまでエンジン再始動開始タイミングを待つことで、燃費向上効果を維持しつつ、車両のズリ下がりを適切に防止することが可能である。 In this embodiment, when the predicted time T2 sequentially calculated in the deceleration process of the vehicle after the engine stop reaches the restart required time Teng as the time required from the restart start of the engine 12 to the restart end. , To allow the start of the restart of the engine 12. More specifically, the predicted time T2 until the vehicle stops is reduced as the vehicle speed VS decreases. When the required time for restart Teng, which is predetermined for each vehicle, decreases, restart of the engine 12 is started. Thus, in the present embodiment, the restart of the engine 12 is completed before the slippage lowering distance L reaches the allowable distance La. As described above, according to the present embodiment, by waiting for the engine restart start timing until the vehicle speed VS becomes as small as possible within the allowable range, it is possible to appropriately prevent the vehicle from slipping down while maintaining the fuel efficiency improvement effect. It is.
 本実施形態では、エンジン停止可能予想時間Tesを、前記(2)式を用いて算出するが、再始動必要時間Tengを考慮した次式を採用することもできる。
Tes=VS/(DVS-Aet)-Teng …(3)
 さてブレーキECU55は、予め設定された所定周期たとえば0.01秒周期毎にアイドルストップ制御ルーチンを実行する。このアイドルストップ制御ルーチンは、燃費向上および環境上の効果などを期待し、エンジン12を自動的に停止させるための図3に示すエンジン停止制御ルーチンと、エンジン12を再始動させるための図4に示すエンジン再始動制御ルーチンとを含む。アイドルストップ制御ルーチンにおけるエンジン再始動制御は、ブレーキペダル15の操作量が規定量以下に戻ることでマスタシリンダ圧PMCが規定圧Px以下になったときや、あるいはアクセル開度AP>0になったときなどの予め決められた再始動条件の成立時に、エンジン12を再始動させる。本実施形態におけるエンジン再始動制御は、停車後の車両のズリ下がりを防止するズリ下がり防止制御を含む。図4に示すエンジン再始動制御ルーチンは、エンジン停止制御のうちの、ズリ下がり防止制御のためにエンジン12を再始動させる制御部分を示す。
In the present embodiment, the engine stoppable expected time Tes is calculated using the above-mentioned equation (2), but the following equation can also be adopted in consideration of the restart required time Teng.
Tes = VS / (DVS-Aet) -Teng (3)
The brake ECU 55 executes the idle stop control routine at predetermined intervals, for example, every 0.01 second. In this idle stop control routine, an engine stop control routine shown in FIG. 3 for automatically stopping the engine 12 and an engine stop control shown in FIG. And an engine restart control routine. The engine restart control in the idle stop control routine is performed when the master cylinder pressure PMC becomes lower than the specified pressure Px when the operation amount of the brake pedal 15 returns below the specified amount, or the accelerator opening AP> 0. The engine 12 is restarted when a predetermined restart condition such as time is satisfied. The engine restart control in the present embodiment includes slip reduction prevention control that prevents slippage of the vehicle after stopping. The engine restart control routine shown in FIG. 4 shows a part of the engine stop control that restarts the engine 12 for slippage prevention control.
 まず、図3を用いてエンジン停止制御を説明する。さてエンジン運転状態での車両の走行中において、ブレーキECU55は、図3に示すエンジン停止制御ルーチンを実行する。このエンジン停止制御ルーチンは、所定の停止条件が成立した場合に、エンジン12の自動的な停止を許可する停止制御のための処理である。 First, engine stop control will be described with reference to FIG. The brake ECU 55 executes an engine stop control routine shown in FIG. 3 while the vehicle is traveling in the engine operating state. The engine stop control routine is a process for stop control that permits the automatic stop of the engine 12 when a predetermined stop condition is satisfied.
 ブレーキECU55は、まずステップS11において、「その他のアイドルストップ条件」(その他のIS条件)が成立するか否か判断する。「その他のアイドルストップ条件」が成立すると、ステップS12に進み、「その他のアイドルストップ条件」が不成立であれば、前記ルーチンを終了する。本実施形態では、「その他のアイドルストップ条件」が、停止制御の実行条件に相当し、「その他のアイドルストップ条件」が成立するか否か判定するブレーキECU55が、第1判定部としても機能する。またステップS11が、第1判定ステップに相当する。 In step S11, the brake ECU 55 first determines whether "other idle stop conditions" (other IS conditions) are satisfied. If the "other idle stop condition" is satisfied, the process proceeds to step S12. If the "other idle stop condition" is not satisfied, the routine is ended. In the present embodiment, the “other idle stop condition” corresponds to the execution condition of the stop control, and the brake ECU 55 that determines whether the “other idle stop condition” is satisfied also functions as a first determination unit. . Step S11 corresponds to a first determination step.
 ステップS12ではブレーキECU55は、エンジン停止可能予想時間Tesを算出する。このエンジン停止可能予想時間Tesは、前記(2)式に示す計算式 Tes=車体速度VS/(DVS+Aet)によって算出される。 In step S12, the brake ECU 55 calculates an estimated engine stoppable time Tes. The estimated engine stoppable time Tes is calculated by the equation Tes = body speed VS / (DVS + Aet) shown in the equation (2).
 次のステップS13ではブレーキECU55は、「エンジン停止可能予想時間Tesが、燃費向上効果を奏する設定時間T1以上つまりTes≧T1である」か否か判定する。Tes≧T1が成立すればステップS15に進み、Tes≧T1が不成立であればステップS14に進む。本実施形態では、エンジン停止可能予想時間Tesを求めてそして、Tes≧T1が成立するか否か判定するブレーキECU55が、第3判定部としても機能する。またステップS12,S13が、第3判定ステップに相当する。 In the next step S13, the brake ECU 55 determines whether or not "the estimated engine stoppable time Tes is equal to or longer than a set time T1 at which the fuel efficiency improvement effect is achieved", that is, Tes T T1. If Tes ≧ T1 is established, the process proceeds to step S15, and if Tes ≧ T1 is not established, the process proceeds to step S14. In the present embodiment, the brake ECU 55 also functions as a third determination unit by determining the engine stoppable estimated time Tes and determining whether Tes ≧ T1 holds. Steps S12 and S13 correspond to a third determination step.
 ステップS15では、エンジン12の停止を許可する。すなわちブレーキECU55は、エンジンECU17に停止指令を送信する。この結果、エンジンECU17はエンジン12を停止させる。本実施形態では、エンジン12の停止を許可するブレーキECU55が、停止制御部としても機能する。またステップS15が、停止制御ステップに相当する。 In step S15, the stop of the engine 12 is permitted. That is, the brake ECU 55 transmits a stop command to the engine ECU 17. As a result, the engine ECU 17 stops the engine 12. In the present embodiment, the brake ECU 55 that permits the engine 12 to stop also functions as a stop control unit. Step S15 corresponds to the stop control step.
 一方、Tes≧T1が不成立の場合には、ステップS14においてブレーキECU55は、「制動加速度Apmcが、閾値としての勾配加速度Ag以上である」か否か判定する。つまりApmc≧Agが成立するか否か判定される。Apmc≧Agの成立は、エンジン12を再始動しなくてもズリ下がりが発生しないだけの制動力が確保されることを意味する。このためApmc≧Agが成立すればブレーキECU55は、ステップS15に進んで、エンジン12の停止を許可する。すなわちブレーキECU55は、エンジンECU17に停止指令を送信する。この結果、エンジンECU17はエンジン12を停止させる。本実施形態では、Apmc≧Agが成立するか否か判定するブレーキECU55が、第4判定部としても機能する。またステップS14が、第4判定ステップに相当する。 On the other hand, when Tes 成立 T1 is not established, the brake ECU 55 determines whether or not "the braking acceleration Apmc is equal to or higher than the gradient acceleration Ag as a threshold value" in step S14. That is, it is determined whether Apmc ≧ Ag holds. The establishment of Apmc ≧ Ag means that a braking force sufficient to prevent slippage without restarting the engine 12 is secured. Therefore, if Apmc ≧ Ag, the brake ECU 55 proceeds to step S15 and permits the engine 12 to stop. That is, the brake ECU 55 transmits a stop command to the engine ECU 17. As a result, the engine ECU 17 stops the engine 12. In the present embodiment, the brake ECU 55 that determines whether Apmc ≧ Ag holds also functions as a fourth determination unit. Step S14 corresponds to a fourth determination step.
 一方、ステップS14において、Apmc≧Agが不成立と判定された場合には、前記ルーチンを終了する。この場合には、エンジン12の停止は許可されない。すなわちアイドルストップによる燃費向上効果が得られないため、エンジン12の停止は許可されない。 On the other hand, when it is determined in step S14 that Apmc ≧ Ag is not established, the routine ends. In this case, stopping of the engine 12 is not permitted. That is, since the fuel efficiency improvement effect by idle stop can not be obtained, the stop of the engine 12 is not permitted.
 図6に示すタイミングチャートは、エンジン12を停止する場合の処理として、Tes≧T1の場合の処理を説明する。車両がエンジン運転状態で走行しているとき、時刻t1において、運転手がブレーキペダル15を操作すると、ブレーキスイッチSW1がオンし、またマスタシリンダ圧PMCが上昇することで規定圧P1に達する。車輪FR,FL,RR,RLにマスタシリンダ圧PMCに応じた制動力が付与されることで、車両は減速し、車体速度VSが規定速度V1以下になる。この結果、時刻t2になると、「その他のアイドルストップ条件」が成立する。すなわちブレーキスイッチオン;マスタシリンダ圧PMC>規定圧P1;および車体速度VS≦規定速度V1といった各条件が、アンド条件で成立する。 The timing chart shown in FIG. 6 describes the process when TesTT1 as the process when stopping the engine 12. If the driver operates the brake pedal 15 at time t1 while the vehicle is traveling with the engine operating condition, the brake switch SW1 is turned on and the master cylinder pressure PMC rises to reach the specified pressure P1. By applying a braking force corresponding to master cylinder pressure PMC to wheels FR, FL, RR, and RL, the vehicle decelerates, and the vehicle speed VS becomes equal to or less than a specified speed V1. As a result, at time t2, "other idle stop conditions" are satisfied. That is, each condition of brake switch ON; master cylinder pressure PMC> prescribed pressure P1; and vehicle body speed VS ≦ prescribed speed V1 is satisfied under the AND condition.
 「その他のアイドルストップ条件」が成立すると、次にエンジン停止可能予想時間Tesを求め、Tes≧T1が成立するか否か判定する。Tes≧T1が成立すれば、時刻t2からエンジン12が停止される。この結果、時刻t3までにエンジントルク分が消滅し、車体速度VSは、図6における実線に沿って低下する。時刻t4で、車両は停止する。 When the "other idle stop condition" is satisfied, an engine stoppable estimated time Tes is next obtained, and it is determined whether Tes ≧ T1 is satisfied. If Tes ≧ T1 holds, the engine 12 is stopped from time t2. As a result, the engine torque component disappears by time t3, and the vehicle speed VS decreases along the solid line in FIG. At time t4, the vehicle stops.
 このエンジン停止後の車両の走行中において、ブレーキECU55は、図4に示すエンジン再始動制御ルーチンを実行する。このエンジン再始動制御ルーチンは、所定の再始動条件が成立した場合に、停車後の車両のズリ下がりを許容範囲内に抑制することを目的として、エンジン12の自動的な再始動を許可するための処理である。 During traveling of the vehicle after the engine stop, the brake ECU 55 executes an engine restart control routine shown in FIG. This engine restart control routine is for permitting automatic restart of the engine 12 for the purpose of suppressing slippage of the vehicle after stopping within the allowable range when a predetermined restart condition is satisfied. Processing.
 図4に示すエンジン再始動制御ルーチンは、エンジン12が停止した状態での登坂走行中に、ブレーキECU55によって、一定の制御周期たとえば0.01秒毎に繰返し実行される。 The engine restart control routine shown in FIG. 4 is repeatedly executed by the brake ECU 55 at a constant control cycle, for example, every 0.01 seconds, while traveling uphill with the engine 12 stopped.
 図4のルーチンが開始されると、まずステップS21においてブレーキECU55は、制動加速度Apmcと勾配加速度Agとの比較によって、「停車後に車両のズリ下がりが発生する」か否か判定する。つまりApmc<Agが成立するか否か判定される。ここで制動加速度Apmcが勾配加速度Ag以上つまりApmc≧Agであると判定されたとき、つまり「停車後のズリ下がりが発生しない」と判定されたとき、具体的にはS21で否定判定の場合には、そのまま今回の本ルーチンの処理が終了する。本実施形態では、Apmc<Agが成立するか否か判定するブレーキECU55が、第2判定部としても機能する。またステップS21が、第2判定ステップに相当する。 When the routine of FIG. 4 is started, first, in step S21, the brake ECU 55 determines whether “slipping of the vehicle occurs after stopping” by comparing the braking acceleration Apmc and the gradient acceleration Ag. That is, it is determined whether Apmc <Ag holds. Here, when it is determined that the braking acceleration Apmc is equal to or higher than the gradient acceleration Ag, that is, Apmc ≧ Ag, that is, when it is determined that "slipping after stopping does not occur", specifically, in the case of a negative determination in S21. The process of this routine ends as it is. In the present embodiment, the brake ECU 55 that determines whether Apmc <Ag holds or not also functions as a second determination unit. Step S21 corresponds to a second determination step.
 一方、制動加速度Apmcが勾配加速度Ag未満つまりApmc<Agであると判定されたとき、つまり「停車後に車両のズリ下がりが発生する」と判定されたとき、具体的にはS21で肯定判定の場合には、続くステップS22においてブレーキECU55は、車両停車までの予測時間T2を算出する。計算式T2=VS/DVSによって、T2は算出される。続くステップS23でブレーキECU55は、「算出された予測時間T2が、再始動必要時間Teng以下である」か否か判定する。 On the other hand, when it is determined that the braking acceleration Apmc is less than the gradient acceleration Ag, that is, Apmc <Ag, that is, when it is determined that "the vehicle slips down after stopping," specifically, in the case of an affirmative determination in S21. In step S22, the brake ECU 55 calculates the predicted time T2 until the vehicle stops. T2 is calculated by the calculation formula T2 = VS / DVS. In the following step S23, the brake ECU 55 determines whether "the calculated predicted time T2 is equal to or less than the required restart time Teng".
 ここで予測時間T2が再始動必要時間Tengを超えていれば、つまりS23で否定判定であれば、未だエンジン12の再始動を開始する必要はないとして、そのまま今回の処理が終了される。一方、予測時間T2が再始動必要時間Teng以下であれば、つまりS23で肯定判定であれば、ステップS24においてブレーキECU55は、エンジン12の再始動を許可する。すなわちブレーキECU55は、エンジンECU17に再始動指令を送信する。 Here, if the predicted time T2 exceeds the restart required time Teng, that is, if the determination in S23 is negative, it is not necessary to start the restart of the engine 12 yet, and the current process is ended as it is. On the other hand, if the predicted time T2 is equal to or less than the required restart time Teng, that is, if the determination in S23 is affirmative, the brake ECU 55 permits the restart of the engine 12 in step S24. That is, the brake ECU 55 transmits a restart command to the engine ECU 17.
 エンジンECU17は、再始動指令を受信した場合に、エンジン12を再始動させると共に、再始動処理が完了した旨の信号をブレーキECU55に送信する。エンジンECU17から信号を受信したブレーキECU55は、エンジン12の再始動が完了したと判断する。 When the engine ECU 17 receives the restart command, the engine ECU 17 restarts the engine 12 and transmits a signal to the effect that the restart processing has been completed to the brake ECU 55. The brake ECU 55 that has received the signal from the engine ECU 17 determines that the restart of the engine 12 is completed.
 図6では、マスタシリンダ圧PMCが規定圧P1程度と比較的小さく、Apmc<Agが成立するため、「停車後に車両のズリ下がりが発生する」と判定される。このため停車の時刻t4よりも再始動必要時間Tengだけ前の時刻に、エンジン12の再始動が開始され、停車までに再始動が完了する。この結果、停車時に車両のズリ下がりが発生しない。この再始動必要時間Tengは、車両のズリ下がり距離Lが予め定められた許容距離Laを超えないように所定の方法で決定される。 In FIG. 6, since the master cylinder pressure PMC is relatively small at about the specified pressure P1 and Apmc <Ag is established, it is determined that "slipping of the vehicle occurs after stopping." Therefore, the restart of the engine 12 is started at a time before the stop time t4 by the required restart time Teng, and the restart is completed before the stop. As a result, slipping of the vehicle does not occur when the vehicle is stopped. The required restart time Teng is determined by a predetermined method so that the slippage lowering distance L of the vehicle does not exceed the predetermined allowable distance La.
 図7では、エンジン停止可能予想時間Tesが設定時間T1よりも小さいつまりTes<T1である。しかし、勾配加速度Agよりも制動加速度Apmcのほうが大きいことによって、ズリ下がりを抑制しうる制動力が確保される場合におけるタイミングチャートを示す。 In FIG. 7, the estimated engine stoppable time Tes is smaller than the set time T1, that is, Tes <T1. However, the timing chart in the case where the braking force capable of suppressing the slippage drop is secured is shown as the braking acceleration Apmc is larger than the gradient acceleration Ag.
 エンジン運転状態での車両の走行中に、時刻t11でブレーキペダル15が比較的強く操作されると、ブレーキスイッチSW1がオンするとともに、マスタシリンダ圧PMCが上昇して規定圧P1を超えて所定圧P2に達する。この結果、車両は減速し、時刻t12で、「その他のアイドルストップ条件」が成立すると、次にエンジン停止可能予想時間Tesが算出され、Tes>T1が成立するか否かが判定される。Tes=VS/(DVS+Aet)である。図7の例では、エンジン停止可能予想時間Tesが設定時間T1よりも短く、Tes>T1が不成立になる。 When the brake pedal 15 is operated relatively strongly at time t11 while the vehicle is traveling in the engine operating state, the brake switch SW1 is turned on, and the master cylinder pressure PMC rises to exceed the specified pressure P1 to a predetermined pressure It reaches P2. As a result, the vehicle decelerates, and at time t12, when the “other idle stop condition” is satisfied, next, the engine stoppable estimated time Tes is calculated, and it is determined whether Tes> T1 is satisfied. Tes = VS / (DVS + Aet). In the example of FIG. 7, the engine stoppable estimated time Tes is shorter than the set time T1, and Tes> T1 is not satisfied.
 しかし、制動加速度Apmcが勾配加速度Agよりも大きいため、ズリ下がりを防止できるだけの制動力が確保される。よって、ズリ下がり防止を目的とするエンジン12の再始動の必要がない。このためApmc>Agが成立した時刻t13で、エンジン12の停止が許可される。この結果、時刻t13からエンジン回転速度は低下しやがてゼロになる。エンジン回転速度が時刻14でゼロになると、エンジントルク分が消滅する。このため実際の車体速度VSは、予想どおり図7の実線に沿って低下する。時刻t15で停車したときには比較的強い制動力が確保されているため、エンジン12が再始動されなくても、車両のズリ下がりは発生しない。 However, since the braking acceleration Apmc is larger than the gradient acceleration Ag, a braking force sufficient to prevent slippage is secured. Therefore, there is no need to restart the engine 12 for the purpose of preventing slippage. Therefore, at time t13 when Apmc> Ag is established, the stop of the engine 12 is permitted. As a result, from time t13, the engine rotational speed decreases and eventually becomes zero. When the engine rotational speed becomes zero at time 14, the engine torque disappears. Therefore, the actual vehicle speed VS decreases along the solid line in FIG. 7 as expected. Since a relatively strong braking force is secured when the vehicle is stopped at time t15, the vehicle does not slip down even if the engine 12 is not restarted.
 図8は、エンジンを停止しない場合のタイミングチャートを示す。エンジン運転状態での車両の走行中に、時刻t21でブレーキペダル15が操作されると、ブレーキスイッチSW1がオンするとともに、マスタシリンダ圧PMCが上昇して規定圧P1に達する。この結果、車両が減速し、車体速度VSが規定速度V1以下になった時刻t22で、「その他のアイドルストップ条件」が成立すると、次にエンジン停止可能予想時間Tesを算出し、Tes>T1が成立するか否か判定する。Tes=VS/(DVS+Aet)である。図8の例では、車体速度VSは、エンジントルク分の加速度Aetが消滅した二点鎖線で示す速度プロファイルに沿って低下する。よって、時刻t24で停車する場合を想定したエンジン停止可能予想時間Tesを用いることで、Tes>T1が成立するか否かが判定される。図8の例では、Tes>T1が不成立であるため、エンジン12を停止させても、燃費向上効果が得られない。 FIG. 8 shows a timing chart when the engine is not stopped. When the brake pedal 15 is operated at time t21 while the vehicle is traveling in the engine operating state, the brake switch SW1 is turned on, and the master cylinder pressure PMC rises to reach the defined pressure P1. As a result, when the "other idle stop condition" is satisfied at time t22 when the vehicle decelerates and the vehicle speed VS becomes equal to or less than the specified speed V1, then the engine stoppable predicted time Tes is calculated, and Tes> T1 It is determined whether or not it is established. Tes = VS / (DVS + Aet). In the example of FIG. 8, the vehicle speed VS decreases along the speed profile indicated by the two-dot chain line where the acceleration Aet for the engine torque has disappeared. Therefore, it is determined whether or not Tes> T1 is established by using the engine stoppable estimated time Tes assumed to stop at time t24. In the example of FIG. 8, since Tes> T1 is not established, the fuel consumption improvement effect can not be obtained even if the engine 12 is stopped.
 図8では、マスタシリンダ圧PMCが規定圧P1程度と比較的小さく、つまり制動加速度Apmcが勾配加速度Agよりも小さいため、ズリ下がりを抑制しうる制動力も確保されない。このため停車後に車両のズリ下がり防止するためには、クリープトルクが必要である。よって、エンジン12が停止されることはない。エンジントルク分の加速度Aetが消滅しないため、実際の車体速度VSは、図8の実線に沿って低下する。停車後に運転を継続しているエンジン12によってクリープトルクが与えられるため、車両のズリ下がりは発生しない。但し登坂路の路面勾配θがかなり大きく、車両に作用する重力の勾配成分の力Fgが、クリープトルクとブレーキ操作による制動力との和を上回る場合には、停車後に車両がゆっくりズリ下がることが起こりうる。この場合には、ズリ下がり速度がゆっくりであるため、運転手は比較的余裕をもってブレーキペダル15をさらに踏込むことで、車両のさらなるズリ下がりを防止する。 In FIG. 8, the master cylinder pressure PMC is relatively small at about the prescribed pressure P1, that is, the braking acceleration Apmc is smaller than the gradient acceleration Ag, so that the braking force that can suppress the slippage is not secured. For this reason, in order to prevent slippage of the vehicle after stopping, a creep torque is required. Thus, the engine 12 is not stopped. The actual vehicle speed VS decreases along the solid line in FIG. 8 because the acceleration Aet corresponding to the engine torque does not disappear. Since the creep torque is given by the engine 12 continuing the driving after the stop, the slippage of the vehicle does not occur. However, when the road surface slope θ on the uphill road is quite large, and the force Fg of the gradient component of gravity acting on the vehicle exceeds the sum of the creep torque and the braking force by the brake operation, the vehicle slowly slips after stopping. It can happen. In this case, since the slippage lowering speed is slow, the driver depresses the brake pedal 15 with a relatively large margin to prevent the further slippage of the vehicle.
 以上説明した本実施形態の車両制御装置によれば、以下の効果を得ることができる。 According to the vehicle control device of the present embodiment described above, the following effects can be obtained.
 (1)エンジン12の自動停止と自動再始動とを行うブレーキECU55は、「その他のアイドルストップ条件」が成立すると、燃料節減量Fdが、エンジン12の再始動に要する燃料消費量Fst以上であるか否か判定する。燃料節減量Fdは、エンジン停止時点から、停車後のズリ下がりの防止を目的として行われるエンジン12の再始動までのエンジン停止期間つまりアイドルストップ時間で節減できる燃料量を意味する。燃料節減量Fdが燃料消費量Fst以上であれば、ブレーキECU55は、エンジン12の停止を許可する。このため、たとえば燃料節減量Fdよりも燃料消費量Fstのほうが却って多くなるようなエンジン停止期間しか確保できないような場合には、エンジン12の停止が許可されない。よって、従来に比べてさらなる燃費向上効果を得ることができる。 (1) The brake ECU 55 for automatically stopping the engine 12 and automatically restarting the fuel consumption Fd is equal to or more than the fuel consumption Fst required to restart the engine 12 when the “other idle stop condition” is satisfied. It is determined whether or not. The fuel saving amount Fd means the amount of fuel that can be saved in the engine stop period, that is, the idle stop time from the engine stop to the restart of the engine 12 performed for the purpose of preventing slippage after stopping. If the fuel saving amount Fd is the fuel consumption amount Fst or more, the brake ECU 55 permits the engine 12 to stop. Therefore, for example, when it is possible to secure only the engine stop period in which the fuel consumption Fst is larger than the fuel saving amount Fd, the engine 12 can not be stopped. Therefore, the fuel consumption improvement effect can be further obtained as compared with the conventional case.
 (2)ブレーキECU55は、「その他のアイドルストップ条件」が成立すると、エンジン停止時点から、停車後のズリ下がりの防止を目的として行われるエンジン12の再始動までのエンジン停止期間の予想値であるエンジン停止可能予想時間Tesを算出する。そしてブレーキECU55は、このエンジン停止可能予想時間Tesが、設定時間T1以上であるか否か判定する。つまりブレーキECU55は、燃料節減量Fdと燃料消費量Fstとを直接比較するのではない。本実施形態のブレーキECU55は、エンジン12のアイドル状態における単位時間当たりの燃料消費量Fidを用いて、燃料量Fd,Fstをアイドル時間相当の時間にそれぞれ換算することでエンジン停止可能予想時間Tesと設定時間T1とを得る。ブレーキECU55は、これらエンジン停止可能予想時間Tesと設定時間T1とを比較する。よってブレーキECU55は、燃料節減量Fdおよび燃料消費量Fstを求めることなく、これらの時間換算値であるエンジン停止可能予想時間Tesと設定時間T1とを用いることで、燃料節減量Fdが燃料消費量Fst以上であることを間接的に判定することができる。よって本実施形態は、既存の車輪速度センサSE3~SE6の検出結果から算出することで取得できるエンジン停止可能予想時間Tesを用いて、比較的簡単な処理で判定を行うことができる。 (2) The brake ECU 55 is an estimated value of the engine stop period from the engine stop to the restart of the engine 12 performed for the purpose of preventing slippage after stopping when the "other idle stop conditions" are satisfied. An engine stoppable estimated time Tes is calculated. Then, the brake ECU 55 determines whether the estimated engine stoppable time Tes is equal to or longer than the set time T1. That is, the brake ECU 55 does not directly compare the fuel saving amount Fd with the fuel consumption amount Fst. The brake ECU 55 according to the present embodiment uses the fuel consumption amount Fid per unit time in the idle state of the engine 12 to convert the fuel amounts Fd and Fst into time corresponding to the idle time, respectively, to obtain the estimated engine stoppable time Tes. The set time T1 is obtained. The brake ECU 55 compares the estimated engine stoppable time Tes with the set time T1. Therefore, the brake ECU 55 does not obtain the fuel saving amount Fd and the fuel consumption amount Fst, but uses the estimated engine stoppable time Tes, which is a time conversion value thereof, and the setting time T1 to obtain the fuel saving amount Fd It can be determined indirectly that it is Fst or more. Therefore, in the present embodiment, the determination can be made by a relatively simple process using the engine stoppable estimated time Tes which can be acquired by calculating from the detection results of the existing wheel speed sensors SE3 to SE6.
 (3)燃料節減量が燃料消費量未満である場合にはブレーキECU55は、車両に作用する重力の勾配成分の力Fgに応じた勾配加速度Agを、ブレーキペダル15の操作量つまり踏量に応じたマスタシリンダ圧PMCから決まる制動加速度Apmcと比較する。Apmc≧Agが成立すれば、停車後にズリ下がりが発生しないと判定し、エンジン12の停止が許可される。つまり、停車時に車両に作用する重力の勾配成分の力Fgに抗することのできる制動力が得られる場合には、エンジン12の停止が許可される。よって、アイドルストップの実施頻度を増やすことで、さらなる燃費向上効果を得ることができる。 (3) When the fuel saving amount is less than the fuel consumption amount, the brake ECU 55 generates a gradient acceleration Ag corresponding to the force Fg of the gradient component of gravity acting on the vehicle according to the operation amount of the brake pedal 15, that is, the stepping amount. The braking acceleration Apmc is determined from the master cylinder pressure PMC. If Apmc ≧ Ag, it is determined that slipping does not occur after the vehicle is stopped, and the engine 12 is permitted to stop. That is, when the braking force capable of resisting the force Fg of the gradient component of gravity acting on the vehicle when the vehicle is stopped, the stop of the engine 12 is permitted. Therefore, the fuel consumption improvement effect can be obtained by increasing the implementation frequency of the idle stop.
 (4)エンジン停止可能予想時間Tesが設定時間T1未満であり、かつ停車後のズリ下がりを防止できるだけの制動力が確保できない場合つまりApmc≧Agが不成立の場合には、エンジン12の停止が許可されない。よって、エンジン12を再始動させるための燃料消費量Fstのほうが、アイドルストップ時間で節減できる燃料節減量Fdよりも多くなってしまうような事態を、極力回避できる。つまり、アイドルストップの実施が却って燃費を悪化させるような事態を、極力回避できる。 (4) In the case where the engine stoppable expected time Tes is less than the set time T1 and the braking force sufficient to prevent slippage after stopping can not be secured, that is, Apmc 不 Ag is not established, the engine 12 can be stopped. I will not. Therefore, the situation where the fuel consumption Fst for restarting the engine 12 becomes larger than the fuel saving Fd which can be saved in the idle stop time can be avoided as much as possible. That is, it is possible to avoid, as much as possible, a situation where the implementation of the idle stop rather deteriorates the fuel consumption.
 (5)ズリ下がりが発生する虞があると判定されたとき、つまりApmc<Agと判定されたときには、停車時までに完了するようにエンジン12の再始動を開始する。より具体的には車両のズリ下がりの発生が予測されるときには、停車までの予測時間T2が再始動必要時間Tengに達した時点でエンジン12の再始動を開始する。このため停車後に車両のズリ下がりが発生せず、登坂路での車両の停車後のズリ下がりを好適に防止できる。 (5) When it is determined that slippage may occur, that is, when it is determined that Apmc <Ag, restart of the engine 12 is started so as to be completed by the time the vehicle is stopped. More specifically, when a slippage of the vehicle is predicted to occur, restart of the engine 12 is started when the predicted time T2 until the vehicle stops reaches the required restart time Teng. For this reason, slippage of the vehicle does not occur after stopping, and slippage after stopping of the vehicle on the uphill road can be suitably prevented.
 (6)ブレーキECU55は、停車後にズリ下がりが発生するか否かの判定を、ブレーキペダル15の操作量つまり踏量に応じたマスタシリンダ圧PMCから決まる制動加速度Apmcと、車体加速度Gと車体速度微分値DVSとの差分から決まる勾配加速度Agとを用いて行う。勾配加速度Agが制動加速度Apmcを上回るときに、「車両のズリ下がりが発生する」とブレーキECU55は判定する。そのため、車両のズリ下がりの防止を目的とするエンジン12の再始動の要否を、的確に判定することができる。 (6) The brake ECU 55 determines whether or not a slippage occurs after the vehicle is stopped, a braking acceleration Apmc determined from the master cylinder pressure PMC according to the operation amount of the brake pedal 15, ie, the depression amount, the vehicle acceleration G and the vehicle speed This is performed using gradient acceleration Ag determined from the difference with the differential value DVS. When the gradient acceleration Ag exceeds the braking acceleration Apmc, the brake ECU 55 determines that "a slip of the vehicle occurs". Therefore, it is possible to accurately determine the necessity of restarting the engine 12 for the purpose of preventing slippage of the vehicle.
 上記実施形態は、以下のように変更して実施することもできる。 The above embodiment can be modified as follows.
 前記実施形態では、燃料節減量Fdと、燃料消費量Fcに応じた設定値F1とを、それぞれアイドル時間に換算したエンジン停止可能予想時間Tesと設定時間T1とを比較した。これに替えて、燃料節減量Fdと設定値F1とを比較することで、Fd≧F1が成立するか否か判定する構成としてもよい。たとえば燃料噴射装置は、エンジン12の燃焼室内に燃料を噴射するインジェクタを有する。この場合には、燃料噴射装置がエンジンアイドル状態下で単位時間当たりに消費する燃料量に、エンジン12の停止から再始動までのエンジン停止時間を乗じることで、燃料節減量Fdは算出される。ブレーキECU55のメモリは、エンジン始動時に取得した実際の燃料消費量Fcに応じた設定値F1を、記憶しておく。第3判定部として機能するブレーキECU55は、上記算出によって取得した燃料節減量Fdが、設定値F1以上であるか否か判定する構成とする。 In the above embodiment, the estimated engine stoppable time Tes obtained by converting the fuel saving amount Fd and the set value F1 corresponding to the fuel consumption Fc into idle time is compared with the set time T1. Instead of this, by comparing the fuel saving amount Fd with the set value F1, it may be determined whether Fd d F1 holds. For example, the fuel injection device has an injector for injecting fuel into the combustion chamber of the engine 12. In this case, the fuel saving amount Fd is calculated by multiplying the amount of fuel consumed per unit time under the engine idle condition by the fuel injection device by the engine stop time from the stop of the engine 12 to the restart. The memory of the brake ECU 55 stores a set value F1 corresponding to the actual fuel consumption amount Fc acquired at engine start. The brake ECU 55 functioning as the third determination unit is configured to determine whether the fuel reduction amount Fd obtained by the above calculation is equal to or greater than the set value F1.
 燃料節減量Fdが燃料消費量Fcと同じである場合、つまり前記実施形態ではTes=T1の場合には、エンジン12の停止を許可する構成とした。これに替えて、エンジンの停止を許可しない構成としてもよい。すなわち少なくとも燃費を悪化させる場合にエンジン12の停止を許可しない構成であればよい。さらに燃料消費量Fcに対して許容量αを設定してもよい。あるいはエンジン停止可能予想時間Tesに対して、許容量αに相当する許容時間Tαを設定してもよい。そして第3判定部が、Fd≧Fc+Fα、またはTes≧T1+Tαの成立を判定する構成としてもよい。この構成によれば、計算上または設定上の値と実際の値との間に誤差があっても、燃料節減効果があるときに限りエンジン12を停止させることができる。もちろん第3判定部の判定条件を、Fd≧Fc-Fα、またはTes≧T1-Tαとしてもよい。要するに設定値は、エンジン再始動時の燃料消費量に応じて設定される値であればよく、燃料消費量や前記燃料消費量の換算時間に対して、所定の許容値を考慮した値でもよい。 When the fuel saving amount Fd is the same as the fuel consumption amount Fc, that is, when Tes = T1 in the above embodiment, the engine 12 is allowed to stop. Instead of this, the engine may not be stopped. That is, at least when the fuel consumption is to be deteriorated, the engine 12 may not be stopped. Furthermore, the allowable amount α may be set with respect to the fuel consumption Fc. Alternatively, an allowable time Tα corresponding to the allowable amount α may be set with respect to the estimated engine stoppable time Tes. Then, the third determination unit may be configured to determine that FdFFc + Fα or Tes ≧ T1 + Tα. According to this configuration, even if there is an error between the calculated or set value and the actual value, the engine 12 can be stopped only when there is a fuel saving effect. Of course, the determination condition of the third determination unit may be Fd ≧ Fc−Fα or Tes ≧ T1−Tα. In short, the set value may be a value set according to the fuel consumption at the time of engine restart, and may be a value in which a predetermined allowable value is considered with respect to the fuel consumption and the conversion time of the fuel consumption. .
 前記実施形態では、ズリ下がり判定の際には制動加速度Apmcと、勾配加速度Agつまり閾値とを比較した。これに替えて、制動力と、車両に作用する重力の車両前後方向成分つまり路面方向成分の力Fgとしての閾値とを比較してもよい。あるいはマスタシリンダ圧PMCと、力Fgのマスタシリンダ圧換算値としての閾値とを比較してもよい。 In the above embodiment, the braking acceleration Apmc is compared with the gradient acceleration Ag, that is, the threshold value, at the time of the slip down determination. Instead of this, the braking force may be compared with the threshold value as the force Fg of the vehicle longitudinal direction component of the gravity acting on the vehicle, that is, the road surface direction component. Alternatively, master cylinder pressure PMC may be compared with a threshold as a force equivalent to master cylinder pressure of force Fg.
 マスタシリンダ圧PMCを検出する圧力センサSE2を備える車両において、圧力センサSE2によって検出されるマスタシリンダ圧PMCを基に、制動加速度Apmcを取得してもよい。ブレーキECU55のメモリは、たとえばマスタシリンダ圧PMCと、制動加速度Apmcまたは制動力Fpmcとの対応関係を示す図示しないマップを記憶する。ブレーキECU55は、マスタシリンダ圧PMCを基にマップを参照することで、制動加速度Apmcまたは制動力Fpmcを取得する。そしてブレーキECU55は、制動加速度Apmcと勾配加速度Agとを比較することで、あるいは制動力Fpmcと力Fgとを比較することで、ズリ下がりの有無を判定する構成としてもよい。 In a vehicle including the pressure sensor SE2 that detects the master cylinder pressure PMC, the braking acceleration Apmc may be acquired based on the master cylinder pressure PMC detected by the pressure sensor SE2. The memory of the brake ECU 55 stores, for example, a map (not shown) indicating the correspondence between the master cylinder pressure PMC and the braking acceleration Apmc or the braking force Fpmc. The brake ECU 55 acquires the braking acceleration Apmc or the braking force Fpmc by referring to the map based on the master cylinder pressure PMC. Then, the brake ECU 55 may be configured to determine the presence or absence of slippage by comparing the braking acceleration Apmc with the gradient acceleration Ag, or by comparing the braking force Fpmc with the force Fg.
 登坂路での停車時の車両のズリ下がりは、多少であれば許容してもよい。すなわち許容距離LaをLa≧0に設定し、ズリ下がり距離Lが許容距離La内にあるうちにエンジン12を再始動させる構成とする。エンジン12の停止中の登坂走行時に、停車後の車両のズリ下がりが発生するか否か判定する。「ズリ下がりが発生する」と予測されたときには、車両のズリ下がり距離Lが許容距離Laを超えるまでに完了するように、エンジン12の再始動を開始する。許容距離La≧0である。より具体的にはエンジン停止中の登坂走行時に、停車までの時間Taと、停車時点から車両のズリ下がり距離Lが許容距離Laになるまでの時間Tbとを求める。ブレーキECU55は、時間Taと時間Tbとの和で表わされる予測時間T2が、再始動必要時間Tengに達した時点でエンジン12の再始動の開始を許可する。また路面勾配θが大きいほど、上記許容距離Laに大きい値を設定してもよい。たとえば路面勾配θが一定値に達するまでは、許容距離Laを「0」に設定するとともに、路面勾配θが一定値を超えた後は、路面勾配θの増加に応じて許容距離Laを増大させる。許容距離Laは、前記実施形態で説明したものである。これらの構成を採用した場合には、エンジン停止可能予想時間Tesは、次式によって算出するのが好ましい。
Tes=VS/(DVS+Aet)+Tb-Teng …(4)
 前記実施形態では、エンジン12を再始動させて、制動力にクリープトルクを加えることで、車両のズリ下がりを防止した。この場合には、路面勾配θが大きくクリープトルクによるクリープ加速度Acと制動加速度Apmcとの和よりも勾配加速度Agのほうが大きい場合つまりAc+Apmc<Agが成立する場合には、ズリ下がりが発生する。そこでAc+Apmc<Agが成立する場合には、ブレーキ加圧を行ってズリ下がりを防止する構成も採用できる。具体的にはAc+Apmc<Agが成立した場合には、モータ41を駆動させてポンプ42,43を駆動させる。さらにリニア電磁弁35a,35bに、勾配加速度Agの大きさに応じた電流値で電流を供給してホイールシリンダ圧PWCを制御目標値に増圧することでブレーキ加圧を行う。その後、ブレーキ圧を制御目標圧に保持できる電流値を、リニア電磁弁35a,35bに供給する。この構成によれば、たとえば路面勾配θが大きいためにクリープトルクを加えただけではズリ下がりを防止できないような場合でも、車両を登坂路にズリ下がることなく停止させることができる。
The slippage of the vehicle at the time of stopping on the uphill may be allowed if it is small. That is, the allowable distance La is set to La ≧ 0, and the engine 12 is restarted while the slippage lowering distance L is within the allowable distance La. It is determined whether or not a slippage of the vehicle after the stoppage occurs while traveling uphill while the engine 12 is stopping. When it is predicted that "slipping occurs", restart of the engine 12 is started so as to be completed by the time the sling lowering distance L of the vehicle exceeds the allowable distance La. The allowable distance La ≧ 0. More specifically, the time Ta until the stop and the time Tb until the slippage distance L of the vehicle from the stop time becomes the allowable distance La are determined at the time of uphill traveling while the engine is stopped. The brake ECU 55 permits start of restart of the engine 12 when the predicted time T2 represented by the sum of the time Ta and the time Tb reaches the required restart time Teng. Further, the larger the road surface gradient θ, the larger the value of the allowable distance La may be set. For example, the allowable distance La is set to “0” until the road surface gradient θ reaches a constant value, and the allowable distance La is increased according to the increase of the road surface gradient θ after the road surface gradient θ exceeds a constant value. . The allowable distance La is the one described in the above embodiment. When these configurations are adopted, it is preferable to calculate the estimated engine stoppable time Tes by the following equation.
Tes = VS / (DVS + Aet) + Tb-Teng (4)
In the embodiment, the engine 12 is restarted to add creep torque to the braking force to prevent the vehicle from slipping down. In this case, if the gradient acceleration Ag is larger than the sum of the creep acceleration Ac due to creep torque and the braking acceleration Apmc, that is, if Ac + Apmc <Ag, then a slippage occurs. Therefore, when Ac + Apmc <Ag holds, a configuration may be adopted in which brake pressure is applied to prevent slippage. Specifically, when Ac + Apmc <Ag holds, the motor 41 is driven to drive the pumps 42 and 43. Further, current is supplied to the linear solenoid valves 35a, 35b at a current value according to the magnitude of the gradient acceleration Ag to pressurize the wheel cylinder pressure PWC to a control target value to perform brake pressurization. Thereafter, current values capable of holding the brake pressure at the control target pressure are supplied to the linear solenoid valves 35a and 35b. According to this configuration, for example, even when slippage can not be prevented only by adding the creep torque because the road surface gradient θ is large, the vehicle can be stopped without slipping down the slope.
 前記実施形態では、重力によって発生する車両後方向の加速度Agが、車両の制動加速度Apmcを上回るときに、「車両のズリ下がりが発生する」と判定していた。これを変更して、車両に作用する重力の車両後方向の成分である力Fgが、車両の制動力Fpmcを上回るときに「車両のズリ下がりが発生する」と判定してもよい。 In the above-described embodiment, when the acceleration Ag in the rearward direction of the vehicle generated by gravity exceeds the braking acceleration Apmc of the vehicle, it is determined that "the slippage of the vehicle occurs". By changing this, it may be determined that "slipping of the vehicle occurs" when the force Fg, which is a component of the gravity in the backward direction acting on the vehicle, exceeds the braking force Fpmc of the vehicle.
 前記実施形態では、ブレーキペダル15の操作力つまり踏力に応じたマスタシリンダ圧PMCから決まる制動加速度Apmcと、車体加速度Gの検出結果とに基づき停車後に車両のズリ下がりが発生するか否か判定するようにしていた。これを変更して、同様の判定を、他の検出値に基づいて行うことも可能である。たとえばマスタシリンダ圧PMCの検出値に代えてブレーキペダル15の操作量つまり踏量の検出値を使うことでも、車両の制動力や制動加速度を確認することは可能である。この場合には、ブレーキペダル15の踏込量を検出するためのセンサを、車両に設けることになる。さらに車体加速度Gによってエンジンが発生する加速度や、ころがり抵抗による加速度、路面勾配加速度、あるいは空気抵抗等による加速度を車体加速度Gから除くことでも、ブレーキによる加速度を確認することができる。また車体のピッチを検出するセンサを設け、センサからの信号で路面勾配θを把握することで、上記判定を行うことも可能である。 In the embodiment described above, it is determined whether or not the vehicle slips down after stopping based on the braking acceleration Apmc determined from the master cylinder pressure PMC according to the operation force of the brake pedal 15, ie, the pedaling force, and the detection result of the vehicle body acceleration G. It was like that. It is also possible to change this and make the same determination based on other detected values. For example, it is possible to confirm the braking force and the braking acceleration of the vehicle by using the operation amount of the brake pedal 15, that is, the detection value of the depression amount instead of the detection value of the master cylinder pressure PMC. In this case, a sensor for detecting the amount of depression of the brake pedal 15 is provided to the vehicle. Further, the acceleration by the brake can also be confirmed by removing the acceleration generated by the engine by the vehicle acceleration G, the acceleration by the rolling resistance, the road surface gradient acceleration, the acceleration by the air resistance or the like from the vehicle acceleration G. Further, it is also possible to perform the above determination by providing a sensor for detecting the pitch of the vehicle body and grasping the road surface gradient θ by a signal from the sensor.
 前記実施形態では、車体速度VSおよび車体速度微分値DVSを用いた。これを変更して、車輪速度および車輪加速度を用いてもよい。車体速度は、車輪速度センサSE3~SE6のうち少なくとも1つの値を用いて算出したものや、カーナビゲーションシステムで取得された値などを用いることが可能である。 In the above embodiment, the vehicle speed VS and the vehicle speed differential value DVS are used. This may be modified to use wheel speed and wheel acceleration. As the vehicle body speed, it is possible to use one calculated using at least one of the wheel speed sensors SE3 to SE6 or a value acquired by a car navigation system.
 前記実施形態では、各輪にディスクブレーキ装置の設けられた車両に本願の制御装置を適用した場合を説明した。これを変更して、本願は、車輪の一部若しくは全部にドラムブレーキ装置が設けられた車両にも同様に適用することができる。 In the said embodiment, the case where the control apparatus of this application was applied to the vehicle in which the disk brake apparatus was provided in each wheel was demonstrated. Changing this, the present application is equally applicable to vehicles in which a drum brake device is provided on part or all of the wheels.
 車両は、2輪駆動車に限定されない。4輪駆動車などの他の駆動方式の車両にも同様に本願の車両制御装置を適用することができる。 Vehicles are not limited to two-wheel drive vehicles. The vehicle control device of the present invention can be similarly applied to vehicles of other drive systems such as four-wheel drive vehicles.
 12…エンジン。15…ブレーキ操作部の一例であるブレーキペダル。17エンジンECU。18…自動変速機。20a…トルクコンバータ。25…マスタシリンダ。26…ブースタ。31…ブレーキアクチュエータ。32a~32d…ホイールシリンダ。55…第1判定部、第2判定部、第3判定部、第4判定部、停止制御部、および再始動制御部の一例としてのブレーキECU。FR,FL,RR,RL…車輪。SE1…アクセル開度センサ。SW1…ブレーキスイッチ。SE2…圧力センサ。SE3~SE6…車速検出部の一例である車輪速度センサ。SE7…加速度センサ。Tes…エンジン停止可能予想時間。T1…設定値の一例である設定時間。θ…路面勾配。L…ズリ下がり距離。La…許容距離。VS…車体速度。DVS…車体速度微分値。Ag…勾配加速度。Fpmc…制動力。Apmc…制動加速度。Aet…エンジントルク加速度。Fd…燃料節減量。Fst…燃料消費量。F1…設定値。Teng…再始動必要時間。 12 ... engine. 15: A brake pedal which is an example of a brake operation unit. 17 engine ECUs. 18: Automatic transmission. 20a ... torque converter. 25: Master cylinder. 26 ... booster. 31 ... brake actuator. 32a-32d: Wheel cylinder. 55: A brake ECU as an example of a first determination unit, a second determination unit, a third determination unit, a fourth determination unit, a stop control unit, and a restart control unit. FR, FL, RR, RL ... wheels. SE1 ... accelerator opening sensor. SW1 ... brake switch. SE2 ... pressure sensor. SE3 to SE6: wheel speed sensors which are an example of a vehicle speed detection unit. SE7 ... acceleration sensor. Tes: Expected time to stop the engine. T1 ... setting time which is an example of setting value. θ: Road surface gradient. L ... slip down distance. La ... allowable distance. VS ... body speed. DVS ... body speed derivative value. Ag ... gradient acceleration. Fpmc ... braking force. Apmc ... braking acceleration. Aet ... engine torque acceleration. Fd: Fuel savings. Fst: Fuel consumption. F1 ... setting value. Teng ... required time to restart.

Claims (5)

  1.  車両のエンジンを自動的に停止させるための停止制御と、前記エンジンを自動的に再始動させるための再始動制御とを行う車両制御装置であって、前記車両制御装置は、
     「前記停止制御の実行条件が成立した」か否か判定するように構成された第1判定部と;
     「前記停止制御の実行条件が成立する」と判定された場合には、前記エンジンの停止を許可するように構成された停止制御部と;
     前記エンジンが停止された状態での前記車両による坂路走行時に、「停車後の前記車両のズリ下がりが発生する」か否か判定するように構成された第2判定部と;
     「前記ズリ下がりが発生する」と判定されたときには、前記車両のズリ下がり距離が許容距離を超えるまでに前記エンジンの再始動が完了するように、前記エンジンの再始動の開始を許可するように構成された再始動制御部と;
     前記エンジンの停止前に、前記エンジンの停止から前記再始動までのエンジン停止期間で節減しうる燃料節減量を予測するように構成された第3判定部であって、前記第3判定部は、「前記燃料節減量が、前記エンジンの前記再始動に要する燃料消費量に応じて設定された設定値以上である」か否か判定するように構成された、前記第3判定部と
    を備え、
     「前記燃料節減量が前記設定値未満である」と判定された場合には前記停止制御部は、前記停止制御の実行条件が成立しても前記エンジンの停止を許可しないように構成されている、
     車両制御装置。
    A vehicle control apparatus that performs stop control for automatically stopping an engine of a vehicle and restart control for automatically restarting the engine, the vehicle control apparatus comprising:
    A first determination unit configured to determine whether "the execution condition of the stop control is satisfied";
    A stop control unit configured to permit stopping of the engine when it is determined that "the execution condition of the stop control is satisfied";
    A second determination unit configured to determine whether or not “slipping of the vehicle after stopping occurs” when traveling on a slope with the vehicle in a state where the engine is stopped;
    When it is determined that "the slip is occurring", the restart of the engine is permitted to be started so that the restart of the engine is completed before the slip distance of the vehicle exceeds the allowable distance. Configured restart control;
    A third determination unit configured to predict a fuel saving amount that can be saved in the engine stop period from the stop of the engine to the restart before the stop of the engine, wherein the third determination unit is And a third determination unit configured to determine whether “the fuel saving amount is equal to or more than a set value set according to the fuel consumption amount required for the restart of the engine”.
    When it is determined that "the fuel saving amount is less than the set value", the stop control unit is configured not to permit the stop of the engine even if the execution condition of the stop control is satisfied. ,
    Vehicle control device.
  2.  前記車両はブレーキ操作部を備え、
     前記車両制御装置はさらに第4判定部を備え、
     前記第4判定部は、「前記ブレーキ操作部の操作量に応じた制動力が、停車後の前記車両のズリ下がりを抑えうる閾値以上に確保されている」か否か判定するように構成され、
     「前記制動力が前記閾値以上に確保されている」と判定された場合には前記停止制御部は、「前記燃料節減量が前記設定値未満である」と判定された場合でも、前記エンジンの停止を許可するように構成されている、
     請求項1記載の車両制御装置。
    The vehicle includes a brake operating unit.
    The vehicle control device further includes a fourth determination unit,
    The fourth determination unit is configured to determine whether or not "the braking force corresponding to the operation amount of the brake operation unit is secured at or above a threshold that can suppress slippage of the vehicle after stopping." ,
    When it is determined that "the braking force is secured above the threshold value", the stop control unit may determine that the amount of fuel saved is less than the set value, even if it is determined that Configured to allow outages,
    The vehicle control device according to claim 1.
  3.  前記第3判定部は、前記エンジンの停止から再始動までの時間としてのエンジン停止可能予想時間を求めるように構成され、
     前記第3判定部は、「前記燃料節減量が前記設定値以上である」か否かの判定を、前記エンジン停止可能予想時間が、前記設定値を前記エンジンのアイドル時間に換算した設定時間以上であるか否か判定することによって行うように構成されている、
     請求項1または2記載の車両制御装置。
    The third determination unit is configured to obtain an estimated engine stoppable time as a time from stop to restart of the engine,
    The third determination unit determines whether or not “the fuel saving amount is equal to or more than the set value”, or more than the set time obtained by converting the set value to the idle time of the engine. Configured to determine whether or not
    The vehicle control device according to claim 1.
  4.  前記車両は車速検出部を有し、
     前記第3判定部は、前記車速検出部によって検出された車体速度を取得するように、かつ前記車体速度が時間微分されることで生成する車体速度微分値を取得するように構成され、
     前記前記第3判定部は、前記エンジンの停止によって消滅するエンジントルク分の加速度を前記車体速度微分値から除いた値で、前記車体速度を除算することで、前記エンジン停止可能予想時間を算出するように構成されている、
     請求項3記載の車両制御装置。
    The vehicle has a vehicle speed detector.
    The third determination unit is configured to obtain a vehicle speed detected by the vehicle speed detection unit, and to obtain a vehicle speed derivative value generated by time-differentiating the vehicle speed.
    The third determination unit calculates the estimated engine stoppable time by dividing the vehicle body speed by a value obtained by removing an acceleration for an engine torque which disappears due to a stop of the engine from the vehicle body speed differential value. Is configured as
    The vehicle control device according to claim 3.
  5.  車両のエンジンを自動的に停止させるための停止制御と、前記エンジンを自動的に再始動させるための再始動制御とを行う車両制御方法であって、前記車両制御方法は、
     「前記停止制御の実行条件が成立した」か否か判定することと;
     「前記停止制御の実行条件が成立する」と判定された場合には、前記エンジンの停止を許可することと;
     前記エンジンが停止された状態での前記車両による坂路走行時に、「停車後の前記車両のズリ下がりが発生する」か否か判定することと;
     「前記ズリ下がりが発生する」と判定されたときには、前記車両のズリ下がり距離が許容距離を超えるまでに前記エンジンの再始動が完了するように、前記エンジンの再始動を開始することと;
     前記エンジンの停止前に、前記エンジンの停止から前記再始動までの停止期間で節減しうる燃料節減量を予測することと;
     「前記燃料節減量が、前記エンジンの前記再始動に要する燃料消費量に応じて設定された設定値以上である」か否か判定することと;
     「前記燃料節減量が前記設定値未満である」と判定された場合には、前記停止制御の実行条件が成立しても前記エンジンの停止を許可しないことと
    を備える、車両制御方法。
    A vehicle control method for performing stop control for automatically stopping an engine of a vehicle and restart control for automatically restarting the engine, the vehicle control method comprising:
    Determining whether "the execution condition of the stop control is satisfied";
    Allowing the engine to stop when it is determined that "the execution condition of the stop control is satisfied";
    Determining whether or not "slipping of said vehicle after stopping occurs" when traveling on a slope road with said vehicle in a state where said engine is stopped;
    When it is determined that "the slip is occurring", restart of the engine is started so that the restart of the engine is completed before the slip distance of the vehicle exceeds the allowable distance;
    Predicting the fuel savings that can be saved in the stop period between the stop of the engine and the restart before the stop of the engine;
    Determining whether "the amount of fuel savings is equal to or greater than a set value set according to the amount of fuel consumption required for the restart of the engine";
    The vehicle control method according to any one of the preceding claims, wherein, when it is determined that "the fuel saving amount is less than the set value", stopping of the engine is not permitted even if the execution condition of the stop control is satisfied.
PCT/JP2011/071995 2010-09-30 2011-09-27 Vehicle control device and vehicle control method WO2012043530A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180046184.XA CN103124838B (en) 2010-09-30 2011-09-27 Controller of vehicle and control method for vehicle
DE112011103318.4T DE112011103318B4 (en) 2010-09-30 2011-09-27 Vehicle control device and vehicle control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010222222A JP5672917B2 (en) 2010-09-30 2010-09-30 Vehicle control device
JP2010-222222 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043530A1 true WO2012043530A1 (en) 2012-04-05

Family

ID=45892971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071995 WO2012043530A1 (en) 2010-09-30 2011-09-27 Vehicle control device and vehicle control method

Country Status (4)

Country Link
JP (1) JP5672917B2 (en)
CN (1) CN103124838B (en)
DE (1) DE112011103318B4 (en)
WO (1) WO2012043530A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737203B2 (en) * 2012-02-02 2015-06-17 株式会社デンソー Engine control device
JP5935549B2 (en) * 2012-07-04 2016-06-15 日産自動車株式会社 Automatic engine stop control device for vehicle
CN105452630B (en) * 2013-07-23 2018-08-31 加特可株式会社 The control device and its control method of vehicle
DE102013114270A1 (en) * 2013-09-16 2015-03-19 Hyundai Motor Company Leerlaufabschaltungsbedingungsmittingungsverfahren an internal combustion engine
JP2015117593A (en) * 2013-12-17 2015-06-25 株式会社ケーヒン Engine stop/start control device
CN104763544A (en) * 2014-01-07 2015-07-08 博世(中国)投资有限公司 Fuel saving data processing method and system based on engine start-stop function and car
JP2017007505A (en) * 2015-06-22 2017-01-12 トヨタ自動車株式会社 Vehicle control device
JP6833273B2 (en) * 2016-12-22 2021-02-24 ダイハツ工業株式会社 Vehicle control device
JP7099028B2 (en) * 2018-04-25 2022-07-12 株式会社アドヴィックス Vehicle travel path determination device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282453A (en) * 2004-03-30 2005-10-13 Toyota Motor Corp Control device for vehicle
JP2010053867A (en) * 2008-08-29 2010-03-11 Robert Bosch Gmbh Engine start/stop unit for automatic-supply/intercept of internal combustion engine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3635927B2 (en) * 1998-06-19 2005-04-06 株式会社デンソー Automatic engine stop / start device for vehicle
JP2002193082A (en) * 2000-12-28 2002-07-10 Denso Corp Automatic engine stopping starting device
JP4374805B2 (en) 2001-07-24 2009-12-02 株式会社デンソー Engine car stop / restart device
JP3770235B2 (en) * 2003-01-28 2006-04-26 トヨタ自動車株式会社 Internal combustion engine stop position estimation device
DE10317501B4 (en) * 2003-04-16 2015-06-03 Daimler Ag Method for operating a motor vehicle
US7024306B2 (en) * 2003-07-24 2006-04-04 Miyama, Inc. Evaluation system for vehicle operating conditions and evaluation method thereof
JP4400338B2 (en) * 2004-06-28 2010-01-20 マツダ株式会社 Control device for vehicle with idle stop
CN101091047A (en) * 2004-12-17 2007-12-19 丰田自动车株式会社 Engine start control apparatus, engine start control method, and motor vehicle equipped with engine start control apparatus
DE102007010488A1 (en) * 2007-03-03 2008-09-04 Daimler Ag Process to stop and start the engine of an automobile engine with hybrid drive
JP2010031811A (en) * 2008-07-30 2010-02-12 Fujitsu Ten Ltd Fuel saving drive diagnosis device, on-vehicle system, drive control device, and fuel saving drive diagnosis program
JP5327012B2 (en) * 2009-02-24 2013-10-30 日産自動車株式会社 Idle stop control device and idle stop control method
DE102010013181A1 (en) * 2010-03-27 2011-09-29 Daimler Ag Method for automatic stopping and/or starting of traction combustion engine of motor vehicle i.e. motor car, involves determining release operation mode or latch operation mode in response to state information of roll-back recognition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282453A (en) * 2004-03-30 2005-10-13 Toyota Motor Corp Control device for vehicle
JP2010053867A (en) * 2008-08-29 2010-03-11 Robert Bosch Gmbh Engine start/stop unit for automatic-supply/intercept of internal combustion engine

Also Published As

Publication number Publication date
DE112011103318B4 (en) 2018-01-25
DE112011103318T5 (en) 2013-08-08
CN103124838B (en) 2015-11-25
CN103124838A (en) 2013-05-29
JP5672917B2 (en) 2015-02-18
JP2012077650A (en) 2012-04-19

Similar Documents

Publication Publication Date Title
WO2012043530A1 (en) Vehicle control device and vehicle control method
US9682705B2 (en) Vehicle having ACC stop and go with braking auto-hold to increase engine autostop availability
JP5621479B2 (en) Vehicle control apparatus and control method
US8382642B2 (en) Vehicle control apparatus
US9731722B2 (en) Brake control for stop/start vehicle
JP5736705B2 (en) Vehicle control apparatus and vehicle control method
WO2012029773A1 (en) Vehicle control device and vehicle control method
JP2006311791A (en) Brake control unit for vehicles
WO2012124806A1 (en) Apparatus for determining vehicle sliding down, and vehicle control apparatus comprising same
JP5471429B2 (en) VEHICLE STOP CONTROL DEVICE AND VEHICLE STOP CONTROL METHOD
WO2011162374A1 (en) Vehicle control device, and vehicle control method
JP2009190648A (en) Brake control device
JP5333665B2 (en) Braking control system
JP5787050B2 (en) Vehicle control device
JP5516132B2 (en) Vehicle control device
WO2012002469A1 (en) Vehicle control device and vehicle control method
JP5428898B2 (en) Vehicle control method and vehicle control apparatus
JP4499691B2 (en) Braking control device
JP2012025389A (en) Brake control apparatus for vehicle
US10444252B2 (en) Method for operating a motor vehicle having a start/stop system
JP6127364B2 (en) Brake control device for vehicle
JP2000115910A (en) Hybrid vehicle
CN104870786A (en) Idle-stop device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046184.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829083

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011103318

Country of ref document: DE

Ref document number: 1120111033184

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829083

Country of ref document: EP

Kind code of ref document: A1