WO2012029773A1 - Vehicle control device and vehicle control method - Google Patents

Vehicle control device and vehicle control method Download PDF

Info

Publication number
WO2012029773A1
WO2012029773A1 PCT/JP2011/069595 JP2011069595W WO2012029773A1 WO 2012029773 A1 WO2012029773 A1 WO 2012029773A1 JP 2011069595 W JP2011069595 W JP 2011069595W WO 2012029773 A1 WO2012029773 A1 WO 2012029773A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
vehicle
restart
control
braking
Prior art date
Application number
PCT/JP2011/069595
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 橋本
陽介 大森
雪生 森
政義 武田
Original Assignee
株式会社 アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アドヴィックス filed Critical 株式会社 アドヴィックス
Priority to DE112011102870.9T priority Critical patent/DE112011102870B4/en
Priority to CN201180041447.8A priority patent/CN103228514B/en
Publication of WO2012029773A1 publication Critical patent/WO2012029773A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • B60W10/184Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
    • B60W10/188Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes hydraulic brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18054Propelling the vehicle related to particular drive situations at stand still, e.g. engine in idling state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/04Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling rendering engines inoperative or idling, e.g. caused by abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems
    • B60T8/4827Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems
    • B60T8/4863Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems
    • B60T8/4872Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems pump-back systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/10Safety devices
    • F02N11/108Safety devices for diagnosis of the starter or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/08Parameters used for control of starting apparatus said parameters being related to the vehicle or its components
    • F02N2200/0805Detection of vehicle emergency state, e.g. from ABS, ESP, external sensors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention is a control apparatus for a vehicle that permits automatic stop of the engine when a stop condition of the engine of the vehicle is satisfied, and permits restart of the engine when a restart condition of the engine is satisfied.
  • the present invention relates to a control method of a vehicle.
  • the driver may repeatedly perform the stepping operation and releasing operation of the brake pedal to prompt the restart of the engine. Then, the negative pressure in the booster decreases due to the repetition of the stepping and releasing operations of the brake pedal, and the braking force on the wheel decreases due to the insufficient negative pressure in the booster. As a result, when the vehicle is located on a slope, the vehicle may start moving against the driver's intention.
  • the negative pressure in the booster decreases due to the adjustment of the operation amount of the brake pedal by the driver for the purpose of adjusting the vehicle deceleration after the engine stops.
  • the negative pressure in the booster may be reduced immediately before the vehicle stops. Therefore, when the vehicle is located on a slope, there is a possibility that the vehicle can not be stopped against the driver's intention due to the insufficient braking force to the wheels caused by the insufficient negative pressure in the booster.
  • An object of the present invention is to provide a control apparatus and a control method of a vehicle capable of restarting an engine in a state in which the safety of the vehicle is secured while reducing a load of a battery mounted on the vehicle. It is in.
  • a control device of a vehicle including a first control unit (55, S12, S13) and a second control unit (55).
  • the first control unit permits the automatic stop of the engine (12) when the stop condition of the engine (12) of the vehicle is satisfied and the restart condition of the engine (12) is satisfied. Allow the engine (12) to restart.
  • the second control unit adjusts a braking force on wheels (FR, FL, RR, RL) provided in the vehicle.
  • the second control unit detects the start failure of the engine (12) after permitting the restart of the engine (12), the wheels (for stopping the vehicle)
  • a first braking control is performed to increase the braking force on FR, FL, RR, and RL).
  • the second control unit performs a second braking control for holding the braking force on the wheels (FR, FL, RR, RL).
  • the first control unit (55, S12, S13, S31, S34) prohibits restart of the engine (12) during execution of the first braking control, and executes the second braking control. During this time, the engine (12) is allowed to restart.
  • the second control unit reduces the amount of operation of the brake pedal (15) provided to the vehicle, or The third braking control for permitting the movement of the vehicle by decreasing the braking force on the wheels (FR, FL, RR, RL) when detecting that the brake pedal (15) has become inoperative Do.
  • the case where the operation amount of the brake pedal is reduced or the brake pedal is not operated is considered to be the case where the driver permits the movement of the vehicle due to inertia. Therefore, in the present invention, when it is detected that the operation amount of the brake pedal is reduced or the brake pedal is not operated in a state in which the vehicle is kept stopped by the second braking control, The braking force is reduced and movement of the vehicle due to inertia is permitted. Then, for example, when the vehicle is located on a slope, the vehicle moves downward in the inclination direction. That is, even if the engine is in a start-up malfunction, the behavior of the vehicle can be made in accordance with the driver's intention.
  • a braking force for the wheels is set such that a vehicle body speed (VS) of the vehicle is less than a preset permission reference value (VSth). It is control to adjust.
  • the braking force on the wheels is adjusted such that the vehicle speed becomes less than the permission reference value. Therefore, it is possible to restart the engine while securing the safety of the vehicle, because it is possible to suppress the vehicle body speed of the vehicle from becoming too high.
  • the vehicle includes a wheel cylinder (32a, 32b, 32c, 32d) for applying a braking force corresponding to fluid pressure generated inside the wheel cylinder to the wheel (FR, FL, RR, RL); And a brake actuator (31) for adjusting the fluid pressure in the cylinders (32a, 32b, 32c, 32d).
  • a wheel cylinder 32a, 32b, 32c, 32d
  • a brake actuator 31) for adjusting the fluid pressure in the cylinders (32a, 32b, 32c, 32d).
  • the brake actuator (31) is a pump (42, 43) that operates to increase fluid pressure in the wheel cylinder (32a, 32b, 32c, 32d), and the wheel cylinder (32a, 32b, 32c, 32d) Control valves (35a, 35b) operated to adjust the fluid pressure in the
  • the permission reference value is set to a value equal to or less than a control threshold (VSth) for permitting execution of the braking control accompanied by the operation of the pump (42, 43).
  • the second control unit detects that the operation amount of the brake pedal (15) is increased during execution of the third braking control. And performing the first braking control.
  • the third braking control when it is detected that the operation amount of the brake pedal is increased, the braking force on the wheels is increased to stop the vehicle. This is because that the operation amount of the brake pedal is increased, it is determined that the driver has the intention to stop the vehicle. Moreover, while the first braking control is performed to increase the braking force on the wheels, the restart of the engine is prohibited. Therefore, the vehicle can be stopped according to the driver's intention while reducing the load of the battery mounted on the vehicle.
  • the first control unit executes the number of restarts of the engine (12) after permitting the restart of the engine (12), or In the case where the engine (12) is not restarted even if the elapsed time after allowing the engine (12) to restart becomes equal to or more than a set number of times reference value (CTth) or time reference value (Tth), A start failure of the engine (12) is detected.
  • CTth times reference value
  • Tth time reference value
  • a vehicle speed acquisition unit (55, S24) for acquiring a vehicle speed (VS) of the vehicle is further included.
  • the first control unit (55, S12, S13, S31, S34) is a vehicle speed (VS) acquired by the vehicle speed acquisition unit (55, S24) after permission of restart of the engine (12).
  • VSth vehicle speed threshold
  • a control method of a vehicle comprising a stopping step (S12) and a restarting step (S13).
  • the stop step (S12) permits the automatic stop of the engine (12) when the stop condition of the engine (12) of the vehicle is satisfied.
  • the restart step (S13) permits restart of the engine (12) when a restart condition of the engine (12) is satisfied.
  • the restart step includes a first step (S31, S32) and a second step (S33, S34). The first step (S31, S32) prohibits the restart of the engine (12) when the start failure of the engine (12) is detected after the permission of the restart of the engine (12).
  • the second step (S33, S34) holds the braking force on the wheel (FR, FL, RR, RL) after the execution of the first step (S31, S32), and the engine (12) Allow the restart of the
  • FIG. 2 is a block diagram showing an example of the braking device of FIG. 1;
  • the map which shows an example of the relationship between frequency reference value and a grade equivalent value.
  • the flowchart which demonstrates an idle stop process routine.
  • the flowchart (the first half part) explaining engine restart processing routine.
  • the flowchart (second half part) explaining engine restart processing routine.
  • the timing chart which shows change of engine number of rotations, body speed, frequency counter value, and target oil pressure.
  • the map which shows an example of the relationship of the time reference value and gradient equivalent value in another embodiment.
  • traveling direction (forward direction) of the vehicle will be described as the front (vehicle front).
  • the vehicle according to the present embodiment automatically stops the engine according to the establishment of a predetermined stop condition during traveling of the vehicle in order to improve the fuel efficiency performance and the emission performance, and then the engine according to the establishment of the predetermined start condition Has a so-called idle stop function that automatically restarts the Therefore, in this vehicle, the engine is automatically stopped during deceleration or stop by the driver's brake operation.
  • the front wheels FR, FL are drive wheels. It is a so-called front wheel drive car that functions as Such a vehicle transmits a driving force generated by the driving force generator 13 to the front wheels FR, FL, and a driving force generator 13 having an engine 12 that generates a driving force according to the amount of operation of the accelerator pedal 11 by the driver. And a driving force transmission device 14.
  • the vehicle is also provided with a braking device 16 for applying a braking force corresponding to the amount of operation of the brake pedal 15 by the driver to each of the wheels FR, FL, RR, and RL.
  • the driving force generation device 13 is provided with a fuel injection device (not shown) which is disposed in the vicinity of an intake port (not shown) of the engine 12 and has an injector for injecting fuel to the engine 12.
  • the driving force generator 13 is driven based on control of an engine ECU 17 (also referred to as an “engine electronic control device”) having a CPU, a ROM, a RAM, and the like (not shown).
  • the engine ECU 17 is electrically connected to an accelerator pedal operation amount sensor SE1 disposed in the vicinity of the accelerator pedal 11, and for detecting an operation amount of the accelerator pedal 11 by the driver, that is, an accelerator operation amount. . Then, the engine ECU 17 calculates the accelerator pedal operation amount based on the detection signal from the accelerator pedal operation amount sensor SE1, and controls the driving force generator 13 based on the calculated accelerator pedal operation amount and the like.
  • the driving force transmission device 14 controls the automatic transmission 18, the differential gear 19 for appropriately distributing the driving force transmitted from the output shaft of the automatic transmission 18 and transmitting it to the front wheels FR and FL, and the automatic transmission 18 And an AT ECU (not shown).
  • the automatic transmission 18 includes a hydraulic drive power transmission mechanism 20 having a torque converter 20 a as an example of a fluid coupling, and a transmission mechanism 21.
  • the torque converter 20a is provided in the torque transmission path from the engine 12 to the drive wheels (front wheels FR, FL), so a creep phenomenon occurs.
  • the creep phenomenon is a phenomenon in which, in a vehicle having an automatic transmission 18, when the shift lever is in the traveling position, the vehicle moves forward slowly without depressing the accelerator pedal 11, and this phenomenon is an idle of the engine 12
  • torque converter 20a generates a slight amount of driving force to transmit to front wheels FR and FL. And, a part of power transmitted to the front wheels FR, FL is called "creep torque".
  • the braking device 16 includes a hydraulic pressure generating device 28 having a master cylinder 25, a booster 26 and a reservoir 27, and a brake actuator 31 having two hydraulic circuits 29, 30 (in FIG. 2). (Indicated by a two-dot chain line).
  • the respective hydraulic circuits 29, 30 are connected to the master cylinder 25 of the hydraulic pressure generating device 28, respectively.
  • a wheel cylinder 32a for the right front wheel FR and a wheel cylinder 32d for the left rear wheel RL are connected to the first hydraulic circuit 29, and a wheel for the left front wheel FL is connected to the second hydraulic circuit 30.
  • a cylinder 32b and a wheel cylinder 32c for the right rear wheel RR are connected.
  • the booster 26 is connected to an intake manifold (not shown) that generates negative pressure when the engine 12 is driven. Then, the booster 26 boosts the operating force of the brake pedal 15 by the driver using the pressure difference between the negative pressure generated in the intake manifold and the atmospheric pressure.
  • Master cylinder 25 generates a master cylinder pressure (hereinafter also referred to as “MC pressure”) as a fluid pressure according to the operation of brake pedal 15 by the driver (hereinafter also referred to as “brake operation”).
  • MC pressure master cylinder pressure
  • brake operation the master cylinder 25 supplies brake fluid as an example of fluid into the wheel cylinders 32a to 32d via the hydraulic circuits 29, 30.
  • a braking force corresponding to the wheel cylinder pressure (also referred to as "WC pressure”) in the wheel cylinders 32a to 32d is applied to the wheels FR, FL, RR, and RL.
  • the hydraulic circuits 29, 30 are respectively connected to the master cylinder 25 via connection paths 33, 34, and the connection paths 33, 34 are normally open linear solenoid valves (adjustment Valves 35a and 35b are provided respectively.
  • the linear solenoid valves 35a and 35b include a valve seat, a valve body, an electromagnetic coil, and a biasing member (eg, a coil spring) for biasing the valve body away from the valve seat, and the valve body will be described later It is displaced according to the magnitude of the current supplied from the brake ECU 55 to the electromagnetic coil, that is, the current value. That is, the WC pressure in the wheel cylinders 32a to 32d is maintained at a hydraulic pressure corresponding to the current value to the linear solenoid valves 35a, 35b.
  • connection path 33 the MC pressure in the master cylinder 25 is detected in a portion closer to the master cylinder 25 than the linear solenoid valve 35a.
  • Pressure sensor SE8 is provided. The pressure sensor SE8 outputs a detection signal corresponding to the MC pressure to the brake ECU 55.
  • a right front wheel path 36a connected to the wheel cylinder 32a and a left rear wheel path 36d connected to the wheel cylinder 32d are formed.
  • a left front wheel path 36b connected to the wheel cylinder 32b and a right rear wheel path 36c connected to the wheel cylinder 32c are formed.
  • the WC pressures are set as pressure increase valves 37a, 37b, 37c, and 37d, which are normally open solenoid valves that operate when regulating the WC pressure increase in the wheel cylinders 32a to 32d.
  • Pressure reducing valves 38a, 38b, 38c, and 38d which are normally closed solenoid valves that operate when reducing the pressure, are provided.
  • reservoirs 39, 40 for temporarily storing the brake fluid which has flowed out from the wheel cylinders 32a-32d via the pressure reducing valves 38a-38d, and a pump operated based on the rotation of the motor 41. 42 and 43 are connected.
  • the reservoirs 39 and 40 are connected to the pumps 42 and 43 through the suction flow channels 44 and 45, and connected to the connection paths 33 and 34 through the master flow channels 46 and 47 more than the linear solenoid valves 35a and 35b. It is connected to a portion near the master cylinder 25.
  • the pumps 42 and 43 are connected to connection portions 50 and 51 between the pressure increasing valves 37a to 37d and the linear solenoid valves 35a and 35b in the hydraulic circuits 29 and 30 through the supply flow paths 48 and 49, respectively. There is. Then, when the motor 41 rotates, the pumps 42 and 43 suck the brake fluid from the reservoirs 39 and 40 and the master cylinder 25 via the suction flow paths 44 and 45 and the master side flow paths 46 and 47, respectively. The brake fluid is discharged into the supply channels 48, 49.
  • brake ECU 55 also referred to as “brake electronic control device” that controls the drive of the brake actuator 31 will be described.
  • wheel speed sensors SE3, SE4, SE5, SE6 for detecting the wheel speeds of the respective wheels FR, FL, RR, RL, and the longitudinal direction of the vehicle
  • An acceleration sensor (also referred to as a "G sensor") SE7 for detecting an acceleration at the point s. Is electrically connected.
  • a brake switch SW1 disposed in the vicinity of the brake pedal 15 for detecting whether the brake pedal 15 is operated and a pressure sensor SE8 are electrically connected to the input side interface of the brake ECU 55. It is done.
  • the valves 35a, 35b, 37a to 37d, 38a to 38d and the motor 41 are electrically connected to the output side interface of the brake ECU 55.
  • the acceleration sensor SE7 outputs a signal that gives a positive value when the center of gravity of the vehicle moves rearward, while a signal that gives a negative value when the center of gravity of the vehicle moves forward Is output.
  • the brake ECU 55 is a digital computer including a CPU, a ROM, and a RAM (not shown), a valve driver circuit (not shown) for operating the valves 35a, 35b, 37a to 37d and 38a to 38d, and a motor 41. (Not shown) for driving the motor.
  • ROM Read Only Memory
  • various control processes Idle stop process described later, etc.
  • various maps maps (map shown in FIG. 3 etc.)
  • various threshold values, etc. are stored in advance.
  • the RAM stores various types of information that can be appropriately rewritten.
  • the ECUs including the engine ECU 17 and the brake ECU 55 are connected to one another via a bus 56 so as to transmit and receive various information and various control commands as shown in FIG.
  • information on the accelerator opening degree of the accelerator pedal 11, information on success / failure of restart of the engine 12, and the like are appropriately transmitted to the brake ECU 55.
  • a stop permission command for permitting the automatic stop of the engine 12 a restart permission command for permitting the automatic restart of the engine 12 and a reactivation for prohibiting the restart
  • a start prohibition instruction or the like is transmitted to the engine ECU 17.
  • the map shown in FIG. 3 sets the frequency reference value CTth, which is an example of a reference value for determining whether or not the engine 12 is in a malfunctioning state, to a value according to the gradient of the road surface where the vehicle is located.
  • CTth is an example of a map of The number-of-times reference value CTth is an upper limit value of the number of times of continuously executing control processing in the engine ECU 17 for restarting the engine 12.
  • the gradient equivalent value Ag is a value corresponding to the gradient of the road surface on which the vehicle is located. That is, when the gradient equivalent value Ag is substantially "0 (zero)", the road surface on which the vehicle is located is a road surface substantially parallel to the horizontal plane.
  • the road surface in the case where the gradient equivalent value Ag is a positive value is an uphill
  • the road surface in the case where the gradient equivalent value Ag is a negative value is a downhill.
  • the frequency reference value CTth is set to a larger value in the case where the slope of the road surface is gentle than in the case where the slope is steep.
  • the frequency reference value CTth is set to the maximum value CTmax (for example, five times).
  • the frequency reference value CTth is set to a smaller value as the gradient equivalent value Ag decreases.
  • Ru is set to a smaller value as the gradient equivalent value Ag becomes larger.
  • the frequency reference value CTth is set to the minimum value CTmin (for example, twice). Ru.
  • the absolute value of the second value Ag2 is equal to the absolute value of the first value Ag1.
  • the idle stop processing routine is a processing routine for setting the timing for permitting the automatic stop of the engine 12, the timing for permitting the automatic restart of the engine 12, and the like.
  • the brake ECU 55 executes the idle stop processing routine every predetermined cycle (for example, 0.01 second cycle) set in advance.
  • the brake ECU 55 acquires the MC pressure Pmc in the master cylinder 25 based on the detection signal from the pressure sensor SE 8 (step S10). Subsequently, the brake ECU 55 determines whether the engine 12 is stopped based on the information received from the engine ECU 17 (step S11).
  • step S12 the brake ECU 55 executes engine stop processing because the engine 12 is being driven (step S12). That is, the brake ECU 55 allows the MC pressure Pmc acquired in step S10 to automatically stop the engine 12 when the vehicle body speed of the vehicle is equal to or less than a predetermined speed (for example, 20 km / h) set in advance. If it is equal to or greater than the determination value for determining whether or not it is determined that the driver has the intention to stop the vehicle. And ECU55 for brakes transmits stop permission instruction
  • a predetermined speed for example, 20 km / h
  • step S13 corresponds to a restart step of permitting automatic restart of the engine 12 when the restart condition of the engine 12 is satisfied.
  • the brake ECU 55 functions as a first control unit. And ECU55 for brakes once complete
  • FIG. 7 is a timing chart when the vehicle travels on a slope.
  • the brake ECU 55 determines whether the MC pressure Pmc acquired in step S10 is less than a preset MC pressure reference value Pmcth (step S20).
  • the MC pressure reference value Pmcth is a determination value for determining whether to permit the restart of the engine 12 and a determination value for determining whether to permit the automatic stop of the engine 12. It is set to a smaller value.
  • the MC pressure reference value Pmcth may be set to a value according to the gradient of the road surface on which the vehicle is located.
  • step S20 If the determination result in step S20 is negative (Pmc P Pmcth), the brake ECU 55 resets the number counter value CT described later to "0 (zero)" because the restart condition of the engine 12 is not satisfied. (Step S21), the engine restart processing routine is ended. On the other hand, if the determination result in step S20 is affirmative (Pmc ⁇ Pmcth), the brake ECU 55 transmits a restart permission command to the engine ECU 17 because the restart condition of the engine 12 is satisfied (step S22). The engine ECU 17 that has received the restart permission command performs control for starting the engine 12. Then, the engine ECU 17 outputs information on success / failure of restart of the engine 12 to the brake ECU 55.
  • the brake ECU 55 determines whether the restart of the engine 12 has failed based on the information received from the engine ECU 17 after the transmission of the restart permission command (step S23). If the determination result is negative, the ECU 55 for a brake shifts the process to step S21 described above since the restart of the engine 12 is successful. On the other hand, if the determination result in step S23 is affirmative, the ECU 55 for brakes acquires the vehicle body speed VS of the vehicle because the restart of the engine 12 has failed (step S24).
  • the brake ECU 55 calculates the wheel speeds of the wheels FL, FR, RL, and RR based on the detection signals from the wheel speed sensors SE3 to SE6, and calculates the wheel speeds of the wheels FL, FR, RL, and RR.
  • the wheel acceleration is obtained by temporally differentiating at least one of the wheel speeds.
  • the brake ECU 55 integrates the wheel acceleration with respect to the vehicle speed acquired at the previous timing, and sets the integration result as the vehicle speed VS. Therefore, in the present embodiment, the brake ECU 55 also functions as a vehicle speed acquisition unit.
  • the ECU 55 for brakes determines whether or not the vehicle body speed VS acquired in step S24 is less than a preset vehicle body speed threshold value and a vehicle body speed reference value VSth (for example, 7 km / h) as a control threshold (step S25).
  • the vehicle speed reference value VSth is a reference value for determining whether or not the execution of the braking control to operate the pumps 42 and 43 of the brake actuator 31 is permitted.
  • antilock brake control, anti-slip control (ESC: Electronic Stability Control), etc. are mentioned as an example of braking control accompanying operation of pumps 42 and 43.
  • step S25 If the determination result in step S25 is negative (VS ⁇ VSth), the brake ECU 55 shifts the process to step S31 described later. On the other hand, if the determination result in step S25 is affirmative (VS ⁇ VSth), the brake ECU 55 increments the count value CT, which is a measurement value of the number of times the engine 12 has continuously failed to restart, by "1". (Step S26). Subsequently, the brake ECU 55 acquires an acceleration G (hereinafter, also simply referred to as “vehicle body acceleration”) G in the front-rear direction of the vehicle based on the detection signal from the acceleration sensor SE7 (step S27).
  • G hereinafter, also simply referred to as “vehicle body acceleration”
  • the brake ECU 55 time-differentiates the vehicle speed VS acquired in step S24 to acquire a vehicle speed differential value (actual acceleration of the vehicle) DVS (step S28).
  • the brake ECU 55 may use the wheel acceleration obtained at the time of the processing in step S24 as the vehicle speed differential value DVS.
  • the brake ECU 55 subtracts the vehicle speed differential value DVS calculated in step S28 from the vehicle acceleration G calculated in step S27, and sets the subtraction result as the gradient equivalent value Ag (step S29).
  • the vehicle body acceleration G calculated based on the detection signal from the acceleration sensor SE7 includes an actual acceleration component of the vehicle and an acceleration component corresponding to the gradient of the road surface on which the vehicle travels.
  • the "actual acceleration component of the vehicle” is a vehicle speed differential value DVS which is a differential value of the vehicle speed VS, and the gradient equivalent value Ag is obtained by removing the actual acceleration component of the vehicle from the vehicle acceleration G. Ru. Therefore, in the present embodiment, the brake ECU 55 also functions as a slope equivalent value acquisition unit.
  • the brake ECU 55 sets the number-of-times reference value CTth corresponding to the gradient equivalent value Ag acquired in step S29 based on the map shown in FIG. Then, the brake ECU 55 determines whether or not the number-of-times counter value CT updated in step S26 is equal to or greater than the set recovery reference value CTth (step S30). If the determination result is negative (CT ⁇ CTth), the brake ECU 55 proceeds to step S22 described above. On the other hand, if the determination result in step S30 is affirmative (CT ⁇ CTth), the brake ECU 55 determines that the engine 12 is in the start-up malfunction state, and shifts the process to step S31 described later.
  • step S31 the brake ECU 55 transmits a restart prohibition command to the engine ECU 17.
  • the engine ECU 17 that has received the restart inhibition command does not perform control for restarting the engine 12.
  • the brake ECU 55 performs a first braking control process to operate the pumps 42 and 43 (that is, the motor 41) of the brake actuator 31 and the linear solenoid valves 35a and 35b in order to stop the vehicle (step S32). Therefore, in the present embodiment, the first step is configured by steps S31 and S32. Further, the brake ECU 55 that performs the first braking control to increase the braking force on the wheels FR, FL, RR, and RL to stop the vehicle also functions as a second control unit.
  • the brake ECU 55 performs a second braking control process for holding the WC pressure Pwc in each of the wheel cylinders 32a to 32d (step S33). Specifically, the brake ECU 55 stops the pumps 42 and 43 of the brake actuator 31 and operates the linear solenoid valves 35a and 35b to hold the WC pressure Pwc in the wheel cylinders 32a to 32d. Subsequently, since the brake ECU 55 has stopped the operation of the pumps 42 and 43, the brake ECU 55 transmits a restart permission command to the engine ECU 17 (step S34). The engine ECU 17 that has received the restart permission command appropriately performs control for restarting the engine 12. Therefore, in the present embodiment, the second step is configured by steps S33 and S34.
  • the engine rotational speed Ne drops sharply. Further, since the creep torque is not transmitted to the front wheels FR and FL which are driving wheels, the rate of change of the vehicle speed VS also becomes large. Then, when the restart condition of the engine 12 is satisfied at the second timing t2 at which the vehicle speed VS becomes less than the vehicle speed reference value VSth (more specifically, the vehicle stops), the engine 12 is restarted. Control is performed.
  • the number counter value CT is incremented by “1”. Then, at the third timing t3 after the second timing t2, since the vehicle speed VS is less than the vehicle speed reference value VSth, control for restarting the engine 12 is performed again. If the restart of the engine 12 fails again this time, the number counter value CT is incremented again by “1”. At this time, when the number counter value CT becomes equal to or more than the number reference value Ctth, it is determined that the engine 12 is in the start-up malfunction state, and the restart of the engine 12 is prohibited. On the other hand, when the number counter value CT is less than the number reference value Ctth, it is not determined at this timing that the engine 12 is in the start failure state.
  • That the control for restarting the engine 12 is repeatedly performed means that the MC pressure Pmc in the master cylinder 25 is reduced, that is, the braking force on the wheels FR, FL, RR, RL is reduced. Means. This is because the condition for permitting restart of the engine 12 includes that the MC pressure Pmc is less than the MC pressure reference value Pmcth (see FIG. 5). Therefore, when the road surface on which the vehicle is located is a downhill, there is a possibility that the vehicle moves forward due to insufficient braking force on the wheels FR, FL, RR, and RL caused by the decrease in the MC pressure Pmc. In addition, when the road surface on which the vehicle is located is an uphill, the vehicle may move rearward.
  • the WC pressure Pwc (indicated by a broken line in FIG. 7) in the wheel cylinders 32a to 32d for the wheels FR, FL, RR, and RL becomes the target hydraulic pressure Pwcth.
  • the pumps 42 and 43 of the brake actuator 31 and the linear solenoid valves 35a and 35b operate (first braking control). That is, the braking forces on the wheels FR, FL, RR, and RL are increased to stop the vehicle.
  • the braking control switches from the first braking control to the second braking control.
  • the operation of the pumps 42, 43 is stopped, and the braking force on the wheels FR, FL, RR, RL is held by the operation of the linear solenoid valves 35a, 35b (second braking control) .
  • restart of the engine 12 is permitted.
  • control for restarting the engine 12 is performed (sixth timing t6).
  • step S36 determines that the driver permits the movement of the vehicle due to inertia, and performs the third braking control process (step S37). Specifically, even if the vehicle moves due to inertia, the brake ECU 55 adjusts the WC pressure Pwc in the wheel cylinders 32a to 32d so that the vehicle speed VS of the vehicle does not become equal to or higher than the vehicle speed reference value VSth. . That is, while the brake ECU 55 does not operate the pumps 42 and 43, the brake ECU 55 adjusts the current value to the linear solenoid valves 35a and 35b.
  • the current values to the linear solenoid valves 35a, 35b are set to be larger values as the gradient of the road surface on which the vehicle is located becomes steeper. That is, in the third braking control, the braking force on the wheel is reduced but not increased. Therefore, in the present embodiment, the vehicle speed reference value VSth is also the permission reference value. Even if the braking forces on the wheels FR, FL, RR, and RL are reduced as described above, the vehicle may not move depending on the slope of the road surface.
  • the brake ECU 55 is a linear solenoid valve.
  • the current values for 35a and 35b are gradually decreased (see FIG. 7).
  • the control for restarting the engine 12 is not performed during the braking control for operating the pumps 42 and 43. Therefore, the load on the battery can be reduced. In addition, when the engine 12 is restarted, power can be sufficiently supplied to the starter motor, and thus the engine 12 can be restarted promptly.
  • movement due to inertia of the vehicle means movement of the vehicle caused by applying a force (also referred to as “gradient acceleration”) according to the gradient to the vehicle located on a slope. It is a concept that includes
  • the frequency reference value CTth is set to a larger value when the slope of the road surface where the vehicle is located is slower than when the slope is steep. Therefore, when it is difficult for the vehicle to accelerate, that is, when the gradient equivalent value Ag is close to “0 (zero)”, the number of retries for restarting the engine 12 increases. This is because, even if the braking force on the wheels FR, FL, RR, and RL decreases due to the reduction of the negative pressure in the booster 26, the vehicle body can be obtained if the gradient equivalent value Ag is close to "0 (zero)". This is because it is difficult for the speed VS to be high.
  • the determination as to whether or not the engine 12 is in the start-up malfunction state can be delayed as much as possible. That is, before the execution of the first braking control, the possibility that the engine 12 can be restarted can be increased.
  • the frequency reference value CTth may be a preset value (for example, 3) regardless of the magnitude of the gradient equivalent value Ag.
  • the number counter value CT it is not necessary to count the number of restart failures of the engine 12, that is, the number counter value CT.
  • the vehicle speed VS becomes equal to or higher than the vehicle speed reference value VSth while repeating the failure of the restart of the engine 12, it is determined that the engine 12 is in the start failure condition.
  • the gradient equivalent value Ag may be acquired from the navigation device .
  • the elapsed time after the restart condition of the engine 12 is satisfied (in the above embodiment, after step S20 becomes affirmative) is measured, and the elapsed time becomes equal to or greater than the time reference value,
  • the elapsed time becomes equal to or greater than the time reference value
  • This map is a map for setting the time reference value Tth to a value corresponding to the gradient equivalent value Ag. That is, the time reference value Tth is set to a larger value in the case where the gradient of the road surface is gentle than in the case where the gradient is steep.
  • step S25 When the vehicle is moving backward, braking control using the brake actuator 31 is not generally performed. In such a vehicle, when the vehicle moves backward, the determination process of step S25 may be omitted. Even in this configuration, the braking control accompanied by the operation of the pumps 42 and 43 of the brake actuator 31 and the driving control by the driving force generator 13 for restarting the engine 12 overlap in time. It can be avoided.
  • step S36 it may be determined whether the amount of operation of the brake pedal 15 has decreased.
  • the operation amount of the brake pedal 15 is estimated based on the fluctuation of the MC pressure Pmc calculated based on the detection signal from the pressure sensor SE8.
  • step S39 it may be determined whether the operation amount of the brake pedal 15 has increased.
  • the wheels FR, FL, and RR are set such that the vehicle body speed VS of the vehicle is equal to or less than the permission reference value set to a value smaller than the vehicle body speed reference value (control threshold) VSth. , RL may be adjusted.
  • the slope of the road surface on which the vehicle travels may change.
  • the vehicle speed VS of the vehicle becomes high.
  • the current values for the linear solenoid valves 35a, 35b are set by the gradient of the road surface at the start of the third braking control.
  • the restart inhibition command is sent to the engine regardless of the presence or absence of the operation of the brake pedal 15 of the driver. While transmitting to ECU17, you may perform a 1st damping
  • the brake actuator 31 is driven such that the vehicle speed VS becomes lower than the vehicle speed reference value VSth. May be However, it is preferable to prohibit the restart of the engine 12 while the brake actuator 31 is driven.
  • the braking force on the wheels FR, FL, RR, and RL may be “0 (zero)”. Thereafter, when the vehicle speed VS becomes equal to or higher than the vehicle speed reference value VSth, the first braking control may be performed.
  • the engine 12 may be allowed to restart while the braking forces on the wheels FR, FL, RR, and RL are "0 (zero)."
  • the vehicle speed VS may be obtained from a navigation device mounted on a vehicle.
  • the target hydraulic pressure Pwcth may be set to a higher pressure in the case where the gradient equivalent value Ag is larger than in the case where the gradient equivalent value Ag is small.
  • the second braking control is performed.
  • the restart permission command may be transmitted to the engine ECU 17 when the elapsed time since the start is equal to or longer than a predetermined time (for example, 10 seconds) set in advance.
  • a predetermined time for example, 10 seconds
  • the power stored in the battery is not consumed for restarting the engine 12 for a predetermined time after the second braking control is performed, and the storage amount of the battery can be slightly increased.
  • the increase in the storage amount of the battery increases the possibility of eliminating the start failure state of the engine 12 caused by the shortage of the storage amount of the battery.
  • the electric parking brake device may be used instead of the brake actuator 31 in each of the first to third braking control processes, or the brake actuator 31 and the electric parking brake device And may be used together.

Abstract

A vehicle control device including a first control unit (55, S12, S13) and a second control unit (55) is provided. The first control unit permits the automatic stop of an engine (12) when a stop condition of the engine (12) is satisfied, and permits the restart of the engine (12) when a restart condition of the engine (12) is satisfied. The second control unit (55, S32, S33) performs first braking control for increasing braking force for wheels (FR, FL, RR, RL) when detecting that the start of the engine (12) is in a bad condition after the restart of the engine (12) is permitted. Then, the second control unit performs second braking control for holding the braking force for the wheels (FR, FL, RR, RL). The first control unit (55, S12, S13, S31, S34) prohibits the restart of the engine (12) during the execution of the first braking control, and permits the restart of the engine (12) during the execution of the second braking control.

Description

車両の制御装置及び車両の制御方法Vehicle control apparatus and vehicle control method
 本発明は、車両のエンジンの停止条件が成立した場合に該エンジンの自動的な停止を許可すると共に、エンジンの再始動条件が成立した場合に該エンジンの再始動を許可する車両の制御装置及び車両の制御方法に関する。 The present invention is a control apparatus for a vehicle that permits automatic stop of the engine when a stop condition of the engine of the vehicle is satisfied, and permits restart of the engine when a restart condition of the engine is satisfied. The present invention relates to a control method of a vehicle.
 近年、車両の燃費向上などを目的として、車両の停止中又は停止直前にエンジンを自動的に停止させると共に、運転者による発進操作を契機にエンジンを自動的に再始動させる所謂アイドルストップ機能を有する車両の制御装置の開発が進められている。例えば、特許文献1に記載の車両の制御装置では、エンジンが自動的に停止された状態で、運転手による制動操作を助勢するためのブースタ内の負圧が所定の閾値未満になるような制動操作が行われたことを検知した場合に、エンジンの再始動を許可している。なお、ブースタは、エンジンの駆動時に負圧が発生するインテークマニホールドに接続されている。そして、ブースタは、インテークマニホールド内に発生する負圧と大気圧との圧力差を利用し、運転手によるブレーキペダルの操作力を倍力している。 In recent years, it has a so-called idle stop function that automatically stops the engine during or immediately before the stop of the vehicle for the purpose of improving the fuel efficiency of the vehicle, etc., and automatically restarts the engine upon start operation by the driver. Development of control devices for vehicles is underway. For example, in the vehicle control device described in Patent Document 1, braking is performed such that the negative pressure in the booster for assisting the braking operation by the driver becomes less than a predetermined threshold when the engine is automatically stopped. Allows engine restart when it detects that an operation has been performed. The booster is connected to an intake manifold that generates negative pressure when the engine is driven. The booster uses the pressure difference between the negative pressure generated in the intake manifold and the atmospheric pressure to boost the operation force of the brake pedal by the driver.
 ところで、車両に搭載されるバッテリの蓄電量が少ない場合、及びエンジンを始動させる際に作動するスタータモータが不調である場合などには、エンジンの再始動が完了するまでに時間を要したり、エンジンを再始動させることができなかったりすることがある。このような状態を、「エンジンの始動不調状態」ともいう。 By the way, when the storage amount of the battery mounted on the vehicle is small, or when the starter motor that operates when starting the engine is malfunctioning, it takes time until the restart of the engine is completed, It may not be possible to restart the engine. Such a state is also referred to as "engine start failure state".
 エンジンが始動不調状態である場合、運転手は、ブレーキペダルの踏込み動作・解放動作を繰り返し行い、エンジンの再始動を促すことがある。すると、ブレーキペダルの踏込み動作・解放動作の繰り返しによってブースタ内の負圧が低下し、該ブースタ内の負圧不足に起因して車輪に対する制動力が減少する。その結果、車両が坂路上に位置する場合には、運転手の意図に反して車両が移動し始めることがある。 When the engine is in the start-up malfunction state, the driver may repeatedly perform the stepping operation and releasing operation of the brake pedal to prompt the restart of the engine. Then, the negative pressure in the booster decreases due to the repetition of the stepping and releasing operations of the brake pedal, and the braking force on the wheel decreases due to the insufficient negative pressure in the booster. As a result, when the vehicle is located on a slope, the vehicle may start moving against the driver's intention.
 また、車両の減速中にエンジンを自動的に停止させる場合には、エンジン停止後における車体減速度の調整を目的とした運転手によるブレーキペダルの操作量の調整によって、ブースタ内の負圧が低下することがある。この場合、車両の停車直前でブースタ内の負圧が低下していることがある。そのため、車両が坂路上に位置する場合には、ブースタ内の負圧不足に起因した車輪に対する制動力不足によって、運転手の意図に反して車両を停車させることができないおそれがある。 In addition, when the engine is automatically stopped while the vehicle is decelerating, the negative pressure in the booster decreases due to the adjustment of the operation amount of the brake pedal by the driver for the purpose of adjusting the vehicle deceleration after the engine stops. There is something to do. In this case, the negative pressure in the booster may be reduced immediately before the vehicle stops. Therefore, when the vehicle is located on a slope, there is a possibility that the vehicle can not be stopped against the driver's intention due to the insufficient braking force to the wheels caused by the insufficient negative pressure in the booster.
 そこで、特許文献1に記載の制御装置では、エンジンの始動不調状態を検知した場合には、ブレーキアクチュエータのポンプを作動させて車輪に対する制動力を増大させる。その結果、運転手の意図に反した車両の移動が抑制される。そして、このように車両の安全性が確保された状態で、エンジンを再始動させるための制御が行われる。 Therefore, in the control device described in Patent Document 1, when the start-up malfunction of the engine is detected, the pump of the brake actuator is operated to increase the braking force on the wheels. As a result, the movement of the vehicle against the driver's intention is suppressed. Then, in a state where the safety of the vehicle is secured as described above, control for restarting the engine is performed.
特開2003-13768号公報JP 2003-13768 A
 ところで、特許文献1に記載の車両の制御装置では、エンジンの始動不調状態を検知した場合、車輪に対する制動力を増大させる間でも、エンジンの再始動を許可している。そのため、車輪に対する制動力を増大させるための制動制御と、エンジンを再始動させるための制御とが時間的に重複する可能性がある。この場合、バッテリからは、車輪に対する制動力を増大させるために作動するブレーキアクチュエータのポンプと、エンジンを始動させるために作動するスタータモータとに電力が供給されることになり、バッテリの負荷が増大するおそれがあった。 By the way, in the control device for a vehicle described in Patent Document 1, when the start-up malfunction of the engine is detected, the restart of the engine is permitted even while the braking force on the wheels is increased. Therefore, there is a possibility that the braking control for increasing the braking force on the wheels and the control for restarting the engine may overlap in time. In this case, power is supplied from the battery to the pump of the brake actuator that operates to increase the braking force on the wheels, and to the starter motor that operates to start the engine, increasing the load on the battery. There was a risk of
 本発明の目的は、車両に搭載されるバッテリの負荷の低減を図りつつ、車両の安全性を確保した状態でエンジンを再始動させることができる車両の制御装置及び車両の制御方法を提供することにある。 An object of the present invention is to provide a control apparatus and a control method of a vehicle capable of restarting an engine in a state in which the safety of the vehicle is secured while reducing a load of a battery mounted on the vehicle. It is in.
 上記目的を達成するために、本発明の一態様では、第1の制御部(55、S12,S13)と第2の制御部(55)とを含む車両の制御装置が提供される。前記第1の制御部は、車両のエンジン(12)の停止条件が成立した場合に該エンジン(12)の自動的な停止を許可すると共に、前記エンジン(12)の再始動条件が成立した場合に該エンジン(12)の再始動を許可する。前記第2の制御部は、車両に設けられる車輪(FR,FL,RR,RL)に対する制動力を調整する。前記第2の制御部(55、S32,S33)は、前記エンジン(12)の再始動の許可後において該エンジン(12)の始動不調を検知した場合には、車両を停車させるべく前記車輪(FR,FL,RR,RL)に対する制動力を増大させる第1の制動制御を行う。その後、前記第2の制御部は、前記車輪(FR,FL,RR,RL)に対する制動力を保持させる第2の制動制御を行う。前記第1の制御部(55、S12,S13,S31,S34)は、前記第1の制動制御の実行中には前記エンジン(12)の再始動を禁止し、前記第2の制動制御の実行中には前記エンジン(12)の再始動を許可する。 In order to achieve the above object, according to one aspect of the present invention, there is provided a control device of a vehicle including a first control unit (55, S12, S13) and a second control unit (55). The first control unit permits the automatic stop of the engine (12) when the stop condition of the engine (12) of the vehicle is satisfied and the restart condition of the engine (12) is satisfied. Allow the engine (12) to restart. The second control unit adjusts a braking force on wheels (FR, FL, RR, RL) provided in the vehicle. The second control unit (55, S32, S33) detects the start failure of the engine (12) after permitting the restart of the engine (12), the wheels (for stopping the vehicle) A first braking control is performed to increase the braking force on FR, FL, RR, and RL). Thereafter, the second control unit performs a second braking control for holding the braking force on the wheels (FR, FL, RR, RL). The first control unit (55, S12, S13, S31, S34) prohibits restart of the engine (12) during execution of the first braking control, and executes the second braking control. During this time, the engine (12) is allowed to restart.
 上記構成によれば、エンジンの始動不調が検知された場合には、エンジンの再始動を禁止すると共に、車輪に対する制動力を増大させて車両を停車させる。その後、車輪に対する制動力が保持されるようになると、エンジンの再始動が許可される。すなわち、車輪に対する制動力を増大させるための制動制御と、エンジンを再始動させるための制御との時間的な重複が回避される。また、ブースタ内の負圧が低下した状態であっても、車両を停車させることができるような制動力が車輪に付与された状態で、エンジンの再始動が行われることになる。したがって、車両に搭載されるバッテリの負荷の低減を図りつつ、車両の安全性を確保した状態でエンジンを再始動させることができる。 According to the above-mentioned configuration, when the engine starting malfunction is detected, the restart of the engine is inhibited and the braking force on the wheels is increased to stop the vehicle. Thereafter, when the braking force on the wheels is maintained, engine restart is permitted. That is, overlapping in time between braking control for increasing the braking force on the wheels and control for restarting the engine is avoided. In addition, even if the negative pressure in the booster is reduced, the engine is restarted with the braking force applied to the wheels that can stop the vehicle. Therefore, it is possible to restart the engine while securing the safety of the vehicle while reducing the load of the battery mounted on the vehicle.
 好ましくは、前記第2の制御部(55、S32,S33,S37)は、前記第2の制動制御の実行中において、車両に設けられるブレーキペダル(15)の操作量が減少されたこと、又は該ブレーキペダル(15)が非操作状態になったことを検知した場合に、前記車輪(FR,FL,RR,RL)に対する制動力を減少させて車両の移動を許可する第3の制動制御を行う。 Preferably, during the execution of the second braking control, the second control unit (55, S32, S33, S37) reduces the amount of operation of the brake pedal (15) provided to the vehicle, or The third braking control for permitting the movement of the vehicle by decreasing the braking force on the wheels (FR, FL, RR, RL) when detecting that the brake pedal (15) has become inoperative Do.
 ブレーキペダルの操作量が減少されたり、ブレーキペダルが操作されなくなったりする場合とは、惰性による車両の移動を運転手が許可した場合であると考えられる。そこで、本発明では、第2の制動制御によって車両の停車が維持された状態で、ブレーキペダルの操作量が減少されたこと又はブレーキペダルが操作されなくなったことを検知した場合には、車輪に対する制動力を減少させ、惰性による車両の移動が許可される。すると、例えば車両が坂路上に位置する場合には、車両が傾斜方向における下方側に移動する。すなわち、エンジンの始動不調状態であっても、車両の挙動を、運転手の意図に沿ったものとすることができる。 The case where the operation amount of the brake pedal is reduced or the brake pedal is not operated is considered to be the case where the driver permits the movement of the vehicle due to inertia. Therefore, in the present invention, when it is detected that the operation amount of the brake pedal is reduced or the brake pedal is not operated in a state in which the vehicle is kept stopped by the second braking control, The braking force is reduced and movement of the vehicle due to inertia is permitted. Then, for example, when the vehicle is located on a slope, the vehicle moves downward in the inclination direction. That is, even if the engine is in a start-up malfunction, the behavior of the vehicle can be made in accordance with the driver's intention.
 好ましくは、前記第3の制動制御は、車両の車体速度(VS)が、予め設定された許可基準値(VSth)未満となるように前記車輪(FR,FL,RR,RL)に対する制動力を調整する制御である。 Preferably, in the third braking control, a braking force for the wheels (FR, FL, RR, RL) is set such that a vehicle body speed (VS) of the vehicle is less than a preset permission reference value (VSth). It is control to adjust.
 エンジンの始動不調状態である場合には、ブースタ内の負圧が低下している可能性が高い。この場合、運転手によるブレーキペダルの操作によって車輪に十分に大きな制動力を付与できない。そこで、本発明では、第3の制動制御時には、車体速度が許可基準値未満となるように、車輪に対する制動力が調整される。そのため、車両の車体速度が高速になり過ぎることを抑制できる分、車両の安全性を確保した状態で、エンジンの再始動を行わせることができる。 In the case of engine start failure, there is a high possibility that the negative pressure in the booster has dropped. In this case, a sufficiently large braking force can not be applied to the wheels by the driver's operation of the brake pedal. Therefore, in the present invention, during the third braking control, the braking force on the wheels is adjusted such that the vehicle speed becomes less than the permission reference value. Therefore, it is possible to restart the engine while securing the safety of the vehicle, because it is possible to suppress the vehicle body speed of the vehicle from becoming too high.
 好ましくは、車両は、ホイールシリンダの内部に発生した流体圧に応じた制動力を前記車輪(FR,FL,RR,RL)に付与するホイールシリンダ(32a,32b,32c,32d)と、該ホイールシリンダ(32a,32b,32c,32d)内の流体圧を調整するブレーキアクチュエータ(31)と、を含む。前記ブレーキアクチュエータ(31)は、前記ホイールシリンダ(32a,32b,32c,32d)内の流体圧を増圧させるべく作動するポンプ(42,43)と、前記ホイールシリンダ(32a,32b,32c,32d)内の流体圧を調整すべく作動する調整弁(35a,35b)とを有している。前記許可基準値は、前記ポンプ(42,43)の作動を伴う制動制御の実行を許可するための制御閾値(VSth)以下の値に設定される。 Preferably, the vehicle includes a wheel cylinder (32a, 32b, 32c, 32d) for applying a braking force corresponding to fluid pressure generated inside the wheel cylinder to the wheel (FR, FL, RR, RL); And a brake actuator (31) for adjusting the fluid pressure in the cylinders (32a, 32b, 32c, 32d). The brake actuator (31) is a pump (42, 43) that operates to increase fluid pressure in the wheel cylinder (32a, 32b, 32c, 32d), and the wheel cylinder (32a, 32b, 32c, 32d) Control valves (35a, 35b) operated to adjust the fluid pressure in the The permission reference value is set to a value equal to or less than a control threshold (VSth) for permitting execution of the braking control accompanied by the operation of the pump (42, 43).
 好ましくは、前記第2の制御部(55、S32,S33,S37)は、前記第3の制動制御の実行中において、前記ブレーキペダル(15)の操作量が増大されたことを検知した場合に、前記第1の制動制御を行う。 Preferably, the second control unit (55, S32, S33, S37) detects that the operation amount of the brake pedal (15) is increased during execution of the third braking control. And performing the first braking control.
 上記構成によれば、第3の制動制御中であっても、ブレーキペダルの操作量が増大されたことが検知された場合には、車輪に対する制動力を増大させて車両を停車させる。これは、ブレーキペダルの操作量が増大されたということは、車両を停車させる意志が運転手にあると判断されるためである。しかも、車輪に対する制動力を増大させるべく第1の制動制御が実行される間は、エンジンの再始動が禁止される。したがって、車両に搭載されるバッテリの負荷の低減を図りつつ、運転手の意図に沿って車両を停車させることができる。 According to the above configuration, even when the third braking control is being performed, when it is detected that the operation amount of the brake pedal is increased, the braking force on the wheels is increased to stop the vehicle. This is because that the operation amount of the brake pedal is increased, it is determined that the driver has the intention to stop the vehicle. Moreover, while the first braking control is performed to increase the braking force on the wheels, the restart of the engine is prohibited. Therefore, the vehicle can be stopped according to the driver's intention while reducing the load of the battery mounted on the vehicle.
 好ましくは、前記第1の制御部(55、S12,S13,S31,S34)は、前記エンジン(12)の再始動を許可してからの該エンジン(12)の再始動の実行回数、又は前記エンジン(12)の再始動を許可してからの経過時間が、設定された回数基準値(CTth)又は時間基準値(Tth)以上になっても前記エンジン(12)が再始動されない場合に、前記エンジン(12)の始動不調を検知する。 Preferably, the first control unit (55, S12, S13, S31, S34) executes the number of restarts of the engine (12) after permitting the restart of the engine (12), or In the case where the engine (12) is not restarted even if the elapsed time after allowing the engine (12) to restart becomes equal to or more than a set number of times reference value (CTth) or time reference value (Tth), A start failure of the engine (12) is detected.
 好ましくは、車両の車体速度(VS)を取得する車体速度取得部(55、S24)をさらに含む。前記第1の制御部(55、S12,S13,S31,S34)は、前記エンジン(12)の再始動の許可後において前記車体速度取得部(55、S24)によって取得された車体速度(VS)が予め設定された車体速度閾値(VSth)以上になっても前記エンジン(12)が再始動されない場合に、前記エンジン(12)の始動不調を検知する。 Preferably, a vehicle speed acquisition unit (55, S24) for acquiring a vehicle speed (VS) of the vehicle is further included. The first control unit (55, S12, S13, S31, S34) is a vehicle speed (VS) acquired by the vehicle speed acquisition unit (55, S24) after permission of restart of the engine (12). When the engine (12) is not restarted even if the vehicle speed exceeds a preset vehicle speed threshold (VSth), a start failure of the engine (12) is detected.
 本発明の更なる態様では、停止ステップ(S12)と、再始動ステップ(S13)と、を含む車両の制御方法が提供される。前記停止ステップ(S12)は、車両のエンジン(12)の停止条件が成立した場合に該エンジン(12)の自動的な停止を許可させる。前記再始動ステップ(S13)は、前記エンジン(12)の再始動条件が成立した場合に該エンジン(12)の再始動を許可させる。前記再始動ステップは、第1のステップ(S31,S32)と、第2のステップ(S33,S34)と、を含む。前記第1のステップ(S31,S32)は、前記エンジン(12)の再始動の許可後において該エンジン(12)の始動不調が検知された場合に、前記エンジン(12)の再始動を禁止させると共に、車両を停車させるべく車両に設けられた車輪(FR,FL,RR,RL)に対する制動力を増大させる。前記第2のステップ(S33,S34)は、前記第1のステップ(S31,S32)の実行後、前記車輪(FR,FL,RR,RL)に対する制動力を保持させると共に、前記エンジン(12)の再始動を許可させる。 In a further aspect of the present invention, there is provided a control method of a vehicle comprising a stopping step (S12) and a restarting step (S13). The stop step (S12) permits the automatic stop of the engine (12) when the stop condition of the engine (12) of the vehicle is satisfied. The restart step (S13) permits restart of the engine (12) when a restart condition of the engine (12) is satisfied. The restart step includes a first step (S31, S32) and a second step (S33, S34). The first step (S31, S32) prohibits the restart of the engine (12) when the start failure of the engine (12) is detected after the permission of the restart of the engine (12). At the same time, the braking force on the wheels (FR, FL, RR, RL) provided on the vehicle to stop the vehicle is increased. The second step (S33, S34) holds the braking force on the wheel (FR, FL, RR, RL) after the execution of the first step (S31, S32), and the engine (12) Allow the restart of the
 上記構成によれば、上記車両の制御装置と同等の作用・利点を得ることができる。 According to the above configuration, it is possible to obtain the same operation and advantage as the control device for the vehicle.
本発明の一実施形態に係る制御装置を搭載する車両の一例を示すブロック図。BRIEF DESCRIPTION OF THE DRAWINGS The block diagram which shows an example of the vehicle carrying the control apparatus which concerns on one Embodiment of this invention. 図1の制動装置の一例を示すブロック図。FIG. 2 is a block diagram showing an example of the braking device of FIG. 1; 回数基準値と勾配相当値との関係の一例を示すマップ。The map which shows an example of the relationship between frequency reference value and a grade equivalent value. アイドルストップ処理ルーチンを説明するフローチャート。The flowchart which demonstrates an idle stop process routine. エンジン再始動処理ルーチンを説明するフローチャート(前半部分)。The flowchart (the first half part) explaining engine restart processing routine. エンジン再始動処理ルーチンを説明するフローチャート(後半部分)。The flowchart (second half part) explaining engine restart processing routine. エンジン回転数、車体速度、回数カウンタ値及び目標油圧の変化を示すタイミングチャート。The timing chart which shows change of engine number of rotations, body speed, frequency counter value, and target oil pressure. 別の実施形態における時間基準値と勾配相当値との関係の一例を示すマップ。The map which shows an example of the relationship of the time reference value and gradient equivalent value in another embodiment.
 以下、本発明を具体化した一実施形態を図1~図7に従って説明する。なお、以下における本明細書中の説明においては、車両の進行方向(前進方向)を前方(車両前方)として説明する。 An embodiment of the present invention will now be described with reference to FIGS. 1 to 7. In the following description of the present specification, the traveling direction (forward direction) of the vehicle will be described as the front (vehicle front).
 本実施形態の車両は、燃費性能やエミッション性能を向上させるべく、車両走行中に所定の停止条件の成立に応じてエンジンを自動的に停止させ、その後、所定の始動条件の成立に応じてエンジンを自動的に再始動させる所謂アイドルストップ機能を有している。そのため、この車両では、運転手によるブレーキ操作による減速中又は停車中に、エンジンが自動的に停止される。 The vehicle according to the present embodiment automatically stops the engine according to the establishment of a predetermined stop condition during traveling of the vehicle in order to improve the fuel efficiency performance and the emission performance, and then the engine according to the establishment of the predetermined start condition Has a so-called idle stop function that automatically restarts the Therefore, in this vehicle, the engine is automatically stopped during deceleration or stop by the driver's brake operation.
 次に、アイドルストップ機能を有する車両の一例について説明する。 Next, an example of a vehicle having an idle stop function will be described.
 図1に示すように、車両は、複数(本実施形態では4つ)ある車輪(右前輪FR、左前輪FL、右後輪RR及び左後輪RL)のうち、前輪FR,FLが駆動輪として機能する所謂前輪駆動車である。こうした車両は、運転手によるアクセルペダル11の操作量に応じた駆動力を発生するエンジン12を有する駆動力発生装置13と、該駆動力発生装置13で発生した駆動力を前輪FR,FLに伝達する駆動力伝達装置14とを備えている。また、車両には、運転手によるブレーキペダル15の操作量に応じた制動力を各車輪FR,FL,RR,RLに付与するための制動装置16が設けられている。 As shown in FIG. 1, among the plurality of (four in this embodiment) wheels (right front wheel FR, left front wheel FL, right rear wheel RR and left rear wheel RL), the front wheels FR, FL are drive wheels. It is a so-called front wheel drive car that functions as Such a vehicle transmits a driving force generated by the driving force generator 13 to the front wheels FR, FL, and a driving force generator 13 having an engine 12 that generates a driving force according to the amount of operation of the accelerator pedal 11 by the driver. And a driving force transmission device 14. The vehicle is also provided with a braking device 16 for applying a braking force corresponding to the amount of operation of the brake pedal 15 by the driver to each of the wheels FR, FL, RR, and RL.
 駆動力発生装置13は、エンジン12の吸気ポート(図示略)近傍に配置され、且つ該エンジン12に燃料を噴射するインジェクタを有する燃料噴射装置(図示略)を備えている。こうした駆動力発生装置13は、図示しないCPU、ROM及びRAMなどを有するエンジン用ECU17(「エンジン用電子制御装置」ともいう。)の制御に基づき駆動する。このエンジン用ECU17には、アクセルペダル11の近傍に配置され、且つ運転手によるアクセルペダル11の操作量、即ちアクセル操作量を検出するためのアクセルペダル操作量センサSE1が電気的に接続されている。そして、エンジン用ECU17は、アクセルペダル操作量センサSE1からの検出信号に基づきアクセルペダル操作量を演算し、該演算したアクセルペダル操作量などに基づき駆動力発生装置13を制御する。 The driving force generation device 13 is provided with a fuel injection device (not shown) which is disposed in the vicinity of an intake port (not shown) of the engine 12 and has an injector for injecting fuel to the engine 12. The driving force generator 13 is driven based on control of an engine ECU 17 (also referred to as an “engine electronic control device”) having a CPU, a ROM, a RAM, and the like (not shown). The engine ECU 17 is electrically connected to an accelerator pedal operation amount sensor SE1 disposed in the vicinity of the accelerator pedal 11, and for detecting an operation amount of the accelerator pedal 11 by the driver, that is, an accelerator operation amount. . Then, the engine ECU 17 calculates the accelerator pedal operation amount based on the detection signal from the accelerator pedal operation amount sensor SE1, and controls the driving force generator 13 based on the calculated accelerator pedal operation amount and the like.
 駆動力伝達装置14は、自動変速機18と、該自動変速機18の出力軸から伝達された駆動力を適宜配分して前輪FR,FLに伝達するディファレンシャルギヤ19と、自動変速機18を制御する図示しないAT用ECUとを備えている。自動変速機18は、流体継手の一例としてトルクコンバータ20aを有する流体式駆動力伝達機構20と、変速機構21とを備えている。 The driving force transmission device 14 controls the automatic transmission 18, the differential gear 19 for appropriately distributing the driving force transmitted from the output shaft of the automatic transmission 18 and transmitting it to the front wheels FR and FL, and the automatic transmission 18 And an AT ECU (not shown). The automatic transmission 18 includes a hydraulic drive power transmission mechanism 20 having a torque converter 20 a as an example of a fluid coupling, and a transmission mechanism 21.
 なお、本実施形態の車両においてエンジン12から駆動輪(前輪FR,FL)へのトルク伝達経路には、トルクコンバータ20aが設けられているため、クリープ現象が発生する。このクリープ現象とは、自動変速機18を有する車両において、シフトレバーが走行位置にあるときにアクセルペダル11を踏み込まなくても車両がゆっくりと前進する現象であり、この現象は、エンジン12のアイドル時にも、トルクコンバータ20aが若干の駆動力を前輪FR,FLに伝達するために発生する。そして、前輪FR,FLに伝達される若干の動力のことを、「クリープトルク」という。 In the vehicle of the present embodiment, the torque converter 20a is provided in the torque transmission path from the engine 12 to the drive wheels (front wheels FR, FL), so a creep phenomenon occurs. The creep phenomenon is a phenomenon in which, in a vehicle having an automatic transmission 18, when the shift lever is in the traveling position, the vehicle moves forward slowly without depressing the accelerator pedal 11, and this phenomenon is an idle of the engine 12 Sometimes, torque converter 20a generates a slight amount of driving force to transmit to front wheels FR and FL. And, a part of power transmitted to the front wheels FR, FL is called "creep torque".
 制動装置16は、図1及び図2に示すように、マスタシリンダ25、ブースタ26及びリザーバ27を有する液圧発生装置28と、2つの液圧回路29,30を有するブレーキアクチュエータ31(図2では二点鎖線で示す。)とを備えている。各液圧回路29,30は、液圧発生装置28のマスタシリンダ25にそれぞれ接続されている。そして、第1液圧回路29には、右前輪FR用のホイールシリンダ32a及び左後輪RL用のホイールシリンダ32dが接続されると共に、第2液圧回路30には、左前輪FL用のホイールシリンダ32b及び右後輪RR用のホイールシリンダ32cが接続されている。 As shown in FIGS. 1 and 2, the braking device 16 includes a hydraulic pressure generating device 28 having a master cylinder 25, a booster 26 and a reservoir 27, and a brake actuator 31 having two hydraulic circuits 29, 30 (in FIG. 2). (Indicated by a two-dot chain line). The respective hydraulic circuits 29, 30 are connected to the master cylinder 25 of the hydraulic pressure generating device 28, respectively. A wheel cylinder 32a for the right front wheel FR and a wheel cylinder 32d for the left rear wheel RL are connected to the first hydraulic circuit 29, and a wheel for the left front wheel FL is connected to the second hydraulic circuit 30. A cylinder 32b and a wheel cylinder 32c for the right rear wheel RR are connected.
 液圧発生装置28においてブースタ26は、エンジン12の駆動時に負圧が発生する図示しないインテークマニホールドに接続されている。そして、ブースタ26は、インテークマニホールド内に発生する負圧と大気圧との圧力差を利用し、運転手によるブレーキペダル15の操作力を倍力する。 In the fluid pressure generating device 28, the booster 26 is connected to an intake manifold (not shown) that generates negative pressure when the engine 12 is driven. Then, the booster 26 boosts the operating force of the brake pedal 15 by the driver using the pressure difference between the negative pressure generated in the intake manifold and the atmospheric pressure.
 マスタシリンダ25は、運転手によるブレーキペダル15の操作(以下、「ブレーキ操作」ともいう。)に応じた流体圧としてのマスタシリンダ圧(以下、「MC圧」ともいう。)を発生する。その結果、マスタシリンダ25からは、液圧回路29,30を介してホイールシリンダ32a~32d内に流体の一例としてのブレーキ液が供給される。すると、車輪FR,FL,RR,RLには、ホイールシリンダ32a~32d内のホイールシリンダ圧(「WC圧」ともいう。)に応じた制動力が付与される。 Master cylinder 25 generates a master cylinder pressure (hereinafter also referred to as “MC pressure”) as a fluid pressure according to the operation of brake pedal 15 by the driver (hereinafter also referred to as “brake operation”). As a result, the master cylinder 25 supplies brake fluid as an example of fluid into the wheel cylinders 32a to 32d via the hydraulic circuits 29, 30. Then, a braking force corresponding to the wheel cylinder pressure (also referred to as "WC pressure") in the wheel cylinders 32a to 32d is applied to the wheels FR, FL, RR, and RL.
 ブレーキアクチュエータ31において各液圧回路29,30は、連結経路33,34を介してマスタシリンダ25にそれぞれ接続されており、該各連結経路33,34には、常開型のリニア電磁弁(調整弁)35a,35bがそれぞれ設けられている。リニア電磁弁35a,35bは、弁座、弁体、電磁コイル及び弁体を弁座から離間する方向に付勢する付勢部材(例えば、コイルスプリング)を備えており、弁体は、後述するブレーキ用ECU55から電磁コイルに供給される電流の大きさ、即ち電流値に応じて変位する。すなわち、ホイールシリンダ32a~32d内のWC圧は、リニア電磁弁35a,35bに対する電流値に応じた液圧で維持される。 In the brake actuator 31, the hydraulic circuits 29, 30 are respectively connected to the master cylinder 25 via connection paths 33, 34, and the connection paths 33, 34 are normally open linear solenoid valves ( adjustment Valves 35a and 35b are provided respectively. The linear solenoid valves 35a and 35b include a valve seat, a valve body, an electromagnetic coil, and a biasing member (eg, a coil spring) for biasing the valve body away from the valve seat, and the valve body will be described later It is displaced according to the magnitude of the current supplied from the brake ECU 55 to the electromagnetic coil, that is, the current value. That is, the WC pressure in the wheel cylinders 32a to 32d is maintained at a hydraulic pressure corresponding to the current value to the linear solenoid valves 35a, 35b.
 また、各連結経路33,34の何れか一方(本実施形態では、連結経路33)において、リニア電磁弁35aよりもマスタシリンダ25寄りの部位には、マスタシリンダ25内のMC圧を検出するための圧力センサSE8が設けられている。この圧力センサSE8からは、MC圧に応じた検出信号がブレーキ用ECU55に出力される。 In addition, in one of the connection paths 33 and 34 (in the present embodiment, the connection path 33), the MC pressure in the master cylinder 25 is detected in a portion closer to the master cylinder 25 than the linear solenoid valve 35a. Pressure sensor SE8 is provided. The pressure sensor SE8 outputs a detection signal corresponding to the MC pressure to the brake ECU 55.
 第1液圧回路29には、ホイールシリンダ32aに接続される右前輪用経路36aと、ホイールシリンダ32dに接続される左後輪用経路36dとが形成されている。また、第2液圧回路30には、ホイールシリンダ32bに接続される左前輪用経路36bと、ホイールシリンダ32cに接続される右後輪用経路36cとが形成されている。また、経路36a~36dには、ホイールシリンダ32a~32d内のWC圧の増圧を規制する際に作動する常開型の電磁弁である増圧弁37a,37b,37c,37dと、WC圧を減圧させる際に作動する常閉型の電磁弁である減圧弁38a,38b,38c,38dとが設けられている。 In the first hydraulic circuit 29, a right front wheel path 36a connected to the wheel cylinder 32a and a left rear wheel path 36d connected to the wheel cylinder 32d are formed. Further, in the second hydraulic circuit 30, a left front wheel path 36b connected to the wheel cylinder 32b and a right rear wheel path 36c connected to the wheel cylinder 32c are formed. Further, in the paths 36a to 36d, the WC pressures are set as pressure increase valves 37a, 37b, 37c, and 37d, which are normally open solenoid valves that operate when regulating the WC pressure increase in the wheel cylinders 32a to 32d. Pressure reducing valves 38a, 38b, 38c, and 38d, which are normally closed solenoid valves that operate when reducing the pressure, are provided.
 また、液圧回路29,30には、ホイールシリンダ32a~32dから減圧弁38a~38dを介して流出したブレーキ液を一時貯留するためのリザーバ39,40と、モータ41の回転に基づき作動するポンプ42,43とが接続されている。リザーバ39,40は、吸入用流路44,45を介してポンプ42,43に接続されると共に、マスタ側流路46,47を介して連結経路33,34においてリニア電磁弁35a,35bよりもマスタシリンダ25寄りの部位に接続されている。また、ポンプ42,43は、供給用流路48,49を介して液圧回路29,30における増圧弁37a~37dとリニア電磁弁35a,35bとの間の接続部位50,51に接続されている。そして、ポンプ42,43は、モータ41が回転した場合に、リザーバ39,40及びマスタシリンダ25から吸入用流路44,45及びマスタ側流路46,47を介してブレーキ液を吸引し、該ブレーキ液を供給用流路48,49内に吐出する。 In the hydraulic circuits 29, 30, reservoirs 39, 40 for temporarily storing the brake fluid which has flowed out from the wheel cylinders 32a-32d via the pressure reducing valves 38a-38d, and a pump operated based on the rotation of the motor 41. 42 and 43 are connected. The reservoirs 39 and 40 are connected to the pumps 42 and 43 through the suction flow channels 44 and 45, and connected to the connection paths 33 and 34 through the master flow channels 46 and 47 more than the linear solenoid valves 35a and 35b. It is connected to a portion near the master cylinder 25. The pumps 42 and 43 are connected to connection portions 50 and 51 between the pressure increasing valves 37a to 37d and the linear solenoid valves 35a and 35b in the hydraulic circuits 29 and 30 through the supply flow paths 48 and 49, respectively. There is. Then, when the motor 41 rotates, the pumps 42 and 43 suck the brake fluid from the reservoirs 39 and 40 and the master cylinder 25 via the suction flow paths 44 and 45 and the master side flow paths 46 and 47, respectively. The brake fluid is discharged into the supply channels 48, 49.
 次に、ブレーキアクチュエータ31の駆動を制御するブレーキ用ECU55(「ブレーキ用電子制御装置」ともいう。)について説明する。 Next, the brake ECU 55 (also referred to as “brake electronic control device”) that controls the drive of the brake actuator 31 will be described.
 図2に示すように、ブレーキ用ECU55の入力側インターフェースには、各車輪FR,FL,RR,RLの車輪速度を検出するための車輪速度センサSE3,SE4,SE5,SE6、及び車両の前後方向における加速度を検出するための加速度センサ(「Gセンサ」ともいう。)SE7が電気的に接続されている。また、ブレーキ用ECU55の入力側インターフェースには、ブレーキペダル15の近傍に配置され、且つブレーキペダル15が操作されているか否かを検出するためのブレーキスイッチSW1、及び圧力センサSE8が電気的に接続されている。ブレーキ用ECU55の出力側インターフェースには、各弁35a,35b,37a~37d,38a~38d及びモータ41などが電気的に接続されている。なお、加速度センサSE7からは、車両の重心が後方に移動する際に正の値となるような信号が出力される一方、車両の重心が前方に移動する際に負の値となるような信号が出力される。 As shown in FIG. 2, at the input side interface of the brake ECU 55, wheel speed sensors SE3, SE4, SE5, SE6 for detecting the wheel speeds of the respective wheels FR, FL, RR, RL, and the longitudinal direction of the vehicle An acceleration sensor (also referred to as a "G sensor") SE7 for detecting an acceleration at the point s. Is electrically connected. In addition, a brake switch SW1 disposed in the vicinity of the brake pedal 15 for detecting whether the brake pedal 15 is operated and a pressure sensor SE8 are electrically connected to the input side interface of the brake ECU 55. It is done. The valves 35a, 35b, 37a to 37d, 38a to 38d and the motor 41 are electrically connected to the output side interface of the brake ECU 55. The acceleration sensor SE7 outputs a signal that gives a positive value when the center of gravity of the vehicle moves rearward, while a signal that gives a negative value when the center of gravity of the vehicle moves forward Is output.
 また、ブレーキ用ECU55は、図示しないCPU、ROM及びRAMなどから構成されるデジタルコンピュータ、各弁35a,35b,37a~37d,38a~38dを作動させるための図示しない弁用ドライバ回路、及びモータ41を作動させるための図示しないモータ用ドライバ回路を有している。デジタルコンピュータのROMには、各種制御処理(後述するアイドルストップ処理等)、各種マップ(図3に示すマップ等)及び各種閾値などが予め記憶されている。また、RAMには、車両の図示しないイグニッションスイッチがオンである間、適宜書き換えられる各種の情報などがそれぞれ記憶される。 Further, the brake ECU 55 is a digital computer including a CPU, a ROM, and a RAM (not shown), a valve driver circuit (not shown) for operating the valves 35a, 35b, 37a to 37d and 38a to 38d, and a motor 41. (Not shown) for driving the motor. In the ROM of the digital computer, various control processes (idle stop process described later, etc.), various maps (map shown in FIG. 3 etc.), various threshold values, etc. are stored in advance. In addition, while the ignition switch (not shown) of the vehicle is on, the RAM stores various types of information that can be appropriately rewritten.
 本実施形態の車両において、エンジン用ECU17及びブレーキ用ECU55を含むECU同士は、図1に示すように、各種情報及び各種制御指令を送受信できるようにバス56を介してそれぞれ接続されている。例えば、エンジン用ECU17からは、アクセルペダル11のアクセル開度に関する情報、エンジン12の再始動の成功・失敗に関する情報などがブレーキ用ECU55に適宜送信される。一方、ブレーキ用ECU55からは、エンジン12の自動的な停止を許可する旨の停止許可指令、エンジン12の自動的な再始動を許可する旨の再始動許可指令及び再始動を禁止する旨の再始動禁止指令などがエンジン用ECU17に送信される。 In the vehicle of the present embodiment, the ECUs including the engine ECU 17 and the brake ECU 55 are connected to one another via a bus 56 so as to transmit and receive various information and various control commands as shown in FIG. For example, from the engine ECU 17, information on the accelerator opening degree of the accelerator pedal 11, information on success / failure of restart of the engine 12, and the like are appropriately transmitted to the brake ECU 55. On the other hand, from the ECU 55 for brakes, a stop permission command for permitting the automatic stop of the engine 12, a restart permission command for permitting the automatic restart of the engine 12 and a reactivation for prohibiting the restart A start prohibition instruction or the like is transmitted to the engine ECU 17.
 次に、ブレーキ用ECU55のROMに記憶される各種マップについて図3に基づき説明する。 Next, various maps stored in the ROM of the brake ECU 55 will be described based on FIG.
 エンジン12を自動的に再始動させようとしても、車両に搭載されるバッテリ(図示略)の蓄電量不足やスタータモータ(図示略)の不調などによって、エンジン12を再始動させることができないことがある。こうした場合、エンジン12を再始動させるための制御が繰り返し実行される。そして、エンジン12を再始動させるための制御を連続して行っても、エンジン12を再始動させることができない場合には、エンジン12が始動不調状態であると判断される。 Even if it is attempted to restart the engine 12 automatically, the engine 12 can not be restarted due to insufficient storage of a battery (not shown) mounted on the vehicle or malfunction of a starter motor (not shown). is there. In such a case, control for restarting the engine 12 is repeatedly performed. If the engine 12 can not be restarted even if the control for restarting the engine 12 is continuously performed, it is determined that the engine 12 is in the start-up malfunction state.
 図3に示すマップは、エンジン12が始動不調状態であるか否かを判断するための基準値の一例である回数基準値CTthを、車両の位置する路面の勾配に応じた値に設定するためのマップの一例である。回数基準値CTthとは、エンジン12を再始動させるためのエンジン用ECU17での制御処理を連続して実行させる回数の上限値である。また、勾配相当値Agとは、車両の位置する路面の勾配に応じた値である。すなわち、勾配相当値Agがほぼ「0(零)」である場合、車両の位置する路面は、水平面にほぼ平行な路面である。また、勾配相当値Agが正の値である場合における路面は登坂路であり、勾配相当値Agが負の値である場合における路面は降坂路である。 The map shown in FIG. 3 sets the frequency reference value CTth, which is an example of a reference value for determining whether or not the engine 12 is in a malfunctioning state, to a value according to the gradient of the road surface where the vehicle is located. Is an example of a map of The number-of-times reference value CTth is an upper limit value of the number of times of continuously executing control processing in the engine ECU 17 for restarting the engine 12. Further, the gradient equivalent value Ag is a value corresponding to the gradient of the road surface on which the vehicle is located. That is, when the gradient equivalent value Ag is substantially "0 (zero)", the road surface on which the vehicle is located is a road surface substantially parallel to the horizontal plane. The road surface in the case where the gradient equivalent value Ag is a positive value is an uphill, and the road surface in the case where the gradient equivalent value Ag is a negative value is a downhill.
 本実施形態では、図3に示すように、回数基準値CTthは、路面の勾配が緩勾配である場合のほうが、勾配が急勾配である場合よりも大きな値に設定される。例えば、勾配相当値Agが「0」である場合、回数基準値CTthは、最大値CTmax(例えば5回)に設定される。そして、勾配相当値Agが「0」未満であって且つ第1の値Ag1(<0(零))よりも大きい場合、回数基準値CTthは、勾配相当値Agが小さくなるほど小さい値に設定される。同様に、勾配相当値Agが「0」よりも大きく且つ第2の値Ag2(>0(零))未満である場合、回数基準値CTthは、勾配相当値Agが大きくなるほど小さい値に設定される。そして、勾配相当値Agが第1の値Ag1以下である場合、及び勾配相当値Agが第2の値Ag2以上である場合、回数基準値CTthは、最低値CTmin(例えば2回)に設定される。なお、第2の値Ag2の絶対値は、第1の値Ag1の絶対値に等しい。 In the present embodiment, as shown in FIG. 3, the frequency reference value CTth is set to a larger value in the case where the slope of the road surface is gentle than in the case where the slope is steep. For example, when the gradient equivalent value Ag is “0”, the frequency reference value CTth is set to the maximum value CTmax (for example, five times). When the gradient equivalent value Ag is less than "0" and larger than the first value Ag1 (<0 (zero)), the frequency reference value CTth is set to a smaller value as the gradient equivalent value Ag decreases. Ru. Similarly, when the gradient equivalent value Ag is larger than "0" and less than the second value Ag2 (> 0 (zero)), the frequency reference value CTth is set to a smaller value as the gradient equivalent value Ag becomes larger. Ru. When the gradient equivalent value Ag is less than or equal to the first value Ag1, and when the gradient equivalent value Ag is greater than or equal to the second value Ag2, the frequency reference value CTth is set to the minimum value CTmin (for example, twice). Ru. The absolute value of the second value Ag2 is equal to the absolute value of the first value Ag1.
 次に、本実施形態のブレーキ用ECU55が実行するアイドルストップ処理ルーチンについて、図4に示すフローチャートに基づき説明する。このアイドルストップ処理ルーチンは、エンジン12の自動的な停止を許可するタイミングやエンジン12の自動的な再始動を許可するタイミングなどを設定する処理ルーチンである。 Next, the idle stop processing routine executed by the brake ECU 55 of the present embodiment will be described based on the flowchart shown in FIG. The idle stop processing routine is a processing routine for setting the timing for permitting the automatic stop of the engine 12, the timing for permitting the automatic restart of the engine 12, and the like.
 さて、ブレーキ用ECU55は、予め設定された所定周期(例えば、0.01秒周期)毎にアイドルストップ処理ルーチンを実行する。このアイドルストップ処理ルーチンにおいて、ブレーキ用ECU55は、圧力センサSE8からの検出信号に基づき、マスタシリンダ25内のMC圧Pmcを取得する(ステップS10)。続いて、ブレーキ用ECU55は、エンジン用ECU17から受信する情報に基づき、エンジン12が停止中であるか否かを判定する(ステップS11)。 The brake ECU 55 executes the idle stop processing routine every predetermined cycle (for example, 0.01 second cycle) set in advance. In the idle stop processing routine, the brake ECU 55 acquires the MC pressure Pmc in the master cylinder 25 based on the detection signal from the pressure sensor SE 8 (step S10). Subsequently, the brake ECU 55 determines whether the engine 12 is stopped based on the information received from the engine ECU 17 (step S11).
 この判定結果が否定である場合、ブレーキ用ECU55は、エンジン12が駆動中であるため、エンジン停止処理を実行する(ステップS12)。すなわち、ブレーキ用ECU55は、車両の車体速度が予め設定された所定速度(例えば20km/h)以下であって、且つステップS10で取得したMC圧Pmcが、エンジン12の自動的な停止を許可するか否かを判断するための判断値以上である場合に、運転手が車両を停車させる意志があると判断する。そして、ブレーキ用ECU55は、停止許可指令をエンジン用ECU17に送信する。したがって、本実施形態では、ステップS12が、エンジン12の停止条件が成立した場合にエンジン12の自動的な停止を許可する停止ステップに相当する。その後、ブレーキ用ECU55は、アイドルストップ処理ルーチンを一旦終了する。 If the determination result is negative, the brake ECU 55 executes engine stop processing because the engine 12 is being driven (step S12). That is, the brake ECU 55 allows the MC pressure Pmc acquired in step S10 to automatically stop the engine 12 when the vehicle body speed of the vehicle is equal to or less than a predetermined speed (for example, 20 km / h) set in advance. If it is equal to or greater than the determination value for determining whether or not it is determined that the driver has the intention to stop the vehicle. And ECU55 for brakes transmits stop permission instruction | command to ECU17 for engines. Therefore, in the present embodiment, step S12 corresponds to the stop step of permitting the automatic stop of the engine 12 when the stop condition of the engine 12 is satisfied. Thereafter, the brake ECU 55 temporarily terminates the idle stop processing routine.
 一方、ステップS11の判定結果が肯定である場合、ブレーキ用ECU55は、エンジン12が停止しているため、エンジン再始動処理を行う(ステップS13)。このエンジン再始動処理では、詳しくは後述するが、車輪FR,FL,RR,RLに対する制動力が調整されたり、再始動許可指令や再始動禁止指令がエンジン用ECU17に送信されたりする。この点で、本実施形態では、ステップS13が、エンジン12の再始動条件が成立した場合にエンジン12の自動的な再始動を許可する再始動ステップに相当する。また、ブレーキ用ECU55が、第1の制御部として機能する。そして、ブレーキ用ECU55は、エンジン再始動処理の実行後、アイドルストップ処理ルーチンを一旦終了する。 On the other hand, if the determination result in step S11 is affirmative, the brake ECU 55 performs an engine restart process because the engine 12 is stopped (step S13). In this engine restart process, although the details will be described later, the braking forces on the wheels FR, FL, RR, and RL are adjusted, and a restart permission command and a restart prohibition command are transmitted to the engine ECU 17. In this respect, in the present embodiment, step S13 corresponds to a restart step of permitting automatic restart of the engine 12 when the restart condition of the engine 12 is satisfied. Further, the brake ECU 55 functions as a first control unit. And ECU55 for brakes once complete | finishes an idle stop process routine, after execution of an engine restart process.
 次に、上記エンジン再始動処理(エンジン再始動処理ルーチン)について、図5及び図6に示すフローチャートと、図7に示すタイミングチャートとに基づき説明する。なお、図7は、車両が坂路を走行する場合のタイミングチャートである。 Next, the engine restart process (engine restart process routine) will be described based on the flowcharts shown in FIGS. 5 and 6 and the timing chart shown in FIG. FIG. 7 is a timing chart when the vehicle travels on a slope.
 さて、エンジン再始動処理ルーチンにおいて、ブレーキ用ECU55は、上記ステップS10で取得したMC圧Pmcが予め設定されたMC圧基準値Pmcth未満であるか否かを判定する(ステップS20)。このMC圧基準値Pmcthは、エンジン12の再始動を許可するか否かを判断するための判断値であって、エンジン12の自動的な停止を許可するか否かを判断するための判断値よりも小さな値に設定される。なお、MC圧基準値Pmcthは、車両の位置する路面の勾配に応じた値に設定してもよい。 Now, in the engine restart process routine, the brake ECU 55 determines whether the MC pressure Pmc acquired in step S10 is less than a preset MC pressure reference value Pmcth (step S20). The MC pressure reference value Pmcth is a determination value for determining whether to permit the restart of the engine 12 and a determination value for determining whether to permit the automatic stop of the engine 12. It is set to a smaller value. The MC pressure reference value Pmcth may be set to a value according to the gradient of the road surface on which the vehicle is located.
 ステップS20の判定結果が否定(Pmc≧Pmcth)である場合、ブレーキ用ECU55は、エンジン12の再始動条件が成立していないため、後述する回数カウンタ値CTを「0(零)」にリセットし(ステップS21)、エンジン再始動処理ルーチンを終了する。一方、ステップS20の判定結果が肯定(Pmc<Pmcth)である場合、ブレーキ用ECU55は、エンジン12の再始動条件が成立したため、再始動許可指令をエンジン用ECU17に送信する(ステップS22)。再始動許可指令を受信したエンジン用ECU17は、エンジン12を始動させるための制御を行う。そして、エンジン用ECU17は、エンジン12の再始動の成功・失敗に関する情報をブレーキ用ECU55に出力する。 If the determination result in step S20 is negative (Pmc P Pmcth), the brake ECU 55 resets the number counter value CT described later to "0 (zero)" because the restart condition of the engine 12 is not satisfied. (Step S21), the engine restart processing routine is ended. On the other hand, if the determination result in step S20 is affirmative (Pmc <Pmcth), the brake ECU 55 transmits a restart permission command to the engine ECU 17 because the restart condition of the engine 12 is satisfied (step S22). The engine ECU 17 that has received the restart permission command performs control for starting the engine 12. Then, the engine ECU 17 outputs information on success / failure of restart of the engine 12 to the brake ECU 55.
 続いて、ブレーキ用ECU55は、再始動許可指令の送信後にエンジン用ECU17から受信した情報に基づき、エンジン12の再始動が失敗したか否かを判定する(ステップS23)。この判定結果が否定である場合、ブレーキ用ECU55は、エンジン12の再始動が成功したため、その処理を前述したステップS21に移行する。一方、ステップS23の判定結果が肯定である場合、ブレーキ用ECU55は、エンジン12の再始動が失敗したため、車両の車体速度VSを取得する(ステップS24)。具体的には、ブレーキ用ECU55は、各車輪速度センサSE3~SE6からの検出信号に基づき各車輪FL,FR,RL,RRの車輪速度を演算し、該各車輪FL,FR,RL,RRの車輪速度のうち少なくとも一つの車輪速度を時間微分して車輪加速度を取得する。そして、ブレーキ用ECU55は、前回のタイミングで取得した車体速度に対して車輪加速度を積算し、該積算結果を車体速度VSとする。したがって、本実施形態では、ブレーキ用ECU55が、車体速度取得部としても機能する。 Subsequently, the brake ECU 55 determines whether the restart of the engine 12 has failed based on the information received from the engine ECU 17 after the transmission of the restart permission command (step S23). If the determination result is negative, the ECU 55 for a brake shifts the process to step S21 described above since the restart of the engine 12 is successful. On the other hand, if the determination result in step S23 is affirmative, the ECU 55 for brakes acquires the vehicle body speed VS of the vehicle because the restart of the engine 12 has failed (step S24). Specifically, the brake ECU 55 calculates the wheel speeds of the wheels FL, FR, RL, and RR based on the detection signals from the wheel speed sensors SE3 to SE6, and calculates the wheel speeds of the wheels FL, FR, RL, and RR. The wheel acceleration is obtained by temporally differentiating at least one of the wheel speeds. Then, the brake ECU 55 integrates the wheel acceleration with respect to the vehicle speed acquired at the previous timing, and sets the integration result as the vehicle speed VS. Therefore, in the present embodiment, the brake ECU 55 also functions as a vehicle speed acquisition unit.
 そして、ブレーキ用ECU55は、ステップS24で取得した車体速度VSが予め設定された車体速度閾値及び制御閾値としての車体速度基準値VSth(例えば7km/h)未満であるか否かを判定する(ステップS25)。この車体速度基準値VSthは、ブレーキアクチュエータ31のポンプ42,43が作動するような制動制御の実行が許可されるか否かを判断するための基準値である。なお、ポンプ42,43の作動が伴う制動制御の一例としては、アンチロックブレーキ制御や横滑り防止制御(ESC:Electronic Stability Control)などが挙げられる。 Then, the ECU 55 for brakes determines whether or not the vehicle body speed VS acquired in step S24 is less than a preset vehicle body speed threshold value and a vehicle body speed reference value VSth (for example, 7 km / h) as a control threshold (step S25). The vehicle speed reference value VSth is a reference value for determining whether or not the execution of the braking control to operate the pumps 42 and 43 of the brake actuator 31 is permitted. In addition, antilock brake control, anti-slip control (ESC: Electronic Stability Control), etc. are mentioned as an example of braking control accompanying operation of pumps 42 and 43.
 ステップS25の判定結果が否定(VS≧VSth)である場合、ブレーキ用ECU55は、その処理を後述するステップS31に移行する。一方、ステップS25の判定結果が肯定(VS<VSth)である場合、ブレーキ用ECU55は、エンジン12の再始動が連続して失敗した回数の計測値である回数カウンタ値CTを「1」だけインクリメントする(ステップS26)。続いて、ブレーキ用ECU55は、加速度センサSE7からの検出信号に基づき、車両の前後方向における加速度(以下、単に「車体加速度」ともいう。)Gを取得する(ステップS27)。そして、ブレーキ用ECU55は、ステップS24で取得した車体速度VSを時間微分して車体速度微分値(車両の実際の加速度)DVSを取得する(ステップS28)。なお、ブレーキ用ECU55は、ステップS24での処理時に取得した車輪加速度を車体速度微分値DVSとしてもよい。 If the determination result in step S25 is negative (VS ≧ VSth), the brake ECU 55 shifts the process to step S31 described later. On the other hand, if the determination result in step S25 is affirmative (VS <VSth), the brake ECU 55 increments the count value CT, which is a measurement value of the number of times the engine 12 has continuously failed to restart, by "1". (Step S26). Subsequently, the brake ECU 55 acquires an acceleration G (hereinafter, also simply referred to as “vehicle body acceleration”) G in the front-rear direction of the vehicle based on the detection signal from the acceleration sensor SE7 (step S27). Then, the brake ECU 55 time-differentiates the vehicle speed VS acquired in step S24 to acquire a vehicle speed differential value (actual acceleration of the vehicle) DVS (step S28). The brake ECU 55 may use the wheel acceleration obtained at the time of the processing in step S24 as the vehicle speed differential value DVS.
 続いて、ブレーキ用ECU55は、ステップS27で演算した車体加速度GからステップS28で演算した車体速度微分値DVSを減算し、該減算結果を勾配相当値Agとする(ステップS29)。ここで、加速度センサSE7からの検出信号に基づき演算された車体加速度Gには、車両の実際の加速度成分と、車両の走行する路面の勾配に対応する加速度成分とが含まれている。そして、「車両の実際の加速度成分」は、車体速度VSの微分値である車体速度微分値DVSであり、勾配相当値Agは、車体加速度Gから車両の実際の加速度成分を取り除くことにより取得される。したがって、本実施形態では、ブレーキ用ECU55が、勾配相当値取得部としても機能する。 Subsequently, the brake ECU 55 subtracts the vehicle speed differential value DVS calculated in step S28 from the vehicle acceleration G calculated in step S27, and sets the subtraction result as the gradient equivalent value Ag (step S29). Here, the vehicle body acceleration G calculated based on the detection signal from the acceleration sensor SE7 includes an actual acceleration component of the vehicle and an acceleration component corresponding to the gradient of the road surface on which the vehicle travels. The "actual acceleration component of the vehicle" is a vehicle speed differential value DVS which is a differential value of the vehicle speed VS, and the gradient equivalent value Ag is obtained by removing the actual acceleration component of the vehicle from the vehicle acceleration G. Ru. Therefore, in the present embodiment, the brake ECU 55 also functions as a slope equivalent value acquisition unit.
 そして、ブレーキ用ECU55は、ステップS29で取得した勾配相当値Agに応じた回数基準値CTthを図3に示すマップに基づき設定する。そして、ブレーキ用ECU55は、ステップS26で更新した回数カウンタ値CTが、設定した回収基準値CTth以上であるか否かを判定する(ステップS30)。この判定結果が否定(CT<CTth)である場合、ブレーキ用ECU55は、その処理を前述したステップS22に移行する。一方、ステップS30の判定結果が肯定(CT≧CTth)である場合、ブレーキ用ECU55は、エンジン12が始動不調状態であると判断し、その処理を後述するステップS31に移行する。 Then, the brake ECU 55 sets the number-of-times reference value CTth corresponding to the gradient equivalent value Ag acquired in step S29 based on the map shown in FIG. Then, the brake ECU 55 determines whether or not the number-of-times counter value CT updated in step S26 is equal to or greater than the set recovery reference value CTth (step S30). If the determination result is negative (CT <CTth), the brake ECU 55 proceeds to step S22 described above. On the other hand, if the determination result in step S30 is affirmative (CT ≧ CTth), the brake ECU 55 determines that the engine 12 is in the start-up malfunction state, and shifts the process to step S31 described later.
 ステップS31において、ブレーキ用ECU55は、再始動禁止指令をエンジン用ECU17に送信する。再始動禁止指令を受信したエンジン用ECU17は、エンジン12を再始動するための制御を行わない。続いて、ブレーキ用ECU55は、車両を停車させるために、ブレーキアクチュエータ31のポンプ42,43(即ち、モータ41)とリニア電磁弁35a,35bとを作動させる第1の制動制御処理を行う(ステップS32)。したがって、本実施形態では、ステップS31,32により、第1のステップが構成される。また、車両を停車させるべく車輪FR,FL,RR,RLに対する制動力を増大させる第1の制動制御を行うブレーキ用ECU55が、第2の制御部としても機能する。 In step S31, the brake ECU 55 transmits a restart prohibition command to the engine ECU 17. The engine ECU 17 that has received the restart inhibition command does not perform control for restarting the engine 12. Subsequently, the brake ECU 55 performs a first braking control process to operate the pumps 42 and 43 (that is, the motor 41) of the brake actuator 31 and the linear solenoid valves 35a and 35b in order to stop the vehicle (step S32). Therefore, in the present embodiment, the first step is configured by steps S31 and S32. Further, the brake ECU 55 that performs the first braking control to increase the braking force on the wheels FR, FL, RR, and RL to stop the vehicle also functions as a second control unit.
 第1の制動制御処理が終了すると、ブレーキ用ECU55は、各ホイールシリンダ32a~32d内のWC圧Pwcを保圧させるための第2の制動制御処理を行う(ステップS33)。具体的には、ブレーキ用ECU55は、ブレーキアクチュエータ31のポンプ42,43を停止させると共に、リニア電磁弁35a,35bを作動させて各ホイールシリンダ32a~32d内のWC圧Pwcを保圧させる。続いて、ブレーキ用ECU55は、ポンプ42,43の作動を停止させたため、再始動許可指令をエンジン用ECU17に送信する(ステップS34)。再始動許可指令を受信したエンジン用ECU17は、エンジン12を再始動させるための制御を適宜行う。したがって、本実施形態では、ステップS33,34により、第2のステップが構成される。 When the first braking control process ends, the brake ECU 55 performs a second braking control process for holding the WC pressure Pwc in each of the wheel cylinders 32a to 32d (step S33). Specifically, the brake ECU 55 stops the pumps 42 and 43 of the brake actuator 31 and operates the linear solenoid valves 35a and 35b to hold the WC pressure Pwc in the wheel cylinders 32a to 32d. Subsequently, since the brake ECU 55 has stopped the operation of the pumps 42 and 43, the brake ECU 55 transmits a restart permission command to the engine ECU 17 (step S34). The engine ECU 17 that has received the restart permission command appropriately performs control for restarting the engine 12. Therefore, in the present embodiment, the second step is configured by steps S33 and S34.
 ここで、図7のタイミングチャートに示すように、第1のタイミングt1でエンジン12が自動的に停止されると、エンジン回転数Neが急激に低下する。また、駆動輪である前輪FR,FLには、クリープトルクが伝達されなくなるため、車体速度VSの変化率も大きくなる。そして、車体速度VSが車体速度基準値VSth未満になった(より具体的には、車両が停車する)第2のタイミングt2でエンジン12の再始動条件が成立すると、エンジン12を再始動させるための制御が行われる。 Here, as shown in the timing chart of FIG. 7, when the engine 12 is automatically stopped at the first timing t1, the engine rotational speed Ne drops sharply. Further, since the creep torque is not transmitted to the front wheels FR and FL which are driving wheels, the rate of change of the vehicle speed VS also becomes large. Then, when the restart condition of the engine 12 is satisfied at the second timing t2 at which the vehicle speed VS becomes less than the vehicle speed reference value VSth (more specifically, the vehicle stops), the engine 12 is restarted. Control is performed.
 しかし、エンジン12の再始動が失敗すると、回数カウンタ値CTは「1」だけインクリメントされる。そして、第2のタイミングt2よりも後の第3のタイミングt3では、車体速度VSが車体速度基準値VSth未満であるため、エンジン12を再始動させるための制御が再び行われる。今回でもエンジン12の再始動が失敗すると、回数カウンタ値CTは再び「1」だけインクリメントされる。このとき、回数カウンタ値CTが回数基準値Ctth以上になると、エンジン12が始動不調状態であると判定され、エンジン12の再始動が禁止される。一方、回数カウンタ値CTが回数基準値Ctth未満である場合には、このタイミングでエンジン12が始動不調状態であると判定されない。 However, when the restart of the engine 12 fails, the number counter value CT is incremented by “1”. Then, at the third timing t3 after the second timing t2, since the vehicle speed VS is less than the vehicle speed reference value VSth, control for restarting the engine 12 is performed again. If the restart of the engine 12 fails again this time, the number counter value CT is incremented again by “1”. At this time, when the number counter value CT becomes equal to or more than the number reference value Ctth, it is determined that the engine 12 is in the start-up malfunction state, and the restart of the engine 12 is prohibited. On the other hand, when the number counter value CT is less than the number reference value Ctth, it is not determined at this timing that the engine 12 is in the start failure state.
 エンジン12を再始動させるための制御が繰り返し行われるということは、マスタシリンダ25内のMC圧Pmcが低下していること、即ち車輪FR,FL,RR,RLに対する制動力が減少していることを意味している。これは、エンジン12の再始動を許可するための条件に、MC圧PmcがMC圧基準値Pmcth(図5参照)未満であることが含まれているためである。そのため、車両の位置する路面が降坂路である場合には、MC圧Pmcの低下に起因した車輪FR,FL,RR,RLに対する制動力不足によって、車両が前方に移動する可能性がある。また、車両の位置する路面が登坂路である場合には、車両が後方に移動する可能性がある。 That the control for restarting the engine 12 is repeatedly performed means that the MC pressure Pmc in the master cylinder 25 is reduced, that is, the braking force on the wheels FR, FL, RR, RL is reduced. Means. This is because the condition for permitting restart of the engine 12 includes that the MC pressure Pmc is less than the MC pressure reference value Pmcth (see FIG. 5). Therefore, when the road surface on which the vehicle is located is a downhill, there is a possibility that the vehicle moves forward due to insufficient braking force on the wheels FR, FL, RR, and RL caused by the decrease in the MC pressure Pmc. In addition, when the road surface on which the vehicle is located is an uphill, the vehicle may move rearward.
 こうした惰性による車両の移動によって、車両の車体速度VSが車体速度基準値VSth以上になると、エンジン12の再始動が禁止される(第4のタイミングt4)。これは、車体速度VSが車体速度基準値VSth以上になると、ブレーキアクチュエータ31のポンプ42,43が作動するような制動制御の実行が許可されるためである。すなわち、エンジン12を再始動させるための制御と、ポンプ42,43の作動が伴う制動制御とが時間的に重複する可能性があるためである。 When the vehicle body speed VS of the vehicle becomes equal to or higher than the vehicle body speed reference value VSth due to the movement of the vehicle due to such inertia, the restart of the engine 12 is prohibited (fourth timing t4). This is because when the vehicle speed VS becomes equal to or higher than the vehicle speed reference value VSth, the execution of the braking control to operate the pumps 42 and 43 of the brake actuator 31 is permitted. That is, there is a possibility that the control for restarting the engine 12 and the braking control accompanied by the operation of the pumps 42 and 43 may overlap in time.
 そして、エンジン12の再始動が禁止されると、各車輪FR,FL,RR,RL用のホイールシリンダ32a~32d内のWC圧Pwc(図7では破線で示す。)が目標油圧Pwcthとなるように、ブレーキアクチュエータ31のポンプ42,43及びリニア電磁弁35a,35bが作動する(第1の制動制御)。すなわち、車両を停車させるべく車輪FR,FL,RR,RLに対する制動力が増大される。 Then, when the restart of the engine 12 is prohibited, the WC pressure Pwc (indicated by a broken line in FIG. 7) in the wheel cylinders 32a to 32d for the wheels FR, FL, RR, and RL becomes the target hydraulic pressure Pwcth. Then, the pumps 42 and 43 of the brake actuator 31 and the linear solenoid valves 35a and 35b operate (first braking control). That is, the braking forces on the wheels FR, FL, RR, and RL are increased to stop the vehicle.
 その後、ホイールシリンダ32a~32d内のWC圧Pwcが目標油圧Pwcthと同程度となった第5のタイミングt5で、制動制御が、第1の制動制御から第2の制動制御に切り替る。すると、ブレーキアクチュエータ31では、ポンプ42,43の作動が停止されると共に、リニア電磁弁35a,35bの作動によって車輪FR,FL,RR,RLに対する制動力が保持される(第2の制動制御)。そして、エンジン12の再始動が許可される。この状態でエンジン12の再始動条件が成立すると、エンジン12を再始動させるための制御が行われる(第6のタイミングt6)。 Thereafter, at a fifth timing t5 at which the WC pressure Pwc in the wheel cylinders 32a to 32d becomes approximately equal to the target hydraulic pressure Pwcth, the braking control switches from the first braking control to the second braking control. Then, in the brake actuator 31, the operation of the pumps 42, 43 is stopped, and the braking force on the wheels FR, FL, RR, RL is held by the operation of the linear solenoid valves 35a, 35b (second braking control) . Then, restart of the engine 12 is permitted. When the restart condition of the engine 12 is satisfied in this state, control for restarting the engine 12 is performed (sixth timing t6).
 図6のフローチャートに戻り、ブレーキ用ECU55は、再始動許可指令の送信(ステップS34)後にエンジン用ECU17から受信した情報に基づき、エンジン12の再始動が成功したか否かを判定する(ステップS35)。この判定結果が肯定である場合、ブレーキ用ECU55は、エンジン12が再始動されたため、その処理を前述したステップS21に移行する。一方、ステップS35の判定結果が否定である場合、ブレーキ用ECU55は、エンジン12が未だ再始動していないため、ブレーキスイッチSW1がオフになったか否か、即ちブレーキペダル15の操作が解消されたか否かを判定する(ステップS36)。この判定結果が否定(SW1=オン)である場合、ブレーキ用ECU55は、その処理を前述したステップS35に移行する。 Referring back to the flowchart of FIG. 6, the brake ECU 55 determines whether the restart of the engine 12 is successful based on the information received from the engine ECU 17 after the transmission of the restart permission command (step S34) (step S35). ). If the determination result is affirmative, the brake ECU 55 shifts the process to step S21 described above because the engine 12 is restarted. On the other hand, when the determination result in step S35 is negative, the brake ECU 55 has not restarted the engine 12 yet, so whether or not the brake switch SW1 is turned off, that is, the operation of the brake pedal 15 has been cancelled. It is determined whether or not it is (step S36). If the determination result is negative (SW1 = on), the brake ECU 55 shifts the process to step S35 described above.
 一方、ステップS36の判定結果が肯定(SW1=オフ)である場合、ブレーキ用ECU55は、惰性による車両の移動を運転手が許可したと判定し、第3の制動制御処理を行う(ステップS37)。具体的には、ブレーキ用ECU55は、惰性により車両が移動するとしても、該車両の車体速度VSが車体速度基準値VSth以上にならないように、ホイールシリンダ32a~32d内のWC圧Pwcを調整する。すなわち、ブレーキ用ECU55は、ポンプ42,43を作動させない一方で、リニア電磁弁35a,35bに対する電流値を調整する。このとき、リニア電磁弁35a,35bに対する電流値は、車両の位置する路面の勾配が急勾配であるほど大きな値に設定される。つまり、第3の制動制御では、車輪に対する制動力は、減少されることはあっても増加されることはない。したがって、本実施形態では、車体速度基準値VSthが、許可基準値でもある。なお、このように車輪FR,FL,RR,RLに対する制動力を減少させても、路面の勾配によっては、車両が移動しないこともある。 On the other hand, if the determination result in step S36 is affirmative (SW1 = off), the brake ECU 55 determines that the driver permits the movement of the vehicle due to inertia, and performs the third braking control process (step S37). . Specifically, even if the vehicle moves due to inertia, the brake ECU 55 adjusts the WC pressure Pwc in the wheel cylinders 32a to 32d so that the vehicle speed VS of the vehicle does not become equal to or higher than the vehicle speed reference value VSth. . That is, while the brake ECU 55 does not operate the pumps 42 and 43, the brake ECU 55 adjusts the current value to the linear solenoid valves 35a and 35b. At this time, the current values to the linear solenoid valves 35a, 35b are set to be larger values as the gradient of the road surface on which the vehicle is located becomes steeper. That is, in the third braking control, the braking force on the wheel is reduced but not increased. Therefore, in the present embodiment, the vehicle speed reference value VSth is also the permission reference value. Even if the braking forces on the wheels FR, FL, RR, and RL are reduced as described above, the vehicle may not move depending on the slope of the road surface.
 そして、ブレーキ用ECU55は、ステップS37の処理後にエンジン用ECU17から受信した情報に基づき、エンジン12の再始動が成功したか否かを判定する(ステップS38)。この判定結果が肯定である場合、ブレーキ用ECU55は、エンジン12が再始動されたため、その処理を前述したステップS21に移行する。一方、ステップS38の判定結果が否定である場合、ブレーキ用ECU55は、エンジン12が未だ再始動していないため、ブレーキスイッチSW1がオンになったか否か、即ちブレーキペダル15が再び操作されたか否かを判定する(ステップS39)。この判定結果が否定(SW1=オフ)である場合、ブレーキ用ECU55は、その処理を前述したステップS38に移行する。一方、ステップS39の判定結果が肯定(SW1=オン)になった場合、ブレーキ用ECU55は、その処理を前述したステップS31に移行する。すなわち、エンジン12の再始動が禁止され(ステップS31)、その後、車両を停車させるための第1の制動制御処理が実行される(ステップS32)。そして、車両が停車すると、第2の制動制御処理が実行される(ステップS33)と共に、エンジン12の再始動が許可される(ステップS34)。 And ECU55 for brakes determines whether restart of the engine 12 was successful based on the information received from ECU17 for engines after the process of step S37 (step S38). If the determination result is affirmative, the brake ECU 55 shifts the process to step S21 described above because the engine 12 is restarted. On the other hand, if the determination result in step S38 is negative, the brake ECU 55 determines whether the brake switch SW1 has been turned on, that is, the brake pedal 15 has been operated again, since the engine 12 has not yet been restarted. It is determined (step S39). If the determination result is negative (SW1 = OFF), the brake ECU 55 shifts the process to step S38 described above. On the other hand, if the determination result in step S39 is affirmative (SW1 = on), the brake ECU 55 shifts the process to step S31 described above. That is, the restart of the engine 12 is prohibited (step S31), and thereafter, the first braking control process for stopping the vehicle is executed (step S32). Then, when the vehicle stops, the second braking control process is executed (step S33), and restart of the engine 12 is permitted (step S34).
 なお、第2の制動制御又は第3の制動制御によって車輪FR,FL,RR,RLに対して制動力が付与された状態で、エンジン12が再始動した場合、ブレーキ用ECU55は、リニア電磁弁35a,35bに対する電流値を徐々に小さくする(図7参照)。 When the engine 12 is restarted with the braking force applied to the wheels FR, FL, RR, and RL by the second braking control or the third braking control, the brake ECU 55 is a linear solenoid valve. The current values for 35a and 35b are gradually decreased (see FIG. 7).
 したがって、本実施形態では、以下に示す利点を得ることができる。 Therefore, in the present embodiment, the following advantages can be obtained.
 (1)エンジン12の始動不調が検知された場合には、エンジン12の再始動を禁止すると共に、車輪FR,FL,RR,RLに対する制動力を増大させて車両を停車させる。その後、車輪FR,FL,RR,RLに対する制動力が保持されるようになると、エンジン12の再始動が許可される。すなわち、車輪FR,FL,RR,RLに対する制動力を増大させるためのブレーキアクチュエータ31の制動制御と、エンジン12を再始動させるための駆動力発生装置13での駆動制御との時間的な重複が回避される。また、ブースタ26内の負圧が低下した状態であっても、車両を停車させることができるような制動力が車輪FR,FL,RR,RLに付与された状態で、エンジン12の再始動が行われることになる。したがって、車両に搭載されるバッテリ(図示略)の負荷の低減を図りつつ、車両の安全性を確保した状態でエンジン12を再始動させることができる。 (1) If the start failure of the engine 12 is detected, the restart of the engine 12 is prohibited and the braking force on the wheels FR, FL, RR, and RL is increased to stop the vehicle. Thereafter, when the braking forces on the wheels FR, FL, RR, and RL are held, the restart of the engine 12 is permitted. That is, there is a temporal overlap between the braking control of the brake actuator 31 for increasing the braking force on the wheels FR, FL, RR, and RL and the drive control of the driving force generator 13 for restarting the engine 12 It is avoided. In addition, even if the negative pressure in the booster 26 is reduced, the engine 12 is restarted with the braking force applied to the wheels FR, FL, RR, and RL that can stop the vehicle. It will be done. Therefore, the engine 12 can be restarted while securing the safety of the vehicle while reducing the load of a battery (not shown) mounted on the vehicle.
 (2)ブレーキアクチュエータ31を用いて車輪FR,FL,RR,RLに対する制動力を増大させるためには、ポンプ42,43(即ち、モータ41)を作動させる必要がある。ポンプ42,43を作動させると、ブレーキアクチュエータ31での電力消費量が多くなる。この状態でエンジン12を再始動させようとすると、車両のバッテリの負荷が非常に大きくなる。特にエンジン12が不調状態となる原因の一つとしては、バッテリの蓄電量が少なくなっていることが挙げられる。そのため、ポンプ42,43を作動させるような制動制御中にエンジン12を再始動させるための駆動力発生装置13での駆動制御が行われると、エンジン12を始動させるために作動するスタータモータ(図示略)に対する電力供給量を十分に確保できないおそれがある。すなわち、バッテリの蓄電量をいたずらに消費するだけで、エンジン12をなかなか再始動させることができないことになる。 (2) In order to increase the braking force on the wheels FR, FL, RR, and RL using the brake actuator 31, it is necessary to operate the pumps 42 and 43 (i.e., the motor 41). When the pumps 42 and 43 are operated, the amount of power consumed by the brake actuator 31 increases. If it is attempted to restart the engine 12 in this state, the load on the battery of the vehicle becomes very large. In particular, one of the causes of the malfunction of the engine 12 is that the storage amount of the battery is small. Therefore, when drive control is performed by the driving force generator 13 for restarting the engine 12 during braking control to operate the pumps 42 and 43, a starter motor (shown in FIG. There is a possibility that the amount of power supplied to the power supply can not be sufficiently secured. That is, the engine 12 can not be easily restarted only by unnecessarily consuming the storage amount of the battery.
 この点、本実施形態では、ポンプ42,43を作動させるような制動制御中にエンジン12を再始動させるための制御が行われない。そのため、バッテリの負荷を低減させることができる。また、エンジン12を再始動させる場合には、スタータモータに対して十分に電力を供給することができ、ひいてはエンジン12を速やかに再始動させることができる。 In this respect, in the present embodiment, the control for restarting the engine 12 is not performed during the braking control for operating the pumps 42 and 43. Therefore, the load on the battery can be reduced. In addition, when the engine 12 is restarted, power can be sufficiently supplied to the starter motor, and thus the engine 12 can be restarted promptly.
 (3)第2の制動制御によって車両の停車が維持された状態で、ブレーキペダル15が操作されなくなったことを検知した場合には、惰性による車両の移動を運転手が許可したと判断される。そして、車輪FR,FL,RR,RLに対する制動力が減少される。すると、車両が坂路上に位置する場合には、車両が傾斜方向における下方側に移動する。すなわち、エンジン12の始動不調状態であっても、車両の挙動を、運転手の意図に沿ったものとすることができる。 (3) When it is detected that the brake pedal 15 is not operated while the vehicle is kept stopped by the second braking control, it is determined that the driver permitted the vehicle to move due to inertia . Then, the braking force on the wheels FR, FL, RR, and RL is reduced. Then, when the vehicle is located on a slope, the vehicle moves downward in the inclination direction. That is, even when the start of the engine 12 is in a malfunction, the behavior of the vehicle can be made in accordance with the driver's intention.
 (4)エンジン12の始動不調状態である場合には、ブースタ26内の負圧が低下している可能性が高い。この場合、マスタシリンダ25内のMC圧Pmcを十分に高圧にできないため、運転手によるブレーキペダル15の操作によって車輪FR,FL,RR,RLに十分に大きな制動力を付与できない。そこで、本実施形態では、第3の制動制御時には、車体速度VSが車体速度基準値VSth以上とならないように、車輪FR,FL,RR,RLに対する制動力が調整される。そのため、車両の車体速度VSが高速になり過ぎることを抑制できる分、車両の安全性を確保した状態で、エンジン12を再始動させるための制御を行わせることができる。 (4) In the case where the start of the engine 12 is in a malfunction, there is a high possibility that the negative pressure in the booster 26 is reduced. In this case, since the MC pressure Pmc in the master cylinder 25 can not be made sufficiently high, a sufficiently large braking force can not be applied to the wheels FR, FL, RR, and RL by the operation of the brake pedal 15 by the driver. Therefore, in the present embodiment, during the third braking control, the braking force on the wheels FR, FL, RR, and RL is adjusted so that the vehicle speed VS does not become equal to or higher than the vehicle speed reference value VSth. Therefore, since the vehicle speed VS of the vehicle can be prevented from becoming too high, control for restarting the engine 12 can be performed while securing the safety of the vehicle.
 なお、車両の位置する路面によっては、第3の制動制御が実行されても車両が移動しないこともあり得る。また、本実施形態でいう「車両の惰性による移動」とは、坂路に位置する車両に対して勾配に応じた力(「勾配加速度」ともいう。)が付与されることに起因した車両の移動を含んだ概念である。 Depending on the road surface where the vehicle is located, the vehicle may not move even if the third braking control is performed. In addition, “movement due to inertia of the vehicle” in the present embodiment means movement of the vehicle caused by applying a force (also referred to as “gradient acceleration”) according to the gradient to the vehicle located on a slope. It is a concept that includes
 (5)本実施形態では、第3の制動制御時には、ポンプ42,43が作動しないため、エンジン12の再始動が許可されている。そのため、運転手によるブレーキペダル15の操作の解消を契機に、エンジン12が再始動する可能性がある。すなわち、運転手に違和感を感じさせないタイミングで、エンジン12を再始動させることができる。 (5) In the present embodiment, during the third braking control, since the pumps 42 and 43 do not operate, restart of the engine 12 is permitted. Therefore, there is a possibility that the engine 12 may be restarted in response to the cancellation of the operation of the brake pedal 15 by the driver. That is, the engine 12 can be restarted at a timing at which the driver does not feel discomfort.
 (6)第3の制動制御中であっても、運転手によるブレーキペダル15の操作が検知された場合には、車輪FR,FL,RR,RLに対する制動力を増大させて車両を停車させる。これは、ブレーキペダル15が操作されたということは、車両を停車させる意志が運転手にあると判断されるためである。そのため、運転手の意図に沿って車両を停車させることができる。 (6) Even during the third braking control, when the driver's operation of the brake pedal 15 is detected, the braking force on the wheels FR, FL, RR, and RL is increased to stop the vehicle. This is because that the brake pedal 15 is operated, it is determined that the driver has the intention to stop the vehicle. Therefore, the vehicle can be stopped according to the driver's intention.
 (7)また、このように車輪FR,FL,RR,RLに対する制動力を増大させる場合には、エンジン12の再始動が禁止される。そのため、バッテリの負荷の増大を抑制できる。 (7) Further, when the braking force on the wheels FR, FL, RR, and RL is increased as described above, the restart of the engine 12 is prohibited. Therefore, the increase of the load of the battery can be suppressed.
 (8)回数基準値CTthは、車両の位置する路面の勾配が緩勾配である場合には勾配が急勾配である場合よりも大きな値に設定される。そのため、車両が加速しにくい場合、即ち勾配相当値Agが「0(零)」に近い場合には、エンジン12の再始動のリトライ回数が多くなる。これは、ブースタ26内の負圧の低下に起因して車輪FR,FL,RR,RLに対する制動力が小さくなっても、勾配相当値Agが「0(零)」に近い場合には、車体速度VSが高速になりにくいためである。このように車両の安全性を確保できる場合には、エンジン12が始動不調状態であるか否かの判定を極力遅らせることができる。すなわち、第1の制動制御の実行前に、エンジン12を再始動させることができる可能性を高くすることができる。 (8) The frequency reference value CTth is set to a larger value when the slope of the road surface where the vehicle is located is slower than when the slope is steep. Therefore, when it is difficult for the vehicle to accelerate, that is, when the gradient equivalent value Ag is close to “0 (zero)”, the number of retries for restarting the engine 12 increases. This is because, even if the braking force on the wheels FR, FL, RR, and RL decreases due to the reduction of the negative pressure in the booster 26, the vehicle body can be obtained if the gradient equivalent value Ag is close to "0 (zero)". This is because it is difficult for the speed VS to be high. As described above, when the safety of the vehicle can be secured, the determination as to whether or not the engine 12 is in the start-up malfunction state can be delayed as much as possible. That is, before the execution of the first braking control, the possibility that the engine 12 can be restarted can be increased.
 (9)本実施形態では、回数カウンタ値CTが回収基準値CTth未満であっても、車両の車体速度VSが車体速度基準値VSth以上になった場合には、エンジン12の再始動が禁止されると共に、車輪FR,FL,RR,RLに対する制動力を増大させるべくブレーキアクチュエータ31が駆動する。これは、車両の車体速度VSが車体速度基準値VSth以上になると、ポンプ42,43の作動を伴う制動制御の実行が許可されることから、該制動制御とエンジン12を再始動させるための制御とが時間的に重複する可能性があるためである。そのため、本実施形態では、ポンプ42,43の作動を伴う制動制御とエンジン12を再始動させるための制御とが時間的に重複する可能性の低減に貢献できる。 (9) In the present embodiment, even if the number counter value CT is less than the collection reference value CTth, restart of the engine 12 is prohibited when the vehicle body speed VS of the vehicle becomes equal to or higher than the vehicle body speed reference value VSth. And the brake actuator 31 is driven to increase the braking force on the wheels FR, FL, RR, and RL. This is because when the vehicle body speed VS of the vehicle becomes equal to or higher than the vehicle body speed reference value VSth, the execution of the braking control accompanied by the operation of the pumps 42 and 43 is permitted, so the braking control and the control for restarting the engine 12 And may overlap in time. Therefore, in the present embodiment, it is possible to contribute to the reduction of the possibility that the braking control accompanied by the operation of the pumps 42 and 43 and the control for restarting the engine 12 overlap in time.
 なお、実施形態は以下のような別の実施形態に変更してもよい。 Note that the embodiment may be changed to another embodiment as described below.
 実施形態において、回数基準値CTthは、勾配相当値Agの大きさに関係なく、予め設定された値(例えば、3)であってもよい。 In the embodiment, the frequency reference value CTth may be a preset value (for example, 3) regardless of the magnitude of the gradient equivalent value Ag.
 また、エンジン12の再始動の失敗回数、即ち回数カウンタ値CTを計数しなくてもよい。この場合、エンジン12の再始動の失敗を繰り返している間に、車体速度VSが車体速度基準値VSth以上となった場合には、エンジン12が始動不調状態であると判定される。 Further, it is not necessary to count the number of restart failures of the engine 12, that is, the number counter value CT. In this case, when the vehicle speed VS becomes equal to or higher than the vehicle speed reference value VSth while repeating the failure of the restart of the engine 12, it is determined that the engine 12 is in the start failure condition.
 実施形態において、車両に搭載されるナビゲーション装置に、路面の勾配に関する勾配情報(即ち、勾配相当値Agに関する情報)が記憶される場合には、ナビゲーション装置から勾配相当値Agを取得してもよい。 In the embodiment, when gradient information on the gradient of the road surface (ie, information on the gradient equivalent value Ag) is stored in the navigation device mounted on the vehicle, the gradient equivalent value Ag may be acquired from the navigation device .
 実施形態において、エンジン12の再始動条件が成立してから(上記実施形態では、ステップS20が肯定になってから)の経過時間を計測し、該経過時間が時間基準値以上になっても、エンジン12が再始動されていない場合に、エンジン12が始動不調状態であると判定されてもよい。この場合、図8に示すマップを用意することが好ましい。このマップは、時間基準値Tthを、勾配相当値Agに応じた値に設定するためのマップである。すなわち、時間基準値Tthは、路面の勾配が緩勾配である場合のほうが、勾配が急勾配である場合よりも大きな値に設定される。 In the embodiment, the elapsed time after the restart condition of the engine 12 is satisfied (in the above embodiment, after step S20 becomes affirmative) is measured, and the elapsed time becomes equal to or greater than the time reference value, When the engine 12 is not restarted, it may be determined that the engine 12 is in the start up failure state. In this case, it is preferable to prepare a map shown in FIG. This map is a map for setting the time reference value Tth to a value corresponding to the gradient equivalent value Ag. That is, the time reference value Tth is set to a larger value in the case where the gradient of the road surface is gentle than in the case where the gradient is steep.
 車両が後退している場合には、一般的に、ブレーキアクチュエータ31を用いた制動制御が行われない。こうした車両では、車両が後退する場合には、ステップS25の判定処理を省略してもよい。このように構成しても、ブレーキアクチュエータ31のポンプ42,43の作動が伴う制動制御と、エンジン12を再始動させるための駆動力発生装置13での駆動制御とが時間的に重複することを回避できる。 When the vehicle is moving backward, braking control using the brake actuator 31 is not generally performed. In such a vehicle, when the vehicle moves backward, the determination process of step S25 may be omitted. Even in this configuration, the braking control accompanied by the operation of the pumps 42 and 43 of the brake actuator 31 and the driving control by the driving force generator 13 for restarting the engine 12 overlap in time. It can be avoided.
 実施形態において、ステップS36では、ブレーキペダル15の操作量が少なくなったか否かを判定してもよい。ブレーキペダル15の操作量は、圧力センサSE8からの検出信号に基づき演算されるMC圧Pmcの変動に基づき推定される。 In the embodiment, in step S36, it may be determined whether the amount of operation of the brake pedal 15 has decreased. The operation amount of the brake pedal 15 is estimated based on the fluctuation of the MC pressure Pmc calculated based on the detection signal from the pressure sensor SE8.
 同様に、ステップS39では、ブレーキペダル15の操作量が多くなったか否かを判定してもよい。 Similarly, in step S39, it may be determined whether the operation amount of the brake pedal 15 has increased.
 実施形態において、第3の制動制御では、車両の車体速度VSが、車体速度基準値(制御閾値)VSthよりも小さい値に設定された許可基準値以下となるように、車輪FR,FL,RR,RLに対する制動力を調整してもよい。 In the embodiment, in the third braking control, the wheels FR, FL, and RR are set such that the vehicle body speed VS of the vehicle is equal to or less than the permission reference value set to a value smaller than the vehicle body speed reference value (control threshold) VSth. , RL may be adjusted.
 第3の制動制御の実行中に、車両の走行する路面の勾配が変化することがあり得る。特に、路面の勾配が、第3の制動制御の開始時点の勾配よりも急勾配になった場合には、車両の車体速度VSが高速になる。これは、リニア電磁弁35a,35bに対する電流値が第3の制動制御の開始時点における路面の勾配によって設定されるためである。このように第3の制動制御の実行中に、車体速度VSが車体速度基準値VSth以上になった場合には、運転手のブレーキペダル15の操作の有無に関係なく、再始動禁止指令をエンジン用ECU17に送信すると共に、第1の制動制御処理を行ってもよい。このように構成すると、ブレーキアクチュエータ31のポンプ42,43の作動が伴う制動制御と、エンジン12を再始動させるための駆動力発生装置13での駆動制御とが時間的に重複することを回避できる。 During execution of the third braking control, the slope of the road surface on which the vehicle travels may change. In particular, when the slope of the road surface becomes steeper than the slope at the start of the third braking control, the vehicle speed VS of the vehicle becomes high. This is because the current values for the linear solenoid valves 35a, 35b are set by the gradient of the road surface at the start of the third braking control. As described above, when the vehicle speed VS becomes equal to or higher than the vehicle speed reference value VSth during execution of the third braking control, the restart inhibition command is sent to the engine regardless of the presence or absence of the operation of the brake pedal 15 of the driver. While transmitting to ECU17, you may perform a 1st damping | braking control process. According to this configuration, it is possible to avoid that the braking control accompanied by the operation of the pumps 42 and 43 of the brake actuator 31 and the driving control by the driving force generator 13 for restarting the engine 12 overlap in time. .
 また、第3の制動制御の実行中に、車体速度VSが車体速度基準値VSth以上になった場合には、車体速度VSが車体速度基準値VSth未満となるように、ブレーキアクチュエータ31を駆動させてもよい。ただし、ブレーキアクチュエータ31の駆動中には、エンジン12の再始動を禁止することが好ましい。 When the vehicle speed VS becomes equal to or higher than the vehicle speed reference value VSth during execution of the third braking control, the brake actuator 31 is driven such that the vehicle speed VS becomes lower than the vehicle speed reference value VSth. May be However, it is preferable to prohibit the restart of the engine 12 while the brake actuator 31 is driven.
 実施形態において、第2の制動制御中に運転手によるブレーキペダル15の操作が解消された場合には、車輪FR,FL,RR,RLに対する制動力を「0(零)」としてもよい。その後、車体速度VSが車体速度基準値VSth以上になった場合には、第1の制動制御を行ってもよい。なお、車輪FR,FL,RR,RLに対する制動力が「0(零)」となる間では、エンジン12の再始動を許可してもよい。 In the embodiment, when the driver's operation of the brake pedal 15 is canceled during the second braking control, the braking force on the wheels FR, FL, RR, and RL may be “0 (zero)”. Thereafter, when the vehicle speed VS becomes equal to or higher than the vehicle speed reference value VSth, the first braking control may be performed. The engine 12 may be allowed to restart while the braking forces on the wheels FR, FL, RR, and RL are "0 (zero)."
 実施形態において、車体速度VSを、車両に搭載されるナビゲーション装置から取得してもよい。 In the embodiment, the vehicle speed VS may be obtained from a navigation device mounted on a vehicle.
 実施形態において、第1の制動制御処理では、目標油圧Pwcthを、勾配相当値Agが大きい場合のほうが、勾配相当値Agが小さい場合よりも高圧に設定してもよい。 In the embodiment, in the first braking control process, the target hydraulic pressure Pwcth may be set to a higher pressure in the case where the gradient equivalent value Ag is larger than in the case where the gradient equivalent value Ag is small.
 実施形態において、ステップS39の判定結果が肯定(SW1=オン)になったことを契機に第1の制動制御処理及び第2の制動制御処理が実行された場合には、第2の制動制御が開始されてからの経過時間が予め設定された所定時間(例えば10秒)以上となってから、再始動許可指令をエンジン用ECU17に送信させてもよい。この場合、第2の制動制御が実行されてから所定時間の間は、エンジン12を再始動させるためにバッテリに蓄電される電力が消費されず、バッテリの蓄電量を少しだけ増やすことができる。このようにバッテリの蓄電量が増加することにより、バッテリの蓄電量不足に起因したエンジン12の始動不調状態を解消できる可能性が高くなる。 In the embodiment, when the first braking control process and the second braking control process are executed when the determination result in step S39 becomes affirmative (SW1 = on), the second braking control is performed. The restart permission command may be transmitted to the engine ECU 17 when the elapsed time since the start is equal to or longer than a predetermined time (for example, 10 seconds) set in advance. In this case, the power stored in the battery is not consumed for restarting the engine 12 for a predetermined time after the second braking control is performed, and the storage amount of the battery can be slightly increased. As described above, the increase in the storage amount of the battery increases the possibility of eliminating the start failure state of the engine 12 caused by the shortage of the storage amount of the battery.
 車両が電動パーキングブレーキ装置を備えている場合、第1~第3の各制動制御処理では、ブレーキアクチュエータ31の代わりに、電動パーキングブレーキ装置を用いてもよいし、ブレーキアクチュエータ31と電動パーキングブレーキ装置とを共に用いてもよい。 When the vehicle includes the electric parking brake device, the electric parking brake device may be used instead of the brake actuator 31 in each of the first to third braking control processes, or the brake actuator 31 and the electric parking brake device And may be used together.
 12…エンジン、15…ブレーキペダル、31…ブレーキアクチュエータ、32a~32d…ホイールシリンダ、35a,35b…調整弁としてのリニア電磁弁、42,43…ポンプ、55…第1の制御部、第2の制御部、車体速度取得部としてのブレーキ用ECU、FR,FL,RR,RL…車輪、CT…実行回数としての回数カウンタ値、CTth…回数基準値、Tth…時間基準値、VS…車体速度、VSth…許可基準値、車体速度閾値、制御閾値としての車体速度基準値。 12: Engine, 15: Brake pedal, 31: Brake actuator, 32a to 32d: Wheel cylinder, 35a, 35b: Linear solenoid valve as adjusting valve, 42, 43: Pump, 55: First control unit, second Control unit, ECU for brake as vehicle speed acquisition unit, FR, FL, RR, RL: wheel, CT: number of execution times counter value, CTth: number of times reference value, Tth: time reference value, VS: vehicle speed, VSth: permission reference value, vehicle speed threshold, vehicle speed reference as control threshold.

Claims (8)

  1.  車両の制御装置において、
     車両のエンジン(12)の停止条件が成立した場合に該エンジン(12)の自動的な停止を許可すると共に、前記エンジン(12)の再始動条件が成立した場合に該エンジン(12)の再始動を許可する第1の制御部(55、S12,S13)と、
     車両に設けられる車輪(FR,FL,RR,RL)に対する制動力を調整する第2の制御部(55)と、を備え、
     前記第2の制御部(55、S32,S33)は、前記エンジン(12)の再始動の許可後において該エンジン(12)の始動不調を検知した場合には、車両を停車させるべく前記車輪(FR,FL,RR,RL)に対する制動力を増大させる第1の制動制御を行い、その後、前記車輪(FR,FL,RR,RL)に対する制動力を保持させる第2の制動制御を行い、
     前記第1の制御部(55、S12,S13,S31,S34)は、前記第1の制動制御の実行中には前記エンジン(12)の再始動を禁止し、前記第2の制動制御の実行中には前記エンジン(12)の再始動を許可する車両の制御装置。
    In the control device of the vehicle,
    The automatic stop of the engine (12) is permitted when the stop condition of the engine (12) of the vehicle is satisfied, and the restart condition of the engine (12) is satisfied when the restart condition of the engine (12) is satisfied. A first control unit (55, S12, S13) permitting start-up;
    A second control unit (55) for adjusting a braking force on wheels (FR, FL, RR, RL) provided in the vehicle;
    The second control unit (55, S32, S33) detects the start failure of the engine (12) after permitting the restart of the engine (12), the wheels (for stopping the vehicle) The first braking control is performed to increase the braking force on FR, FL, RR, and RL, and then the second braking control is performed to hold the braking force on the wheels (FR, FL, RR, and RL).
    The first control unit (55, S12, S13, S31, S34) prohibits restart of the engine (12) during execution of the first braking control, and executes the second braking control. The control device of the vehicle which permits the restart of the said engine (12) in the inside.
  2.  前記第2の制御部(55、S32,S33,S37)は、前記第2の制動制御の実行中において、車両に設けられるブレーキペダル(15)の操作量が減少されたこと、又は該ブレーキペダル(15)が非操作状態になったことを検知した場合に、前記車輪(FR,FL,RR,RL)に対する制動力を減少させて車両の移動を許可する第3の制動制御を行う請求項1に記載の車両の制御装置。 During the execution of the second braking control, the second control unit (55, S32, S33, S37) reduces the amount of operation of the brake pedal (15) provided on the vehicle, or the brake pedal The third braking control for permitting the movement of the vehicle by reducing the braking force on the wheels (FR, FL, RR, RL) when detecting that (15) is in the non-operating state is performed. The control device of the vehicle according to 1.
  3.  前記第3の制動制御は、車両の車体速度(VS)が、予め設定された許可基準値(VSth)未満となるように前記車輪(FR,FL,RR,RL)に対する制動力を調整する制御である請求項2に記載の車両の制御装置。 The third braking control is a control for adjusting the braking force on the wheels (FR, FL, RR, RL) such that the vehicle body speed (VS) of the vehicle is less than a preset permission reference value (VSth). The control device of the vehicle according to claim 2.
  4.  車両は、ホイールシリンダの内部に発生した流体圧に応じた制動力を前記車輪(FR,FL,RR,RL)に付与するホイールシリンダ(32a,32b,32c,32d)と、該ホイールシリンダ(32a,32b,32c,32d)内の流体圧を調整するブレーキアクチュエータ(31)と、を備え、
     前記ブレーキアクチュエータ(31)は、前記ホイールシリンダ(32a,32b,32c,32d)内の流体圧を増圧させるべく作動するポンプ(42,43)と、前記ホイールシリンダ(32a,32b,32c,32d)内の流体圧を調整すべく作動する調整弁(35a,35b)とを有しており、
     前記許可基準値は、前記ポンプ(42,43)の作動を伴う制動制御の実行を許可するための制御閾値(VSth)以下の値に設定される請求項3に記載の車両の制御装置。
    The vehicle is provided with a wheel cylinder (32a, 32b, 32c, 32d) that applies a braking force corresponding to fluid pressure generated inside the wheel cylinder to the wheel (FR, FL, RR, RL), and the wheel cylinder (32a). , 32b, 32c, 32d), and a brake actuator (31) for adjusting the fluid pressure in the
    The brake actuator (31) is a pump (42, 43) that operates to increase fluid pressure in the wheel cylinder (32a, 32b, 32c, 32d), and the wheel cylinder (32a, 32b, 32c, 32d) Control valve (35a, 35b) that operates to adjust the fluid pressure in the
    The control system for a vehicle according to claim 3, wherein the permission reference value is set to a value equal to or less than a control threshold (VSth) for permitting execution of braking control accompanied by operation of the pump (42, 43).
  5.  前記第2の制御部(55、S32,S33,S37)は、前記第3の制動制御の実行中において、前記ブレーキペダル(15)の操作量が増大されたことを検知した場合に、前記第1の制動制御を行う請求項2~請求項4のうちのいずれか一項に記載の車両の制御装置。 The second control unit (55, S32, S33, S37) detects that the operation amount of the brake pedal (15) is increased during execution of the third braking control, The control device for a vehicle according to any one of claims 2 to 4, wherein the braking control of 1 is performed.
  6.  前記第1の制御部(55、S12,S13,S31,S34)は、前記エンジン(12)の再始動を許可してからの該エンジン(12)の再始動の実行回数、又は前記エンジン(12)の再始動を許可してからの経過時間が、設定された回数基準値(CTth)又は時間基準値(Tth)以上になっても前記エンジン(12)が再始動されない場合に、前記エンジン(12)の始動不調を検知する請求項1~請求項5のうちのいずれか一項に記載の車両の制御装置。 The first control unit (55, S12, S13, S31, S34) executes the number of restarts of the engine (12) after allowing the restart of the engine (12), or The engine (12) is not restarted even if the elapsed time after allowing the restart of the engine) exceeds a set number of times reference value (CTth) or time reference value (Tth). The control device of a vehicle according to any one of claims 1 to 5, which detects a start up malfunction of 12).
  7.  車両の車体速度(VS)を取得する車体速度取得部(55、S24)をさらに備え、
     前記第1の制御部(55、S12,S13,S31,S34)は、前記エンジン(12)の再始動の許可後において前記車体速度取得部(55、S24)によって取得された車体速度(VS)が予め設定された車体速度閾値(VSth)以上になっても前記エンジン(12)が再始動されない場合に、前記エンジン(12)の始動不調を検知する請求項1~請求項6のうちのいずれか一項に記載の車両の制御装置。
    It further comprises a vehicle speed acquisition unit (55, S24) for acquiring the vehicle speed (VS) of the vehicle,
    The first control unit (55, S12, S13, S31, S34) is a vehicle speed (VS) acquired by the vehicle speed acquisition unit (55, S24) after permission of restart of the engine (12). 7. A start failure of the engine (12) is detected when the engine (12) is not restarted even if the vehicle speed exceeds a preset vehicle speed threshold (VSth). Control device of a vehicle according to any one of the preceding claims.
  8.  車両の制御方法において、
     車両のエンジン(12)の停止条件が成立した場合に該エンジン(12)の自動的な停止を許可させる停止ステップ(S12)と、
     前記エンジン(12)の再始動条件が成立した場合に該エンジン(12)の再始動を許可させる再始動ステップ(S13)と、を備え、
     前記再始動ステップ(S13)は、前記エンジン(12)の再始動の許可後において該エンジン(12)の始動不調が検知された場合に、前記エンジン(12)の再始動を禁止させると共に、車両を停車させるべく車両に設けられた車輪(FR,FL,RR,RL)に対する制動力を増大させる第1のステップ(S31,S32)と、
     前記第1のステップ(S31,S32)の実行後、前記車輪(FR,FL,RR,RL)に対する制動力を保持させると共に、前記エンジン(12)の再始動を許可させる第2のステップ(S33,S34)と、を含む車両の制御方法。
    In the control method of the vehicle,
    A stop step (S12) of permitting automatic stop of the engine (12) when a stop condition of the engine (12) of the vehicle is satisfied;
    And V. a restart step (S13) for permitting restart of the engine (12) when the restart condition of the engine (12) is satisfied.
    The restart step (S13) prohibits the restart of the engine (12) when a malfunction in the start of the engine (12) is detected after permission to restart the engine (12), and A first step (S31, S32) of increasing the braking force on the wheels (FR, FL, RR, RL) provided on the vehicle to stop the vehicle;
    After the execution of the first step (S31, S32), the second step (S33) allows the engine (12) to be restarted while holding the braking force for the wheels (FR, FL, RR, RL). , S34), and a control method of the vehicle.
PCT/JP2011/069595 2010-08-30 2011-08-30 Vehicle control device and vehicle control method WO2012029773A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112011102870.9T DE112011102870B4 (en) 2010-08-30 2011-08-30 Vehicle control device and vehicle control method
CN201180041447.8A CN103228514B (en) 2010-08-30 2011-08-30 Controller of vehicle and control method for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-192331 2010-08-30
JP2010192331A JP5776153B2 (en) 2010-08-30 2010-08-30 Vehicle control apparatus and vehicle control method

Publications (1)

Publication Number Publication Date
WO2012029773A1 true WO2012029773A1 (en) 2012-03-08

Family

ID=45772856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069595 WO2012029773A1 (en) 2010-08-30 2011-08-30 Vehicle control device and vehicle control method

Country Status (4)

Country Link
JP (1) JP5776153B2 (en)
CN (1) CN103228514B (en)
DE (1) DE112011102870B4 (en)
WO (1) WO2012029773A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076754A1 (en) * 2012-11-13 2014-05-22 本田技研工業株式会社 Stopping control device for vehicle

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076753A1 (en) * 2012-11-13 2014-05-22 本田技研工業株式会社 Stopping control device for vehicle
JP6350787B2 (en) * 2013-10-03 2018-07-04 三菱自動車工業株式会社 Vehicle control device
JP5979119B2 (en) * 2013-11-13 2016-08-24 トヨタ自動車株式会社 Vehicle control device
JP6391007B2 (en) * 2014-09-30 2018-09-19 株式会社ケーヒン Engine automatic stop automatic start control device
CN107074216B (en) * 2014-11-07 2019-07-26 本田技研工业株式会社 Vehicle brake system and vehicle brake control method
US10501080B2 (en) 2016-01-19 2019-12-10 Ford Global Technologies, Llc Electric parking brake usage for vehicle powertrain out of operation conditions
JP2017203393A (en) * 2016-05-10 2017-11-16 スズキ株式会社 Vehicle control device
JP6737733B2 (en) * 2017-04-05 2020-08-12 株式会社アドヴィックス Vehicle braking control device
DE102017222930A1 (en) * 2017-12-15 2019-06-19 Zf Friedrichshafen Ag Method for operating a drive train of a motor vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013768A (en) * 2001-06-27 2003-01-15 Denso Corp Automatic engine stopping and restarting unit
JP2004124923A (en) * 2002-07-30 2004-04-22 Honda Motor Co Ltd Engine automatic stopping/starting control device
JP2008128104A (en) * 2006-11-21 2008-06-05 Isuzu Motors Ltd Automatic stopping-starting device of engine
JP2008291661A (en) * 2007-05-22 2008-12-04 Mazda Motor Corp Control device for vehicular engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001012272A (en) * 1999-06-29 2001-01-16 Toyota Motor Corp Automatic stop/start device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013768A (en) * 2001-06-27 2003-01-15 Denso Corp Automatic engine stopping and restarting unit
JP2004124923A (en) * 2002-07-30 2004-04-22 Honda Motor Co Ltd Engine automatic stopping/starting control device
JP2008128104A (en) * 2006-11-21 2008-06-05 Isuzu Motors Ltd Automatic stopping-starting device of engine
JP2008291661A (en) * 2007-05-22 2008-12-04 Mazda Motor Corp Control device for vehicular engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014076754A1 (en) * 2012-11-13 2014-05-22 本田技研工業株式会社 Stopping control device for vehicle
JPWO2014076754A1 (en) * 2012-11-13 2016-09-08 本田技研工業株式会社 Vehicle stop control device
US9463781B2 (en) 2012-11-13 2016-10-11 Honda Motor Co., Ltd. Stop control system for vehicle

Also Published As

Publication number Publication date
JP5776153B2 (en) 2015-09-09
CN103228514B (en) 2016-06-29
JP2012047153A (en) 2012-03-08
DE112011102870B4 (en) 2021-01-14
CN103228514A (en) 2013-07-31
DE112011102870T5 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
WO2012029773A1 (en) Vehicle control device and vehicle control method
JP5736705B2 (en) Vehicle control apparatus and vehicle control method
JP4830600B2 (en) Braking device for vehicle
JP5621479B2 (en) Vehicle control apparatus and control method
US8382642B2 (en) Vehicle control apparatus
JP5672917B2 (en) Vehicle control device
JP5471429B2 (en) VEHICLE STOP CONTROL DEVICE AND VEHICLE STOP CONTROL METHOD
WO2011162374A1 (en) Vehicle control device, and vehicle control method
US8794719B2 (en) Brake device for vehicle
JP5895916B2 (en) Brake control device for vehicle
JP5787050B2 (en) Vehicle control device
JP5659580B2 (en) Vehicle control apparatus and vehicle control method
JP5428898B2 (en) Vehicle control method and vehicle control apparatus
JP2007106307A (en) Device and method for retaining braking force of vehicle
JP2007283836A (en) Brake device for vehicle
JP6355071B2 (en) Vehicle stop maintenance device
JP5582107B2 (en) Vehicle control device
JP5895599B2 (en) Vehicle control apparatus and vehicle control method
JP6127364B2 (en) Brake control device for vehicle
JP6355070B2 (en) Vehicle stop maintenance device
WO2019049909A1 (en) Braking device for vehicles
JP2013203153A (en) Vehicular brake control device
JP2017185989A (en) Vehicular control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821789

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112011102870

Country of ref document: DE

Ref document number: 1120111028709

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821789

Country of ref document: EP

Kind code of ref document: A1