WO2012043383A1 - Etching method, and device - Google Patents

Etching method, and device Download PDF

Info

Publication number
WO2012043383A1
WO2012043383A1 PCT/JP2011/071638 JP2011071638W WO2012043383A1 WO 2012043383 A1 WO2012043383 A1 WO 2012043383A1 JP 2011071638 W JP2011071638 W JP 2011071638W WO 2012043383 A1 WO2012043383 A1 WO 2012043383A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
etching
fluorine
gas
silicon
Prior art date
Application number
PCT/JP2011/071638
Other languages
French (fr)
Japanese (ja)
Inventor
俊介 功刀
真弓 聡
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201180046520.0A priority Critical patent/CN103155116B/en
Priority to JP2012536396A priority patent/JP5276223B2/en
Priority to KR1020137010746A priority patent/KR101362632B1/en
Publication of WO2012043383A1 publication Critical patent/WO2012043383A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/6776Continuous loading and unloading into and out of a processing chamber, e.g. transporting belts within processing chambers

Definitions

  • the present invention relates to a method and apparatus for etching a silicon-containing material, and more particularly, to an etching method and apparatus suitable for controlling the etching amount of a silicon-containing material that is etched with an oxidation reaction of amorphous silicon or the like.
  • Patent Documents 1 and 2 An apparatus for etching a silicon-containing material such as amorphous silicon using plasma near atmospheric pressure is known (see Patent Documents 1 and 2).
  • a gas in which water vapor is added to a fluorine-containing component such as CF 4 is converted into plasma under atmospheric pressure.
  • Fluorine-based reaction components such as HF and COF 2 are generated by plasmatization.
  • Ozone is further mixed with the gas after being plasmatized and brought into contact with the object to be processed. Thereby, the silicon coated on the object to be processed is etched through the following two-stage reaction process.
  • an oxidation reaction of silicon occurs (Equation 1). 3Si + 2O 3 ⁇ 3SiO 2 (Formula 1)
  • the oxidized silicon reacts with a fluorine-based reaction component such as HF, and is converted into a volatile component (SiF 4 or the like).
  • SiO 2 + 4HF ⁇ SiF 4 + 2H 2 O (Formula 2)
  • HF and H 2 O in the processing gas are condensed to form a condensed layer of hydrofluoric acid water.
  • Patent Document 2 a plasma gas containing a fluorine-based reaction component and an ozone-containing gas are blown out from separate blowout ports and brought into contact with the object to be processed.
  • the workpiece is reciprocated (scanned) with respect to the gas blowing nozzle.
  • one-way movement to the forward side or the backward side is defined as one scan.
  • One reciprocating movement is two scans.
  • JP 2007-294642 A JP 2009-099880 ([0023], FIG. 2)
  • a condensed layer of hydrofluoric acid water or the like resulting from the fluorine-based reaction component is formed on the surface of the object to be processed, and this condensed layer obstructs the oxidation reaction, so that the etching reaction becomes more difficult to occur.
  • the surface of the object to be processed has already been oxidized by the processing up to the previous time, so that the second stage etching reaction (Equation 2) can be started immediately. For this reason, the number of times the workpiece crosses the processing space (the number of crossings, the number of scans) and the cumulative etching amount are not directly proportional, the proportionality is inferior, and the etching amount is not easily controlled.
  • the present invention has been made based on the above circumstances, and prevents the fluorine-based reaction component from being wasted by making the etching reaction of the silicon-containing material sufficiently occur from the first crossing, and the etching amount. It is intended to make it possible to easily control.
  • an etching method etches a silicon-containing material using a processing gas containing a fluorine-based reaction component and a first oxidizing reaction component in a processing space near atmospheric pressure.
  • An etching process step for generating each reaction component of the process gas in a processing space It is characterized by including.
  • the second oxidizing reaction component in the processing fluid causes an oxidation reaction with the silicon-containing material (see Formula 1).
  • the etching reaction see Formula 2 by the fluorine-based reaction component in the processing gas can be started immediately. Therefore, the etching rate can be sufficiently increased even at the first crossing, and the waste of the fluorine-based reaction component can be avoided.
  • the oxidation of the silicon-containing material can be further advanced.
  • the surface of the silicon-containing material has already been oxidized by the previous crossings, so that the etching reaction due to the fluorine-based reaction component in the processing gas can be caused immediately.
  • the silicon-containing material can be further oxidized by the first oxidizing reaction component in the processing gas. Therefore, the etching rate at the first crossing and the etching rate at the second and subsequent crossings can be made substantially the same. Therefore, the proportionality between the number of crossings and the cumulative etching amount can be increased. Therefore, by setting the number of crossings, it is possible to easily control the final etching amount of the silicon-containing material to a desired value.
  • the etching process it is preferable to control the etching amount of the silicon-containing material by adjusting the number of times that the workpiece crosses the processing space (number of times of crossing). When the number of crossings reaches the set number, the etching process is stopped. As a result, the silicon-containing material can be reliably etched to a desired thickness. The etching can be stopped when the remaining thickness of the silicon-containing film reaches a predetermined value, or the etching can be stopped when the entire silicon-containing film has just been removed. According to the present invention, it is possible to easily determine the timing for stopping etching.
  • the silicon-containing material is preferably one that causes an etching reaction (see Formula 2) with a fluorine-based reaction component with an oxidation reaction (see Formula 1), such as amorphous silicon, single crystal silicon, polycrystalline silicon, etc.
  • a fluorine-based reaction component with an oxidation reaction such as amorphous silicon, single crystal silicon, polycrystalline silicon, etc.
  • Examples include silicon alone, silicon nitride, and silicon carbide.
  • the fluorine-based reaction component in the processing gas include HF, COF 2 and the like.
  • Examples of the first oxidizing reaction component in the processing gas include O 3 , O radical, NOx, and the like.
  • Examples of the second oxidizing reaction component in the processing fluid include O 3 , O radical, and NOx.
  • the processing fluid is not limited to gas, and may be liquid such as ozone water, nitric acid, hydrogen peroxide and the like.
  • the fluorine-based reaction component is generated by converting the fluorine-based source gas containing a fluorine-containing component and a hydrogen-containing additive component into plasma at a pressure near atmospheric pressure. Thereby, HF etc. can be produced
  • a condensed layer of hydrofluoric acid water or the like resulting from the fluorine-based reaction component is formed on the surface of the object to be processed. An etching reaction is performed through this condensed layer.
  • the condensed layer is not formed, so that the condensed layer does not interfere with the oxidation reaction, and the oxidation reaction can be caused reliably.
  • the fluorine-containing component include fluorine-containing compounds such as PFC (perfluorocarbon) and HFC (hydrofluorocarbon).
  • the PFC include CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 8 and the like.
  • HFC include CHF 3 , CH 2 F 2 , CH 3 F and the like.
  • fluorine-containing compounds other than PFC and HFC such as SF 6 , NF 3 , and XeF 2 may be used as the fluorine-based component, and F 2 may be used.
  • the fluorine-containing component is preferably diluted with a diluent component.
  • the dilution component include rare gases such as helium, argon, neon, and xenon, and inert gases such as nitrogen.
  • the dilution component has a function as a carrier gas for transporting the fluorine-containing gas and a function as a discharge gas for generating stable plasma discharge.
  • the hydrogen-containing additive component is preferably water (water vapor, H 2 O).
  • Water can be added to the fluorine-based raw material gas by vaporizing with a vaporizer.
  • the hydrogen-containing additive component may be an OH group-containing compound, hydrogen peroxide, or a mixture thereof.
  • the OH group-containing compound include alcohol.
  • the vicinity of atmospheric pressure means a range of 1.013 ⁇ 10 4 to 50.663 ⁇ 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 ⁇ 10 4 ⁇ 10.664 ⁇ 10 4 Pa is preferable, and 9.331 ⁇ 10 4 to 10.397 ⁇ 10 4 Pa is more preferable.
  • An etching apparatus is an etching apparatus for etching a silicon-containing material using a processing gas containing a fluorine-based reaction component and a first oxidizing reaction component in a processing space near atmospheric pressure.
  • a pretreatment section having a pretreatment nozzle for blowing out a treatment fluid containing a second oxidizing reaction component, and bringing the treatment fluid into contact with an object to be treated containing the silicon-containing material;
  • An image forming unit that defines the processing space; and a moving mechanism that moves the object to be processed after contact with the processing fluid relative to the image forming unit so as to cross the processing space.
  • An etching processing unit that supplies the processing gas to the processing space or generates the reaction components of the processing gas in the processing space; It is provided with.
  • the object to be processed is first arranged in the pretreatment section and is opposed to the pretreatment nozzle. Then, the processing fluid is blown out from the preprocessing nozzle and brought into contact with the object to be processed.
  • the silicon-containing material can be oxidized by the second oxidizing reaction component in the processing fluid (see Formula 1).
  • the object to be processed is placed in the etching processing unit, and the moving unit is moved back and forth with respect to the defining unit. Each time the workpiece passes through the processing space, it contacts the processing gas in the processing space.
  • the oxidation reaction of the silicon-containing material has already progressed by the pretreatment in the pretreatment section. Therefore, the etching reaction (see Formula 2) by the fluorine-based reaction component in the processing gas can be started immediately. Therefore, the etching rate can be sufficiently increased even at the first crossing, and the waste of the fluorine-based reaction component can be avoided. Furthermore, when the first oxidative reaction component in the processing gas comes into contact with the object to be processed at the first crossing, the oxidation of the silicon-containing material can be further advanced.
  • the etching apparatus may include a plurality of the defining units.
  • the plurality of defining units may be arranged in the relative movement direction of the workpiece.
  • a plurality of processing spaces may be arranged in the relative movement direction.
  • the moving mechanism By moving the object to be processed relative to the relative movement direction by the moving mechanism, the object to be processed sequentially traverses the plurality of processing spaces.
  • An operation in which the workpiece crosses one of the plurality of processing spaces corresponds to one crossing (one scan).
  • the defining unit may include a processing nozzle that blows out the processing gas.
  • the etching reaction of the silicon-containing material in the etching processing section or the etching processing process can be sufficiently caused from the first crossing. Therefore, it is possible to prevent the fluorine-based reaction component at the first crossing from being wasted.
  • the proportionality between the number of crossings and the cumulative etching amount can be increased, and the etching amount can be easily controlled.
  • FIG. 1 shows an etching apparatus 1 according to the first embodiment of the present invention.
  • the workpiece 9 is formed of, for example, a glass substrate of a liquid crystal display panel and has a thin flat plate shape.
  • a surface of the workpiece 9 (upper surface in FIG. 1) is coated with a silicon-containing material 9a to be etched.
  • the silicon-containing material is made of, for example, amorphous silicon.
  • the silicon-containing material 9a may be single crystal silicon or polycrystalline silicon.
  • the silicon-containing material 9a is not limited to silicon alone, and may be silicon nitride, silicon carbide, or the like as long as it is etched (formula 2) through an oxidation reaction (formula 1).
  • the etching apparatus 1 includes a processing chamber 10, a roller conveyor 20 (movement mechanism), a preprocessing unit 40, and an etching processing unit 30.
  • the pressure in the processing chamber 10 is near atmospheric pressure.
  • a carry-in port 11 is provided on a wall on the entry side (right side in FIG. 1) of the processing chamber 10.
  • a carry-out port 12 is provided on the exit side wall (left side in FIG. 1) of the processing chamber 10.
  • An etching processing unit 30 is incorporated in the central portion of the processing chamber 10.
  • a pretreatment unit 40 is incorporated in a portion on the entry side (right side in FIG. 1) in the treatment chamber 10.
  • the roller conveyor 20 is arranged inside the processing chamber 10 along the feeding direction (x direction, left-right direction in FIG. 1), and is also installed outside the processing chamber 10 on the entry side and the exit side.
  • the roller conveyor 20 has a shaft 21 and a roller 22.
  • a plurality of shafts 21 are arranged at intervals in the right and left in FIG.
  • Each shaft 21 is provided with a roller 22.
  • the workpiece 9 is placed on the roller 22. As the shaft 21 and the roller 22 rotate together, the workpiece 9 is conveyed in the x direction. The workpiece 9 is carried into the processing chamber 10 from the carry-in port 11, subjected to a predetermined process in the processing chamber 10, and then carried out from the carry-out port 12.
  • the conveyor 20 has a function as a support part for supporting the object 9 to be processed and a function as a moving mechanism for moving the object 9 to be processed.
  • the shaft 21 and the roller 22 in the processing chamber 10 are rotatable in both forward and reverse directions.
  • the forward direction is the direction in which the workpiece 9 is conveyed from the entry side to the exit side (leftward in FIG. 1)
  • the reverse direction is the direction in which the workpiece 9 is conveyed from the exit side to the entry side (rightward in FIG. 1). ).
  • the etching processing unit 30 includes a fluorine-based raw material supply unit 31, a first oxidizing reaction component generation unit 32, and a main processing nozzle 33.
  • the fluorine-based material supply unit 31 stores a fluorine-based material gas.
  • the fluorine-based source gas includes a fluorine-containing component and a dilution component.
  • the fluorine-containing component is, for example, CF 4 .
  • the dilution component is, for example, Ar.
  • fluorine-containing component other PFC (perfluorocarbon) such as C 2 F 4 , C 2 F 6 , C 3 F 8 may be used instead of CF 4 , and CHF 3 , CH 2 F 2 , CH 3 may be used.
  • PFC perfluorocarbon
  • HFC hydrofluorocarbon
  • F may be used, and SF 6 , NF 3 , XeF 2 , F 2, etc. may be used.
  • the dilution component plays a role as a carrier gas and a gas for plasma generation.
  • An addition unit 34 is added to the fluorine-based raw material supply unit 31.
  • the hydrogen-containing additive component of the addition unit 34 is added to the fluorine-based source gas of the fluorine-based source supply unit 31.
  • the hydrogen-containing additive component is water vapor (H 2 O).
  • the addition part 34 is comprised with the vaporizer of water. Water is stored in the vaporizer 34 in a liquid state. Fluorine-based source gas (CF 4 + Ar) is introduced into the liquid in the vaporizer 34 and bubbled. Alternatively, the fluorine-based raw material gas may be introduced into the upper part of the liquid level in the vaporizer 34, and the saturated vapor in the upper part may be pushed out by the fluorine-based raw material gas.
  • water vapor is added to the fluorine-based source gas.
  • the temperature of the vaporizer 34 By adjusting the temperature of the vaporizer 34, the vapor pressure of water and thus the amount added can be adjusted.
  • a part of the fluorine-based source gas (CF 4 + Ar) is introduced into the vaporizer 34, the remainder is bypassed by the vaporizer 34, and the amount of water added is adjusted by adjusting the flow rate ratio between the part and the remainder. May be adjusted.
  • the fluorine-based source gas after the addition of water is sent to the main processing nozzle 33.
  • generation part 32 is comprised with the ozonizer.
  • the ozonizer 32 generates ozone-containing gas (O 2 + O 3 ) using oxygen (O 2 ) as a raw material.
  • Ozone in the ozone-containing gas (O 2 + O 3) ( O 3) corresponds to the "first oxidation reaction component" in the claims.
  • the ozone-containing gas (O 2 + O 3 ) from the ozonizer 32 is sent to the main processing nozzle 33.
  • the main processing nozzle 33 is installed at the center of the processing chamber 10 and extends in the width direction (y direction) orthogonal to the paper surface of FIG.
  • a plasma generation unit 35 (fluorine-based reaction component generation unit) is provided inside the main processing nozzle 33.
  • the plasma generation unit 35 includes at least a pair of electrodes 36.
  • a solid dielectric layer is provided on both or one opposing surface of the pair of electrodes 36.
  • a power source (not shown) is connected to one electrode 36 of the pair of electrodes 36, and the other electrode 36 is electrically grounded. For example, a pulsed high-frequency electric field is applied between the pair of electrodes 36 by supplying power from the power source. As a result, a glow discharge is generated between the electrodes 36 near atmospheric pressure.
  • a fluorine-based raw material supply unit 31 is connected to a space 36 a between the electrodes 36.
  • the fluorine-based source gas (CF 4 + Ar + H 2 O) after the addition of water is introduced into the interelectrode space 36a.
  • the fluorine-based source gas is turned into plasma (including excitation, decomposition, radicalization, and ionization), and fluorine-based reaction components such as HF and COF 2 are generated.
  • the plasma generation unit 35 may be provided on a path between the fluorine-based raw material supply unit 31 and the main processing nozzle 33 instead of inside the main processing nozzle 33.
  • the plasma-based fluorine-based gas and the ozone-containing gas from the ozonizer 32 are mixed in the main processing nozzle 33 to generate a processing gas.
  • the processing gas contains a fluorine-based reaction component (HF, COF 2 or the like) and a first oxidizing reaction component (O 3 ).
  • the first rectification unit includes a chamber extending in the y direction (a direction orthogonal to the plane of FIG. 1), a slit extending in the y direction, and a large number of small holes arranged in the y direction.
  • the processing gas is made uniform in the y direction by passing through the first rectifying unit.
  • the lower part of the main processing nozzle 33 is inserted into the processing chamber 10.
  • the main processing nozzle 33 faces the central portion of the roller conveyor 20 in the processing chamber 10 in the vertical direction.
  • a processing space 39 is defined between the main processing nozzle 33 and the conveyor 20 immediately below the main processing nozzle 33.
  • the main processing nozzle 33 constitutes an image forming unit that defines the processing space 39 in cooperation with the roller conveyor 20.
  • a plurality of blowing portions 37 are provided at the lower end of the main processing nozzle 33.
  • the plurality of blowing portions 37 are arranged at intervals in the x direction. In the figure, the number of the blowing portions 37 is three, but may be one or two, or four or more.
  • Each blowing unit 37 faces the processing space 39.
  • Each blowout part 37 includes a slit-like blowout opening 37a extending in the y direction (direction orthogonal to the plane of FIG. 1).
  • the outlet 37a may be configured by a large number of small holes arranged in the y direction.
  • the processing gas after passing through the rectifying unit is distributed to each blowing unit 37 and blown downward from each blowing port 37a. This blowing flow becomes a uniform flow in the y direction.
  • the processing space 39 is a region in the space along the lower surface of the main processing nozzle 33 where the processing gas can diffuse while maintaining effective reactivity.
  • the pretreatment unit 40 includes a treatment fluid supply unit 41 and a pretreatment nozzle 42.
  • the processing fluid supply unit 41 is configured by, for example, an ozonizer.
  • the ozonizer 41 generates ozone-containing gas (O 2 + O 3 ) using oxygen (O 2 ) as a raw material.
  • This ozone-containing gas (O 2 + O 3 ) corresponds to the “processing fluid” in the claims.
  • Ozone (O 3 ) in the processing fluid (O 2 + O 3 ) constitutes the “second oxidizing reaction component” in the claims.
  • An ozonizer 41 is connected to the pretreatment nozzle 42.
  • the processing fluid (O 2 + O 3 ) is introduced from the ozonizer 41 into the preprocessing nozzle 42.
  • the processing fluid supply unit 41 of the preprocessing unit 40 and the oxidizing reaction component supply unit 32 of the etching processing unit 30 may be shared with each other.
  • a single ozonizer serves as both the ozonizer 32 of the etching processing unit 30 and the ozonizer 41 of the pretreatment unit 40.
  • the ozone-containing gas supply path from this single ozonizer branches into two branch paths. These branch paths may be connected to the main processing nozzle 33 and the preprocessing nozzle 42, respectively.
  • the pretreatment nozzle 42 is installed at the upper part on the entry side (right side in FIG. 1) in the treatment chamber 10.
  • the pretreatment nozzle 42 extends in the y direction of the etching apparatus 1 (the direction orthogonal to the plane of FIG. 1).
  • a second rectification unit is provided inside the ozonizer 41.
  • the second rectification unit includes a chamber extending in the y direction, a slit extending in the y direction, and a large number of small holes arranged in the y direction.
  • the ozone-containing gas (O 2 + O 3 ) from the ozonizer 41 is made uniform in the y direction by passing through the second rectification unit.
  • the lower part of the pre-processing nozzle 42 is inserted into the processing chamber 10 and vertically opposes the part near the carry-in entrance 11 of the roller conveyor 20 in the processing chamber 10.
  • a preprocessing space 49 is defined between the preprocessing nozzle 42 and the roller conveyor 20 immediately below the preprocessing nozzle 42.
  • a blowing portion 43 is provided at the lower end portion of the pretreatment nozzle 42.
  • the blowing unit 43 faces the preprocessing space 49.
  • the blow-out portion 43 includes a slit-like blow-out port 43a extending in the y direction (a direction orthogonal to the plane of FIG. 1).
  • the outlet 43a may be configured by a large number of small holes arranged in the y direction.
  • the ozone-containing gas after passing through the rectifying unit is sent to the blowing unit 43 and blown downward from the blowing port 43a.
  • This blowing flow becomes a uniform flow in the y direction.
  • the pretreatment space 49 is a region in the space along the lower surface of the pretreatment nozzle 42 where the ozone-containing gas (treatment fluid) can diffuse while maintaining effective reactivity.
  • ozone-containing gas (processing fluid) is introduced from the ozonizer 41 to the pretreatment nozzle 42 and blown out from the outlet 43a.
  • This ozone-containing gas comes into contact with the workpiece 9 passing through the pretreatment space 49.
  • Ozone (O 2 ) in the ozone-containing gas reacts with the silicon-containing material 9a on the surface of the workpiece 9 to oxidize the surface portion of the silicon-containing material 9a (Formula 1).
  • the condensed layer such as hydrofluoric acid water caused by the fluorine-based reaction component is not formed on the surface of the object 9 to be processed, the oxidation reaction of the silicon-containing material 9a can be surely caused.
  • the roller conveyor 20 continuously conveys the workpiece 9 at a constant speed. As a result, the workpiece 9 passes through the preprocessing space 49 and is transferred to the processing space 39. When the entire object 9 has exited the pretreatment space 49, the supply of the ozone-containing gas from the ozonizer 41 is stopped.
  • the object 9 is subjected to an etching process. That is, the fluorine-based source gas (CF 4 + Ar + H 2 O) from the fluorine-based material supply unit 31 and the addition unit 34 is introduced into the main processing nozzle 33 and is converted into plasma by the plasma generation unit 35 to generate a fluorine-based reaction such as HF. Generate ingredients.
  • the plasma-containing gas is mixed with an ozone-containing gas (O 2 + O 3 ) from the ozonizer 32 to obtain a processing gas. This processing gas is blown out from each blowing port 37 a and supplied into the processing space 39.
  • the roller conveyor 20 in the processing chamber 10 repeats normal rotation and reverse rotation.
  • the workpiece 9 is reciprocated (scanned) in the processing chamber 10. Every time the workpiece 9 moves one way (one scan) toward the forward side (leftward in FIG. 1) or the backward side (rightward in FIG. 1), the entire workpiece 9 crosses the processing space 39 once. .
  • the workpiece 9 contacts the processing gas from the main processing nozzle 33 when crossing the processing space 39.
  • the oxidation reaction (formula 1) of the silicon-containing material 9a on the surface layer has already progressed by the pretreatment step. It is out. Therefore, the etching reaction (formula 2) by the fluorine-based reaction component such as HF in the processing gas can be started immediately when the processing gas comes into contact with the workpiece 9. Therefore, the etching rate can be sufficiently increased even at the first crossing, and the waste of the fluorine-based reaction component can be avoided. Furthermore, when the ozone in the processing gas contacts the workpiece 9 during the first crossing, the oxidation of the silicon-containing material 9a (Formula 1) can be further advanced.
  • the surface of the silicon-containing material 9a has already been oxidized by the previous crossings, so that the processing gas comes into contact with the object 9 to be etched by HF or the like in the processing gas ( Equation 2) can be caused immediately and the etching rate can be made sufficiently high.
  • the oxidation (formula 1) of the silicon-containing material 9a can be further advanced by ozone in the processing gas. Therefore, the etching rate at the first crossing and the etching rate at the second and subsequent crossings can be made substantially the same. Therefore, the proportionality between the number of crossings and the cumulative etching amount can be increased, and these can be in a substantially direct relationship. Therefore, by setting the number of crossings, it is possible to easily control the final etching amount of the silicon-containing material 9a to a desired value.
  • the treated gas is sucked and exhausted by an exhaust means (not shown).
  • FIG. 2 shows a second embodiment of the present invention.
  • the preprocessing nozzle 42 of the preprocessing unit 40 is in contact with the main processing nozzle 33 of the etching processing unit 30. Therefore, the time for shifting from the pretreatment process to the etching process is shorter than in the first embodiment.
  • the oxidizing reaction component of the processing fluid in the pretreatment process and the oxidizing reaction component of the processing gas in the etching process are not limited to O 3, and may be other oxidizing gases such as NOx.
  • the processing fluid in the pretreatment process is not limited to gas, and may be an oxidizing liquid such as ozone water or hydrogen peroxide water.
  • FIG. 3 shows a third embodiment of the present invention.
  • an ozone water supply unit 45 is used in place of the ozonizer 41 as the processing fluid supply unit. Liquid ozone water is stored in the supply unit 45 as a processing fluid.
  • a preprocessing chamber 50 is provided separately from the processing chamber 10.
  • the pretreatment chamber 50 is disposed on the entry side (right side in FIG. 3) from the treatment chamber 10.
  • a portion of the roller conveyor 20 on the entry side from the processing chamber 10 is disposed in the preprocessing chamber 50.
  • a carry-in port 51 is provided on the upstream wall (right side in FIG. 3) of the pretreatment chamber 50 in the feed direction x.
  • a carry-out port 52 is provided on the wall on the downstream side (left side in FIG. 3) of the pretreatment chamber 50 in the feed direction x. The carry-out port 52 faces the carry-in port 11 of the processing chamber 10.
  • a spray-type pretreatment nozzle 47 is provided on the upper side of the pretreatment chamber 50.
  • An ozone water supply unit 45 is connected to the spray type pretreatment nozzle 47.
  • the lower part of the spray-type pretreatment nozzle 47 is inserted into the pretreatment chamber 50 and faces the roller conveyor 20 in the pretreatment chamber 50 in the vertical direction.
  • a pretreatment space 49 is defined between the spray type pretreatment nozzle 47 and the roller conveyor 20.
  • the spray port at the tip (lower end) of the spray type pretreatment nozzle 47 faces the pretreatment space 49.
  • a plurality of spray pretreatment nozzles 47 may be arranged in the width direction y orthogonal to the paper surface of FIG.
  • the workpiece 9 is first carried into the pretreatment chamber 50 from the carry-in port 51 and crosses the pretreatment space 49 in the pretreatment chamber 50 (pretreatment step).
  • ozone water from the ozone water supply unit 45 is introduced into the spray pretreatment nozzle 47 and sprayed into the pretreatment space 49.
  • This ozone water comes into contact with the workpiece 9 and an oxidation reaction (formula 1) of the silicon-containing material 9a occurs.
  • the workpiece 9 is unloaded from the unloading port 52 and loaded into the processing chamber 10 from the unloading port 11 (transfer process).
  • a drying process (not shown) of the workpiece 9 using an air knife or the like is performed.
  • the etching process of the workpiece 9 is performed in the same manner as in the first embodiment.
  • FIG. 4 shows a fourth embodiment of the present invention.
  • the etching processing unit 60 is configured by a so-called direct type plasma processing apparatus.
  • the etching processing unit 60 has first and second electrodes 61 and 62.
  • a power source (not shown) is connected to the first electrode 61.
  • the second electrode 62 is electrically grounded.
  • a solid dielectric layer (not shown) is provided on the opposing surface of at least one of the electrodes 61 and 62.
  • the etching processing unit 60 is provided with an oxygen supply unit 64 in place of the ozonizer 32.
  • Oxygen (O 2 ) from the oxygen supply unit 64 is mixed with the fluorine-based source gas (CF 4 + Ar + H 2 O) from the fluorine-based material supply unit 31 and the addition unit 34.
  • the mixed gas is introduced into the discharge space 63 and turned into plasma.
  • a fluorine-based reaction component such as HF
  • an oxidizing reaction component such as ozone and O radical are generated.
  • the second electrode 62 also serves as a stage, and the workpiece 9 is placed on the upper surface thereof.
  • a moving mechanism 65 is connected to the second electrode / stage 62. Although detailed illustration is omitted, the moving mechanism 65 includes, for example, a linear motion motor, a slide guide, and the like, and reciprocates the second electrode / stage 62 along the feed direction x.
  • the workpiece 9 is first opposed to the pretreatment nozzle 42 of the pretreatment unit 40. Ozone is sprayed from the pretreatment nozzle 42 onto the workpiece 9. Thereby, the surface portion of the silicon-containing material 9a can be oxidized in advance (pretreatment step).
  • the workpiece 9 after the pretreatment process is moved onto the stage 62 of the etching processing unit 60 (transfer process).
  • the transfer may be performed manually or using a transfer mechanism such as a robot actuator.
  • the said stage 62 may serve as the support part 48 which supports the to-be-processed object 9 in a pre-processing process. That is, first, the workpiece 9 is placed on the stage 62. In the pretreatment step, the stage 62 is opposed to the pretreatment nozzle 42, and as a result, the workpiece 9 is opposed to the pretreatment nozzle 42. Thereafter, the stage 62 and thus the workpiece 9 may be moved to the etching processing unit 60.
  • the workpiece 9 is reciprocally moved across the lower portion of the first electrode 61 by the moving mechanism 65 (etching process step).
  • each reaction component HF, COF 2 , ozone, O radical, etc.
  • the discharge space 63 becomes a processing space for performing an etching process.
  • the first electrode 61 constitutes a defining unit that defines the processing space 63 in cooperation with the second electrode / stage 62.
  • the present invention is not limited to the above embodiment, and various modifications can be adopted without departing from the spirit of the present invention.
  • the moving mechanism may move the main processing nozzle 33 or the first electrode 61 instead of the workpiece 9.
  • the etching apparatus 1 may include a plurality of main processing nozzles 33, 33..., And the plurality of main processing nozzles 33, 33... May be arranged in a line in the x direction. May be arranged in one row.
  • the object 9 sequentially traverses the plurality of processing spaces 39, 39.
  • the movement of the workpiece 9 across one of the processing spaces 33, 33... Corresponds to one crossing. It is preferable to set the number of main processing nozzles so that the final etching amount of the silicon-containing material 9a becomes a desired value.
  • the workpiece 9 may be reciprocated in the x direction with respect to the main processing nozzles 33, 33.
  • a plasma generation unit 35 may be stored in each of the plurality of main processing nozzles 33, and plasma gas generated by one plasma generation unit 35 may be distributed to the plurality of main processing nozzles 33.
  • the processing space 39 also serves as the preprocessing space of the preprocessing unit
  • the supply unit 32 serves as the processing fluid supply unit 41 of the preprocessing unit
  • the nozzle 33 also serves as the preprocessing nozzle.
  • a processing gas containing a fluorine-based reaction component or an oxidizing reaction component is blown out from the nozzle 33 and brought into contact with the portion 9 to be processed.
  • a plurality of embodiments may be combined with each other.
  • the ozone water spray nozzle 47 of the third embodiment may be applied as the pretreatment nozzle of the fourth embodiment (FIG. 4).
  • this invention is not limited to a following example.
  • An apparatus having substantially the same configuration as that of the etching apparatus 1 shown in FIG. 1 was used.
  • the processing target 9 was a glass substrate coated with an amorphous silicon film 9a, and the size thereof was 10 cm ⁇ 10 cm.
  • the substrate 9 was subjected to a pretreatment step and then subjected to an etching treatment step.
  • the apparatus of Example 1 it replaced with the conveyor 20 as the support part and moving mechanism of the to-be-processed object 9, and used the movement stage.
  • Pretreatment process An ozone-containing gas (O 2 + O 3 ) was introduced from the treatment fluid supply unit 41 to the pretreatment nozzle 42 as a pretreatment treatment fluid, and was blown out from the blowout port 43 a to be brought into contact with the substrate 9.
  • the flow rate of the ozone-containing gas was 1 SLM, and the ozone concentration was 8 to 10 vol%.
  • the width of the outlet 43a (dimension in the direction perpendicular to the paper surface in FIG. 1) was 10 cm.
  • the substrate 9 was transported in the feeding direction x in parallel with the ozone-containing gas spraying. The conveyance speed of the substrate 9 was 4 m / min. The number of times the substrate 9 was passed through the pretreatment space 49 was one.
  • the fluorine-based material gas from the fluorine-based material supply unit 31 is a mixed gas of CF 4 and Ar, and water (H 2 O) is added to the mixed gas in the adding unit 34.
  • the flow rate of each gas component was as follows.
  • CF 4 0.1 SLM Ar: 1SLM
  • the dew point of the fluorine-based raw material gas after the addition of water was about 18 ° C.
  • This fluorine-based raw material gas was supplied to the plasma generation unit 35 and turned into plasma under atmospheric pressure.
  • the plasma discharge conditions were as follows.
  • the plasma-based fluorine-based gas and the ozone-containing gas (O 2 + O 3 ) from the first oxidizing reaction component generation unit 32 were mixed to obtain a processing gas, and this processing gas was blown out from each blowing port 37a.
  • the flow rate of the ozone-containing gas from the first oxidizing reaction component generation unit 32 was 1 SLM, and the ozone concentration was 8 to 10 vol%.
  • the width of the blowout port 37a (dimension in the direction perpendicular to the paper surface in FIG. 1) was 10 cm.
  • the substrate 9 was reciprocated in the feed direction x in parallel with the spraying of the processing gas. The moving speed of the substrate 9 was 4 m / min.
  • the etching amount corresponding to the number of times the substrate 9 was passed through the processing space 39 (number of crossings) in the etching process was measured. As indicated by the solid line in FIG. 5, the number of crossings and the etching amount were in a substantially proportional relationship. It was confirmed that an etching rate substantially the same as that at the second and subsequent crossings could be obtained even at the first crossing.
  • Example 1 As a comparative example, the pretreatment process in Example 1 was omitted and only the etching process was performed. The processing conditions for the etching process were exactly the same as in the above example. And the etching amount according to the frequency
  • the present invention is applicable to the manufacture of semiconductor devices and liquid crystal display devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

To easily control the amount of etching on a silicon-containing material. In a pre-treatment step, a treatment fluid containing a second oxidative reaction component is sprayed from a pre-treatment nozzle (42) and is brought into contact with an object (9) to be treated. Subsequently, in an etching treatment step, while the object (9) to be treated is moved in a moving mechanism (20) so as to cut across a treatment space (39), a treatment gas containing a fluorine reaction component and a first oxidative reaction component is supplied to the treatment space (39) and is brought into contact with the object (9) to be treated.

Description

エッチング方法及び装置Etching method and apparatus
 本発明は、シリコン含有物をエッチングする方法及び装置に関し、特に、アモルファスシリコン等の酸化反応を伴いながらエッチングされるシリコン含有物についてエッチング量を制御するのに適したエッチング方法及び装置に関する。 The present invention relates to a method and apparatus for etching a silicon-containing material, and more particularly, to an etching method and apparatus suitable for controlling the etching amount of a silicon-containing material that is etched with an oxidation reaction of amorphous silicon or the like.
 アモルファスシリコン等のシリコン含有物を大気圧近傍のプラズマを用いてエッチングする装置は公知である(特許文献1、2等参照)。例えば、特許文献1では、大気圧近傍下において、CF等のフッ素含有成分に水蒸気を添加したガスをプラズマ化する。プラズマ化によって、HF,COF等のフッ素系反応成分が生成される。プラズマ化後のガスに更にオゾンを混合して、被処理物に接触させる。これによって、被処理物に被膜されたシリコンが次の二段階の反応過程を経てエッチングされる。 An apparatus for etching a silicon-containing material such as amorphous silicon using plasma near atmospheric pressure is known (see Patent Documents 1 and 2). For example, in Patent Document 1, a gas in which water vapor is added to a fluorine-containing component such as CF 4 is converted into plasma under atmospheric pressure. Fluorine-based reaction components such as HF and COF 2 are generated by plasmatization. Ozone is further mixed with the gas after being plasmatized and brought into contact with the object to be processed. Thereby, the silicon coated on the object to be processed is etched through the following two-stage reaction process.
 第1段階では、シリコンの酸化反応が起きる(式1)。
  3Si+2O → 3SiO   (式1)
 第2段階では、上記酸化したシリコンがHF等のフッ素系反応成分と反応し、揮発性成分(SiF等)に変換される。
  SiO+4HF → SiF+2HO  (式2)
 被処理物の表面には処理ガス中のHF及びHOが凝縮してフッ酸水の凝縮層が形成される。
In the first stage, an oxidation reaction of silicon occurs (Equation 1).
3Si + 2O 3 → 3SiO 2 (Formula 1)
In the second stage, the oxidized silicon reacts with a fluorine-based reaction component such as HF, and is converted into a volatile component (SiF 4 or the like).
SiO 2 + 4HF → SiF 4 + 2H 2 O (Formula 2)
On the surface of the object to be processed, HF and H 2 O in the processing gas are condensed to form a condensed layer of hydrofluoric acid water.
 特許文献2では、フッ素系反応成分を含むプラズマガスとオゾン含有ガスとを互いに別々の吹出し口から吹き出して、被処理物に接触させている。被処理物は、ガス吹き出しノズルに対して往復移動(スキャン)される。ここで、往側又は復側への片道移動を1スキャンとする。1回の往復移動は2スキャンである。 In Patent Document 2, a plasma gas containing a fluorine-based reaction component and an ozone-containing gas are blown out from separate blowout ports and brought into contact with the object to be processed. The workpiece is reciprocated (scanned) with respect to the gas blowing nozzle. Here, one-way movement to the forward side or the backward side is defined as one scan. One reciprocating movement is two scans.
特開2007-294642号公報JP 2007-294642 A 特開2009-099880号公報([0023]、図2)JP 2009-099880 ([0023], FIG. 2)
 HF等のフッ素系反応成分及びオゾン等の酸化性反応成分を含む処理ガスを用いたエッチング処理において、被処理物が処理空間を最初に横切る時(最初の横断時、1スキャン目)は、それ以降に被処理物が処理空間を横切る時(2回目以降の横断時、2スキャン目以降)と比べてエッチングレートが低い。最初の横断時は、第1段階の酸化反応(式1)が起きた後でなければ第2段階のエッチング反応(式2)が始まらない。したがって、フッ素系反応成分が無駄になる。しかも、被処理物の表面にフッ素系反応成分に起因するフッ酸水等の凝縮層が形成され、この凝縮層が酸化反応を邪魔するため、ますますエッチング反応が起きにくくなる。2回目以降の横断時は、前回までの処理によって被処理物の表面が既に酸化されているため、第2段階のエッチング反応(式2)を直ちに開始させることができる。このため、被処理物が処理空間を横切る回数(横断回数、スキャン回数)と累積のエッチング量とが正比例する関係になく、比例性が劣り、エッチング量の制御が容易でない。
 本発明は、上記事情に基づいてなされたものであり、シリコン含有物のエッチング反応が最初の横断時から十分に起きるようにして、フッ素系反応成分が無駄になるのを防止し、かつエッチング量を容易に制御できるようにすることを目的とする。
In an etching process using a processing gas containing a fluorine-based reactive component such as HF and an oxidizing reactive component such as ozone, when the workpiece crosses the processing space for the first time (at the first crossing, the first scan) After that, the etching rate is lower than when the workpiece crosses the processing space (at the second and subsequent crossings, the second and subsequent scans). At the first crossing, the second stage etching reaction (Equation 2) does not start until after the first stage oxidation reaction (Equation 1) occurs. Therefore, the fluorine-based reaction component is wasted. In addition, a condensed layer of hydrofluoric acid water or the like resulting from the fluorine-based reaction component is formed on the surface of the object to be processed, and this condensed layer obstructs the oxidation reaction, so that the etching reaction becomes more difficult to occur. In the second and subsequent crossings, the surface of the object to be processed has already been oxidized by the processing up to the previous time, so that the second stage etching reaction (Equation 2) can be started immediately. For this reason, the number of times the workpiece crosses the processing space (the number of crossings, the number of scans) and the cumulative etching amount are not directly proportional, the proportionality is inferior, and the etching amount is not easily controlled.
The present invention has been made based on the above circumstances, and prevents the fluorine-based reaction component from being wasted by making the etching reaction of the silicon-containing material sufficiently occur from the first crossing, and the etching amount. It is intended to make it possible to easily control.
 本発明に係るエッチング方法は、上記課題を達成するために、大気圧近傍の処理空間においてフッ素系反応成分及び第1の酸化性反応成分を含有する処理ガスを用いてシリコン含有物をエッチングするエッチング方法において、
 第2の酸化性反応成分を含有する処理流体を、前記シリコン含有物を含む被処理物に接触させる前処理工程と、
 前記前処理工程の後、前記被処理物を、前記処理空間内を横切る(通過する)ように前記処理空間に対して相対的に移動させながら、前記処理空間に前記処理ガスを供給し又は前記処理空間内で前記処理ガスの前記各反応成分を生成するエッチング処理工程と、
 を含むことを特徴とする。
In order to achieve the above object, an etching method according to the present invention etches a silicon-containing material using a processing gas containing a fluorine-based reaction component and a first oxidizing reaction component in a processing space near atmospheric pressure. In the method
A pretreatment step of bringing a treatment fluid containing a second oxidizing reaction component into contact with an object to be treated containing the silicon-containing material;
After the pretreatment step, supply the processing gas to the processing space while moving the object to be processed relative to the processing space so as to cross (pass) the processing space, or An etching process step for generating each reaction component of the process gas in a processing space;
It is characterized by including.
 前処理工程においては、処理流体中の第2の酸化性反応成分がシリコン含有物と酸化反応を起こす(式1参照)。続いて、エッチング処理工程において被処理物が最初に処理空間内を横切る際は(最初の横断時(通過時)、1スキャン目)、既に上記前処理工程によってシリコン含有物の酸化反応が進んでいる。したがって、処理ガス中のフッ素系反応成分によるエッチング反応(式2参照)を直ちに開始することができる。よって、最初の横断時においてもエッチングレートを十分に高くでき、フッ素系反応成分が無駄になるのを回避できる。更に、最初の横断時において処理ガス中の第1の酸化性反応成分が被処理物に接触することで、シリコン含有物の酸化をさらに進めることができる。2回目以降の横断時は、前回までの横断によってシリコン含有物の表面が既に酸化されているため、処理ガス中のフッ素系反応成分によるエッチング反応を直ぐに起こさせることができる。かつ処理ガス中の第1の酸化性反応成分によってシリコン含有物の酸化をさらに進めることができる。したがって、最初の横断時のエッチングレートと2回目以降の横断時のエッチングレートとを略同じ大きさにすることができる。よって、横断回数と累積のエッチング量との比例性を高めることができる。故に、横断回数を設定することによって、シリコン含有物の最終のエッチング量が所望値になるように容易に制御することができる。 In the pretreatment process, the second oxidizing reaction component in the processing fluid causes an oxidation reaction with the silicon-containing material (see Formula 1). Subsequently, when the object to be processed first traverses the processing space in the etching process (at the first crossing (at the time of passage), the first scan), the oxidation reaction of the silicon-containing material has already progressed through the pretreatment process. Yes. Therefore, the etching reaction (see Formula 2) by the fluorine-based reaction component in the processing gas can be started immediately. Therefore, the etching rate can be sufficiently increased even at the first crossing, and the waste of the fluorine-based reaction component can be avoided. Furthermore, when the first oxidative reaction component in the processing gas contacts the object to be processed at the time of the first crossing, the oxidation of the silicon-containing material can be further advanced. At the time of the second and subsequent crossings, the surface of the silicon-containing material has already been oxidized by the previous crossings, so that the etching reaction due to the fluorine-based reaction component in the processing gas can be caused immediately. In addition, the silicon-containing material can be further oxidized by the first oxidizing reaction component in the processing gas. Therefore, the etching rate at the first crossing and the etching rate at the second and subsequent crossings can be made substantially the same. Therefore, the proportionality between the number of crossings and the cumulative etching amount can be increased. Therefore, by setting the number of crossings, it is possible to easily control the final etching amount of the silicon-containing material to a desired value.
 前記エッチング処理工程において、前記被処理物が前記処理空間内を横切る回数(横断回数)を調節することによって、前記シリコン含有物のエッチング量を制御することが好ましい。横断回数が設定回数になったとき、エッチング処理工程を停止する。これにより、シリコン含有物を確実に所望の厚さだけエッチングすることができる。シリコン含有膜の残りの厚さが所定に達したとき、エッチングを停止したり、シリコン含有膜の全体がちょうど除去されたとき、エッチングを停止したりすることができる。本発明によれば、エッチングを停止するタイミングを容易に判断することができる。 In the etching process, it is preferable to control the etching amount of the silicon-containing material by adjusting the number of times that the workpiece crosses the processing space (number of times of crossing). When the number of crossings reaches the set number, the etching process is stopped. As a result, the silicon-containing material can be reliably etched to a desired thickness. The etching can be stopped when the remaining thickness of the silicon-containing film reaches a predetermined value, or the etching can be stopped when the entire silicon-containing film has just been removed. According to the present invention, it is possible to easily determine the timing for stopping etching.
 前記シリコン含有物は、酸化反応(式1参照)を伴いながらフッ素系反応成分とエッチング反応(式2参照)を起こすものであることが好ましく、例えばアモルファスシリコン、単結晶シリコン、多結晶シリコン等のシリコン単体や、窒化シリコン、炭化シリコンが挙げられる。
 前記処理ガス中のフッ素系反応成分としては、HF、COF等が挙げられる。
 前記処理ガス中の第1酸化性反応成分としては、O、Oラジカル、NOx等が挙げられる。
 前記処理流体中の第2酸化性反応成分としては、O、Oラジカル、NOx等が挙げられる。前記処理流体は、ガスに限られず、オゾン水、硝酸、過酸化水素等の液体であってもよい。
The silicon-containing material is preferably one that causes an etching reaction (see Formula 2) with a fluorine-based reaction component with an oxidation reaction (see Formula 1), such as amorphous silicon, single crystal silicon, polycrystalline silicon, etc. Examples include silicon alone, silicon nitride, and silicon carbide.
Examples of the fluorine-based reaction component in the processing gas include HF, COF 2 and the like.
Examples of the first oxidizing reaction component in the processing gas include O 3 , O radical, NOx, and the like.
Examples of the second oxidizing reaction component in the processing fluid include O 3 , O radical, and NOx. The processing fluid is not limited to gas, and may be liquid such as ozone water, nitric acid, hydrogen peroxide and the like.
 前記エッチング処理工程において、フッ素含有成分及び水素含有添加成分を含むフッ素系原料ガスを大気圧近傍下にてプラズマ化することによって前記フッ素系反応成分を生成することが好ましい。
 これによって、フッ素系反応成分としてHF等を生成できる。エッチング処理工程においては、被処理物の表面に前記フッ素系反応成分に起因するフッ酸水等の凝縮層が形成される。この凝縮層を介してエッチング反応が行なわれる。一方、前処理工程においては、上記の凝縮層が形成されていないため、凝縮層が酸化反応を邪魔することがなく、酸化反応を確実に起こさせることができる。
 前記フッ素含有成分として、PFC(パーフルオロカーボン)やHFC(ハイドロフルオロカーボン)等のフッ素含有化合物が挙げられる。PFCとして、CF、C、C、C等が挙げられる。HFCとして、CHF、CH、CHF等が挙げられる。更に、フッ素系成分として、SF、NF、XeF等のPFC及びHFC以外のフッ素含有化合物を用いてもよく、Fを用いてもよい。
 前記フッ素含有成分は希釈成分にて希釈するのが好ましい。希釈成分として、ヘリウム、アルゴン、ネオン、キセノン等の希ガスや窒素等の不活性ガスが挙げられる。希釈成分は、フッ素含有成分を希釈する機能の他、フッ素含有ガスを搬送するキャリアガスとしての機能、安定したプラズマ放電を生成する放電ガスとしての機能を有している。
 前記水素含有添加成分は、水(水蒸気、HO)であることが好ましい。水は、気化器にて気化することで前記フッ素系原料ガスに添加できる。水素含有添加成分は、水の他、OH基含有化合物や過酸化水素であってもよく、これらの混合物でもよい。OH基含有化合物として、アルコールが挙げられる。
 この明細書において大気圧近傍とは、1.013×10~50.663×10Paの範囲を言い、圧力調整の容易化や装置構成の簡便化を考慮すると、1.333×10~10.664×10Paが好ましく、9.331×10~10.397×10Paがより好ましい。
In the etching treatment step, it is preferable that the fluorine-based reaction component is generated by converting the fluorine-based source gas containing a fluorine-containing component and a hydrogen-containing additive component into plasma at a pressure near atmospheric pressure.
Thereby, HF etc. can be produced | generated as a fluorine-type reaction component. In the etching process, a condensed layer of hydrofluoric acid water or the like resulting from the fluorine-based reaction component is formed on the surface of the object to be processed. An etching reaction is performed through this condensed layer. On the other hand, in the pretreatment step, the condensed layer is not formed, so that the condensed layer does not interfere with the oxidation reaction, and the oxidation reaction can be caused reliably.
Examples of the fluorine-containing component include fluorine-containing compounds such as PFC (perfluorocarbon) and HFC (hydrofluorocarbon). Examples of the PFC include CF 4 , C 2 F 4 , C 2 F 6 , C 3 F 8 and the like. Examples of HFC include CHF 3 , CH 2 F 2 , CH 3 F and the like. Furthermore, fluorine-containing compounds other than PFC and HFC such as SF 6 , NF 3 , and XeF 2 may be used as the fluorine-based component, and F 2 may be used.
The fluorine-containing component is preferably diluted with a diluent component. Examples of the dilution component include rare gases such as helium, argon, neon, and xenon, and inert gases such as nitrogen. In addition to the function of diluting the fluorine-containing component, the dilution component has a function as a carrier gas for transporting the fluorine-containing gas and a function as a discharge gas for generating stable plasma discharge.
The hydrogen-containing additive component is preferably water (water vapor, H 2 O). Water can be added to the fluorine-based raw material gas by vaporizing with a vaporizer. In addition to water, the hydrogen-containing additive component may be an OH group-containing compound, hydrogen peroxide, or a mixture thereof. Examples of the OH group-containing compound include alcohol.
In this specification, the vicinity of atmospheric pressure means a range of 1.013 × 10 4 to 50.663 × 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 × 10 4 ˜10.664 × 10 4 Pa is preferable, and 9.331 × 10 4 to 10.397 × 10 4 Pa is more preferable.
 本発明に係るエッチング装置は、大気圧近傍の処理空間においてフッ素系反応成分及び第1の酸化性反応成分を含有する処理ガスを用いてシリコン含有物をエッチングするエッチング装置において、
 第2の酸化性反応成分を含有する処理流体を吹き出す前処理ノズルを有し、前記シリコン含有物を含む被処理物に前記処理流体を接触させる前処理部と、
 前記処理空間を画成する画成部と、前記処理流体との接触後の前記被処理物を、前記処理空間内を横切るように前記画成部に対して相対的に移動させる移動機構とを有し、前記処理空間に前記処理ガスを供給し又は前記処理空間内で前記処理ガスの前記各反応成分を生成するエッチング処理部と、
 を備えたことを特徴とする。
An etching apparatus according to the present invention is an etching apparatus for etching a silicon-containing material using a processing gas containing a fluorine-based reaction component and a first oxidizing reaction component in a processing space near atmospheric pressure.
A pretreatment section having a pretreatment nozzle for blowing out a treatment fluid containing a second oxidizing reaction component, and bringing the treatment fluid into contact with an object to be treated containing the silicon-containing material;
An image forming unit that defines the processing space; and a moving mechanism that moves the object to be processed after contact with the processing fluid relative to the image forming unit so as to cross the processing space. An etching processing unit that supplies the processing gas to the processing space or generates the reaction components of the processing gas in the processing space;
It is provided with.
 前記エッチング装置にてシリコン含有物をエッチングする際は、被処理物を先ず前処理部に配置して前処理ノズルと対向させる。そして、前処理ノズルから処理流体を吹き出して被処理物に接触させる。この処理流体中の第2の酸化性反応成分によって、シリコン含有物を酸化させることができる(式1参照)。次に、被処理物をエッチング処理部に配置し、移動機構によって画成部に対して往復などの移動をさせる。被処理物は、処理空間を1回通過するごとに、処理空間内の処理ガスと接触する。被処理物が最初に処理空間内を横切る際(最初の横断時)、既に上記前処理部での前処理によってシリコン含有物の酸化反応が進んでいる。したがって、処理ガス中のフッ素系反応成分によるエッチング反応(式2参照)を直ちに開始することができる。よって、最初の横断時においてもエッチングレートを十分に高くでき、フッ素系反応成分が無駄になるのを回避できる。更に、最初の横断時において処理ガス中の第1の酸化性反応成分が被処理物に接触することで、シリコン含有物の酸化をさらに進めることができる。2回目以降の横断時は、前回までの横断によってシリコン含有物の表面が既に酸化されているため、処理ガス中のフッ素系反応成分によるエッチング反応を直ぐに起こさせることができる。かつ処理ガス中の第1の酸化性反応成分によってシリコン含有物の酸化をさらに進めることができる。したがって、最初の横断時のエッチングレートと2回目以降の横断時のエッチングレートとを略同じ大きさにすることができる。よって、横断回数と累積のエッチング量との比例性を高めることがきる。故に、横断回数を設定することによって、シリコン含有物の最終のエッチング量が所望値になるように容易に制御することができる。
 前記エッチング装置が、前記画成部を複数備えていてもよい。前記複数の画成部が、被処理物の相対移動方向に並んでいてもよい。ひいては、複数の処理空間が、前記相対移動方向に並んでいてもよい。被処理物を移動機構によって前記相対移動方向に相対移動させることで、被処理物が前記複数の処理空間内を順次横切る。被処理物が上記複数の処理空間の1つを横切る動作が、1回の横断(1スキャン)に対応する。
 前記画成部が、前記処理ガスを吹き出す処理ノズルを有していてもよい。
When the silicon-containing material is etched by the etching apparatus, the object to be processed is first arranged in the pretreatment section and is opposed to the pretreatment nozzle. Then, the processing fluid is blown out from the preprocessing nozzle and brought into contact with the object to be processed. The silicon-containing material can be oxidized by the second oxidizing reaction component in the processing fluid (see Formula 1). Next, the object to be processed is placed in the etching processing unit, and the moving unit is moved back and forth with respect to the defining unit. Each time the workpiece passes through the processing space, it contacts the processing gas in the processing space. When the object to be processed first traverses the processing space (at the first crossing), the oxidation reaction of the silicon-containing material has already progressed by the pretreatment in the pretreatment section. Therefore, the etching reaction (see Formula 2) by the fluorine-based reaction component in the processing gas can be started immediately. Therefore, the etching rate can be sufficiently increased even at the first crossing, and the waste of the fluorine-based reaction component can be avoided. Furthermore, when the first oxidative reaction component in the processing gas comes into contact with the object to be processed at the first crossing, the oxidation of the silicon-containing material can be further advanced. At the time of the second and subsequent crossings, the surface of the silicon-containing material has already been oxidized by the previous crossings, so that an etching reaction due to the fluorine-based reaction component in the processing gas can be immediately caused. In addition, the silicon-containing material can be further oxidized by the first oxidizing reaction component in the processing gas. Therefore, the etching rate at the first crossing and the etching rate at the second and subsequent crossings can be made substantially the same. Therefore, the proportionality between the number of crossings and the cumulative etching amount can be increased. Therefore, by setting the number of times of traversal, the final etching amount of the silicon-containing material can be easily controlled so as to become a desired value.
The etching apparatus may include a plurality of the defining units. The plurality of defining units may be arranged in the relative movement direction of the workpiece. As a result, a plurality of processing spaces may be arranged in the relative movement direction. By moving the object to be processed relative to the relative movement direction by the moving mechanism, the object to be processed sequentially traverses the plurality of processing spaces. An operation in which the workpiece crosses one of the plurality of processing spaces corresponds to one crossing (one scan).
The defining unit may include a processing nozzle that blows out the processing gas.
 本発明によれば、エッチング処理部又はエッチング処理工程におけるシリコン含有物のエッチング反応を最初の横断時から十分に起こさせることができる。したがって、最初の横断時のフッ素系反応成分が無駄になるのを防止できる。かつ、横断回数と累積のエッチング量との比例性を高めることができ、エッチング量を容易に制御できる。 According to the present invention, the etching reaction of the silicon-containing material in the etching processing section or the etching processing process can be sufficiently caused from the first crossing. Therefore, it is possible to prevent the fluorine-based reaction component at the first crossing from being wasted. In addition, the proportionality between the number of crossings and the cumulative etching amount can be increased, and the etching amount can be easily controlled.
本発明の第1実施形態に係るエッチング装置の概略構成を示す側面図である。It is a side view showing a schematic structure of an etching device concerning a 1st embodiment of the present invention. 本発明の第2実施形態に係るエッチング装置の概略構成を示す側面図である。It is a side view which shows schematic structure of the etching apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るエッチング装置の概略構成を示す側面図である。It is a side view which shows schematic structure of the etching apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係るエッチング装置の概略構成図である。It is a schematic block diagram of the etching apparatus which concerns on 4th Embodiment of this invention. 実施例1の結果を示すグラフである。3 is a graph showing the results of Example 1.
 以下、本発明の実施形態を図面にしたがって説明する。
 図1は、本発明の第1実施形態に係るエッチング装置1を示したものである。被処理物9は、例えば液晶表示パネルのガラス基板にて構成され、薄い平板状になっている。被処理物9の表面(図1において上面)にはエッチング対象のシリコン含有物9aが被膜されている。シリコン含有物は、例えばアモルファスシリコンにて構成されている。シリコン含有物9aは、アモルファスシリコンの他、単結晶シリコンや多結晶シリコンであってもよい。更に、シリコン含有物9aは、酸化反応(式1)を経てエッチング(式2)されるものであれば、シリコン単体に限られず、窒化シリコン、炭化シリコン等であってもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an etching apparatus 1 according to the first embodiment of the present invention. The workpiece 9 is formed of, for example, a glass substrate of a liquid crystal display panel and has a thin flat plate shape. A surface of the workpiece 9 (upper surface in FIG. 1) is coated with a silicon-containing material 9a to be etched. The silicon-containing material is made of, for example, amorphous silicon. In addition to amorphous silicon, the silicon-containing material 9a may be single crystal silicon or polycrystalline silicon. Furthermore, the silicon-containing material 9a is not limited to silicon alone, and may be silicon nitride, silicon carbide, or the like as long as it is etched (formula 2) through an oxidation reaction (formula 1).
 エッチング装置1は、処理チャンバ10と、コロコンベア20(移動機構)と、前処理部40と、エッチング処理部30を備えている。処理チャンバ10内の圧力は大気圧近傍になっている。処理チャンバ10の入側(図1において右)の壁に搬入口11が設けられている。処理チャンバ10の出側(図1において左)の壁に搬出口12が設けられている。処理チャンバ10内の中央部にエッチング処理部30が組み込まれている。処理チャンバ10内の入側(図1において右)の部分に前処理部40が組み込まれている。 The etching apparatus 1 includes a processing chamber 10, a roller conveyor 20 (movement mechanism), a preprocessing unit 40, and an etching processing unit 30. The pressure in the processing chamber 10 is near atmospheric pressure. A carry-in port 11 is provided on a wall on the entry side (right side in FIG. 1) of the processing chamber 10. A carry-out port 12 is provided on the exit side wall (left side in FIG. 1) of the processing chamber 10. An etching processing unit 30 is incorporated in the central portion of the processing chamber 10. A pretreatment unit 40 is incorporated in a portion on the entry side (right side in FIG. 1) in the treatment chamber 10.
 コロコンベア20は、処理チャンバ10の内部に送り方向(x方向、図1の左右方向)に沿って配置され、更に処理チャンバ10の入側及び出側の外方にも設置されている。周知の通り、コロコンベア20は、シャフト21と、コロ22を有している。複数のシャフト21が、図1において左右に間隔を置いて並べられている。各シャフト21にコロ22が設けられている。 The roller conveyor 20 is arranged inside the processing chamber 10 along the feeding direction (x direction, left-right direction in FIG. 1), and is also installed outside the processing chamber 10 on the entry side and the exit side. As is well known, the roller conveyor 20 has a shaft 21 and a roller 22. A plurality of shafts 21 are arranged at intervals in the right and left in FIG. Each shaft 21 is provided with a roller 22.
 コロ22上に被処理物9が載置される。シャフト21及びコロ22が一体に回転することによって、被処理物9がx方向に搬送される。被処理物9は、搬入口11から処理チャンバ10内に搬入され、処理チャンバ10内で所定の処理を施された後、搬出口12から搬出される。コンベア20は、被処理物9を支持する支持部としての機能と、被処理物9を移動させる移動機構としての機能を兼ねている。 The workpiece 9 is placed on the roller 22. As the shaft 21 and the roller 22 rotate together, the workpiece 9 is conveyed in the x direction. The workpiece 9 is carried into the processing chamber 10 from the carry-in port 11, subjected to a predetermined process in the processing chamber 10, and then carried out from the carry-out port 12. The conveyor 20 has a function as a support part for supporting the object 9 to be processed and a function as a moving mechanism for moving the object 9 to be processed.
 コロコンベア20のうち少なくとも処理チャンバ10内のシャフト21及びコロ22は、正逆両方向に回転可能になっている。正方向は、被処理物9を入側から出側に搬送する向き(図1において左向き)であり、逆方向は、被処理物9を出側から入側に搬送する向き(図1において右向き)である。 In the roller conveyor 20, at least the shaft 21 and the roller 22 in the processing chamber 10 are rotatable in both forward and reverse directions. The forward direction is the direction in which the workpiece 9 is conveyed from the entry side to the exit side (leftward in FIG. 1), and the reverse direction is the direction in which the workpiece 9 is conveyed from the exit side to the entry side (rightward in FIG. 1). ).
 エッチング処理部30は、フッ素系原料供給部31と、第1の酸化性反応成分生成部32と、主処理ノズル33を有している。フッ素系原料供給部31は、フッ素系原料ガスを蓄えている。フッ素系原料ガスは、フッ素含有成分と、希釈成分を含む。フッ素含有成分は、例えばCFである。希釈成分は、例えばArである。 The etching processing unit 30 includes a fluorine-based raw material supply unit 31, a first oxidizing reaction component generation unit 32, and a main processing nozzle 33. The fluorine-based material supply unit 31 stores a fluorine-based material gas. The fluorine-based source gas includes a fluorine-containing component and a dilution component. The fluorine-containing component is, for example, CF 4 . The dilution component is, for example, Ar.
 フッ素含有成分として、CFに代えて、C、C、C等の他のPFC(パーフルオロカーボン)を用いてもよく、CHF、CH、CHF等のHFC(ハイドロフルオロカーボン)を用いてもよく、SF、NF、XeF、F等を用いてもよい。 As the fluorine-containing component, other PFC (perfluorocarbon) such as C 2 F 4 , C 2 F 6 , C 3 F 8 may be used instead of CF 4 , and CHF 3 , CH 2 F 2 , CH 3 may be used. HFC (hydrofluorocarbon) such as F may be used, and SF 6 , NF 3 , XeF 2 , F 2, etc. may be used.
 希釈成分として、Arに代えて、He、Ne、Kr等の他の希ガスを用いてもよく、N等の他の不活性ガスを用いてもよい。希釈成分は、フッ素含有成分を希釈する役割の他、キャリアガスとしての役割及びプラズマ生成用のガスとしての役割を担っている。 As a dilution component, instead of Ar, other rare gases such as He, Ne, and Kr may be used, and other inert gases such as N 2 may be used. In addition to the role of diluting the fluorine-containing component, the dilution component plays a role as a carrier gas and a gas for plasma generation.
 フッ素系原料供給部31には添加部34が付加されている。フッ素系原料供給部31のフッ素系原料ガスに添加部34の水素含有添加成分が添加される。上記水素含有添加成分は、水蒸気(HO)である。添加部34は、水の気化器にて構成されている。気化器34内に水が液状態で蓄えられている。フッ素系原料ガス(CF+Ar)が、気化器34内の液中に導入されてバブリングされる。或いは、気化器34内の液面より上側部分に上記フッ素系原料ガスを導入し、上記上側部分の飽和蒸気を上記フッ素系原料ガスにて押し出してもよい。これによって、フッ素系原料ガスに水蒸気が添加される。気化器34を温度調節することによって、水の蒸気圧ひいては添加量を調節できる。或いは、フッ素系原料ガス(CF+Ar)の一部を気化器34内に導入し、残部は気化器34を迂回させ、上記一部と残部の流量比を調節することによって、水の添加量を調節してもよい。水添加後のフッ素系原料ガスは、主処理ノズル33へ送られる。 An addition unit 34 is added to the fluorine-based raw material supply unit 31. The hydrogen-containing additive component of the addition unit 34 is added to the fluorine-based source gas of the fluorine-based source supply unit 31. The hydrogen-containing additive component is water vapor (H 2 O). The addition part 34 is comprised with the vaporizer of water. Water is stored in the vaporizer 34 in a liquid state. Fluorine-based source gas (CF 4 + Ar) is introduced into the liquid in the vaporizer 34 and bubbled. Alternatively, the fluorine-based raw material gas may be introduced into the upper part of the liquid level in the vaporizer 34, and the saturated vapor in the upper part may be pushed out by the fluorine-based raw material gas. As a result, water vapor is added to the fluorine-based source gas. By adjusting the temperature of the vaporizer 34, the vapor pressure of water and thus the amount added can be adjusted. Alternatively, a part of the fluorine-based source gas (CF 4 + Ar) is introduced into the vaporizer 34, the remainder is bypassed by the vaporizer 34, and the amount of water added is adjusted by adjusting the flow rate ratio between the part and the remainder. May be adjusted. The fluorine-based source gas after the addition of water is sent to the main processing nozzle 33.
 第1酸化性反応成分生成部32は、オゾナイザーにて構成されている。オゾナイザー32は、酸素(O)を原料にして、オゾン含有ガス(O+O)を生成する。このオゾン含有ガス(O+O)中のオゾン(O)が、特許請求の範囲の「第1の酸化性反応成分」に対応する。オゾナイザー32のオゾン含有ガス(O+O)は、主処理ノズル33へ送られる。 The 1st oxidizing reaction component production | generation part 32 is comprised with the ozonizer. The ozonizer 32 generates ozone-containing gas (O 2 + O 3 ) using oxygen (O 2 ) as a raw material. Ozone in the ozone-containing gas (O 2 + O 3) ( O 3) corresponds to the "first oxidation reaction component" in the claims. The ozone-containing gas (O 2 + O 3 ) from the ozonizer 32 is sent to the main processing nozzle 33.
 主処理ノズル33は、処理チャンバ10の中央部に設置され、図1の紙面と直交する巾方向(y方向)に延びている。主処理ノズル33の内部には、プラズマ生成部35(フッ素系反応成分生成部)が設けられている。プラズマ生成部35は、少なくとも一対の電極36を含む。一対の電極36の両方又は片方の対向面には固体誘電体層が設けられている。一対の電極36のうち一方の電極36に電源(図示省略)が接続され、他方の電極36が電気的に接地されている。電源からの電力供給によって、一対の電極36どうしの間に例えばパルス状の高周波電界が印加される。これによって、電極36間に大気圧近傍下でグロー放電が生成される。 The main processing nozzle 33 is installed at the center of the processing chamber 10 and extends in the width direction (y direction) orthogonal to the paper surface of FIG. A plasma generation unit 35 (fluorine-based reaction component generation unit) is provided inside the main processing nozzle 33. The plasma generation unit 35 includes at least a pair of electrodes 36. A solid dielectric layer is provided on both or one opposing surface of the pair of electrodes 36. A power source (not shown) is connected to one electrode 36 of the pair of electrodes 36, and the other electrode 36 is electrically grounded. For example, a pulsed high-frequency electric field is applied between the pair of electrodes 36 by supplying power from the power source. As a result, a glow discharge is generated between the electrodes 36 near atmospheric pressure.
 電極36間の空間36aにフッ素系原料供給部31が接続されている。上記水添加後のフッ素系原料ガス(CF+Ar+HO)が、電極間空間36aに導入される。これにより、電極間空間36a内において、フッ素系原料ガスがプラズマ化(励起、分解、ラジカル化、イオン化を含む)され、HF、COF等のフッ素系反応成分が生成される。
 プラズマ生成部35は、主処理ノズル33の内部に代えて、フッ素系原料供給部31と主処理ノズル33との間の経路上に設けてもよい。
A fluorine-based raw material supply unit 31 is connected to a space 36 a between the electrodes 36. The fluorine-based source gas (CF 4 + Ar + H 2 O) after the addition of water is introduced into the interelectrode space 36a. Thereby, in the interelectrode space 36a, the fluorine-based source gas is turned into plasma (including excitation, decomposition, radicalization, and ionization), and fluorine-based reaction components such as HF and COF 2 are generated.
The plasma generation unit 35 may be provided on a path between the fluorine-based raw material supply unit 31 and the main processing nozzle 33 instead of inside the main processing nozzle 33.
 プラズマ化後のフッ素系ガスと、オゾナイザー32からのオゾン含有ガスとが、主処理ノズル33内で混合されて処理ガスが生成される。処理ガスは、フッ素系反応成分(HF、COF等)と、第1の酸化性反応成分(O)とを含有する。 The plasma-based fluorine-based gas and the ozone-containing gas from the ozonizer 32 are mixed in the main processing nozzle 33 to generate a processing gas. The processing gas contains a fluorine-based reaction component (HF, COF 2 or the like) and a first oxidizing reaction component (O 3 ).
 図示は省略するが、主処理ノズル33の内部には第1整流部が設けられている。第1整流部は、y方向(図1の紙面直交方向)に延びるチャンバや、y方向に延びるスリットや、y方向に配列された多数の小孔等を含む。上記処理ガスが第1整流部を通過することによってy方向に均一化される。 Although illustration is omitted, a first rectification unit is provided inside the main processing nozzle 33. The first rectification unit includes a chamber extending in the y direction (a direction orthogonal to the plane of FIG. 1), a slit extending in the y direction, and a large number of small holes arranged in the y direction. The processing gas is made uniform in the y direction by passing through the first rectifying unit.
 主処理ノズル33の下側部分は、処理チャンバ10の内部に挿入されている。主処理ノズル33は、処理チャンバ10内のコロコンベア20の中央部分と上下に対向している。主処理ノズル33とその直下のコンベア20との間に、処理空間39が画成されている。主処理ノズル33は、コロコンベア20と協働して処理空間39を画成する画成部を構成している。主処理ノズル33の下端部に複数の吹き出し部37が設けられている。複数の吹き出し部37は、x方向に間隔を置いて並べられている。図において、吹き出し部37の数は、3つであるが、1つ又は2つでもよく、4つ以上でもよい。各吹き出し部37は、処理空間39に臨んでいる。各吹き出し部37は、y方向(図1の紙面直交方向)に延びるスリット状の吹出し口37aを含む。吹出し口37aは、y方向に配列された多数の小孔にて構成されていてもよい。上記整流部を通過後の処理ガスが、各吹き出し部37に分配され、各吹き出し口37aから下方へ吹き出される。この吹出し流はy方向に均一な流れになる。処理空間39は、主処理ノズル33の下面に沿う空間のうち、処理ガスが有効な反応性を保って拡散可能な領域である。 The lower part of the main processing nozzle 33 is inserted into the processing chamber 10. The main processing nozzle 33 faces the central portion of the roller conveyor 20 in the processing chamber 10 in the vertical direction. A processing space 39 is defined between the main processing nozzle 33 and the conveyor 20 immediately below the main processing nozzle 33. The main processing nozzle 33 constitutes an image forming unit that defines the processing space 39 in cooperation with the roller conveyor 20. A plurality of blowing portions 37 are provided at the lower end of the main processing nozzle 33. The plurality of blowing portions 37 are arranged at intervals in the x direction. In the figure, the number of the blowing portions 37 is three, but may be one or two, or four or more. Each blowing unit 37 faces the processing space 39. Each blowout part 37 includes a slit-like blowout opening 37a extending in the y direction (direction orthogonal to the plane of FIG. 1). The outlet 37a may be configured by a large number of small holes arranged in the y direction. The processing gas after passing through the rectifying unit is distributed to each blowing unit 37 and blown downward from each blowing port 37a. This blowing flow becomes a uniform flow in the y direction. The processing space 39 is a region in the space along the lower surface of the main processing nozzle 33 where the processing gas can diffuse while maintaining effective reactivity.
 次に、前処理部40について説明する。
 前処理部40は、処理流体供給部41と、前処理ノズル42を有している。処理流体供給部41は、例えばオゾナイザーにて構成されている。オゾナイザー41は、酸素(O)を原料にして、オゾン含有ガス(O+O)を生成する。このオゾン含有ガス(O+O)が、特許請求の範囲の「処理流体」に対応する。当該処理流体(O+O)中のオゾン(O)が、特許請求の範囲の「第2の酸化性反応成分」を構成する。オゾナイザー41が前処理ノズル42に接続されている。オゾナイザー41から上記処理流体(O+O)が前処理ノズル42に導入される。
Next, the preprocessing unit 40 will be described.
The pretreatment unit 40 includes a treatment fluid supply unit 41 and a pretreatment nozzle 42. The processing fluid supply unit 41 is configured by, for example, an ozonizer. The ozonizer 41 generates ozone-containing gas (O 2 + O 3 ) using oxygen (O 2 ) as a raw material. This ozone-containing gas (O 2 + O 3 ) corresponds to the “processing fluid” in the claims. Ozone (O 3 ) in the processing fluid (O 2 + O 3 ) constitutes the “second oxidizing reaction component” in the claims. An ozonizer 41 is connected to the pretreatment nozzle 42. The processing fluid (O 2 + O 3 ) is introduced from the ozonizer 41 into the preprocessing nozzle 42.
 前処理部40の処理流体供給部41とエッチング処理部30の酸化性反応成分供給部32とが、互いに共用されていてもよい。例えば、単一のオゾナイザーが、エッチング処理部30のオゾナイザー32と前処理部40のオゾナイザー41の両方を兼ね、この単一のオゾナイザーからのオゾン含有ガス供給路が、2つの分岐路に分岐して、これら分岐路が主処理ノズル33と前処理ノズル42にそれぞれ接続されていてもよい。 The processing fluid supply unit 41 of the preprocessing unit 40 and the oxidizing reaction component supply unit 32 of the etching processing unit 30 may be shared with each other. For example, a single ozonizer serves as both the ozonizer 32 of the etching processing unit 30 and the ozonizer 41 of the pretreatment unit 40. The ozone-containing gas supply path from this single ozonizer branches into two branch paths. These branch paths may be connected to the main processing nozzle 33 and the preprocessing nozzle 42, respectively.
 前処理ノズル42は、処理チャンバ10内の入側(図1において右側)の上部に設置されている。前処理ノズル42は、エッチング装置1のy方向(図1の紙面直交方向)に延びている。図示は省略するが、オゾナイザー41の内部には第2整流部が設けられている。第2整流部は、y方向に延びるチャンバや、y方向に延びるスリットや、y方向に配列された多数の小孔等を含む。オゾナイザー41からのオゾン含有ガス(O+O)が、第2整流部を通過することによってy方向に均一化される。 The pretreatment nozzle 42 is installed at the upper part on the entry side (right side in FIG. 1) in the treatment chamber 10. The pretreatment nozzle 42 extends in the y direction of the etching apparatus 1 (the direction orthogonal to the plane of FIG. 1). Although not shown, a second rectification unit is provided inside the ozonizer 41. The second rectification unit includes a chamber extending in the y direction, a slit extending in the y direction, and a large number of small holes arranged in the y direction. The ozone-containing gas (O 2 + O 3 ) from the ozonizer 41 is made uniform in the y direction by passing through the second rectification unit.
 前処理ノズル42の下側部分は、処理チャンバ10の内部に挿入され、処理チャンバ10内のコロコンベア20の搬入口11寄りの部分と上下に対向している。前処理ノズル42とその直下のコロコンベア20との間に前処理空間49が画成されている。前処理ノズル42の下端部に吹き出し部43が設けられている。吹き出し部43が、前処理空間49に臨んでいる。吹き出し部43は、y方向(図1の紙面直交方向)に延びるスリット状の吹出し口43aを含む。吹出し口43aは、y方向に配列された多数の小孔にて構成されていてもよい。上記整流部を通過後のオゾン含有ガスが、吹き出し部43へ送られ、吹き出し口43aから下方へ吹き出される。この吹出し流はy方向に均一な流れになる。前処理空間49は、前処理ノズル42の下面に沿う空間のうち、オゾン含有ガス(処理流体)が有効な反応性を保って拡散可能な領域である。 The lower part of the pre-processing nozzle 42 is inserted into the processing chamber 10 and vertically opposes the part near the carry-in entrance 11 of the roller conveyor 20 in the processing chamber 10. A preprocessing space 49 is defined between the preprocessing nozzle 42 and the roller conveyor 20 immediately below the preprocessing nozzle 42. A blowing portion 43 is provided at the lower end portion of the pretreatment nozzle 42. The blowing unit 43 faces the preprocessing space 49. The blow-out portion 43 includes a slit-like blow-out port 43a extending in the y direction (a direction orthogonal to the plane of FIG. 1). The outlet 43a may be configured by a large number of small holes arranged in the y direction. The ozone-containing gas after passing through the rectifying unit is sent to the blowing unit 43 and blown downward from the blowing port 43a. This blowing flow becomes a uniform flow in the y direction. The pretreatment space 49 is a region in the space along the lower surface of the pretreatment nozzle 42 where the ozone-containing gas (treatment fluid) can diffuse while maintaining effective reactivity.
 上記のように構成されたエッチング装置1の動作を説明する。
[搬入工程]
 被処理物9をコロコンベア20によって搬入口11から処理チャンバ10内に搬入する。これにより、被処理物9を先ず前処理空間49に導入して前処理ノズル42と対向させる。被処理物9は、前処理空間49内を横切る。
The operation of the etching apparatus 1 configured as described above will be described.
[Import process]
The workpiece 9 is carried into the processing chamber 10 from the carry-in entrance 11 by the roller conveyor 20. As a result, the workpiece 9 is first introduced into the pretreatment space 49 and is opposed to the pretreatment nozzle 42. The workpiece 9 crosses the preprocessing space 49.
[前処理工程]
 上記の搬入工程と併行して、オゾン含有ガス(処理流体)をオゾナイザー41から前処理ノズル42に導入し、吹き出し口43aから吹き出す。このオゾン含有ガスが、前処理空間49内を通過中の被処理物9に接触する。このオゾン含有ガス中のオゾン(O)が被処理物9の表層のシリコン含有物9aと反応し、シリコン含有物9aの表面部分を酸化させる(式1)。この段階では、被処理物9の表面にフッ素系反応成分に起因するフッ酸水等の凝縮層が形成されていないため、シリコン含有物9aの酸化反応を確実に起こさせることができる。
[Pretreatment process]
In parallel with the above carry-in process, ozone-containing gas (processing fluid) is introduced from the ozonizer 41 to the pretreatment nozzle 42 and blown out from the outlet 43a. This ozone-containing gas comes into contact with the workpiece 9 passing through the pretreatment space 49. Ozone (O 2 ) in the ozone-containing gas reacts with the silicon-containing material 9a on the surface of the workpiece 9 to oxidize the surface portion of the silicon-containing material 9a (Formula 1). At this stage, since the condensed layer such as hydrofluoric acid water caused by the fluorine-based reaction component is not formed on the surface of the object 9 to be processed, the oxidation reaction of the silicon-containing material 9a can be surely caused.
[移送工程]
 コロコンベア20は、被処理物9を継続して一定速度で搬送する。これによって、被処理物9が、前処理空間49内を通過し、処理空間39へ移送される。被処理物9の全体が前処理空間49内から出たとき、オゾナイザー41からのオゾン含有ガスの供給を停止する。
[Transfer process]
The roller conveyor 20 continuously conveys the workpiece 9 at a constant speed. As a result, the workpiece 9 passes through the preprocessing space 49 and is transferred to the processing space 39. When the entire object 9 has exited the pretreatment space 49, the supply of the ozone-containing gas from the ozonizer 41 is stopped.
[エッチング処理工程]
 そして、被処理物9をエッチング処理工程に供す。すなわち、フッ素系原料供給部31及び添加部34からのフッ素系原料ガス(CF+Ar+HO)を主処理ノズル33に導入して、プラズマ生成部35にてプラズマ化し、HF等のフッ素系反応成分を生成する。このプラズマ化後のガスにオゾナイザー32からのオゾン含有ガス(O+O)を混合して、処理ガスを得る。この処理ガスを各吹き出し口37aから吹き出して処理空間39内に供給する。
[Etching process]
Then, the object 9 is subjected to an etching process. That is, the fluorine-based source gas (CF 4 + Ar + H 2 O) from the fluorine-based material supply unit 31 and the addition unit 34 is introduced into the main processing nozzle 33 and is converted into plasma by the plasma generation unit 35 to generate a fluorine-based reaction such as HF. Generate ingredients. The plasma-containing gas is mixed with an ozone-containing gas (O 2 + O 3 ) from the ozonizer 32 to obtain a processing gas. This processing gas is blown out from each blowing port 37 a and supplied into the processing space 39.
 上記処理ガス供給と併行して、処理チャンバ10内のコロコンベア20(移動機構)が正転、逆転を繰り返す。これによって、被処理物9が、処理チャンバ10内において往復移動(スキャン)される。被処理物9が往側(図1において左向き)又は復側(図1において右向き)に1回、片道移動(1スキャン)するごとに、被処理物9の全体が処理空間39を1回横切る。被処理物9は、処理空間39を横切る際、主処理ノズル33からの処理ガスと接触する。 In parallel with the processing gas supply, the roller conveyor 20 (moving mechanism) in the processing chamber 10 repeats normal rotation and reverse rotation. As a result, the workpiece 9 is reciprocated (scanned) in the processing chamber 10. Every time the workpiece 9 moves one way (one scan) toward the forward side (leftward in FIG. 1) or the backward side (rightward in FIG. 1), the entire workpiece 9 crosses the processing space 39 once. . The workpiece 9 contacts the processing gas from the main processing nozzle 33 when crossing the processing space 39.
 被処理物9が最初に処理空間39を往方向に横切るとき(最初の横断時、1スキャン目)には、既に上記前処理工程によって表層のシリコン含有物9aの酸化反応(式1)が進んでいる。そのため、処理ガスが被処理物9に接触することで、処理ガス中のHF等のフッ素系反応成分によるエッチング反応(式2)を直ちに開始することができる。したがって、最初の横断時においてもエッチングレートを十分に高くでき、フッ素系反応成分が無駄になるのを回避できる。更に、最初の横断時において処理ガス中のオゾンが被処理物9に接触することで、シリコン含有物9aの酸化(式1)をさらに進めることができる。 When the workpiece 9 first crosses the processing space 39 in the forward direction (at the first crossing, the first scan), the oxidation reaction (formula 1) of the silicon-containing material 9a on the surface layer has already progressed by the pretreatment step. It is out. Therefore, the etching reaction (formula 2) by the fluorine-based reaction component such as HF in the processing gas can be started immediately when the processing gas comes into contact with the workpiece 9. Therefore, the etching rate can be sufficiently increased even at the first crossing, and the waste of the fluorine-based reaction component can be avoided. Furthermore, when the ozone in the processing gas contacts the workpiece 9 during the first crossing, the oxidation of the silicon-containing material 9a (Formula 1) can be further advanced.
 2回目以降の横断時は、前回までの横断によってシリコン含有物9aの表面が既に酸化されているため、処理ガスが被処理物9に接触することで、処理ガス中のHF等によるエッチング反応(式2)を直ぐに起こさせることができ、エッチングレートを十分に高くできる。更に、処理ガス中のオゾンによってシリコン含有物9aの酸化(式1)をさらに進めることができる。したがって、最初の横断時のエッチングレートと2回目以降の横断時のエッチングレートとを略同じ大きさにすることができる。そのため、横断回数と累積のエッチング量との比例性を高めることができ、これらをほぼ正比例の関係にすることができる。故に、横断回数を設定することによって、シリコン含有物9aの最終のエッチング量が所望値になるように容易に制御することができる。 During the second and subsequent crossings, the surface of the silicon-containing material 9a has already been oxidized by the previous crossings, so that the processing gas comes into contact with the object 9 to be etched by HF or the like in the processing gas ( Equation 2) can be caused immediately and the etching rate can be made sufficiently high. Furthermore, the oxidation (formula 1) of the silicon-containing material 9a can be further advanced by ozone in the processing gas. Therefore, the etching rate at the first crossing and the etching rate at the second and subsequent crossings can be made substantially the same. Therefore, the proportionality between the number of crossings and the cumulative etching amount can be increased, and these can be in a substantially direct relationship. Therefore, by setting the number of crossings, it is possible to easily control the final etching amount of the silicon-containing material 9a to a desired value.
 処理済みのガスは、図示しない排気手段にて吸引されて排気される。 The treated gas is sucked and exhausted by an exhaust means (not shown).
[エッチング停止工程]
 横断回数が設定回数になったとき、エッチング処理工程を停止する。これにより、被処理物9のシリコン含有物9aを確実に所望の厚さだけエッチングすることができる。シリコン含有膜9aの残りの厚さが所定に達したとき、エッチングを停止したり、シリコン含有膜9aの全体がちょうど除去されたとき、エッチングを停止したりすることができる。エッチングを停止するタイミングを容易に判断することができる。
[Etching stop process]
When the number of crossings reaches the set number, the etching process is stopped. As a result, the silicon-containing material 9a of the workpiece 9 can be reliably etched to a desired thickness. The etching can be stopped when the remaining thickness of the silicon-containing film 9a reaches a predetermined value, or the etching can be stopped when the entire silicon-containing film 9a is just removed. The timing for stopping the etching can be easily determined.
[搬出工程]
 エッチング処理の停止後、被処理物9をコロコンベア20によって搬出口12から搬出する。
[Unloading process]
After the etching process is stopped, the workpiece 9 is unloaded from the unloading port 12 by the roller conveyor 20.
 次に、本発明の他の実施形態を説明する。以下の実施形態において既述の構成と重複する部分に関しては図面に同一符号を付して説明を省略する。
 図2は、本発明の第2実施形態を示したものである。この実施形態では、前処理部40の前処理ノズル42がエッチング処理部30の主処理ノズル33に接している。したがって、前処理工程からエッチング処理工程に移行する時間が第1実施形態より短くなる。
Next, another embodiment of the present invention will be described. In the following embodiments, the same reference numerals are given to the drawings for the same parts as those already described, and the description thereof is omitted.
FIG. 2 shows a second embodiment of the present invention. In this embodiment, the preprocessing nozzle 42 of the preprocessing unit 40 is in contact with the main processing nozzle 33 of the etching processing unit 30. Therefore, the time for shifting from the pretreatment process to the etching process is shorter than in the first embodiment.
 前処理工程における処理流体の酸化性反応成分及びエッチング処理工程における処理ガスの酸化性反応成分は、Oに限られず、NOxなどの他の酸化性ガスであってもよい。
 更に前処理工程における処理流体は、ガスに限られず、オゾン水や過酸化水素水などの酸化性液体であってもよい。
 図3は、本発明の第3実施形態を示したものである。この実施形態では、処理流体供給部として、オゾナイザー41に代えて、オゾン水供給部45が用いられている。供給部45内に処理流体として液体のオゾン水が蓄えられている。
The oxidizing reaction component of the processing fluid in the pretreatment process and the oxidizing reaction component of the processing gas in the etching process are not limited to O 3, and may be other oxidizing gases such as NOx.
Furthermore, the processing fluid in the pretreatment process is not limited to gas, and may be an oxidizing liquid such as ozone water or hydrogen peroxide water.
FIG. 3 shows a third embodiment of the present invention. In this embodiment, an ozone water supply unit 45 is used in place of the ozonizer 41 as the processing fluid supply unit. Liquid ozone water is stored in the supply unit 45 as a processing fluid.
 また、第3実施形態では、処理チャンバ10とは別途に前処理チャンバ50が設けられている。前処理チャンバ50は、処理チャンバ10より入側(図3において右)に配置されている。コロコンベア20の処理チャンバ10より入側の部分が、前処理チャンバ50内に配置されている。前処理チャンバ50の送り方向xの上流側(図3において右)の壁に搬入口51が設けられている。前処理チャンバ50の送り方向xの下流側(図3において左)の壁に搬出口52が設けられている。搬出口52は、処理チャンバ10の搬入口11と対向している。 In the third embodiment, a preprocessing chamber 50 is provided separately from the processing chamber 10. The pretreatment chamber 50 is disposed on the entry side (right side in FIG. 3) from the treatment chamber 10. A portion of the roller conveyor 20 on the entry side from the processing chamber 10 is disposed in the preprocessing chamber 50. A carry-in port 51 is provided on the upstream wall (right side in FIG. 3) of the pretreatment chamber 50 in the feed direction x. A carry-out port 52 is provided on the wall on the downstream side (left side in FIG. 3) of the pretreatment chamber 50 in the feed direction x. The carry-out port 52 faces the carry-in port 11 of the processing chamber 10.
 前処理チャンバ50の上側部にスプレー式の前処理ノズル47が設けられている。オゾン水供給部45がスプレー式前処理ノズル47に接続されている。スプレー式前処理ノズル47の下側部分は、前処理チャンバ50の内部に挿入され、前処理チャンバ50内のコロコンベア20と上下に対向している。スプレー式前処理ノズル47とコロコンベア20との間に前処理空間49が画成されている。スプレー式前処理ノズル47の先端(下端)の噴霧口が前処理空間49に臨んでいる。スプレー式前処理ノズル47を図3の紙面と直交する巾方向yに複数並べてもよい。 A spray-type pretreatment nozzle 47 is provided on the upper side of the pretreatment chamber 50. An ozone water supply unit 45 is connected to the spray type pretreatment nozzle 47. The lower part of the spray-type pretreatment nozzle 47 is inserted into the pretreatment chamber 50 and faces the roller conveyor 20 in the pretreatment chamber 50 in the vertical direction. A pretreatment space 49 is defined between the spray type pretreatment nozzle 47 and the roller conveyor 20. The spray port at the tip (lower end) of the spray type pretreatment nozzle 47 faces the pretreatment space 49. A plurality of spray pretreatment nozzles 47 may be arranged in the width direction y orthogonal to the paper surface of FIG.
 第3実施形態によれば、被処理物9が先ず搬入口51から前処理チャンバ50内に搬入され、前処理チャンバ50内の前処理空間49を横切る(前処理工程)。併行して、オゾン水供給部45からのオゾン水がスプレー式前処理ノズル47に導入され、前処理空間49に噴霧される。このオゾン水が被処理物9に接触し、シリコン含有物9aの酸化反応(式1)が起きる。その後、被処理物9は、搬出口52から搬出されて、搬入口11から処理チャンバ10内に搬入される(移送工程)。移送工程の間に、エアナイフなどによる被処理物9の乾燥工程(図示省略)が行われる。そして、処理チャンバ10内において、被処理物9のエッチング処理工程が第1実施形態と同様にして行なわれる。 According to the third embodiment, the workpiece 9 is first carried into the pretreatment chamber 50 from the carry-in port 51 and crosses the pretreatment space 49 in the pretreatment chamber 50 (pretreatment step). At the same time, ozone water from the ozone water supply unit 45 is introduced into the spray pretreatment nozzle 47 and sprayed into the pretreatment space 49. This ozone water comes into contact with the workpiece 9 and an oxidation reaction (formula 1) of the silicon-containing material 9a occurs. Thereafter, the workpiece 9 is unloaded from the unloading port 52 and loaded into the processing chamber 10 from the unloading port 11 (transfer process). During the transfer process, a drying process (not shown) of the workpiece 9 using an air knife or the like is performed. Then, in the processing chamber 10, the etching process of the workpiece 9 is performed in the same manner as in the first embodiment.
 図4は、本発明の第4実施形態を示したものである。この実施形態では、エッチング処理部60が、所謂ダイレクト式のプラズマ処理装置にて構成されている。エッチング処理部60は、第1、第2の電極61,62を有している。第1電極61に電源(図示省略)が接続されている。第2電極62は電気的に接地されている。少なくとも一方の電極61,62の対向面に固体誘電体層(図示省略)が設けられている。電極61,62間に電界が印加されることによって大気圧近傍下で放電が生成される。電極61,62間の空間が放電空間63になる。 FIG. 4 shows a fourth embodiment of the present invention. In this embodiment, the etching processing unit 60 is configured by a so-called direct type plasma processing apparatus. The etching processing unit 60 has first and second electrodes 61 and 62. A power source (not shown) is connected to the first electrode 61. The second electrode 62 is electrically grounded. A solid dielectric layer (not shown) is provided on the opposing surface of at least one of the electrodes 61 and 62. When an electric field is applied between the electrodes 61 and 62, a discharge is generated near atmospheric pressure. A space between the electrodes 61 and 62 becomes a discharge space 63.
 エッチング処理部60には、オゾナイザー32に代えて酸素供給部64が設けられている。フッ素系原料供給部31及び添加部34からのフッ素系原料ガス(CF+Ar+HO)に酸素供給部64からの酸素(O)が混合される。混合後のガスが、放電空間63に導入されてプラズマ化される。これによって、放電空間63内において、HF等のフッ素系反応成分や、オゾン、Oラジカル等の酸化性反応成分が生成される。 The etching processing unit 60 is provided with an oxygen supply unit 64 in place of the ozonizer 32. Oxygen (O 2 ) from the oxygen supply unit 64 is mixed with the fluorine-based source gas (CF 4 + Ar + H 2 O) from the fluorine-based material supply unit 31 and the addition unit 34. The mixed gas is introduced into the discharge space 63 and turned into plasma. As a result, in the discharge space 63, a fluorine-based reaction component such as HF and an oxidizing reaction component such as ozone and O radical are generated.
 第2電極62は、ステージを兼ねており、その上面に被処理物9が設置される。第2電極兼ステージ62に移動機構65が接続されている。詳細な図示は省略するが、移動機構65は、例えば直動モータ、スライドガイド等を含み、第2電極兼ステージ62を送り方向xに沿って往復移動させる。 The second electrode 62 also serves as a stage, and the workpiece 9 is placed on the upper surface thereof. A moving mechanism 65 is connected to the second electrode / stage 62. Although detailed illustration is omitted, the moving mechanism 65 includes, for example, a linear motion motor, a slide guide, and the like, and reciprocates the second electrode / stage 62 along the feed direction x.
 被処理物9は、先ず前処理部40の前処理ノズル42と対向される。この被処理物9に前処理ノズル42からオゾンを吹き付ける。これによって、シリコン含有物9aの表面部分を前もって酸化させておくことができる(前処理工程)。 The workpiece 9 is first opposed to the pretreatment nozzle 42 of the pretreatment unit 40. Ozone is sprayed from the pretreatment nozzle 42 onto the workpiece 9. Thereby, the surface portion of the silicon-containing material 9a can be oxidized in advance (pretreatment step).
 前処理工程後の被処理物9をエッチング処理部60のステージ62上へ移す(移送工程)。移し替えは、人手で行なってもよく、ロボットアクチュエータ等の移送機構を用いて行なってもよい。或いは、上記ステージ62が、前処理工程において被処理物9を支持する支持部48を兼ねていてもよい。すなわち、まず、ステージ62上に被処理物9を載置する。そして、前処理工程ではステージ62を前処理ノズル42と対向させ、ひいては被処理物9を前処理ノズル42と対向させる。その後、ステージ62ひいては被処理物9をエッチング処理部60へ移してもよい。 The workpiece 9 after the pretreatment process is moved onto the stage 62 of the etching processing unit 60 (transfer process). The transfer may be performed manually or using a transfer mechanism such as a robot actuator. Or the said stage 62 may serve as the support part 48 which supports the to-be-processed object 9 in a pre-processing process. That is, first, the workpiece 9 is placed on the stage 62. In the pretreatment step, the stage 62 is opposed to the pretreatment nozzle 42, and as a result, the workpiece 9 is opposed to the pretreatment nozzle 42. Thereafter, the stage 62 and thus the workpiece 9 may be moved to the etching processing unit 60.
 エッチング処理部60においては、移動機構65によって、被処理物9を、第1電極61の下方を横切るように往復移動させる(エッチング処理工程)。被処理物9が第1電極61と対向して放電空間63内に位置するとき、放電空間63内で生成された処理ガス中の各反応成分(HF、COF、オゾン、Oラジカル等)が被処理物9と接触し、シリコン含有物9aがエッチングされる。放電空間63が、エッチング処理を行なう処理空間となる。第1電極61が、第2電極兼ステージ62と協働して処理空間63を画成する画成部を構成する。 In the etching processing unit 60, the workpiece 9 is reciprocally moved across the lower portion of the first electrode 61 by the moving mechanism 65 (etching process step). When the workpiece 9 is positioned in the discharge space 63 so as to face the first electrode 61, each reaction component (HF, COF 2 , ozone, O radical, etc.) in the processing gas generated in the discharge space 63 is generated. In contact with the workpiece 9, the silicon-containing material 9 a is etched. The discharge space 63 becomes a processing space for performing an etching process. The first electrode 61 constitutes a defining unit that defines the processing space 63 in cooperation with the second electrode / stage 62.
 本発明は、上記実施形態に限定されず、その趣旨を逸脱しない範囲で種々の改変態様を採用できる。
 例えば、被処理物9を静止させ、かつエッチング処理部30,60の主処理ノズル33又は第1電極61、及び前処理部40の前処理ノズル42,47を移動させることによって、前処理工程からエッチング処理工程への切り替えや、エッチング処理工程における往復移動を行なってもよい。移動機構が、被処理物9に代えて主処理ノズル33又は第1電極61を移動させてもよい。
The present invention is not limited to the above embodiment, and various modifications can be adopted without departing from the spirit of the present invention.
For example, by moving the main processing nozzle 33 or the first electrode 61 of the etching processing units 30 and 60 and the preprocessing nozzles 42 and 47 of the preprocessing unit 40 by moving the workpiece 9 to be stationary, Switching to the etching process or reciprocation in the etching process may be performed. The moving mechanism may move the main processing nozzle 33 or the first electrode 61 instead of the workpiece 9.
 エッチング装置1が、複数の主処理ノズル33,33…を備え、これら複数の主処理ノズル33,33…がx方向に1列に並べられていてもよく、ひいては複数の処理空間39がx方向に1列に並べられていてもよい。この場合、被処理物9を主処理ノズル33,33…に対してx方向に片道移動させることで、被処理物9が複数の処理空間39,39…を順次横切る。被処理物9が処理空間33,33…の1つを横切る動作が、1回の横断に対応する。シリコン含有物9aの最終エッチング量が所望値になるように、主処理ノズルの個数を設定することが好ましい。もちろん、被処理物9を主処理ノズル33,33…に対してx方向に往復移動させてもよい。複数の主処理ノズル33の各々にプラズマ生成部35が格納されていてもよく、1つのプラズマ生成部35にて生成したプラズマガスを上記複数の主処理ノズル33に分配することにしてもよい。 The etching apparatus 1 may include a plurality of main processing nozzles 33, 33..., And the plurality of main processing nozzles 33, 33... May be arranged in a line in the x direction. May be arranged in one row. In this case, by moving the object 9 in one direction in the x direction with respect to the main processing nozzles 33, 33..., The object 9 sequentially traverses the plurality of processing spaces 39, 39. The movement of the workpiece 9 across one of the processing spaces 33, 33... Corresponds to one crossing. It is preferable to set the number of main processing nozzles so that the final etching amount of the silicon-containing material 9a becomes a desired value. Of course, the workpiece 9 may be reciprocated in the x direction with respect to the main processing nozzles 33, 33. A plasma generation unit 35 may be stored in each of the plurality of main processing nozzles 33, and plasma gas generated by one plasma generation unit 35 may be distributed to the plurality of main processing nozzles 33.
 前処理工程では、被処理物9を処理空間39に配置し、かつ酸化性反応成分供給部32からの酸化性反応成分含有ガス(処理流体)だけをノズル33から吹き出して被処理物9に接触させてもよい。この場合、処理空間39が前処理部の前処理空間を兼ね、供給部32が前処理部の処理流体供給部41を兼ね、ノズル33が前処理ノズルを兼ねる。その後のエッチング工程では、上記ノズル33からフッ素系反応成分や酸化性反応成分を含む処理ガスを吹出し、被処理部9に接触させることが好ましい。
 複数の実施形態を互いに組み合わせてもよい。例えば、第4実施形態(図4)の前処理ノズルとして第3実施形態のオゾン水スプレーノズル47を適用してもよい。
In the pretreatment step, the workpiece 9 is placed in the treatment space 39, and only the oxidizing reaction component-containing gas (processing fluid) from the oxidizing reaction component supply unit 32 is blown out from the nozzle 33 to come into contact with the workpiece 9 You may let them. In this case, the processing space 39 also serves as the preprocessing space of the preprocessing unit, the supply unit 32 serves as the processing fluid supply unit 41 of the preprocessing unit, and the nozzle 33 also serves as the preprocessing nozzle. In the subsequent etching step, it is preferable that a processing gas containing a fluorine-based reaction component or an oxidizing reaction component is blown out from the nozzle 33 and brought into contact with the portion 9 to be processed.
A plurality of embodiments may be combined with each other. For example, the ozone water spray nozzle 47 of the third embodiment may be applied as the pretreatment nozzle of the fourth embodiment (FIG. 4).
 実施例を説明する。なお、本発明は以下の実施例に限定されるものではない。
 図1に示すエッチング装置1と実質的に同じ構成の装置を用いた。処理対象9は、アモルファスシリコン膜9aが被膜されたガラス基板であり、その大きさは10cm×10cmであった。この基板9に前処理工程を施したうえで、エッチング処理工程に供した。なお、実施例1の装置では、被処理物9の支持部及び移動機構としてコンベア20に代えて移動ステージを用いた。
Examples will be described. In addition, this invention is not limited to a following example.
An apparatus having substantially the same configuration as that of the etching apparatus 1 shown in FIG. 1 was used. The processing target 9 was a glass substrate coated with an amorphous silicon film 9a, and the size thereof was 10 cm × 10 cm. The substrate 9 was subjected to a pretreatment step and then subjected to an etching treatment step. In addition, in the apparatus of Example 1, it replaced with the conveyor 20 as the support part and moving mechanism of the to-be-processed object 9, and used the movement stage.
[前処理工程]
 前処理用の処理流体としてオゾン含有ガス(O+O)を処理流体供給部41から前処理ノズル42に導入し、吹き出し口43aから吹き出して基板9に接触させた。オゾン含有ガスの流量は1SLM、オゾン濃度は8~10vol%であった。吹き出し口43aの巾(図1の紙面直交方向yの寸法)は、10cmであった。オゾン含有ガスの吹き付けと併行して基板9を送り方向xに搬送した。基板9の搬送速度は、4m/minであった。基板9を前処理空間49に通した回数は、1回であった。
[Pretreatment process]
An ozone-containing gas (O 2 + O 3 ) was introduced from the treatment fluid supply unit 41 to the pretreatment nozzle 42 as a pretreatment treatment fluid, and was blown out from the blowout port 43 a to be brought into contact with the substrate 9. The flow rate of the ozone-containing gas was 1 SLM, and the ozone concentration was 8 to 10 vol%. The width of the outlet 43a (dimension in the direction perpendicular to the paper surface in FIG. 1) was 10 cm. The substrate 9 was transported in the feeding direction x in parallel with the ozone-containing gas spraying. The conveyance speed of the substrate 9 was 4 m / min. The number of times the substrate 9 was passed through the pretreatment space 49 was one.
[エッチング処理工程]
 上記前処理工程に引き続いてエッチング処理工程を行なった。フッ素系原料供給部31からのフッ素系原料ガスは、CFとArの混合ガスからなり、この混合ガスに添加部34において水(HO)を添加した。各ガス成分の流量は以下の通りであった。
  CF: 0.1SLM
  Ar:  1SLM
水添加後のフッ素系原料ガスの露点は18℃程度であった。このフッ素系原料ガスをプラズマ生成部35に供給し、大気圧下においてプラズマ化した。プラズマ放電条件は以下の通りであった。
  電極間空間36aの厚さ: 1mm
  電極36の巾(図1の紙面直交方向yの寸法): 10cm
  印加電圧: Vpp=13kV
  パルス周波数: 40kHz
プラズマ化後のフッ素系ガスと第1酸化性反応成分生成部32からのオゾン含有ガス(O+O)とを混合して処理ガスを得、この処理ガスを各吹き出し口37aから吹き出した。第1酸化性反応成分生成部32からのオゾン含有ガスの流量は1SLM、オゾン濃度は8~10vol%であった。吹き出し口37aの巾(図1の紙面直交方向yの寸法)は、10cmであった。処理ガスの吹き付けと併行して基板9を送り方向xに往復移動させた。基板9の移動速度は、4m/minであった。
[Etching process]
Subsequent to the pretreatment step, an etching treatment step was performed. The fluorine-based material gas from the fluorine-based material supply unit 31 is a mixed gas of CF 4 and Ar, and water (H 2 O) is added to the mixed gas in the adding unit 34. The flow rate of each gas component was as follows.
CF 4 : 0.1 SLM
Ar: 1SLM
The dew point of the fluorine-based raw material gas after the addition of water was about 18 ° C. This fluorine-based raw material gas was supplied to the plasma generation unit 35 and turned into plasma under atmospheric pressure. The plasma discharge conditions were as follows.
Thickness of the interelectrode space 36a: 1 mm
Width of electrode 36 (dimension in the direction perpendicular to the plane of FIG. 1): 10 cm
Applied voltage: Vpp = 13kV
Pulse frequency: 40 kHz
The plasma-based fluorine-based gas and the ozone-containing gas (O 2 + O 3 ) from the first oxidizing reaction component generation unit 32 were mixed to obtain a processing gas, and this processing gas was blown out from each blowing port 37a. The flow rate of the ozone-containing gas from the first oxidizing reaction component generation unit 32 was 1 SLM, and the ozone concentration was 8 to 10 vol%. The width of the blowout port 37a (dimension in the direction perpendicular to the paper surface in FIG. 1) was 10 cm. The substrate 9 was reciprocated in the feed direction x in parallel with the spraying of the processing gas. The moving speed of the substrate 9 was 4 m / min.
 そして、エッチング処理工程における基板9を処理空間39に通した回数(横断回数)に応じたエッチング量を測定した。図5の実線に示すように、横断回数とエッチング量はほぼ正比例の関係になった。最初の横断時でも2回目以降の横断時と略同じ大きさのエッチングレートが得られることが確認された。 Then, the etching amount corresponding to the number of times the substrate 9 was passed through the processing space 39 (number of crossings) in the etching process was measured. As indicated by the solid line in FIG. 5, the number of crossings and the etching amount were in a substantially proportional relationship. It was confirmed that an etching rate substantially the same as that at the second and subsequent crossings could be obtained even at the first crossing.
[比較例1]
 比較例として、上記実施例1における前処理工程を省き、エッチング処理工程のみを行なった。エッチング処理工程の処理条件は上記実施例とまったく同じとした。そして、エッチング処理工程における基板9を処理空間39に通した回数(横断回数)に応じたエッチング量を測定した。
[Comparative Example 1]
As a comparative example, the pretreatment process in Example 1 was omitted and only the etching process was performed. The processing conditions for the etching process were exactly the same as in the above example. And the etching amount according to the frequency | count (number of crossings) which passed the board | substrate 9 in the process space 39 in the etching process was measured.
 図5の破線に示すように、比較例1では、最初の横断時のエッチングレートが2回目以降の横断時のエッチングレートと比べて低下した。そのため、横断回数とエッチング量が正比例の関係にならず、比例性が実施例1より低くなった。以上の結果から、横断回数に基づいてエッチング量を制御するうえで、予め前処理工程を行なうことが有効であることが示された。 As shown by the broken line in FIG. 5, in Comparative Example 1, the etching rate at the first crossing was lower than the etching rate at the second and subsequent crossings. For this reason, the number of crossings and the etching amount were not directly proportional, and the proportionality was lower than that of Example 1. From the above results, it was shown that it is effective to perform a pretreatment step in advance in controlling the etching amount based on the number of crossings.
 本発明は、半導体装置や液晶表示装置の製造に適用可能である。 The present invention is applicable to the manufacture of semiconductor devices and liquid crystal display devices.
1   エッチング装置
9   被処理物
9a  シリコン含有物
10  処理チャンバ
11  搬入口
12  搬出口
20  コロコンベア(移動機構)
21  シャフト
22  コロ
30  エッチング処理部
31  フッ素系原料供給部
32  第1オゾナイザー(第1の酸化性反応成分生成部)
33  主処理ノズル(画成部)
34  添加部
35  プラズマ生成部(フッ素系反応成分生成部)
36  電極
36a 放電空間(電極間空間)
37  吹き出し部
37a 吹出し口
39  処理空間
40  前処理部
41  処理流体供給部(第2の酸化性反応成分生成部)
42  前処理ノズル
43  吹き出し部
43a 吹き出し口
45  オゾン水供給部(処理流体供給部)
47  スプレー式前処理ノズル
48  支持部
49  前処理空間
50  前処理チャンバ
51  搬入口
52  搬出口
60  エッチング処理部
61  第1電極(画成部)
62  第2電極兼ステージ
63  処理空間
64  酸素供給部
65  移動機構
DESCRIPTION OF SYMBOLS 1 Etching apparatus 9 To-be-processed object 9a Silicon content 10 Processing chamber 11 Carry-in port 12 Carry-out port 20 Roller conveyor (movement mechanism)
21 Shaft 22 Roller 30 Etching processing section 31 Fluorine-based raw material supply section 32 First ozonizer (first oxidizing reaction component generation section)
33 Main processing nozzle (imaging part)
34 Addition unit 35 Plasma generation unit (fluorine-based reaction component generation unit)
36 Electrode 36a Discharge space (interelectrode space)
37 blowing section 37a blowing outlet 39 processing space 40 preprocessing section 41 processing fluid supply section (second oxidizing reaction component generation section)
42 Pretreatment nozzle 43 Blowout part 43a Blowout opening 45 Ozone water supply part (treatment fluid supply part)
47 spray type pretreatment nozzle 48 support part 49 pretreatment space 50 pretreatment chamber 51 carry-in port 52 carry-out port 60 etching treatment part 61 first electrode (definition part)
62 Second electrode / stage 63 Processing space 64 Oxygen supply unit 65 Moving mechanism

Claims (4)

  1.  大気圧近傍の処理空間においてフッ素系反応成分及び第1の酸化性反応成分を含有する処理ガスを用いてシリコン含有物をエッチングするエッチング方法において、
     第2の酸化性反応成分を含有する処理流体を、前記シリコン含有物を含む被処理物に接触させる前処理工程と、
     前記前処理工程の後、前記被処理物を、前記処理空間内を横切るように前記処理空間に対して相対的に移動させながら、前記処理空間に前記処理ガスを供給し又は前記処理空間内で前記処理ガスの前記各反応成分を生成するエッチング処理工程と、
     を含むことを特徴とするエッチング方法。
    In an etching method for etching a silicon-containing material using a processing gas containing a fluorine-based reaction component and a first oxidizing reaction component in a processing space near atmospheric pressure,
    A pretreatment step of bringing a treatment fluid containing a second oxidizing reaction component into contact with an object to be treated containing the silicon-containing material;
    After the pretreatment step, the processing gas is supplied to the processing space while moving the object to be processed relative to the processing space so as to cross the processing space, or in the processing space. An etching process for generating the reaction components of the process gas;
    An etching method comprising:
  2.  前記エッチング処理工程において、前記被処理物が前記処理空間内を横切る回数を調節することによって、前記シリコン含有物のエッチング量を制御することを特徴とする請求項1に記載のエッチング方法。 2. The etching method according to claim 1, wherein, in the etching process, the etching amount of the silicon-containing material is controlled by adjusting the number of times the object to be processed crosses the processing space.
  3.  前記エッチング処理工程において、フッ素含有成分及び水素含有添加成分を含むフッ素系原料ガスを大気圧近傍下にてプラズマ化することによって前記フッ素系反応成分を生成することを特徴とする請求項1又は2に記載のエッチング方法。 3. The fluorine-based reaction component is generated by converting the fluorine-based source gas containing a fluorine-containing component and a hydrogen-containing additive component into plasma at a pressure close to atmospheric pressure in the etching process step. The etching method as described in 4. above.
  4.  大気圧近傍の処理空間においてフッ素系反応成分及び第1の酸化性反応成分を含有する処理ガスを用いてシリコン含有物をエッチングするエッチング装置において、
     第2の酸化性反応成分を含有する処理流体を吹き出す前処理ノズルを有し、前記シリコン含有物を含む被処理物に前記処理流体を接触させる前処理部と、
     前記処理空間を画成する画成部と、前記処理流体との接触後の前記被処理物を、前記処理空間内を横切るように前記画成部に対して相対的に移動させる移動機構とを有し、前記処理空間に前記処理ガスを供給し又は前記処理空間内で前記処理ガスの前記各反応成分を生成するエッチング処理部と、
     を備えたことを特徴とするエッチング装置。
    In an etching apparatus for etching a silicon-containing material using a processing gas containing a fluorine-based reaction component and a first oxidizing reaction component in a processing space near atmospheric pressure,
    A pretreatment section having a pretreatment nozzle for blowing out a treatment fluid containing a second oxidizing reaction component, and bringing the treatment fluid into contact with an object to be treated containing the silicon-containing material;
    An image forming unit that defines the processing space; and a moving mechanism that moves the object to be processed after contact with the processing fluid relative to the image forming unit so as to cross the processing space. An etching processing unit that supplies the processing gas to the processing space or generates the reaction components of the processing gas in the processing space;
    An etching apparatus comprising:
PCT/JP2011/071638 2010-09-28 2011-09-22 Etching method, and device WO2012043383A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180046520.0A CN103155116B (en) 2010-09-28 2011-09-22 Etching method, and device
JP2012536396A JP5276223B2 (en) 2010-09-28 2011-09-22 Etching method and apparatus
KR1020137010746A KR101362632B1 (en) 2010-09-28 2011-09-22 Etching method, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-217048 2010-09-28
JP2010217048 2010-09-28

Publications (1)

Publication Number Publication Date
WO2012043383A1 true WO2012043383A1 (en) 2012-04-05

Family

ID=45892834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071638 WO2012043383A1 (en) 2010-09-28 2011-09-22 Etching method, and device

Country Status (5)

Country Link
JP (1) JP5276223B2 (en)
KR (1) KR101362632B1 (en)
CN (1) CN103155116B (en)
TW (1) TWI428983B (en)
WO (1) WO2012043383A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599458A (en) * 2021-03-03 2021-04-02 西安奕斯伟硅片技术有限公司 Silicon wafer etching device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113402A1 (en) * 2008-03-13 2009-09-17 積水化学工業株式会社 Method and apparatus for etching silicon-containing films
WO2010035522A1 (en) * 2008-09-25 2010-04-01 積水化学工業株式会社 Method and apparatus for etching silicon-containing film
JP2010087077A (en) * 2008-09-30 2010-04-15 Sekisui Chem Co Ltd Surface processing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4186045B2 (en) * 2000-11-08 2008-11-26 ダイキン工業株式会社 Dry etching gas and dry etching method
JP2008177532A (en) * 2006-12-21 2008-07-31 Elpida Memory Inc Method of processing semiconductor wafer
KR100944340B1 (en) * 2007-02-23 2010-03-02 세키스이가가쿠 고교가부시키가이샤 Etching method and apparatus, and subject to be processed
JP2009065028A (en) * 2007-09-07 2009-03-26 Sekisui Chem Co Ltd Semiconductor device and manufacturing method thereof, and forming and etching method for contact hole or the like

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113402A1 (en) * 2008-03-13 2009-09-17 積水化学工業株式会社 Method and apparatus for etching silicon-containing films
WO2010035522A1 (en) * 2008-09-25 2010-04-01 積水化学工業株式会社 Method and apparatus for etching silicon-containing film
JP2010087077A (en) * 2008-09-30 2010-04-15 Sekisui Chem Co Ltd Surface processing apparatus

Also Published As

Publication number Publication date
KR101362632B1 (en) 2014-02-12
TWI428983B (en) 2014-03-01
CN103155116B (en) 2014-03-12
KR20130052034A (en) 2013-05-21
CN103155116A (en) 2013-06-12
JPWO2012043383A1 (en) 2014-02-06
TW201216361A (en) 2012-04-16
JP5276223B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5476152B2 (en) Silicon nitride etching method and apparatus
JP5167430B2 (en) Etching method and apparatus
KR101004159B1 (en) Method for etching of silicon
KR101141873B1 (en) Method for etching silicon
KR101209351B1 (en) Method and apparatus for etching silicon-containing films
JP4180109B2 (en) Etching method and apparatus, and object to be processed
KR101248625B1 (en) Method and apparatus for etching silicon-containing film
JP4977230B2 (en) Etching method and apparatus
JP2009099880A (en) Plasma etching apparatus
JP5276223B2 (en) Etching method and apparatus
JP2009094209A (en) Etching method of silicon
JP2010062433A (en) Method and apparatus for etching silicon-containing film
JP5743649B2 (en) Etching apparatus and method
JP2007201067A (en) Surface treatment method and equipment
JP2009049284A (en) Method and equipment of surface treatment using hydrogen fluoride
JP2012216582A (en) Etching method for silicon-containing material
JP2013251290A (en) Silicone-containing material etching device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046520.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012536396

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137010746

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11828940

Country of ref document: EP

Kind code of ref document: A1