WO2012043382A1 - Feeder for polymerizable monomer - Google Patents

Feeder for polymerizable monomer Download PDF

Info

Publication number
WO2012043382A1
WO2012043382A1 PCT/JP2011/071637 JP2011071637W WO2012043382A1 WO 2012043382 A1 WO2012043382 A1 WO 2012043382A1 JP 2011071637 W JP2011071637 W JP 2011071637W WO 2012043382 A1 WO2012043382 A1 WO 2012043382A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass flow
polymerizable monomer
flow rate
temperature
unit
Prior art date
Application number
PCT/JP2011/071637
Other languages
French (fr)
Japanese (ja)
Inventor
川崎 真一
野上 光秀
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2012536395A priority Critical patent/JP5281203B2/en
Publication of WO2012043382A1 publication Critical patent/WO2012043382A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/46Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique for treatment of endless filamentary, band or sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma

Definitions

  • the present invention relates to an apparatus for supplying a polymerizable monomer to a utilization part thereof, and particularly suitable for performing flow management such as measurement and control of the flow rate of a polymerizable monomer by providing a thermal mass flow meter and a mass flow controller in a supply line.
  • the present invention relates to a supply device.
  • Patent Document 1 describes that as a pretreatment for bonding a protective film for a polarizing plate to a polarizing film, a thin film of a polymerizable monomer is formed on the surface of the protective film and then irradiated with atmospheric pressure plasma. Has been. Thin film formation of the polymerizable monomer is performed by spray coating or the like. Examples of the polymerizable monomer include hydroxyethyl methacrylate (HEMA), acrylic acid, methacrylic acid, and the like.
  • HEMA hydroxyethyl methacrylate
  • a thermal mass flow meter and a thermal mass flow controller are well known.
  • This type of mass flow meter and mass flow controller has a thermal mass flow rate detector.
  • the thermal mass flow rate detection unit heats at least a part of the fluid to be inspected, and detects the mass flow rate based on the temperature distribution in the flow direction of the heated fluid to be inspected.
  • the polymerizable monomer tends to cause a polymerization reaction when heat is applied.
  • the thermal mass flow rate detection unit when the flow rate of the polymerizable monomer is controlled by a thermal mass flow meter or mass flow controller, the polymerization of the polymerizable monomer proceeds in the detection path of the thermal mass flow rate detection unit, and the detection path may eventually be blocked. There is.
  • the present invention has been made based on the above circumstances. When the supply flow rate of the polymerizable monomer is managed (measured or controlled) by a thermal mass flow meter or a thermal mass flow controller, the thermal mass flow rate is determined.
  • An object of the present invention is to prevent the detection path of the detection unit from being clogged by polymerization of a polymerizable monomer and to stably control the flow rate.
  • the present invention provides a supply device for supplying a polymerizable monomer to a utilization unit that uses the polymerizable monomer, and is provided on a supply line that allows the polymerizable monomer to flow in a liquid state.
  • a mass flow controller comprising a mass flow controller or a mass flow meter having a thermal mass flow detector, and a cooling means for cooling the mass flow controller, wherein the set temperature of the cooling means is the polymerizable monomer Is lower than the temperature at which the polymerization reaction occurs and higher than the freezing point of the polymerizable monomer.
  • the mass flow rate management unit can be cooled to the set temperature by the cooling means, and thus the temperature of the polymerizable monomer liquid flowing in the mass flow rate management unit can be kept lower than the temperature causing the polymerization reaction. it can.
  • This can prevent the polymerizable monomer liquid from being polymerized in the detection path of the mass flow rate management unit.
  • the detection path of the thermal mass flow rate detection unit from being blocked by polymerization or solidification of the polymerizable monomer liquid.
  • the flow rate of the polymerizable monomer can be stably controlled, and the reliability of the polymerizable monomer supply device can be improved.
  • the cooling means faces at least the thermal mass flow rate detection unit and the peripheral part of the thermal mass flow rate detection unit in the mass flow rate management unit.
  • the thermal mass flow rate detection unit is locally cooled, but also its peripheral parts (components and ambient gas etc. near the thermal mass flow rate detection unit) can be cooled.
  • the periphery thereof can be maintained at a uniform temperature (for example, about room temperature). Therefore, it is possible to reliably prevent the polymerizable monomer liquid from being polymerized in the detection path, and to reliably prevent the detection path from being blocked.
  • the polymerizable monomer liquid can be heated by the thermal mass flow rate detection unit based on the temperature after cooling in the detection path, a temperature distribution corresponding to the mass flow rate of the polymerizable monomer can be reliably formed. Therefore, the cooling action of the cooling means does not become an obstacle to the thermal detection of the mass flow rate.
  • the set temperature of the cooling means is preferably 15 ° C. to 30 ° C., more preferably 20 ° C. to 25 ° C. (near room temperature). As a result, it is possible to reliably prevent the acrylic acid from being polymerized or solidified in the detection path of the thermal mass flow rate detection unit, and to reliably block the detection path.
  • a vaporizer for vaporizing a polymerizable monomer is interposed between the mass flow management unit and the utilization unit, and the mass flow management unit and the vaporizer are accommodated in one casing.
  • the mass flow management unit and the vaporizer can be arranged close to each other, and the path length of the flow path portion connecting the mass flow management unit and the vaporizer in the supply line can be shortened.
  • the responsiveness of the vaporizer when the set flow rate of the polymerizable monomer is changed can be enhanced. Even when there is a vaporizer near the mass flow management unit and heat for vaporization reaches the mass flow management unit, this heat can be quickly removed from the mass flow management unit by the cooling element.
  • the temperature of the polymerizable monomer in the mass flow rate management unit is rising, and to reliably prevent the polymerizable monomer from causing a polymerization reaction in the mass flow rate management unit.
  • the flow rate of the polymerizable monomer can be controlled more stably, and the reliability of the polymerizable monomer supply device can be further enhanced.
  • the cooling means is preferably a Peltier element. Accordingly, there is no need to provide a temperature control medium (refrigerant) pipe or the like, the apparatus can be made compact, and maintenance can be easily performed.
  • the supply device may further include a temperature adjustment means including a medium temperature adjustment unit that adjusts the temperature of the temperature adjustment medium, and a first heat exchange unit.
  • the first heat exchange unit may include a heat exchange path through which the temperature control medium from the medium temperature control unit flows to exchange heat with the mass flow rate management unit. Thereby, the temperature control (cooling) of the mass flow rate management unit can be reliably performed.
  • the first heat exchange part may function as the cooling means.
  • the temperature control unit further includes a second heat exchange unit that exchanges heat between a portion of the supply line upstream of the mass flow rate management unit and the temperature control medium.
  • a second heat exchange unit that exchanges heat between a portion of the supply line upstream of the mass flow rate management unit and the temperature control medium.
  • the temperature of the mass flow management unit can be made substantially the same as the set temperature of the temperature control medium by heat exchange between the temperature control medium and the mass flow management unit. Therefore, the polymerizable monomer liquid and the mass flow rate management unit can be brought to substantially the same temperature. As a result, when the mass flow rate is detected by the mass flow rate management unit, it is possible to prevent a detection error due to a temperature difference between the mass flow rate management unit and the polymerizable monomer liquid, and it is possible to accurately detect the mass flow rate of the polymerizable monomer.
  • Examples of the polymerizable monomer include monomers having an unsaturated bond and a predetermined functional group.
  • the predetermined functional group is selected from, for example, a hydroxyl group, a carboxyl group, an acetyl group, a glycidyl group, an epoxy group, an ester group having 1 to 10 carbon atoms, a sulfone group, and an aldehyde group.
  • Examples of the monomer having an unsaturated bond and a hydroxyl group include ethylene glycol methacrylate, allyl alcohol, and hydroxyethyl methacrylate (HEMA).
  • Examples of the monomer having an unsaturated bond and a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, maleic acid, 2-methacryloylpropionic acid and the like.
  • Examples of the monomer having an unsaturated bond and an acetyl group include vinyl acetate.
  • Examples of the monomer having an unsaturated bond and a glycidyl group include glycidyl methacrylate.
  • Monomers having an unsaturated bond and an ester group include methyl acrylate, ethyl acrylate, butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, methyl methacrylate, ethyl methacrylate, methacrylic acid
  • Examples include butyl, t-butyl methacrylate, isopropyl methacrylate and 2-ethyl methacrylate.
  • Examples of the monomer having an unsaturated bond and an aldehyde group include acrylic aldehyde and crotonaldehyde.
  • the polymerizable monomer may be a monomer having an unsaturated bond but not having a functional group.
  • the polymerizable monomer may be an olefin monomer.
  • the olefin monomer is an unsaturated hydrocarbon having a double bond and no polar functional group, and may be linear or cyclic, and the number of double bonds may be one or two or more.
  • Examples of the linear olefinic monomer include 1-pentene, 1-hexene, 1-heptene, 1-octene and the like.
  • cyclic olefin monomer examples include 1-cyclopentene, 1-cyclohexene, 1-cycloheptene, 1-cyclooctene, and cyclic dienes such as cyclopentadiene and dicyclopentadiene (DCPD).
  • DCPD dicyclopentadiene
  • the polymerizable monomer may be a water-soluble monomer.
  • water-soluble monomers include acetaldehyde, vinyl alcohol, acrylic acid (AA), methacrylic acid, styrene sulfonic acid, acrylamide, methacrylamide, N, N-dimethylaminopropylacrylamide, N, N-dimethylamide and the like.
  • the utilization part is a film surface treatment part that performs a surface treatment for improving the adhesion of a hard-to-adhere optical resin film.
  • the main component of the hardly adhesive optical resin film include triacetate cellulose (TAC), polypropylene (PP), polyethylene (PE), cycloolefin polymer (COP), cycloolefin copolymer (COC), and polyethylene terephthalate. (PET), polymethyl methacrylate (PMMA), polyimide (PI) and the like.
  • the film surface treatment unit preferably includes a plasma generation unit that generates plasma under atmospheric pressure.
  • the vicinity of atmospheric pressure refers to a range of 1.013 ⁇ 10 4 to 50.663 ⁇ 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 ⁇ 10 4 to 10.664 ⁇ 10 4 Pa is preferable, and 9.331 ⁇ 10 4 to 10.9797 ⁇ 10 4 Pa is more preferable.
  • the polymerizable monomer is supplied from the supply device to the film surface treatment device, and the polymerizable monomer is attached to the hardly adhesive optical resin film in the film surface treatment unit, and is further exposed to plasma near atmospheric pressure. Plasma polymerization.
  • the adhesion promoting layer can be formed on the surface of the hardly adhesive optical resin film, and the adhesiveness with the easily adhesive optical resin film can be enhanced.
  • the main component of the easily adhesive optical resin film include polyvinyl alcohol (PVA) and ethylene vinyl acetate copolymer (EVA).
  • the polymerizable monomer is preferably a monomer having an ethylenically unsaturated double bond and a carboxyl group.
  • examples of such monomers include acrylic acid (CH 2 ⁇ CHCOOH), methacrylic acid (CH 2 ⁇ C (CH 3 ) COOH), and the like.
  • the detection path of the thermal type mass flow rate detection part in a thermal type mass flow meter or a mass flow controller is obstruct
  • FIG. 1 shows a first embodiment of the present invention.
  • 1st Embodiment applies this invention to the film surface treatment apparatus which surface-treats the protective film 9 of the polarizing plate for liquid crystal panel displays.
  • the protective film 9 is composed of, for example, a TAC film mainly composed of triacetate cellulose (TAC).
  • TAC triacetate cellulose
  • the film to be treated is not limited to TAC, but polypropylene (PP), polyethylene (PE), cycloolefin polymer (COP), cycloolefin copolymer (COC), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), polyimide (PI), or other various resin films may be used.
  • the protective film 9 is surface-treated in the plasma surface treatment unit 2 (use unit).
  • the plasma surface treatment unit 2 includes a pair of roll electrodes 3.
  • a continuous sheet-like processed film 9 is wound around the circumferential surface of each roll electrode 3 about a half turn.
  • An electric field is applied between the pair of electrodes 3, and plasma near atmospheric pressure is generated in the interelectrode space 3a.
  • a nozzle 4 faces the interelectrode space 3a.
  • a discharge generating gas such as nitrogen (N2) is supplied from the nozzle 4 to the interelectrode space 3a.
  • the polymerizable monomer is supplied from the supply device 1 to the film 9 to be processed.
  • This polymerizable monomer contacts the surface of the film 9 and undergoes plasma polymerization in the discharge space 3a.
  • an adhesion promoting layer made of a polymerized monomer film can be formed on the surface of the film 9 to be treated.
  • the film 9 after the surface treatment is bonded to a polarizing film made of a PVA film.
  • An aqueous adhesive such as an aqueous PVA solution is used as the adhesive.
  • the polymerizable monomer supply device 1 will be described. As shown in FIG. 1, the polymerizable monomer supply device 1 includes a supply line 10, a housing 20, a thermal mass flow controller 30, and a vaporizer 40.
  • the supply line 10 includes a liquid supply line 12 extending from the polymerizable monomer supply source 11 and a gas supply line 13 following the line 12.
  • a polymerizable monomer is stored in the supply source 11 in a liquid state.
  • the polymerizable monomer is, for example, acrylic acid (AA), but is not limited thereto, and may be methacrylic acid, and itaconic acid, maleic acid, 2-methacryloylpropionic acid, ethylene glycol methacrylate, allyl alcohol.
  • AA acrylic acid
  • itaconic acid maleic acid
  • 2-methacryloylpropionic acid maleic acid
  • 2-methacryloylpropionic acid ethylene glycol methacrylate
  • allyl alcohol allyl alcohol
  • a mass flow controller 30 is provided in the middle of the liquid supply line 12. Further, the downstream end of the liquid supply line 12 is connected to the vaporizer 40.
  • a gas supply line 13 extends from the vaporizer 40 to the plasma surface treatment unit 2. The vaporizer 40 is interposed between the mass flow controller 30 (mass flow rate management unit) and the plasma surface treatment unit 2 (utilization unit) in the supply line 10.
  • Acrylic acid (polymerizable monomer) is sent from the supply source 11 in a liquid state, and sent to the vaporizer 40 through the flow rate control of the mass flow controller 30.
  • Acrylic acid is vaporized in the vaporizer 40.
  • the vaporizer 40 is provided with a heater 41 and the like for vaporization.
  • the vaporized acrylic acid may be mixed with a carrier gas such as nitrogen (N 2 ).
  • a blowing nozzle 14 is provided at the downstream end of the gas supply line 12.
  • the blowing nozzle 14 faces the film 9 to be processed in the plasma surface treatment unit 2.
  • the acrylic acid vapor vaporized by the vaporizer 40 is blown out from the blowing nozzle 14 through the gas supply line 12.
  • the acrylic acid is condensed and adheres to the surface of the film 9 to be processed.
  • acrylic acid is turned into plasma and polymerized to form the adhesion promoting layer.
  • the thermal mass flow controller 30 (mass flow rate management unit) is configured as follows.
  • the mass flow controller 30 includes a thermal mass flow rate detection unit 31, a control unit 32, and a flow rate control valve 33.
  • the liquid supply line 12 passes through the inside of the mass flow controller 30.
  • a detection path 15 is provided inside the mass flow controller 30.
  • the upstream end of the detection path 15 branches from the liquid supply line 12 in the mass flow controller 30.
  • the downstream end of the detection path 15 merges with a portion of the liquid supply line 12 on the downstream side of the branch portion.
  • a thermal mass flow rate detector 31 is provided in the detection path 15.
  • the thermal mass flow rate detection unit 31 includes a heating unit 34 such as a coil.
  • a pair of heating units 34 are provided on the upstream and downstream sides of the detection path 15.
  • a part of the acrylic acid solution passing through the liquid supply line 12 is diverted to the detection path 15.
  • the upstream part and the downstream part of the detection path 15 are heated by the heating part 34.
  • a temperature distribution according to the mass flow rate of the acrylic acid liquid is formed along the flow direction of the detection path 15.
  • a detection signal corresponding to the temperature distribution is input from the thermal mass flow rate detection unit 31 to the control unit 32.
  • the control unit 32 includes an input / output interface, a microcomputer, a drive circuit for the flow control valve 33, and the like.
  • the control unit 32 operates the flow rate control valve 33 based on the detection signal to control the mass flow rate of the acrylic acid solution in the liquid supply line 12 to be the set flow rate. Further, the detected mass flow rate and the like are displayed on the display unit 35.
  • the mass flow controller 30 is accommodated in the housing 20 together with the vaporizer 40.
  • the mass flow controller 30 and the vaporizer 40 are close to each other. Therefore, the path length of the portion connecting the mass flow controller 30 and the vaporizer 40 in the liquid supply line 12 can be shortened. Thereby, the responsiveness of the vaporizer 40 when the set flow rate of acrylic acid is changed by the mass flow controller 30 can be enhanced.
  • the mass flow controller 30 is provided with a Peltier element 50 (cooling element, cooling means).
  • the heat absorption surface 51 of the Peltier element 50 is directed to the inside of the mass flow controller 30, and the heat dissipation surface 52 is directed to the outside of the mass flow controller 30.
  • the endothermic surface 51 is disposed near the thermal mass flow rate detection unit 31 and faces at least the thermal mass flow rate detection unit 31 and the periphery of the detection unit 31 in the mass flow controller 30.
  • the Peltier element 50 is larger than the area of one side part (bottom part in FIG. 1) of the mass flow controller 30, and the heat absorption surface 51 faces the entire area of the mass flow controller 30.
  • the outer peripheral portion of the Peltier element 50 protrudes outward from the one side portion of the mass flow controller 30 over the entire periphery.
  • the Peltier element 50 may be attached to the outer surface of the body or housing of the mass flow controller 30 or may be embedded in the body or housing of the mass flow controller 30.
  • the set temperature of the Peltier element 50 is higher than the freezing point of the polymerizable monomer and lower than the temperature at which the polymerizable monomer causes a polymerization reaction.
  • the set temperature of the Peltier element 50 is preferably about 15 ° C. to 30 ° C., more preferably about 20 ° C. to 25 ° C. (near room temperature).
  • the freezing point of acrylic acid is 14 ° C.
  • the temperature at which acrylic acid causes a polymerization reaction is about 35 ° C. or higher (see Example 1).
  • the mass flow controller 30 is entirely cooled by the Peltier element 50.
  • the peripheral portion of the thermal mass flow rate detector 31 is cooled.
  • the temperature of acrylic acid flowing through the mass flow controller 30 can be maintained preferably at about 15 ° C. to about 30 ° C., more preferably about 20 ° C. to about 25 ° C. (near room temperature).
  • the upper limit temperature preferably about 30 ° C., more preferably about 25 ° C., it is possible to prevent acrylic acid from causing a polymerization reaction in the mass flow controller 30.
  • the lower limit temperature for cooling by the Peltier element 50 is set to preferably about 15 ° C., more preferably about 20 ° C., it is possible to prevent acrylic acid from being overcooled and solidifying in the mass flow controller 30.
  • the acrylic acid can be prevented from solidifying in the detection path 15.
  • the liquid supply line 12 in the mass flow controller 30 can be prevented from being blocked by polymerization or solidification of acrylic acid.
  • the detection path 15 can be reliably prevented from being blocked by polymerization or solidification of acrylic acid.
  • the acrylic acid flow rate can be stably controlled (managed), and the reliability of the polymerizable monomer supply apparatus 1 can be improved.
  • the Peltier element 50 faces at least the thermal mass flow rate detection unit 31 and its peripheral part in the mass flow controller 30, not only the thermal mass flow rate detection unit 31 is locally cooled but thermal mass flow rate detection.
  • the peripheral part of the part 31 (components near the thermal mass flow rate detection part 31, atmosphere gas, etc.) can also be cooled.
  • the Peltier element 50 faces the entire area of the mass flow controller 30, and the outer periphery of the Peltier element 50 protrudes outward from the mass flow controller 30, so that the entire mass flow controller 30 (including the internal space) and the mass flow can be obtained.
  • the ambient gas around the controller 30 can be uniformly cooled.
  • the acrylic acid liquid is heated in the detection path 15 by the heating unit 34 based on the temperature after cooling (about room temperature). Therefore, the temperature distribution according to the mass flow rate of acrylic acid can be reliably formed, and the mass flow rate of acrylic acid can be reliably detected. Therefore, the cooling effect of the Peltier element 50 does not become an obstacle to the thermal detection of the mass flow rate.
  • the mass flow controller 30 and the vaporizer 40 are accommodated in one housing 20, and the vaporizer 40 is near the mass flow controller 30. For this reason, even in an environment where the heat of the heater 41 reaches the mass flow controller 30, this heat can be quickly removed from the mass flow controller 30 by the Peltier element 50. Therefore, it is possible to prevent the temperature of acrylic acid in the mass flow controller 30 from rising, and it is possible to reliably prevent acrylic acid from causing a polymerization reaction in the mass flow controller 30.
  • the liquid supply line 12 in the mass flow controller 30 can be reliably prevented from being blocked, and in particular, the detection path 15 can be reliably prevented from being blocked. Therefore, the acrylic acid flow rate can be controlled (managed) more stably, and the reliability of the polymerizable monomer supply device 1 can be further enhanced.
  • the Peltier element 50 As a cooling element, there is no need to provide piping for the temperature control medium (refrigerant), the apparatus can be made compact, and maintenance is easy.
  • a thermal mass flow meter 30M is provided as a mass flow rate management unit instead of the mass flow controller 30.
  • the mass flow meter 30M includes the detection path 15 and the thermal mass flow rate detection unit 31, but does not include the control unit 32 and the flow rate control valve 33.
  • the mass flow rate of acrylic acid is measured by the thermal mass flow rate detection unit 31, and the measurement result is displayed on the display unit 35. Alternatively, the measurement result is output to a management unit that manages the operation of the entire system.
  • FIG. 3 shows a third embodiment of the present invention.
  • the third embodiment relates to another aspect of the cooling means. More specifically, the polymerizable monomer supply device 1 of the third embodiment includes a temperature control means 6.
  • the temperature adjustment means 6 includes a medium temperature adjustment unit 60 and a first heat exchange unit 61.
  • the medium temperature adjustment unit 60 includes a chiller, a heat pump, a refrigerator, an electric heater, and the like, and adjusts the temperature of the temperature adjustment medium to be a predetermined value.
  • the set temperature of the temperature control medium is preferably about 15 ° C. to about 30 ° C., more preferably about 20 ° C. to about 25 ° C. (around room temperature). Water is used as the temperature control medium.
  • the temperature adjustment medium is not limited to water, and other liquids may be used, or a gas such as air or nitrogen may be used.
  • the 1st heat exchange part 61 is comprised with the board which consists of a material excellent in thermal conductivity. Examples of the material include metals such as aluminum, stainless steel, and iron.
  • the 1st heat exchange part 61 is comprised with the plate of aluminum.
  • the first heat exchange unit 61 may be attached to the outer surface of the body or housing of the mass flow controller 30 or may be provided inside the body or housing of the mass flow controller 30.
  • the first heat exchange unit 61 faces at least the thermal mass flow rate detection unit 31 of the mass flow controller 30 and the periphery of the detection unit 31.
  • the first heat exchanging part 61 is larger than the area of one side part (the bottom part in FIG. 3) of the mass flow controller 30 and faces the entire area of the mass flow controller 30.
  • the outer peripheral portion of the first heat exchanging portion 61 protrudes outward from the one side portion of the mass flow controller 30 over the entire circumference.
  • Each heat exchange path 61a penetrates the inside of the 1st heat exchange part 61 in one direction (longitudinal direction).
  • the three heat exchange paths 61a are arranged in a direction orthogonal to the extending direction of each other. Thereby, the heat exchange path 61 a is distributed over a wide range of the first heat exchange unit 61.
  • the number of heat exchange paths 61a is not limited to three, and may be one, two, or four or more.
  • the first heat exchange unit 61 may include, for example, a serpentine tube, and the inside of the tube may be a heat exchange path 61a.
  • a medium forward path 63 extends from the outlet port of the medium temperature adjustment unit 60.
  • the medium forward path 63 branches into three and is connected to one end of each heat exchange path 61a. Further, the other end portions of the heat exchange paths 61 a merge into one and continue to the medium return path 64.
  • a medium return path 64 is connected to the inlet port of the medium temperature adjustment unit 60.
  • the branch portion of the medium forward path 63 and the junction portion of the medium return path 64 are respectively provided outside the first heat exchange portion 61, but the branch portion and the junction portion of the first heat exchange portion 61 are provided. It may be formed inside.
  • the total cross-sectional area of the three heat exchange paths 61 a is larger than the cross-sectional area of the forward path 63 and larger than the cross-sectional area of the return path 64.
  • the total channel cross-sectional area is about three times the channel cross-sectional area of the forward path 63 and about three times the channel cross-sectional area of the return path 64.
  • temperature-controlled water water whose temperature is adjusted by the medium temperature adjusting unit 60 (hereinafter referred to as “temperature-controlled water”) is caused to flow to each heat exchange path 61 a via the medium forward path 63.
  • the flow rate of the temperature-controlled water in each heat exchange path 61a is smaller than the flow rate of the temperature-controlled water in the reciprocating paths 63 and 64.
  • This temperature-controlled water exchanges heat with the mass flow controller 30 via the main body of the first heat exchange unit 61.
  • the mass flow controller 30 can be cooled, and the temperature of the mass flow controller 30 can be set to a substantially set temperature (preferably about 20 ° C. to 25 ° C.).
  • the 1st heat exchange part 61 comprises the cooling means of the mass flow controller 30 (mass flow rate management part).
  • the first heat exchanging unit 61 faces at least the thermal mass flow rate detection unit 31 and its peripheral part in the mass flow controller 30 so that only the thermal mass flow rate detection unit 31 is locally controlled (cooled or heated). Instead, the temperature of the peripheral portion of the thermal mass flow rate detection unit 31 (such as constituent members and ambient gas near the thermal mass flow rate detection unit 31) can be controlled.
  • the first heat exchange unit 61 faces the entire area of the mass flow controller 30, and further, the outer periphery of the first heat exchange unit 61 protrudes outward from the mass flow controller 30. Temperature) including the space) and the ambient gas around the mass flow controller 30 can be uniformly controlled.
  • the temperature adjustment water is returned to the medium temperature adjustment path 60 through the medium return path 64, and the temperature is adjusted again by the medium temperature adjustment section 60.
  • the temperature adjustment water circulates in the order of the medium temperature adjustment unit 60, the medium forward path 63, the heat exchange path 61 a, and the medium return path 64.
  • FIG. 5 shows a fourth embodiment of the present invention.
  • the temperature control means 6 of the third embodiment (FIG. 3) further includes a second heat exchange unit 62.
  • the 2nd heat exchange part 62 is comprised with the heat exchanger which has two heat exchange paths 62a and 62b.
  • One heat exchange path 62 a is interposed in the supply line 10 upstream from the mass flow controller 30.
  • the heat exchange path 62 a is interposed in the path portion 12 a from the supply source 11 to the mass flow controller 30 in the liquid supply line 12.
  • a solution of acrylic acid (polymerizable monomer) from the supply source 11 is passed through the heat exchange path 62 a in the course of flowing through the liquid supply line 12.
  • the other heat exchange path 62 b is interposed in the medium forward path 63.
  • the temperature-controlled water from the medium temperature adjustment unit 60 is passed through the heat exchange path 62b in the middle of flowing through the medium outward path 63.
  • the heat exchange path 62b may be interposed in the medium return path 64.
  • the temperature-controlled water may be passed through the heat exchange path 62b during the circulation of the medium return path 64.
  • the flow directions of the two heat exchange paths 62a are the same, but the flow directions of the two heat exchange paths 62a may be opposite to each other.
  • the second heat exchange unit 62 exchanges heat between the acrylic acid solution in the heat exchange path 62a and the temperature-controlled water in the heat exchange path 62b.
  • the heat exchange in the second heat exchanging unit 62 is performed.
  • Acrylic acid solution can be cooled.
  • the acrylic acid solution in the supply line 12 is also low because the environmental temperature of the apparatus 1 is lower than the set temperature, the acrylic acid solution can be heated by heat exchange in the second heat exchanging unit 62. . Therefore, regardless of the environmental temperature, the temperature of the acrylic acid solution can be made substantially the above set temperature (preferably about 20 ° C.
  • the acrylic acid solution can be introduced into the mass flow controller 30.
  • temperature control water is sent to the 1st heat exchange part 61, and the temperature of the mass flow controller 30 is temperature-controlled (cooled), and the temperature of the mass flow controller 30 inside and its periphery is substantially made into the said setting temperature. Therefore, the temperature difference between the acrylic acid solution introduced into the mass flow controller 30 and the mass flow controller 30 becomes substantially zero. As a result, it is possible to prevent a detection error due to a temperature difference between the mass flow controller 30 and the acrylic acid liquid when the mass flow controller 30 detects the mass flow rate, and to accurately detect the mass flow rate of the liquid acrylic acid.
  • FIG. 6 shows a fifth embodiment of the present invention.
  • the second heat exchange unit 65 is provided in the supply source 11 at the upstream end of the supply line 10.
  • the 2nd heat exchange part 65 is comprised by the outer tank.
  • An inner tank constituting the supply source 11 is accommodated in the outer tank 65.
  • the outlet port of the medium temperature control unit 60 and the outer tank 65 are connected by a medium forward path 63a.
  • Temperature-controlled water whose temperature has been adjusted by the medium temperature adjustment unit 60 is filled between the outer tank 65 and the inner tank 11 via the medium forward path 63a.
  • This temperature-controlled water exchanges heat with the liquid acrylic acid inside the inner tank 11 through the peripheral wall of the inner tank 11.
  • the acrylic acid solution in the tank 11 is also higher than the set temperature. When the acrylic acid solution can be cooled.
  • the acrylic acid solution in the tank 11 can be heated when the acrylic acid solution in the tank 11 is also lower than the set temperature. As a result, the temperature of the acrylic acid solution in the tank 11 can be made substantially equal to the set temperature.
  • the set temperature By setting the set temperature to preferably 20 ° C. to 25 ° C., it is possible to reliably prevent the acrylic acid solution from causing a polymerization reaction in the tank 11.
  • the medium forward path 63 b is continuous with the heat exchange path 61 a of the first heat exchange unit 61. Temperature-controlled water between the outer tank 65 and the inner tank 11 is sent to the heat exchange path 61a through the medium forward path 63b.
  • the temperature difference between the temperature of the acrylic acid solution and the temperature inside and around the mass flow controller 30 can be made substantially zero, and the detection error due to the temperature difference is detected when the mass flow rate is detected. It can be prevented from occurring.
  • the present invention is not limited to the above-described embodiment, and various modifications can be employed without departing from the spirit of the present invention.
  • the set temperature of the cooling means 50 and 61 is appropriately adjusted according to the component of the polymerizable monomer so that it is lower than the temperature at which the polymerizable monomer causes a polymerization reaction and higher than the freezing point of the polymerizable monomer.
  • the utilization part 2 is not limited to the one in which the surface of the resin film 9 is coated with a plasma polymerization film of a polymerizable monomer, and may be one in which a polymerizable monomer is applied to a substrate, cloth or the like.
  • the utilization part is not limited to a film or coating of a polymerizable monomer, but may be anything that utilizes a polymerizable monomer, and a device, a place for performing various processes or operations such as mixing, blending, molding, filling, and storage. Plant, system, etc.
  • the cooling means may be a cooling element such as a heat pipe other than the Peltier element.
  • the cooling means may have an air cooling part or a heat radiation part such as a fan or a fin.
  • the cooling means may be of a size that cools only a part of the mass flow rate management units 30 and 30M (preferably the mass flow rate detection unit 31).
  • a plurality of embodiments may be combined with each other.
  • the thermal mass flow controller 30 of the third to fifth embodiments (FIGS. 3 to 6) may be replaced with the thermal mass flow meter M of the second embodiment (FIG. 2).
  • the flow path of the 2nd temperature control medium which circulates between 60 and the 2nd heat exchangers 62 and 65 may be isolate
  • the set temperature of the first temperature control medium and the set temperature of the second temperature control medium may be different.
  • the environmental temperature of the apparatus 1 is measured, it is determined whether or not the measured temperature is higher than a certain set value, and the polymerizable monomer is cooled or added in the second heat exchangers 62 and 65 according to the determination result. You may control to warm.
  • the acrylic monomer as a polymerizable monomer was verified as follows after the progress of polymerization with respect to temperature, The acrylic acid solution was sealed in a stainless steel container and allowed to stand for 1 month at a constant temperature of 20 ° C. to 40 ° C. Thereafter, when the presence or absence of polymerization of acrylic acid in the container was examined, no polymer was present when the acrylic acid temperature was 20 ° C, 25 ° C, or 30 ° C. On the other hand, when the acrylic acid temperature was 35 ° C. and 40 ° C., a polymer was formed. From the above results, it was confirmed that the polymerization progress of the polymerizable monomer liquid can be suppressed by controlling the temperature. In the case of acrylic acid, it was confirmed that the polymerization progress could be reliably suppressed or prevented by maintaining the temperature preferably at about 30 ° C. or less, more preferably at about 25 ° C.
  • the present invention is applicable to the manufacture of a polarizing plate for a flat panel display (FPD), for example.
  • FPD flat panel display

Abstract

A feeder for supplying a polymerizable monomer to a part where the monomer is to be utilized is disclosed in which the flow rate of the polymerizable monomer is stably controlled (measured or regulated). A mass flow control part comprising a thermal mass flow controller (30) or mass flow meter (30M) is disposed on a feed line (10) through which a polymerizable monomer is caused to flow in a liquid state. The mass flow control part (30 or 30M) is cooled with a cooling means (50), e.g., a Peltier device. The cooling means (50) is made to have a set temperature that is lower than the temperatures at which the polymerizable monomer undergoes a polymerization reaction and that is higher than the solidification point of the polymerizable monomer.

Description

重合性モノマーの供給装置Polymeric monomer feeder
 本発明は、重合性モノマーをその利用部へ供給する装置に関し、特に供給ラインに熱式のマスフローメータやマスフローコントローラを設けて重合性モノマーの流量の測定や制御等の流量管理を行なうのに適した供給装置に関する。 The present invention relates to an apparatus for supplying a polymerizable monomer to a utilization part thereof, and particularly suitable for performing flow management such as measurement and control of the flow rate of a polymerizable monomer by providing a thermal mass flow meter and a mass flow controller in a supply line. The present invention relates to a supply device.
 例えば、特許文献1には、偏光板用の保護フィルムを偏光フィルムと接着する際の前処理として、保護フィルムの表面に重合性モノマーの薄膜を形成した後、大気圧プラズマを照射することが記載されている。重合性モノマーの薄膜形成は、スプレー塗布等にて行なっている。重合性モノマーとしては、ヒドロキシエチルメタクリレート(HEMA)の他、アクリル酸、メタクリル酸等が挙げられている。 For example, Patent Document 1 describes that as a pretreatment for bonding a protective film for a polarizing plate to a polarizing film, a thin film of a polymerizable monomer is formed on the surface of the protective film and then irradiated with atmospheric pressure plasma. Has been. Thin film formation of the polymerizable monomer is performed by spray coating or the like. Examples of the polymerizable monomer include hydroxyethyl methacrylate (HEMA), acrylic acid, methacrylic acid, and the like.
特開2009-025604号公報JP 2009-025604 A
 重合性モノマーを利用するシステムでは、通常、重合性モノマーの供給流量の測定や制御等の流量管理を行なう必要がある。流体の流量を管理(測定又は制御)する手段として、熱式のマスフローメータ及び熱式のマスフローコントローラがよく知られている。この種のマスフローメータ及びマスフローコントローラは、熱式の質量流量検知部を有している。熱式の質量流量検知部は、被検査流体の少なくとも一部を加熱し、該加熱された被検査流体の流れ方向の温度分布に基づいて質量流量を検知する。一方、重合性モノマーは、熱を加えると重合反応を起こす傾向がある。そのため、熱式のマスフローメータ又はマスフローコントローラによって重合性モノマーの流量を管理する場合、熱式の質量流量検知部の検知路内で重合性モノマーの重合が進行し、やがて上記検知路が閉塞するおそれがある。
 本発明は、上記事情にもとづいてなされたものであり、重合性モノマーの供給流量を熱式のマスフローメータ又は熱式のマスフローコントローラにて管理(測定又は制御)する際に、熱式の質量流量検知部の検知路が重合性モノマーの重合によって閉塞されるのを防止して、安定的に流量管理できるようにすることを目的とする。
In a system using a polymerizable monomer, it is usually necessary to perform flow rate management such as measurement and control of the supply flow rate of the polymerizable monomer. As means for managing (measuring or controlling) the flow rate of fluid, a thermal mass flow meter and a thermal mass flow controller are well known. This type of mass flow meter and mass flow controller has a thermal mass flow rate detector. The thermal mass flow rate detection unit heats at least a part of the fluid to be inspected, and detects the mass flow rate based on the temperature distribution in the flow direction of the heated fluid to be inspected. On the other hand, the polymerizable monomer tends to cause a polymerization reaction when heat is applied. Therefore, when the flow rate of the polymerizable monomer is controlled by a thermal mass flow meter or mass flow controller, the polymerization of the polymerizable monomer proceeds in the detection path of the thermal mass flow rate detection unit, and the detection path may eventually be blocked. There is.
The present invention has been made based on the above circumstances. When the supply flow rate of the polymerizable monomer is managed (measured or controlled) by a thermal mass flow meter or a thermal mass flow controller, the thermal mass flow rate is determined. An object of the present invention is to prevent the detection path of the detection unit from being clogged by polymerization of a polymerizable monomer and to stably control the flow rate.
 上記課題を解決するため、本発明は、重合性モノマーを、該重合性モノマーを利用する利用部へ供給する供給装置であって、前記重合性モノマーを液の状態で流す供給ライン上に設けられ、熱式の質量流量検知部を有するマスフローコントローラ又はマスフローメータからなる質量流量管理部と、前記質量流量管理部を冷却する冷却手段と、を備え、前記冷却手段の設定温度が、前記重合性モノマーが重合反応を起こす温度より低く前記重合性モノマーの凝固点より高いことを特徴とする。 In order to solve the above-described problems, the present invention provides a supply device for supplying a polymerizable monomer to a utilization unit that uses the polymerizable monomer, and is provided on a supply line that allows the polymerizable monomer to flow in a liquid state. A mass flow controller comprising a mass flow controller or a mass flow meter having a thermal mass flow detector, and a cooling means for cooling the mass flow controller, wherein the set temperature of the cooling means is the polymerizable monomer Is lower than the temperature at which the polymerization reaction occurs and higher than the freezing point of the polymerizable monomer.
 上記特徴構成によれば、冷却手段によって質量流量管理部を設定温度になるよう冷却でき、ひいては、質量流量管理部内を流通する重合性モノマー液の温度を、重合反応を起こす温度より低く抑えることができる。これによって、重合性モノマー液が質量流量管理部の検知路内で重合するのを防止できる。また、重合性モノマー液を冷却し過ぎて凝固するのを回避できる。これによって、熱式の質量流量検知部の検知路が重合性モノマー液の重合又は凝固によって閉塞するのを防止できる。この結果、重合性モノマーを安定的に流量管理でき、重合性モノマー供給装置の信頼性を高めることができる。 According to the above characteristic configuration, the mass flow rate management unit can be cooled to the set temperature by the cooling means, and thus the temperature of the polymerizable monomer liquid flowing in the mass flow rate management unit can be kept lower than the temperature causing the polymerization reaction. it can. This can prevent the polymerizable monomer liquid from being polymerized in the detection path of the mass flow rate management unit. Further, it is possible to avoid solidifying the polymerizable monomer liquid by overcooling. Thereby, it is possible to prevent the detection path of the thermal mass flow rate detection unit from being blocked by polymerization or solidification of the polymerizable monomer liquid. As a result, the flow rate of the polymerizable monomer can be stably controlled, and the reliability of the polymerizable monomer supply device can be improved.
 前記冷却手段が、前記質量流量管理部のうち少なくとも前記熱式質量流量検知部及び該熱式質量流量検知部の周辺部に面していることが好ましい。これによって、熱式質量流量検知部だけを局所的に冷却するのではなく、その周辺部(熱式質量流量検知部の近くの構成部材及び雰囲気ガス等)をも冷却でき、熱式質量流量検知部及びその周辺部を一様な温度(例えば室温程度)に維持することができる。したがって、前記検知路内で重合性モノマー液が重合するのを確実に防止でき、前記検知路の閉塞を確実に防止できる。また、前記検知路内では冷却後の温度をベースにして、重合性モノマー液を熱式質量流量検知部にて加熱できるから、重合性モノマーの質量流量に応じた温度分布を確実に形成できる。よって、冷却手段の冷却作用が質量流量の熱式検知の障害になることはない。 It is preferable that the cooling means faces at least the thermal mass flow rate detection unit and the peripheral part of the thermal mass flow rate detection unit in the mass flow rate management unit. As a result, not only the thermal mass flow rate detection unit is locally cooled, but also its peripheral parts (components and ambient gas etc. near the thermal mass flow rate detection unit) can be cooled. And the periphery thereof can be maintained at a uniform temperature (for example, about room temperature). Therefore, it is possible to reliably prevent the polymerizable monomer liquid from being polymerized in the detection path, and to reliably prevent the detection path from being blocked. Moreover, since the polymerizable monomer liquid can be heated by the thermal mass flow rate detection unit based on the temperature after cooling in the detection path, a temperature distribution corresponding to the mass flow rate of the polymerizable monomer can be reliably formed. Therefore, the cooling action of the cooling means does not become an obstacle to the thermal detection of the mass flow rate.
 前記重合性モノマーがアクリル酸である場合、前記冷却手段の設定温度は、好ましくは15℃~30℃であり、より好ましくは20℃~25℃(室温付近)である。これによって、アクリル酸が熱式質量流量検知部の検知路内で重合又は凝固するのを確実に防止でき、前記検知路の閉塞を確実に回避できる。 When the polymerizable monomer is acrylic acid, the set temperature of the cooling means is preferably 15 ° C. to 30 ° C., more preferably 20 ° C. to 25 ° C. (near room temperature). As a result, it is possible to reliably prevent the acrylic acid from being polymerized or solidified in the detection path of the thermal mass flow rate detection unit, and to reliably block the detection path.
 前記質量流量管理部と前記利用部との間に重合性モノマーを気化させる気化器が介在され、かつ前記質量流量管理部と前記気化器とが1の筺体内に収容されていることが好ましい。
 そうすることによって、質量流量管理部と気化器を近接して配置でき、供給ラインのうち、これら質量流量管理部と気化器とを結ぶ流路部分の路長を短くできる。これによって、重合性モノマーの設定流量を変更した際等における気化器の応答性を高めることができる。
 質量流量管理部の近くに気化器が在り、気化のための熱が質量流量管理部に届く状況であっても、この熱を冷却素子によって質量流量管理部から速やかに取り除くことができる。したがって、質量流量管理部内の重合性モノマーの温度が上昇するのを防止でき、重合性モノマーが質量流量管理部内において重合反応を起こすのを確実に防止できる。これによって、重合性モノマーを一層安定的に流量管理でき、重合性モノマー供給装置の信頼性を一層高めることができる。
It is preferable that a vaporizer for vaporizing a polymerizable monomer is interposed between the mass flow management unit and the utilization unit, and the mass flow management unit and the vaporizer are accommodated in one casing.
By doing so, the mass flow management unit and the vaporizer can be arranged close to each other, and the path length of the flow path portion connecting the mass flow management unit and the vaporizer in the supply line can be shortened. Thereby, the responsiveness of the vaporizer when the set flow rate of the polymerizable monomer is changed can be enhanced.
Even when there is a vaporizer near the mass flow management unit and heat for vaporization reaches the mass flow management unit, this heat can be quickly removed from the mass flow management unit by the cooling element. Therefore, it is possible to prevent the temperature of the polymerizable monomer in the mass flow rate management unit from rising, and to reliably prevent the polymerizable monomer from causing a polymerization reaction in the mass flow rate management unit. As a result, the flow rate of the polymerizable monomer can be controlled more stably, and the reliability of the polymerizable monomer supply device can be further enhanced.
 前記冷却手段が、ペルチェ素子であることが好ましい。これによって、温調媒体(冷媒)用の配管等を設ける必要がなく、装置をコンパクトにでき、メンテナンスを容易に行なうことができる。 The cooling means is preferably a Peltier element. Accordingly, there is no need to provide a temperature control medium (refrigerant) pipe or the like, the apparatus can be made compact, and maintenance can be easily performed.
 前記供給装置が、温調媒体の温度を調節する媒体温調部と、第1熱交換部とを含む温調手段を、更に備えていてもよい。前記第1熱交換部が、前記媒体温調部からの温調媒体を前記質量流量管理部と熱交換するように流す熱交換路を有していてもよい。これによって、質量流量管理部を確実に温度調節(冷却)できる。前記第1熱交換部が、前記冷却手段として機能し得る。 The supply device may further include a temperature adjustment means including a medium temperature adjustment unit that adjusts the temperature of the temperature adjustment medium, and a first heat exchange unit. The first heat exchange unit may include a heat exchange path through which the temperature control medium from the medium temperature control unit flows to exchange heat with the mass flow rate management unit. Thereby, the temperature control (cooling) of the mass flow rate management unit can be reliably performed. The first heat exchange part may function as the cooling means.
 前記温調手段が、前記供給ラインにおける前記質量流量管理部より上流側の部分と前記温調媒体とを熱交換させる第2熱交換部を、更に含むことことが好ましい。
 これによって、例えば、環境温度が高温であるために前記重合性モノマー液も高温になっていたときは、前記重合性モノマー液を前記温調媒体との熱交換によって冷却できる。また、環境温度が低温であるために前記重合性モノマー液も低温になっていたときは、前記重合性モノマー液を前記温調媒体との熱交換によって加温できる。よって、環境温度に拘わらず、前記重合性モノマー液の温度を温調媒体の設定温度とほぼ同じにすることができる。更に、前記温調媒体と前記質量流量管理部との熱交換によって、前記質量流量管理部の温度を温調媒体の設定温度とほぼ同じにすることができる。したがって、前記重合性モノマー液と前記質量流量管理部とを互いにほぼ同じ温度にすることができる。この結果、前記質量流量管理部による質量流量の検知時に、質量流量管理部と重合性モノマー液との温度差による検知誤差が生じるのを防止でき、重合性モノマーの質量流量を精度よく検知できる。
It is preferable that the temperature control unit further includes a second heat exchange unit that exchanges heat between a portion of the supply line upstream of the mass flow rate management unit and the temperature control medium.
Accordingly, for example, when the polymerizable monomer liquid is also high because the environmental temperature is high, the polymerizable monomer liquid can be cooled by heat exchange with the temperature control medium. Further, when the polymerizable monomer liquid is also low because the environmental temperature is low, the polymerizable monomer liquid can be heated by heat exchange with the temperature control medium. Therefore, the temperature of the polymerizable monomer liquid can be made substantially the same as the set temperature of the temperature control medium regardless of the environmental temperature. Furthermore, the temperature of the mass flow management unit can be made substantially the same as the set temperature of the temperature control medium by heat exchange between the temperature control medium and the mass flow management unit. Therefore, the polymerizable monomer liquid and the mass flow rate management unit can be brought to substantially the same temperature. As a result, when the mass flow rate is detected by the mass flow rate management unit, it is possible to prevent a detection error due to a temperature difference between the mass flow rate management unit and the polymerizable monomer liquid, and it is possible to accurately detect the mass flow rate of the polymerizable monomer.
 前記重合性モノマーとしては、不飽和結合及び所定の官能基を有するモノマーが挙げられる。所定の官能基は、例えば水酸基、カルボキシル基、アセチル基、グリシジル基、エポキシ基、炭素数1~10のエステル基、スルホン基、アルデヒド基から選択される。 Examples of the polymerizable monomer include monomers having an unsaturated bond and a predetermined functional group. The predetermined functional group is selected from, for example, a hydroxyl group, a carboxyl group, an acetyl group, a glycidyl group, an epoxy group, an ester group having 1 to 10 carbon atoms, a sulfone group, and an aldehyde group.
 不飽和結合及び水酸基を有するモノマーとしては、メタクリル酸エチレングリコール、アリルアルコール、メタクリル酸ヒドロキシエチル(HEMA)等が挙げられる。
 不飽和結合及びカルボキシル基を有するモノマーとしては、アクリル酸、メタクリル酸、イタコン酸、マイレン酸、2-メタクリロイルプロピオン酸等が挙げられる。
 不飽和結合及びアセチル基を有するモノマーとしては、酢酸ビニル等が挙げられる。
 不飽和結合及びグリシジル基を有するモノマーとしては、メタクリル酸グリシジル等が挙げられる。
 不飽和結合及びエステル基を有するモノマーとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸オクチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸t-ブチル、メタクリル酸イソプロピル、メタクリル酸2-エチル等が挙げられる。
 不飽和結合及びアルデヒド基を有するモノマーとしては、アクリルアルデヒド、クロトンアルデヒド等が挙げられる。 
Examples of the monomer having an unsaturated bond and a hydroxyl group include ethylene glycol methacrylate, allyl alcohol, and hydroxyethyl methacrylate (HEMA).
Examples of the monomer having an unsaturated bond and a carboxyl group include acrylic acid, methacrylic acid, itaconic acid, maleic acid, 2-methacryloylpropionic acid and the like.
Examples of the monomer having an unsaturated bond and an acetyl group include vinyl acetate.
Examples of the monomer having an unsaturated bond and a glycidyl group include glycidyl methacrylate.
Monomers having an unsaturated bond and an ester group include methyl acrylate, ethyl acrylate, butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, methyl methacrylate, ethyl methacrylate, methacrylic acid Examples include butyl, t-butyl methacrylate, isopropyl methacrylate and 2-ethyl methacrylate.
Examples of the monomer having an unsaturated bond and an aldehyde group include acrylic aldehyde and crotonaldehyde.
 前記重合性モノマーが、不飽和結合を有する一方、官能基を有さないモノマーであってもよい。例えば前記重合性モノマーがオレフィン系モノマーであってもよい。オレフィン系モノマーは、二重結合を有しかつ極性官能基を持たない不飽和炭化水素であり、直鎖状でもよく環状でもよく、二重結合の数は1つでもよく2つ以上でもよい。直鎖状のオレフィン系モノマーとしては、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等が挙げられる。環状のオレフィン系モノマーとしては、1-シクロペンテン、1-シクロヘキセン、1-シクロヘプテン、1-シクロオクテンの他、シクロペンタジエン、ジシクロペンタジエン(DCPD)等の環状ジエンが挙げられる。 The polymerizable monomer may be a monomer having an unsaturated bond but not having a functional group. For example, the polymerizable monomer may be an olefin monomer. The olefin monomer is an unsaturated hydrocarbon having a double bond and no polar functional group, and may be linear or cyclic, and the number of double bonds may be one or two or more. Examples of the linear olefinic monomer include 1-pentene, 1-hexene, 1-heptene, 1-octene and the like. Examples of the cyclic olefin monomer include 1-cyclopentene, 1-cyclohexene, 1-cycloheptene, 1-cyclooctene, and cyclic dienes such as cyclopentadiene and dicyclopentadiene (DCPD).
 前記重合性モノマーが水溶性モノマーであってもよい。水溶性モノマーとして、アセトアルデヒド、ビニルアルコール、アクリル酸(AA)、メタクリル酸、スチレンスルホン酸、アクリルアミド、メタクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミド等が挙げられる。 The polymerizable monomer may be a water-soluble monomer. Examples of water-soluble monomers include acetaldehyde, vinyl alcohol, acrylic acid (AA), methacrylic acid, styrene sulfonic acid, acrylamide, methacrylamide, N, N-dimethylaminopropylacrylamide, N, N-dimethylamide and the like.
 例えば、前記利用部は、難接着性の光学樹脂フィルムの接着性向上のための表面処理を行なうフィルム表面処理部である。前記難接着性の光学樹脂フィルムの主成分としては、例えばトリアセテートセルロース(TAC)、ポリプロピレン(PP)、ポリエチレン(PE)、シクロオレフィン重合体(COP)、シクロオレフィン共重合体(COC)、ポリエチレンテレフタレート(PET)、ポリメタクリル酸メチル(PMMA)、ポリイミド(PI)等が挙げられる。 For example, the utilization part is a film surface treatment part that performs a surface treatment for improving the adhesion of a hard-to-adhere optical resin film. Examples of the main component of the hardly adhesive optical resin film include triacetate cellulose (TAC), polypropylene (PP), polyethylene (PE), cycloolefin polymer (COP), cycloolefin copolymer (COC), and polyethylene terephthalate. (PET), polymethyl methacrylate (PMMA), polyimide (PI) and the like.
 前記フィルム表面処理部は、大気圧近傍下でプラズマを生成するプラズマ生成部を含むことが好ましい。ここで、大気圧近傍とは、1.013×10~50.663×10Paの範囲を言い、圧力調整の容易化や装置構成の簡便化を考慮すると、1.333×10~10.664×10Paが好ましく、9.331×10~10.397×10Paがより好ましい。 The film surface treatment unit preferably includes a plasma generation unit that generates plasma under atmospheric pressure. Here, the vicinity of atmospheric pressure refers to a range of 1.013 × 10 4 to 50.663 × 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 × 10 4 to 10.664 × 10 4 Pa is preferable, and 9.331 × 10 4 to 10.9797 × 10 4 Pa is more preferable.
 前記重合性モノマーが、前記供給装置から前記フィルム表面処理装置に供給され、前記フィルム表面処理部において前記重合性モノマーが前記難接着性光学樹脂フィルムに付着され、更に大気圧近傍のプラズマに晒されることでプラズマ重合する。これによって、難接着性光学樹脂フィルムの表面に接着性促進層を形成でき、易接着性の光学樹脂フィルムとの接着性を高めることができる。前記易接着性の光学樹脂フィルムの主成分としては、例えばポリビニルアルコール(PVA)、エチレン酢酸ビニル共重合体(EVA)等が挙げられる。 The polymerizable monomer is supplied from the supply device to the film surface treatment device, and the polymerizable monomer is attached to the hardly adhesive optical resin film in the film surface treatment unit, and is further exposed to plasma near atmospheric pressure. Plasma polymerization. Thereby, the adhesion promoting layer can be formed on the surface of the hardly adhesive optical resin film, and the adhesiveness with the easily adhesive optical resin film can be enhanced. Examples of the main component of the easily adhesive optical resin film include polyvinyl alcohol (PVA) and ethylene vinyl acetate copolymer (EVA).
 難接着性樹脂フィルムの接着性向上処理においては、前記重合性モノマーが、エチレン性不飽和二重結合及びカルボキシル基を有するモノマーであることが好ましい。かかるモノマーとして、アクリル酸(CH=CHCOOH)、メタクリル酸(CH=C(CH)COOH)等が挙げられる。 In the adhesion improving treatment of the hardly adhesive resin film, the polymerizable monomer is preferably a monomer having an ethylenically unsaturated double bond and a carboxyl group. Examples of such monomers include acrylic acid (CH 2 ═CHCOOH), methacrylic acid (CH 2 ═C (CH 3 ) COOH), and the like.
本発明によれば、熱式のマスフローメータやマスフローコントローラにおける熱式の質量流量検知部の検知路が重合性モノマーの重合によって閉塞するのを防止できる。これによって、重合性モノマーの流量を安定的に管理(測定又は制御)でき、重合性モノマー供給装置の信頼性を高めることができる。 ADVANTAGE OF THE INVENTION According to this invention, it can prevent that the detection path of the thermal type mass flow rate detection part in a thermal type mass flow meter or a mass flow controller is obstruct | occluded by superposition | polymerization of a polymerizable monomer. Accordingly, the flow rate of the polymerizable monomer can be stably managed (measured or controlled), and the reliability of the polymerizable monomer supply device can be improved.
本発明の第1実施形態に係る重合性モノマーの供給及び利用システムの解説図である。It is explanatory drawing of the supply and utilization system of the polymerizable monomer which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る重合性モノマーの供給及び利用システムの解説図である。It is explanatory drawing of the supply and utilization system of the polymerizable monomer which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る重合性モノマーの供給及び利用システムの解説図である。It is explanatory drawing of the supply and utilization system of the polymerizable monomer which concerns on 3rd Embodiment of this invention. 上記第3実施形態における第1熱交換部の平面断面図である。It is a plane sectional view of the 1st heat exchange part in the 3rd embodiment of the above. 本発明の第3実施形態に係る重合性モノマーの供給及び利用システムの解説図である。It is explanatory drawing of the supply and utilization system of the polymerizable monomer which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る重合性モノマーの供給及び利用システムの解説図である。It is explanatory drawing of the supply and utilization system of the polymerizable monomer which concerns on 3rd Embodiment of this invention.
 以下、本発明の一実施形態を図面にしたがって説明する。
 図1は、本発明の第1実施形態を示したものである。第1実施形態は、本発明を液晶パネルディスプレイ用偏光板の保護フィルム9を表面処理するフィルム表面処理装置に適用したものである。保護フィルム9は、例えばトリアセテートセルロース(TAC)を主成分とするTACフィルムにて構成されている。なお、処理対象のフィルムは、TACに限られず、ポリプロピレン(PP)、ポリエチレン(PE)、シクロオレフィン重合体(COP)、シクロオレフィン共重合体(COC)、ポリエチレンテレフタレート(PET)、ポリメタクリル酸メチル(PMMA)、ポリイミド(PI)等の種々の樹脂フィルムにて構成されていてもよい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a first embodiment of the present invention. 1st Embodiment applies this invention to the film surface treatment apparatus which surface-treats the protective film 9 of the polarizing plate for liquid crystal panel displays. The protective film 9 is composed of, for example, a TAC film mainly composed of triacetate cellulose (TAC). The film to be treated is not limited to TAC, but polypropylene (PP), polyethylene (PE), cycloolefin polymer (COP), cycloolefin copolymer (COC), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), polyimide (PI), or other various resin films may be used.
 保護フィルム9は、プラズマ表面処理部2(利用部)において表面処理される。プラズマ表面処理部2は、一対のロール電極3を含む。連続シート状の被処理フィルム9が、各ロール電極3の周面に半周程度掛け回されている。ロール電極3が回転することによって、被処理フィルム9が搬送される。一対の電極3の間に電界が印加され、電極間空間3aで大気圧近傍のプラズマが生成される。電極間空間3aにはノズル4が臨んでいる。窒素(N2)等の放電生成用のガスがノズル4から電極間空間3aに供給される。 The protective film 9 is surface-treated in the plasma surface treatment unit 2 (use unit). The plasma surface treatment unit 2 includes a pair of roll electrodes 3. A continuous sheet-like processed film 9 is wound around the circumferential surface of each roll electrode 3 about a half turn. As the roll electrode 3 rotates, the film 9 to be processed is conveyed. An electric field is applied between the pair of electrodes 3, and plasma near atmospheric pressure is generated in the interelectrode space 3a. A nozzle 4 faces the interelectrode space 3a. A discharge generating gas such as nitrogen (N2) is supplied from the nozzle 4 to the interelectrode space 3a.
 上記のプラズマ生成と併行して、重合性モノマーが供給装置1から被処理フィルム9に供給される。この重合性モノマーが被処理フィルム9の表面に接触するとともに放電空間3a内においてプラズマ重合する。これによって、被処理フィルム9の表面に重合性モノマーの重合膜からなる接着性促進層を形成できる。 In parallel with the above plasma generation, the polymerizable monomer is supplied from the supply device 1 to the film 9 to be processed. This polymerizable monomer contacts the surface of the film 9 and undergoes plasma polymerization in the discharge space 3a. As a result, an adhesion promoting layer made of a polymerized monomer film can be formed on the surface of the film 9 to be treated.
 表面処理後のフィルム9をPVAフィルムからなる偏光フィルムと貼り合わせる。接着剤としては、PVA水溶液等の水系接着剤を用いる。フィルム9を予め表面処理しておくことで、良好な接着性を発現できる。 The film 9 after the surface treatment is bonded to a polarizing film made of a PVA film. An aqueous adhesive such as an aqueous PVA solution is used as the adhesive. By pre-treating the film 9 in advance, good adhesiveness can be expressed.
 重合性モノマー供給装置1について説明する。
 図1に示すように、重合性モノマー供給装置1は、供給ライン10と、筺体20と、熱式マスフローコントローラ30と、気化器40を備えている。供給ライン10は、重合性モノマー供給源11から延びる液供給ライン12と、該ライン12に続くガス供給ライン13とを有している。供給源11に重合性モノマーが液体の状態で蓄えられている。
The polymerizable monomer supply device 1 will be described.
As shown in FIG. 1, the polymerizable monomer supply device 1 includes a supply line 10, a housing 20, a thermal mass flow controller 30, and a vaporizer 40. The supply line 10 includes a liquid supply line 12 extending from the polymerizable monomer supply source 11 and a gas supply line 13 following the line 12. A polymerizable monomer is stored in the supply source 11 in a liquid state.
 重合性モノマーは、例えばアクリル酸(AA)であるが、これに限られず、メタクリル酸であってもよく、更には、イタコン酸、マイレン酸、2-メタクリロイルプロピオン酸、メタクリル酸エチレングリコール、アリルアルコール、メタクリル酸ヒドロキシエチル、酢酸ビニル、メタクリル酸グリシジル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸オクチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸t-ブチル、メタクリル酸イソプロピル、メタクリル酸2-エチル、アクリルアルデヒド、クロトンアルデヒド、アセトアルデヒド、ビニルアルコール、スチレンスルホン酸、アクリルアミド、メタクリルアミド、N,N-ジメチルアミノプロピルアクリルアミド、N,N-ジメチルアミド、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-シクロペンテン、1-シクロヘキセン、1-シクロヘプテン、1-シクロオクテン、シクロペンタジエン、ジシクロペンタジエン(DCPD)等であってもよい。 The polymerizable monomer is, for example, acrylic acid (AA), but is not limited thereto, and may be methacrylic acid, and itaconic acid, maleic acid, 2-methacryloylpropionic acid, ethylene glycol methacrylate, allyl alcohol. , Hydroxyethyl methacrylate, vinyl acetate, glycidyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, methyl methacrylate, ethyl methacrylate, methacryl Acid butyl, t-butyl methacrylate, isopropyl methacrylate, 2-ethyl methacrylate, acrylic aldehyde, crotonaldehyde, acetaldehyde, vinyl alcohol, styrene sulfonic acid, acrylamide, methacrylamide N, N-dimethylaminopropylacrylamide, N, N-dimethylamide, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-cyclopentene, 1-cyclohexene, 1-cycloheptene, 1-cyclooctene, cyclo Pentadiene, dicyclopentadiene (DCPD), or the like may be used.
 液供給ライン12の中途部にマスフローコントローラ30が設けられている。さらに、液供給ライン12の下流端が気化器40に連なっている。気化器40からガス供給ライン13がプラズマ表面処理部2へ延びている。気化器40は、供給ライン10におけるマスフローコントローラ30(質量流量管理部)とプラズマ表面処理部2(利用部)との間に介在されている。 A mass flow controller 30 is provided in the middle of the liquid supply line 12. Further, the downstream end of the liquid supply line 12 is connected to the vaporizer 40. A gas supply line 13 extends from the vaporizer 40 to the plasma surface treatment unit 2. The vaporizer 40 is interposed between the mass flow controller 30 (mass flow rate management unit) and the plasma surface treatment unit 2 (utilization unit) in the supply line 10.
 アクリル酸(重合性モノマー)が、液体の状態で供給源11から送出され、マスフローコントローラ30の流量制御を経て気化器40に送られる。気化器40においてアクリル酸が気化される。気化器40には気化のためのヒータ41等が設けられている。気化したアクリル酸を窒素(N)等のキャリアガスと混合することにしてもよい。 Acrylic acid (polymerizable monomer) is sent from the supply source 11 in a liquid state, and sent to the vaporizer 40 through the flow rate control of the mass flow controller 30. Acrylic acid is vaporized in the vaporizer 40. The vaporizer 40 is provided with a heater 41 and the like for vaporization. The vaporized acrylic acid may be mixed with a carrier gas such as nitrogen (N 2 ).
 ガス供給ライン12の下流端に吹出ノズル14が設けられている。吹出ノズル14がプラズマ表面処理部2内の被処理フィルム9に面している。気化器40で気化したアクリル酸蒸気が、ガス供給ライン12を経て吹出ノズル14から吹き出される。これによって、アクリル酸が凝縮して被処理フィルム9の表面に付着する。更に、放電空間3aにおいてアクリル酸がプラズマ化して重合し、上記接着性促進層が形成される。 A blowing nozzle 14 is provided at the downstream end of the gas supply line 12. The blowing nozzle 14 faces the film 9 to be processed in the plasma surface treatment unit 2. The acrylic acid vapor vaporized by the vaporizer 40 is blown out from the blowing nozzle 14 through the gas supply line 12. As a result, the acrylic acid is condensed and adheres to the surface of the film 9 to be processed. Furthermore, in the discharge space 3a, acrylic acid is turned into plasma and polymerized to form the adhesion promoting layer.
 熱式のマスフローコントローラ30(質量流量管理部)は、次のように構成されている。
 マスフローコントローラ30は、熱式の質量流量検知部31と、制御部32と、流量制御弁33を備えている。液供給ライン12が、マスフローコントローラ30の内部を貫通している。マスフローコントローラ30の内部には検知路15が設けられている。検知路15の上流端は、マスフローコントローラ30内の液供給ライン12から分岐している。検知路15の下流端は、液供給ライン12の上記分岐部より下流側の部分に合流している。検知路15に熱式質量流量検知部31が設けられている。熱式質量流量検知部31は、コイル等の加熱部34を含む。加熱部34は、検知路15の上流部と下流部に一対設けられている。液供給ライン12を通るアクリル酸液の一部が検知路15に分流する。検知路15の上流部と下流部が加熱部34にて加熱される。これによって、検知路15の流れ方向に沿って、アクリル酸液の質量流量に応じた温度分布が形成される。この温度分布に応じた検知信号が熱式質量流量検知部31から制御部32に入力される。制御部32は、入出力インターフェース、マイクロコンピュータ、流量制御弁33の駆動回路等を含む。制御部32は、検知信号に基づいて流量制御弁33を操作し、液供給ライン12のアクリル酸液の質量流量が設定流量になるよう制御する。また、検知した質量流量等が、表示部35に表示される。
The thermal mass flow controller 30 (mass flow rate management unit) is configured as follows.
The mass flow controller 30 includes a thermal mass flow rate detection unit 31, a control unit 32, and a flow rate control valve 33. The liquid supply line 12 passes through the inside of the mass flow controller 30. A detection path 15 is provided inside the mass flow controller 30. The upstream end of the detection path 15 branches from the liquid supply line 12 in the mass flow controller 30. The downstream end of the detection path 15 merges with a portion of the liquid supply line 12 on the downstream side of the branch portion. A thermal mass flow rate detector 31 is provided in the detection path 15. The thermal mass flow rate detection unit 31 includes a heating unit 34 such as a coil. A pair of heating units 34 are provided on the upstream and downstream sides of the detection path 15. A part of the acrylic acid solution passing through the liquid supply line 12 is diverted to the detection path 15. The upstream part and the downstream part of the detection path 15 are heated by the heating part 34. Thereby, a temperature distribution according to the mass flow rate of the acrylic acid liquid is formed along the flow direction of the detection path 15. A detection signal corresponding to the temperature distribution is input from the thermal mass flow rate detection unit 31 to the control unit 32. The control unit 32 includes an input / output interface, a microcomputer, a drive circuit for the flow control valve 33, and the like. The control unit 32 operates the flow rate control valve 33 based on the detection signal to control the mass flow rate of the acrylic acid solution in the liquid supply line 12 to be the set flow rate. Further, the detected mass flow rate and the like are displayed on the display unit 35.
 マスフローコントローラ30は、気化器40と共に筺体20内に収容されている。筺体20内でマスフローコントローラ30と気化器40が近接している。したがって、液供給ライン12のうちマスフローコントローラ30と気化器40を結ぶ部分の路長を短くできる。これによって、アクリル酸の設定流量をマスフローコントローラ30にて変更した際の気化器40の応答性を高めることができる。 The mass flow controller 30 is accommodated in the housing 20 together with the vaporizer 40. In the housing 20, the mass flow controller 30 and the vaporizer 40 are close to each other. Therefore, the path length of the portion connecting the mass flow controller 30 and the vaporizer 40 in the liquid supply line 12 can be shortened. Thereby, the responsiveness of the vaporizer 40 when the set flow rate of acrylic acid is changed by the mass flow controller 30 can be enhanced.
 マスフローコントローラ30にペルチェ素子50(冷却素子、冷却手段)が付設されている。ペルチェ素子50の吸熱面51がマスフローコントローラ30の内側に向けられ、放熱面52がマスフローコントローラ30の外側に向けられている。吸熱面51は、熱式質量流量検知部31の近くに配置され、かつマスフローコントローラ30のうち少なくとも熱式質量流量検知部31及び該検知部31の周辺部に面している。好ましくは、ペルチェ素子50は、マスフローコントローラ30の一側部(図1において底部)の面積より大きく、吸熱面51がマスフローコントローラ30の全域に面している。更には、ペルチエ素子50の外周部が全周にわたってマスフローコントローラ30の上記一側部よりも外方にはみ出している。ペルチェ素子50は、マスフローコントローラ30のボディ又はハウジングの外面にくっ付けてもよく、マスフローコントローラ30のボディ又はハウジングの内部に埋め込んでもよい。 The mass flow controller 30 is provided with a Peltier element 50 (cooling element, cooling means). The heat absorption surface 51 of the Peltier element 50 is directed to the inside of the mass flow controller 30, and the heat dissipation surface 52 is directed to the outside of the mass flow controller 30. The endothermic surface 51 is disposed near the thermal mass flow rate detection unit 31 and faces at least the thermal mass flow rate detection unit 31 and the periphery of the detection unit 31 in the mass flow controller 30. Preferably, the Peltier element 50 is larger than the area of one side part (bottom part in FIG. 1) of the mass flow controller 30, and the heat absorption surface 51 faces the entire area of the mass flow controller 30. Furthermore, the outer peripheral portion of the Peltier element 50 protrudes outward from the one side portion of the mass flow controller 30 over the entire periphery. The Peltier element 50 may be attached to the outer surface of the body or housing of the mass flow controller 30 or may be embedded in the body or housing of the mass flow controller 30.
 ペルチェ素子50の設定温度は、重合性モノマーの凝固点より高く、重合性モノマーが重合反応を起こす温度より低い。重合性モノマーがアクリル酸の場合、ペルチェ素子50の設定温度は、好ましくは15℃程度~30℃程度であり、より好ましくは20℃程度~25℃程度(室温付近)である。ちなみに、アクリル酸の凝固点は14℃である。アクリル酸が重合反応を起こす温度は、35℃程度以上である(実施例1参照)。 The set temperature of the Peltier element 50 is higher than the freezing point of the polymerizable monomer and lower than the temperature at which the polymerizable monomer causes a polymerization reaction. When the polymerizable monomer is acrylic acid, the set temperature of the Peltier element 50 is preferably about 15 ° C. to 30 ° C., more preferably about 20 ° C. to 25 ° C. (near room temperature). Incidentally, the freezing point of acrylic acid is 14 ° C. The temperature at which acrylic acid causes a polymerization reaction is about 35 ° C. or higher (see Example 1).
 上記構成の重合性モノマー供給装置1によれば、ペルチェ素子50によってマスフローコントローラ30を全体的に冷却する。特に、熱式質量流量検知部31の周辺部分を冷却する。これによって、マスフローコントローラ30内を流通するアクリル酸の温度を、好ましくは15℃程度~30℃程度、より好ましくは20℃程度~25℃程度(室温付近)に維持できる。上限温度を好ましくは30℃程度、より好ましくは25℃程度とすることによって、アクリル酸がマスフローコントローラ30内において重合反応を起こすのを防止できる。特に、検知路15内でアクリル酸が重合反応を起こすのを防止できる。更にペルチェ素子50による冷却の下限温度を好ましくは15℃程度、より好ましくは20℃程度とすることによって、アクリル酸が冷却され過ぎてマスフローコントローラ30内において凝固するのを防止できる。特に、検知路15内でアクリル酸が凝固するのを防止できる。これによって、マスフローコントローラ30内の液供給ライン12がアクリル酸の重合又は凝固によって閉塞するのを防止できる。特に検知路15がアクリル酸の重合又は凝固によって閉塞するのを確実に防止できる。この結果、アクリル酸流量を安定的に制御(管理)でき、重合性モノマー供給装置1の信頼性を高めることができる。 According to the polymerizable monomer supply apparatus 1 having the above-described configuration, the mass flow controller 30 is entirely cooled by the Peltier element 50. In particular, the peripheral portion of the thermal mass flow rate detector 31 is cooled. Thus, the temperature of acrylic acid flowing through the mass flow controller 30 can be maintained preferably at about 15 ° C. to about 30 ° C., more preferably about 20 ° C. to about 25 ° C. (near room temperature). By setting the upper limit temperature to preferably about 30 ° C., more preferably about 25 ° C., it is possible to prevent acrylic acid from causing a polymerization reaction in the mass flow controller 30. In particular, it is possible to prevent acrylic acid from causing a polymerization reaction in the detection path 15. Furthermore, by setting the lower limit temperature for cooling by the Peltier element 50 to preferably about 15 ° C., more preferably about 20 ° C., it is possible to prevent acrylic acid from being overcooled and solidifying in the mass flow controller 30. In particular, the acrylic acid can be prevented from solidifying in the detection path 15. As a result, the liquid supply line 12 in the mass flow controller 30 can be prevented from being blocked by polymerization or solidification of acrylic acid. In particular, the detection path 15 can be reliably prevented from being blocked by polymerization or solidification of acrylic acid. As a result, the acrylic acid flow rate can be stably controlled (managed), and the reliability of the polymerizable monomer supply apparatus 1 can be improved.
 ペルチェ素子50がマスフローコントローラ30のうち少なくとも熱式質量流量検知部31及びその周辺部に面することで、熱式質量流量検知部31だけを局所的に冷却するのではなく、熱式質量流量検知部31の周辺部(熱式質量流量検知部31の近くの構成部材及び雰囲気ガス等)をも冷却できる。好ましくは、ペルチェ素子50がマスフローコントローラ30の全域に面し、更にはペルチエ素子50の外周部がマスフローコントローラ30よりも外方にはみ出すことで、マスフローコントローラ30の全体(内部空間を含む)及びマスフローコントローラ30の周辺の雰囲気ガスを一様に冷却できる。しかも、冷却の設定温度が室温程度であるから、検知路15内では冷却後の温度(室温程度)をベースにして、アクリル酸液が加熱部34にて加熱される。したがって、アクリル酸の質量流量に応じた温度分布を確実に形成でき、アクリル酸の質量流量を確実に検知できる。よって、ペルチェ素子50の冷却作用が質量流量の熱式検知の障害になることはない。 Since the Peltier element 50 faces at least the thermal mass flow rate detection unit 31 and its peripheral part in the mass flow controller 30, not only the thermal mass flow rate detection unit 31 is locally cooled but thermal mass flow rate detection. The peripheral part of the part 31 (components near the thermal mass flow rate detection part 31, atmosphere gas, etc.) can also be cooled. Preferably, the Peltier element 50 faces the entire area of the mass flow controller 30, and the outer periphery of the Peltier element 50 protrudes outward from the mass flow controller 30, so that the entire mass flow controller 30 (including the internal space) and the mass flow can be obtained. The ambient gas around the controller 30 can be uniformly cooled. Moreover, since the set temperature for cooling is about room temperature, the acrylic acid liquid is heated in the detection path 15 by the heating unit 34 based on the temperature after cooling (about room temperature). Therefore, the temperature distribution according to the mass flow rate of acrylic acid can be reliably formed, and the mass flow rate of acrylic acid can be reliably detected. Therefore, the cooling effect of the Peltier element 50 does not become an obstacle to the thermal detection of the mass flow rate.
 マスフローコントローラ30と気化器40が1つの筺体20内に収容されており、マスフローコントローラ30の近くに気化器40が在る。このため、ヒータ41の熱がマスフローコントローラ30に届く環境にあっても、この熱をペルチェ素子50によってマスフローコントローラ30から速やかに取り除くことができる。したがって、マスフローコントローラ30内のアクリル酸の温度が上昇するのを防止でき、アクリル酸がマスフローコントローラ30内において重合反応を起こすのを確実に防止できる。これによって、マスフローコントローラ30内の液供給ライン12が閉塞するのを確実に防止でき、特に検知路15が閉塞するのを確実に防止できる。よって、アクリル酸流量を一層安定的に制御(管理)でき、重合性モノマー供給装置1の信頼性を一層高めることができる。 The mass flow controller 30 and the vaporizer 40 are accommodated in one housing 20, and the vaporizer 40 is near the mass flow controller 30. For this reason, even in an environment where the heat of the heater 41 reaches the mass flow controller 30, this heat can be quickly removed from the mass flow controller 30 by the Peltier element 50. Therefore, it is possible to prevent the temperature of acrylic acid in the mass flow controller 30 from rising, and it is possible to reliably prevent acrylic acid from causing a polymerization reaction in the mass flow controller 30. Thus, the liquid supply line 12 in the mass flow controller 30 can be reliably prevented from being blocked, and in particular, the detection path 15 can be reliably prevented from being blocked. Therefore, the acrylic acid flow rate can be controlled (managed) more stably, and the reliability of the polymerizable monomer supply device 1 can be further enhanced.
 冷却素子としてペルチェ素子50を用いることによって、温調媒体(冷媒)用の配管等を設ける必要がなく、装置をコンパクトにでき、メンテナンスが容易である、 By using the Peltier element 50 as a cooling element, there is no need to provide piping for the temperature control medium (refrigerant), the apparatus can be made compact, and maintenance is easy.
 次に、本発明の他の実施形態を説明する。以下の実施形態において、既述の形態と重複する構成に関しては図面に同一符号を付して説明を省略する。
 第2実施形態では、質量流量管理部としてマスフローコントローラ30に代えて熱式のマスフローメータ30Mが設けられている。マスフローメータ30Mは、検知路15及び熱式質量流量検知部31を有する一方、制御部32及び流量制御弁33を有さない。熱式質量流量検知部31にてアクリル酸の質量流量を測定し、その測定結果が表示部35に表示される。或いは、測定結果が、システム全体の動作を管理する管理部へ出力される。ペルチェ素子50(冷却素子)によってマスフローメータ30Mを全体的に室温程度に維持されるよう冷却する点、特に熱式質量流量検知部31の周辺部分を室温程度に維持されるよう冷却する点は、第1実施形態と同様である。
Next, another embodiment of the present invention will be described. In the following embodiments, the same reference numerals are given to the drawings for the same configurations as those already described, and the description thereof is omitted.
In the second embodiment, a thermal mass flow meter 30M is provided as a mass flow rate management unit instead of the mass flow controller 30. The mass flow meter 30M includes the detection path 15 and the thermal mass flow rate detection unit 31, but does not include the control unit 32 and the flow rate control valve 33. The mass flow rate of acrylic acid is measured by the thermal mass flow rate detection unit 31, and the measurement result is displayed on the display unit 35. Alternatively, the measurement result is output to a management unit that manages the operation of the entire system. The point of cooling the mass flow meter 30M by the Peltier element 50 (cooling element) so as to be maintained at about room temperature as a whole, particularly the point of cooling the peripheral part of the thermal mass flow rate detection unit 31 to be maintained at about room temperature, This is the same as in the first embodiment.
 図3は、本発明の第3実施形態を示したものである。第3実施形態は、冷却手段の他の態様に係る。
 詳述すると、第3実施形態の重合性モノマー供給装置1は、温調手段6を備えている。温調手段6は、媒体温調部60と、第1熱交換部61とを含む。媒体温調部60は、チラー、ヒートポンプ、冷凍機、電熱機等にて構成され、温調媒体の温度を所定になるように調節する。温調媒体の設定温度は、好ましくは15℃程度~30℃程度であり、より好ましくは20℃程度~25℃程度(室温付近)である。温調媒体としては、水が用いられている。
 なお、温調媒体は、水に限られず、他の液体を用いてもよく、空気又は窒素等のガスを用いてもよい。
FIG. 3 shows a third embodiment of the present invention. The third embodiment relates to another aspect of the cooling means.
More specifically, the polymerizable monomer supply device 1 of the third embodiment includes a temperature control means 6. The temperature adjustment means 6 includes a medium temperature adjustment unit 60 and a first heat exchange unit 61. The medium temperature adjustment unit 60 includes a chiller, a heat pump, a refrigerator, an electric heater, and the like, and adjusts the temperature of the temperature adjustment medium to be a predetermined value. The set temperature of the temperature control medium is preferably about 15 ° C. to about 30 ° C., more preferably about 20 ° C. to about 25 ° C. (around room temperature). Water is used as the temperature control medium.
The temperature adjustment medium is not limited to water, and other liquids may be used, or a gas such as air or nitrogen may be used.
 図4に示すように、第1熱交換部61は、熱伝導性に優れた材質からなる板にて構成されている。上記材質として、アルミニウム、ステンレス、鉄等の金属が挙げられる。ここでは、第1熱交換部61は、アルミニウムの板にて構成されている。第1熱交換部61は、マスフローコントローラ30のボディ又はハウジングの外面にくっ付けてもよく、マスフローコントローラ30のボディ又はハウジングの内部に設けてもよい。第1熱交換部61は、マスフローコントローラ30の少なくとも熱式質量流量検知部31及び該検知部31の周辺部に面している。好ましくは、第1熱交換部61は、マスフローコントローラ30の一側部(図3において底部)の面積より大きく、マスフローコントローラ30の全域に面している。更には、第1熱交換部61の外周部が全周にわたってマスフローコントローラ30の上記一側部よりも外方にはみ出している。 As shown in FIG. 4, the 1st heat exchange part 61 is comprised with the board which consists of a material excellent in thermal conductivity. Examples of the material include metals such as aluminum, stainless steel, and iron. Here, the 1st heat exchange part 61 is comprised with the plate of aluminum. The first heat exchange unit 61 may be attached to the outer surface of the body or housing of the mass flow controller 30 or may be provided inside the body or housing of the mass flow controller 30. The first heat exchange unit 61 faces at least the thermal mass flow rate detection unit 31 of the mass flow controller 30 and the periphery of the detection unit 31. Preferably, the first heat exchanging part 61 is larger than the area of one side part (the bottom part in FIG. 3) of the mass flow controller 30 and faces the entire area of the mass flow controller 30. Furthermore, the outer peripheral portion of the first heat exchanging portion 61 protrudes outward from the one side portion of the mass flow controller 30 over the entire circumference.
 第1熱交換部61の内部に3つの熱交換路61aが形成されている。各熱交換路61aが第1熱交換部61内を一方向(長手方向)に貫通している。3つの熱交換路61aが、互いの延び方向と直交する方向に並んでいる。これによって、熱交換路61aが第1熱交換部61の広い範囲に分布している。
 なお、熱交換路61aの数は、3つに限られず、1つでもよく、2つ又は4つ以上でもよい。第1熱交換部61が例えば蛇行状の管を含み、この管の内部が熱交換路61aとなっていてもよい。
Three heat exchange paths 61 a are formed inside the first heat exchange unit 61. Each heat exchange path 61a penetrates the inside of the 1st heat exchange part 61 in one direction (longitudinal direction). The three heat exchange paths 61a are arranged in a direction orthogonal to the extending direction of each other. Thereby, the heat exchange path 61 a is distributed over a wide range of the first heat exchange unit 61.
The number of heat exchange paths 61a is not limited to three, and may be one, two, or four or more. The first heat exchange unit 61 may include, for example, a serpentine tube, and the inside of the tube may be a heat exchange path 61a.
 図3に示すように、媒体温調部60の出口ポートから媒体往路63が延びている。媒体往路63が3つに分岐して、各熱交換路61aの一端部に連なっている。また、各熱交換路61aの他端部が1つに合流して媒体復路64に連なっている。媒体復路64が、媒体温調部60の入口ポートに接続されている。
 なお、図4では、媒体往路63の分岐部及び媒体復路64の合流部がそれぞれ第1熱交換部61の外部に設けられているが、上記分岐部及び合流部が第1熱交換部61の内部に形成されていてもよい。
As shown in FIG. 3, a medium forward path 63 extends from the outlet port of the medium temperature adjustment unit 60. The medium forward path 63 branches into three and is connected to one end of each heat exchange path 61a. Further, the other end portions of the heat exchange paths 61 a merge into one and continue to the medium return path 64. A medium return path 64 is connected to the inlet port of the medium temperature adjustment unit 60.
In FIG. 4, the branch portion of the medium forward path 63 and the junction portion of the medium return path 64 are respectively provided outside the first heat exchange portion 61, but the branch portion and the junction portion of the first heat exchange portion 61 are provided. It may be formed inside.
 3つの熱交換路61aの合計の流路断面積は、往路63の流路断面積より大きく、かつ復路64の流路断面積より大きい。ここでは、上記合計の流路断面積は、往路63の流路断面積の約3倍であり、かつ復路64の流路断面積の約3倍である。 The total cross-sectional area of the three heat exchange paths 61 a is larger than the cross-sectional area of the forward path 63 and larger than the cross-sectional area of the return path 64. Here, the total channel cross-sectional area is about three times the channel cross-sectional area of the forward path 63 and about three times the channel cross-sectional area of the return path 64.
 第3実施形態においては、媒体温調部60にて温調した水(以下「温調水」と称す。)を、媒体往路63を経て各熱交換路61aに流す。各熱交換路61a内の温調水の流速は、往復路63,64での温調水の流速より小さい。この温調水が、第1熱交換部61の本体部を介してマスフローコントローラ30と熱交換する。これによって、マスフローコントローラ30を冷却して、該マスフローコントローラ30の温度をほぼ設定温度(好ましくは20℃~25℃程度)にすることができる。第1熱交換部61は、マスフローコントローラ30(質量流量管理部)の冷却手段を構成する。第1熱交換部61がマスフローコントローラ30のうち少なくとも熱式質量流量検知部31及びその周辺部に面することで、熱式質量流量検知部31だけを局所的に温調(冷却又は加温)するのではなく、熱式質量流量検知部31の周辺部(熱式質量流量検知部31の近くの構成部材及び雰囲気ガス等)をも温調できる。好ましくは、第1熱交換部61がマスフローコントローラ30の全域に面し、更には第1熱交換部61の外周部がマスフローコントローラ30よりも外方にはみ出すことで、マスフローコントローラ30の全体(内部空間を含む)及びマスフローコントローラ30の周辺の雰囲気ガスを一様に温調できる。これによって、アクリル酸がマスフローコントローラ30内で重合又は凝固するのを防止でき、重合性モノマー供給装置1の信頼性を高めることができる。
 その後、温調水は、媒体復路64を経て、媒体温調路60に戻され、媒体温調部60にて再び温度調節される。温調水は、媒体温調部60、媒体往路63、熱交換路61a、媒体復路64の順に循環する。
In the third embodiment, water whose temperature is adjusted by the medium temperature adjusting unit 60 (hereinafter referred to as “temperature-controlled water”) is caused to flow to each heat exchange path 61 a via the medium forward path 63. The flow rate of the temperature-controlled water in each heat exchange path 61a is smaller than the flow rate of the temperature-controlled water in the reciprocating paths 63 and 64. This temperature-controlled water exchanges heat with the mass flow controller 30 via the main body of the first heat exchange unit 61. As a result, the mass flow controller 30 can be cooled, and the temperature of the mass flow controller 30 can be set to a substantially set temperature (preferably about 20 ° C. to 25 ° C.). The 1st heat exchange part 61 comprises the cooling means of the mass flow controller 30 (mass flow rate management part). The first heat exchanging unit 61 faces at least the thermal mass flow rate detection unit 31 and its peripheral part in the mass flow controller 30 so that only the thermal mass flow rate detection unit 31 is locally controlled (cooled or heated). Instead, the temperature of the peripheral portion of the thermal mass flow rate detection unit 31 (such as constituent members and ambient gas near the thermal mass flow rate detection unit 31) can be controlled. Preferably, the first heat exchange unit 61 faces the entire area of the mass flow controller 30, and further, the outer periphery of the first heat exchange unit 61 protrudes outward from the mass flow controller 30. Temperature) including the space) and the ambient gas around the mass flow controller 30 can be uniformly controlled. Thereby, it is possible to prevent acrylic acid from being polymerized or solidified in the mass flow controller 30, and to improve the reliability of the polymerizable monomer supply device 1.
Thereafter, the temperature adjustment water is returned to the medium temperature adjustment path 60 through the medium return path 64, and the temperature is adjusted again by the medium temperature adjustment section 60. The temperature adjustment water circulates in the order of the medium temperature adjustment unit 60, the medium forward path 63, the heat exchange path 61 a, and the medium return path 64.
 図5は、本発明の第4実施形態を示したものである。第4実施形態の重合性モノマー供給装置1は、第3実施形態(図3)の温調手段6が第2熱交換部62を更に含む。第2熱交換部62は、2つの熱交換路62a,62bを有する熱交換器にて構成されている。一方の熱交換路62aは、マスフローコントローラ30より上流側の供給ライン10に介在されている。詳細には、熱交換路62aは、液供給ライン12における供給源11からマスフローコントローラ30までの路部分12aに介在されている。供給源11から出たアクリル酸(重合性モノマー)の液が、液供給ライン12を流通する途中で熱交換路62aに通される。他方の熱交換路62bは、媒体往路63に介在されている。媒体温調部60から出た温調水が、媒体往路63を流通する途中で熱交換路62bに通される。
 なお、熱交換路62bが、媒体復路64に介在されていてもよい。温調水が、媒体復路64の流通途中で熱交換路62bに通されるようになっていてもよい。また、図5では、2つの熱交換路62aの流れ方向が一致しているが、2つの熱交換路62aの流れ方向が互いに逆向きであってもよい。
FIG. 5 shows a fourth embodiment of the present invention. In the polymerizable monomer supply device 1 of the fourth embodiment, the temperature control means 6 of the third embodiment (FIG. 3) further includes a second heat exchange unit 62. The 2nd heat exchange part 62 is comprised with the heat exchanger which has two heat exchange paths 62a and 62b. One heat exchange path 62 a is interposed in the supply line 10 upstream from the mass flow controller 30. Specifically, the heat exchange path 62 a is interposed in the path portion 12 a from the supply source 11 to the mass flow controller 30 in the liquid supply line 12. A solution of acrylic acid (polymerizable monomer) from the supply source 11 is passed through the heat exchange path 62 a in the course of flowing through the liquid supply line 12. The other heat exchange path 62 b is interposed in the medium forward path 63. The temperature-controlled water from the medium temperature adjustment unit 60 is passed through the heat exchange path 62b in the middle of flowing through the medium outward path 63.
The heat exchange path 62b may be interposed in the medium return path 64. The temperature-controlled water may be passed through the heat exchange path 62b during the circulation of the medium return path 64. In FIG. 5, the flow directions of the two heat exchange paths 62a are the same, but the flow directions of the two heat exchange paths 62a may be opposite to each other.
 第4実施形態によれば、第2熱交換部62において熱交換路62aのアクリル酸液と熱交換路62bの温調水とを熱交換させる。これによって、例えば、装置1の環境温度が上記設定温度より高温であるために供給ライン12のアクリル酸液も上記設定温度より高温であったときは、第2熱交換部62での熱交換によってアクリル酸液を冷却できる。また、装置1の環境温度が上記設定温度より低温であるために供給ライン12のアクリル酸液も低温であったときは、第2熱交換部62での熱交換によってアクリル酸液を加温できる。よって、環境温度に拘わらず、アクリル酸液の温度をほぼ上記設定温度(好ましくは20℃~25℃程度)にすることができる。そのうえで、アクリル酸液をマスフローコントローラ30に導入できる。更に、温調水を第1熱交換部61に送ってマスフローコントローラ30を温調(冷却)することで、マスフローコントローラ30の内部及び周辺の温度をほぼ上記設定温度にする。したがって、マスフローコントローラ30に導入されるアクリル酸液と、マスフローコントローラ30との間の温度差がほぼゼロになる。この結果、マスフローコントローラ30による質量流量の検知時に、マスフローコントローラ30とアクリル酸液との温度差による検知誤差が生じるのを防止でき、液体アクリル酸の質量流量を精度よく検知できる。 According to the fourth embodiment, the second heat exchange unit 62 exchanges heat between the acrylic acid solution in the heat exchange path 62a and the temperature-controlled water in the heat exchange path 62b. Thereby, for example, when the acrylic acid solution in the supply line 12 is also higher than the set temperature because the environmental temperature of the apparatus 1 is higher than the set temperature, the heat exchange in the second heat exchanging unit 62 is performed. Acrylic acid solution can be cooled. When the acrylic acid solution in the supply line 12 is also low because the environmental temperature of the apparatus 1 is lower than the set temperature, the acrylic acid solution can be heated by heat exchange in the second heat exchanging unit 62. . Therefore, regardless of the environmental temperature, the temperature of the acrylic acid solution can be made substantially the above set temperature (preferably about 20 ° C. to 25 ° C.). In addition, the acrylic acid solution can be introduced into the mass flow controller 30. Furthermore, temperature control water is sent to the 1st heat exchange part 61, and the temperature of the mass flow controller 30 is temperature-controlled (cooled), and the temperature of the mass flow controller 30 inside and its periphery is substantially made into the said setting temperature. Therefore, the temperature difference between the acrylic acid solution introduced into the mass flow controller 30 and the mass flow controller 30 becomes substantially zero. As a result, it is possible to prevent a detection error due to a temperature difference between the mass flow controller 30 and the acrylic acid liquid when the mass flow controller 30 detects the mass flow rate, and to accurately detect the mass flow rate of the liquid acrylic acid.
 図6は、本発明の第5実施形態を示したものである。第5実施形態では、第2熱交換部65が、供給ライン10の上流端の供給源11に設けられている。第2熱交換部65は、外タンクにて構成されている。外タンク65の内部に供給源11を構成する内タンクが収容されている。 FIG. 6 shows a fifth embodiment of the present invention. In the fifth embodiment, the second heat exchange unit 65 is provided in the supply source 11 at the upstream end of the supply line 10. The 2nd heat exchange part 65 is comprised by the outer tank. An inner tank constituting the supply source 11 is accommodated in the outer tank 65.
 媒体温調部60の出口ポートと外タンク65とが媒体往路63aによって接続されている。媒体温調部60にて温度調節された温調水が、媒体往路63aを経て、外タンク65と内タンク11との間に充填されている。この温調水が、内タンク11の周壁を介して内タンク11の内部の液体アクリル酸と熱交換する。これによって、例えば、装置1の環境温度が上記温調水の設定温度(好ましくは20℃~25℃程度)より高温であるためにタンク11内のアクリル酸液も上記設定温度より高温であったときは、アクリル酸液を冷却できる。装置1の環境温度が上記設定温度より低温であるためにタンク11内のアクリル酸液も上記設定温度より低温であったときは、アクリル酸液を加温できる。これによって、タンク11内のアクリル酸液の温度をほぼ上記設定温度にすることができる。上記設定温度を好ましくは20℃~25℃とすることによって、アクリル酸液がタンク11内で重合反応を起こすのを確実に防止できる。 The outlet port of the medium temperature control unit 60 and the outer tank 65 are connected by a medium forward path 63a. Temperature-controlled water whose temperature has been adjusted by the medium temperature adjustment unit 60 is filled between the outer tank 65 and the inner tank 11 via the medium forward path 63a. This temperature-controlled water exchanges heat with the liquid acrylic acid inside the inner tank 11 through the peripheral wall of the inner tank 11. Thereby, for example, since the environmental temperature of the apparatus 1 is higher than the set temperature of the temperature-controlled water (preferably about 20 ° C. to 25 ° C.), the acrylic acid solution in the tank 11 is also higher than the set temperature. When the acrylic acid solution can be cooled. Since the environmental temperature of the apparatus 1 is lower than the set temperature, the acrylic acid solution in the tank 11 can be heated when the acrylic acid solution in the tank 11 is also lower than the set temperature. As a result, the temperature of the acrylic acid solution in the tank 11 can be made substantially equal to the set temperature. By setting the set temperature to preferably 20 ° C. to 25 ° C., it is possible to reliably prevent the acrylic acid solution from causing a polymerization reaction in the tank 11.
 外タンク65と内タンク11との間には、媒体往路63bを構成する管の上流端(図6において下端部)が差し入れられている。媒体往路63bが第1熱交換部61の熱交換路61aに連なっている。外タンク65と内タンク11との間の温調水が、媒体往路63bを経て熱交換路61aに送られる。これによって、第5実施形態においても、アクリル酸液の温度と、マスフローコントローラ30の内部及び周辺の温度との間の温度差をほぼゼロにでき、質量流量の検知時に上記温度差による検知誤差が生じるのを防止できる。 Between the outer tank 65 and the inner tank 11, an upstream end (lower end in FIG. 6) of a pipe constituting the medium forward path 63b is inserted. The medium forward path 63 b is continuous with the heat exchange path 61 a of the first heat exchange unit 61. Temperature-controlled water between the outer tank 65 and the inner tank 11 is sent to the heat exchange path 61a through the medium forward path 63b. Thereby, also in the fifth embodiment, the temperature difference between the temperature of the acrylic acid solution and the temperature inside and around the mass flow controller 30 can be made substantially zero, and the detection error due to the temperature difference is detected when the mass flow rate is detected. It can be prevented from occurring.
 本発明は、上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において種々の改変態様を採用できる。
 例えば、冷却手段50,61の設定温度は、重合性モノマーの成分に応じて、該重合性モノマーが重合反応を起こす温度より低く、該重合性モノマーの凝固点より高くなるよう、適宜調節する。
 利用部2は、樹脂フィルム9の表面に重合性モノマーのプラズマ重合膜を被膜するものに限られず、基板や布等に重合性モノマーを塗布するものであってもよい。更に、利用部は、重合性モノマーの被膜又は塗布に限られず、重合性モノマーを利用するものであればよく、混合、調合、成形、充填、貯蔵等の種々の処理ないしは操作を行う装置、場所、プラント、システム等を含む。
 冷却手段は、ペルチェ素子以外の、ヒートパイプ等の冷却素子であってもよい。冷却手段が、ファンやフィン等の空冷部又は放熱部を有していてもよい。
 冷却手段が、質量流量管理部30,30Mの一部(好ましくは質量流量検知部31)だけを冷却する大きさであってもよい。
The present invention is not limited to the above-described embodiment, and various modifications can be employed without departing from the spirit of the present invention.
For example, the set temperature of the cooling means 50 and 61 is appropriately adjusted according to the component of the polymerizable monomer so that it is lower than the temperature at which the polymerizable monomer causes a polymerization reaction and higher than the freezing point of the polymerizable monomer.
The utilization part 2 is not limited to the one in which the surface of the resin film 9 is coated with a plasma polymerization film of a polymerizable monomer, and may be one in which a polymerizable monomer is applied to a substrate, cloth or the like. Furthermore, the utilization part is not limited to a film or coating of a polymerizable monomer, but may be anything that utilizes a polymerizable monomer, and a device, a place for performing various processes or operations such as mixing, blending, molding, filling, and storage. Plant, system, etc.
The cooling means may be a cooling element such as a heat pipe other than the Peltier element. The cooling means may have an air cooling part or a heat radiation part such as a fan or a fin.
The cooling means may be of a size that cools only a part of the mass flow rate management units 30 and 30M (preferably the mass flow rate detection unit 31).
 複数の実施形態を互いに組み合わせてもよい。例えば、第3~第5実施形態(図3~図6)の熱式マスフローコントローラ30を、第2実施形態(図2)の熱式マスフローメータMに置換してもよい。 A plurality of embodiments may be combined with each other. For example, the thermal mass flow controller 30 of the third to fifth embodiments (FIGS. 3 to 6) may be replaced with the thermal mass flow meter M of the second embodiment (FIG. 2).
 第4、第5実施形態(図4、図5)において、媒体温調部60と質量流量管理部30,30Mとの間を循環する第1の温調媒体の流路と、媒体温調部60と第2熱交換器62,65との間を循環する第2の温調媒体の流路とが、分離されていてもよい。この場合、第1の温調媒体の設定温度と第2の温調媒体の設定温度とが異なっていてもよい。装置1の環境温度を計測し、その計測温度がある設定値より高温であるか否かを判断し、その判断結果に応じて、第2熱交換器62,65において重合性モノマーを冷却又は加温する制御を行なってもよい。 In the fourth and fifth embodiments (FIGS. 4 and 5), the flow path of the first temperature adjustment medium circulating between the medium temperature adjustment unit 60 and the mass flow rate management units 30 and 30M, and the medium temperature adjustment unit The flow path of the 2nd temperature control medium which circulates between 60 and the 2nd heat exchangers 62 and 65 may be isolate | separated. In this case, the set temperature of the first temperature control medium and the set temperature of the second temperature control medium may be different. The environmental temperature of the apparatus 1 is measured, it is determined whether or not the measured temperature is higher than a certain set value, and the polymerizable monomer is cooled or added in the second heat exchangers 62 and 65 according to the determination result. You may control to warm.
 重合性モノマーとしてアクリル酸について温度に対する重合の進行後を以下のようにして検証した、
 アクリル酸の液をステンレスの容器に封入し、20℃~40℃の恒温状態で1ヶ月静置した。その後、容器内のアクリル酸の重合の有無を調べたところ、アクリル酸温度が20℃及び25℃,30℃のときは、重合物は存在しなかった。一方、アクリル酸温度が35℃及び40℃のときは、重合物が形成されていた。
 以上の結果から、温度を管理することによって、重合性モノマー液の重合進行を抑制できることが確かめられた。アクリル酸の場合、好ましくは30℃程度以下、より好ましくは25℃程度以下に維持すれば、重合進行を確実に抑制又は防止できることが確かめられた。
The acrylic monomer as a polymerizable monomer was verified as follows after the progress of polymerization with respect to temperature,
The acrylic acid solution was sealed in a stainless steel container and allowed to stand for 1 month at a constant temperature of 20 ° C. to 40 ° C. Thereafter, when the presence or absence of polymerization of acrylic acid in the container was examined, no polymer was present when the acrylic acid temperature was 20 ° C, 25 ° C, or 30 ° C. On the other hand, when the acrylic acid temperature was 35 ° C. and 40 ° C., a polymer was formed.
From the above results, it was confirmed that the polymerization progress of the polymerizable monomer liquid can be suppressed by controlling the temperature. In the case of acrylic acid, it was confirmed that the polymerization progress could be reliably suppressed or prevented by maintaining the temperature preferably at about 30 ° C. or less, more preferably at about 25 ° C.
 本発明は、例えばフラットパネルディスプレイ(FPD)の偏光板の製造に適用可能である。 The present invention is applicable to the manufacture of a polarizing plate for a flat panel display (FPD), for example.
1   重合性モノマー供給装置
2   プラズマ表面処理部(利用部)
3   ロール電極
3a  放電空間
4   放電生成ガスノズル
9   被処理フィルム
10  供給ライン
11  供給源
12  液供給ライン
13  ガス供給ライン
14  吹出ノズル
15  検知路
20  筺体
30  熱式マスフローコントローラ(質量流量管理部)
30M 熱式マスフローメータ(質量流量管理部)
31  熱式質量流量検知部
32  制御部
33  流量制御弁
34  加熱部
35  表示部
40  気化器
41  ヒータ
50  ペルチェ素子(冷却手段)
51  吸熱面
52  放熱面
6   温調手段
60  媒体温調部
61  第1熱交換部(冷却手段)
61a 熱交換路
62  第2熱交換部
63  媒体往路
63a,63b 媒体往路
64  媒体復路
65  第2熱交換部
1 Polymerizable monomer supply device 2 Plasma surface treatment unit (utilization unit)
3 Roll electrode 3a Discharge space 4 Discharge generation gas nozzle 9 Processed film 10 Supply line 11 Supply source 12 Liquid supply line 13 Gas supply line 14 Blowing nozzle 15 Detection path 20 Housing 30 Thermal mass flow controller (mass flow rate control unit)
30M thermal mass flow meter (mass flow management unit)
31 thermal mass flow rate detection unit 32 control unit 33 flow rate control valve 34 heating unit 35 display unit 40 vaporizer 41 heater 50 Peltier element (cooling means)
51 heat-absorbing surface 52 heat-dissipating surface 6 temperature adjusting means 60 medium temperature adjusting part 61 first heat exchanging part (cooling means)
61a Heat exchange path 62 Second heat exchange part 63 Medium forward path 63a, 63b Medium forward path 64 Medium return path 65 Second heat exchange part

Claims (7)

  1.  重合性モノマーを、該重合性モノマーを利用する利用部へ供給する供給装置であって、
     前記重合性モノマーを液の状態で流す供給ライン上に設けられ、熱式の質量流量検知部を有するマスフローコントローラ又はマスフローメータからなる質量流量管理部と、前記質量流量管理部を冷却する冷却手段と、を備え、
     前記冷却手段の設定温度が、前記重合性モノマーが重合反応を起こす温度より低く前記重合性モノマーの凝固点より高いことを特徴とする重合性モノマーの供給装置。
    A supply device for supplying a polymerizable monomer to a utilization unit using the polymerizable monomer,
    A mass flow management unit comprising a mass flow controller or a mass flow meter provided on a supply line for flowing the polymerizable monomer in a liquid state and having a thermal mass flow rate detection unit; and a cooling means for cooling the mass flow rate management unit; With
    An apparatus for supplying a polymerizable monomer, wherein a set temperature of the cooling means is lower than a temperature at which the polymerizable monomer causes a polymerization reaction and higher than a freezing point of the polymerizable monomer.
  2.  前記冷却手段が、前記質量流量管理部のうち少なくとも前記熱式質量流量検知部及び該熱式質量流量検知部の周辺部に面していることを特徴とする請求項1に記載の供給装置。 The supply device according to claim 1, wherein the cooling means faces at least the thermal mass flow rate detection unit and a peripheral part of the thermal mass flow rate detection unit in the mass flow rate management unit.
  3.  前記重合性モノマーがアクリル酸であり、前記冷却素子の設定温度が、15℃~30℃であることを特徴とする請求項1又は2に記載の供給装置。 The supply device according to claim 1 or 2, wherein the polymerizable monomer is acrylic acid, and a set temperature of the cooling element is 15 ° C to 30 ° C.
  4.  前記質量流量管理部と前記利用部との間に重合性モノマーを気化させる気化器が介在され、かつ前記質量流量管理部と前記気化器とが1の筺体内に収容されていることを特徴とする請求項1~3の何れか1項に記載の供給装置。 A vaporizer for vaporizing a polymerizable monomer is interposed between the mass flow rate management unit and the utilization unit, and the mass flow rate management unit and the vaporizer are accommodated in one casing. The supply device according to any one of claims 1 to 3.
  5.  前記冷却手段が、ペルチェ素子であることを特徴とする請求項1~4の何れか1項に記載の供給装置。 The supply device according to any one of claims 1 to 4, wherein the cooling means is a Peltier element.
  6.  温調媒体の温度を調節する媒体温調部と、前記冷却手段を構成する第1熱交換部とを含む温調手段を、更に備え、
     前記第1熱交換部が、前記媒体温調部からの温調媒体を前記質量流量管理部と熱交換するように流す熱交換路を有していることを特徴とする請求項1~4の何れか1項に記載の供給装置。
    A temperature control unit including a medium temperature control unit that adjusts the temperature of the temperature control medium, and a first heat exchange unit that constitutes the cooling unit;
    5. The heat exchange path of the first to fourth aspects, wherein the first heat exchange unit has a heat exchange path through which the temperature adjustment medium from the medium temperature adjustment unit flows to exchange heat with the mass flow rate management unit. The supply device according to any one of the above.
  7.  前記温調手段が、前記供給ラインにおける前記質量流量管理部より上流側の部分と前記温調媒体とを熱交換させる第2熱交換部を、更に含むことを特徴とする請求項6に記載の供給装置。 The said temperature control means further contains the 2nd heat exchange part which heat-exchanges the part upstream of the said mass flow volume management part in the said supply line, and the said temperature control medium, It is characterized by the above-mentioned. Feeding device.
PCT/JP2011/071637 2010-09-28 2011-09-22 Feeder for polymerizable monomer WO2012043382A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012536395A JP5281203B2 (en) 2010-09-28 2011-09-22 Polymeric monomer feeder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010217046 2010-09-28
JP2010-217046 2010-09-28

Publications (1)

Publication Number Publication Date
WO2012043382A1 true WO2012043382A1 (en) 2012-04-05

Family

ID=45892833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071637 WO2012043382A1 (en) 2010-09-28 2011-09-22 Feeder for polymerizable monomer

Country Status (3)

Country Link
JP (1) JP5281203B2 (en)
TW (1) TW201224402A (en)
WO (1) WO2012043382A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110882867A (en) * 2018-09-11 2020-03-17 株式会社爱发科 Propylene vaporizer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853907A (en) * 1981-09-28 1983-03-30 Nitto Electric Ind Co Ltd Polymerizing method of acrylic monomer
JPH06128303A (en) * 1992-08-03 1994-05-10 Tokuyama Soda Co Ltd Polymerizer
JPH1095805A (en) * 1997-08-04 1998-04-14 Tokuyama Corp Process for feeding monomer mixture for copolymerization
JP2000007709A (en) * 1998-06-25 2000-01-11 Mitsui Chemicals Inc Process for controlling characteristic of polymer
JP2001131209A (en) * 1999-11-02 2001-05-15 Nippon Shokubai Co Ltd Method for manufacturing water-absorbing polymer and apparatus therefor
JP2006104282A (en) * 2004-10-04 2006-04-20 Sumitomo Chemical Co Ltd Continuous polymerization apparatus and continuous polymerization method using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853907A (en) * 1981-09-28 1983-03-30 Nitto Electric Ind Co Ltd Polymerizing method of acrylic monomer
JPH06128303A (en) * 1992-08-03 1994-05-10 Tokuyama Soda Co Ltd Polymerizer
JPH1095805A (en) * 1997-08-04 1998-04-14 Tokuyama Corp Process for feeding monomer mixture for copolymerization
JP2000007709A (en) * 1998-06-25 2000-01-11 Mitsui Chemicals Inc Process for controlling characteristic of polymer
JP2001131209A (en) * 1999-11-02 2001-05-15 Nippon Shokubai Co Ltd Method for manufacturing water-absorbing polymer and apparatus therefor
JP2006104282A (en) * 2004-10-04 2006-04-20 Sumitomo Chemical Co Ltd Continuous polymerization apparatus and continuous polymerization method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110882867A (en) * 2018-09-11 2020-03-17 株式会社爱发科 Propylene vaporizer
JP2020040017A (en) * 2018-09-11 2020-03-19 株式会社アルバック Acryl vaporizer
CN110882867B (en) * 2018-09-11 2022-11-08 株式会社爱发科 Propylene vaporizer
JP7201372B2 (en) 2018-09-11 2023-01-10 株式会社アルバック acrylic vaporizer

Also Published As

Publication number Publication date
JP5281203B2 (en) 2013-09-04
TW201224402A (en) 2012-06-16
JPWO2012043382A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
Duan et al. Surface excess properties from energy transport measurements during water evaporation
US8304020B2 (en) Adhesion promoting process, adhesion promoting device, coating and developing system and storage medium
JP5281203B2 (en) Polymeric monomer feeder
CN109323976A (en) A kind of condensation particle counter temperature control device
Sefiane et al. On heat and mass transfer using evaporating self-rewetting mixtures in microchannels
Wang et al. Sweating-boosted air cooling using nanoscale CuO wick structures
JP5167039B2 (en) Film, film manufacturing method, polarizing plate and liquid crystal display device
JP2009031627A (en) Manufacturing method of polarizer, polarizer, polarizing plate, optical film, image display device, and atomizer
JP2008202950A (en) Temperature control apparatus, microfluid device having temperature control mechanism, and temperature control method
JP2008267640A (en) Cooling device and semiconductor inspection device
KR20140033669A (en) Apparatus for coating with parylene
JP2007196090A (en) Micro channel device and sending process of liquid
TWI522400B (en) Membrane surface treatment method and device
KR20140134435A (en) Polymerase chain reaction system
US20110051897A1 (en) Liquid Target Producing Device Being Able to use Multiple Capillary Tube And X-Ray and EUV Light Source Device with the Same
JP2004355815A (en) Substrate processing device and thermal type flowmeter suitable for the device
TWI462654B (en) Plasma processing device
RU2581522C1 (en) Method of cooling electronic equipment using condenser-film former
Yoneda et al. Forced flow boiling heat transfer properties of liquid hydrogen for manganin plate pasted on one side of a rectangular duct
Wang et al. Experimental study on the boiling heat transfer characteristics of a pump-driven two-phase cooling loop system for high heat flux avionics
JP2014181402A (en) Coating apparatus
JP2008162123A (en) Method for manufacturing oriented film, oriented film, polarizing plate, and liquid crystal displaying apparatus method
JP6939043B2 (en) Processing liquid supply device
WO2012117933A1 (en) Film surface treatment method and device
JP5293495B2 (en) Liquid supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828939

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012536395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828939

Country of ref document: EP

Kind code of ref document: A1