WO2012043207A1 - Multilayer ceramic electronic component and method for producing multilayer ceramic electronic component - Google Patents

Multilayer ceramic electronic component and method for producing multilayer ceramic electronic component Download PDF

Info

Publication number
WO2012043207A1
WO2012043207A1 PCT/JP2011/070711 JP2011070711W WO2012043207A1 WO 2012043207 A1 WO2012043207 A1 WO 2012043207A1 JP 2011070711 W JP2011070711 W JP 2011070711W WO 2012043207 A1 WO2012043207 A1 WO 2012043207A1
Authority
WO
WIPO (PCT)
Prior art keywords
multilayer ceramic
electronic component
ceramic electronic
internal electrode
particles
Prior art date
Application number
PCT/JP2011/070711
Other languages
French (fr)
Japanese (ja)
Inventor
祥一郎 鈴木
将典 中村
伴野 晃一
泰介 神崎
彰宏 塩田
大塚 正博
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2012536325A priority Critical patent/JP5429393B2/en
Publication of WO2012043207A1 publication Critical patent/WO2012043207A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a multilayer ceramic electronic component typified by a multilayer ceramic capacitor, and particularly relates to a component having an internal electrode mainly composed of Al.
  • multilayer ceramic capacitor 1 which is a typical example of the multilayer ceramic electronic component according to the present invention will be described.
  • the multilayer ceramic capacitor 1 includes a multilayer body 2 including a plurality of multilayered dielectric ceramic layers 3 and a plurality of internal electrodes 4 and 5 formed along an interface between the dielectric ceramic layers 3. Yes.
  • the first and second external electrodes 8 and 9 are formed on the end faces 6 and 7 of the multilayer body 2 facing each other.
  • the internal electrodes 4 and 5 are a plurality of first internal electrodes 4 electrically connected to the first external electrode 8 and a plurality of second internal electrodes 5 electrically connected to the second external electrode 9.
  • the first and second internal electrodes 4 and 5 are alternately arranged in the stacking direction.
  • a method is employed in which a dielectric ceramic green sheet and an internal electrode layer are laminated and fired at the same time in the manufacturing process.
  • base metals such as Ni have been used for internal electrodes of multilayer ceramic capacitors in order to reduce costs.
  • Patent Document 1 describes a multilayer ceramic body that employs Al as an internal electrode material instead of Ni.
  • the melting point of Al is about 660 ° C.
  • the ceramic must be able to be sufficiently sintered at 660 ° C., and the degree of freedom in designing ceramic materials is greatly limited. There was a problem.
  • the firing atmosphere is a nitrogen atmosphere having an oxygen partial pressure of 10 ⁇ 5 atm
  • Al serving as the internal electrode is changed to aluminum nitride (AlN), and sufficient electrical conductivity is achieved.
  • sex could not be secured. In this case, sufficient electrostatic capacity cannot be obtained.
  • an object of the present invention is to provide a multilayer ceramic electronic component having an Al internal electrode excellent in smoothness and conductivity and excellent in mechanical properties and electrical properties.
  • the present invention provides a laminate including a plurality of laminated ceramic layers and a plurality of Al-based internal electrodes formed along an interface between the ceramic layers, and an outer surface of the laminate.
  • a multilayer ceramic electronic component including an external electrode formed on the substrate, wherein the internal electrode includes Al particles having a flat shape.
  • the surface layer portion of the internal electrode is preferably formed of an Al 2 O 3 layer.
  • the thickness of the Al 2 O 3 layer is 0.25 to 10% of the thickness of the internal electrode.
  • the present invention is also directed to a method for manufacturing a multilayer ceramic electronic component including an internal electrode mainly composed of Al.
  • the Al internal electrode is smooth and excellent in electrical conductivity, it is possible to provide a multilayer ceramic electronic component that is excellent in mechanical characteristics and electrical characteristics, and that is downsized and excellent in cost performance.
  • the Al 2 O 3 layer constituting the surface of the Al internal electrode adheres firmly to the ceramic layer having various compositions, the shrinkage in the surface direction during firing is suppressed, and high dimensional accuracy is achieved. It is possible to provide a multilayer ceramic electronic component having the following.
  • the main component of the internal electrode is Al.
  • the internal electrode may be Al alone or an Al alloy, but when it is an Al alloy, the Al content is preferably 70 mol%, more preferably 90 mol% or more.
  • the internal electrode containing Al as a main component is formed of Al particles having many flat shapes (hereinafter referred to as “Al flat particles”).
  • the flat particles herein are substantially plate-like particles, and the ratio (aspect ratio) between the average diameter (spherical conversion value) and the average thickness on the surface of the plate is 20 or more.
  • the plane direction (plane normal) of the flat particles is substantially parallel to the stacking direction, it is advantageous for thinning the internal electrode.
  • the surface layer portion of the internal electrode is composed of a layer mainly composed of Al 2 O 3 .
  • This Al 2 O 3 layer prevents the electrode breakage due to the spheroidization of the Al internal electrode, and keeps the conductivity of the Al internal electrode good.
  • the Al 2 O 3 layer has a function of smoothing the Al internal electrode layer. As a result, delamination between the ceramic layer and the Al internal electrode is suppressed, and cracks in the laminate are also prevented.
  • the thickness of the Al 2 O 3 layer is preferably 0.25% or more of the thickness of the internal electrode.
  • the thickness of the Al 2 O 3 layer exceeds 10% of the thickness of the internal electrode, more than 20% of the total thickness of the internal electrode layer is composed of Al 2 O 3 , and there is a concern about a decrease in conductivity.
  • the thickness of the Al 2 O 3 layer is preferably 10% or less of the thickness of the internal electrode.
  • ceramic raw materials are prepared. This ceramic raw material is mixed with an organic binder component in a solvent as necessary to form a ceramic slurry. A ceramic green sheet is obtained by sheet-forming this ceramic slurry.
  • an internal electrode mainly composed of Al is formed on the ceramic green sheet.
  • a method of screen printing an Al paste containing Al flat particles and an organic vehicle in a desired pattern is simple.
  • This raw laminate is fired in a firing furnace, for example, at a predetermined atmosphere and temperature.
  • a firing furnace for example, at a predetermined atmosphere and temperature.
  • the oxygen partial pressure during firing is 1 ⁇ 10 ⁇ 4 MPa or more and the firing temperature is 600 ° C. or more, preferably 670 ° C. or more, the oxidation of the surface of the Al internal electrode proceeds and Al having an appropriate thickness is obtained.
  • a 2 O 3 layer is formed.
  • the firing temperature is 1000 ° C. or less, the spheroidization of the Al internal electrode is effectively prevented.
  • atmospheric pressure is most preferable in consideration of the simplicity of the process.
  • the rate of temperature increase from room temperature to TOP temperature in the firing process is 100 ° C./min or more, even if there are various changes in the ceramic material composition, etc., the surface layer of the Al internal electrode can be more reliably applied to the surface layer of Al 2 O 3. Layers are easily formed.
  • the surface Al 2 O 3 layer is used for protection of the internal electrode.
  • the oxidation of the Al internal electrode proceeds to the inside, there arises a problem that the capacitance decreases.
  • the Al 2 O 3 layer that is an oxide film exists on the surface layer the Al 2 O 3 abundance ratio as a whole can be minimized and the decrease in capacitance can be minimized.
  • multilayer ceramic electronic components having Al internal electrodes using flat Al particles are more advantageous in terms of capacitance than those having Al internal electrodes using spherical Al particles. .
  • the melting point of Al is about 660 ° C.
  • it can be co-fired with ceramic even at a temperature of 660 ° C. or higher. This is considered to be due to the Al 2 O 3 layer formed in the surface layer portion of the Al internal electrode. For this reason, a great degree of freedom arises in the material composition design of the ceramic used, and it can be applied to various applications.
  • the ceramic composition in the multilayer ceramic electronic component of the present invention is not particularly limited. Barium titanate (including those substituted with Ca, Sr, Zr, etc.), lead titanate or lead zirconate titanate, alumina glass ceramic, ferrite, transition element oxide semiconductor ceramic, etc. Various materials can be applied as long as the object of the invention is not impaired.
  • the multilayer ceramic electronic component of the present invention is not limited to a multilayer ceramic capacitor, and can be applied to various electronic components such as a multilayer piezoelectric element, a multilayer thermistor element, a multilayer chip coil, and a ceramic multilayer substrate.
  • Example 1 In this example, in a multilayer ceramic electronic component having an Al internal electrode, the difference between the one using spherical Al particles and the one using flat Al particles is observed.
  • BaTiO 3 powder and Pb (Ti, Zr) O 3 powder were prepared as ceramic main components. Further, Bi 2 O 3 and CuO powders, and Li 2 CO 3 and Bi 2 O 3 powders were prepared as subcomponents. These powders were mixed so as to satisfy the content ratios of Samples 1 to 3 in Table 1.
  • a powder made of spherical Al particles having an average particle diameter of 1 ⁇ m and a powder made of flat Al particles having an average diameter of 10 ⁇ m and an average thickness of 0.3 ⁇ m were prepared.
  • Each of these Al powders was mixed with an organic vehicle, an organic solvent and the like to obtain an Al paste.
  • an Al paste was applied on the ceramic green sheet by screen printing to form an Al paste layer.
  • Sample 1 used spherical Al particles, and samples 2 and 3 used flat Al particles.
  • the ceramic green sheets after the application of the Al paste were laminated so that the sides from which the Al paste layers were drawn were alternated and pressed to obtain a raw laminate.
  • This raw laminate was heated in the atmosphere at 270 ° C. to remove the binder. Thereafter, the temperature was increased at a rate of temperature increase of 100 ° C./min, and firing was performed at 725 ° C. for 1 minute under an oxygen partial pressure of 2 ⁇ 10 ⁇ 2 MPa.
  • An Ag resin paste having an Ag powder and an epoxy resin was applied to both end faces of the obtained laminate and cured at 180 ° C. in the atmosphere, and this was used as an external electrode connected to the internal electrode.
  • the multilayer ceramic capacitor obtained as described above has a length of 2.0 mm, a width of 1.0 mm, and a thickness of 1.0 mm, a ceramic layer thickness of 50 ⁇ m, an internal electrode layer thickness of 5 ⁇ m, and an effective number of layers of 5. there were.
  • the area facing the internal electrode per layer was 1.7 ⁇ 10 ⁇ 6 m 2 .
  • the electrostatic capacity of the obtained sample was measured under the conditions of 1 Vrms and 1 KHz using an automatic bridge type measuring device. The results are shown in Table 1.
  • the multilayer ceramic electronic component of the present invention can be applied to multilayer ceramic capacitors, multilayer piezoelectric elements, multilayer thermistors, multilayer chip coils, ceramic multilayer substrates, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

The present invention provides a multilayer ceramic electronic component having excellent mechanical and electrical properties and having an excellent cost-performance ratio. The multilayer ceramic electronic component includes: a laminate that includes a plurality of laminated ceramic layers, and a plurality of internal electrodes each formed along the interface between said ceramic layers and containing Al as the main component thereof; and external electrodes formed on the outer surfaces of the laminate. The multilayer ceramic electronic component is characterized in that the internal electrodes contain flat Al particles.

Description

積層セラミック電子部品、および積層セラミック電子部品の製造方法Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component
 本発明は、積層セラミックコンデンサに代表される積層セラミック電子部品に関し、特に、Alを主成分とする内部電極を備えるものに関する。 The present invention relates to a multilayer ceramic electronic component typified by a multilayer ceramic capacitor, and particularly relates to a component having an internal electrode mainly composed of Al.
 図1を参照して、まず、この発明に係る積層セラミック電子部品の代表例である積層セラミックコンデンサ1について説明する。 Referring to FIG. 1, first, a multilayer ceramic capacitor 1 which is a typical example of the multilayer ceramic electronic component according to the present invention will be described.
 積層セラミックコンデンサ1は、積層された複数の誘電体セラミック層3と誘電体セラミック層3間の界面に沿って形成される複数の内部電極4および5とをもって構成される、積層体2を備えている。 The multilayer ceramic capacitor 1 includes a multilayer body 2 including a plurality of multilayered dielectric ceramic layers 3 and a plurality of internal electrodes 4 and 5 formed along an interface between the dielectric ceramic layers 3. Yes.
 図1に示した積層セラミックコンデンサ1では、第1および第2の外部電極8および9は、積層体2の互いに対向する各端面6、7上に形成される。内部電極4および5は、第1の外部電極8に電気的に接続される複数の第1の内部電極4と第2の外部電極9に電気的に接続される複数の第2の内部電極5とがあり、これら第1および第2の内部電極4および5は、積層方向に関して交互に配置されている。 In the multilayer ceramic capacitor 1 shown in FIG. 1, the first and second external electrodes 8 and 9 are formed on the end faces 6 and 7 of the multilayer body 2 facing each other. The internal electrodes 4 and 5 are a plurality of first internal electrodes 4 electrically connected to the first external electrode 8 and a plurality of second internal electrodes 5 electrically connected to the second external electrode 9. The first and second internal electrodes 4 and 5 are alternately arranged in the stacking direction.
 積層セラミックコンデンサでは特に小型化が要求されるため、製造過程において、誘電体セラミックのグリーンシートと、内部電極層とを積層した後、同時に焼成する手法がとられる。近年、積層セラミックコンデンサの内部電極には、コスト削減のため、Ni等の卑金属が用いられている。 Since a multilayer ceramic capacitor is particularly required to be miniaturized, a method is employed in which a dielectric ceramic green sheet and an internal electrode layer are laminated and fired at the same time in the manufacturing process. In recent years, base metals such as Ni have been used for internal electrodes of multilayer ceramic capacitors in order to reduce costs.
 しかし、Niはセラミックとの共焼結時に非常に酸化されやすいため、焼成時の雰囲気を還元雰囲気とし、温度条件および酸素分圧を精密に制御する必要があった。結果として、材料設計に大きな制約が生じた。加えて、共焼成に伴う不均一な応力に起因するデラミネーションやクラック等の問題が懸念された。 However, since Ni is very easily oxidized during co-sintering with ceramics, it was necessary to control the temperature condition and oxygen partial pressure with a reducing atmosphere as the firing atmosphere. As a result, material design was greatly restricted. In addition, there were concerns about problems such as delamination and cracks due to non-uniform stress associated with co-firing.
 よって、積層セラミック電子部品の設計の自由度を高めるためには、様々な金属種の内部電極が検討されることが好ましい。 Therefore, in order to increase the degree of freedom in designing the multilayer ceramic electronic component, it is preferable to consider internal electrodes of various metal types.
 たとえば、特許文献1には、Niに替わる内部電極材料としてAlを採用した積層セラミック体について述べている。ただ、Alの融点は約660℃であるため、従来の常識から考えると、セラミックが660℃で十分に焼結できるものでなければならず、セラミック材料設計の自由度が大幅に制限されるという問題はあった。 For example, Patent Document 1 describes a multilayer ceramic body that employs Al as an internal electrode material instead of Ni. However, since the melting point of Al is about 660 ° C., considering the conventional common sense, the ceramic must be able to be sufficiently sintered at 660 ° C., and the degree of freedom in designing ceramic materials is greatly limited. There was a problem.
ドイツ公開特許公報 DE19719174A1 号German published patent publication DE19719174A1
 しかしながら、特許文献1における積層セラミック電子部品においては、焼成温度がAlの融点である660℃よりはるかに高い1200℃であるため、Al内部電極が球状化し、十分な導電性が確保できなかった。積層セラミックコンデンサとして考えた場合、十分な静電容量が得られなくなる。 However, in the multilayer ceramic electronic component disclosed in Patent Document 1, since the firing temperature is 1200 ° C., which is much higher than the melting point of Al, the Al internal electrode is spheroidized and sufficient conductivity cannot be ensured. When considered as a multilayer ceramic capacitor, sufficient electrostatic capacity cannot be obtained.
 さらに、特許文献1における積層セラミック電子部品においては、焼成雰囲気が酸素分圧10-5atmの窒素雰囲気であるため、内部電極となるAlが窒化アルミ(AlN)に変化してしまい、十分な導電性が確保できないという問題があった。この場合も十分な静電容量が得られなくなる。 Furthermore, in the multilayer ceramic electronic component disclosed in Patent Document 1, since the firing atmosphere is a nitrogen atmosphere having an oxygen partial pressure of 10 −5 atm, Al serving as the internal electrode is changed to aluminum nitride (AlN), and sufficient electrical conductivity is achieved. There was a problem that sex could not be secured. In this case, sufficient electrostatic capacity cannot be obtained.
 そこで、本発明の目的は、平滑性、導電性に優れるAl内部電極を備え、機械的特性および電気的特性に優れる積層セラミック電子部品を提供することにある。 Therefore, an object of the present invention is to provide a multilayer ceramic electronic component having an Al internal electrode excellent in smoothness and conductivity and excellent in mechanical properties and electrical properties.
 すなわち本発明は、積層された複数のセラミック層と、前記セラミック層間の界面に沿って形成される複数のAlを主成分とする内部電極と、を備える積層体と、前記積層体の外表面上に形成された外部電極と、を含む積層セラミック電子部品であって、前記内部電極が扁平形状を有するAl粒子を有することを特徴とする。 That is, the present invention provides a laminate including a plurality of laminated ceramic layers and a plurality of Al-based internal electrodes formed along an interface between the ceramic layers, and an outer surface of the laminate. A multilayer ceramic electronic component including an external electrode formed on the substrate, wherein the internal electrode includes Al particles having a flat shape.
 また、本発明は、前記内部電極の表層部がAl23層で形成されていることが好ましい。特に、前記Al23層の厚みは前記内部電極厚みの0.25~10%である。 In the present invention, the surface layer portion of the internal electrode is preferably formed of an Al 2 O 3 layer. Particularly, the thickness of the Al 2 O 3 layer is 0.25 to 10% of the thickness of the internal electrode.
 本発明は、Alを主成分とする内部電極を備える積層セラミック電子部品の製造方法にも向けられる。すなわち、積層された複数のセラミックグリーンシートと、前記セラミックグリーンシート間の界面に沿って形成されるAlを主成分とする金属成分を含む複数の層とを備える生の積層体を用意する工程と、前記生の積層体を焼成する工程と、を備え、前記Alを主成分とする金属成分が、扁平形状を有するAl粒子を含むことを特徴とする。 The present invention is also directed to a method for manufacturing a multilayer ceramic electronic component including an internal electrode mainly composed of Al. A step of preparing a raw laminate comprising a plurality of laminated ceramic green sheets and a plurality of layers containing a metal component mainly composed of Al formed along an interface between the ceramic green sheets; And firing the raw laminate, wherein the metal component containing Al as a main component includes Al particles having a flat shape.
 本発明によれば、Al内部電極が平滑性かつ導電性に優れるため、機械的特性および電気的特性に優れ、かつ小型化、コストパフォーマンスにも優れる積層セラミック電子部品を提供することができる。 According to the present invention, since the Al internal electrode is smooth and excellent in electrical conductivity, it is possible to provide a multilayer ceramic electronic component that is excellent in mechanical characteristics and electrical characteristics, and that is downsized and excellent in cost performance.
 また、本発明によれば、Al内部電極の表面を構成するAl23層が様々な組成を有するセラミック層と強固に密着するため、焼成時の面方向の収縮が抑えられ、高い寸法精度を有する積層セラミック電子部品を提供することができる。 In addition, according to the present invention, since the Al 2 O 3 layer constituting the surface of the Al internal electrode adheres firmly to the ceramic layer having various compositions, the shrinkage in the surface direction during firing is suppressed, and high dimensional accuracy is achieved. It is possible to provide a multilayer ceramic electronic component having the following.
本発明の積層セラミック電子部品の例である積層セラミックコンデンサを示す図である。It is a figure which shows the multilayer ceramic capacitor which is an example of the multilayer ceramic electronic component of this invention. 本発明の比較例である試料1における積層体断面のSEM写真である。It is a SEM photograph of the layered product section in sample 1 which is a comparative example of the present invention. 本発明の実施例である試料2における積層体断面のSEM写真である。It is a SEM photograph of the layered product section in sample 2 which is an example of the present invention. 本発明の実施例である試料2における積層体断面のAl内部電極付近における拡大TEM写真である。It is an enlarged TEM photograph in the Al internal electrode vicinity of the laminated body cross section in the sample 2 which is an Example of this invention.
 以下、本発明の実施形態の一例を、図1の積層セラミックコンデンサを例にとり説明する。 Hereinafter, an example of an embodiment of the present invention will be described using the multilayer ceramic capacitor of FIG. 1 as an example.
 本発明の積層セラミック電子部品は、その内部電極の主成分がAlである。この内部電極はAl単体でもAl合金でも良いが、Al合金である場合、Alの含有率が70モル%であることが好ましく、さらに好ましくは90モル%以上である。 In the multilayer ceramic electronic component of the present invention, the main component of the internal electrode is Al. The internal electrode may be Al alone or an Al alloy, but when it is an Al alloy, the Al content is preferably 70 mol%, more preferably 90 mol% or more.
 上記Alを主成分とする内部電極は、多くの扁平形状を有するAl粒子(以下、「Al扁平粒子」と記す)により形成されている。ここでいう扁平粒子とは略板状の粒子のことであり、板の面における平均径(球形換算値)と平均厚みとの比(アスペクト比)が、20以上である。この扁平粒子の面方向(面の法線)が積層方向と略平行である場合、内部電極の薄層化に有利である。 The internal electrode containing Al as a main component is formed of Al particles having many flat shapes (hereinafter referred to as “Al flat particles”). The flat particles herein are substantially plate-like particles, and the ratio (aspect ratio) between the average diameter (spherical conversion value) and the average thickness on the surface of the plate is 20 or more. When the plane direction (plane normal) of the flat particles is substantially parallel to the stacking direction, it is advantageous for thinning the internal electrode.
 内部電極に扁平形状のAl粒子を用いた場合、球形形状のAl粒子を用いた場合と比較して、さほど被覆率に差が無かったとしても、高い静電容量が得られやすい。これは、従来のNi内部電極やCu内部電極ではみられず、Al内部電極特有の効果であると思われる。 When flat Al particles are used for the internal electrode, a high capacitance is easily obtained even if there is no significant difference in coverage compared to the case where spherical Al particles are used. This is not seen in the conventional Ni internal electrode or Cu internal electrode, but seems to be an effect peculiar to the Al internal electrode.
 また、内部電極の表層部、すなわちセラミック層と接する箇所は、Al23を主成分とする層で構成されていることが望ましい。これは、主として、Al内部電極の表面が酸化したことに因るものである。このAl23層が、Al内部電極の球状化による電極切れを防ぎ、Al内部電極の導電率を良好に保つ。また、このAl23層は、Al内部電極層を平滑にする作用がある。これにより、セラミック層とAl内部電極とのデラミネーションが抑制され、また積層体のクラックも防がれる。この効果を発現するには、Al23層の厚みは内部電極の厚みの0.25%以上であることが好ましい。 Further, it is desirable that the surface layer portion of the internal electrode, that is, the portion in contact with the ceramic layer, is composed of a layer mainly composed of Al 2 O 3 . This is mainly due to the oxidation of the surface of the Al internal electrode. This Al 2 O 3 layer prevents the electrode breakage due to the spheroidization of the Al internal electrode, and keeps the conductivity of the Al internal electrode good. The Al 2 O 3 layer has a function of smoothing the Al internal electrode layer. As a result, delamination between the ceramic layer and the Al internal electrode is suppressed, and cracks in the laminate are also prevented. In order to exhibit this effect, the thickness of the Al 2 O 3 layer is preferably 0.25% or more of the thickness of the internal electrode.
 また、Al23層の厚みが内部電極の厚みの10%超となると、内部電極層の総厚の20%超がAl23で構成されることとなり、導電率の低下が懸念される。よって、Al23層の厚みは内部電極の厚みの10%以下であることが好ましい。 Further, when the thickness of the Al 2 O 3 layer exceeds 10% of the thickness of the internal electrode, more than 20% of the total thickness of the internal electrode layer is composed of Al 2 O 3 , and there is a concern about a decrease in conductivity. The Therefore, the thickness of the Al 2 O 3 layer is preferably 10% or less of the thickness of the internal electrode.
 次に、本発明の積層セラミック電子部品の製造方法について、積層セラミックコンデンサを例にとり説明する。 Next, the manufacturing method of the multilayer ceramic electronic component of the present invention will be described taking a multilayer ceramic capacitor as an example.
 まず、セラミック原料が用意される。このセラミック原料は、溶媒中にて必要に応じて有機バインダ成分と混合され、セラミックスラリーとされる。このセラミックスラリーをシート成形することにより、セラミックグリーンシートが得られる。 First, ceramic raw materials are prepared. This ceramic raw material is mixed with an organic binder component in a solvent as necessary to form a ceramic slurry. A ceramic green sheet is obtained by sheet-forming this ceramic slurry.
 次に、Alを主成分とする内部電極がセラミックグリーンシート上に形成される。形成方法としては、Al扁平粒子と有機ビヒクルとを含むAlペーストを所望のパターンにスクリーン印刷する方法が簡便である。 Next, an internal electrode mainly composed of Al is formed on the ceramic green sheet. As a forming method, a method of screen printing an Al paste containing Al flat particles and an organic vehicle in a desired pattern is simple.
 このようにして、セラミックグリーンシートとAl内部電極層とが多数層重ねられ、圧着することにより、焼成前の生の積層体が得られる。 In this way, a large number of ceramic green sheets and Al internal electrode layers are stacked and pressed to obtain a raw laminate before firing.
 この生の積層体は、焼成炉において、例えば、所定の雰囲気・温度にて焼成される。たとえば、焼成時の酸素分圧を1×10-4MPa以上とし、焼成温度を600℃以上、好ましくは670℃以上とした場合、Al内部電極の表面の酸化が進み、適度な厚みを有するAl23層が形成される。また、たとえば、焼成温度を1000℃以下とすると、Al内部電極の球状化が効果的に防がれる。酸素分圧に関しては、工程の簡便さを考慮すると、大気圧が最も好ましい。 This raw laminate is fired in a firing furnace, for example, at a predetermined atmosphere and temperature. For example, when the oxygen partial pressure during firing is 1 × 10 −4 MPa or more and the firing temperature is 600 ° C. or more, preferably 670 ° C. or more, the oxidation of the surface of the Al internal electrode proceeds and Al having an appropriate thickness is obtained. A 2 O 3 layer is formed. For example, when the firing temperature is 1000 ° C. or less, the spheroidization of the Al internal electrode is effectively prevented. Regarding the oxygen partial pressure, atmospheric pressure is most preferable in consideration of the simplicity of the process.
 また、焼成工程における、室温~TOP温度までの昇温速度を100℃/分以上とすると、セラミック材料組成等の種々の変化があっても、より確実にAl内部電極の表層にAl23層が形成されやすい。 Further, if the rate of temperature increase from room temperature to TOP temperature in the firing process is 100 ° C./min or more, even if there are various changes in the ceramic material composition, etc., the surface layer of the Al internal electrode can be more reliably applied to the surface layer of Al 2 O 3. Layers are easily formed.
 以上の条件における焼成により、表層のAl23層を内部電極の保護に利用する一方で、仮にAl内部電極の酸化が内部まで進むと、静電容量が低下する問題が生じてくる。しかし本発明では、Al内部電極に扁平Al粒子を用いているので、隣り合うAl粒子間の酸化が極力防がれ、結果としてAl内部電極の酸化が内部まで進みにくい。したがって、表層には酸化膜であるAl23層が存在しつつも、全体としてのAl23の存在比率は必要最小限に抑えられ、静電容量の低下も最小限に抑えられる。このような理由で、球形Al粒子を用いたAl内部電極を有するものと比較して、扁平Al粒子を用いたAl内部電極を有する積層セラミック電子部品のほうが、静電容量の面で有利なのである。 By firing under the above conditions, the surface Al 2 O 3 layer is used for protection of the internal electrode. On the other hand, if the oxidation of the Al internal electrode proceeds to the inside, there arises a problem that the capacitance decreases. However, in the present invention, since flat Al particles are used for the Al internal electrode, oxidation between adjacent Al particles is prevented as much as possible, and as a result, the oxidation of the Al internal electrode does not easily proceed to the inside. Therefore, although the Al 2 O 3 layer that is an oxide film exists on the surface layer, the Al 2 O 3 abundance ratio as a whole can be minimized and the decrease in capacitance can be minimized. For this reason, multilayer ceramic electronic components having Al internal electrodes using flat Al particles are more advantageous in terms of capacitance than those having Al internal electrodes using spherical Al particles. .
 なお、Alの融点は約660℃であるが、本発明の製造方法によれば、660℃以上の温度でもセラミックとともに共焼成可能となる。これはAl内部電極の表層部に形成されたAl23層に因るものと考えられる。このため、使用するセラミックの材料組成設計にも大きな自由度が生じ、様々なアプリケーションに応用可能となる。 Although the melting point of Al is about 660 ° C., according to the manufacturing method of the present invention, it can be co-fired with ceramic even at a temperature of 660 ° C. or higher. This is considered to be due to the Al 2 O 3 layer formed in the surface layer portion of the Al internal electrode. For this reason, a great degree of freedom arises in the material composition design of the ceramic used, and it can be applied to various applications.
 なお、本発明の積層セラミック電子部品におけるセラミック組成は特に限定されるものではない。チタン酸バリウム系(Ca、Sr、Zr等で置換されたものも含む)、チタン酸鉛系またはチタン酸ジルコン酸鉛系、アルミナ系ガラスセラミック、フェライト、遷移元素酸化物系半導体セラミック、など、本発明の目的を損なわない範囲で様々な材料を適用可能である。 The ceramic composition in the multilayer ceramic electronic component of the present invention is not particularly limited. Barium titanate (including those substituted with Ca, Sr, Zr, etc.), lead titanate or lead zirconate titanate, alumina glass ceramic, ferrite, transition element oxide semiconductor ceramic, etc. Various materials can be applied as long as the object of the invention is not impaired.
 また、本発明の積層セラミック電子部品は、積層セラミックコンデンサに限らず、積層型圧電素子、積層サーミスタ素子、積層チップコイル、セラミック多層基板など様々な電子部品に適用可能である。 The multilayer ceramic electronic component of the present invention is not limited to a multilayer ceramic capacitor, and can be applied to various electronic components such as a multilayer piezoelectric element, a multilayer thermistor element, a multilayer chip coil, and a ceramic multilayer substrate.
 [実施例1]本実施例は、Al内部電極を有するとの積層セラミック電子部品において、球形Al粒子を用いたものと、扁平Al粒子を用いたものの差をみたものである。 [Example 1] In this example, in a multilayer ceramic electronic component having an Al internal electrode, the difference between the one using spherical Al particles and the one using flat Al particles is observed.
 まず、セラミックの主成分としてBaTiO3粉末およびPb(Ti,Zr)O3粉末を用意した。また、副成分としてBi23、CuOの粉末、およびLi2CO3とBi23の粉末を用意した。これらの粉末を表1の試料1~3の含有比を満足するよう混合した。 First, BaTiO 3 powder and Pb (Ti, Zr) O 3 powder were prepared as ceramic main components. Further, Bi 2 O 3 and CuO powders, and Li 2 CO 3 and Bi 2 O 3 powders were prepared as subcomponents. These powders were mixed so as to satisfy the content ratios of Samples 1 to 3 in Table 1.
 このセラミック原料それぞれに、エタノール系の有機溶剤およびポリビニルブチラール系バインダを加え、ボールミルで湿式混合し、セラミックスラリーを得た。このセラミックスラリーをシート成形し、セラミックグリーンシートを得た。 To each of these ceramic raw materials, an ethanol-based organic solvent and a polyvinyl butyral-based binder were added and wet-mixed with a ball mill to obtain a ceramic slurry. This ceramic slurry was formed into a sheet to obtain a ceramic green sheet.
 一方で、平均粒径1μmの球形Al粒子からなる粉末と、平均径10μm、平均厚み0.3μmの扁平Al粒子からなる粉末とを用意した。これらのAl粉末それぞれを、有機ビヒクルおよび有機溶剤等と混合し、それぞれAlペーストを得た。 Meanwhile, a powder made of spherical Al particles having an average particle diameter of 1 μm and a powder made of flat Al particles having an average diameter of 10 μm and an average thickness of 0.3 μm were prepared. Each of these Al powders was mixed with an organic vehicle, an organic solvent and the like to obtain an Al paste.
 次に、セラミックグリーンシート上に、Alペーストをスクリーン印刷により塗布し、Alペースト層を形成した。試料1は球形Al粒子を用いたもの、試料2および3は扁平Al粒子を用いたものであった。このAlペースト塗布後のセラミックグリーンシートを、Alペースト層の引き出されている側が互い違いになるように積層し、圧着し、生の積層体を得た。 Next, an Al paste was applied on the ceramic green sheet by screen printing to form an Al paste layer. Sample 1 used spherical Al particles, and samples 2 and 3 used flat Al particles. The ceramic green sheets after the application of the Al paste were laminated so that the sides from which the Al paste layers were drawn were alternated and pressed to obtain a raw laminate.
 この生の積層体を大気中にて270℃にて加熱し、バインダを除去した。この後、100℃/分の昇温速度にて昇温し、酸素分圧2×10-2MPaのもとで、725℃にて1分間焼成した。得られた積層体の両端面に、Ag粉末とエポキシ樹脂とを有するAg樹脂ペーストを塗布し、大気中にて180℃にて硬化させ、これを内部電極と接続する外部電極とした。 This raw laminate was heated in the atmosphere at 270 ° C. to remove the binder. Thereafter, the temperature was increased at a rate of temperature increase of 100 ° C./min, and firing was performed at 725 ° C. for 1 minute under an oxygen partial pressure of 2 × 10 −2 MPa. An Ag resin paste having an Ag powder and an epoxy resin was applied to both end faces of the obtained laminate and cured at 180 ° C. in the atmosphere, and this was used as an external electrode connected to the internal electrode.
 以上のようにして得られた積層セラミックコンデンサは、長さ2.0mm、幅1.0mm厚さ1.0mmであり、セラミック層厚みは50μm、内部電極層厚みは5μm、有効層数は5であった。一層あたりの内部電極対向面積は1.7×10-62であった。 The multilayer ceramic capacitor obtained as described above has a length of 2.0 mm, a width of 1.0 mm, and a thickness of 1.0 mm, a ceramic layer thickness of 50 μm, an internal electrode layer thickness of 5 μm, and an effective number of layers of 5. there were. The area facing the internal electrode per layer was 1.7 × 10 −6 m 2 .
 得られた試料について静電容量を、自動ブリッジ式測定器を用い、1Vrms、1KHzの条件下で測定した。結果を表1に示した。 The electrostatic capacity of the obtained sample was measured under the conditions of 1 Vrms and 1 KHz using an automatic bridge type measuring device. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試料1と試料2とを比較すると、球形Al粒子を用いた積層セラミックコンデンサより、扁平Al粒子を用いた積層セラミックコンデンサのほうが、高い静電容量が得られた。また、扁平Al粒子を用いた試料3においても、比較的高い静電容量が得られた。 When Sample 1 and Sample 2 were compared, a higher capacitance was obtained with a multilayer ceramic capacitor using flat Al particles than with a multilayer ceramic capacitor using spherical Al particles. Also, in Sample 3 using flat Al particles, a relatively high capacitance was obtained.
 また、FIB加工による断面をSEMによって観察し、試料1および2の断面写真をそれぞれ図2、図3に示した。さらに試料2の薄片加工試料において、Al内部電極付近の断面をTEMによって観察し、拡大写真を図4に示した。 Moreover, the cross section by FIB processing was observed by SEM, and the cross-sectional photographs of Samples 1 and 2 are shown in FIGS. 2 and 3, respectively. Furthermore, in the thin piece processed sample of Sample 2, a cross section near the Al internal electrode was observed by TEM, and an enlarged photograph is shown in FIG.
 図3および図4によると、Al扁平粒子により、連続性が高くかつ薄層のAl内部電極が得られていることがわかる。 3 and 4, it can be seen that the Al flat particles yielded a thin Al internal electrode with high continuity.
 本発明の積層セラミック電子部品は、積層セラミックコンデンサ、積層圧電素子、積層サーミスタ、積層チップコイル、セラミック多層基板などに応用が可能である。 The multilayer ceramic electronic component of the present invention can be applied to multilayer ceramic capacitors, multilayer piezoelectric elements, multilayer thermistors, multilayer chip coils, ceramic multilayer substrates, and the like.
 1 積層セラミックコンデンサ
 2 積層体
 3 誘電体セラミック層
 4、5 内部電極
 6、7 端面
 8、9 外部電極
 10、11 第1のめっき層
 12、13 第2のめっき層
DESCRIPTION OF SYMBOLS 1 Multilayer ceramic capacitor 2 Laminated body 3 Dielectric ceramic layer 4, 5 Internal electrode 6, 7 End surface 8, 9 External electrode 10, 11 1st plating layer 12, 13 2nd plating layer

Claims (4)

  1.  積層された複数のセラミック層と、前記セラミック層間の界面に沿って形成される複数のAlを主成分とする内部電極と、を備える積層体と、
     前記積層体の外表面上に形成された外部電極と、
     を含む積層セラミック電子部品であって、
     前記内部電極が扁平形状を有するAl粒子を有することを特徴とする、積層セラミック電子部品。
    A laminate comprising a plurality of laminated ceramic layers, and a plurality of Al-based internal electrodes formed along the interface between the ceramic layers;
    An external electrode formed on the outer surface of the laminate;
    A multilayer ceramic electronic component comprising:
    A multilayer ceramic electronic component, wherein the internal electrode has Al particles having a flat shape.
  2.  前記内部電極の表層部がAl23層で形成されている、請求項1に記載の積層セラミック電子部品。 The multilayer ceramic electronic component according to claim 1, wherein a surface layer portion of the internal electrode is formed of an Al 2 O 3 layer.
  3.  前記Al23層の厚みが、前記内部電極厚みの0.25~10%である、請求項2に記載の積層セラミック電子部品。 The multilayer ceramic electronic component according to claim 2, wherein the thickness of the Al 2 O 3 layer is 0.25 to 10% of the thickness of the internal electrode.
  4.  積層された複数のセラミックグリーンシートと、前記セラミックグリーンシート間の界面に沿って形成されるAlを主成分とする金属成分を含む複数の層と、を備える生の積層体を用意する工程と、
     前記生の積層体を焼成する工程と、
     を備える積層セラミック電子部品の製造方法であって、
     前記Alを主成分とする金属成分が、扁平形状を有するAl粒子を含むことを特徴とする、積層セラミック電子部品の製造方法。
    Preparing a raw laminate comprising a plurality of laminated ceramic green sheets and a plurality of layers containing a metal component mainly composed of Al formed along an interface between the ceramic green sheets;
    Firing the raw laminate;
    A method for producing a multilayer ceramic electronic component comprising:
    The method for producing a multilayer ceramic electronic component, wherein the metal component containing Al as a main component includes Al particles having a flat shape.
PCT/JP2011/070711 2010-09-30 2011-09-12 Multilayer ceramic electronic component and method for producing multilayer ceramic electronic component WO2012043207A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012536325A JP5429393B2 (en) 2010-09-30 2011-09-12 Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-221936 2010-09-30
JP2010221936 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043207A1 true WO2012043207A1 (en) 2012-04-05

Family

ID=45892678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070711 WO2012043207A1 (en) 2010-09-30 2011-09-12 Multilayer ceramic electronic component and method for producing multilayer ceramic electronic component

Country Status (2)

Country Link
JP (1) JP5429393B2 (en)
WO (1) WO2012043207A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112885601A (en) * 2020-12-28 2021-06-01 苏州创浩新材料科技有限公司 Preparation method of MLCC capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566417A (en) * 1979-06-28 1981-01-23 Nichicon Capacitor Ltd Laminated capacitor
JPH0620867A (en) * 1992-07-03 1994-01-28 Matsushita Electric Ind Co Ltd Conductive paste for laminated ceramic capacitor
JPH11283441A (en) * 1998-03-30 1999-10-15 Kyocera Corp Conductive paste and electronic part
JP2005209415A (en) * 2004-01-20 2005-08-04 Daiken Kagaku Kogyo Kk Conductive paste and manufacturing method of ceramic electronic component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3006263B2 (en) * 1992-02-27 2000-02-07 トヨタ自動車株式会社 Method for producing metal powder sintered body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566417A (en) * 1979-06-28 1981-01-23 Nichicon Capacitor Ltd Laminated capacitor
JPH0620867A (en) * 1992-07-03 1994-01-28 Matsushita Electric Ind Co Ltd Conductive paste for laminated ceramic capacitor
JPH11283441A (en) * 1998-03-30 1999-10-15 Kyocera Corp Conductive paste and electronic part
JP2005209415A (en) * 2004-01-20 2005-08-04 Daiken Kagaku Kogyo Kk Conductive paste and manufacturing method of ceramic electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112885601A (en) * 2020-12-28 2021-06-01 苏州创浩新材料科技有限公司 Preparation method of MLCC capacitor
CN112885601B (en) * 2020-12-28 2022-04-22 苏州创浩新材料科技有限公司 Preparation method of MLCC capacitor

Also Published As

Publication number Publication date
JPWO2012043207A1 (en) 2014-02-06
JP5429393B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP7148239B2 (en) Ceramic electronic component and manufacturing method thereof
JP5293971B2 (en) Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component
JP4776913B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
TWI436387B (en) Laminated ceramic electronic parts and manufacturing method thereof
JP5132972B2 (en) Dielectric ceramics, manufacturing method thereof, and multilayer ceramic capacitor
KR102412983B1 (en) Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
JP5804064B2 (en) Manufacturing method of multilayer ceramic capacitor
WO2009131221A1 (en) Laminated ceramic capacitor
KR20100020917A (en) Layered ceramic electronic component and manufacturing method therefor
JP2003017356A (en) Laminated electronic component and manufacturing method therefor
JP2010045209A (en) Method of manufacturing laminated ceramic electronic component
JP2012169620A (en) Multilayer ceramic electronic component and method for manufacturing the same
JP2022119088A (en) Ceramic electronic component and manufacturing method of the same
WO2012023406A1 (en) Laminated ceramic electronic component
JP5527404B2 (en) Multilayer ceramic electronic components
JP2003234242A (en) Laminated ceramic capacitor
JP2020141091A (en) Multilayer ceramic capacitors and manufacturing method thereof
JP5641139B2 (en) Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component
JP5527405B2 (en) Multilayer ceramic electronic components
JP5429393B2 (en) Multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component
JP2010212503A (en) Laminated ceramic capacitor
JP2014232850A (en) Lamination type electronic part
JP5527400B2 (en) Multilayer ceramic electronic components
JP5527403B2 (en) Multilayer ceramic electronic components
JP5527401B2 (en) Multilayer ceramic electronic components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828767

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012536325

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828767

Country of ref document: EP

Kind code of ref document: A1