WO2012042950A1 - Solid electrolytic capacitor and method for manufacturing same - Google Patents

Solid electrolytic capacitor and method for manufacturing same Download PDF

Info

Publication number
WO2012042950A1
WO2012042950A1 PCT/JP2011/058243 JP2011058243W WO2012042950A1 WO 2012042950 A1 WO2012042950 A1 WO 2012042950A1 JP 2011058243 W JP2011058243 W JP 2011058243W WO 2012042950 A1 WO2012042950 A1 WO 2012042950A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
cathode layer
communication hole
electrolytic capacitor
solid electrolytic
Prior art date
Application number
PCT/JP2011/058243
Other languages
French (fr)
Japanese (ja)
Inventor
慎士 大谷
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2012536239A priority Critical patent/JP5429392B2/en
Publication of WO2012042950A1 publication Critical patent/WO2012042950A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Definitions

  • the present invention relates to a solid electrolytic capacitor and a method for manufacturing the same.
  • solid electrolytic capacitors which are one of electronic components, are required to have a large capacitance per unit volume, that is, a volume capacity ratio.
  • the structure of this type of conventional solid electrolytic capacitor is shown in FIG.
  • the solid electrolytic capacitor 201 shown in FIG. 13 is composed of a laminate 204 in which a plurality of valve action metal substrates 203 having a dielectric oxide film 202 formed on the surface are used.
  • the valve metal base 203 is divided into an anode electrode portion 206 and a cathode forming portion 207 by an insulating portion 205 provided at a predetermined position.
  • the surface of the dielectric oxide film 202 of the cathode forming portion 207 is covered with a cathode layer 208 made of a conductive polymer layer (not shown), a carbon layer (not shown), and a silver paste layer (not shown).
  • An anode terminal 209 and a cathode terminal 210 are connected to the anode electrode portion 206 and the cathode layer 208, respectively, and the laminate 204 is covered with an exterior body 211.
  • Such a solid electrolytic capacitor 201 is disclosed in Patent Document 1, for example.
  • the region where the cathode layer is covered with the dielectric oxide film contributes to the capacitance formation.
  • a region on the right side of the insulating portion 205 in the valve action metal base 203 shown in FIG. 13 is secured as the anode electrode portion 206 for connecting to the anode lead terminal 209.
  • the region where the cathode layer 207 is covered with the dielectric oxide film 202, that is, the capacitance forming portion is limited to the left side of the insulating portion 205 in the valve metal substrate 203 shown in FIG. Therefore, there is a problem that there is a limit in further increasing the volume capacity ratio in the structure of the solid electrolytic capacitor 201.
  • an object of the present invention is to provide a solid electrolytic capacitor capable of increasing the volume capacity ratio and a method for manufacturing the same.
  • a solid electrolytic capacitor according to the present invention includes a first main surface and a second main surface facing each other, and at least connecting between the first main surface and the second main surface.
  • a film is formed, and a cathode layer is formed so as to cover the dielectric oxide film formed on at least the first main surface and the second main surface of the valve action metal substrate;
  • the cathode layer is formed such that a dielectric oxide film formed on a side surface of the valve metal substrate is exposed.
  • an insulating film is formed around the communication hole in the valve metal substrate on the uppermost surface and / or the lowermost surface of the multilayer body so as to cover the cathode layer.
  • a terminal can be more easily connected to the laminate.
  • the method for manufacturing a solid electrolytic capacitor according to the present invention includes at least one first main surface and second main surface facing each other, and at least one connecting the first main surface and the second main surface.
  • a solid electrolytic capacitor In the method for producing a solid electrolytic capacitor according to the present invention, most of the main surface of the valve metal substrate can contribute to capacity formation, and a solid electrolytic capacitor having a high volume capacity ratio can be produced.
  • the contact portion between the cathode layer and the conductor can be easily insulated inside the communication hole formed in the valve action metal substrate.
  • the communication hole forming step is performed by means involving heating.
  • the manufacturing process can be further simplified.
  • the contact resistance of the contact portion between the valve metal substrate and the conductor can be further reduced inside the communication hole formed in the valve metal substrate.
  • the first main surface and the second main surface facing each other and at least one or more connecting between the first main surface and the second main surface.
  • a cathode layer forming step of forming a cathode layer so as to cover the formed dielectric oxide film, an insulator forming step of providing an insulator on the end face of the cathode layer inside the communication hole, and a plurality of the valve metal substrates are stacked.
  • a laminated body forming step of forming a laminated body; It said valve metal substrate, is characterized by having an electrical connection step of electrically connecting to each other by providing a conductor to the communication within the hole.
  • a solid electrolytic capacitor In the method for producing a solid electrolytic capacitor according to the present invention, most of the main surface of the valve metal substrate can contribute to capacity formation, and a solid electrolytic capacitor having a high volume capacity ratio can be produced. Moreover, the insulation of the contact part of a cathode part and a conductor can be improved inside the communicating hole formed in the valve action metal base
  • the cathode layer is preferably formed so as to expose at least the periphery of the communication hole.
  • an insulator can be easily provided on the end face of the cathode layer inside the communication hole.
  • the capacity formation contribution area per unit volume becomes larger than the conventional solid electrolytic capacitor, and the volume capacity ratio of the solid electrolytic capacitor can be increased.
  • FIG. 1 is a perspective view showing an appearance of a solid electrolytic capacitor 1 according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is sectional drawing which shows the manufacturing process of the solid electrolytic capacitor 1 by the 1st Embodiment of this invention.
  • FIG. 4 is a cross-sectional view showing a manufacturing process subsequent to FIG. 3. It is sectional drawing which shows the manufacturing process following FIG. It is sectional drawing of the solid electrolytic capacitor 101 by the 2nd Embodiment of this invention. It is sectional drawing which shows the manufacturing process of the solid electrolytic capacitor 101 by the 2nd Embodiment of this invention.
  • FIG. 8 is a cross-sectional view showing a manufacturing step that follows FIG. 7.
  • FIG. 1 is a perspective view showing the appearance of the solid electrolytic capacitor 1.
  • FIG. 2 is a sectional view taken along line AA in FIG. 3, 4, and 5 are cross-sectional views illustrating manufacturing steps of the solid electrolytic capacitor 1.
  • the solid electrolytic capacitor 1 has a laminated body 3 provided with communication holes 2.
  • the laminated body 3 includes a plurality of valve action metal bases 4 each having a first main surface 5 and a second main surface 6 facing each other and a side surface 7 connecting them. It is produced by being done.
  • valve metal of the valve metal base 4 examples include tantalum, titanium, aluminum, niobium, and alloys containing these.
  • the first main surface 5, the second main surface 6, and the side surface 7 of the valve action metal base 4 are covered with a dielectric oxide film 8 made of an oxide of the valve action metal base 4.
  • the surface of the oxide film 8 is covered with the cathode layer 9.
  • An example of the cathode layer 9 includes a conductive polymer having thiophene, pyrrole, furan, aniline, or a derivative thereof as a monomer.
  • the communication hole 2 is formed.
  • the communication hole 2 has openings on the uppermost surface and the lowermost surface of the laminate 3, and is provided so as to communicate with the lamination direction of the laminate 3.
  • a conductor 10 is provided inside the communication hole 2, and the plurality of valve metal bases 4 constituting the laminate 3 are electrically connected to each other by the conductor 10.
  • the cathode layer 9 and the conductor 10 are insulated via the insulator 11 of the cathode layer 9.
  • the insulator 11 of the cathode layer 9 is formed by heating the cathode layer 9 inside the communication hole 2.
  • the conductor 10 provided inside the communication hole 2 functions as an anode electrode portion. That is, the region secured as the anode electrode portion in the valve metal base 4 is only the opening portion of the communication hole 2, and the cathode layer 9 can be formed in a region other than the opening portion of the communication hole 2.
  • the solid electrolytic capacitor 1 has a larger capacity-contributing region per unit volume than the conventional solid electrolytic capacitor, and can increase the volume capacity ratio accordingly.
  • the insulator 11 of the cathode layer 9 is provided between the cathode layer 9 and the conductor 10, it is possible to prevent a problem that the cathode layer 9 and the conductor 10 are short-circuited.
  • a plate-like valve metal base 4 having a first main surface 5 and a second main surface 6 facing each other and a side surface 7 connecting them is prepared. .
  • a dielectric oxide film 8 is formed so as to cover the first main surface 5, the second main surface 6 and the side surface 7 of the valve metal base 4.
  • the dielectric oxide film 8 is formed by immersing the valve action metal substrate 4 in an electrolyte solution 12 such as phosphoric acid, boric acid, adipic acid, etc. It can be formed by an anodic oxidation method in which current is applied with the counter electrode 13 inside as the negative electrode side.
  • an electrolyte solution 12 such as phosphoric acid, boric acid, adipic acid, etc.
  • a cathode layer 9 is formed so as to cover substantially the entire surface of the dielectric oxide film 8.
  • the cathode layer 9 is made of a conductive polymer layer and is formed as follows. That is, as shown in FIG. 4B, the valve metal substrate 4 on which the dielectric oxide film 8 is formed is immersed in a monomer solution 14 such as thiophene, pyrrole, furan, aniline derivatives thereof. After that, the valve-acting metal substrate 4 coated with the monomer solution 14 is immersed in a mixed solution 15 of an oxidant that initiates polymerization of the monomer and a dopant that imparts conductivity to the cathode layer, so-called chemical oxidative polymerization is used for the cathode. Layer 9 can be formed.
  • a monomer solution 14 such as thiophene, pyrrole, furan, aniline derivatives thereof.
  • a laminate 3 is formed using a plurality of valve action metal substrates 4 on which a dielectric oxide film 8 and a cathode layer 9 are formed.
  • the laminated body 3 is processed to form a communication hole 2 that communicates in the stacking direction.
  • the communication hole 2 applies a laser 16 to a desired portion of the laminate 3 composed of a plurality of valve action metal substrates 4 on which the dielectric oxide film 8 and the cathode layer 9 are formed. By irradiating, it forms so that the uppermost surface and lowermost surface of the laminated body 3 may open.
  • the cathode layer 9 exposed inside the communication hole 2 is insulated by the heat generated when the laser 16 is irradiated to become an insulator 11. It is considered that the cathode layer 9 is insulated by heat, for example, when a conductive polymer is used for the cathode layer 9 due to desorption of the dopant or decomposition of the polymer.
  • a conductor 10 is provided inside the communication hole 2, and a plurality of valve metal bases 4 constituting the laminate 3 are electrically connected within the communication hole 2. To do.
  • the conductor 10 can be formed, for example, by inserting a conductive paste into the communication hole 2 and solidifying.
  • the cathode layer 9 and the conductor 10 are insulated by the insulator 11 of the cathode layer 9.
  • the exposed surface of the valve metal base 4 inside the communication hole 2 is exposed to heat.
  • Oxide may be formed due to the above.
  • the valve metal substrate 4 exposed inside the communication hole 2 may be polished to remove the oxide.
  • FIG. 6 is a view for explaining the second embodiment of the present invention, and corresponds to FIG. 2 for explaining the first embodiment.
  • 7 and 8 are cross-sectional views showing the manufacturing process of the solid electrolytic capacitor 101. 6, 7, and 8, the same reference numerals are given to the same components as those in the first embodiment, and duplicate descriptions are omitted.
  • the insulator 111 is made of a material different from that of the cathode layer 9.
  • the cathode layer 9 itself is insulated, and this point is different.
  • Other components are the same as those in the first embodiment.
  • the dielectric oxide film 8 is formed so as to cover the first main surface 5, the second main surface 6, and the side surface 7 of the valve metal base 4 by the same method as in the first embodiment.
  • the cathode layer 9 made of a conductive polymer is formed so as to cover the dielectric oxide film 8, and the cathode layer 9 is formed so as to expose the position where the communication hole 2 is to be formed and its periphery. Therefore, the shape of the cathode layer 9 is strictly different from the cathode layer 9 in the first embodiment described above.
  • the formation position 102 of the communication hole 2 and the surrounding area 103 are covered with an insulating material 111 by a method such as screen printing. It is preferable to select an insulating material 111 having a property of repelling a precursor for forming the cathode layer 9 such as the monomer solution 14 and the mixed solution 15 of the oxidizing agent and the dopant shown in the first embodiment.
  • An example of such an insulating material 111 is polyimide resin.
  • the insulating material 111 is preferably formed so as to have substantially the same thickness as the cathode layer 9 to be formed later.
  • the cathode layer 9 is formed by the method similar to 1st Embodiment. At this time, since the monomer solution 14 and the mixed solution 15 of the oxidizing agent and the dopant are not applied to the surface of the insulating material 111, the cathode layer 9 is insulated at the planned formation position 102 of the communication hole 2 and the periphery 103. The material 111 is formed so as to be exposed.
  • the end face of the cathode layer 9 is in contact with the insulating material 111.
  • valve action metal substrates 4 on which the dielectric oxide film 8, the cathode layer 9, and the insulating material 111 are formed are stacked to form a laminate 3.
  • the laminated body 3 is processed to form a communication hole 2 that communicates in the stacking direction.
  • the communication hole 2 is formed at a position 102 where the communication hole 2 is to be formed in the valve metal base 4 on which the dielectric oxide film 8 and the cathode layer 9 are formed, as shown in FIG.
  • the laser 16 irradiates the insulating material 111 formed around the position 103 where the communication hole 2 is to be formed.
  • the conductor 10 is provided inside the communication hole 2, and the plurality of valve metal bases 4 constituting the laminated body 3 inside the communication hole 2. Connect each other electrically.
  • the cathode layer 9 and the conductor 10 are insulated by the insulating material 111.
  • the solid electrolytic capacitor and the manufacturing method thereof shown in the first embodiment and the second embodiment are merely examples, and various modifications may be made within the scope of the present invention other than this. .
  • the valve action metal substrate 4 may be a foil-like one.
  • valve metal bases 4 constituting the laminate 3 may be appropriately set depending on the desired capacitance and dimensions of the solid electrolytic capacitor.
  • the cathode layer 9 is formed by electropolymerization in which electricity is applied with the valve metal substrate 4 on which the dielectric oxide film 8 is formed as the positive electrode side and the counter electrode 13 in the solution as the negative electrode side.
  • the conductive polymer polymer solution can be applied to the valve metal substrate 4 on which the dielectric oxide film 8 is formed, and solidified.
  • manganese dioxide or the like can be used for the cathode layer 9.
  • the cathode layer 9 may be formed so that the dielectric oxide film 8 formed on the side surface of the valve action metal substrate 4 is exposed.
  • the valve metal base 4 is used after being cut out from an assembly of the valve metal base. At this time, the side surface of the valve metal base 4 is a cut surface. In some cases, burrs may exist on the cut surface, and the dielectric oxide film 8 formed in such a portion is likely to be defective, which causes a reduction in the withstand voltage of the solid electrolytic capacitor.
  • the dielectric oxide film 8 formed on the side surface of the valve action metal substrate 4 is not covered with the cathode layer 9, the portion where the defect of the dielectric film 8 is likely to occur does not contribute to the capacity formation. A reduction in withstand voltage can be prevented.
  • the dielectric oxide film 8 may be damaged when the cathode layer 9 is formed.
  • the valve action metal substrate 4 on which the dielectric film 8 and the cathode layer 9 are formed is immersed in an electrolyte such as phosphoric acid, boric acid, adipic acid, etc.
  • the dielectric oxide film 8 can be repaired by performing a re-oxidation process in which the counter electrode 13 in the inside is energized with the negative electrode side.
  • the formation of the communication hole 2 may be performed after the dielectric oxide film 8 is formed on the valve action metal substrate 4 and before the cathode layer 9 or the laminate 3 is formed.
  • the communication hole 2 can be formed by means such as punching.
  • the communication hole 2 is formed by a means that does not involve heating such as punching, if the cathode layer 9 exposed inside the communication hole 2 is locally heated by a spot heater or the like after the communication hole 2 is formed and insulated, the conductor 10 can be insulated.
  • the insulation can be more reliably insulated. Can do.
  • the communication hole 2 does not need to be opened on both the uppermost surface and the lowermost surface of the laminate 3 as in the first embodiment and the second embodiment. If the conductor 10 provided in the communication hole 2 is electrically connected to the plurality of valve metal bases 4 constituting the laminated body 3, at least one of the uppermost surface and the lowermost surface of the laminated body 3 is used. It is only necessary to be able to open from.
  • the anode terminal 104 and the cathode terminal 105 are connected to the conductor 10 and the cathode layer 9, respectively, and the laminate 3 is mounted on the mounting surface of the anode terminal 104 and the cathode terminal 105.
  • the formation region of the resist 107 is not particularly limited as long as the contact between the anode terminal 104 and the cathode layer 9 can be prevented and the cathode terminal 105 and the cathode layer 9 can be connected.
  • the laminate 3 may be mounted on a substrate 110 having an anode via electrode 108 and a cathode via electrode 109 and covered with an exterior body 106 so that the lower surface of the substrate 110 is exposed.
  • An aluminum foil having a width of 3.5 mm, a length of 13 mm, and a thickness of 110 ⁇ m was prepared.
  • this aluminum foil is immersed in an aqueous solution of ammonium adipate, the aluminum foil is on the positive electrode side, the counter electrode in the ammonium adipate solution is on the negative electrode side, and a voltage of 3.5 V is applied to oxidize the surface of the aluminum foil.
  • a dielectric oxide film made of aluminum was formed.
  • a cathode layer made of polyethylene dioxythiophene was formed on the surface of aluminum oxide.
  • the laminated body was irradiated with a carbon dioxide laser to form a communication hole having a diameter of 0.5 mm for communicating the laminated body in the laminating direction.
  • polyethylene dioxythiophene in the range of 0.1 mm around the communication hole was insulated by heat generated by the carbon dioxide laser irradiation simultaneously with the formation of the communication hole.
  • polyethylenedioxythiophene around the communication hole on the upper surface of the laminate was coated with a polyimide resin.
  • a solid electrolytic capacitor was produced by sealing.
  • the solid electrolytic capacitor is obtained by connecting the polyethylene dioxythiophene and the cathode terminal via carbon paste and silver paste, and sealing the laminate with an epoxy resin so that the mounting surfaces of the cathode terminal and the anode terminal are exposed. Produced.
  • the solid electrolytic capacitor of the example according to the present invention was able to increase the volume capacity ratio compared to the solid electrolytic capacitor of the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

Provide are: a solid electrolytic capacitor which has high volume/capacity ratio; and a method for manufacturing the solid electrolytic capacitor. Specifically provided is a solid electrolytic capacitor which is characterized in that: the solid electrolytic capacitor comprises a laminate that is obtained by laminating a plurality of valve-acting metal bases each of which has a first main surface and a second main surface facing each other and one or more lateral surfaces connecting the first main surface and the second main surface; each valve-acting metal base is provided with a dielectric oxide coating film that covers the first main surface, the second main surface and the lateral surfaces; a negative electrode layer is formed so as to cover at least a part of the dielectric coating film formed on the first main surface and the second main surface of each valve-acting metal base; the laminate has a through hole that penetrates therethrough in the lamination direction; the valve-acting metal bases are electrically connected with each other by a conductor that is provided inside the through hole; and the negative electrode layer and the conductor are insulated from each other by an insulator interposed therebetween.

Description

固体電解コンデンサ及びその製造方法Solid electrolytic capacitor and manufacturing method thereof
 本発明は、固体電解コンデンサ、及びその製造方法に関する。 The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same.
 電子機器の小型、高性能化に伴って電子部品の一つである固体電解コンデンサは単位体積あたりの静電容量、すなわち体積容量比率が大きいものが求められている。この種の従来の固体電解コンデンサの構成を図13に示す。 With the downsizing and high performance of electronic equipment, solid electrolytic capacitors, which are one of electronic components, are required to have a large capacitance per unit volume, that is, a volume capacity ratio. The structure of this type of conventional solid electrolytic capacitor is shown in FIG.
 図13に示された固体電解コンデンサ201は、表面に誘電体酸化皮膜202が形成された弁作用金属基体203が複数枚使用された積層体204で構成されている。弁作用金属基体203は、所定の位置に設けられた絶縁部205により陽極電極部206と陰極形成部207に区分されている。そして、陰極形成部207の誘電体酸化皮膜202の表面が導電性高分子層(図示しない)、カーボン層(図示しない)、銀ペースト層(図示しない)からなる陰極層208により被覆されている。また、陽極電極部206と陰極層208にはそれぞれ陽極端子209と陰極端子210が接続され、さらに積層体204は外装体211により被覆されている。このような固体電解コンデンサ201は、例えば特許文献1に開示されている。 The solid electrolytic capacitor 201 shown in FIG. 13 is composed of a laminate 204 in which a plurality of valve action metal substrates 203 having a dielectric oxide film 202 formed on the surface are used. The valve metal base 203 is divided into an anode electrode portion 206 and a cathode forming portion 207 by an insulating portion 205 provided at a predetermined position. The surface of the dielectric oxide film 202 of the cathode forming portion 207 is covered with a cathode layer 208 made of a conductive polymer layer (not shown), a carbon layer (not shown), and a silver paste layer (not shown). An anode terminal 209 and a cathode terminal 210 are connected to the anode electrode portion 206 and the cathode layer 208, respectively, and the laminate 204 is covered with an exterior body 211. Such a solid electrolytic capacitor 201 is disclosed in Patent Document 1, for example.
特開2008-135427号公報JP 2008-135427 A
 ところで、固体電解コンデンサにおいて容量形成に寄与するのは、誘電体酸化皮膜に陰極層が被覆されている領域のみである。特許文献1に開示されている固体電解コンデンサ201の場合、図13に示す弁作用金属基体203における絶縁部205より右側の領域を、陽極リード端子209と接続するための陽極電極部206として確保する必要がある。したがって、誘電体酸化皮膜202に陰極層207が被覆される領域、すなわち静電容量形成部は、図13に示す、弁作用金属基体203における絶縁部205より左側に限定されてしまう。このため固体電解コンデンサ201の構造において体積容量比率を更に高めるには限界があるという問題があった。 By the way, in the solid electrolytic capacitor, only the region where the cathode layer is covered with the dielectric oxide film contributes to the capacitance formation. In the case of the solid electrolytic capacitor 201 disclosed in Patent Document 1, a region on the right side of the insulating portion 205 in the valve action metal base 203 shown in FIG. 13 is secured as the anode electrode portion 206 for connecting to the anode lead terminal 209. There is a need. Accordingly, the region where the cathode layer 207 is covered with the dielectric oxide film 202, that is, the capacitance forming portion, is limited to the left side of the insulating portion 205 in the valve metal substrate 203 shown in FIG. Therefore, there is a problem that there is a limit in further increasing the volume capacity ratio in the structure of the solid electrolytic capacitor 201.
 そこで、本発明の目的は、体積容量比率を高めることができる固体電解コンデンサ及びその製造方法を提供しようとすることである。 Therefore, an object of the present invention is to provide a solid electrolytic capacitor capable of increasing the volume capacity ratio and a method for manufacturing the same.
 上記問題点を解決するために、本発明に係る固体電解コンデンサは、互いに対向する第1の主面及び第2の主面と、前記第1の主面及び第2の主面間を結ぶ少なくとも1つ以上の側面を有する弁作用金属基体を複数積み重ねた積層体を有し、前記弁作用金属基体はそれぞれ前記第1の主面、第2の主面、及び側面を覆うように誘電体酸化皮膜が形成されており、前記弁作用金属基体の少なくとも第1の主面及び第2の主面上に形成された前記誘電体酸化皮膜を覆うように陰極層が形成されており、前記積層体は積層方向に連通する連通穴を有し、前記弁作用金属基体は互いに、前記連通穴内部に設けられた導電体により電気的に接続されており、前記陰極層と前記導電体とは絶縁体を介して絶縁されていることを特徴としている。 In order to solve the above problems, a solid electrolytic capacitor according to the present invention includes a first main surface and a second main surface facing each other, and at least connecting between the first main surface and the second main surface. A laminated body in which a plurality of valve action metal substrates having one or more side surfaces are stacked, and the valve action metal substrate is dielectrically oxidized so as to cover the first main surface, the second main surface, and the side surfaces, respectively. A film is formed, and a cathode layer is formed so as to cover the dielectric oxide film formed on at least the first main surface and the second main surface of the valve action metal substrate; Has a communication hole communicating in the stacking direction, the valve metal bases are electrically connected to each other by a conductor provided inside the communication hole, and the cathode layer and the conductor are insulators. It is characterized by being insulated through.
 本発明に係る固体電解コンデンサは、弁作用金属基体の主面の大部分が容量形成に寄与することになり、体積容量比率を高めることができる。 In the solid electrolytic capacitor according to the present invention, most of the main surface of the valve action metal substrate contributes to capacity formation, and the volume capacity ratio can be increased.
 また、本発明に係る固体電解コンデンサは、前記陰極層は、前記弁作用金属基体の側面に形成された誘電体酸化皮膜が露出するように形成されていることが好ましい。 In the solid electrolytic capacitor according to the present invention, it is preferable that the cathode layer is formed such that a dielectric oxide film formed on a side surface of the valve metal substrate is exposed.
 かかる場合には、固体電解コンデンサの耐電圧低下をより防止することができる。 In such a case, it is possible to further prevent a decrease in withstand voltage of the solid electrolytic capacitor.
 また、本発明に係る固体電解コンデンサは、前記積層体の最上面および/または最下面の弁作用金属基体における連通穴周囲に、前記陰極層を覆うように絶縁膜が形成されていることが好ましい。 In the solid electrolytic capacitor according to the present invention, it is preferable that an insulating film is formed around the communication hole in the valve metal substrate on the uppermost surface and / or the lowermost surface of the multilayer body so as to cover the cathode layer. .
 かかる場合には、前記積層体に端子をより容易に接続できるようになる。 In such a case, a terminal can be more easily connected to the laminate.
 また、本発明に係る固体電解コンデンサの製造方法は、互いに対向する第1の主面及び第2の主面と、前記第1の主面及び第2の主面間を結ぶ少なくとも1つ以上の側面を有する弁作用金属基体を準備する弁作用金属基体準備工程と、前記弁作用金属基体の第1の主面、第2の主面、及び側面を覆うように誘電体酸化皮膜を形成する誘電体酸化皮膜形成工程と、前記弁作用金属基体の少なくとも第1の主面及び第2の主面上に形成された前記誘電体酸化皮膜を覆うように陰極層を形成する陰極層形成工程と、前記弁作用金属基体を複数積み重ねて積層体を形成する積層体形成工程と、前記積層体を積層方向に連通する、少なくとも1つ以上の連通穴を形成する連通穴形成工程と、前記連通穴内部における陰極層を加熱により絶縁化する陰極層絶縁化工程と前記弁作用金属基体を、前記連通穴部内に導電体を設けることにより互いに電気的に接続する電気的接続工程を有することを特徴としている。 The method for manufacturing a solid electrolytic capacitor according to the present invention includes at least one first main surface and second main surface facing each other, and at least one connecting the first main surface and the second main surface. A valve action metal substrate preparation step for preparing a valve action metal substrate having a side surface, and a dielectric for forming a dielectric oxide film so as to cover the first main surface, the second main surface, and the side surface of the valve action metal substrate. A body oxide film forming step, and a cathode layer forming step of forming a cathode layer so as to cover the dielectric oxide film formed on at least the first main surface and the second main surface of the valve action metal substrate, A laminated body forming step of forming a laminated body by stacking a plurality of the valve action metal substrates, a communicating hole forming step of forming at least one communicating hole for communicating the laminated body in the laminating direction, and the inside of the communicating hole Cathode that insulates cathode layer by heating It said valve metal substrate and an insulating step is characterized by having an electrical connection step of electrically connecting to each other by providing a conductor to the communication within the hole.
 本発明に係る固体電解コンデンサの製造方法では、弁作用金属基体の主面の大部分が容量形成に寄与させることができ、体積容量比率が高い固体電解コンデンサを製造することができる。また、弁作用金属基体に形成された連通穴内部において、陰極層と導電体の接触部を容易に絶縁化することができる。 In the method for producing a solid electrolytic capacitor according to the present invention, most of the main surface of the valve metal substrate can contribute to capacity formation, and a solid electrolytic capacitor having a high volume capacity ratio can be produced. In addition, the contact portion between the cathode layer and the conductor can be easily insulated inside the communication hole formed in the valve action metal substrate.
 また、本発明に係る固体電解コンデンサの製造方法では、前記連通穴形成工程を、加熱を伴う手段により行うことが好ましい。 Moreover, in the method for manufacturing a solid electrolytic capacitor according to the present invention, it is preferable that the communication hole forming step is performed by means involving heating.
 かかる場合には、製造工程をより簡略化することができる。 In such a case, the manufacturing process can be further simplified.
 また、本発明に係る固体電解コンデンサの製造方法では、前記陰極層絶縁化工程と前記電気的接続工程の間に、前記連通穴内部における弁作用金属を研磨する研磨工程を設けることが好ましい。 In the method for producing a solid electrolytic capacitor according to the present invention, it is preferable to provide a polishing step for polishing the valve metal in the communication hole between the cathode layer insulating step and the electrical connection step.
 かかる場合には、弁作用金属基体に形成された連通穴内部において、弁作用金属基体と導電体の接触部の接触抵抗をより低減することができる。 In such a case, the contact resistance of the contact portion between the valve metal substrate and the conductor can be further reduced inside the communication hole formed in the valve metal substrate.
 また、本発明に係る固体電解コンデンサの製造方法では、互いに対向する第1の主面及び第2の主面と、前記第1の主面及び第2の主面間を結ぶ少なくとも1つ以上の側面を有する弁作用金属基体を準備する弁作用金属基体準備工程と、前記弁作用金属基体の第1の主面、第2の主面、及び側面を覆うように誘電体酸化皮膜を形成する誘電体酸化皮膜形成工程と、前記弁作用金属基体に、少なくとも1つ以上の連通穴を形成する連通穴形成工程と、前記弁作用金属基体の少なくとも第1の主面及び第2の主面上に形成された前記誘電体酸化皮膜を覆うように陰極層を形成する陰極層形成工程と、前記連通穴内部における陰極層端面に絶縁体を設ける絶縁体形成工程と前記弁作用金属基体を複数積み重ねて積層体を形成する積層体形成工程と、前記弁作用金属基体を、前記連通穴部内に導電体を設けることにより互いに電気的に接続する電気的接続工程を有することを特徴としている。 In the method for manufacturing a solid electrolytic capacitor according to the present invention, the first main surface and the second main surface facing each other and at least one or more connecting between the first main surface and the second main surface. A valve action metal substrate preparation step for preparing a valve action metal substrate having a side surface, and a dielectric for forming a dielectric oxide film so as to cover the first main surface, the second main surface, and the side surface of the valve action metal substrate. A body oxide film forming step, a communication hole forming step of forming at least one communication hole in the valve action metal substrate, and at least a first main surface and a second main surface of the valve action metal substrate. A cathode layer forming step of forming a cathode layer so as to cover the formed dielectric oxide film, an insulator forming step of providing an insulator on the end face of the cathode layer inside the communication hole, and a plurality of the valve metal substrates are stacked. A laminated body forming step of forming a laminated body; It said valve metal substrate, is characterized by having an electrical connection step of electrically connecting to each other by providing a conductor to the communication within the hole.
 本発明に係る固体電解コンデンサの製造方法では、弁作用金属基体の主面の大部分が容量形成に寄与させることができ、体積容量比率が高い固体電解コンデンサを製造することができる。また、弁作用金属基体に形成された連通穴内部において、陰極部と導電体の接触部の絶縁性を高めることができる。 In the method for producing a solid electrolytic capacitor according to the present invention, most of the main surface of the valve metal substrate can contribute to capacity formation, and a solid electrolytic capacitor having a high volume capacity ratio can be produced. Moreover, the insulation of the contact part of a cathode part and a conductor can be improved inside the communicating hole formed in the valve action metal base | substrate.
 また、本発明に係る固体電解コンデンサの製造方法では、前記陰極層形成工程において、前記陰極層は、少なくとも連通穴の周囲を露出させるようにして形成することが好ましい。 In the method for producing a solid electrolytic capacitor according to the present invention, in the cathode layer forming step, the cathode layer is preferably formed so as to expose at least the periphery of the communication hole.
 かかる場合には、前記連通穴内部における陰極層端面に絶縁体を容易に設けることができる。 In such a case, an insulator can be easily provided on the end face of the cathode layer inside the communication hole.
 本発明では、弁作用金属基体の主面の大部分が容量形成に寄与することになる。そのため従来の固体電解コンデンサより単位体積あたりの容量形成寄与領域が大きくなり、固体電解コンデンサの体積容量比率を高めることができる。 In the present invention, most of the main surface of the valve action metal substrate contributes to the capacity formation. Therefore, the capacity formation contribution area per unit volume becomes larger than the conventional solid electrolytic capacitor, and the volume capacity ratio of the solid electrolytic capacitor can be increased.
本発明の第1の実施形態による固体電解コンデンサ1の外観を示す斜視図である。1 is a perspective view showing an appearance of a solid electrolytic capacitor 1 according to a first embodiment of the present invention. 図1の線A-Aに沿う断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 本発明の第1の実施形態による固体電解コンデンサ1の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the solid electrolytic capacitor 1 by the 1st Embodiment of this invention. 図3に続く製造工程を示す断面図である。FIG. 4 is a cross-sectional view showing a manufacturing process subsequent to FIG. 3. 図4に続く製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process following FIG. 本発明の第2の実施形態による固体電解コンデンサ101の断面図である。It is sectional drawing of the solid electrolytic capacitor 101 by the 2nd Embodiment of this invention. 本発明の第2の実施形態による固体電解コンデンサ101の製造工程を示す断面図である。It is sectional drawing which shows the manufacturing process of the solid electrolytic capacitor 101 by the 2nd Embodiment of this invention. 図7に続く製造工程を示す断面図である。FIG. 8 is a cross-sectional view showing a manufacturing step that follows FIG. 7. 本発明の固体電解コンデンサの別の形態を示す断面図である。It is sectional drawing which shows another form of the solid electrolytic capacitor of this invention. 本発明の固体電解コンデンサのさらに別の形態を示す斜視図である。It is a perspective view which shows another form of the solid electrolytic capacitor of this invention. 本発明の固体電解コンデンサのさらに別の形態を示す断面図である。It is sectional drawing which shows another form of the solid electrolytic capacitor of this invention. 本発明の固体電解コンデンサのさらに別の形態を示す断面図である。It is sectional drawing which shows another form of the solid electrolytic capacitor of this invention. 従来の固体電解コンデンサを示す断面図である。It is sectional drawing which shows the conventional solid electrolytic capacitor.
 (第1の実施形態)
 以下に、本発明に係る固体電解コンデンサ及びその製造方法の第1の実施形態について図1、図2、図3、図4、図5に基づき詳細に説明する。ここで、図1は、固体電解コンデンサ1の外観を示す斜視図である。図2は、図1の線A-Aに沿う断面図である。図3、4、5は、固体電解コンデンサ1の製造工程を示す断面図である。
(First embodiment)
Hereinafter, a first embodiment of a solid electrolytic capacitor and a method for manufacturing the same according to the present invention will be described in detail with reference to FIGS. 1, 2, 3, 4, and 5. Here, FIG. 1 is a perspective view showing the appearance of the solid electrolytic capacitor 1. FIG. 2 is a sectional view taken along line AA in FIG. 3, 4, and 5 are cross-sectional views illustrating manufacturing steps of the solid electrolytic capacitor 1.
 図1に示すように、固体電解コンデンサ1は、連通穴2が設けられた積層体3を有している。そして、この積層体3は、図2に示すとおり、互いに対向する第1の主面5及び第2の主面6と、それらの間を結ぶ側面7を有する弁作用金属基体4が複数枚積み重ねられることにより作製される。 As shown in FIG. 1, the solid electrolytic capacitor 1 has a laminated body 3 provided with communication holes 2. As shown in FIG. 2, the laminated body 3 includes a plurality of valve action metal bases 4 each having a first main surface 5 and a second main surface 6 facing each other and a side surface 7 connecting them. It is produced by being done.
 弁作用金属基体4の弁作用金属の一例としては、例えばタンタル、チタン、アルミニウム、ニオブおよびこれらを含む合金が挙げられる。 Examples of the valve metal of the valve metal base 4 include tantalum, titanium, aluminum, niobium, and alloys containing these.
 そして、弁作用金属基体4の第1の主面5、第2の主面6、側面7は、弁作用金属基体4の酸化物からなる誘電体酸化皮膜8により覆われており、さらに誘電体酸化皮膜8の表面は陰極層9により覆われている。 The first main surface 5, the second main surface 6, and the side surface 7 of the valve action metal base 4 are covered with a dielectric oxide film 8 made of an oxide of the valve action metal base 4. The surface of the oxide film 8 is covered with the cathode layer 9.
 陰極層9の一例としては、チオフェン、ピロール、フラン、アニリンやその誘導体等をモノマーとする導電性高分子が挙げられる。 An example of the cathode layer 9 includes a conductive polymer having thiophene, pyrrole, furan, aniline, or a derivative thereof as a monomer.
 このようにして弁作用金属基体4の表面に誘電体酸化皮膜8及び陰極層9が形成され積層された積層体3には、連通穴2が形成されている。 In the laminated body 3 in which the dielectric oxide film 8 and the cathode layer 9 are formed and laminated on the surface of the valve metal base 4 in this way, the communication hole 2 is formed.
 この連通穴2は、積層体3の最上面と最下面に開口部を有し、積層体3の積層方向に連通するように設けられている。連通穴2の内部には、導電体10が設けられており、この導電体10によって、積層体3を構成する複数の弁作用金属基体4は互いに、電気的に接続されている。 The communication hole 2 has openings on the uppermost surface and the lowermost surface of the laminate 3, and is provided so as to communicate with the lamination direction of the laminate 3. A conductor 10 is provided inside the communication hole 2, and the plurality of valve metal bases 4 constituting the laminate 3 are electrically connected to each other by the conductor 10.
 なお、陰極層9と導電体10とは、陰極層9の絶縁化物11を介して絶縁されている。陰極層9の絶縁化物11は、連通穴2内部における陰極層9を加熱することによって形成される。 The cathode layer 9 and the conductor 10 are insulated via the insulator 11 of the cathode layer 9. The insulator 11 of the cathode layer 9 is formed by heating the cathode layer 9 inside the communication hole 2.
 このような構造の固体電解コンデンサ1では、連通穴2内部に設けられた導電体10が陽極電極部として機能する。すなわち、弁作用金属基体4において陽極電極部として確保される領域は、連通穴2の開口部のみであり、連通穴2の開口部以外の領域に陰極層9の形成が可能となる。これによって、固体電解コンデンサ1は、従来の固体電解コンデンサより、単位体積あたりの容量形成寄与領域が大きくなり、それに伴い体積容量比率を高めることができる。 In the solid electrolytic capacitor 1 having such a structure, the conductor 10 provided inside the communication hole 2 functions as an anode electrode portion. That is, the region secured as the anode electrode portion in the valve metal base 4 is only the opening portion of the communication hole 2, and the cathode layer 9 can be formed in a region other than the opening portion of the communication hole 2. Thereby, the solid electrolytic capacitor 1 has a larger capacity-contributing region per unit volume than the conventional solid electrolytic capacitor, and can increase the volume capacity ratio accordingly.
 また、陰極層9と導電体10との間に陰極層9の絶縁化物11が設けられていることにより、陰極層9と導電体10とが短絡する不具合を防止することができる。 Further, since the insulator 11 of the cathode layer 9 is provided between the cathode layer 9 and the conductor 10, it is possible to prevent a problem that the cathode layer 9 and the conductor 10 are short-circuited.
 次に固体電解コンデンサ1の製造方法の一例を説明する。 Next, an example of a method for manufacturing the solid electrolytic capacitor 1 will be described.
 まず、図3(a)に示すように、互いに対向する第1の主面5及び第2の主面6と、それらの間を結ぶ側面7を有する板状の弁作用金属基体4を準備する。 First, as shown in FIG. 3A, a plate-like valve metal base 4 having a first main surface 5 and a second main surface 6 facing each other and a side surface 7 connecting them is prepared. .
 次に、図3(b)に示すように弁作用金属基体4の第1の主面5、第2の主面6、及び側面7を覆うように誘電体酸化皮膜8を形成する。 Next, as shown in FIG. 3B, a dielectric oxide film 8 is formed so as to cover the first main surface 5, the second main surface 6 and the side surface 7 of the valve metal base 4.
 誘電体酸化皮膜8は、図3(c)に示すように、弁作用金属基体4をリン酸、ホウ酸やアジピン酸等の電解液12に浸漬し、弁作用金属基体4を正極側、溶液中の対極13を負極側として通電する陽極酸化法によって形成することができる。 As shown in FIG. 3C, the dielectric oxide film 8 is formed by immersing the valve action metal substrate 4 in an electrolyte solution 12 such as phosphoric acid, boric acid, adipic acid, etc. It can be formed by an anodic oxidation method in which current is applied with the counter electrode 13 inside as the negative electrode side.
 次に、図4(a)に示すように誘電体酸化皮膜8の実質全面を覆うように陰極層9を形成する。 Next, as shown in FIG. 4A, a cathode layer 9 is formed so as to cover substantially the entire surface of the dielectric oxide film 8.
 この実施形態では、陰極層9は導電性高分子層からなり、次のようにして形成する。すなわち、図4(b)に示すように、誘電体酸化皮膜8が形成された弁作用金属基体4を、チオフェン、ピロール、フラン、アニリンその誘導体等のモノマー溶液14に浸漬する。その後、モノマー溶液14が塗布された状態の弁作用金属基体4を、モノマーの重合を開始させる酸化剤と陰極層に導電性を付与するドーパントの混合溶液15に浸漬する、いわゆる化学酸化重合によって陰極層9を形成することができる。 In this embodiment, the cathode layer 9 is made of a conductive polymer layer and is formed as follows. That is, as shown in FIG. 4B, the valve metal substrate 4 on which the dielectric oxide film 8 is formed is immersed in a monomer solution 14 such as thiophene, pyrrole, furan, aniline derivatives thereof. After that, the valve-acting metal substrate 4 coated with the monomer solution 14 is immersed in a mixed solution 15 of an oxidant that initiates polymerization of the monomer and a dopant that imparts conductivity to the cathode layer, so-called chemical oxidative polymerization is used for the cathode. Layer 9 can be formed.
 次に、図5(a)に示すように、誘電体酸化皮膜8および陰極層9が形成された弁作用金属基体4を複数使用して積層体3を形成する。 Next, as shown in FIG. 5 (a), a laminate 3 is formed using a plurality of valve action metal substrates 4 on which a dielectric oxide film 8 and a cathode layer 9 are formed.
 次に、積層体3を積層方向に連通する連通穴2を形成する加工を施す。 Next, the laminated body 3 is processed to form a communication hole 2 that communicates in the stacking direction.
 連通穴2は、図5(b)に示すように、誘電体酸化皮膜8および陰極層9が形成された複数の弁作用金属基体4からなる積層体3の所望の箇所へ、例えばレーザー16を照射することによって、積層体3の最上面と最下面が開口するように形成する。レーザー16によって連通穴2が形成されるのと同時に、連通穴2内部に露出した陰極層9が、レーザー16照射時に発生する熱によって絶縁化し、絶縁化物11となる。陰極層9が熱によって絶縁化するのは、例えば、陰極層9に導電性高分子を用いた場合は、ドーパントの脱離や高分子の分解によるものと考えられる。 As shown in FIG. 5 (b), the communication hole 2, for example, applies a laser 16 to a desired portion of the laminate 3 composed of a plurality of valve action metal substrates 4 on which the dielectric oxide film 8 and the cathode layer 9 are formed. By irradiating, it forms so that the uppermost surface and lowermost surface of the laminated body 3 may open. At the same time when the communication hole 2 is formed by the laser 16, the cathode layer 9 exposed inside the communication hole 2 is insulated by the heat generated when the laser 16 is irradiated to become an insulator 11. It is considered that the cathode layer 9 is insulated by heat, for example, when a conductive polymer is used for the cathode layer 9 due to desorption of the dopant or decomposition of the polymer.
 次に、図5(c)に示すように、連通穴2内部に導電体10を設けて、連通穴2内部で、積層体3を構成する複数の弁作用金属基体4同士を電気的に接続する。 Next, as shown in FIG. 5 (c), a conductor 10 is provided inside the communication hole 2, and a plurality of valve metal bases 4 constituting the laminate 3 are electrically connected within the communication hole 2. To do.
 導電体10は、例えば導電性ペーストを連通穴2内部に挿入し、固化することにより形成することができる。 The conductor 10 can be formed, for example, by inserting a conductive paste into the communication hole 2 and solidifying.
 このとき、陰極層9と導電体10とは陰極層9の絶縁化物11により絶縁されている。 At this time, the cathode layer 9 and the conductor 10 are insulated by the insulator 11 of the cathode layer 9.
 なお、この実施形態において、誘電体酸化皮膜8および陰極層9が形成された弁作用金属基体4へレーザー16を照射した際に、連通穴2内部における弁作用金属基体4の露出面に、熱により酸化物が形成されることがある。このような場合は、連通穴2内部に露出した弁作用金属基体4を研磨し、酸化物を除去すればよい。このようにすることによって、弁作用金属基体4と導電体10の接触部の接触抵抗をより低減することができる。 In this embodiment, when the laser 16 is irradiated to the valve metal base 4 on which the dielectric oxide film 8 and the cathode layer 9 are formed, the exposed surface of the valve metal base 4 inside the communication hole 2 is exposed to heat. Oxide may be formed due to the above. In such a case, the valve metal substrate 4 exposed inside the communication hole 2 may be polished to remove the oxide. By doing in this way, the contact resistance of the contact part of the valve action metal base | substrate 4 and the conductor 10 can be reduced more.
 (第2の実施形態)
 本発明に係る固体電解コンデンサ及びその製造方法の第2の実施形態について図6、図7、図8に基づき詳細に説明する。
(Second Embodiment)
A second embodiment of the solid electrolytic capacitor and the method for manufacturing the same according to the present invention will be described in detail with reference to FIG. 6, FIG. 7, and FIG.
 図6は、この発明の第2の実施形態を説明するための図であって、第1の実施形態を説明した図2に対応する図である。また、図7、8は、固体電解コンデンサ101の製造工程を示す断面図である。図6、7,8において、第1の実施形態と共通する構成要素には同様の参照符号を付し、重複する説明は省略する。 FIG. 6 is a view for explaining the second embodiment of the present invention, and corresponds to FIG. 2 for explaining the first embodiment. 7 and 8 are cross-sectional views showing the manufacturing process of the solid electrolytic capacitor 101. 6, 7, and 8, the same reference numerals are given to the same components as those in the first embodiment, and duplicate descriptions are omitted.
 図6に示す固体電解コンデンサ101において、絶縁化物111が陰極層9とは異なる材料で構成されている。なお、第1の実施形態では陰極層9自体を絶縁化させており、この点で異なっている。それ以外の構成要素は第1の実施形態と同一である。 In the solid electrolytic capacitor 101 shown in FIG. 6, the insulator 111 is made of a material different from that of the cathode layer 9. In the first embodiment, the cathode layer 9 itself is insulated, and this point is different. Other components are the same as those in the first embodiment.
 次に固体電解コンデンサ101の製造方法の一例を説明する。 Next, an example of a method for manufacturing the solid electrolytic capacitor 101 will be described.
 まず、第1の実施形態と同様の方法で、弁作用金属基体4の第1の主面5、第2の主面6、及び側面7を覆うように誘電体酸化皮膜8を形成する。 First, the dielectric oxide film 8 is formed so as to cover the first main surface 5, the second main surface 6, and the side surface 7 of the valve metal base 4 by the same method as in the first embodiment.
 次に誘電体酸化皮膜8を覆うように導電性高分子からなる陰極層9を形成するが、陰極層9は、連通穴2の形成予定位置およびその周囲を露出させるようにして形成する。したがって、陰極層9の形状は、前述の第1の実施形態における陰極層9とは厳密には異なっている。 Next, the cathode layer 9 made of a conductive polymer is formed so as to cover the dielectric oxide film 8, and the cathode layer 9 is formed so as to expose the position where the communication hole 2 is to be formed and its periphery. Therefore, the shape of the cathode layer 9 is strictly different from the cathode layer 9 in the first embodiment described above.
 具体的には、図7(a)に示すように、陰極層9形成前に、連通穴2の形成予定位置102およびその周囲103を、スクリーン印刷等の方法により絶縁材料111で被覆する。この絶縁材料111は、第1の実施形態に示したモノマー溶液14や酸化剤とドーパントの混合溶液15のような陰極層9を形成するための前駆体を弾く性質のものを選択することが好ましい。このような絶縁材料111としては例えばポリイミド樹脂が挙げられる。また、絶縁性材料111は後に形成する陰極層9と実質同一の厚みになるように形成することが好ましい。 Specifically, as shown in FIG. 7A, before forming the cathode layer 9, the formation position 102 of the communication hole 2 and the surrounding area 103 are covered with an insulating material 111 by a method such as screen printing. It is preferable to select an insulating material 111 having a property of repelling a precursor for forming the cathode layer 9 such as the monomer solution 14 and the mixed solution 15 of the oxidizing agent and the dopant shown in the first embodiment. . An example of such an insulating material 111 is polyimide resin. The insulating material 111 is preferably formed so as to have substantially the same thickness as the cathode layer 9 to be formed later.
 そして図7(b)に示すように、第1の実施形態と同様の方法で陰極層9を形成する。このときに、モノマー溶液14や酸化剤とドーパントの混合液15は、絶縁材料111表面には塗布されないので、陰極層9は、連通穴2の形成予定位置102とその周囲103に形成された絶縁材料111を露出させるようにして形成される。 And as shown in FIG.7 (b), the cathode layer 9 is formed by the method similar to 1st Embodiment. At this time, since the monomer solution 14 and the mixed solution 15 of the oxidizing agent and the dopant are not applied to the surface of the insulating material 111, the cathode layer 9 is insulated at the planned formation position 102 of the communication hole 2 and the periphery 103. The material 111 is formed so as to be exposed.
 また、この時点で陰極層9の端面は絶縁材料111と接触した状態となっている。 At this time, the end face of the cathode layer 9 is in contact with the insulating material 111.
 次に、図8(a)に示すように、誘電体酸化皮膜8、陰極層9、絶縁材料111が形成された弁作用金属基体4を、複数積み重ねて積層体3を形成する。 Next, as shown in FIG. 8 (a), a plurality of valve action metal substrates 4 on which the dielectric oxide film 8, the cathode layer 9, and the insulating material 111 are formed are stacked to form a laminate 3.
 次に、積層体3を積層方向に連通する連通穴2を形成する加工を施す。 Next, the laminated body 3 is processed to form a communication hole 2 that communicates in the stacking direction.
 連通穴2は、第1の実施形態同様、図8(b)に示すように、誘電体酸化皮膜8および陰極層9が形成された弁作用金属基体4の、連通穴2の形成予定位置102へレーザー16を照射することによって形成するが、このとき、レーザー16は、連通穴2の形成予定位置102の周囲103に形成された絶縁材料111が残存するように照射する。 As in the first embodiment, the communication hole 2 is formed at a position 102 where the communication hole 2 is to be formed in the valve metal base 4 on which the dielectric oxide film 8 and the cathode layer 9 are formed, as shown in FIG. In this case, the laser 16 irradiates the insulating material 111 formed around the position 103 where the communication hole 2 is to be formed.
 そして、第1の実施形態同様、図8(c)に示すように、連通穴2内部に導電体10を設けて、連通穴2内部で、積層体3を構成する複数の弁作用金属基体4同士を電気的に接続する。 As in the first embodiment, as shown in FIG. 8C, the conductor 10 is provided inside the communication hole 2, and the plurality of valve metal bases 4 constituting the laminated body 3 inside the communication hole 2. Connect each other electrically.
 このとき、陰極層9と導電体10とは絶縁材料111により絶縁されている。 At this time, the cathode layer 9 and the conductor 10 are insulated by the insulating material 111.
 なお、第1の実施形態および第2の実施形態に示した固体電解コンデンサ及びその製造方法は一例であって、これ以外にも本発明の範囲内であれば種々の変形を行うことは差し支えない。 The solid electrolytic capacitor and the manufacturing method thereof shown in the first embodiment and the second embodiment are merely examples, and various modifications may be made within the scope of the present invention other than this. .
 弁作用金属基体4は、箔状のものを用いることもできる。 The valve action metal substrate 4 may be a foil-like one.
 また、積層体3を構成する弁作用金属基体4の枚数は、固体電解コンデンサの所望の静電容量、寸法によって適宜設定すればよい。 Further, the number of valve metal bases 4 constituting the laminate 3 may be appropriately set depending on the desired capacitance and dimensions of the solid electrolytic capacitor.
 また、陰極層9の形成は、導電性高分子を用いる場合は、誘電体酸化皮膜8が形成された弁作用金属基体4を正極側、溶液中の対極13を負極側として通電する電解重合や、誘電体酸化皮膜8が形成された弁作用金属基体4に導電性高分子重合体溶液を塗布、固化することによっても形成できる。 In the case of using a conductive polymer, the cathode layer 9 is formed by electropolymerization in which electricity is applied with the valve metal substrate 4 on which the dielectric oxide film 8 is formed as the positive electrode side and the counter electrode 13 in the solution as the negative electrode side. Alternatively, the conductive polymer polymer solution can be applied to the valve metal substrate 4 on which the dielectric oxide film 8 is formed, and solidified.
 また、陰極層9は、二酸化マンガン等を用いることもできる。 Further, manganese dioxide or the like can be used for the cathode layer 9.
 また、陰極層9は、弁作用金属基体4の側面に形成された誘電体酸化皮膜8が露出するように形成しても良い。弁作用金属基体4は、弁作用金属基体の集合体から切り出されて使用されることが多い。このとき、弁作用金属基体4の側面は切断面となる。そして、切断面にはバリが存在することがありこのような部分に形成された誘電体酸化皮膜8には欠陥が生じやすくなり、これは固体電解コンデンサの耐電圧を低下させる要因となる。 Further, the cathode layer 9 may be formed so that the dielectric oxide film 8 formed on the side surface of the valve action metal substrate 4 is exposed. In many cases, the valve metal base 4 is used after being cut out from an assembly of the valve metal base. At this time, the side surface of the valve metal base 4 is a cut surface. In some cases, burrs may exist on the cut surface, and the dielectric oxide film 8 formed in such a portion is likely to be defective, which causes a reduction in the withstand voltage of the solid electrolytic capacitor.
 このような場合、弁作用金属基体4の側面に形成された誘電体酸化皮膜8が陰極層9に被覆されていなければ、誘電体皮膜8の欠陥が生じやすい箇所が容量形成に寄与しなくなり、耐電圧低下を防止することができる。 In such a case, if the dielectric oxide film 8 formed on the side surface of the valve action metal substrate 4 is not covered with the cathode layer 9, the portion where the defect of the dielectric film 8 is likely to occur does not contribute to the capacity formation. A reduction in withstand voltage can be prevented.
 また、陰極層9形成時に誘電体酸化皮膜8が損傷することがある。このような場合は、誘電体皮膜8および陰極層9が形成された弁作用金属基体4をリン酸、ホウ酸やアジピン酸等の電解液に浸漬し、弁作用金属基体4を正極側、溶液中の対極13を負極側として通電する再酸化処理を行うことによって、誘電体酸化皮膜8を修復することができる。 Also, the dielectric oxide film 8 may be damaged when the cathode layer 9 is formed. In such a case, the valve action metal substrate 4 on which the dielectric film 8 and the cathode layer 9 are formed is immersed in an electrolyte such as phosphoric acid, boric acid, adipic acid, etc. The dielectric oxide film 8 can be repaired by performing a re-oxidation process in which the counter electrode 13 in the inside is energized with the negative electrode side.
 また、連通穴2の形成は、弁作用金属基体4に誘電体酸化皮膜8を形成した後であれば、陰極層9や積層体3を形成する前に行っても良い。 Further, the formation of the communication hole 2 may be performed after the dielectric oxide film 8 is formed on the valve action metal substrate 4 and before the cathode layer 9 or the laminate 3 is formed.
 また、連通穴2は、パンチング等の手段によっても形成可能である。パンチング等加熱を伴わない手段で連通穴2を形成した場合は、連通穴2形成後に、連通穴2内部に露出した陰極層9を、スポットヒーター等により局所加熱して絶縁化すれば、導電体10と絶縁することができる。 Also, the communication hole 2 can be formed by means such as punching. When the communication hole 2 is formed by a means that does not involve heating such as punching, if the cathode layer 9 exposed inside the communication hole 2 is locally heated by a spot heater or the like after the communication hole 2 is formed and insulated, the conductor 10 can be insulated.
 また、連通穴2を、加熱を伴う手段で形成した場合においても、連通穴2形成後に連通穴2内部に露出した陰極層9を、スポットヒーター等により局所加熱すれば、より確実に絶縁することができる。 Further, even when the communication hole 2 is formed by means that involves heating, if the cathode layer 9 exposed inside the communication hole 2 after the formation of the communication hole 2 is locally heated with a spot heater or the like, the insulation can be more reliably insulated. Can do.
 また、連通穴2の口径は、製造効率を妨げない程度に極力小さくすることが、固体電解コンデンサの体積容量効率を高める上で好ましい。 Further, it is preferable to reduce the diameter of the communication hole 2 as much as possible without impeding the production efficiency in order to increase the volume capacity efficiency of the solid electrolytic capacitor.
 また、連通穴2は、第1の実施形態や第2の実施形態のように積層体3の最上面と最下面の双方で開口する必要は無い。連通穴2内部に設けられる導電体10が、積層体3を構成する複数の弁作用金属基体4同士が電気的に接続されていれば、積層体3の最上面または最下面の少なくともどちらか一方から開口できるようになっていればよい。 Further, the communication hole 2 does not need to be opened on both the uppermost surface and the lowermost surface of the laminate 3 as in the first embodiment and the second embodiment. If the conductor 10 provided in the communication hole 2 is electrically connected to the plurality of valve metal bases 4 constituting the laminated body 3, at least one of the uppermost surface and the lowermost surface of the laminated body 3 is used. It is only necessary to be able to open from.
 また、固体電解コンデンサ1や101は、図9に示すように導電体10と陰極層9にそれぞれ陽極端子104、陰極端子105を接続し、積層体3を陽極端子104と陰極端子105の実装面が露出するように外装体106で被覆しても良い。このとき、導電体10と陽極端子104を接続する際、陽極端子104と陰極層9が接触しないように、陽極端子104と陰極層9との間に隙間dを設けるような接続を行う必要がある。 Further, in the solid electrolytic capacitors 1 and 101, as shown in FIG. 9, the anode terminal 104 and the cathode terminal 105 are connected to the conductor 10 and the cathode layer 9, respectively, and the laminate 3 is mounted on the mounting surface of the anode terminal 104 and the cathode terminal 105. You may coat | cover with the exterior body 106 so that may be exposed. At this time, when the conductor 10 and the anode terminal 104 are connected, it is necessary to make a connection so that a gap d is provided between the anode terminal 104 and the cathode layer 9 so that the anode terminal 104 and the cathode layer 9 do not contact each other. is there.
 一方、図10のように連通穴2の開口部周囲の陰極層9の表面を、レジスト107で被覆しておけば、図11に示すように、陽極端子104と陰極層9との間に隙間dを設けなくても、陽極端子104を、陰極層9と接触することなく導電体10に接続することができる。 On the other hand, if the surface of the cathode layer 9 around the opening of the communication hole 2 is covered with a resist 107 as shown in FIG. 10, a gap is formed between the anode terminal 104 and the cathode layer 9 as shown in FIG. Even if d is not provided, the anode terminal 104 can be connected to the conductor 10 without being in contact with the cathode layer 9.
 なお、レジスト107の形成領域は、陽極端子104と陰極層9との接触が防止でき、陰極端子105と陰極層9が接続できるようになっている限り特に制限は無い。 The formation region of the resist 107 is not particularly limited as long as the contact between the anode terminal 104 and the cathode layer 9 can be prevented and the cathode terminal 105 and the cathode layer 9 can be connected.
 また、図12に示すように、積層体3を、陽極ビア電極108、陰極ビア電極109を有する基板110に実装し、基板110の下面が露出するように外装体106で被覆しても良い。 Alternatively, as shown in FIG. 12, the laminate 3 may be mounted on a substrate 110 having an anode via electrode 108 and a cathode via electrode 109 and covered with an exterior body 106 so that the lower surface of the substrate 110 is exposed.
 幅3.5mm、長さ13mm、厚さ110μmのアルミニウム箔を準備した。 An aluminum foil having a width of 3.5 mm, a length of 13 mm, and a thickness of 110 μm was prepared.
 次に、このアルミニウム箔をアジピン酸アンモニウム水溶液に浸漬し、アルミニウム箔を正極側、アジピン酸アンモニウム溶液中の対極を負極側とし、3.5Vの電圧を印加することによって、アルミニウム箔の表面に酸化アルミニウムからなる誘電体酸化皮膜を形成した。 Next, this aluminum foil is immersed in an aqueous solution of ammonium adipate, the aluminum foil is on the positive electrode side, the counter electrode in the ammonium adipate solution is on the negative electrode side, and a voltage of 3.5 V is applied to oxidize the surface of the aluminum foil. A dielectric oxide film made of aluminum was formed.
 さらに、酸化アルミニウムを形成したアルミニウム箔を、3,4-エチレンジオキシチオフェンを含むイソプロパノール溶液に浸漬した後に、過硫酸アンモニウムとアントラキノン2スルホン酸ナトリウムの混合溶液に浸漬する操作を20回繰り返すことにより、酸化アルミニウムの表面に、ポリエチレンジオキシチオフェンからなる陰極層を形成した。 Further, by immersing the aluminum foil formed with aluminum oxide in an isopropanol solution containing 3,4-ethylenedioxythiophene and then immersing it in a mixed solution of ammonium persulfate and sodium anthraquinone disulfonate 20 times, A cathode layer made of polyethylene dioxythiophene was formed on the surface of aluminum oxide.
 そして、酸化アルミニウムおよびポリエチレンジオキシチオフェンが形成されたアルミニウム箔を4枚積み重ね積層体を形成した。 Then, four aluminum foils formed with aluminum oxide and polyethylene dioxythiophene were stacked to form a laminate.
 次に、積層体に炭酸ガスレーザーを照射し、積層体を積層方向に連通する口径0.5mmの連通穴を形成した。また、連通穴の形成と同時に炭酸ガスレーザー照射により生じる熱により、連通穴の周囲0.1mmの範囲にあるポリエチレンジオキシチオフェンを絶縁化した。 Next, the laminated body was irradiated with a carbon dioxide laser to form a communication hole having a diameter of 0.5 mm for communicating the laminated body in the laminating direction. In addition, polyethylene dioxythiophene in the range of 0.1 mm around the communication hole was insulated by heat generated by the carbon dioxide laser irradiation simultaneously with the formation of the communication hole.
 そして、連通穴の内部に、銅ペーストを挿入し、固化させることによって、銅ビア電極を設け、積層体を構成するアルミニウム箔同士を電気的に接続した。 Then, a copper paste was inserted into the communication hole and solidified to provide a copper via electrode, and the aluminum foils constituting the laminate were electrically connected.
 さらに、積層体上面の連通穴周囲のポリエチレンジオキシチオフェンをポリイミド樹脂で被覆した。 Furthermore, polyethylenedioxythiophene around the communication hole on the upper surface of the laminate was coated with a polyimide resin.
 最後に、銅ビア電極と陽極端子を、ポリエチレンジオキシチオフェンと陰極端子をカーボンペーストおよび銀ペーストを介して接続し、陰極端子と陽極端子の実装面が露出するように、積層体をエポキシ樹脂で封止することによって固体電解コンデンサを作製した。 Finally, connect the copper via electrode and anode terminal, polyethylene dioxythiophene and cathode terminal via carbon paste and silver paste, and paste the laminate with epoxy resin so that the mounting surface of the cathode terminal and anode terminal is exposed. A solid electrolytic capacitor was produced by sealing.
 この固体電解コンデンサの、体積と静電容量を測定し、体積容量比率を算出した。その結果を、表1に示す。
(比較例)
 幅3.5mm、長さ13mm、厚さ110μmのアルミニウム箔を準備した。このアルミニウム箔の先端から7mmの領域に、上記実施例と同様の方法で、酸化アルミニウムからなる誘電体酸化皮膜およびそれを被覆するポリエチレンジオキシチオフェンを形成した。
The volume and capacitance of this solid electrolytic capacitor were measured, and the volume capacity ratio was calculated. The results are shown in Table 1.
(Comparative example)
An aluminum foil having a width of 3.5 mm, a length of 13 mm, and a thickness of 110 μm was prepared. A dielectric oxide film made of aluminum oxide and polyethylene dioxythiophene covering the same were formed in a region 7 mm from the tip of the aluminum foil by the same method as in the above example.
 そして、このアルミニウム箔を4枚積み重ね、アルミニウム箔における誘電体酸化皮膜およびポリエチレンジオキシチオフェンが形成されていない領域同士を、陽極端子を挟みこむように溶接した。 Then, four aluminum foils were stacked, and the regions of the aluminum foil where the dielectric oxide film and polyethylene dioxythiophene were not formed were welded so as to sandwich the anode terminal.
 さらに、ポリエチレンジオキシチオフェンと陰極端子をカーボンペーストおよび銀ペーストを介して接続し、陰極端子と陽極端子の実装面が露出するように、積層体をエポキシ樹脂で封止することによって固体電解コンデンサを作製した。 Further, the solid electrolytic capacitor is obtained by connecting the polyethylene dioxythiophene and the cathode terminal via carbon paste and silver paste, and sealing the laminate with an epoxy resin so that the mounting surfaces of the cathode terminal and the anode terminal are exposed. Produced.
 この固体電解コンデンサの、体積と静電容量を測定し、体積容量比率を算出した。その結果を表1に示す。 The volume and capacitance of this solid electrolytic capacitor were measured, and the volume capacity ratio was calculated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明に係る実施例の固体電解コンデンサは、比較例の固体電解コンデンサに対し、体積容量比率を高めることができた。 As shown in Table 1, the solid electrolytic capacitor of the example according to the present invention was able to increase the volume capacity ratio compared to the solid electrolytic capacitor of the comparative example.
  1、101、201  固体電解コンデンサ
  2  連通穴
  3、204  積層体
  4、203  弁作用金属基体
  5  弁作用金属基体4の第1の主面
  6  弁作用金属基体4の第2の主面
  7  弁作用金属基体4の第1の主面と第2の主面を結ぶ側面
  8、202  誘電体酸化皮膜
  9、208  陰極層
  10 導電体
  11 陰極層9の絶縁化物
  12 電解液
  13 対極
  14 モノマー溶液
  15 酸化剤とドーパントの混合溶液
  16 レーザー
  102 連通穴の形成予定位置
  103 連通穴形成予定位置の周囲
  104、209 陽極端子
  105、210 陰極端子
  106、211 外装体
  107 レジスト
  108 陽極ビア電極
  109 陰極ビア電極
  110 基板
  111 絶縁材料
  205 絶縁部
  206 陽極電極部
  207 陰極電極部
DESCRIPTION OF SYMBOLS 1, 101, 201 Solid electrolytic capacitor 2 Communication hole 3, 204 Laminated body 4, 203 Valve action metal base 5 First main surface of valve action metal base 4 6 Second main surface of valve action metal base 4 7 Valve action Side surface connecting the first main surface and the second main surface of the metal substrate 8, 202 Dielectric oxide film 9, 208 Cathode layer 10 Conductor 11 Insulator of the cathode layer 9 12 Electrolytic solution 13 Counter electrode 14 Monomer solution 15 Oxidation Mixed solution of agent and dopant 16 Laser 102 Estimated position of communication hole 103 Periphery of planned position of communication hole 104, 209 Anode terminal 105, 210 Cathode terminal 106, 211 Exterior body 107 Resist 108 Anode via electrode 109 Cathode via electrode 110 Substrate 111 Insulating material 205 Insulating part 206 Anode electrode part 207 Cathode electrode part

Claims (8)

  1. 互いに対向する第1の主面及び第2の主面と、前記第1の主面及び第2の主面間を結ぶ少なくとも1つ以上の側面を有する弁作用金属基体を複数積み重ねた積層体を有し、
    前記弁作用金属基体はそれぞれ前記第1の主面、第2の主面、及び側面を覆うように誘電体酸化皮膜が形成されており、
    前記弁作用金属基体の少なくとも第1の主面及び第2の主面上に形成された前記誘電体酸化皮膜を覆うように陰極層が形成されており、
    前記積層体は積層方向に連通する連通穴を有し、
    前記弁作用金属基体は互いに、前記連通穴内部に設けられた導電体により電気的に接続されており、
    前記陰極層と前記導電体とは絶縁体を介して絶縁されていることを特徴とする固体電解コンデンサ。
    A laminated body in which a plurality of valve action metal substrates having a first main surface and a second main surface facing each other and at least one side surface connecting between the first main surface and the second main surface are stacked. Have
    A dielectric oxide film is formed on each of the valve metal bases so as to cover the first main surface, the second main surface, and the side surfaces,
    A cathode layer is formed so as to cover the dielectric oxide film formed on at least the first main surface and the second main surface of the valve action metal substrate;
    The laminate has a communication hole that communicates in the stacking direction;
    The valve metal bases are electrically connected to each other by a conductor provided inside the communication hole,
    The solid electrolytic capacitor, wherein the cathode layer and the conductor are insulated via an insulator.
  2. 前記陰極層は、前記弁作用金属基体の側面に形成された誘電体酸化皮膜が露出するように形成されていることを特徴とする請求項1に記載の固体電解コンデンサ。 2. The solid electrolytic capacitor according to claim 1, wherein the cathode layer is formed such that a dielectric oxide film formed on a side surface of the valve action metal substrate is exposed.
  3. 前記積層体の最上面および/または最下面の弁作用金属基体における連通穴周囲に、前記陰極層を覆うように絶縁膜が形成されていることを特徴とする請求項1または2に記載の固体電解コンデンサ。 3. The solid according to claim 1, wherein an insulating film is formed around the communication hole in the valve metal substrate on the uppermost surface and / or the lowermost surface of the laminate so as to cover the cathode layer. Electrolytic capacitor.
  4. 互いに対向する第1の主面及び第2の主面と、前記第1の主面及び第2の主面間を結ぶ少なくとも1つ以上の側面を有する弁作用金属基体を準備する弁作用金属基体準備工程と、前記弁作用金属基体の第1の主面、第2の主面、及び側面を覆うように誘電体酸化皮膜を形成する誘電体酸化皮膜形成工程と、
    前記弁作用金属基体の少なくとも第1の主面及び第2の主面上に形成された前記誘電体酸化皮膜を覆うように陰極層を形成する陰極層形成工程と、
    前記弁作用金属基体を複数積み重ねて積層体を形成する積層体形成工程と、
    前記積層体を積層方向に連通する、少なくとも1つ以上の連通穴を形成する連通穴形成工程と、
    前記連通穴内部における陰極層を加熱により絶縁化する陰極層絶縁化工程と
    前記弁作用金属基体を、前記連通穴部内に導電体を設けることにより互いに電気的に接続する電気的接続工程を有することを特徴とする固体電解コンデンサの製造方法。
    A valve metal substrate for preparing a valve metal substrate having a first main surface and a second main surface facing each other and at least one side surface connecting between the first main surface and the second main surface A preparation step, and a dielectric oxide film forming step of forming a dielectric oxide film so as to cover the first main surface, the second main surface, and the side surface of the valve action metal substrate;
    A cathode layer forming step of forming a cathode layer so as to cover the dielectric oxide film formed on at least the first principal surface and the second principal surface of the valve action metal substrate;
    A laminate forming step of forming a laminate by stacking a plurality of the valve action metal substrates;
    A communication hole forming step of forming at least one communication hole for communicating the laminate in the stacking direction;
    A cathode layer insulation step for insulating the cathode layer inside the communication hole by heating; and an electrical connection step for electrically connecting the valve metal base to each other by providing a conductor in the communication hole portion. A method for producing a solid electrolytic capacitor characterized by the above.
  5. 前記連通穴形成工程を、加熱を伴う手段により行うことを特徴とする請求項4に記載の固体電解コンデンサの製造方法。 The method for producing a solid electrolytic capacitor according to claim 4, wherein the communication hole forming step is performed by means involving heating.
  6. 前記陰極層絶縁化工程と前記電気的接続工程の間に、前記連通穴内部における弁作用金属を研磨する研磨工程を設けることを特徴とする請求項4または5に記載の固体電解コンデンサの製造方法。 6. The method for manufacturing a solid electrolytic capacitor according to claim 4, wherein a polishing step for polishing the valve metal in the communication hole is provided between the cathode layer insulation step and the electrical connection step. .
  7. 互いに対向する第1の主面及び第2の主面と、前記第1の主面及び第2の主面間を結ぶ少なくとも1つ以上の側面を有する弁作用金属基体を準備する弁作用金属基体準備工程と、前記弁作用金属基体の第1の主面、第2の主面、及び側面を覆うように誘電体酸化皮膜を形成する誘電体酸化皮膜形成工程と、
    前記弁作用金属基体に、少なくとも1つ以上の連通穴を形成する連通穴形成工程と、
    前記弁作用金属基体の少なくとも第1の主面及び第2の主面上に形成された前記誘電体酸化皮膜を覆うように陰極層を形成する陰極層形成工程と、
    前記連通穴内部における陰極層端面に絶縁体を設ける絶縁体形成工程と
    前記弁作用金属基体を複数積み重ねて積層体を形成する積層体形成工程と、
    前記弁作用金属基体を、前記連通穴部内に導電体を設けることにより互いに電気的に接続する電気的接続工程を有することを特徴とする固体電解コンデンサの製造方法。
    A valve metal substrate for preparing a valve metal substrate having a first main surface and a second main surface facing each other and at least one side surface connecting between the first main surface and the second main surface A preparation step, and a dielectric oxide film forming step of forming a dielectric oxide film so as to cover the first main surface, the second main surface, and the side surface of the valve action metal substrate;
    A communication hole forming step of forming at least one communication hole in the valve action metal base;
    A cathode layer forming step of forming a cathode layer so as to cover the dielectric oxide film formed on at least the first principal surface and the second principal surface of the valve action metal substrate;
    An insulator forming step of providing an insulator on the end face of the cathode layer inside the communication hole, and a laminate forming step of forming a laminate by stacking a plurality of the valve action metal substrates;
    A method for manufacturing a solid electrolytic capacitor, comprising: an electrical connection step of electrically connecting the valve metal bases to each other by providing a conductor in the communication hole.
  8. 前記陰極層形成工程において、前記陰極層は、少なくとも連通穴の周囲を露出させるようにして形成することを特徴とする請求項8に記載の固体電解コンデンサの製造方法。 9. The method of manufacturing a solid electrolytic capacitor according to claim 8, wherein, in the cathode layer forming step, the cathode layer is formed so as to expose at least the periphery of the communication hole.
PCT/JP2011/058243 2010-09-29 2011-03-31 Solid electrolytic capacitor and method for manufacturing same WO2012042950A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012536239A JP5429392B2 (en) 2010-09-29 2011-03-31 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-219175 2010-09-29
JP2010219175 2010-09-29

Publications (1)

Publication Number Publication Date
WO2012042950A1 true WO2012042950A1 (en) 2012-04-05

Family

ID=45892433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058243 WO2012042950A1 (en) 2010-09-29 2011-03-31 Solid electrolytic capacitor and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP5429392B2 (en)
WO (1) WO2012042950A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021158879A1 (en) * 2020-02-06 2021-08-12 Novelis Inc. Planar high-density aluminum capacitors for stacking and embedding
US11355289B2 (en) * 2018-05-16 2022-06-07 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289470A (en) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and manufacturing method therefor
JP2003243257A (en) * 2001-12-14 2003-08-29 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135922A (en) * 1980-03-28 1981-10-23 Nichicon Capacitor Ltd Method of producing laminated electrolytic condenser
JP2004158577A (en) * 2002-11-05 2004-06-03 Japan Carlit Co Ltd:The Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
JP2008135427A (en) * 2006-11-27 2008-06-12 Matsushita Electric Ind Co Ltd Chip-type solid electrolytic capacitor and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289470A (en) * 2001-03-26 2002-10-04 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and manufacturing method therefor
JP2003243257A (en) * 2001-12-14 2003-08-29 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355289B2 (en) * 2018-05-16 2022-06-07 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor
WO2021158879A1 (en) * 2020-02-06 2021-08-12 Novelis Inc. Planar high-density aluminum capacitors for stacking and embedding

Also Published As

Publication number Publication date
JP5429392B2 (en) 2014-02-26
JPWO2012042950A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
CN109791844B (en) Solid electrolytic capacitor
JP6819691B2 (en) Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
JP5466722B2 (en) Solid electrolytic capacitor
JP4757698B2 (en) Solid electrolytic capacitor
US9490076B2 (en) Solid electrolytic capacitor and manufacturing method therefor
JP2011071559A (en) Solid electrolytic capacitor
JP4478695B2 (en) Solid electrolytic capacitor element and solid electrolytic capacitor including the same
WO2004077466A1 (en) Solid electrolytic capacitor
WO2013088845A1 (en) Solid electrolytic capacitor
JP4770750B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5429392B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4899758B2 (en) Lead frame member for solid electrolytic capacitors
JP2012069788A (en) Solid electrolytic capacitor
JP2008091391A (en) Lead frame member for solid electrolytic capacitor
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
JP2005197587A (en) Capacitor, manufacturing method thereof, substrate with built-in capacitor, and manufacturing method thereof
JP5585618B2 (en) Solid electrolytic capacitor and manufacturing method thereof
WO2006129639A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP5450001B2 (en) Electrolytic capacitor manufacturing method
JP6475417B2 (en) Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor
WO2023218931A1 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
JP2010267866A (en) Solid electrolytic capacitor
WO2021038901A1 (en) Electrolytic capacitor and manufacturing method of electrolytic capacitor
JP5411047B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP2012243783A (en) Solid electrolytic capacitor and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828512

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012536239

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828512

Country of ref document: EP

Kind code of ref document: A1