WO2012042800A1 - Load lock apparatus, exhaust control apparatus, and method of operating load lock apparatus - Google Patents

Load lock apparatus, exhaust control apparatus, and method of operating load lock apparatus Download PDF

Info

Publication number
WO2012042800A1
WO2012042800A1 PCT/JP2011/005342 JP2011005342W WO2012042800A1 WO 2012042800 A1 WO2012042800 A1 WO 2012042800A1 JP 2011005342 W JP2011005342 W JP 2011005342W WO 2012042800 A1 WO2012042800 A1 WO 2012042800A1
Authority
WO
WIPO (PCT)
Prior art keywords
load lock
motor
power
lock chamber
vacuum pump
Prior art date
Application number
PCT/JP2011/005342
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 柴山
敏生 鈴木
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2012536187A priority Critical patent/JP5493005B2/en
Publication of WO2012042800A1 publication Critical patent/WO2012042800A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67775Docking arrangements

Definitions

  • the present invention relates to a load lock device, an exhaust control device, and an operation method of the load lock device used in a manufacturing apparatus for manufacturing, for example, a semiconductor device, FPD (Flat Panel Display) or the like.
  • a manufacturing apparatus for manufacturing for example, a semiconductor device, FPD (Flat Panel Display) or the like.
  • the process chamber is evacuated using a vacuum pump, and processes such as CVD (Chemical Vapor Deposition), etching, and sputtering are performed.
  • CVD Chemical Vapor Deposition
  • etching etching
  • sputtering sputtering
  • Patent Document 1 discloses a vacuum pump control device that effectively uses energy generated with regenerative braking during deceleration of a vacuum pump motor.
  • this vacuum pump control device since the rotating shaft of the motor mounted on the vacuum pump is supported in a non-contact manner by the magnetic bearing, the frictional force applied to the rotating shaft when operation is stopped is extremely small. Large inertia energy is generated by the high speed rotation of the rotating shaft, and it takes time until the rotation of the rotating shaft stops.
  • This vacuum pump control device has a regenerative power control circuit that converts regenerative braking energy into regenerative power in order to stop its rotation in a short time, and a function for effectively using this power elsewhere. .
  • the function for effectively using the electric power for other purposes is to return the electric power to the external power supply line or to store it in the battery (for example, refer to paragraph [0013] of the specification of Patent Document 1).
  • a load lock device that switches between atmospheric pressure and vacuum is used for transporting the substrate between the vacuum process chamber and the atmosphere side.
  • the load lock device performs an operation of switching the atmospheric pressure and vacuum of the load lock chamber every time the substrate to be processed is carried into and out of the load lock chamber. That is, the vacuum pump connected to the load lock chamber repeats evacuation of the load lock chamber every time the substrate to be processed is carried in and out, so that a large amount of electric power is required to drive the vacuum pump.
  • the substrate to be processed tends to become enormous, and accordingly, the energy required for the operation of the load lock chamber and the process chamber connected thereto is increasing.
  • an object of the present invention is to use a load lock device that can reduce energy required for the operation of the load lock device and the operation of peripheral devices connected to the load lock device. And an operation method of the exhaust control device and the load lock device.
  • a load lock device includes a load lock chamber, a vacuum pump, a drive unit, and a regenerative unit.
  • the vacuum pump has a motor and discharges the gas in the load lock chamber by the power of the motor.
  • the drive unit drives the motor of the vacuum pump so as to depressurize the load lock chamber every time a substrate to be processed is carried into the load lock chamber from the atmospheric pressure side.
  • the regenerative unit obtains regenerative power by decelerating the motor.
  • An exhaust control device is an exhaust control device used in the load lock device.
  • the exhaust control device includes the drive unit and the regeneration unit.
  • the substrate to be processed is carried into the load lock chamber from the atmospheric pressure side.
  • the load lock chamber is depressurized by the power of a vacuum pump motor connected to the load lock chamber. Regenerative electric power is obtained by decelerating the motor driven for decompression in the load lock chamber.
  • FIG. 1 is a view showing a load lock device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing an electrical configuration of the exhaust device.
  • FIG. 3 is a graph illustrating an exhaust operation method according to an embodiment of the load lock device.
  • FIG. 4A is a graph showing an exhaust operation method of a general load lock device.
  • FIG. 4B is a graph showing a case where the exhaust operation method shown in FIG. 4A has an idling period.
  • FIG. 5A is a graph by simulation showing that regenerative power is obtained by forced deceleration of the motor by the regenerative unit.
  • FIG. 5B is a graph by simulation showing the output power and the like at the time of natural deceleration of the motor corresponding to FIG. 5A.
  • FIG. 6 shows an apparatus according to another embodiment of the present invention.
  • 7A and 7B are graphs respectively showing an exhaust operation method according to an embodiment using the electric power of the battery.
  • a load lock device includes a load lock chamber, a vacuum pump, a drive unit, and a regenerative unit.
  • the vacuum pump has a motor and discharges the gas in the load lock chamber by the power of the motor.
  • the drive unit drives the motor of the vacuum pump so as to depressurize the load lock chamber every time a substrate to be processed is carried into the load lock chamber from the atmospheric pressure side.
  • the regenerative unit obtains regenerative power by decelerating the motor.
  • the load lock device may further include a capacitor that stores at least the regenerative power obtained by the regenerative unit. Thereby, the electric power of the capacitor can be used at a desired timing.
  • the motor of the vacuum pump has a state in which a larger load is applied after opening the load lock chamber to the atmosphere side than before opening to the atmosphere side due to the opening.
  • the regenerative power stored in the capacitor may be used as part of the driving power of the motor when the large load state is reached. Thereby, the peak value of the power consumption of the power supply supplied to the drive unit of a motor can be suppressed. As a result, it is possible to reduce electrical facilities such as circuits around the power source and the regeneration unit. By reducing the electrical equipment, the cost can be reduced and the space for installing the equipment can be reduced.
  • the load lock device may further include the following control means.
  • the control means is one of the electric power for driving the motor during standby at a lower power than the peak electric power for driving the motor when the load lock chamber is in a large load state after the load lock chamber is opened to the atmosphere side.
  • the power stored in the capacitor is used by the drive unit as part of the peak power.
  • the exhaust control device is an exhaust control device used in the load lock device.
  • the exhaust control device includes the drive unit and the regeneration unit.
  • the substrate to be processed is carried into the load lock chamber from the atmospheric pressure side.
  • the load lock chamber is depressurized by the power of a vacuum pump motor connected to the load lock chamber. Regenerative electric power is obtained by decelerating the motor driven for decompression in the load lock chamber.
  • the power required for driving the vacuum pump can be reduced by effectively using the regenerative power obtained by the deceleration of the motor driven for decompression. Therefore, a load lock device that repeatedly depressurizes and releases it every time a substrate to be processed is loaded from the atmospheric pressure side has a great advantage of obtaining regenerative power, greatly increasing the energy required for the operation of the load lock device and its surrounding devices. Can be reduced.
  • FIG. 1 is a diagram showing a load lock device 100 according to an embodiment of the present invention.
  • the load lock device 100 is used by being connected to a device responsible for a vacuum process among manufacturing processes of semiconductor devices, FPDs, solar panels and the like.
  • the target substrate W to be processed is a semiconductor wafer, a glass substrate, a conductive substrate, or the like.
  • the substrate W to be processed is simply referred to as a substrate W.
  • Rectangular substrates such as glass substrates and conductive substrates are becoming larger year by year.
  • one side of the rectangle of the substrate is 1 m or more and 2 m or less, or 2 m or more and 3 m or less.
  • the load lock device 100 includes a load lock chamber 10, an exhaust device 20, and a control unit 30.
  • a vacuum process chamber and a vacuum transfer chamber 42 ′ are connected to the right side of the load lock chamber 10 via a vacuum side gate valve 14. Further, an atmospheric transfer chamber 41 ′ is connected to the left side of the load lock chamber 10 through an atmospheric gate valve 12.
  • the vacuum transfer chamber 42 ′ transfers the substrate W between the load lock chamber 10 and the process chamber under vacuum.
  • the process chamber for example, film formation by CVD (Chemical Vapor Deposition) or sputtering, or processing such as dry etching is performed.
  • the atmospheric transfer chamber 41 ′ transfers the substrate W under atmospheric pressure between a storage unit such as a cassette (not shown) that stores the substrate W and the load lock chamber 10.
  • a storage unit such as a cassette (not shown) that stores the substrate W and the load lock chamber 10.
  • the manufacturing apparatus to which the load lock apparatus 100 is applied may be a multi-chamber type manufacturing apparatus having a plurality of process chambers, or may be an inline type or vertical transfer type manufacturing apparatus.
  • this manufacturing apparatus may be a manufacturing apparatus having one process chamber and having a configuration in which the load lock chamber 10 and the process chamber are connected via the vacuum side gate valve 14.
  • the load lock device 100 transports the substrate W between the atmosphere side 41 and the vacuum side 42.
  • An intake line 11 and an exhaust line 13 are connected to the load lock chamber 10, and an intake side valve 16 and an exhaust side valve 18 are connected to these lines 11 and 13. Due to the operation of the exhaust device 20 and the opening / closing operation of the valves 12, 14, 16, and 18, pressure fluctuations are repeated between the atmospheric pressure and a predetermined degree of vacuum in the load lock chamber 10.
  • the load lock chamber 10 is also called a preparation chamber.
  • FIG. 2 is a block diagram showing an electrical configuration of the exhaust device 20.
  • the exhaust device 20 is connected to an exhaust line 13 (see FIG. 1), and includes a vacuum pump 21 equipped with a motor 22, a motor driver 23 (a part or all of a drive unit) for driving the motor 22, and a motor driver 23. And a regenerative unit 24 connected to. Electric power is supplied to the motor driver 23 from a power source 29.
  • the motor driver 23 is typically one that drives the motor 22 by inverter control, but is not limited thereto.
  • the motor 22 when the motor 22 is a DC motor, it may be driven by a constant voltage, and when the motor 22 is an AC motor, it may be driven by a constant frequency.
  • the regenerative unit 24 obtains regenerative power by forcibly decelerating the motor 22 of the vacuum pump 21.
  • Various known techniques can be applied to the regeneration unit 24.
  • the regenerative unit 24 detects a regenerative overvoltage due to regenerative power (reverse power), and when this is detected, the regenerative power is consumed by the load. What is necessary is just to switch to an appropriate circuit.
  • the load here corresponds to, for example, a power storage unit 25, a power source 29, which will be described later, or a power source used in other devices (the above-described process chamber, atmospheric transfer chamber 41 ', vacuum transfer chamber 42', etc.).
  • the regenerative unit 24 can extract the regenerative power if the motor driver 23 has inverter control.
  • the control unit 30 controls the opening / closing timing of the gate valves 12 and 14, the intake side and exhaust side valves 18, and controls the operation of the exhaust device 20.
  • the control unit 30 is realized by hardware elements and software used in a computer such as a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • the control unit 30 may be realized by a device such as a PLD (Programmable Logic Device) such as an FPGA (Field Programmable Gate Array), or an ASIC (Application Specific Integrated Circuit).
  • the motor driver 23 is realized by these hardware, or hardware and software.
  • the atmosphere side gate valve 12 In the state where the intake side valve 16 is opened and the exhaust side valve 18 is closed, the atmosphere side gate valve 12 is opened, and the substrate W is carried into the load lock chamber 10 from the atmosphere side 41. After carrying in, the atmosphere side gate valve 12 is closed.
  • the atmosphere side gate valve 12 and the intake side valve 16 are closed and the exhaust side valve 18 is opened, the pressure in the load lock chamber 10 is lowered by the operation of the vacuum pump 21 until a predetermined degree of vacuum is reached.
  • the predetermined degree of vacuum is the same as or slightly different from the pressure on the vacuum side 42.
  • the exhaust side valve 18 is closed, and then the vacuum side gate valve 14 is opened, and the substrate W is unloaded from the load lock chamber 10 to the vacuum side 42. Then, the vacuum side gate valve 14 is closed.
  • the vacuum side gate valve 14 When the processing in the process chamber on the vacuum side 42 is completed, the vacuum side gate valve 14 is opened, the substrate W is loaded from the vacuum side 42 to the load lock chamber 10, and the vacuum side gate valve 14 is closed after loading.
  • gas typically air
  • the intake side valve 16 gas enters the load lock chamber 10 and the load lock chamber 10 is at atmospheric pressure.
  • the atmosphere side gate valve 12 is opened, and the substrate W is carried out from the load lock chamber 10 to the atmosphere side 41.
  • the load lock apparatus 100 repeats the above operation with one period from when the substrate W is carried into the load lock chamber 10 from the atmosphere side 41 to when the next substrate W is carried from the atmosphere side 41. . That is, the load lock device 100 depressurizes the load lock chamber 10 every time the substrate W is carried into the load lock chamber 10 from the atmosphere side 41.
  • FIG. 3 is a graph showing an exhaust operation method according to an embodiment of the load lock device 100. This graph shows the operation of the load lock device 100 for one cycle described above. One cycle is, for example, 30 to 120 seconds, 40 seconds to 90 seconds, 50 seconds to 70 seconds, or 60 seconds.
  • the horizontal axis represents time (for one cycle), and the vertical axis represents the rotation speed of the motor 22 of the vacuum pump 21, the power supplied from the power supply 29 (not shown) for driving the motor 22, and the load in order from the upper graph. It is the pressure in the lock chamber 10 and the timing of opening and closing of the intake side valve 16 and the exhaust side valve 18 respectively.
  • the vacuum pump 21 is operated at a predetermined rotational speed for keeping the load lock chamber 10 at a predetermined degree of vacuum.
  • this rotational speed is referred to as driving rotational speed r1.
  • the exhaust side valve 18 is in a closed state, and the vacuum pump 21 to the exhaust side valve 18 are kept in vacuum.
  • the rotational speed returns to the original driving rotational speed r1
  • the load state ends after being released into the atmosphere
  • the exhaust side valve 18 is closed at time t1
  • the inside of the load lock chamber 10 has a predetermined degree of vacuum (the lowest pressure on the graph) Reach v0.
  • the supplied power also returns.
  • the degree of vacuum v0 is maintained in the load lock chamber 10 until the intake valve 16 is opened and the load lock chamber 10 is opened to the atmosphere.
  • the method of driving the motor 22 of the vacuum pump 21 drives the motor 22 at an idling period, that is, at a rotation speed r2 lower than the drive rotation speed r1 (hereinafter referred to as idling rotation speed).
  • idling rotation speed has a period (during standby). That is, during the period when the exhaust side valve 18 is closed, the vacuum pump 21 does not need to perform substantial work, and is in a standby state.
  • the rotational speed first decreases in the load state after opening to the atmosphere in FIG. 4A, it is efficient if the motor 22 is driven in an idling state in advance.
  • This operation method has an idling period in the same manner as the method in FIG. 4B, and regenerative power is obtained by forcibly decelerating the motor 22 by the regenerative unit 24. That is, this operation method shortens the time required to reach the idling speed r2 from the driving speed r1 as compared with the method in FIG. 4B.
  • the negative part of the supplied power obtained in this way is regenerative power (regenerative energy).
  • the regenerative power obtained in this way can be used as power for driving a vacuum pump used in a vacuum transfer chamber or a process chamber connected to the load lock device 100.
  • the obtained regenerative power can be stored in a capacitor.
  • the power (supplied power) of the power source 29 required for driving the vacuum pump 21 can be reduced. Therefore, in the load lock device 100 that repeats decompression and release each time the substrate W to be processed is loaded from the atmosphere side 41, there is a great merit due to the provision of the regenerative unit 24, and the load lock device 100 and its peripheral devices are advantageous. The energy required for operation can be greatly reduced.
  • the substrate for FPD or solar panel is large, the load lock chamber and other chambers connected to it are also large. Therefore, the merit for such a large-sized substrate is particularly great.
  • FIG. 5A is a graph by simulation showing that regenerative electric power can be obtained by forced deceleration of the motor 22 by the regenerative unit 24 (here, resistance connection).
  • FIG. 5B is a graph by simulation showing the output power at the time of natural deceleration of the motor 22 corresponding to FIG. 5A.
  • the time required to decelerate the motor 22 to the idling speed r2 is 4.3 seconds. In this case, the power consumption due to the resistance is 33.7 [kW ⁇ s]. .
  • the time required to decelerate the motor 22 to the idling speed r2 is 17 seconds.
  • the output current and output power are negative, and regenerative power is obtained.
  • the vacuum pump control device disclosed in Japanese Patent Application Laid-Open No. 2009-92044 is provided with a two-stage vacuum pump, and as shown in FIG. 5, when one of the vacuum pump motors is in a load state after being released to the atmosphere.
  • the regenerative power is extracted, and the extracted regenerative power is supplied to the motor of the other vacuum pump.
  • the load state after the release to the atmosphere is instantaneous as described above, the regenerative power obtained at this time is extremely small and is not worth recovering.
  • the operation method according to the present embodiment does not obtain regenerative power when the motor is in a load state after being released into the atmosphere, but creates an idling state in advance, and regenerates when the motor is forcibly decelerated from the drive rotational speed r1. Getting power.
  • FIG. 6 is a view showing an exhaust device according to the second embodiment of the present invention.
  • the same components and functions included in the load lock device 100 and the exhaust device 20 according to the first embodiment will be simplified or omitted, and different points will be mainly described.
  • the exhaust device 120 includes the battery 25 that stores the regenerative power obtained by the regenerative unit 24 as described above. As a result, the exhaust device 120 can use the electric power of the battery 25 at a desired timing.
  • FIGS. 7A and 7B are graphs respectively showing an exhaust operation method according to a form using the electric power of the battery 25.
  • FIG. These graphs show the rotation speed of the motor 22 of the vacuum pump 21, the power supplied from the power supply 29 for driving the motor 22, the pressure in the load lock chamber 10, the intake side valve in order from the top as in FIG. 3.
  • the opening / closing timings of the exhaust valve 16 and the exhaust valve 18 are shown.
  • the regenerative unit 24 uses the regenerative power stored in the capacitor 25 as the drive power for the motor 22 when the load on the motor 22 increases after the load lock chamber 10 is opened to the atmosphere. Thereby, the peak value of the power consumption of the power supply 29 supplied to the motor driver 23 can be suppressed. As a result, electrical facilities such as circuits around the power source 29 and the regeneration unit 24 can be reduced. By reducing the electrical equipment, the cost can be reduced and the space for installing the equipment can be reduced.
  • the electrical equipment is, for example, an electric cable or a breaker. That is, according to the present embodiment, the electric cable can be made thin, or the breaker capacity can be reduced. As a result of making the electrical cable thinner, the wiring space of the electrical cable can be reduced. Since many electric cables are used for the exhaust apparatus 20, the merit which can make an electric cable thin is great. Further, when a plurality of vacuum pumps are used for one load lock device (multistage type), the merit of the present embodiment is further increased.
  • the power source 29 supplies the exhaust device 120 with intermediate power that is between the peak power in the post-atmosphere load state as described above and the power at idling. Supply.
  • a controller (control means) (not shown) provided in the exhaust device 120 causes the motor driver 23 to supply a part of the intermediate power of the power supply 29 to the idling speed shown in FIGS. 3 and 7A. And the motor 22 is rotated at substantially the same rotational speed.
  • the controller performs control to store the remaining intermediate power in the battery 25.
  • the regenerative unit 24 stores the electric power obtained by the regeneration in the capacitor 25 in the same manner as described in FIGS. 3 and 7A.
  • the electric power stored in the battery 25 in this way is supplied to the motor driver 23 when the motor 22 is in a load state after being released into the atmosphere, that is, in order to suppress peak power.
  • the control unit 30 shown in FIG. 1 may have the function of the controller.
  • the peak value of the power consumption of the power supply 29 supplied to the motor driver 23 can be suppressed, and the power consumption can be smoothed over time. Therefore, the electrical facilities can be reduced as described above, and the operations of the motor driver 23 and the vacuum pump 21 can be stabilized by smoothing the power consumption.
  • a plurality of vacuum pumps 21 and motor drivers 23 may be provided.
  • the vacuum pumps 21 are connected in parallel, but may be connected in series.
  • the load lock apparatus applied to a manufacturing apparatus such as a semiconductor device or FPD has been described.
  • the load lock device is applicable to any device or system as long as it has a chamber that repeats pressure fluctuations between vacuum and atmospheric pressure.
  • the control unit 30 shown in FIG. 1 is configured to control the load lock chamber 10 and the exhaust device 20, respectively.
  • control units may be provided in the load lock chamber 10 and the exhaust device 20, respectively, and the control units may perform processing performed by the control unit 30 in a distributed manner.
  • those control units may be incorporated in the load lock chamber 10 and the exhaust device 20, respectively, or may be connected to the outside thereof.
  • the control units may be connected to one main control unit by wire or wirelessly, and the main control unit may control the control units so as to synchronize and perform centralized management.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

[Objective] To provide a load lock apparatus wherein energy necessary for operating the load lock apparatus and peripheral apparatuses connected to the load lock apparatus can be reduced, an exhaust control apparatus to be used for the load lock apparatus, and a method of operating the load lock apparatus. [Solution] An exhaust apparatus (20) equipped for the load lock apparatus comprises a vacuum pump (21) with a motor (22) mounted thereon, a motor driver (23) (a portion or all of a drive unit) for driving the motor (22), and a regeneration unit (24) connected to the motor driver (23). The regeneration unit (24) acquires regeneration power by forcing the motor (22) of the vacuum pump (21) to decelerate. Regeneration power acquired in such a way can be used for power to drive a vacuum pump to be used in a vacuum conveyance chamber or a vacuum processing chamber to be connected to the load lock apparatus (100), or the regeneration power can be stored in a power storage unit.

Description

ロードロック装置、排気制御装置及びロードロック装置の動作方法Load lock device, exhaust control device, and operation method of load lock device
 本発明は、例えば半導体デバイス、FPD(Flat Panel Display)等を製造する製造装置で用いられるロードロック装置、排気制御装置及びロードロック装置の動作方法に関する。 The present invention relates to a load lock device, an exhaust control device, and an operation method of the load lock device used in a manufacturing apparatus for manufacturing, for example, a semiconductor device, FPD (Flat Panel Display) or the like.
 従来から半導体デバイスやFPDの製造分野における真空プロセスでは、真空ポンプを利用してプロセス室内が排気され、CVD(Chemical Vapor Deposition)、エッチング、スパッタリング等の処理が行われる。 Conventionally, in a vacuum process in the field of manufacturing semiconductor devices and FPDs, the process chamber is evacuated using a vacuum pump, and processes such as CVD (Chemical Vapor Deposition), etching, and sputtering are performed.
 特許文献1には、真空ポンプのモータの減速時の回生制動に伴って発生するエネルギーを有効に利用した真空ポンプ制御装置が開示されている。この真空ポンプ制御装置では、その真空ポンプに搭載されたモータの回転軸が磁気軸受により非接触で支持されているため、運転停止時に回転軸に加えられる摩擦力が極端に少ない。回転軸の高速回転により大きな慣性エネルギーが生じており、この回転軸の回転が停止するまでには時間がかかる。この真空ポンプ制御装置は、短時間でその回転を停止させるために、回生制動エネルギーを回生電力に変換する回生電力制御回路と、この電力を有効に他に利用するための機能とを備えている。電力を有効に他に利用するための機能とは、その電力を外部電源ラインに返還したり、バッテリーに蓄えたりするものである(例えば、特許文献1の明細書段落[0013]等参照)。 Patent Document 1 discloses a vacuum pump control device that effectively uses energy generated with regenerative braking during deceleration of a vacuum pump motor. In this vacuum pump control device, since the rotating shaft of the motor mounted on the vacuum pump is supported in a non-contact manner by the magnetic bearing, the frictional force applied to the rotating shaft when operation is stopped is extremely small. Large inertia energy is generated by the high speed rotation of the rotating shaft, and it takes time until the rotation of the rotating shaft stops. This vacuum pump control device has a regenerative power control circuit that converts regenerative braking energy into regenerative power in order to stop its rotation in a short time, and a function for effectively using this power elsewhere. . The function for effectively using the electric power for other purposes is to return the electric power to the external power supply line or to store it in the battery (for example, refer to paragraph [0013] of the specification of Patent Document 1).
特開2002-180990号公報JP 2002-180990 A
 ところで、上述のような真空プロセスでは、真空のプロセス室及び大気側の間での基板の搬送のために、大気圧及び真空を切り替えるロードロック装置が用いられる。ロードロック装置は、被処理基板がロードロック室に搬入出されるたびに、ロードロック室の大気圧及び真空を切り替える操作を行う。つまり、ロードロック室に接続された真空ポンプは、被処理基板の搬入出のたびに、ロードロック室の真空排気を繰り返すので、真空ポンプの駆動には多大な電力を必要とする。特に、近年ではFPD製造等の分野では、被処理基板が巨大化する傾向にあり、これに伴いロードロック室やこれに接続されるプロセス室の動作に必要なエネルギーが増大している。 By the way, in the vacuum process as described above, a load lock device that switches between atmospheric pressure and vacuum is used for transporting the substrate between the vacuum process chamber and the atmosphere side. The load lock device performs an operation of switching the atmospheric pressure and vacuum of the load lock chamber every time the substrate to be processed is carried into and out of the load lock chamber. That is, the vacuum pump connected to the load lock chamber repeats evacuation of the load lock chamber every time the substrate to be processed is carried in and out, so that a large amount of electric power is required to drive the vacuum pump. In particular, in recent years, in the field of FPD production and the like, the substrate to be processed tends to become enormous, and accordingly, the energy required for the operation of the load lock chamber and the process chamber connected thereto is increasing.
 以上のような事情に鑑み、本発明の目的は、ロードロック装置の動作や、ロードロック装置に接続される周辺の装置の動作に必要なエネルギーを削減することができるロードロック装置、これに用いられる排気制御装置及びロードロック装置の動作方法を提供することにある。 In view of the circumstances as described above, an object of the present invention is to use a load lock device that can reduce energy required for the operation of the load lock device and the operation of peripheral devices connected to the load lock device. And an operation method of the exhaust control device and the load lock device.
 上記目的を達成するため、本発明の一形態に係るロードロック装置は、ロードロック室と、真空ポンプと、駆動ユニットと、回生ユニットを具備する。 
 前記真空ポンプは、モータを有し、前記モータの動力により前記ロードロック室内の気体を排出する。 
 前記駆動ユニットは、大気圧側から被処理基板が前記ロードロック室へ搬入されるごとに、前記ロードロック室内を減圧するように、前記真空ポンプの前記モータを駆動する。
 前記回生ユニットは、前記モータを減速させることで回生電力を得る。
In order to achieve the above object, a load lock device according to an embodiment of the present invention includes a load lock chamber, a vacuum pump, a drive unit, and a regenerative unit.
The vacuum pump has a motor and discharges the gas in the load lock chamber by the power of the motor.
The drive unit drives the motor of the vacuum pump so as to depressurize the load lock chamber every time a substrate to be processed is carried into the load lock chamber from the atmospheric pressure side.
The regenerative unit obtains regenerative power by decelerating the motor.
 本発明の一形態に係る排気制御装置は、前記ロードロック装置に用いられ排気制御装置である。排気制御装置は、前記駆動ユニット及び前記回生ユニットを備える。 An exhaust control device according to an embodiment of the present invention is an exhaust control device used in the load lock device. The exhaust control device includes the drive unit and the regeneration unit.
 本発明の一形態に係るロードロック装置の動作方法は、大気圧側からロードロック室内に被処理基板を搬入する。 
 前記ロードロック室に接続された真空ポンプのモータの動力により、前記ロードロック室内が減圧される。 
 前記ロードロック室内の減圧のために駆動されている前記モータを減速させることで回生電力が得られる。
In the operation method of the load lock device according to one embodiment of the present invention, the substrate to be processed is carried into the load lock chamber from the atmospheric pressure side.
The load lock chamber is depressurized by the power of a vacuum pump motor connected to the load lock chamber.
Regenerative electric power is obtained by decelerating the motor driven for decompression in the load lock chamber.
図1は、本発明の一実施形態に係るロードロック装置を示す図である。FIG. 1 is a view showing a load lock device according to an embodiment of the present invention. 図2は、排気装置の電気的な構成を示すブロック図である。FIG. 2 is a block diagram showing an electrical configuration of the exhaust device. 図3は、ロードロック装置の一実施形態に係る、排気の動作方法を表すグラフである。FIG. 3 is a graph illustrating an exhaust operation method according to an embodiment of the load lock device. 図4Aは、一般的なロードロック装置の排気動作方法を示すグラフである。図4Bは、図4Aに示す排気動作方法がアイドリング期間を有する場合を示すグラフである。FIG. 4A is a graph showing an exhaust operation method of a general load lock device. FIG. 4B is a graph showing a case where the exhaust operation method shown in FIG. 4A has an idling period. 図5Aは、回生ユニットによるモータの強制減速により回生電力が得られることを示すシミュレーションによるグラフである。図5Bは、図5Aに対応した、モータの自然減速時の出力電力等を示すシミュレーションによるグラフである。FIG. 5A is a graph by simulation showing that regenerative power is obtained by forced deceleration of the motor by the regenerative unit. FIG. 5B is a graph by simulation showing the output power and the like at the time of natural deceleration of the motor corresponding to FIG. 5A. 図6は、本発明の他の実施形態に係る装置を示す図である。FIG. 6 shows an apparatus according to another embodiment of the present invention. 図7A及びBは、蓄電器の電力を利用した形態に係る排気動作方法をそれぞれ示すグラフである。7A and 7B are graphs respectively showing an exhaust operation method according to an embodiment using the electric power of the battery.
 一形態に係るロードロック装置は、ロードロック室と、真空ポンプと、駆動ユニットと、回生ユニットを具備する。 
 前記真空ポンプは、モータを有し、前記モータの動力により前記ロードロック室内の気体を排出する。 
 前記駆動ユニットは、大気圧側から被処理基板が前記ロードロック室へ搬入されるごとに、前記ロードロック室内を減圧するように、前記真空ポンプの前記モータを駆動する。
 前記回生ユニットは、前記モータを減速させることで回生電力を得る。
A load lock device according to one embodiment includes a load lock chamber, a vacuum pump, a drive unit, and a regenerative unit.
The vacuum pump has a motor and discharges the gas in the load lock chamber by the power of the motor.
The drive unit drives the motor of the vacuum pump so as to depressurize the load lock chamber every time a substrate to be processed is carried into the load lock chamber from the atmospheric pressure side.
The regenerative unit obtains regenerative power by decelerating the motor.
 回生ユニットにより得られた回生電力を有効に利用することで、真空ポンプの駆動に必要な、電源(供給側電源)の電力を低減することができる。したがって、大気圧側からの被処理基板の搬入ごとに、減圧及びその開放を繰り返すロードロック装置では、回生ユニットが設けられることによるメリットが大きく、ロードロック装置やその周辺の装置の動作に必要なエネルギーを大幅に削減することができる。 By effectively using the regenerative power obtained by the regenerative unit, it is possible to reduce the power of the power supply (supply side power supply) necessary for driving the vacuum pump. Therefore, in a load lock device that repeats decompression and release every time a substrate to be processed is loaded from the atmospheric pressure side, there is a great merit by providing a regenerative unit, which is necessary for the operation of the load lock device and its peripheral devices. Energy can be greatly reduced.
 前記ロードロック装置は、少なくとも前記回生ユニットで得られた前記回生電力を蓄える蓄電器をさらに具備してもよい。これにより、所望のタイミングでその蓄電器の電力を利用することができる。 The load lock device may further include a capacitor that stores at least the regenerative power obtained by the regenerative unit. Thereby, the electric power of the capacitor can be used at a desired timing.
 前記真空ポンプの前記モータは、前記ロードロック室の前記大気側への開放後に、前記開放に起因した、前記大気側への開放前に比べて大きい負荷がかかる状態を有し、前記回生ユニットは、前記蓄電器に蓄えられた前記回生電力を、前記大きい負荷状態となる時の前記モータの駆動電力の一部として使用してもよい。これにより、モータの駆動ユニットへ供給される電源の消費電力のピーク値を抑えることができる。その結果、電源の周辺や回生ユニットの周辺の回路等の電気設備を軽減することができる。電気設備が軽減されることにより、コストを削減でき、その設備の設置のためのスペースを削減することができる。 The motor of the vacuum pump has a state in which a larger load is applied after opening the load lock chamber to the atmosphere side than before opening to the atmosphere side due to the opening. The regenerative power stored in the capacitor may be used as part of the driving power of the motor when the large load state is reached. Thereby, the peak value of the power consumption of the power supply supplied to the drive unit of a motor can be suppressed. As a result, it is possible to reduce electrical facilities such as circuits around the power source and the regeneration unit. By reducing the electrical equipment, the cost can be reduced and the space for installing the equipment can be reduced.
 前記ロードロック装置は、次のような制御手段をさらに具備してもよい。制御手段は、前記ロードロック室の前記大気側への開放後に、前記大きい負荷状態となる時の前記モータの駆動のためのピーク電力より低い電力で待機時に前記モータを駆動するための電力の一部を、前記蓄電器に蓄えさせ、前記蓄電器に蓄えられた電力を前記ピーク電力の一部として前記駆動ユニットに使用させる。これにより、駆動ユニットへ供給される電源の消費電力のピーク値を抑え、さらにその消費電力を時間的に平滑化することができる。したがって、上記のように電気設備を軽減することができ、また消費電力の平滑化により、モータドライバ及び真空ポンプの動作を安定化させることができる。 The load lock device may further include the following control means. The control means is one of the electric power for driving the motor during standby at a lower power than the peak electric power for driving the motor when the load lock chamber is in a large load state after the load lock chamber is opened to the atmosphere side. And the power stored in the capacitor is used by the drive unit as part of the peak power. Thereby, the peak value of the power consumption of the power supplied to the drive unit can be suppressed, and the power consumption can be smoothed over time. Therefore, the electrical equipment can be reduced as described above, and the operation of the motor driver and the vacuum pump can be stabilized by smoothing the power consumption.
 一形態に係る排気制御装置は、前記ロードロック装置に用いられ排気制御装置である。排気制御装置は、前記駆動ユニット及び前記回生ユニットを備える。 The exhaust control device according to one aspect is an exhaust control device used in the load lock device. The exhaust control device includes the drive unit and the regeneration unit.
 一形態に係るロードロック装置の動作方法は、大気圧側からロードロック室内に被処理基板を搬入する。 
 前記ロードロック室に接続された真空ポンプのモータの動力により、前記ロードロック室内が減圧される。 
 前記ロードロック室内の減圧のために駆動されている前記モータを減速させることで回生電力が得られる。
In the operation method of the load lock device according to one embodiment, the substrate to be processed is carried into the load lock chamber from the atmospheric pressure side.
The load lock chamber is depressurized by the power of a vacuum pump motor connected to the load lock chamber.
Regenerative electric power is obtained by decelerating the motor driven for decompression in the load lock chamber.
 減圧のために駆動されているモータの減速により得られた回生電力を有効に利用することで、真空ポンプの駆動に必要な電力を低減することができる。したがって、大気圧側からの被処理基板の搬入ごとに、減圧及びその開放を繰り返すロードロック装置では、回生電力を得るメリットが大きく、ロードロック装置やその周辺の装置の動作に必要なエネルギーを大幅に削減することができる。 The power required for driving the vacuum pump can be reduced by effectively using the regenerative power obtained by the deceleration of the motor driven for decompression. Therefore, a load lock device that repeatedly depressurizes and releases it every time a substrate to be processed is loaded from the atmospheric pressure side has a great advantage of obtaining regenerative power, greatly increasing the energy required for the operation of the load lock device and its surrounding devices. Can be reduced.
 以下、図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [第1の実施形態]
 図1は、本発明の一実施形態に係るロードロック装置100を示す図である。このロードロック装置100は、半導体デバイス、FPD、ソーラーパネル等の製造プロセスのうち、真空プロセスを担う装置に接続されて用いられる。処理対象とされる被処理基板Wは、半導体ウェハ、ガラス基板、導電性基板等である。被処理基板Wを、以降では単に基板Wという。
[First embodiment]
FIG. 1 is a diagram showing a load lock device 100 according to an embodiment of the present invention. The load lock device 100 is used by being connected to a device responsible for a vacuum process among manufacturing processes of semiconductor devices, FPDs, solar panels and the like. The target substrate W to be processed is a semiconductor wafer, a glass substrate, a conductive substrate, or the like. Hereinafter, the substrate W to be processed is simply referred to as a substrate W.
 ガラス基板や導電性基板等の矩形基板は年々大型化している。大きいものではその基板の矩形の1辺が1m以上、2m以下、あるいは2m以上3m以下である。 Rectangular substrates such as glass substrates and conductive substrates are becoming larger year by year. In a large one, one side of the rectangle of the substrate is 1 m or more and 2 m or less, or 2 m or more and 3 m or less.
 ロードロック装置100は、ロードロック室10、排気装置20及び制御ユニット30を備えている。図1中、ロードロック室10の右側には、真空側ゲートバルブ14を介して真空のプロセス室や真空搬送室42’が接続される。また、ロードロック室10の左側には、大気側ゲートバルブ12を介して大気搬送室41’が接続される。 The load lock device 100 includes a load lock chamber 10, an exhaust device 20, and a control unit 30. In FIG. 1, a vacuum process chamber and a vacuum transfer chamber 42 ′ are connected to the right side of the load lock chamber 10 via a vacuum side gate valve 14. Further, an atmospheric transfer chamber 41 ′ is connected to the left side of the load lock chamber 10 through an atmospheric gate valve 12.
 真空搬送室42’は、ロードロック室10とプロセス室との間で、真空下で基板Wを搬送する。プロセス室は、例えば、CVD(Chemical Vapor Deposition)またはスパッタリングによる成膜、またドライエッチング等の処理を行う。大気搬送室41’は、基板Wを収納する図示しないカセット等の収納部と、ロードロック室10との間で、大気圧下で基板Wを搬送する。以降の説明では、図1中、ロードロック室10の左側を大気側41、右側を真空側42と呼ぶ。 The vacuum transfer chamber 42 ′ transfers the substrate W between the load lock chamber 10 and the process chamber under vacuum. In the process chamber, for example, film formation by CVD (Chemical Vapor Deposition) or sputtering, or processing such as dry etching is performed. The atmospheric transfer chamber 41 ′ transfers the substrate W under atmospheric pressure between a storage unit such as a cassette (not shown) that stores the substrate W and the load lock chamber 10. In the following description, the left side of the load lock chamber 10 in FIG.
 このロードロック装置100が適用される製造装置は、プロセス室が複数あるマルチチャンバ方式の製造装置であってもよいし、そのほか、インライン式や縦型搬送方式の製造装置であってもよい。もちろん、この製造装置は、1つのプロセス室を有し、ロードロック室10とそのプロセス室とが真空側ゲートバルブ14を介して接続される形態を有する製造装置であってもよい。 The manufacturing apparatus to which the load lock apparatus 100 is applied may be a multi-chamber type manufacturing apparatus having a plurality of process chambers, or may be an inline type or vertical transfer type manufacturing apparatus. Of course, this manufacturing apparatus may be a manufacturing apparatus having one process chamber and having a configuration in which the load lock chamber 10 and the process chamber are connected via the vacuum side gate valve 14.
 ロードロック装置100は、大気側41と真空側42との間で基板Wを搬送する。ロードロック室10には、吸気ライン11及び排気ライン13が接続され、これらのライン11及び13には、吸気側バルブ16及び排気側バルブ18が接続されている。排気装置20の動作及び各バルブ12、14、16及び18の開閉動作により、ロードロック室10内では、大気圧及び所定の真空度の間で圧力変動が繰り返される。ロードロック室10は、仕込み室などとも呼ばれる。 The load lock device 100 transports the substrate W between the atmosphere side 41 and the vacuum side 42. An intake line 11 and an exhaust line 13 are connected to the load lock chamber 10, and an intake side valve 16 and an exhaust side valve 18 are connected to these lines 11 and 13. Due to the operation of the exhaust device 20 and the opening / closing operation of the valves 12, 14, 16, and 18, pressure fluctuations are repeated between the atmospheric pressure and a predetermined degree of vacuum in the load lock chamber 10. The load lock chamber 10 is also called a preparation chamber.
 図2は、排気装置20の電気的な構成を示すブロック図である。 FIG. 2 is a block diagram showing an electrical configuration of the exhaust device 20.
 排気装置20は、排気ライン13(図1参照)に接続された、モータ22を搭載した真空ポンプ21と、このモータ22を駆動するモータドライバ23(駆動ユニットの一部または全部)、モータドライバ23に接続された回生ユニット24とを有する。モータドライバ23には、電源29から電力が供給される。 The exhaust device 20 is connected to an exhaust line 13 (see FIG. 1), and includes a vacuum pump 21 equipped with a motor 22, a motor driver 23 (a part or all of a drive unit) for driving the motor 22, and a motor driver 23. And a regenerative unit 24 connected to. Electric power is supplied to the motor driver 23 from a power source 29.
 モータドライバ23は、典型的にはインバータ制御によりモータ22を駆動するものが用いられるが、これに限られない。例えばモータ22がDCモータの場合、一定電圧による駆動でもよいし、モータ22がACモータの場合、一定周波数による駆動でもよい。 The motor driver 23 is typically one that drives the motor 22 by inverter control, but is not limited thereto. For example, when the motor 22 is a DC motor, it may be driven by a constant voltage, and when the motor 22 is an AC motor, it may be driven by a constant frequency.
 回生ユニット24は、真空ポンプ21のモータ22を強制的に減速させることで回生電力を得る。回生ユニット24は、種々の公知の技術が適用され得る。例えば、真空ポンプ21のモータ22がDCモータである場合、回生ユニット24は、回生電力(逆電力)による回生過電圧を検出し、それが検出された場合に、その回生電力を負荷で消費させるような回路に切り替えるようにすればよい。ここでの負荷とは、例えば後述する蓄電器25、電源29、あるいは、他の装置(上述のプロセス室、大気搬送室41’、真空搬送室42’等)で用いられる電源等が該当する。一方、モータ22がACモータである場合であっても、モータドライバ23がインバータ制御を有するものであれば、回生ユニット24はその回生電力を取り出すことができる。 The regenerative unit 24 obtains regenerative power by forcibly decelerating the motor 22 of the vacuum pump 21. Various known techniques can be applied to the regeneration unit 24. For example, when the motor 22 of the vacuum pump 21 is a DC motor, the regenerative unit 24 detects a regenerative overvoltage due to regenerative power (reverse power), and when this is detected, the regenerative power is consumed by the load. What is necessary is just to switch to an appropriate circuit. The load here corresponds to, for example, a power storage unit 25, a power source 29, which will be described later, or a power source used in other devices (the above-described process chamber, atmospheric transfer chamber 41 ', vacuum transfer chamber 42', etc.). On the other hand, even if the motor 22 is an AC motor, the regenerative unit 24 can extract the regenerative power if the motor driver 23 has inverter control.
 制御ユニット30は、各ゲートバルブ12及び14、吸気側及び排気側バルブ18の開閉のタイミングを制御したり、排気装置20の動作を制御したりする。 The control unit 30 controls the opening / closing timing of the gate valves 12 and 14, the intake side and exhaust side valves 18, and controls the operation of the exhaust device 20.
 制御ユニット30は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等のコンピュータに用いられるハードウェア要素及びソフトウェアにより実現される。あるいは、制御ユニット30は、FPGA(Field Programmable Gate Array)等のPLD(Programmable Logic Device)、その他ASIC(Application Specific Integrated Circuit)等のデバイスにより実現されてもよい。モータドライバ23も同様に、それらのハードウェア、またはハードウェア及びソフトウェアにより実現される。 The control unit 30 is realized by hardware elements and software used in a computer such as a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory). Alternatively, the control unit 30 may be realized by a device such as a PLD (Programmable Logic Device) such as an FPGA (Field Programmable Gate Array), or an ASIC (Application Specific Integrated Circuit). Similarly, the motor driver 23 is realized by these hardware, or hardware and software.
 以上のように構成されたロードロック装置100の動作を説明する。 The operation of the load lock device 100 configured as described above will be described.
 吸気側バルブ16が開き排気側バルブ18が閉じた状態で、大気側ゲートバルブ12が開き、大気側41からロードロック室10内へ基板Wが搬入される。搬入後、大気側ゲートバルブ12が閉じる。大気側ゲートバルブ12及び吸気側バルブ16が閉じ、排気側バルブ18が開くと、真空ポンプ21の動作によりロードロック室10内の圧力が所定の真空度になるまで下げられる。所定の真空度とは、真空側42の圧力と同じか、多少異なる程度である。 In the state where the intake side valve 16 is opened and the exhaust side valve 18 is closed, the atmosphere side gate valve 12 is opened, and the substrate W is carried into the load lock chamber 10 from the atmosphere side 41. After carrying in, the atmosphere side gate valve 12 is closed. When the atmosphere side gate valve 12 and the intake side valve 16 are closed and the exhaust side valve 18 is opened, the pressure in the load lock chamber 10 is lowered by the operation of the vacuum pump 21 until a predetermined degree of vacuum is reached. The predetermined degree of vacuum is the same as or slightly different from the pressure on the vacuum side 42.
 ロードロック室10内の圧力が所定の真空度に達すると、排気側バルブ18が閉じ、その後、真空側ゲートバルブ14が開き、ロードロック室10から真空側42へ基板Wが搬出される。そして、真空側ゲートバルブ14が閉じる。 When the pressure in the load lock chamber 10 reaches a predetermined degree of vacuum, the exhaust side valve 18 is closed, and then the vacuum side gate valve 14 is opened, and the substrate W is unloaded from the load lock chamber 10 to the vacuum side 42. Then, the vacuum side gate valve 14 is closed.
 真空側42におけるプロセス室での処理が終わると、真空側ゲートバルブ14が開き、真空側42からロードロック室10へ基板Wが搬入され、搬入後、真空側ゲートバルブ14が閉じる。そして、吸気側バルブ16が開くとロードロック室10内に気体(典型的には空気)が浸入し、ロードロック室10内は大気圧となる。その後大気側ゲートバルブ12が開き、ロードロック室10から大気側41へ基板Wが搬出される。 When the processing in the process chamber on the vacuum side 42 is completed, the vacuum side gate valve 14 is opened, the substrate W is loaded from the vacuum side 42 to the load lock chamber 10, and the vacuum side gate valve 14 is closed after loading. When the intake side valve 16 is opened, gas (typically air) enters the load lock chamber 10 and the load lock chamber 10 is at atmospheric pressure. Thereafter, the atmosphere side gate valve 12 is opened, and the substrate W is carried out from the load lock chamber 10 to the atmosphere side 41.
 このように、ロードロック装置100は、大気側41から基板Wがロードロック室10へ搬入されてから、次の基板Wが大気側41から搬入されるまでを1周期として、上記の動作を繰り返す。すなわち、ロードロック装置100は、大気側41から基板Wがロードロック室10へ搬入されるごとにロードロック室10内を減圧する。 As described above, the load lock apparatus 100 repeats the above operation with one period from when the substrate W is carried into the load lock chamber 10 from the atmosphere side 41 to when the next substrate W is carried from the atmosphere side 41. . That is, the load lock device 100 depressurizes the load lock chamber 10 every time the substrate W is carried into the load lock chamber 10 from the atmosphere side 41.
 図3は、ロードロック装置100の一実施形態に係る、排気動作方法を表すグラフである。このグラフは、ロードロック装置100の上記した1周期分の動作を示している。1周期は、例えば30~120秒、40秒~90秒、50秒~70秒、または60秒である。 FIG. 3 is a graph showing an exhaust operation method according to an embodiment of the load lock device 100. This graph shows the operation of the load lock device 100 for one cycle described above. One cycle is, for example, 30 to 120 seconds, 40 seconds to 90 seconds, 50 seconds to 70 seconds, or 60 seconds.
 ここで、図4Aを参照して、一般的なロードロック装置100の排気動作方法を説明する。横軸は時間(1周期分)であり、縦軸は、上のグラフから順に、真空ポンプ21のモータ22の回転数、モータ22の駆動のために図示しない電源29から供給される電力、ロードロック室10内の圧力、吸気側バルブ16及び排気側バルブ18のそれぞれの開閉のタイミングである。 Here, with reference to FIG. 4A, an exhaust operation method of a general load lock device 100 will be described. The horizontal axis represents time (for one cycle), and the vertical axis represents the rotation speed of the motor 22 of the vacuum pump 21, the power supplied from the power supply 29 (not shown) for driving the motor 22, and the load in order from the upper graph. It is the pressure in the lock chamber 10 and the timing of opening and closing of the intake side valve 16 and the exhaust side valve 18 respectively.
 この図4Aでは、真空ポンプ21はロードロック室10内を所定の真空度に保つための所定の回転数で作動している。以下、この回転数を駆動回転数r1という。そしてこのとき、排気側バルブ18が閉じている状態であり、真空ポンプ21内から排気側バルブ18までが真空に保たれている。 In FIG. 4A, the vacuum pump 21 is operated at a predetermined rotational speed for keeping the load lock chamber 10 at a predetermined degree of vacuum. Hereinafter, this rotational speed is referred to as driving rotational speed r1. At this time, the exhaust side valve 18 is in a closed state, and the vacuum pump 21 to the exhaust side valve 18 are kept in vacuum.
 最初に、このような状態から排気側バルブ18が開くと、ロードロック室10内の気体が真空ポンプ21側に流れ込み、回転数が急激に低下し、大気開放前に比べモータ22の負荷が大きい状態となる。以下、このように大気開放に起因したモータ22が受ける大きい負荷状態を、便宜的に、大気開放後負荷状態という。
 大気開放直後は、このようにモータ22の負荷が大きい状態にあるため、モータ22への供給電力は上昇する。そしてすぐに回転数が元の駆動回転数r1に戻り、大気開放後負荷状態が終わり、時間t1で排気側バルブ18が閉じ、ロードロック室10内が所定の真空度(グラフ上では最低圧力)v0に達する。時間t1近傍で供給電力も元に戻る。時間t2で、吸気側バルブ16が開いてロードロック室10が大気開放されるまで、ロードロック室10内は真空度v0が維持される。
Initially, when the exhaust side valve 18 is opened from such a state, the gas in the load lock chamber 10 flows into the vacuum pump 21 side, the rotational speed decreases rapidly, and the load on the motor 22 is larger than before the release to the atmosphere. It becomes a state. Hereinafter, such a large load state received by the motor 22 due to the release to the atmosphere will be referred to as a load state after the release to the atmosphere for convenience.
Immediately after being released into the atmosphere, the load on the motor 22 is thus large, so that the power supplied to the motor 22 increases. Immediately after that, the rotational speed returns to the original driving rotational speed r1, the load state ends after being released into the atmosphere, the exhaust side valve 18 is closed at time t1, and the inside of the load lock chamber 10 has a predetermined degree of vacuum (the lowest pressure on the graph) Reach v0. In the vicinity of time t1, the supplied power also returns. At time t2, the degree of vacuum v0 is maintained in the load lock chamber 10 until the intake valve 16 is opened and the load lock chamber 10 is opened to the atmosphere.
 このように、ロードロック室10が大気開放された直後以外の期間では、モータ22は駆動回転数r1で回転しており、大気開放のたびに大気開放後負荷状態となって電力を消費するので非効率的である。そこで、なるべく消費電力を抑えるために、例えば図4Bのような動作方法が提案されている。 In this way, in a period other than immediately after the load lock chamber 10 is opened to the atmosphere, the motor 22 rotates at the driving rotational speed r1, and each time the atmosphere is opened, the load state is released after opening to the atmosphere and consumes power. Inefficient. Therefore, for example, an operation method as shown in FIG. 4B has been proposed in order to reduce power consumption as much as possible.
 図4Bでは、回転数を見ると分かるように真空ポンプ21のモータ22の駆動方法は、アイドリング期間、すなわち駆動回転数r1より低い回転数(以下、アイドリング回転数という。)r2でモータ22を駆動する期間(待機時)を有している。すなわち、排気側バルブ18が閉じている期間は、真空ポンプ21は実質的な仕事をする必要がないので、待機状態とされる。特に、図4Aにおいて最初に大気開放後負荷状態で回転数が減少することを考慮すると、予めアイドリング状態でモータ22が駆動されていれば効率が良い。 In FIG. 4B, as can be seen from the number of rotations, the method of driving the motor 22 of the vacuum pump 21 drives the motor 22 at an idling period, that is, at a rotation speed r2 lower than the drive rotation speed r1 (hereinafter referred to as idling rotation speed). Has a period (during standby). That is, during the period when the exhaust side valve 18 is closed, the vacuum pump 21 does not need to perform substantial work, and is in a standby state. In particular, considering that the rotational speed first decreases in the load state after opening to the atmosphere in FIG. 4A, it is efficient if the motor 22 is driven in an idling state in advance.
 そして、アイドリング期間を終え、排気側バルブ18が閉じる前までに駆動回転数r1にまで回転数が上昇し、所定の真空度まで真空排気が行われる。このようなアイドリング期間を有する図4Bのような動作方法により、図4Aのグラフに比べ、斜線部分のエネルギーを削減することができる。 Then, after the idling period is finished and before the exhaust side valve 18 is closed, the rotational speed is increased to the driving rotational speed r1, and vacuum exhaust is performed to a predetermined degree of vacuum. With the operation method as shown in FIG. 4B having such an idling period, the energy of the hatched portion can be reduced as compared with the graph of FIG. 4A.
 次に、図3のグラフを参照して本実施形態に係る動作方法を説明する。この動作方法は、図4Bでの方法と同様にアイドリング期間を有し、さらに回生ユニット24によりモータ22を強制的に減速させることで回生電力を得ている。すなわち、この動作方法は、図4Bでの方法に比べて、駆動回転数r1からアイドリング回転数r2まで到達する時間を短縮している。これによって得られる、供給電力の負の部分が回生電力(回生エネルギー)である。 Next, the operation method according to the present embodiment will be described with reference to the graph of FIG. This operation method has an idling period in the same manner as the method in FIG. 4B, and regenerative power is obtained by forcibly decelerating the motor 22 by the regenerative unit 24. That is, this operation method shortens the time required to reach the idling speed r2 from the driving speed r1 as compared with the method in FIG. 4B. The negative part of the supplied power obtained in this way is regenerative power (regenerative energy).
 このように得られた回生電力は、ロードロック装置100に接続される真空搬送室やプロセス室に用いられる真空ポンプを駆動するための電力として利用可能である。あるいは、次の本発明の第2の実施形態で説明するように、得られた回生電力を蓄電器に蓄電することができる。 The regenerative power obtained in this way can be used as power for driving a vacuum pump used in a vacuum transfer chamber or a process chamber connected to the load lock device 100. Alternatively, as will be described in the second embodiment of the present invention, the obtained regenerative power can be stored in a capacitor.
 このように、回生ユニット24により得られた回生電力を有効に利用することで、真空ポンプ21の駆動に必要な、電源29の電力(供給電力)を低減することができる。したがって、大気側41からの被処理基板Wの搬入ごとに、減圧及びその開放を繰り返すロードロック装置100では、回生ユニット24が設けられることによるメリットが大きく、ロードロック装置100やその周辺の装置の動作に必要なエネルギーを大幅に削減することができる。 Thus, by effectively using the regenerative power obtained by the regenerative unit 24, the power (supplied power) of the power source 29 required for driving the vacuum pump 21 can be reduced. Therefore, in the load lock device 100 that repeats decompression and release each time the substrate W to be processed is loaded from the atmosphere side 41, there is a great merit due to the provision of the regenerative unit 24, and the load lock device 100 and its peripheral devices are advantageous. The energy required for operation can be greatly reduced.
 FPDまたはソーラーパネル用の基板は大型しているため、ロードロック室やこれに接続される他の室も大型化している。したがって、このような大型基板用の製造装置では特にメリットが大きい。 Since the substrate for FPD or solar panel is large, the load lock chamber and other chambers connected to it are also large. Therefore, the merit for such a large-sized substrate is particularly great.
 図5Aは、回生ユニット24(ここでは、抵抗接続)によるモータ22の強制減速により回生電力が得られることを示すシミュレーションによるグラフである。これに対し図5Bは、図5Aに対応した、モータ22の自然減速時の出力電力等を示すシミュレーションによるグラフである。 FIG. 5A is a graph by simulation showing that regenerative electric power can be obtained by forced deceleration of the motor 22 by the regenerative unit 24 (here, resistance connection). On the other hand, FIG. 5B is a graph by simulation showing the output power at the time of natural deceleration of the motor 22 corresponding to FIG. 5A.
 図5Aの強制減速時、モータ22をアイドリング回転数r2まで減速させるのに必要な時間は4.3秒とされ、この場合、抵抗による電力消費量は33.7[kW・s]となった。一方、図5Bの自然減速時、モータ22をアイドリング回転数r2まで減速させるのに必要な時間は17秒とされた。 At the time of forced deceleration in FIG. 5A, the time required to decelerate the motor 22 to the idling speed r2 is 4.3 seconds. In this case, the power consumption due to the resistance is 33.7 [kW · s]. . On the other hand, during the natural deceleration of FIG. 5B, the time required to decelerate the motor 22 to the idling speed r2 is 17 seconds.
 図5Aに示すように、出力電流及び出力電力が負となり、回生電力が得られている。 As shown in FIG. 5A, the output current and output power are negative, and regenerative power is obtained.
 ここで、図4Aにおいて、モータが大気開放後負荷状態となった時、回転数が急激に低下する。この時間は実際は一瞬、例えば1秒程度でしかない。例えば特開2009-92044号公報の真空ポンプの制御装置、2段式の真空ポンプを備え、その図5に示されるように、いずれか一方の真空ポンプのモータが大気開放後負荷状態のときに回生電力を抽出し、抽出された回生電力を他方の真空ポンプのモータに供給している。しかしながら、実際は上述のように大気開放後負荷状態は一瞬であるため、この時得られる回生電力は極微量に過ぎず、回収するに値しないものである。 Here, in FIG. 4A, when the motor is in a load state after being released into the atmosphere, the rotational speed is drastically decreased. This time is actually only a moment, for example, about 1 second. For example, the vacuum pump control device disclosed in Japanese Patent Application Laid-Open No. 2009-92044 is provided with a two-stage vacuum pump, and as shown in FIG. 5, when one of the vacuum pump motors is in a load state after being released to the atmosphere. The regenerative power is extracted, and the extracted regenerative power is supplied to the motor of the other vacuum pump. However, since the load state after the release to the atmosphere is instantaneous as described above, the regenerative power obtained at this time is extremely small and is not worth recovering.
 これに対して本実施形態に係る動作方法は、モータの大気開放後負荷状態の時に回生電力を得るのではなく、予めアイドリング状態を作っておき、駆動回転数r1からモータを強制減速した時に回生電力を得ている。 On the other hand, the operation method according to the present embodiment does not obtain regenerative power when the motor is in a load state after being released into the atmosphere, but creates an idling state in advance, and regenerates when the motor is forcibly decelerated from the drive rotational speed r1. Getting power.
 [第2の実施形態]
 図6は、本発明の第2の実施形態に係る排気装置を示す図である。これ以降の説明では、上記第1の実施形態に係るロードロック装置100及び排気装置20が含む部材や機能等について同様のものは説明を簡略化または省略し、異なる点を中心に説明する。
[Second Embodiment]
FIG. 6 is a view showing an exhaust device according to the second embodiment of the present invention. In the following description, the same components and functions included in the load lock device 100 and the exhaust device 20 according to the first embodiment will be simplified or omitted, and different points will be mainly described.
 本実施形態に係る排気装置120は、上述したように回生ユニット24により得られた回生電力を蓄える蓄電器25を備えている。これにより排気装置120は、所望のタイミングで蓄電器25の電力を利用することができる。 The exhaust device 120 according to the present embodiment includes the battery 25 that stores the regenerative power obtained by the regenerative unit 24 as described above. As a result, the exhaust device 120 can use the electric power of the battery 25 at a desired timing.
 図7A及びBは、蓄電器25の電力を利用した形態に係る排気動作方法をそれぞれ示すグラフである。これらのグラフは、図3と同様に上から順に、真空ポンプ21のモータ22の回転数、モータ22の駆動のために電源29から供給される電力、ロードロック室10内の圧力、吸気側バルブ16及び排気側バルブ18のそれぞれの開閉のタイミングを示す。 FIGS. 7A and 7B are graphs respectively showing an exhaust operation method according to a form using the electric power of the battery 25. FIG. These graphs show the rotation speed of the motor 22 of the vacuum pump 21, the power supplied from the power supply 29 for driving the motor 22, the pressure in the load lock chamber 10, the intake side valve in order from the top as in FIG. 3. The opening / closing timings of the exhaust valve 16 and the exhaust valve 18 are shown.
 図7Aに示す形態では、回生ユニット24は、ロードロック室10の大気開放後にモータ22の負荷が大きくなる時に、蓄電器25に蓄えられた回生電力をそのモータ22の駆動電力として使用する。これにより、モータドライバ23へ供給される電源29の消費電力のピーク値を抑えることができる。その結果、電源29の周辺や回生ユニット24の周辺の回路等の電気設備を軽減することができる。電気設備が軽減されることにより、コストを削減でき、その設備の設置のためのスペースを削減することができる。 7A, the regenerative unit 24 uses the regenerative power stored in the capacitor 25 as the drive power for the motor 22 when the load on the motor 22 increases after the load lock chamber 10 is opened to the atmosphere. Thereby, the peak value of the power consumption of the power supply 29 supplied to the motor driver 23 can be suppressed. As a result, electrical facilities such as circuits around the power source 29 and the regeneration unit 24 can be reduced. By reducing the electrical equipment, the cost can be reduced and the space for installing the equipment can be reduced.
 電気設備とは、例えば電気ケーブルやブレーカ等である。すなわち本実施形態によれば、電気ケーブルを細くすることができ、あるいはブレーカの容量を小さくすることができる。電気ケーブルを細くすることができる結果、電気ケーブルの配線スペースを狭小化することができる。排気装置20には多数の電気ケーブルが用いられるので、電気ケーブルを細くできるメリットは大きい。また、1つのロードロック装置に複数の真空ポンプが用いられる場合(多段式)、本実施形態によるメリットはさらに増す。 The electrical equipment is, for example, an electric cable or a breaker. That is, according to the present embodiment, the electric cable can be made thin, or the breaker capacity can be reduced. As a result of making the electrical cable thinner, the wiring space of the electrical cable can be reduced. Since many electric cables are used for the exhaust apparatus 20, the merit which can make an electric cable thin is great. Further, when a plurality of vacuum pumps are used for one load lock device (multistage type), the merit of the present embodiment is further increased.
 また、別形態として図7Bに示す形態では、電源29は、これまで説明したような大気開放後負荷状態のピーク電力とアイドリング時の電力との間の電力である中間電力を、排気装置120に供給する。 Further, in another form shown in FIG. 7B, the power source 29 supplies the exhaust device 120 with intermediate power that is between the peak power in the post-atmosphere load state as described above and the power at idling. Supply.
 例えば、排気装置120に設けられた図示しないコントローラ(制御手段)は、その電源29の中間電力のうちの一部の電力を、モータドライバ23に供給させ、図3及び7Aで示したアイドリング回転数と実質的に同様の回転数でモータ22を回転させる。コントローラは、中間電力の残りの電力を蓄電器25に蓄える制御を行う。また、回生ユニット24は図3及び7Aで説明した形態と同様に、回生により得られた電力を蓄電器25に蓄える。このようにして蓄電器25に蓄えられた電力が、モータ22が大気開放後負荷状態にある時に、すなわちピーク電力を抑えるためにモータドライバ23に供給される。
 なお、図1に示した制御ユニット30が上記コントローラの機能を持っていてもよい。
For example, a controller (control means) (not shown) provided in the exhaust device 120 causes the motor driver 23 to supply a part of the intermediate power of the power supply 29 to the idling speed shown in FIGS. 3 and 7A. And the motor 22 is rotated at substantially the same rotational speed. The controller performs control to store the remaining intermediate power in the battery 25. Further, the regenerative unit 24 stores the electric power obtained by the regeneration in the capacitor 25 in the same manner as described in FIGS. 3 and 7A. The electric power stored in the battery 25 in this way is supplied to the motor driver 23 when the motor 22 is in a load state after being released into the atmosphere, that is, in order to suppress peak power.
Note that the control unit 30 shown in FIG. 1 may have the function of the controller.
 これにより、モータドライバ23へ供給される電源29の消費電力のピーク値を抑え、さらにその消費電力を時間的に平滑化することができる。したがって、上記のように電気設備を軽減することができ、また消費電力の平滑化により、モータドライバ23及び真空ポンプ21の動作を安定化させることができる。 Thereby, the peak value of the power consumption of the power supply 29 supplied to the motor driver 23 can be suppressed, and the power consumption can be smoothed over time. Therefore, the electrical facilities can be reduced as described above, and the operations of the motor driver 23 and the vacuum pump 21 can be stabilized by smoothing the power consumption.
 [その他の実施形態]
 本発明に係る実施形態は、以上説明した実施形態に限定されず、他の種々の実施形態が実現される。
[Other embodiments]
The embodiment according to the present invention is not limited to the embodiment described above, and other various embodiments are realized.
 真空ポンプ21及びモータドライバ23はそれぞれ複数設けられていてもよい。この場合、真空ポンプ21は並列に接続されるが、直列に接続されてもよい。 A plurality of vacuum pumps 21 and motor drivers 23 may be provided. In this case, the vacuum pumps 21 are connected in parallel, but may be connected in series.
 上記実施形態では、半導体デバイス、FPD等の製造装置に適用されるロードロック装置について説明した。しかし、ロードロック装置は、真空及び大気圧間での圧力変動を繰り返す室を有していれば、どのような装置やシステムにも適用可能である。 In the above embodiment, the load lock apparatus applied to a manufacturing apparatus such as a semiconductor device or FPD has been described. However, the load lock device is applicable to any device or system as long as it has a chamber that repeats pressure fluctuations between vacuum and atmospheric pressure.
 図1に示した制御ユニット30は、ロードロック室10及び排気装置20をそれぞれ制御する構成とされた。しかし、ロードロック室10及び排気装置20にそれぞれ制御部が設けられ、それらの制御部が、制御ユニット30が行う処理を分散して実行するようにしてもよい。その場合、それらの制御部は、ロードロック室10及び排気装置20にそれぞれ内蔵されていてもよいし、それらの外部にそれぞれ接続されていてもよい。また、その場合、それらの制御部が、1つのメイン制御部に有線または無線により接続され、このメイン制御部がそれらの制御部を同期するように制御して集中管理してもよい。 The control unit 30 shown in FIG. 1 is configured to control the load lock chamber 10 and the exhaust device 20, respectively. However, control units may be provided in the load lock chamber 10 and the exhaust device 20, respectively, and the control units may perform processing performed by the control unit 30 in a distributed manner. In that case, those control units may be incorporated in the load lock chamber 10 and the exhaust device 20, respectively, or may be connected to the outside thereof. In such a case, the control units may be connected to one main control unit by wire or wirelessly, and the main control unit may control the control units so as to synchronize and perform centralized management.
 W…被処理基板
 10…ロードロック室
 20、120…排気装置
 21…真空ポンプ
 22…モータ
 23…モータドライバ
 24…回生ユニット
 25…蓄電器
 29…電源
 30…制御ユニット
 41…大気側
 42…真空側
 100…ロードロック装置
 120…排気装置
W ... Substrate 10 ... Load lock chamber 20, 120 ... Exhaust device 21 ... Vacuum pump 22 ... Motor 23 ... Motor driver 24 ... Regenerative unit 25 ... Capacitor 29 ... Power supply 30 ... Control unit 41 ... Atmosphere side 42 ... Vacuum side 100 ... Load lock device 120 ... Exhaust device

Claims (6)

  1.  ロードロック室と、
     モータを有し、前記モータの動力により前記ロードロック室内の気体を排出する真空ポンプと、
     大気圧側から被処理基板が前記ロードロック室へ搬入されるごとに、前記ロードロック室内を減圧するように、前記真空ポンプの前記モータを駆動する駆動ユニットと、
     前記モータを減速させることで回生電力を得る回生ユニットと
     を具備するロードロック装置。
    A load lock room,
    A vacuum pump having a motor and discharging the gas in the load lock chamber by the power of the motor;
    A drive unit that drives the motor of the vacuum pump so as to depressurize the load lock chamber each time a substrate to be processed is carried into the load lock chamber from the atmospheric pressure side;
    A load lock device comprising: a regenerative unit that obtains regenerative power by decelerating the motor.
  2.  請求項1に記載のロードロック装置であって、
     少なくとも前記回生ユニットで得られた前記回生電力を蓄える蓄電器をさらに具備するロードロック装置。
    The load lock device according to claim 1,
    A load lock device further comprising a capacitor for storing at least the regenerative power obtained by the regenerative unit.
  3.  請求項2に記載のロードロック装置であって、
     前記真空ポンプの前記モータは、前記ロードロック室の前記大気側への開放後に、前記開放に起因した、前記大気側への開放前に比べて大きい負荷をかかる状態を有し、
     前記回生ユニットは、前記蓄電器に蓄えられた前記回生電力を、前記大きい負荷状態となる時の前記モータの駆動電力の一部として使用する
     ロードロック装置。
    The load lock device according to claim 2,
    The motor of the vacuum pump has a state in which a large load is applied after opening the load lock chamber to the atmosphere side compared to before opening to the atmosphere side due to the opening.
    The regenerative unit is a load lock device that uses the regenerative power stored in the capacitor as a part of drive power of the motor when the large load state occurs.
  4.  請求項1から3のうちいずれか1項に記載のロードロック装置であって、
     前記真空ポンプの前記モータは、前記ロードロック室の前記大気側への開放後に、前記開放に起因した、前記大気側への開放前に比べて大きい負荷がかかる状態を有し、
     前記大きい負荷状態となる時の前記モータの駆動のためのピーク電力より低い電力で待機時に前記モータを駆動するための電力の一部を、前記蓄電器に蓄えさせ、前記蓄電器に蓄えられた電力を前記ピーク電力の一部として前記駆動ユニットに使用させる制御手段をさらに具備するロードロック装置。
    The load lock device according to any one of claims 1 to 3,
    The motor of the vacuum pump has a state in which a large load is applied after opening the load lock chamber to the atmosphere side compared to before opening to the atmosphere side due to the opening.
    A part of the power for driving the motor during standby is stored in the capacitor at a power lower than the peak power for driving the motor when the large load state is reached, and the power stored in the capacitor is stored. A load lock device further comprising control means for causing the drive unit to be used as part of the peak power.
  5.  ロードロック室と、
     モータを有し、前記モータの動力により前記ロードロック室内に気体を排出する真空ポンプとを備えるロードロック装置に用いられる排気制御装置であって、
     大気圧側から被処理基板が前記ロードロック室へ搬入されるごとに、前記ロードロック室内を減圧するように、前記真空ポンプの前記モータを駆動する駆動ユニットと、
     前記モータを減速させることで回生電力を得る回生ユニットと
     を具備する排気制御装置。
    A load lock room,
    An exhaust control device used in a load lock device having a motor and a vacuum pump that discharges gas into the load lock chamber by the power of the motor;
    A drive unit that drives the motor of the vacuum pump so as to depressurize the load lock chamber each time a substrate to be processed is carried into the load lock chamber from the atmospheric pressure side;
    An exhaust control device comprising: a regenerative unit that obtains regenerative power by decelerating the motor.
  6.  大気圧側からロードロック室内に被処理基板を搬入し、
     前記ロードロック室に接続された真空ポンプのモータの動力により、前記ロードロック室内を減圧し、
     前記ロードロック室内の減圧のために駆動されている前記モータを減速させることで回生電力を得る
     ロードロック装置の動作方法。
    Bring the substrate to be processed into the load lock chamber from the atmospheric pressure side,
    The power of a vacuum pump motor connected to the load lock chamber is used to depressurize the load lock chamber,
    An operation method of a load lock device for obtaining regenerative electric power by decelerating the motor driven for pressure reduction in the load lock chamber.
PCT/JP2011/005342 2010-09-28 2011-09-22 Load lock apparatus, exhaust control apparatus, and method of operating load lock apparatus WO2012042800A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012536187A JP5493005B2 (en) 2010-09-28 2011-09-22 Load lock device, exhaust control device, and operation method of load lock device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010216696 2010-09-28
JP2010-216696 2010-09-28

Publications (1)

Publication Number Publication Date
WO2012042800A1 true WO2012042800A1 (en) 2012-04-05

Family

ID=45892292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005342 WO2012042800A1 (en) 2010-09-28 2011-09-22 Load lock apparatus, exhaust control apparatus, and method of operating load lock apparatus

Country Status (3)

Country Link
JP (1) JP5493005B2 (en)
TW (1) TW201304042A (en)
WO (1) WO2012042800A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008371A1 (en) * 2017-07-07 2019-01-10 Edwards Limited Power supply system for a vacuum pump and vacuum pump

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180990A (en) * 2000-12-11 2002-06-26 Ebara Corp Vacuum pump controlling device
JP2002198411A (en) * 2000-12-26 2002-07-12 Tokyo Electron Ltd Pressure control method, transfer apparatus, and cluster tool
JP2003278664A (en) * 2002-03-20 2003-10-02 Ricoh Co Ltd Control device for vacuum pump and vacuum device
JP2004197644A (en) * 2002-12-18 2004-07-15 Toyota Industries Corp Controller for vacuum pump
JP2004319761A (en) * 2003-04-16 2004-11-11 Tokyo Electron Ltd Vacuum treating device
JP2009092044A (en) * 2007-10-12 2009-04-30 Nabtesco Corp Control device and control method of vacuum pump
JP2010127107A (en) * 2008-11-25 2010-06-10 Toyota Industries Corp Operation control device in vacuum pump device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002127107A (en) * 2000-10-30 2002-05-08 Masaharu Iketo Tool body
JP3714308B2 (en) * 2002-08-01 2005-11-09 日産自動車株式会社 Control device for hybrid vehicle
JP4959664B2 (en) * 2008-10-14 2012-06-27 三菱重工業株式会社 Crane and container hanging method by crane

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180990A (en) * 2000-12-11 2002-06-26 Ebara Corp Vacuum pump controlling device
JP2002198411A (en) * 2000-12-26 2002-07-12 Tokyo Electron Ltd Pressure control method, transfer apparatus, and cluster tool
JP2003278664A (en) * 2002-03-20 2003-10-02 Ricoh Co Ltd Control device for vacuum pump and vacuum device
JP2004197644A (en) * 2002-12-18 2004-07-15 Toyota Industries Corp Controller for vacuum pump
JP2004319761A (en) * 2003-04-16 2004-11-11 Tokyo Electron Ltd Vacuum treating device
JP2009092044A (en) * 2007-10-12 2009-04-30 Nabtesco Corp Control device and control method of vacuum pump
JP2010127107A (en) * 2008-11-25 2010-06-10 Toyota Industries Corp Operation control device in vacuum pump device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008371A1 (en) * 2017-07-07 2019-01-10 Edwards Limited Power supply system for a vacuum pump and vacuum pump
GB2564426A (en) * 2017-07-07 2019-01-16 Edwards Ltd Power supply system for a vacuum pump and vacuum pump
CN110832205A (en) * 2017-07-07 2020-02-21 爱德华兹有限公司 Power supply system for vacuum pump and vacuum pump

Also Published As

Publication number Publication date
JP5493005B2 (en) 2014-05-14
TW201304042A (en) 2013-01-16
JPWO2012042800A1 (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP6454201B2 (en) Substrate transport method and substrate processing apparatus
US20240085481A1 (en) Method and apparatus for brushless electrical machine control
US8663489B2 (en) Substrate replacing method and substrate processing apparatus
US20090252582A1 (en) Processing thin wafers
JP6564642B2 (en) Substrate transfer chamber, substrate processing system, and gas replacement method in substrate transfer chamber
JPH06211306A (en) Substrate storage device
WO2012037312A2 (en) Low profile dual arm vacuum robot
JP5493005B2 (en) Load lock device, exhaust control device, and operation method of load lock device
US20140209240A1 (en) Vacuum processing apparatus
JP2006128578A (en) Substrate treatment method, substrate treatment system, and substrate treatment program
US9831112B2 (en) Substrate processing apparatus and substrate detaching method
JP2004319761A (en) Vacuum treating device
JP5466235B2 (en) Pressure reducing system and vacuum processing apparatus
US20220037182A1 (en) Apparatus and method for managing power of article transport vehicle in article transport system
KR20100040067A (en) Method of transferring wafer
EP3069443A1 (en) Method and apparatus for brushless electrical machine control
US20170117460A1 (en) Method of manufacturing magnetoresistive element and system for manufacturing magnetoresistive element
CN109755163B (en) Method for loading and unloading substrate in cavity
US10014145B2 (en) Vacuum exhaust method
KR100566697B1 (en) Multi-chamber system for fabricating semiconductor devices and method of fabricating semiconductor devices using thereof
US20230282503A1 (en) Substrate processing system and substrate transfer method
JP2012164990A (en) Substrate processing method
TWI816223B (en) Plasma generation apparatus, substrate processing apparatus using plasma generation apparatus, and plasma generation method
WO2022181598A1 (en) Substrate processing device and substrate processing method
WO2019134058A1 (en) Vacuum device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828366

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012536187

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828366

Country of ref document: EP

Kind code of ref document: A1