WO2012042577A1 - Photo-alignment exposure apparatus and photo-alignment exposure method - Google Patents

Photo-alignment exposure apparatus and photo-alignment exposure method Download PDF

Info

Publication number
WO2012042577A1
WO2012042577A1 PCT/JP2010/005915 JP2010005915W WO2012042577A1 WO 2012042577 A1 WO2012042577 A1 WO 2012042577A1 JP 2010005915 W JP2010005915 W JP 2010005915W WO 2012042577 A1 WO2012042577 A1 WO 2012042577A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarization control
substrate
optical system
control element
photo
Prior art date
Application number
PCT/JP2010/005915
Other languages
French (fr)
Japanese (ja)
Inventor
潤二 遠藤
潔 立川
川越 康弘
一栄 内山
義和 大谷
ヒョン・リョル ユン
橋詰 幸司
Original Assignee
株式会社エフケー光学研究所
信越エンジニアリング株式会社
ウィア・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エフケー光学研究所, 信越エンジニアリング株式会社, ウィア・コーポレーション filed Critical 株式会社エフケー光学研究所
Priority to CN201080070445.7A priority Critical patent/CN103403614B/en
Priority to PCT/JP2010/005915 priority patent/WO2012042577A1/en
Priority to JP2012536033A priority patent/JP5564695B2/en
Priority to KR1020137007734A priority patent/KR101462272B1/en
Publication of WO2012042577A1 publication Critical patent/WO2012042577A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • G02F1/133757Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle with different alignment orientations

Definitions

  • the present invention is used in the field of manufacturing a liquid crystal display panel, and in particular, for imparting orientation to an alignment film so that liquid crystal molecules are aligned in a desired angle and direction on a substrate used in a liquid crystal display device.
  • the present invention relates to a photo-alignment exposure apparatus and a photo-alignment exposure method.
  • Patent Document 1 discloses a method for manufacturing a liquid crystal display substrate in which a plurality of alignment regions having different alignment directions are dividedly formed using an exposure mask for a method using such an optical rubbing method.
  • Patent Document 2 discloses an electro-optic that performs photo-alignment processing by simultaneously irradiating the first polarized light emitted from the first region of the wire grid polarizer and the second polarized light emitted from the second region. An apparatus manufacturing method is disclosed.
  • the orientation strength in the first region and the second region cannot be made uniform, and in particular, the viewing angle performance cannot be improved.
  • the polarized light emitted from the wire grid polarizer is applied to the plate member via the condenser lens, and the image on the wire grid polarizer surface is formed on the plate member surface.
  • a photo-alignment exposure apparatus includes polarized light irradiation means and a polarization control element, an irradiation optical system for irradiating a beam on a substrate having an alignment film on the surface, and the substrate or the irradiation optical system.
  • Scanning means for moving at least a part and scanning the beam in a predetermined scanning direction with respect to the substrate, and the polarized light irradiation means emits linearly polarized light to the polarization control element, and the polarized light
  • the control element has unit polarization control regions arranged in a direction orthogonal to the scanning direction, and the polarization direction of the beam emitted from the unit polarization control region periodically changes every predetermined number of unit polarization control regions. In addition, it is substantially symmetric with respect to a plane parallel to the scanning direction and perpendicular to the substrate within the period.
  • the polarized light emitting means emits linearly polarized light in a direction substantially parallel to the scanning direction
  • the polarization control element is constituted by a half-wave plate
  • the high-speed axis of the unit polarization control region periodically changes for each predetermined number of unit polarization control regions, and is substantially symmetric with respect to a plane parallel to the scanning direction and perpendicular to the substrate within the period.
  • the irradiation optical system includes an imaging optical system that forms an image on the substrate at least in the direction substantially orthogonal to the scanning direction. It is a feature.
  • the irradiation optical system reduces and condenses the image on the surface of the polarization control element on the substrate in at least substantially the same direction as the scanning direction. It is characterized by having a system.
  • the reduction optical system has at least one cylindrical lens, and a fire surface formed by the cylindrical lens intersects the substrate so that at least one fire line is formed. It is characterized by forming.
  • the photo-alignment exposure method is a photo-alignment exposure method for irradiating a substrate having an alignment film on the surface with a beam that has passed through an irradiation optical system including a polarization control element. At least a portion is moved, and the beam is scanned in a predetermined scanning direction with respect to the substrate, and the polarization control element has unit polarization control regions arranged in a direction orthogonal to the scanning direction, The polarization direction of the beam irradiated from the unit polarization control region changes periodically for each predetermined number of unit polarization control regions, and is substantially symmetrical with respect to a plane parallel to the scanning direction and perpendicular to the substrate within the period. It is characterized by being.
  • the present invention it is possible to form an alignment film with uniform alignment intensity by making the polarization direction of the beam irradiated from the unit polarization control region substantially symmetric with respect to the scanning direction every predetermined number. Furthermore, since the alignment state has symmetry, a liquid crystal display device having excellent viewing angle performance can be realized.
  • the configuration can be simplified by using a half-wave plate for the polarization control element.
  • the imaging optical system in the irradiation optical system, it becomes possible to image the polarization control element surface on the surface of the substrate in a direction substantially orthogonal to the scanning direction. It is possible to suppress the influence of diffracted waves, scattered waves and the like generated between adjacent unit polarization control regions, and to form good alignment characteristics.
  • the light that has passed through the polarization control element is reduced or condensed on the surface of the substrate in substantially the same direction as the scanning direction. Therefore, it is possible to suppress the influence when there is a defect such as a scratch on the surface of the polarization control element, and to form good alignment characteristics.
  • produces with a polarization control element.
  • FIG. 1 is a diagram showing a configuration of a photo-alignment exposure apparatus according to an embodiment of the present invention.
  • the photo-alignment exposure apparatus of this embodiment has an irradiation optical system 11 and a scanning unit 15 as main components.
  • the irradiation optical system 11 is a means for imparting alignment characteristics to the alignment film disposed on the substrate 2 by irradiating the alignment film formed on the surface of the substrate 2 with an ultraviolet light beam. In this embodiment, it is comprised by the polarized light irradiation means 12 and the polarization control element 14.
  • the scanning unit 15 is a unit that scans the substrate 2 with the beam irradiated by the irradiation optical system 11 by moving the substrate 2 placed on the upper surface thereof in a predetermined scanning direction (Y-axis direction in the drawing). is there.
  • a scanning method in addition to moving the substrate 2 in this way, the irradiation optical system 11 may be moved, or both the substrate 2 and the irradiation optical system 11 may be moved.
  • the substrate 2 is directly irradiated with the irradiation light C from the polarization control element 14.
  • a mask that restricts the irradiation region to a slit shape may be provided between the polarization control element 14 and the substrate 2. By providing the mask, it becomes possible to expose only the effective irradiation light to the substrate 2 and to improve the alignment performance.
  • the substrate 2 to be exposed is installed.
  • the substrate 2 is installed such that the scanning direction is the vertical direction or the horizontal direction when used as a liquid crystal display device.
  • a photoreactive polymer such as polyimide is formed in a film shape.
  • the polymer film is denatured by irradiating the polymer film with linearly polarized light and liquid crystal molecules are applied to the polymer film in a subsequent process (not shown), the liquid crystal molecules are affected by the polymer film and specified. Align (orient) in the direction of.
  • a polymer film having this alignment characteristic is referred to as an alignment film.
  • a polymer film before imparting alignment characteristics is also referred to as an alignment film.
  • the molecular film is also referred to as an alignment film.
  • the polarized light irradiation means 12 includes a light source 12a, a reflecting mirror 12b, and a polarizer 12c.
  • the ultraviolet light irradiated from the light source 12a such as an ultraviolet lamp is adjusted to become parallel light by a reflecting mirror 12b such as a parabolic mirror, and irradiated as light source light A to the polarizer 12c side.
  • the polarizer 12c is means for extracting a linearly polarized light component in a predetermined direction from the light source light A.
  • linearly polarized light B substantially parallel to the Y-axis direction (scanning direction) is extracted from the light source light A by the polarizer 12c.
  • linearly polarized light substantially perpendicular to the Y-axis direction (scanning direction) may be used.
  • the polarization control element 14 is an element that rotates the polarization direction of the incident linearly polarized light by a predetermined angle, and is configured by a half-wave plate in the present embodiment.
  • FIG. 2 is a diagram showing a state of polarization direction control in the polarization control element 14.
  • FIG. 2A is a diagram showing the polarization direction of incident light incident on the polarization control element 14, and linearly polarized light B corresponds to this in FIG. 1.
  • FIG. 2B is a partially enlarged view of the polarization control element 14.
  • FIG. 2C is a diagram showing the polarization direction of the output light emitted from the polarization control element 14, and the irradiation light C corresponds to this in FIG.
  • FIGS. 2A to 2C actually overlap in the Z-axis direction, but are shown here shifted in the Y-axis direction for explanation.
  • the polarization control element 14 is formed to have unit polarization control regions 14a and 14b having a predetermined width in the X-axis direction, that is, the direction orthogonal to the scanning direction.
  • the unit polarization control regions 14a and 14b have a width in the X-axis direction of about several ⁇ m to several tens of ⁇ m, and the direction of the high-speed axis is different for each adjacent region.
  • the unit polarization control regions 14a and 14b are formed to have a repetitive pattern with a predetermined number (in this case, two) as a cycle. In the example shown in FIG. 2B, one period A1 and A2 is formed by the two unit polarization control regions 14a and 14b.
  • the unit polarization control regions 14a and 14b in the respective periods A1 and A2 are formed so that their high-speed axes are substantially symmetric with respect to the Y-axis direction, that is, the scanning direction.
  • the term “symmetry” as used herein is precisely divided into a plurality of units in the direction (X-axis direction) orthogonal to the scanning direction, such as a predetermined number (in this case, two) of unit polarization control regions 14a and 14b.
  • the polarization direction or the direction of the high-speed axis of the wave plate is parallel to the scanning direction and is substantially symmetric with respect to a plane perpendicular to the substrate 2 not shown here.
  • the high speed axis is inclined counterclockwise by the angle ⁇ with respect to the Y axis, whereas in the unit polarization control region 14b, the high speed axis is clockwise with respect to the Y axis. Is inclined at an angle ⁇ .
  • the plane of polarization is rotated so as to be symmetric with respect to the high-speed axis. That is, as shown in FIG. 2C, the polarization plane of the irradiation light output from the unit polarization control region 14a rotates counterclockwise by 2 ⁇ with respect to the Y axis. On the other hand, the irradiation light emitted from the unit polarization control region 14b rotates by an angle 2 ⁇ clockwise with respect to the Y axis.
  • the irradiation light irradiated from the polarization control element 14, that is, the irradiation light C irradiated onto the substrate 2 has a polarization direction with respect to the Y-axis direction for each of a predetermined number of unit polarization control regions 14a and 14b. It becomes almost symmetrical.
  • 22.5 °
  • the polarization planes between adjacent unit polarization control regions 14a and 14b are orthogonal to each other (90 °). can do.
  • the irradiation light C will give alignment characteristics to the alignment film of the substrate 2, but the polarization direction between the adjacent unit polarization control regions 14 a and 14 b is symmetric with respect to the scanning direction. It is possible to make the alignment strength of the alignment films uniform.
  • the polarization direction can be made substantially symmetrical with respect to the vertical direction or the horizontal direction of the liquid crystal display device, and the orientation has excellent viewing angle characteristics. It becomes possible to form characteristics.
  • the polarization direction of the incident light shown in FIG. 2A is not only parallel to the scanning direction as in the present embodiment, but also by making it perpendicular, the polarization direction of the irradiation light can be made symmetric. it can.
  • FIG. 3 is a diagram showing an example of the positional relationship between the substrate 2 and the pixels when incorporated in a liquid crystal display device.
  • each period A is arranged so as to correspond to one pixel 21.
  • the polarization direction of the irradiation light C used for the alignment is shown, and the pixels 21a, 21b, and 21c correspond to the alignment regions of the periods A1, A2, and A3, respectively.
  • Each orientation region is formed by a predetermined number (two) of unit polarization control regions 14a and 14b as described with reference to FIG.
  • the orientation directions in each period are orthogonal to each other.
  • 22.5 °
  • the high-speed axis of the polarization control element 14 is adjusted so that the alignment directions are orthogonal. Since the parameter used for the adjustment is only the angle ⁇ , it can be easily adjusted.
  • the polarization direction of the irradiation light from the polarization control element 14 is substantially symmetric with respect to the scanning direction for each predetermined number of unit polarization control regions, an alignment film having good alignment characteristics can be formed. It becomes possible.
  • the period A having two alignment regions is arranged corresponding to one pixel 21.
  • the alignment region is appropriately selected depending on the performance of the liquid crystal display device or the usage application.
  • Can be. 4 and 5 are diagrams showing a positional relationship between the substrate 2 and the pixels according to another embodiment.
  • FIG. 4 shows an embodiment in which one pixel 21 is arranged in correspondence with a period A having four alignment regions. Also in this embodiment, the polarization direction of each period A is symmetric with respect to the scanning direction. For example, by forming the polarization direction so that the orientation direction of the substrate 2 has a relationship of ⁇ 30 ° and ⁇ 60 ° with respect to the Y axis in each period A, an orientation film having excellent viewing angle performance is formed. Is possible.
  • FIG. 5 shows that each pixel is associated with one alignment region, and one period A is formed by two adjacent pixels 21a and 21b.
  • the relationship between the pixel 21 and the period A may not be a one-to-one relationship.
  • the pixels 21a and 21c in the figure are used as the left-eye pixels, the pixels 21b and 21d are used as the right-eye pixels, and it is possible to observe stereoscopic images using polarized glasses having polarization filters corresponding to the respective pixels 21. .
  • the substrate 2 is directly irradiated with the irradiation light C from the polarization control element 14.
  • the polarization control element 14 that can accommodate a large liquid crystal display device. Therefore, as shown in FIG. 6, a plurality of polarization control element units 14A to 14C each having a width of about 30 cm are formed. It has been made. Since the connection portions of the adjacent polarization control element units 14A to 14C are discontinuous boundaries, diffracted waves, scattered waves, and the like are generated at the connection portions, and interfere with the waves transmitted through the polarization control element units 14A to 14C. Then, blur and interference fringes are generated on the substrate 2. This phenomenon also occurs between adjacent unit polarization control regions. In the present embodiment, in order to cope with such a problem, an imaging optical system is provided in the irradiation optical system 11.
  • FIG. 7 is a diagram schematically showing a part of the irradiation optical system in the present embodiment.
  • the imaging optical system in the present embodiment includes a first lens 16a and a second lens 16b disposed between the polarization control element 14 and the substrate 2.
  • the first lens 16a is a lens having a focal length f1, and is arranged at a distance f1 from the surface of the polarization control element 14 to the image side.
  • the second lens 16b is a lens having a focal length f1, and is disposed at a distance f1 from the substrate 2 toward the object side.
  • the distance between the first lens 16a and the second lens 16b is set to 2 ⁇ f1.
  • the parallel light that has passed through the polarization control element 14 is once condensed through the first lens 16a, and again irradiated to the substrate 2 as parallel light through the second lens 16b, so that an image of the polarization control element 14 is obtained. Is imaged on the substrate 2 at the same magnification.
  • the imaging optical system of the present embodiment forms an image in at least the X-axis direction, that is, in a direction substantially orthogonal to the direction of the connection portion of the polarization control element units 14A to 14C (Y-axis direction: scanning direction). It is said. Accordingly, it is possible to suppress the influence of diffracted waves, scattered waves, etc. generated between adjacent polarization control element units 14A to 14C or between adjacent unit polarization control regions.
  • FIG. 7 an arrow indicating the direction of the fast axis of the wave plate is written on the end face of the polarization control element 14, and an arrow indicating the polarization direction of each region is written on the end face of the substrate 2.
  • these arrows should be described on the XY plane, but here, they are described on the paper for explanation.
  • the focal lengths of the first lens 16a and the second lens 16b are both set to f1, and the distance between the polarization control element 14, the first lens 16a, the second lens 16b, and the substrate 2 is set to f1: 2f1. :
  • the distance between the first lens 16a and the second lens 16b can be arbitrarily set.
  • FIG. 8 is a diagram schematically showing a part of an irradiation optical system in another embodiment.
  • the irradiation optical system 11 has both functions of an imaging optical system and a reduction optical system. I am trying to make it.
  • the first lens 16a and the second lens 16b are arranged as in FIG. 7, and the polarization control element 14 and the first lens are arranged.
  • a concave cylindrical lens 17 having no power in the XZ plane and having a negative power in the YZ plane is disposed between 16a.
  • the concave cylindrical lens 17 (“cylindrical lens” in the present invention) is a lens having a focal length ⁇ f2, and is disposed at a distance f2 from the polarization control element 14.
  • the surface of the polarization control element 14 is imaged on the surface of the substrate 2 in the XZ plane as described in the embodiment of FIG.
  • the parallel light that has passed through the polarization control element 14 in the YZ plane is diverged by the concave cylindrical lens 17.
  • the diverging light is changed into parallel light and emitted to the second lens 16b side.
  • the parallel light is reduced and irradiated onto the substrate 2.
  • the parallel light is condensed by arranging the substrate 2 at the rear focal position of the second lens 16b.
  • this embodiment is characterized in that a reduction optical system that reduces or condenses the irradiation light from the polarization control element 14 on the substrate 2 in a direction substantially parallel to the scanning direction is provided.
  • a reduction optical system that reduces or condenses the irradiation light from the polarization control element 14 on the substrate 2 in a direction substantially parallel to the scanning direction is provided.
  • the concave cylindrical lens 17 is provided on the object side of the first lens 16a.
  • the arrangement position may be on the image side.
  • a convex cylindrical lens is used when realizing a reduction function in the case where the first lens 16a is disposed closer to the substrate 2 than the focal point on the image side.
  • FIG. 9 is a diagram schematically showing a part of an irradiation optical system in another embodiment.
  • the irradiation optical system 11 has functions of an imaging optical system and a reduction optical system. It is also given together.
  • the first lens 16a and the second lens 16b function as an imaging optical system as in the previous embodiment.
  • the convex cylindrical lens 17 has no power in the XZ plane, has a positive power (focal length f3) in the YZ plane, and is disposed on the image side of the second lens 16b.
  • the convex cylindrical lens 18 has no power in the XZ plane, has a positive power (side focal length f4) in the YZ plane, and is disposed between the convex cylindrical lens 17 and the substrate 2. Yes.
  • the distance between the convex cylindrical lens 18 and the convex cylindrical lens 17 is set to be the sum of the focal length f4 of the convex cylindrical lens 18 and the focal length f3 of the convex cylindrical lens 17, that is, to form a confocal system. .
  • the parallel light emitted from the second lens 16b is again formed on the substrate 2 by forming parallel light by the convex cylindrical lenses 17 and 18 forming the confocal system.
  • the focal length f3 of the convex cylindrical lens 17 is larger than the focal length f4 of the convex cylindrical lens, it is possible to combine the functions of the reduction optical system and the parallel optical system.
  • the convex cylindrical lens 17 and the convex cylindrical lens 18 can achieve the same function even when a convex cylindrical lens and a concave cylindrical lens are combined.
  • FIG. 10 is a diagram schematically showing a part of an irradiation optical system in another embodiment.
  • a convex cylindrical lens 17 is used as a reduction optical system having the simplest configuration, and the focal point 31 is disposed so as to be farther from the substrate 2.
  • the convex cylindrical lens 17 has no power in the XZ plane, has a positive power in the YZ plane, and is disposed on the image side of the second lens 16b.
  • the cylindrical lens 17 does not have a lens action, so that the boundaries of the unit polarization regions 14a and 14b are imaged on the substrate 2 as in the previous embodiment. Is done.
  • the light beam 32a passing through the vicinity of the optical axis is collected at the focal point 31 at the tip of the substrate 2.
  • the light beam 32b slightly separated from the optical axis is still focused on the focal point 31 in the case of an ideal lens.
  • the light beam far from the optical axis usually has a focal length in a convex lens. The light is shortened and condensed at a position closer to the cylindrical lens 17 than the focal point 31. Further, the light beam 32c far from the optical axis is condensed at a position closer to the cylindrical lens 17 than the light beam 32b.
  • the envelope surfaces 33a, 33b are formed on both sides of the optical axis in the Y direction by the light beams 32a, 32b, 32c, 32d.
  • the envelope surface is in contact with the light beams 32a, 32b, 32c, and 32d, but is drawn slightly apart for convenience of illustration. Looking at the position of each light beam on the substrate 2, the light beams 32b and 32c are positioned outside the light beam 32a, and the light beam 32d is positioned closer to the optical axis than the light beams 32b and 32c.
  • the light rays 32a, 32b, 32c, and 32d that have been separated from the optical axis in the order of incidence on the substrate 2 are folded back on the substrate 2 around the light rays 32b and 32c. Therefore, the intensity is high because the light rays gather on the envelope surface for folding.
  • the intersecting line between the envelope surface and the substrate 2 is a circle in the case of a spherical lens, and a pair of parallel straight lines in a cylindrical lens as in this embodiment.
  • the line of intersection between the envelope surface (fire surface) and the substrate is defined as “fire line”.
  • the intensity distribution of the beam in the Y direction on the substrate 2 is bright because the middle of the fire line is focused, extremely bright on the fire line, and the beam intensity is zero outside the fire line. In other words, a straight beam having a very steep boundary can be obtained by using a fire wire. As a result, alignment characteristics can be effectively imparted to the alignment film.
  • the two cylindrical heating lines 34a and 34b are formed on the base material 2 by the convex cylindrical lens 17.
  • the other optical systems shown so far can use the beam including the horizontal heating line. The merits of obtaining a linear beam with a sharp boundary are the same.

Abstract

[PROBLEM] To provide a photo-alignment exposure apparatus and a photo-alignment exposure method, whereby an alignment film having excellent characteristics can be formed. [SOLUTION] A photo-alignment exposure apparatus (1) of the present invention is characterized in being provided with: a radiation optical system (11), which includes a polarization light radiating means (12) and a polarization control element (14), and which radiates a beam to a substrate (2) having an alignment film on the surface; and a scanning means (15), which moves at least the substrate (2) or a part of the radiation optical system (11), and scans the substrate (2) in the predetermined scanning direction with the beam. The photo-alignment exposure apparatus is also characterized in that the polarization light radiating means (12) outputs linear polarization light to the polarization control element (14), the polarization control element (14) has unit polarization control regions disposed in the direction that orthogonally intersects the scanning direction, and the polarization direction of the beam radiated from the unit polarization control regions periodically changes by the predetermined number of unit polarization control regions, and within the period, the polarization direction is substantially symmetric with respect to the flat surface that is parallel to the scanning direction and is substantially symmetric with respect to the flat surface that orthogonally intersects the substrate.

Description

光配向露光装置及び光配向露光方法Photo-alignment exposure apparatus and photo-alignment exposure method
 本発明は、液晶表示板製造分野にて使用されるものであって、特に、液晶表示装置に用いられる基板上において液晶分子が望ましい角度と方向に整列するよう配向膜に配向性を付与するための光配向露光装置並びに光配向露光方法に関するものである。 INDUSTRIAL APPLICABILITY The present invention is used in the field of manufacturing a liquid crystal display panel, and in particular, for imparting orientation to an alignment film so that liquid crystal molecules are aligned in a desired angle and direction on a substrate used in a liquid crystal display device. The present invention relates to a photo-alignment exposure apparatus and a photo-alignment exposure method.
 近年の液晶表示分野の利用が拡大し需要が増大するに従って、旧来の液晶表示装置の欠点であった視野角、コントラスト比、動画性能表示などの改善が強く求められている。特に液晶表示基板上にて、液晶分子に配向性を付与する配向膜においては、配向方向の均一化、プレチルト角の付与、単一画素内での複数領域の形成(マルチドメイン)など各種改善が進められている。 As the use of the liquid crystal display field in recent years expands and demand increases, improvements in the viewing angle, contrast ratio, video performance display, and the like, which have been disadvantages of conventional liquid crystal display devices, are strongly demanded. Especially for alignment films that give orientation to liquid crystal molecules on a liquid crystal display substrate, there are various improvements such as uniform alignment direction, pretilt angle, and formation of multiple regions within a single pixel (multi-domain). It is being advanced.
 従来、液晶表示基板上に形成されたポリマー層(配向膜)に配向特性を付与することの利点並びにそのための技術は広く知られている。このような配向特性を付与する方法として布ラビング法と称される方法があるが、この方法は、布を巻き付けたローラーを回転させつつ、基板を移動させて、表面のポリマー層を強く一方向に擦る処理である。 Conventionally, advantages of imparting alignment characteristics to a polymer layer (alignment film) formed on a liquid crystal display substrate and techniques therefor have been widely known. There is a method called a cloth rubbing method as a method for imparting such orientation characteristics. In this method, the substrate is moved while the roller around which the cloth is wound is rotated, and the polymer layer on the surface is strongly unidirectional. The process of rubbing.
 しかしながら、この布ラビング法では、静電気の発生、配向膜表面に生じる傷、粉じんの発生など様々な欠点が指摘されている。この布ラビング法の問題を回避するため、配向膜に紫外領域の偏光光を照射して配向特性を付与する光ラビング法が知られている。 However, in this cloth rubbing method, various disadvantages such as generation of static electricity, scratches on the alignment film surface, and generation of dust have been pointed out. In order to avoid this problem of the cloth rubbing method, there is known an optical rubbing method in which alignment films are imparted with alignment characteristics by irradiating polarized light in the ultraviolet region.
 特許文献1には、このような光ラビング法を使用した方法について、露光マスクを利用し、配向方向が異なる複数の配向領域を分割形成する液晶表示用基板の製造方法が開示されている。 Patent Document 1 discloses a method for manufacturing a liquid crystal display substrate in which a plurality of alignment regions having different alignment directions are dividedly formed using an exposure mask for a method using such an optical rubbing method.
 特許文献2には、ワイヤーグリッド偏光子の第1の領域から出射された第1の偏光と、第2の領域から出射された第2の偏光を同時に照射することで光配向処理を行う電気光学装置の製造方法について開示されている。 Patent Document 2 discloses an electro-optic that performs photo-alignment processing by simultaneously irradiating the first polarized light emitted from the first region of the wire grid polarizer and the second polarized light emitted from the second region. An apparatus manufacturing method is disclosed.
特開2007-219191号公報JP 2007-219191 A 特開2010-91906号公報JP 2010-91906 A
 特許文献1の方法では、複数回の露光処理が必要となるため処理工程に時間がかかってしまう。さらに、依然として露光マスクの位置合わせを行う必要があり、工程は複雑なものとなる。 In the method of Patent Document 1, since a plurality of exposure processes are required, the processing process takes time. Furthermore, it is still necessary to align the exposure mask, and the process becomes complicated.
 また、特許文献2の方法では、第1の領域と第2の領域における配向強度を均一にすることができず、特に、視野角性能の向上を図ることができない。そして、ワイヤーグリッド偏光子から出射された偏光は、集光レンズを介して板状部材に照射されており、ワイヤーグリッド偏光子面における像は、板状部材面にて結像するものとはなっていない。 In the method of Patent Document 2, the orientation strength in the first region and the second region cannot be made uniform, and in particular, the viewing angle performance cannot be improved. The polarized light emitted from the wire grid polarizer is applied to the plate member via the condenser lens, and the image on the wire grid polarizer surface is formed on the plate member surface. Not.
 そのため、本発明に係る光配向露光装置は、偏光光照射手段と、偏光制御素子とを含み、配向膜を表面に有する基板にビームを照射する照射光学系と、前記基板もしくは前記照射光学系の少なくとも一部を移動させ、前記基板に対して所定の走査方向に前記ビームを走査する走査手段と、を備え、前記偏光光照射手段は、直線偏光光を前記偏光制御素子に射出し、前記偏光制御素子は、前記走査方向に直交する方向に配列された単位偏光制御領域を有し、前記単位偏光制御領域から射出するビームの偏光方向は、所定数の単位偏光制御領域ごとに周期的に変化するとともに、前記周期内において前記走査方向に平行かつ前記基板と直交する平面に関して略対称であることを特徴とするものである。 Therefore, a photo-alignment exposure apparatus according to the present invention includes polarized light irradiation means and a polarization control element, an irradiation optical system for irradiating a beam on a substrate having an alignment film on the surface, and the substrate or the irradiation optical system. Scanning means for moving at least a part and scanning the beam in a predetermined scanning direction with respect to the substrate, and the polarized light irradiation means emits linearly polarized light to the polarization control element, and the polarized light The control element has unit polarization control regions arranged in a direction orthogonal to the scanning direction, and the polarization direction of the beam emitted from the unit polarization control region periodically changes every predetermined number of unit polarization control regions. In addition, it is substantially symmetric with respect to a plane parallel to the scanning direction and perpendicular to the substrate within the period.
 さらに、本発明に係る光配向露光装置において、前記偏光光射出手段は、前記走査方向に略平行な方向の直線偏光光を射出し、前記偏光制御素子は1/2波長板で構成され、前記単位偏光制御領域の高速軸は、所定数の単位偏光制御領域ごとに周期的に変化するとともに、前記周期内において前記走査方向に平行かつ前記基板と直交する平面に関して略対称であることを特徴とするものである。 Furthermore, in the photo-alignment exposure apparatus according to the present invention, the polarized light emitting means emits linearly polarized light in a direction substantially parallel to the scanning direction, and the polarization control element is constituted by a half-wave plate, The high-speed axis of the unit polarization control region periodically changes for each predetermined number of unit polarization control regions, and is substantially symmetric with respect to a plane parallel to the scanning direction and perpendicular to the substrate within the period. To do.
 さらに、本発明に係る光配向露光装置において、前記照射光学系は、前記偏光制御素子面を、少なくとも前記走査方向と略直交する方向において前記基板上に結像させる結像光学系を有することを特徴とするものである。 Furthermore, in the photo-alignment exposure apparatus according to the present invention, the irradiation optical system includes an imaging optical system that forms an image on the substrate at least in the direction substantially orthogonal to the scanning direction. It is a feature.
 さらに、本発明に係る光配向露光装置において、前記照射光学系は、前記偏光制御素子面の像を、少なくとも前記走査方向と略同じ方向において前記基板上に縮小あるいは集光して照射する縮小光学系を有することを特徴とするものである。 Further, in the photo-alignment exposure apparatus according to the present invention, the irradiation optical system reduces and condenses the image on the surface of the polarization control element on the substrate in at least substantially the same direction as the scanning direction. It is characterized by having a system.
 さらに、本発明に係る光配向露光装置において、前記縮小光学系は、少なくとも1つの円筒レンズを有し、前記円筒レンズによって形成される火面は、前記基板と交差することで少なくとも1本の火線を形成することを特徴とするものである。 Furthermore, in the photo-alignment exposure apparatus according to the present invention, the reduction optical system has at least one cylindrical lens, and a fire surface formed by the cylindrical lens intersects the substrate so that at least one fire line is formed. It is characterized by forming.
 また、本発明に係る光配向露光方法は、偏光制御素子を含む照射光学系を通過したビームを、配向膜を表面に有する基板に照射する光配向露光方法において、前記基板もしくは前記照射光学系の少なくとも一部を移動させ、前記基板に対して所定の走査方向に前記ビームを走査するとともに、前記偏光制御素子は、前記走査方向に直交する方向に配列された単位偏光制御領域を有し、前記単位偏光制御領域から照射されるビームの偏光方向は、所定数の単位偏光制御領域ごとに周期的に変化するとともに、前記周期内において前記走査方向に平行かつ前記基板と直交する平面に関して略対称であることを特徴とするものである。 The photo-alignment exposure method according to the present invention is a photo-alignment exposure method for irradiating a substrate having an alignment film on the surface with a beam that has passed through an irradiation optical system including a polarization control element. At least a portion is moved, and the beam is scanned in a predetermined scanning direction with respect to the substrate, and the polarization control element has unit polarization control regions arranged in a direction orthogonal to the scanning direction, The polarization direction of the beam irradiated from the unit polarization control region changes periodically for each predetermined number of unit polarization control regions, and is substantially symmetrical with respect to a plane parallel to the scanning direction and perpendicular to the substrate within the period. It is characterized by being.
 本発明では、単位偏光制御領域から照射されるビームの偏光方向を、所定数毎に走査方向に関して略対称とすることで、配向強度の揃った配向膜を形成することが可能となる。さらに配向状態が対称性を有することで、視野角性能の優れた液晶表示装置を実現することが可能となる。 In the present invention, it is possible to form an alignment film with uniform alignment intensity by making the polarization direction of the beam irradiated from the unit polarization control region substantially symmetric with respect to the scanning direction every predetermined number. Furthermore, since the alignment state has symmetry, a liquid crystal display device having excellent viewing angle performance can be realized.
 さらに、本発明では、偏光制御素子に1/2波長板を利用したものとすることで、構成の簡略化を図ることが可能となる。 Furthermore, in the present invention, the configuration can be simplified by using a half-wave plate for the polarization control element.
 さらに、本発明では、照射光学系に結像光学系を設けたことで、偏光制御素子面を、走査方向と略直交する方向において基板の表面に結像させることが可能となり、偏光制御素子の隣接する単位偏光制御領域間で生じる回折波、散乱波などの影響を抑え、良好な配向特性を形成することが可能となる。 Furthermore, in the present invention, by providing the imaging optical system in the irradiation optical system, it becomes possible to image the polarization control element surface on the surface of the substrate in a direction substantially orthogonal to the scanning direction. It is possible to suppress the influence of diffracted waves, scattered waves and the like generated between adjacent unit polarization control regions, and to form good alignment characteristics.
 さらに、本発明では、照射光学系に縮小光学系を設けたことで、偏光制御素子を通過した光を、走査方向と略同じ方向において前記基板の表面に縮小、あるいは、集光して照射させることが可能となり、偏光制御素子面に傷などの欠陥がある場合の影響を抑え、良好な配向特性を形成することが可能となる。 Furthermore, in the present invention, by providing a reduction optical system in the irradiation optical system, the light that has passed through the polarization control element is reduced or condensed on the surface of the substrate in substantially the same direction as the scanning direction. Therefore, it is possible to suppress the influence when there is a defect such as a scratch on the surface of the polarization control element, and to form good alignment characteristics.
本発明の実施形態に係る光配向露光装置の構成を示す図。The figure which shows the structure of the photo-alignment exposure apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る偏光制御素子による偏光方向を示す図。The figure which shows the polarization direction by the polarization control element which concerns on embodiment of this invention. 本発明の実施形態に係る偏光方向と画素の関係を示す図。The figure which shows the relationship between the polarization direction and pixel which concern on embodiment of this invention. 本発明の他の実施形態に係る偏光方向と画素の関係を示す図。The figure which shows the relationship between the polarization direction and pixel concerning other embodiment of this invention. 本発明の他の実施形態に係る偏光方向と画素の関係を示す図。The figure which shows the relationship between the polarization direction and pixel concerning other embodiment of this invention. 偏光制御素子で発生する問題について説明する図。The figure explaining the problem which generate | occur | produces with a polarization control element. 本発明の他の実施形態で用いられる照射光学系を示す図。The figure which shows the irradiation optical system used in other embodiment of this invention. 本発明の他の実施形態で用いられる照射光学系を示す図。The figure which shows the irradiation optical system used in other embodiment of this invention. 本発明の他の実施形態で用いられる照射光学系を示す図。The figure which shows the irradiation optical system used in other embodiment of this invention. 本発明の他の実施形態で用いられる照射光学系を示す図。The figure which shows the irradiation optical system used in other embodiment of this invention.
 図1は、本発明の実施形態に係る光配向露光装置の構成を示す図である。本実施形態の光配向露光装置は、照射光学系11、走査手段15を主な構成要素として有する。照射光学系11は、基板2の表面に形成された配向膜に対して紫外光のビームを照射することで、基板2上に配設される配向膜に配向特性を付与する手段であって、本実施形態では、偏光光照射手段12、偏光制御素子14にて構成されている。 FIG. 1 is a diagram showing a configuration of a photo-alignment exposure apparatus according to an embodiment of the present invention. The photo-alignment exposure apparatus of this embodiment has an irradiation optical system 11 and a scanning unit 15 as main components. The irradiation optical system 11 is a means for imparting alignment characteristics to the alignment film disposed on the substrate 2 by irradiating the alignment film formed on the surface of the substrate 2 with an ultraviolet light beam. In this embodiment, it is comprised by the polarized light irradiation means 12 and the polarization control element 14.
 走査手段15は、その上面に設置された基板2を所定の走査方向(図ではY軸方向)に移動させることで、照射光学系11にて照射されるビームを基板2上に走査させる手段である。走査の方法としては、このように基板2を移動させること以外に、照射光学系11を移動させる、あるいは、基板2と照射光学系11の両方を移動させることとしてもよい。本実施形態では偏光制御素子14からの照射光Cを基板2に直接照射しているが、偏光制御素子14と基板2の間に照射領域をスリット状に制限するマスクを設けることとしてもよい。マスクを設けることで、有効な照射光のみを基板2に露光させることが可能となり、配向性能の向上を図ることが可能となる。 The scanning unit 15 is a unit that scans the substrate 2 with the beam irradiated by the irradiation optical system 11 by moving the substrate 2 placed on the upper surface thereof in a predetermined scanning direction (Y-axis direction in the drawing). is there. As a scanning method, in addition to moving the substrate 2 in this way, the irradiation optical system 11 may be moved, or both the substrate 2 and the irradiation optical system 11 may be moved. In the present embodiment, the substrate 2 is directly irradiated with the irradiation light C from the polarization control element 14. However, a mask that restricts the irradiation region to a slit shape may be provided between the polarization control element 14 and the substrate 2. By providing the mask, it becomes possible to expose only the effective irradiation light to the substrate 2 and to improve the alignment performance.
 走査手段15には、露光対象となる基板2が設置される。本実施形態では、基板2の走査方向が、液晶表示装置として利用時における縦方向または横方向となるように設置される。露光対象となる基板2の表面には、ポリイミドなどの光反応性高分子が膜状に形成されている。この高分子膜上に直線偏光光を照射して高分子膜を変性せしめ、図示されていない以降の工程で高分子膜上に液晶分子を塗布すると、液晶分子が高分子膜から作用を受け特定の方向に整列(配向)する。本来は、この配向特性を有する高分子膜を配向膜と称するが、一般に配向特性を付与する以前の高分子膜も配向膜と称しており、本明細書においても配向特性を付与する以前の高分子膜も含めて配向膜と称する。 In the scanning means 15, the substrate 2 to be exposed is installed. In the present embodiment, the substrate 2 is installed such that the scanning direction is the vertical direction or the horizontal direction when used as a liquid crystal display device. On the surface of the substrate 2 to be exposed, a photoreactive polymer such as polyimide is formed in a film shape. When the polymer film is denatured by irradiating the polymer film with linearly polarized light and liquid crystal molecules are applied to the polymer film in a subsequent process (not shown), the liquid crystal molecules are affected by the polymer film and specified. Align (orient) in the direction of. Originally, a polymer film having this alignment characteristic is referred to as an alignment film. Generally, a polymer film before imparting alignment characteristics is also referred to as an alignment film. The molecular film is also referred to as an alignment film.
 偏光光照射手段12は、光源12a、反射鏡12b、偏光子12cにて構成されている。紫外線ランプなどの光源12aから照射された紫外光は、放物面鏡などの反射鏡12bなどで平行光となるように整えられ、光源光Aとして偏光子12c側に照射する。偏光子12cは、光源光Aから所定方向の直線偏光成分を取り出す手段である。本実施形態では、この偏光子12cによって光源光AからY軸方向(走査方向)に略平行な直線偏光光Bが取り出される。なお、Y軸方向(走査方向)に略垂直な直線偏光光を利用することとしてもよい。 The polarized light irradiation means 12 includes a light source 12a, a reflecting mirror 12b, and a polarizer 12c. The ultraviolet light irradiated from the light source 12a such as an ultraviolet lamp is adjusted to become parallel light by a reflecting mirror 12b such as a parabolic mirror, and irradiated as light source light A to the polarizer 12c side. The polarizer 12c is means for extracting a linearly polarized light component in a predetermined direction from the light source light A. In this embodiment, linearly polarized light B substantially parallel to the Y-axis direction (scanning direction) is extracted from the light source light A by the polarizer 12c. Note that linearly polarized light substantially perpendicular to the Y-axis direction (scanning direction) may be used.
 偏光制御素子14は、入射する直線偏光光の偏光方向を所定角度回転させる素子であって、本実施形態においては1/2波長板にて構成されている。図2は、この偏光制御素子14における偏光方向制御の様子を示した図である。図2(a)は、偏光制御素子14に入射する入射光の偏光方向を示した図であって、図1では直線偏光光Bがこれに相当する。図2(b)は、偏光制御素子14の部分拡大図を示した図である。図2(c)は、偏光制御素子14から射出される出力光の偏光方向を示した図であって、図1では照射光Cがこれに相当している。図2(a)~(c)は、実際にはZ軸方向に重なることとなるが、ここでは説明のためY軸方向にずらして表現している。 The polarization control element 14 is an element that rotates the polarization direction of the incident linearly polarized light by a predetermined angle, and is configured by a half-wave plate in the present embodiment. FIG. 2 is a diagram showing a state of polarization direction control in the polarization control element 14. FIG. 2A is a diagram showing the polarization direction of incident light incident on the polarization control element 14, and linearly polarized light B corresponds to this in FIG. 1. FIG. 2B is a partially enlarged view of the polarization control element 14. FIG. 2C is a diagram showing the polarization direction of the output light emitted from the polarization control element 14, and the irradiation light C corresponds to this in FIG. FIGS. 2A to 2C actually overlap in the Z-axis direction, but are shown here shifted in the Y-axis direction for explanation.
 図2(b)に示されるように偏光制御素子14は、X軸方向、すなわち、走査方向に直交する方向において、所定幅を有する単位偏光制御領域14a、14bを有して形成されている。単位偏光制御領域14a、14bは、X軸方向の幅が数μm~十数μm程度であって、隣接する領域毎に高速軸の方向が異なったものとなっている。特に本実施形態では、単位偏光制御領域14a、14bが所定数(この場合2個)を周期として繰り返しパターンを有するように形成されている。図2(b)に示す例では、2つの単位偏光制御領域14a、14bにて1つの周期A1、A2が形成される。 As shown in FIG. 2B, the polarization control element 14 is formed to have unit polarization control regions 14a and 14b having a predetermined width in the X-axis direction, that is, the direction orthogonal to the scanning direction. The unit polarization control regions 14a and 14b have a width in the X-axis direction of about several μm to several tens of μm, and the direction of the high-speed axis is different for each adjacent region. In particular, in the present embodiment, the unit polarization control regions 14a and 14b are formed to have a repetitive pattern with a predetermined number (in this case, two) as a cycle. In the example shown in FIG. 2B, one period A1 and A2 is formed by the two unit polarization control regions 14a and 14b.
 さらに、これら各周期A1、A2内における単位偏光制御領域14a、14bは、その高速軸がY軸方向、すなわち、走査方向に関して略対称となるように形成されている。なお、ここでいう対称とは、正確には、所定数(この場合2個)の単位偏光制御領域14a、14bのように走査方向と直交する方向(X軸方向)に複数個に分割するとともに、偏光方向もしくは波長板の高速軸の方向が走査方向に平行であり、かつ、ここには図示されていない基板2と直交する平面に関して略対称となることをいう。周期A1についてみると、単位偏光制御領域14aでは、高速軸がY軸に対して反時計回りに角度θ傾いているのに対し、単位偏光制御領域14bでは、高速軸がY軸に対し時計回りに角度θ傾いたものとなっている。 Further, the unit polarization control regions 14a and 14b in the respective periods A1 and A2 are formed so that their high-speed axes are substantially symmetric with respect to the Y-axis direction, that is, the scanning direction. The term “symmetry” as used herein is precisely divided into a plurality of units in the direction (X-axis direction) orthogonal to the scanning direction, such as a predetermined number (in this case, two) of unit polarization control regions 14a and 14b. The polarization direction or the direction of the high-speed axis of the wave plate is parallel to the scanning direction and is substantially symmetric with respect to a plane perpendicular to the substrate 2 not shown here. Looking at the period A1, in the unit polarization control region 14a, the high speed axis is inclined counterclockwise by the angle θ with respect to the Y axis, whereas in the unit polarization control region 14b, the high speed axis is clockwise with respect to the Y axis. Is inclined at an angle θ.
 このように形成された偏光制御素子14に直線偏光光が入射すると、高速軸に関して対称となるように偏光面が回転することとなる。すなわち、図2(c)に示されるように、単位偏光制御領域14aから出力される照射光の偏光面は、Y軸に対して反時計回りに角度2θ回転する。一方、単位偏光制御領域14bから射出される照射光は、Y軸に対して時計回りに角度2θ回転する。このように偏光制御素子14から照射される照射光、すなわち、基板2に照射される照射光Cは、所定数の単位偏光制御領域14a、14b毎に、その偏光方向がY軸方向に対して略対称となる。特に、θ=22.5°に設定することで、照射光の偏光方向を2θ=45°とし、隣接する単位偏光制御領域14a、14b間の偏光面が相互に直交(90°)するようにすることができる。 When linearly polarized light is incident on the polarization control element 14 thus formed, the plane of polarization is rotated so as to be symmetric with respect to the high-speed axis. That is, as shown in FIG. 2C, the polarization plane of the irradiation light output from the unit polarization control region 14a rotates counterclockwise by 2θ with respect to the Y axis. On the other hand, the irradiation light emitted from the unit polarization control region 14b rotates by an angle 2θ clockwise with respect to the Y axis. In this way, the irradiation light irradiated from the polarization control element 14, that is, the irradiation light C irradiated onto the substrate 2, has a polarization direction with respect to the Y-axis direction for each of a predetermined number of unit polarization control regions 14a and 14b. It becomes almost symmetrical. In particular, by setting θ = 22.5 °, the polarization direction of the irradiated light is set to 2θ = 45 °, and the polarization planes between adjacent unit polarization control regions 14a and 14b are orthogonal to each other (90 °). can do.
 照射光Cは、基板2の配向膜に配向特性を付与することとなるが、このように隣接する単位偏光制御領域14a、14b間における偏光方向が走査方向に関して対称となっているため、基板2の配向膜の配向強度を揃えることが可能となる。通常、Y軸方向は、液晶表示装置の縦方向あるいは横方向となるため、偏光方向を液晶表示装置の縦方向あるいは横方向に対して略対称とすることができ、視野角特性に優れた配向特性を形成することが可能となる。なお、図2(a)に示す入射光の偏光方向は、本実施形態のように走査方向と平行とすることのみならず、垂直とすることによっても照射光の偏光方向を対称とすることができる。 The irradiation light C will give alignment characteristics to the alignment film of the substrate 2, but the polarization direction between the adjacent unit polarization control regions 14 a and 14 b is symmetric with respect to the scanning direction. It is possible to make the alignment strength of the alignment films uniform. Usually, since the Y-axis direction is the vertical direction or the horizontal direction of the liquid crystal display device, the polarization direction can be made substantially symmetrical with respect to the vertical direction or the horizontal direction of the liquid crystal display device, and the orientation has excellent viewing angle characteristics. It becomes possible to form characteristics. Note that the polarization direction of the incident light shown in FIG. 2A is not only parallel to the scanning direction as in the present embodiment, but also by making it perpendicular, the polarization direction of the irradiation light can be made symmetric. it can.
 図3は、液晶表示装置に組み込まれた際における基板2と画素の位置関係の一例を示した図である。本実施形態では、各周期Aが1つの画素21に対応するように配置されている。図では配向に使用された照射光Cの偏光方向が示されたものとなっており、画素21a、21b、21cは、それぞれ周期A1、A2、A3の配向領域に対応している。各配向領域は、図2にて説明したように所定数(2個)の単位偏光制御領域14a、14bによって形成される。 FIG. 3 is a diagram showing an example of the positional relationship between the substrate 2 and the pixels when incorporated in a liquid crystal display device. In the present embodiment, each period A is arranged so as to correspond to one pixel 21. In the figure, the polarization direction of the irradiation light C used for the alignment is shown, and the pixels 21a, 21b, and 21c correspond to the alignment regions of the periods A1, A2, and A3, respectively. Each orientation region is formed by a predetermined number (two) of unit polarization control regions 14a and 14b as described with reference to FIG.
 この実施形態では各周期内での配向方向を相互に直交させることが好ましい。照射光Cの偏光方向と、液晶表示装置にて実際に使用されたときの配向方向が一致する場合には、図2で説明したようにθ=22.5°とすればよいが、偏光方向と配向方向は一致しない場合には、配向方向が直交するように偏光制御素子14の高速軸が調整される。調整にて使用されるパラメータは角度θだけであるため、簡易に調整することが可能である。 In this embodiment, it is preferable that the orientation directions in each period are orthogonal to each other. When the polarization direction of the irradiation light C coincides with the alignment direction when actually used in the liquid crystal display device, θ = 22.5 ° may be set as described with reference to FIG. And the alignment direction do not coincide with each other, the high-speed axis of the polarization control element 14 is adjusted so that the alignment directions are orthogonal. Since the parameter used for the adjustment is only the angle θ, it can be easily adjusted.
 以上、本実施形態では、偏光制御素子14からの照射光の偏光方向が、所定数の単位偏光制御領域毎に走査方向に関して略対称としているため、良好な配向特性の配向膜を形成することが可能となる。 As described above, in the present embodiment, since the polarization direction of the irradiation light from the polarization control element 14 is substantially symmetric with respect to the scanning direction for each predetermined number of unit polarization control regions, an alignment film having good alignment characteristics can be formed. It becomes possible.
 図3に示した実施形態では、1つの画素21に2つの配向領域を有する周期Aを対応させて配置させることとしていたが、配向領域は、液晶表示装置の性能、あるいは、使用用途にて適宜なものとすることができる。図4、図5は、他の実施形態に係る基板2と画素の位置関係を示した図である。 In the embodiment shown in FIG. 3, the period A having two alignment regions is arranged corresponding to one pixel 21. However, the alignment region is appropriately selected depending on the performance of the liquid crystal display device or the usage application. Can be. 4 and 5 are diagrams showing a positional relationship between the substrate 2 and the pixels according to another embodiment.
 図4は、1つの画素21に4つの配向領域を有する周期Aを対応させて配置した実施形態である。この実施形態においても各周期Aの偏光方向は、走査方向に対して対称となっている。例えば、各周期Aにおいて基板2の配向方向がY軸に対して±30°、±60°の関係となるように偏光方向を設定することで、視野角性能の優れた配向膜を形成することが可能となる。 FIG. 4 shows an embodiment in which one pixel 21 is arranged in correspondence with a period A having four alignment regions. Also in this embodiment, the polarization direction of each period A is symmetric with respect to the scanning direction. For example, by forming the polarization direction so that the orientation direction of the substrate 2 has a relationship of ± 30 ° and ± 60 ° with respect to the Y axis in each period A, an orientation film having excellent viewing angle performance is formed. Is possible.
 図5は、各画素に1つの配向領域を対応させたものであって、隣接する2つの画素21a、21bにて1つの周期Aが形成されている。このように、画素21と周期Aの関係は1対1の関係でなくてもよい。このような実施形態では、隣接する配向領域の偏光方向を直交させることで、立体視用の液晶表示装置に用いることが可能となる。図における画素21a、21cを左眼用画素、画素21b、21dを右眼用画素として用い、それぞれの画素21に対応した偏光フィルターを有する偏光眼鏡を用い、立体映像を観察することが可能となる。 FIG. 5 shows that each pixel is associated with one alignment region, and one period A is formed by two adjacent pixels 21a and 21b. Thus, the relationship between the pixel 21 and the period A may not be a one-to-one relationship. In such an embodiment, it is possible to use the liquid crystal display device for stereoscopic viewing by making the polarization directions of adjacent alignment regions orthogonal. The pixels 21a and 21c in the figure are used as the left-eye pixels, the pixels 21b and 21d are used as the right-eye pixels, and it is possible to observe stereoscopic images using polarized glasses having polarization filters corresponding to the respective pixels 21. .
 次に、本発明の他の実施形態について図6~図9を用いて説明する。図1で説明した実施形態では、偏光制御素子14からの照射光Cを直接、基板2に照射することとしている。現状、大型の液晶表示装置に対応できる大判の偏光制御素子14を製造することは困難であるため、図6に示されるように幅30cm程度の偏光制御素子ユニット14A~14Cを複数接続して形成されたものとなっている。隣接する偏光制御素子ユニット14A~14Cの接続部は不連続な境界であるので、接続部にて回折波、散乱波などが生じ、偏光制御素子ユニット14A~14Cを透過した波と干渉することで、基板2上にボケや干渉縞を発生させてしまう。この現象は、隣接する単位偏光制御領域間でも発生する。本実施形態では、このような問題に対応するため、照射光学系11に結像光学系を設けたものとなっている。 Next, another embodiment of the present invention will be described with reference to FIGS. In the embodiment described with reference to FIG. 1, the substrate 2 is directly irradiated with the irradiation light C from the polarization control element 14. At present, it is difficult to manufacture a large-sized polarization control element 14 that can accommodate a large liquid crystal display device. Therefore, as shown in FIG. 6, a plurality of polarization control element units 14A to 14C each having a width of about 30 cm are formed. It has been made. Since the connection portions of the adjacent polarization control element units 14A to 14C are discontinuous boundaries, diffracted waves, scattered waves, and the like are generated at the connection portions, and interfere with the waves transmitted through the polarization control element units 14A to 14C. Then, blur and interference fringes are generated on the substrate 2. This phenomenon also occurs between adjacent unit polarization control regions. In the present embodiment, in order to cope with such a problem, an imaging optical system is provided in the irradiation optical system 11.
 図7は、本実施形態における照射光学系の一部を模式的に示した図である。本実施形態における結像光学系は、偏光制御素子14と基板2間に配置された第1レンズ16aと、第2レンズ16bにて構成されている。第1レンズ16aは、焦点距離f1を有するレンズであって、偏光制御素子14面から像側に距離f1だけ隔てて配置される。一方、第2レンズ16bは、焦点距離f1を有するレンズであって、基板2から物体側に距離f1だけ隔てて配置される。第1レンズ16aと第2レンズ16b間の距離は2×f1に設定されている。 FIG. 7 is a diagram schematically showing a part of the irradiation optical system in the present embodiment. The imaging optical system in the present embodiment includes a first lens 16a and a second lens 16b disposed between the polarization control element 14 and the substrate 2. The first lens 16a is a lens having a focal length f1, and is arranged at a distance f1 from the surface of the polarization control element 14 to the image side. On the other hand, the second lens 16b is a lens having a focal length f1, and is disposed at a distance f1 from the substrate 2 toward the object side. The distance between the first lens 16a and the second lens 16b is set to 2 × f1.
 このような構成により、偏光制御素子14を通過した平行光は、第1レンズ16aを経て一旦集光し、第2レンズ16bを経て再び平行光として基板2を照射し、偏光制御素子14の像を等倍で基板2上に結像させる。 With such a configuration, the parallel light that has passed through the polarization control element 14 is once condensed through the first lens 16a, and again irradiated to the substrate 2 as parallel light through the second lens 16b, so that an image of the polarization control element 14 is obtained. Is imaged on the substrate 2 at the same magnification.
 このように本実施形態の結像光学系は、少なくともX軸方向、すなわち、偏光制御素子ユニット14A~14Cの接続部の方向(Y軸方向:走査方向)と略直交する方向に結像させることとしている。したがって、隣接する偏光制御素子ユニット14A~14C間、あるいは、隣接する単位偏光制御領域間で発生した回折波、散乱波などの影響を抑えることが可能となる。なお、図7では、偏光制御素子14の端面に波長板の高速軸の方向を示す矢印、基板2の端面にはそれぞれの領域の偏光方向を示す矢印が記入されている。本来、これらの矢印はX-Y平面上に記載されるべきものであるが、ここでは説明のため紙面上に記載している。 As described above, the imaging optical system of the present embodiment forms an image in at least the X-axis direction, that is, in a direction substantially orthogonal to the direction of the connection portion of the polarization control element units 14A to 14C (Y-axis direction: scanning direction). It is said. Accordingly, it is possible to suppress the influence of diffracted waves, scattered waves, etc. generated between adjacent polarization control element units 14A to 14C or between adjacent unit polarization control regions. In FIG. 7, an arrow indicating the direction of the fast axis of the wave plate is written on the end face of the polarization control element 14, and an arrow indicating the polarization direction of each region is written on the end face of the substrate 2. Originally, these arrows should be described on the XY plane, but here, they are described on the paper for explanation.
 本実施形態では、第1レンズ16a、第2レンズ16bの焦点距離を共にf1に選定するとともに、偏光制御素子14、第1レンズ16a、第2レンズ16bおよび基板2の間の距離をf1:2f1:f1とすることで、偏光制御素子14面を等倍で基板2上に結像させているが、偏光制御素子14の像を拡大あるいは縮小して基板2上に投影することとしてもよい。例えば、第2レンズ16bの焦点距離をf5(f5=α×f1、α:拡大率もしくは縮小率)と選定し、偏光制御素子14、第1レンズ16a、第2レンズ16bおよび基板2の間の距離をf1:(f1+f5):f5とすることで実現可能である。また基板2を照射する光を平行光とする必要がなければ、第1レンズ16aと第2レンズ16bの間の距離は任意に設定することが可能である。 In the present embodiment, the focal lengths of the first lens 16a and the second lens 16b are both set to f1, and the distance between the polarization control element 14, the first lens 16a, the second lens 16b, and the substrate 2 is set to f1: 2f1. : By setting f1, the surface of the polarization control element 14 is imaged on the substrate 2 at the same magnification, but the image of the polarization control element 14 may be enlarged or reduced and projected onto the substrate 2. For example, the focal length of the second lens 16b is selected as f5 (f5 = α × f1, α: enlargement ratio or reduction ratio), and between the polarization control element 14, the first lens 16a, the second lens 16b, and the substrate 2 is selected. This can be realized by setting the distance to f1: (f1 + f5): f5. Further, if the light for irradiating the substrate 2 does not need to be parallel light, the distance between the first lens 16a and the second lens 16b can be arbitrarily set.
 図8は、他の実施形態における照射光学系の一部を模式的に示した図であって、本実施形態では、照射光学系11に結像光学系と縮小光学系の機能を併せて持たせることとしている。具体的には、図8(a)、(b)に示されているように、図7と同様、第1レンズ16aと第2レンズ16bが配置され、さらに、偏光制御素子14と第1レンズ16aの間には、X-Z面内ではパワーを持たず、Y-Z面内にて負のパワーを有する凹シリンドリカルレンズ17が配置されている。この凹シリンドリカルレンズ17(本発明における「円筒レンズ」)は、焦点距離-f2を有するレンズであって、偏光制御素子14から距離f2隔てて配置される。 FIG. 8 is a diagram schematically showing a part of an irradiation optical system in another embodiment. In this embodiment, the irradiation optical system 11 has both functions of an imaging optical system and a reduction optical system. I am trying to make it. Specifically, as shown in FIGS. 8A and 8B, the first lens 16a and the second lens 16b are arranged as in FIG. 7, and the polarization control element 14 and the first lens are arranged. A concave cylindrical lens 17 having no power in the XZ plane and having a negative power in the YZ plane is disposed between 16a. The concave cylindrical lens 17 (“cylindrical lens” in the present invention) is a lens having a focal length −f2, and is disposed at a distance f2 from the polarization control element 14.
 図8(a)に示されるように、偏光制御素子14の面は、X-Z面内では、図7の実施形態で説明したように基板2面に結像される。一方、図8(b)に示されているようにY-Z面内では偏光制御素子14を通過した平行光は、凹シリンドリカルレンズ17にて発散される。第1レンズ16aでは、この発散光を平行光に変えて第2レンズ16b側に射出する。第2レンズでは16bは、この平行光を縮小して基板2上に照射する。本実施形態では、第2レンズ16bの後側焦点位置に基板2を配置することで平行光を集光させることとしている。 As shown in FIG. 8A, the surface of the polarization control element 14 is imaged on the surface of the substrate 2 in the XZ plane as described in the embodiment of FIG. On the other hand, as shown in FIG. 8B, the parallel light that has passed through the polarization control element 14 in the YZ plane is diverged by the concave cylindrical lens 17. In the first lens 16a, the diverging light is changed into parallel light and emitted to the second lens 16b side. In the second lens 16b, the parallel light is reduced and irradiated onto the substrate 2. In the present embodiment, the parallel light is condensed by arranging the substrate 2 at the rear focal position of the second lens 16b.
 このように本実施形態では、走査方向と略平行な方向において、偏光制御素子14からの照射光を基板2上に縮小あるいは集光させる縮小光学系を設けたことを特徴としている。このような構成では、例えば、偏光制御素子14などに傷などの欠陥がある場合においても、縮小機能を設けたことで露光面に対する影響を抑えることが可能となる。 As described above, this embodiment is characterized in that a reduction optical system that reduces or condenses the irradiation light from the polarization control element 14 on the substrate 2 in a direction substantially parallel to the scanning direction is provided. In such a configuration, for example, even when the polarization control element 14 or the like has a defect such as a scratch, it is possible to suppress the influence on the exposure surface by providing a reduction function.
 また、本実施形態では、凹シリンドリカルレンズ17を第1レンズ16aの物体側に設けた構成としているが、その配置位置は像側であってもよい。なお、第1レンズ16aの像側焦点よりも基板2側に配置する場合において縮小機能を実現する場合には、凸シリンドリカルレンズが使用される。 In this embodiment, the concave cylindrical lens 17 is provided on the object side of the first lens 16a. However, the arrangement position may be on the image side. Note that a convex cylindrical lens is used when realizing a reduction function in the case where the first lens 16a is disposed closer to the substrate 2 than the focal point on the image side.
 図9は、他の実施形態における照射光学系の一部を模式的に示した図であって、図8の実施形態と同様、照射光学系11に結像光学系と縮小光学系の機能を併せて持たせたものである。第1レンズ16aと第2レンズ16bは、前実施形態と同様に結像光学系として機能する。凸シリンドリカルレンズ17は、X-Z面内ではパワーを持たず、Y-Z面内にて正のパワー(焦点距離f3)を有し、第2レンズ16bの像側に配置されている。凸シリンドリカルレンズ18は、X-Z面内ではパワーを持たず、Y-Z面内にて正のパワー(側焦点距離f4)を有し、凸シリンドリカルレンズ17と基板2の間に配置されている。凸シリンドリカルレンズ18と凸シリンドリカルレンズ17の距離は、凸シリンドリカルレンズ18の焦点距離f4と凸シリンドリカルレンズ17の焦点距離f3の和となるように、すなわち、共焦点系をなすように配置されている。 FIG. 9 is a diagram schematically showing a part of an irradiation optical system in another embodiment. Like the embodiment of FIG. 8, the irradiation optical system 11 has functions of an imaging optical system and a reduction optical system. It is also given together. The first lens 16a and the second lens 16b function as an imaging optical system as in the previous embodiment. The convex cylindrical lens 17 has no power in the XZ plane, has a positive power (focal length f3) in the YZ plane, and is disposed on the image side of the second lens 16b. The convex cylindrical lens 18 has no power in the XZ plane, has a positive power (side focal length f4) in the YZ plane, and is disposed between the convex cylindrical lens 17 and the substrate 2. Yes. The distance between the convex cylindrical lens 18 and the convex cylindrical lens 17 is set to be the sum of the focal length f4 of the convex cylindrical lens 18 and the focal length f3 of the convex cylindrical lens 17, that is, to form a confocal system. .
 第2レンズ16bから射出された平行光は、この共焦点系をなす凸シリンドリカルレンズ17、18にて再び平行光を形成して基板2上に照射される。凸シリンドリカルレンズ17の焦点距離f3を凸シリンドリカルレンズの焦点距離f4よりも大きく設定することで、縮小光学系と平行光学系の機能を併せもたせることが可能となる。このように平行光にて露光を行うことで、さらなる配向特性の向上を図ることが可能となる。なお、この凸シリンドリカルレンズ17および凸シリンドリカルレンズ18は、凸シリンドリカルレンズと凹シリンドリカルレンズの組み合わせでも同様の機能を実現することが可能である。 The parallel light emitted from the second lens 16b is again formed on the substrate 2 by forming parallel light by the convex cylindrical lenses 17 and 18 forming the confocal system. By setting the focal length f3 of the convex cylindrical lens 17 to be larger than the focal length f4 of the convex cylindrical lens, it is possible to combine the functions of the reduction optical system and the parallel optical system. By performing exposure with parallel light in this manner, it is possible to further improve the alignment characteristics. The convex cylindrical lens 17 and the convex cylindrical lens 18 can achieve the same function even when a convex cylindrical lens and a concave cylindrical lens are combined.
 図10は、他の実施形態における照射光学系の一部を模式的に示した図である。簡単のために、最も単純な構成の縮小光学系として凸のシリンドリカルレンズ17を用い、その焦点31が基板2より遠方になるごとく配置されている。凸シリンドリカルレンズ17は、X-Z面内ではパワーを持たず、Y-Z面内にて正のパワーを有し、第2レンズ16bの像側に配置されている。図10(a)に示すようにX-Z面内においては、シリンドリカルレンズ17はレンズ作用を持たないため、前述の実施形態と同様に単位偏光領域14a、14bの境界は基板2上に結像される。 FIG. 10 is a diagram schematically showing a part of an irradiation optical system in another embodiment. For the sake of simplicity, a convex cylindrical lens 17 is used as a reduction optical system having the simplest configuration, and the focal point 31 is disposed so as to be farther from the substrate 2. The convex cylindrical lens 17 has no power in the XZ plane, has a positive power in the YZ plane, and is disposed on the image side of the second lens 16b. As shown in FIG. 10A, in the XZ plane, the cylindrical lens 17 does not have a lens action, so that the boundaries of the unit polarization regions 14a and 14b are imaged on the substrate 2 as in the previous embodiment. Is done.
 一方、図10(b)に示されるY-Z面内では、光軸近傍を通る光線32aは基板2の先の焦点31に集光される。光軸から少し離れた光線32bは、理想的なレンズであればやはり焦点31に集光されるが、現実のレンズには収差があるため、通常凸レンズでは光軸から離れた光線ほど焦点距離が短くなり、焦点31よりシリンドリカルレンズ17に近いところに集光される。さらに光軸から離れた光線32cは、光線32bよりさらにシリンドリカルレンズ17に近いところに集光される。 On the other hand, in the YZ plane shown in FIG. 10B, the light beam 32a passing through the vicinity of the optical axis is collected at the focal point 31 at the tip of the substrate 2. The light beam 32b slightly separated from the optical axis is still focused on the focal point 31 in the case of an ideal lens. However, since an actual lens has aberration, the light beam far from the optical axis usually has a focal length in a convex lens. The light is shortened and condensed at a position closer to the cylindrical lens 17 than the focal point 31. Further, the light beam 32c far from the optical axis is condensed at a position closer to the cylindrical lens 17 than the light beam 32b.
 こうして、光線32a、32b、32c、32dによって光軸のY方向両側に包絡面33a、33b(火面)が形成される。実際にはこの包絡面は光線32a、32b、32c、32dに接しているが、図示の都合上少し離して描かれている。基板2上の各光線の位置を見ると、光線32aより光線32b、32cが外側に位置し、光線32dは光線32b、32cより光軸に近いところに位置している。すなわち、入射時に光線32a、32b、32c、32dの順に光軸から離れていた光線が、基板2上では光線32b、32cあたりを境に折り返している。従って包絡面上では光線が折り返しのため集まるので強度が高い。 Thus, the envelope surfaces 33a, 33b (fire surface) are formed on both sides of the optical axis in the Y direction by the light beams 32a, 32b, 32c, 32d. Actually, the envelope surface is in contact with the light beams 32a, 32b, 32c, and 32d, but is drawn slightly apart for convenience of illustration. Looking at the position of each light beam on the substrate 2, the light beams 32b and 32c are positioned outside the light beam 32a, and the light beam 32d is positioned closer to the optical axis than the light beams 32b and 32c. That is, the light rays 32a, 32b, 32c, and 32d that have been separated from the optical axis in the order of incidence on the substrate 2 are folded back on the substrate 2 around the light rays 32b and 32c. Therefore, the intensity is high because the light rays gather on the envelope surface for folding.
 この包絡面と基板2の交線は、球面レンズの場合には円形、本実施形態のようにシリンドリカルレンズでは1対の平行な直線となる。本明細書では、この包絡面(火面)と基板の交線を「火線」と定義する。基板2上におけるY方向のビームの強度分布は、火線の中間は集光されているので明るく、火線上は極めて明るく、そして火線の外側はビーム強度ゼロである。すなわち、火線を利用すると境界が極めて急峻な直線上ビームを得ることができる。この結果、配向膜に配向特性を効果的に付与することができる。 The intersecting line between the envelope surface and the substrate 2 is a circle in the case of a spherical lens, and a pair of parallel straight lines in a cylindrical lens as in this embodiment. In this specification, the line of intersection between the envelope surface (fire surface) and the substrate is defined as “fire line”. The intensity distribution of the beam in the Y direction on the substrate 2 is bright because the middle of the fire line is focused, extremely bright on the fire line, and the beam intensity is zero outside the fire line. In other words, a straight beam having a very steep boundary can be obtained by using a fire wire. As a result, alignment characteristics can be effectively imparted to the alignment film.
 本実施形態では、凸シリンドリカルレンズ17にて基材2上に2本の火線34a、34bを形成することとしたが、これまで示してきた他の光学系でも、火線を含めたビームを利用できること、またそれにより境界の急峻な線状ビーム得られること等のメリットは同様である。 In the present embodiment, the two cylindrical heating lines 34a and 34b are formed on the base material 2 by the convex cylindrical lens 17. However, the other optical systems shown so far can use the beam including the horizontal heating line. The merits of obtaining a linear beam with a sharp boundary are the same.
 なお、本発明はこれらの実施形態のみに限られるものではなく、それぞれの実施形態の構成を適宜組み合わせて構成した実施形態も本発明の範疇となるものである。 Note that the present invention is not limited to these embodiments, and embodiments configured by appropriately combining the configurations of the respective embodiments also fall within the scope of the present invention.

Claims (6)

  1.  偏光光照射手段と、偏光制御素子とを含み、配向膜を表面に有する基板にビームを照射する照射光学系と、
     前記基板もしくは前記照射光学系の少なくとも一部を移動させ、前記基板に対して所定の走査方向に前記ビームを走査する走査手段と、を備え、
     前記偏光光照射手段は、直線偏光光を前記偏光制御素子に射出し、
     前記偏光制御素子は、前記走査方向に直交する方向に配列された単位偏光制御領域を有し、
     前記単位偏光制御領域から射出するビームの偏光方向は、所定数の単位偏光制御領域ごとに周期的に変化するとともに、前記周期内において前記走査方向に平行かつ前記基板と直交する平面に関して略対称であることを特徴とする
     光配向露光装置。
    An irradiation optical system that includes a polarized light irradiation means and a polarization control element, and irradiates a beam on a substrate having an alignment film on the surface;
    Scanning means for moving at least a part of the substrate or the irradiation optical system and scanning the beam in a predetermined scanning direction with respect to the substrate;
    The polarized light irradiation means emits linearly polarized light to the polarization control element,
    The polarization control element has unit polarization control regions arranged in a direction orthogonal to the scanning direction,
    The polarization direction of the beam emitted from the unit polarization control region periodically changes for each predetermined number of unit polarization control regions, and is substantially symmetrical with respect to a plane parallel to the scanning direction and perpendicular to the substrate within the period. There is provided a photo-alignment exposure apparatus.
  2.  前記偏光光射出手段は、前記走査方向に略平行または略直交する方向の直線偏光光を射出し、
     前記単位偏光制御領域は1/2波長板で構成され、
     前記単位偏光制御領域の高速軸は、所定数の単位偏光制御領域ごとに周期的に変化するとともに、前記周期内において前記走査方向に平行かつ前記基板と直交する平面に関して略対称であることを特徴とする
     請求項1に記載の光配向露光装置。
    The polarized light emitting means emits linearly polarized light in a direction substantially parallel to or substantially perpendicular to the scanning direction;
    The unit polarization control areas is constituted by a half-wave plate,
    The high-speed axis of the unit polarization control region periodically changes for each predetermined number of unit polarization control regions, and is substantially symmetrical with respect to a plane parallel to the scanning direction and perpendicular to the substrate within the period. optical alignment exposure apparatus according to claim 1,.
  3.  前記照射光学系は、前記偏光制御素子面を、少なくとも前記走査方向と略直交する方向において前記基板上に結像させる結像光学系を有することを特徴とする
     請求項1または請求項2に記載の光配向露光装置。
    3. The imaging optical system according to claim 1, wherein the irradiation optical system includes an imaging optical system that images the polarization control element surface on the substrate at least in a direction substantially orthogonal to the scanning direction. Photo-alignment exposure apparatus.
  4.  前記照射光学系は、前記偏光制御素子を通過した光束を、少なくとも前記走査方向と略同じ方向において、前記基板上に縮小あるいは集光して照射する縮小光学系を有することを特徴とする
     請求項1から請求項3の何れか1項に記載の光配向露光装置。
    The irradiation optical system includes a reduction optical system that irradiates the light flux that has passed through the polarization control element by reducing or condensing the light beam on the substrate in at least substantially the same direction as the scanning direction. The photo-alignment exposure apparatus according to any one of claims 1 to 3.
  5.  前記縮小光学系は、少なくとも1つの円筒レンズを有し、
     前記円筒レンズによって形成される火面は、前記基板と交差することで少なくとも1本の火線を形成することを特徴とする
     請求項4に記載の光配向露光装置。
    The reduction optical system has at least one cylindrical lens;
    The photo-alignment exposure apparatus according to claim 4, wherein the fire surface formed by the cylindrical lens intersects the substrate to form at least one fire wire.
  6.  偏光制御素子を含む照射光学系通過したビームを、配向膜を表面に有する基板に照射する光配向露光方法において、
     前記基板もしくは前記照射光学系を移動させ、前記基板に対して所定の走査方向に前記ビームを走査するとともに、
     前記偏光制御素子は、前記走査方向に直交する方向に配列された単位偏光制御領域を有し、
     前記単位偏光制御領域から射出されるビームの偏光方向は、所定数の単位偏光制御領域が隣接する境界を通り、前記基板と直交する平面に関して略対称であることを特徴とする
     光配向露光方法。
    In a photo-alignment exposure method of irradiating a substrate having an alignment film on the surface with a beam that has passed through an irradiation optical system including a polarization control element
    Moving the substrate or the irradiation optical system, scanning the beam in a predetermined scanning direction with respect to the substrate,
    The polarization control element has unit polarization control regions arranged in a direction orthogonal to the scanning direction,
    The photo-alignment exposure method, wherein a polarization direction of a beam emitted from the unit polarization control region is substantially symmetric with respect to a plane orthogonal to the substrate through a boundary where a predetermined number of unit polarization control regions are adjacent to each other.
PCT/JP2010/005915 2010-10-01 2010-10-01 Photo-alignment exposure apparatus and photo-alignment exposure method WO2012042577A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080070445.7A CN103403614B (en) 2010-10-01 2010-10-01 Light orientation exposure device and light orientation exposure method
PCT/JP2010/005915 WO2012042577A1 (en) 2010-10-01 2010-10-01 Photo-alignment exposure apparatus and photo-alignment exposure method
JP2012536033A JP5564695B2 (en) 2010-10-01 2010-10-01 Photo-alignment exposure apparatus and photo-alignment exposure method
KR1020137007734A KR101462272B1 (en) 2010-10-01 2010-10-01 Photo-allignmemt exposure apparatus and photo-allignmemt exposure apparatus method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/005915 WO2012042577A1 (en) 2010-10-01 2010-10-01 Photo-alignment exposure apparatus and photo-alignment exposure method

Publications (1)

Publication Number Publication Date
WO2012042577A1 true WO2012042577A1 (en) 2012-04-05

Family

ID=45892083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005915 WO2012042577A1 (en) 2010-10-01 2010-10-01 Photo-alignment exposure apparatus and photo-alignment exposure method

Country Status (4)

Country Link
JP (1) JP5564695B2 (en)
KR (1) KR101462272B1 (en)
CN (1) CN103403614B (en)
WO (1) WO2012042577A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105567B1 (en) * 2012-04-19 2012-12-26 信越エンジニアリング株式会社 Photo-alignment irradiation device
JP5131886B1 (en) * 2012-04-19 2013-01-30 信越エンジニアリング株式会社 Photo-alignment irradiation device
CN104395832A (en) * 2012-07-05 2015-03-04 株式会社V技术 Photo-alignment exposure device and photo-alignment exposure method
JP2021101207A (en) * 2019-12-24 2021-07-08 ウシオ電機株式会社 Polarized light irradiation device and polarized light irradiation method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267542B (en) * 2014-09-26 2017-06-30 京东方科技集团股份有限公司 A kind of smooth alignment apparatus, control device and light alignment method
KR102387205B1 (en) * 2015-07-31 2022-04-15 엘지디스플레이 주식회사 Photo Alignment Apparatus And Photo Alignment Method Using The Same
CN113031349B (en) * 2021-03-22 2021-12-31 惠科股份有限公司 Photo-alignment device and photo-alignment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277877A (en) * 2001-03-21 2002-09-25 Sharp Corp Liquid crystal display and its manufacturing method
JP2008145700A (en) * 2006-12-08 2008-06-26 Sharp Corp Liquid crystal display device and manufacturing method thereof
JP2010091906A (en) * 2008-10-10 2010-04-22 Seiko Epson Corp Method for manufacturing electro-optical device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629056A (en) * 1992-09-01 1997-05-13 Fujitsu Limited Liquid crystal display panel and process for producing the same
CA2157914C (en) * 1994-01-10 2008-04-22 Richard I. Mccartney Method of fabricating multi-domain, liquid crystal displays
US5818560A (en) * 1994-11-29 1998-10-06 Sanyo Electric Co., Ltd. Liquid crystal display and method of preparing the same
CN100407003C (en) * 2004-02-05 2008-07-30 证券票据有限公司 Method and apparatus for manufacturing an optical component
JP4764197B2 (en) * 2006-02-17 2011-08-31 株式会社ブイ・テクノロジー Manufacturing method of substrate for liquid crystal display
CN101581854A (en) * 2008-05-06 2009-11-18 香港科技大学 Method to obtain a controlled pretilt and azimuthal angles in liquid crystal cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277877A (en) * 2001-03-21 2002-09-25 Sharp Corp Liquid crystal display and its manufacturing method
JP2008145700A (en) * 2006-12-08 2008-06-26 Sharp Corp Liquid crystal display device and manufacturing method thereof
JP2010091906A (en) * 2008-10-10 2010-04-22 Seiko Epson Corp Method for manufacturing electro-optical device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105567B1 (en) * 2012-04-19 2012-12-26 信越エンジニアリング株式会社 Photo-alignment irradiation device
JP5131886B1 (en) * 2012-04-19 2013-01-30 信越エンジニアリング株式会社 Photo-alignment irradiation device
WO2013157114A1 (en) * 2012-04-19 2013-10-24 信越エンジニアリング株式会社 Photo-orienting illumination device
WO2013157113A1 (en) * 2012-04-19 2013-10-24 信越エンジニアリング株式会社 Photo-orienting illumination device
CN103765303A (en) * 2012-04-19 2014-04-30 信越工程株式会社 Photo-orienting illumination device
KR101462273B1 (en) 2012-04-19 2014-11-17 가부시키가이샤 에프케이 코우카쿠 겐큐쇼 Light illuminating apparatus for photo-alignment
KR101462274B1 (en) * 2012-04-19 2014-11-17 가부시키가이샤 에프케이 코우카쿠 겐큐쇼 Light illuminating apparatus for photo-alignment
CN104395832A (en) * 2012-07-05 2015-03-04 株式会社V技术 Photo-alignment exposure device and photo-alignment exposure method
JP2021101207A (en) * 2019-12-24 2021-07-08 ウシオ電機株式会社 Polarized light irradiation device and polarized light irradiation method
JP7415545B2 (en) 2019-12-24 2024-01-17 ウシオ電機株式会社 Polarized light irradiation device and polarized light irradiation method

Also Published As

Publication number Publication date
JPWO2012042577A1 (en) 2014-02-03
JP5564695B2 (en) 2014-07-30
CN103403614B (en) 2016-06-29
CN103403614A (en) 2013-11-20
KR101462272B1 (en) 2014-11-17
KR20130069773A (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5564695B2 (en) Photo-alignment exposure apparatus and photo-alignment exposure method
JP5704591B2 (en) Alignment processing method and alignment processing apparatus
EP2950145B1 (en) Illumination system for lithography
JP2008164729A (en) Light irradiator, light irradiation apparatus, and exposure method
TW201202787A (en) Exposure method for liquid crystal alignment film and apparatus thereof
US20160161728A1 (en) Confocal scanner and confocal microscope
CN102419516B (en) Illuminating device and illuminating method
JP6078843B2 (en) Photo-alignment exposure method and photo-alignment exposure apparatus
CN104834043B (en) Polarized light illumination device
CN108474984A (en) The manufacturing method of liquid crystal display panel, the manufacturing method of phase plate and wiregrating polarizer
JP2012088425A (en) Light emitting device
CN107885041B (en) A kind of big visual field exposure system
JP5131886B1 (en) Photo-alignment irradiation device
EP1020739A2 (en) Irradiation device for producing polarized light to optically align a liquid crystal cell element
JP2012078697A (en) Alignment layer exposure method for liquid crystal, its device and liquid crystal panel produced by applying the method
JP2012093692A (en) Light radiation device and light radiation method
JP2009260285A (en) Irradiation optical system, irradiation apparatus, and fabrication method for semiconductor device
TW201433826A (en) Illumination optical system, exposure device, and method for manufacturing device
US6532047B1 (en) Irradiation device for polarized light for optical alignment of a liquid crystal cell element
CN105739184B (en) Alignment apparatus, alignment system and alignment method
JP2014016380A (en) Optical orientation exposure equipment and optical alignment exposure method
TW201222167A (en) Exposure apparatus
JP2004233708A (en) Manufacturing method of liquid crystal display, and exposure lighting device
JP2006060085A (en) Laser irradiating device
KR20040100869A (en) Irradiation apparatus of polarization light for light orientation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012536033

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137007734

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857794

Country of ref document: EP

Kind code of ref document: A1