WO2012041979A1 - Antenne compacte a fort gain - Google Patents

Antenne compacte a fort gain Download PDF

Info

Publication number
WO2012041979A1
WO2012041979A1 PCT/EP2011/067026 EP2011067026W WO2012041979A1 WO 2012041979 A1 WO2012041979 A1 WO 2012041979A1 EP 2011067026 W EP2011067026 W EP 2011067026W WO 2012041979 A1 WO2012041979 A1 WO 2012041979A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna elements
radiating
substrate
elements
Prior art date
Application number
PCT/EP2011/067026
Other languages
English (en)
Inventor
Eduardo Motta Cruz
Original Assignee
Bouygues Telecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bouygues Telecom filed Critical Bouygues Telecom
Priority to EP11763686.0A priority Critical patent/EP2622678A1/fr
Priority to US13/824,230 priority patent/US9136593B2/en
Priority to CN201180046500.3A priority patent/CN103222110B/zh
Priority to JP2013530736A priority patent/JP5998144B2/ja
Priority to KR20137008405A priority patent/KR20130114652A/ko
Publication of WO2012041979A1 publication Critical patent/WO2012041979A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path

Definitions

  • the invention relates to the field of panel antennas, in particular those used in cellular networks.
  • the base stations in English, “Base Transceiver Station”, (BTS) are subject to significant constraints of height adjustment (churches' lampshades, bas-reliefs of the facades of protected buildings, etc.).
  • cellular networks use antennas with high isotropic gain to maximize their radio range. These gains are achieved through panels with heights that commonly vary between 1.2 m for the 1800/2100 MHz band and 2.4 m for the 900 MHz band.
  • a panel antenna comprises in known manner a plurality of antenna elements arranged in a vertical row on a substrate.
  • Figure 1 illustrates a panel antenna of known type.
  • the antenna elements Ei are supplied for example in a tree structure: the adjacent antenna elements E t are connected in pairs by means of a first power supply line Li to form four pairs of antenna elements.
  • the pairs are further connected in pairs by means of a second feed line L 2 to form two quadruplets of antenna elements and the quadruplets are finally connected to each other by means of a third feed line L 3 . It is noted that the supply lines are defined between two access points Ai of each antenna element 3 ⁇ 4.
  • FIGS. 2a and 2b respectively show a top view and a profile view of an antenna element Ei disposed on the substrate 1.
  • the antenna element Ei disposed on the substrate forms a radiating source known under the name of "patch”.
  • the dielectric substrate 1 1 has a dielectric constant ⁇ 1 and is arranged on a ground plane P, the antenna element Et being disposed on the substrate 1 1.
  • the antenna element Ei is disposed on the dielectric substrate 11 connected to a connector Ai for supplying the antenna element Ei.
  • FIGS. 3a and 3b show the ratio between the gain of the antenna and its height for two main frequency bands used in cellular networks (the 880-960 MHz band, called “900 MHz” band and the 1710-2170 band). MHz, called “2100 MHz”) at the center frequency of the frequency band of the antenna.
  • MHz called “2100 MHz”
  • the height of the antenna is imposed by the number of antenna elements Ei.
  • the more the antenna has a significant gain the more the number of necessary elements is important and the larger the antenna.
  • An object of the invention is to be able to increase the gain of an antenna without having to increase the size of the antenna.
  • Another object of the invention is to be able to reduce the height of an antenna without decreasing the gain of the antenna.
  • the invention relates to a panel antenna comprising a ground plane, a dielectric substrate, having a permittivity, the substrate being disposed on the ground plane, at least one radiating source, each radiating source consisting of a plurality of antenna elements, the antenna elements being disposed on the substrate and are further arranged consecutively with one another at a spacing of a distance less than a wavelength ⁇ , the corresponding wavelength ⁇ at the frequency of operation of the antenna.
  • the antenna of the invention is characterized in that it further comprises a dielectric superstrate, having a permittivity greater than the permittivity of the substrate, the superstrate being disposed above the antenna elements and in that the elements antennas are all identical and have in operation identical radiation characteristics.
  • the arrangement of the antenna elements constituting each radiating source makes it possible to obtain a reduction in the constant gain height or to obtain a gain increase at a constant height.
  • the antenna further comprises a dielectric superstrate, having a permittivity greater than the permittivity of the substrate, the superstrate being disposed on the antenna elements.
  • each radiating source comprises four antenna elements connected step by step in pairs by means of a first line supply, said pairs being connected to each other by means of a second power supply line, the second supply line comprising in its center an access point of the radiating source adapted for power supply. said radiating source;
  • each radiant source comprises a plurality of radiating sources, the radiating sources being arranged relative to each other in such a way that their access points are spaced apart by a distance equal to the distance between two antenna elements, each radiant source having identical radiation characteristics;
  • the antenna elements are arranged relative to each other with a spacing of e equal to ds (Nl) / N, where ds is the distance between two access points of two radiating sources and N is the number of antenna elements of each radiating source;
  • each radiating source preferably comprises between two and six antenna elements
  • the antenna elements are patches having a shape chosen from the following group: square, equilateral triangle, ellipsoidal;
  • the antenna elements are derived from the following technologies: horns or antennae flairs;
  • the invention also relates to a cellular communication network comprising a panel antenna according to the invention.
  • FIG. 4 illustrates a panel antenna according to a first embodiment of the invention
  • FIG. 5 illustrates a panel antenna according to a second embodiment of the invention
  • FIGS. 6a and 6b respectively show a view from above and a profile view of an antenna element of the antenna of the invention
  • FIG. 7 illustrates an elementary source according to the invention
  • FIG. 8 illustrates a known type of panel antenna having in operation the same gain as the antenna according to the first embodiment of the invention.
  • FIG. 9 illustrates a panel antenna of known type having the same height as the antenna according to the second embodiment of the invention.
  • antenna element means a radiating element having a conductive body, preferably flat.
  • radio source means the combination of several antenna elements.
  • panel antenna means a planar antenna comprising a plurality of antenna elements.
  • the panel antenna comprises a dielectric substrate 11 having a permittivity ! , the substrate 11 being disposed on a plane P of mass.
  • the panel antenna comprises at least one radiating source Si.
  • Each radiating source Si consists of a plurality of antenna elements Ey disposed relative to one another consecutively. Two consecutive antenna elements are spaced a distance E less than the wavelength ⁇ , the wavelength ⁇ corresponding to the antenna operating frequency.
  • the antenna of Figure 4 comprises two radiating sources Si, S 2 and the antenna of Figure 5 comprises six radiating sources.
  • each radiating source Si comprises four antenna elements En, E i2 , E i3 , E i4 connected, for example, in a pairwise arborescence by means of a first supply line Li.
  • Each antenna element comprises an access point Ay for the connection of the paired antenna elements via the power line Li.
  • the pairs of antenna elements Ey are connected by means of a second supply line L 2 .
  • the second power supply line L 2 comprises, at its center, an access point Ai of the radiating source Si.
  • Such an access point Ai is suitable for supplying the radiating source Si to which it relates.
  • the antenna of FIG. 5 comprising six radiating sources, thus comprises six access points Ai, A 2 , A 3 , A 4 , A 5 , A 6 .
  • the radiating sources Si are arranged relative to one another so that their access points Ai are spaced apart by a distance equal to the distance ds between two consecutive access points of two radiating sources Si.
  • the antenna elements Ey of a radiating source Si are arranged with respect to one another with a spacing d e equal to ds (Nl) / N, where ds is the distance between the radiating sources Si and N is the number of antenna elements Ey of each radiating source Si.
  • the distance d e is the distance between two consecutive access points Ay of each antenna element Ey.
  • each radiating source Si comprises four radiating elements Ey.
  • the antenna comprises (those of Figures 4 and 5) further a dielectric superstrate 12 having a permittivity ⁇ 2 greater than the permittivity ⁇ 1 of the substrate 11 which is arranged on the antenna elements Ey.
  • the antenna element Ey is thus immersed in a medium with a high permittivity which makes it possible to reduce the size of the element of antenna to reduce its operating wavelength, or rather to keep it and reduce its physical size.
  • the use of the superstrate 12 makes it possible to maintain radiation characteristics identical to an antenna element of greater height.
  • a resistor R is connected between the ground plane P and each antenna element Ey (see FIGS. 6a and 6b).
  • the resistance R is typically equal to one Ohm.
  • This resistor R serves to short-circuit one of the radiating sides of the antenna element. This short-circuit serves to transform the radiating element of size ⁇ / 2, consisting of two monopoles, each of size ⁇ / 4 on each side of the dipole, into a single monopole of size ⁇ / 4 and consequently allows to divide by two the electrical dimensions of the radiating element.
  • This resistor R also makes it possible to substantially increase the bandwidth of the antenna in its resonant behavior.
  • the permittivity ⁇ 1 is for example between 1 and 4 and is preferably equal to 2.2 and the permittivity ⁇ 2 is for example between 10 and 50 and is preferably equal to 30.
  • the side of the antenna element Ei is of 94 mm dimension while the side of the antenna element Ey (with the superstrate) has a dimension of 21.5 mm.
  • elements of Ey square antennas in the shape of an equilateral triangle or in ellipsoidal form, or else derived from the following technologies: cones or wired antennas which make it possible, by their small size or small radiating aperture, the association of sources.
  • the antenna illustrated in FIG. 4 makes it possible to reduce the height of a known type of panel antenna while conserving the same gain of 17 dBi.
  • Each radiating source has a gain of 14dBi in operation so that the antenna of FIG. 4 has a gain of 17dBi in operation.
  • the radiating sources Si and S 2 each having an access point Ai, A 2 are nested along the longitudinal axis of the antenna (see FIG. 4) so that the access points Ai of the sources Si are discarded. from the same distance ds.
  • each access point is arranged on a side opposite to the next access point.
  • the distance between two consecutive radiating elements belonging to two different radiant sources varies between ds / N and ds (N-1) / N, ie between 0.225 ⁇ and 0.675 ⁇ .
  • the antenna illustrated in FIG. 5 makes it possible to increase the gain of the antenna while maintaining the same height as a known type of panel antenna.
  • It comprises six radiating sources, each composed of four antenna elements (see Figure 7).
  • each radiating source has in operation a gain of 14 dBi so that the antenna of FIG. present in operation a gain of 21.8 dBi instead of 17 dBi obtained by the antenna of the same height as illustrated in Figure 9 (height equal to 7.2 ⁇ ).
  • the radiating sources each having an access point A 1 , A 2 , A 3 , A 4 , A 5 , A 6 are nested along the longitudinal axis of the antenna (see FIG. 5) so that the access points Ai of the sources Si are separated from the same distance ds.
  • each access point is arranged on a side opposite to the next access point.
  • the distance between two consecutive radiating elements belonging to two different radiant sources varies between ds / N and ds (N-1) / N, ie between 0.225 ⁇ and 0.675 ⁇ .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

L'invention concerne une antenne panneau comprenant un plan de masse (P), un substrat (11) diélectrique, ayant une permittivité (ε1), le substrat (11) étant disposé sur le plan de masse (P), au moins une source rayonnante (Si), chaque source rayonnante étant constituée d'une pluralité d'éléments d'antennes (Eij), les éléments d'antennes (Eij) étant disposés sur le substrat (11) et sont en outre disposés les uns par rapport aux autres consécutivement avec un espacement d'une distance (de) inférieure à une longueur d'onde λ, la longueur d'onde λ correspondant à la fréquence de fonctionnement de l'antenne, l'antenne est caractérisée en ce qu'elle comprend en outre un superstrat (12) diélectrique, ayant une permittivité ( ε2) supérieure à la permittivité (ε1) du substrat (11), le superstrat étant disposé au-dessus des éléments d'antennes (Eij) et en ce que les éléments d'antennes (Eij) sont tous identiques et possèdent en fonctionnement des caractéristiques de rayonnement identiques.

Description

ANTENNE COMPACTE A FORT GAIN
DOMAINE TECHNIQUE GENERAL
L'invention concerne le domaine des antennes panneaux, notamment celles utilisées dans des réseaux cellulaires.
ETAT DE LA TECHNIQUE
Les stations de base (en anglais, « Base Transceiver Station », (BTS)) sont soumises à d'importantes contraintes d'aménagement en hauteur (abat-sons des églises, bas-reliefs des façades de bâtiments protégés, etc).
Actuellement, les réseaux cellulaires font appel à des antennes à fort gain isotrope afin de maximiser leur portée radio. Ces gains sont obtenus grâce à des panneaux avec des hauteurs qui varient couramment entre 1,2 m pour la bande 1800/2100 MHz et 2,4 m pour la bande 900 MHz.
Une antenne panneau comprend de manière connue une pluralité d'éléments d'antennes disposés en rangée verticale sur un substrat.
La figure 1 illustre une antenne panneau de type connu.
L'antenne panneau de la figure 1 comprend huit éléments d'antennes Et (i=l à 8) disposés sur un substrat 11, chaque élément d'antenne Ei comprend un point d'accès Ai et sont espacés d'une distance de d'environ 0,9λ, λ étant la longueur d'onde dans le vide à la fréquence centrale de la bande de fréquences de l'antenne. La distance est entendue entre deux points d'accès Ai des éléments d'antennes Et.
Les éléments d'antennes Ei sont alimentés par exemple en arborescence : les éléments d'antennes Et contigus sont connectés deux à deux au moyen d'une première ligne d'alimentation Li pour former quatre paires d'éléments d'antennes.
Les paires sont en outre connectées deux à deux au moyen d'une seconde ligne d'alimentation L2 pour former deux quadruplets d'éléments d'antennes et les quadruplets sont enfin connectés entre eux au moyen d'une troisième ligne d'alimentation L3. On note que les lignes d'alimentation sont définies entre deux points d'accès Ai de chaque élément d'antenne ¾.
Les figures 2a et 2b illustrent respectivement une vue de dessus et une vue de profil d'un élément d'antenne Ei disposé sur le substrat 1 1. L'élément d'antenne Ei disposé sur le substrat forme une source rayonnante connue sous le nom de « patch ».
Le substrat 1 1 diélectrique a une constante ε1 diélectrique et est disposé sur un plan de masse P, l'élément d'antenne Et étant disposé sur le substrat 1 1.
L'élément d'antenne Ei est disposé sur le substrat 11 diélectrique connecté à un connecteur Ai pour alimenter l'élément d'antenne Ei.
Chaque élément d'antenne Ei présente en fonctionnement un gain unitaire d'environ 8dBi, l'antenne de la figure 1 présente donc un gain de 8dBi+101og(8)=17dBi pour une hauteur de 8 x 0,9λ=7,2λ.
Les tableaux des figures 3a et 3b montrent le rapport entre le gain de l'antenne et sa hauteur pour deux principales bandes de fréquences utilisées dans les réseaux cellulaires (la bande 880-960 MHz, dite « 900 MHz » et la bande 1710-2170 MHz, dite « 2100 MHz ») à la fréquence centrale de la bande de fréquences de l'antenne. On constate notamment que pour passer d'un gain de 15dBi à 17dBi il faut environ doubler la hauteur de l'antenne pour une fréquence centrale donnée.
On comprend donc que la hauteur de l'antenne est imposée par le nombre d'éléments d'antenne Ei. Ainsi, plus l'antenne possède un gain important, plus le nombre d'éléments nécessaires est important et plus l'antenne est grande.
Ceci n'est pas sans problème puisque la tendance actuelle est d'imposer des hauteurs maximales pour les antennes panneau voire des réductions de hauteur.
On connaît une solution pour diminuer la taille d'une antenne panneau qui consiste à supprimer des éléments d'antennes Ei. Or une telle suppression conduit à une perte en termes de gain d'antenne et donc une dégradation des performances de l'antenne. PRESENTATION DE L'INVENTION
Un objectif de l'invention est de pouvoir augmenter le gain d'une antenne sans avoir à augmenter la taille de l'antenne.
Un autre objectif de l'invention est de pouvoir réduire la hauteur d'une antenne sans diminution du gain de l'antenne.
Ainsi, l'invention concerne une antenne panneau comprenant un plan de masse, un substrat diélectrique, ayant une permittivité, le substrat étant disposé sur le plan de masse, au moins une source rayonnante, chaque source rayonnante étant constituée d'une pluralité d'éléments d'antennes, les éléments d'antennes étant disposés sur le substrat et sont en outre disposés les uns par rapport aux autres consécutivement avec un espacement d'une distance inférieure à une longueur d'onde λ, la longueur d'onde λ correspondant à la fréquence de fonctionnement de l'antenne.
L'antenne de l'invention est caractérisée en ce qu'elle comprend en outre un superstrat diélectrique, ayant une permittivité supérieure à la permittivité du substrat, le superstrat étant disposé au-dessus des éléments d'antennes et en ce que les éléments d'antennes sont tous identiques et possèdent en fonctionnement des caractéristiques de rayonnement identiques.
L'arrangement des éléments d'antenne constituant chaque source rayonnante permet d'obtenir une réduction de la hauteur à gain constant soit d'obtenir une augmentation du gain à hauteur constante.
De préférence, l'antenne comprend en outre un superstrat diélectrique, ayant une permittivité supérieure à la permittivité du substrat, le superstrat étant disposé sur les éléments d'antennes.
L'association du superstrat avec l'arrangement des éléments d'antenne permet d'obtenir soit la réduction de la hauteur à gain constant soit une augmentation du gain à hauteur constante.
L'invention est avantageusement complétée par les caractéristiques suivantes, prises seules ou en une quelconque de leur combinaison techniquement possible :
- chaque source rayonnante comprend quatre éléments d'antennes connectés de proche en proche par paires au moyen d'une première ligne d'alimentation, lesdites paires étant connectées l'une à l'autre au moyen d'une seconde ligne d'alimentation, la seconde ligne d'alimentation comprenant en son centre un point d'accès de la source rayonnante adapté pour l'alimentation de ladite source rayonnante ;
- elle comprend une pluralité de sources rayonnantes, les sources rayonnantes étant disposées l'une par rapport à l'autre de manière telle que leurs points d'accès sont espacés d'une distance égale à la distance entre deux éléments d'antennes, chaque source rayonnante possédant des caractéristiques de rayonnements identiques ;
- les éléments d'antennes sont disposés les uns par rapport aux autres avec un espacement de égal à ds(N-l)/N, où ds est la distance entre deux points d'accès de deux sources rayonnantes et N est le nombre d'éléments d'antennes de chaque source rayonnante ;
- chaque source rayonnante comprend préférentiellement entre deux et six éléments d'antennes ;
- les éléments d'antennes sont des patchs ayant une forme choisie parmi le groupe suivante : carrée, triangle équilatéral, ellipsoïdale ;
- les éléments d'antennes sont issus des technologies suivantes : cornets ou antennes flaires ;
- elle comprend une résistance connectée entre le plan de masse et chaque élément d'antenne.
L'invention concerne également un réseau de communication cellulaire comprenant une antenne panneau selon l'invention.
PRESENTATION DES FIGURES
D'autres caractéristiques et avantages de l'invention ressortiront encore de la description qui suit laquelle est purement illustrative et non limitative et doit être lue en regard des dessins annexés sur lesquels outres les figures 1, 2a, 2b, 3a et 3b déjà discutées : - la figure 4 illustre une antenne panneau conforme à un premier mode de réalisation de l'invention ;
- la figure 5 illustre une antenne panneau conforme à un second mode de réalisation de l'invention ;
- les figures 6a et 6b illustrent respectivement une vue de dessus et une vue de profil d'un élément d'antenne de l'antenne de l'invention ;
- la figure 7 illustre une source élémentaire conforme à l'invention ;
- la figure 8 illustre une antenne panneau de type connu présentant en fonctionnement un même gain que l'antenne conforme au premier mode de réalisation de l'invention. ;
- la figure 9 illustre une antenne panneau de type connu ayant la même hauteur que l'antenne conforme au seconde mode de réalisation de l'invention.
Sur l'ensemble des figures, les éléments similaires portent des références numériques identiques.
DESCRIPTION DETAILLEE DE L'INVENTION
On décrit ci-dessous deux modes de réalisation de l'invention en relation avec les figures 4 à 9.
On entend par « élément d'antenne » un élément rayonnant ayant un corps conducteur, de préférence plat.
On entend par « source rayonnante » l'association de plusieurs éléments d'antennes.
On entend par « antenne panneau » une antenne planaire comprenant plusieurs éléments d'antennes.
Pour chaque mode de réalisation, l'antenne panneau comprend un substrat 11 diélectrique ayant une permittivitée!, le substrat 11 étant disposé sur un plan P de masse. En outre, l'antenne panneau comprend au moins une source rayonnante Si.
Chaque source rayonnante Si est constituée d'une pluralité d'éléments d'antennes Ey disposés les uns par rapport aux autres consécutivement. Deux éléments d'antennes consécutifs sont espacés d'une distance de inférieure à la longueur d'onde λ, la longueur d'onde λ correspondant à la fréquence de fonctionnement de l'antenne.
L'antenne de la figure 4 comprend deux sources rayonnantes Si, S2 et l'antenne de la figure 5 comprend six sources rayonnantes.
De manière avantageuse, chaque source rayonnante Si comprend quatre éléments d'antennes En, Ei2, Ei3, Ei4 connectés par exemple en arborescence par paires au moyen d'une première ligne d'alimentation Li.
Chaque élément d'antenne comprend un point d'accès Ay pour la connexion des éléments d'antennes par paire par l'intermédiaire de la ligne d'alimentation Li.
Les paires d'élément d'antennes Ey sont connectées au moyen d'une seconde ligne d'alimentation L2. La seconde ligne d'alimentation L2 comprend, en son centre, un point d'accès Ai de la source rayonnante Si. Un tel point d'accès Ai est adapté pour l'alimentation de la source rayonnante Si auquel il se rapporte.
Comme on le comprend, il y a autant de point d'accès Ai que de sources rayonnantes Si. Ainsi l'antenne de la figure 5 comprenant six sources rayonnantes, comprend donc six points d'accès Ai, A2, A3, A4, A5, A6.
Les sources rayonnantes Si sont disposées l'une par rapport à l'autre de manière telle que leurs points d'accès Ai sont espacés d'une distance égale à la distance ds entre deux points d'accès consécutifs de deux sources rayonnantes Si.
En outre, les éléments Ey d'antennes d'une source rayonnante Si sont disposés les uns par rapport aux autres avec un espacement de égal à ds(N-l)/N, où ds est la distance entre les sources rayonnantes Si et N est le nombre d'éléments d'antennes Ey de chaque source rayonnante Si. La distance de est quant à elle la distance entre deux points d'accès Ay consécutifs de chaque élément d'antenne Ey.
De manière plus précise, en définissant un axe principal passant par les centres de symétrie de chaque élément d'antenne, les points d'accès Ay de chaque élément d'antenne sont situés sur un axe perpendiculaire à l'axe principal, les première et seconde lignes d'alimentation Li, L2 sont parallèles à l'axe principal. De manière préférée, chaque source rayonnante Si comprend quatre éléments rayonnants Ey.
En outre, l'antenne comprend (celles des figures 4 et 5) en outre un superstrat 12 diélectrique ayant une permittivité ε2 supérieure à la permittivité ε1 du substrat 11 qui est disposé sur les éléments d'antennes Ey.
Par rapport à un élément d'antenne Ei formant une source rayonnante de type patch, de type connu, l'élément d'antenne Ey est ainsi plongé dans un milieu à forte permittivité ce qui permet de réduire la taille de l'élément d'antenne pour réduire sa longueur d'onde de fonctionnement, ou plutôt de la conserver et de réduire sa dimension physique.
L'utilisation du superstrat 12 permet de conserver des caractéristiques de rayonnement identiques à un élément d'antenne de hauteur plus grande.
Par ailleurs, une résistance R est connectée entre le plan P de masse et chaque élément Ey d'antenne (voir figures 6a et 6b). La résistance R est typiquement égale à un Ohm. Cette résistance R sert à court-circuiter l'un des côtés rayonnants de l'élément d'antenne. Ce court-circuit sert à transformer l'élément rayonnant de taille λ/2, constitué de deux monopôles, chacun de taille λ/4 de chaque côté du dipôle, en un seul monopôle de taille λ/4 et par conséquent permet de diviser par deux les dimensions électriques de l'élément rayonnant.
Cette résistance R permet également d'augmenter sensiblement la bande passante de l'antenne dans son comportement résonnant.
Enfin, la permittivité ε1 est par exemple comprise entre 1 et 4 et est de préférence égale à 2,2 et la permittivité ε2 est par exemple comprise entre 10 et 50 et est de préférence égale à 30.
A titre d'exemple, par rapport à l'élément d'antenne Ei d'un patch de type connu, pour une fréquence de fonctionnement dans la bande GSM à la fréquence centrale de 920MHz le côté de l'élément d'antenne Ei est de dimension égale à 94 mm tandis que le côté de l'élément d'antenne Ey (avec le superstrat) est de dimension égale à 21,5 mm. Toujours à titre d'exemple, on peut envisager des éléments d'antennes Ey carrés, en forme de triangle équilatéral ou en forme ellipsoïdale ou bien encore issues des technologies suivantes : cornets ou antennes filaires qui permettent par leur faible taille ou faible ouverture rayonnante, l'association de sources.
Réduction de la hauteur - Gain constant
L'antenne illustrée sur la figure 4 permet de diminuer la hauteur d'une antenne panneau de type connu en conservant un même gain de 17 dBi.
Elle comprend deux sources rayonnantes Si, S2 espacées d'une distance ds = 0,9λ chacune composée de quatre éléments d'antennes espacés d'une distance de = 0,9λ (4-l)/4 = 0,675 λ (voir figure 7).
Chaque source rayonnante présente en fonctionnement un gain de 14dBi de sorte que l'antenne de la figure 4 présente en fonctionnement un gain de 17dBi.
Toutefois, par rapport à l'antenne telle qu'illustrée sur la figure 8 la hauteur est divisée par deux : on passe de 7,2 λ (8 x 0,9 λ) à 3,6λ (4 x 0,9 λ).
Les sources rayonnantes Si et S2 ayant chacune un point d'accès Ai, A2 sont imbriquées le long de l'axe longitudinal de l'antenne (voir figure 4) de sorte que les points d'accès Ai des sources Si soient écartés de la même distance ds. Pour une meilleure compréhension du schéma d'alimentation des différentes sources, chaque point d'accès est disposé sur un côté opposé au point d'accès suivant.
La distance entre deux éléments rayonnants consécutifs appartenant à deux sources rayonnantes différentes varie entre ds/N et ds(N-l)/N, soit entre 0,225 λ et 0,675 λ.
Augmentation du gain - hauteur constante
L'antenne illustrée sur la figure 5 permet d'augmenter le gain de l'antenne tout en conservant la même hauteur qu'une antenne panneau de type connu.
Elle comprend six sources rayonnantes, chacune composée de quatre éléments d'antennes (voir figure 7).
Comme dans le mode de réalisation précédent, chaque source rayonnante présente en fonctionnement un gain de 14dBi de sorte que l'antenne de la figure 5 présente en fonctionnement un gain de 21,8 dBi au lieu de 17dBi obtenu par l'antenne de même hauteur telle qu'illustrée sur la figure 9 (hauteur égale à 7,2λ).
Comme précédemment les sources rayonnantes ayant pour chacune un point d'accès Ai, A2, A3, A4, A5, A6 sont imbriquées le long de l'axe longitudinal de l'antenne (voir figure 5) de sorte que les points d'accès Ai des sources Si soient écartées de la même distance ds. Pour une meilleure compréhension du schéma d'alimentation des différentes sources, chaque point d'accès est disposé sur un côté opposé au point d'accès suivant.
La distance entre deux éléments rayonnants consécutifs appartenant à deux sources rayonnantes différentes varie entre ds/N et ds(N-l)/N, soit entre 0,225 λ et 0,675 λ.

Claims

REVENDICATIONS
1. Antenne panneau comprenant un plan de masse (P), un substrat (1 1) diélectrique, ayant une permittivité ( ^ ), le substrat (1 1) étant disposé sur le plan de masse (P), au moins une source rayonnante (Si), chaque source rayonnante étant constituée d'une pluralité d'éléments d'antennes (Ey), les éléments d'antennes (Ey) étant disposés sur le substrat (1 1) et sont en outre disposés les uns par rapport aux autres consécutivement avec un espacement d'une distance (de) inférieure à une longueur d'onde λ, la longueur d'onde λ correspondant à la fréquence de fonctionnement de l'antenne, l'antenne est caractérisée en ce qu'elle comprend en outre un superstrat (12) diélectrique, ayant une permittivité ( ε2 ) supérieure à la permittivité (ε^ du substrat (1 1), le superstrat étant disposé au-dessus des éléments d'antennes (Ey) et en ce que les éléments d'antennes (Ey) sont tous identiques et possèdent en fonctionnement des caractéristiques de rayonnement identiques.
2. Antenne selon la revendications 1 dans laquelle chaque source rayonnante (Si) comprend quatre éléments d'antennes (En, Ei2, Ei3, Ei4) connectés de proche en proche par paires au moyen d'une première ligne d'alimentation (Li), lesdites paires étant connectées l'une à l'autre au moyen d'une seconde ligne d'alimentation (L2), la seconde ligne d'alimentation (L2) comprenant en son centre un point d'accès (Ai) de la source rayonnante (Si) adapté pour l'alimentation de ladite source rayonnante (Si).
3. Antenne selon la revendication 2 comprenant une pluralité de sources rayonnantes (Si), les sources rayonnantes (Si) étant disposées l'une par rapport à l'autre de manière telle que leurs points d'accès (Ai) sont espacés d'une distance égale à la distance entre deux éléments d'antennes (Ey), chaque source rayonnante (Si) possédant des caractéristiques de rayonnements identiques.
4. Antenne selon l'une des revendications précédentes dans laquelle les éléments d'antennes (Ey) sont disposés les uns par rapport aux autres avec un espacement de égal à ds(N-l)/N, où ds est la distance entre deux points d'accès (Ai) de deux sources rayonnantes (Si) et N est le nombre d'éléments d'antennes (Ey) de chaque source rayonnante (Si).
5. Antenne selon l'une des revendications précédentes dans laquelle chaque source rayonnante (Si) comprend préférentiellement entre deux et six éléments d'antennes (Ey).
6. Antenne selon l'une des revendications précédentes dans laquelle les éléments d'antennes (Ey) sont des patchs ayant une forme choisie parmi le groupe suivante : carrée, triangle équilatéral, ellipsoïdale.
7. Antenne selon l'une des revendications précédentes dans laquelle les éléments d'antennes (Ey) sont issus des technologies suivantes : cornets ou antennes filaires.
8. Antenne selon l'une des revendications précédentes comprenant une résistance (R) connectée entre le plan de masse (P) et chaque élément d'antenne (Ey).
9. Réseau de communication cellulaire comprenant une antenne panneau selon l'une des revendications précédentes.
PCT/EP2011/067026 2010-09-29 2011-09-29 Antenne compacte a fort gain WO2012041979A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11763686.0A EP2622678A1 (fr) 2010-09-29 2011-09-29 Antenne compacte a fort gain
US13/824,230 US9136593B2 (en) 2010-09-29 2011-09-29 Compact high-gain antenna
CN201180046500.3A CN103222110B (zh) 2010-09-29 2011-09-29 紧凑型高增益天线
JP2013530736A JP5998144B2 (ja) 2010-09-29 2011-09-29 コンパクト高ゲインアンテナ
KR20137008405A KR20130114652A (ko) 2010-09-29 2011-09-29 패널 안테나 및 셀룰러 통신 네트워크

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1057864 2010-09-29
FR1057864A FR2965411B1 (fr) 2010-09-29 2010-09-29 Antenne compacte a fort gain

Publications (1)

Publication Number Publication Date
WO2012041979A1 true WO2012041979A1 (fr) 2012-04-05

Family

ID=44022367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/067026 WO2012041979A1 (fr) 2010-09-29 2011-09-29 Antenne compacte a fort gain

Country Status (7)

Country Link
US (1) US9136593B2 (fr)
EP (1) EP2622678A1 (fr)
JP (1) JP5998144B2 (fr)
KR (1) KR20130114652A (fr)
CN (1) CN103222110B (fr)
FR (1) FR2965411B1 (fr)
WO (1) WO2012041979A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2945380B1 (fr) * 2009-05-11 2011-07-08 Bouygues Telecom Sa Antenne multifaisceaux compacte.
KR102332120B1 (ko) * 2017-04-25 2021-11-30 삼성전자주식회사 메타 구조 안테나 및 메타 구조 배열
KR101952247B1 (ko) 2017-11-16 2019-02-26 홍익대학교 산학협력단 슈퍼스트레이트를 이용한 배열 안테나 장치 및 슈퍼스트레이트를 이용한 배열 안테나 튜닝 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027614A1 (fr) * 1996-12-18 1998-06-25 Allen Telecom Inc. Antenne a transformation de diversite
WO1999017403A1 (fr) * 1997-09-26 1999-04-08 Raytheon Company Antenne reseau a plaques en micro-ruban a double polarisation pour stations de base de systemes de communication personnelle
WO2001006595A2 (fr) * 1999-07-21 2001-01-25 Celletra Ltd. Configuration et commande d'un reseau d'antennes actif pour des systemes de communication cellulaire
WO2003009752A2 (fr) * 2001-07-26 2003-02-06 Chad Edward Bouton Capteurs electromagnetiques destines a des applications sur des tissus biologiques et techniques d'utilisation
WO2007126831A2 (fr) * 2006-03-30 2007-11-08 Powerwave Technologies, Inc. Antenne de station de base a double polarisation a large bande
FR2945380A1 (fr) * 2009-05-11 2010-11-12 Bouygues Telecom Sa Antenne multifaisceaux compacte.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3169371B2 (ja) * 1990-06-04 2001-05-21 ソニー株式会社 平面アレイアンテナ
FR2683952A1 (fr) * 1991-11-14 1993-05-21 Dassault Electronique Dispositif d'antenne microruban perfectionne, notamment pour transmissions telephoniques par satellite.
AU2002241819A1 (en) * 2001-01-04 2002-07-16 Arc Wireless Solutions, Inc. Low multipath interference microstrip array and method
JP4415295B2 (ja) * 2001-03-26 2010-02-17 Tdk株式会社 表面実装型アンテナ
DE102004016158B4 (de) * 2004-04-01 2010-06-24 Kathrein-Werke Kg Antenne nach planarer Bauart
US6999030B1 (en) * 2004-10-27 2006-02-14 Delphi Technologies, Inc. Linear polarization planar microstrip antenna array with circular patch elements and co-planar annular sector parasitic strips
US7675466B2 (en) * 2007-07-02 2010-03-09 International Business Machines Corporation Antenna array feed line structures for millimeter wave applications
CN102301533B (zh) * 2009-02-05 2014-03-26 日本电气株式会社 阵列天线及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998027614A1 (fr) * 1996-12-18 1998-06-25 Allen Telecom Inc. Antenne a transformation de diversite
WO1999017403A1 (fr) * 1997-09-26 1999-04-08 Raytheon Company Antenne reseau a plaques en micro-ruban a double polarisation pour stations de base de systemes de communication personnelle
WO2001006595A2 (fr) * 1999-07-21 2001-01-25 Celletra Ltd. Configuration et commande d'un reseau d'antennes actif pour des systemes de communication cellulaire
WO2003009752A2 (fr) * 2001-07-26 2003-02-06 Chad Edward Bouton Capteurs electromagnetiques destines a des applications sur des tissus biologiques et techniques d'utilisation
WO2007126831A2 (fr) * 2006-03-30 2007-11-08 Powerwave Technologies, Inc. Antenne de station de base a double polarisation a large bande
FR2945380A1 (fr) * 2009-05-11 2010-11-12 Bouygues Telecom Sa Antenne multifaisceaux compacte.

Also Published As

Publication number Publication date
JP2013542660A (ja) 2013-11-21
FR2965411B1 (fr) 2013-05-17
JP5998144B2 (ja) 2016-09-28
CN103222110B (zh) 2015-09-02
FR2965411A1 (fr) 2012-03-30
KR20130114652A (ko) 2013-10-17
CN103222110A (zh) 2013-07-24
US9136593B2 (en) 2015-09-15
EP2622678A1 (fr) 2013-08-07
US20130176188A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
EP0825673B1 (fr) Antenne plane à éléments superposés court-circuités
EP2441117B1 (fr) Antenne multibande à polarisation croisée
EP2377201B1 (fr) Antenne à dipoles croisés superposés avec éléments rayonnants à motif fractal volumique
EP1690317B1 (fr) Antenne en reseau multi-bande a double polarisation
FR2863111A1 (fr) Antenne en reseau multi-bande a double polarisation
FR2966986A1 (fr) Element rayonnant d'antenne
FR2625616A1 (fr) Antenne plane
FR2960710A1 (fr) Element rayonnant a double polarisation d'antenne multibande
EP1589608A1 (fr) Antenne compacte RF
EP1849213A1 (fr) Antenne dipole imprimee multibande
EP2430705B1 (fr) Antenne multifaisceaux compacte
WO2001035491A1 (fr) Antenne imprimee bi-bande
WO2012041979A1 (fr) Antenne compacte a fort gain
EP1550183A2 (fr) Element rayonnant large bande a double polarisation, de forme generale carree
EP2543111B1 (fr) Structure antennaire à dipôles
EP0484241B1 (fr) Antenne imprimée pour réseau à double polarisation
FR2987500A1 (fr) Dispositif a bande interdite electromagnetique, utilisation dans un dispositif antennaire et procede de determination des parametres du dispositif antennaire
WO2010106073A1 (fr) Antenne a double ailettes
EP0831550B1 (fr) Antenne-réseau polyvalente
EP0617480A1 (fr) Structure rayonnante à directivité variable
FR2906937A1 (fr) Decouplage des reseaux d'elements rayonnants d'une antenne
WO2008059161A1 (fr) Antenne agile en polarisation et frequence
EP2645483A1 (fr) Antenne multibande à gain amélioré

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11763686

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13824230

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013530736

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137008405

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011763686

Country of ref document: EP