WO2012039200A1 - Load drive device - Google Patents

Load drive device Download PDF

Info

Publication number
WO2012039200A1
WO2012039200A1 PCT/JP2011/067866 JP2011067866W WO2012039200A1 WO 2012039200 A1 WO2012039200 A1 WO 2012039200A1 JP 2011067866 W JP2011067866 W JP 2011067866W WO 2012039200 A1 WO2012039200 A1 WO 2012039200A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
circuit
relay
load
current
Prior art date
Application number
PCT/JP2011/067866
Other languages
French (fr)
Japanese (ja)
Inventor
圭祐 上田
晃則 丸山
中村 吉秀
宜範 生田
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Publication of WO2012039200A1 publication Critical patent/WO2012039200A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0822Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/085Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current making use of a thermal sensor, e.g. thermistor, heated by the excess current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/122Modifications for increasing the maximum permissible switched current in field-effect transistor switches

Definitions

  • the present invention relates to a load driving device that controls driving and stopping of a load by arranging a plurality of relay circuits in parallel on a wiring connecting a power source and a load and operating each relay circuit in conjunction with each other.
  • the present invention relates to a technique for protecting a circuit by immediately shutting off all the relay circuits including the relay circuit when an abnormality occurs in one relay circuit.
  • Loads such as lamps and motors mounted on the vehicle are provided with a MOSFET (hereinafter abbreviated as “FET”) between the battery and the load, and the FET is turned on and off to drive and stop the load.
  • FET MOSFET
  • I have control.
  • a single semiconductor switch may not be able to withstand the steady current of the load. Therefore, conventionally, two relay circuits connected in parallel to each other are provided between a power source and a load, and a semiconductor switch provided in each relay circuit is operated in conjunction with each other, whereby a load current is supplied to two semiconductors. Distributed to switches.
  • FIG. 1 is a block diagram showing a configuration of a load driving device having a function of shutting off semiconductor switches of all other relay circuits when an abnormality occurs in one of a plurality of relay circuits using a microcomputer. It is. As shown in FIG. 1, each of the relay circuits 101 and 102 includes FETs (T1) and (T1a), which are connected in parallel to distribute the current flowing through the load RL.
  • FETs (T1) and (T1a) which are connected in parallel to distribute the current flowing through the load RL.
  • Each of the relay circuits 101 and 102 includes input terminals 111 and 115, and also includes diagnosis terminals 112 and 116.
  • the input terminals 111 and 115 are connected to the output terminal 121 of the microcomputer 103, and the diagnosis terminals are connected.
  • Reference numerals 112 and 116 are connected to an input terminal 122 of the microcomputer 103.
  • the drive command signal for the load RL is output from the microcomputer 103
  • the drive command signal is transmitted to the relay circuits 101 and 102 via the output terminal 121 and the input terminals 111 and 115.
  • the FETs (T1) and (T1a) are turned on and off.
  • a diagnosis signal abnormality detection signal
  • the diagnosis signal is output from the microcomputer 103 via the input terminal 122. Is input.
  • the microcomputer 103 When the microcomputer 103 detects the input of the diagnosis signal, the microcomputer 103 stops outputting the drive command signal, shuts off the FETs (T1) and (T1a) of the relay circuits 101 and 102, and protects the load circuit from overcurrent or overheating. To do.
  • the present invention has been made in order to solve the above-described conventional problems, and the object of the present invention is to provide a simple apparatus configuration and to detect an abnormality in one relay circuit among a plurality of relay circuits.
  • An object of the present invention is to provide a load driving device capable of protecting a load circuit by immediately stopping all relay circuits when a detection signal is generated.
  • a first aspect of the present invention includes a relay circuit group in which a plurality of relay circuits including a semiconductor switch and a control circuit for controlling on / off of the semiconductor switch are connected in parallel.
  • the relay circuit group is arranged in an electric path connecting a power source and a load, and the semiconductor switches are operated in conjunction with each other to drive and stop the load.
  • a drive control circuit that outputs a drive signal; and an abnormality control circuit that sets the abnormality detection terminal to a second level when an abnormality occurs in the relay circuit.
  • the force detection terminals are connected to each other, and the abnormality detection terminals are connected to each other.
  • the abnormality detection terminal When the drive signal is output to the semiconductor switch in at least one of the relay circuits, the abnormality detection terminal is When the second level is set, the input terminal is set to the second level, and the drive signals of all the relay circuits are cut off.
  • Each of the relay circuits further includes a current detection sensor that detects a current flowing through the semiconductor switch, and a current determination unit that detects that a current detected by the current detection sensor has reached a preset threshold current.
  • the abnormality control circuit may set the abnormality detection terminal to the second level when the detected current exceeds the threshold current.
  • the first level may be one of the H level and the L level
  • the second level may be the other of the H level and the L level.
  • the abnormality detection terminal of the relay circuit that is the source of the abnormality when an abnormality occurs in at least one of the plurality of relay circuits, the abnormality detection terminal of the relay circuit that is the source of the abnormality, In addition, the abnormality detection terminals of all other relay circuits are set to the second level (for example, L level). Further, since each abnormality detection terminal is connected to the input terminal of each relay circuit, the input terminal is set to the second level, and the semiconductor switch provided in each relay circuit is shut off. Therefore, the entire load circuit can be protected from overcurrent and overheating with a simple configuration without using a device such as a microcomputer.
  • FIG. 1 is an explanatory diagram showing a configuration of a conventional load driving device.
  • FIG. 2 is a circuit diagram showing a configuration of a load driving device according to an embodiment of the present invention.
  • FIG. 3 is a timing chart showing a change in current flowing through each semiconductor switch and a change in each signal in the load driving device according to the embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of an overcurrent detection device according to an embodiment of the present invention.
  • relay circuits 11, 11a connected in parallel to each other are provided between a power source VB and a load RL, and FETs provided in the relay circuits 11, 11a (The driving and stopping of the load RL are controlled by operating T1) and (T1a) in an on / off manner. That is, the power supply VB (the output voltage is also indicated by the same reference symbol VB) is connected to the power supply terminals TB3 and TB3a of the relay circuits 11 and 11a, respectively, and the output terminals TB4 and TB4a are connected to one end of the load RL. The other end of the load RL is grounded.
  • the input terminals TB1 and TB1a of the relay circuits 11 and 11a are connected to a switch circuit (not shown) for controlling the on / off of the FETs (T1) and (T1a), and a control signal is supplied from the switch circuit. Is done. Further, the input terminals TB1 and TB1a are connected to diagnostic terminals (abnormality detection terminals) TB2 and TB2a of the relay circuits 11 and 11a, respectively.
  • the relay circuit 11 shown in FIG. 2 includes an N-type MOSFET (T1) (semiconductor switch, hereinafter abbreviated as “FET”) and a current sensor (current detection sensor) 17 that detects a current flowing through the FET (T1).
  • T1 semiconductor switch
  • FET current detection sensor
  • a series connection circuit is provided, the drain of the FET (T1) is connected to the power supply terminal TB3, and one end of the current sensor 17 is connected to the output terminal TB4.
  • an input determination circuit 14 connected to the input terminal TB1, a drive circuit (drive control circuit) 12 that outputs a drive signal to the gate of the FET (T1), a charge pump 13 that supplies a drive voltage to the drive circuit 12, and A current determination circuit (current determination means) 15 for determining whether or not the detection current Id detected by the current sensor 17 exceeds a preset threshold current Ith, and a diagnosis signal when the detection current Id exceeds the threshold current Ith
  • a diagnostic control circuit (abnormality control circuit) 16 for outputting (abnormality detection signal) and turned on when a diagnostic signal is output from the diagnostic control circuit 16, and the diagnostic terminal (abnormality detection terminal) TB2 is set to L level.
  • N-type MOSFET (T2) hereinafter abbreviated as FET (T2)
  • T2 N-type MOSFET (hereinafter abbreviated as FET (T2)
  • T2 N-type MOSFET (T2)
  • T2 N-type MOSFET (hereinafter abbre
  • the current sensor 17 is, for example, a shunt resistor, and the current flowing through the FET (T1) (the current flowing from the power supply terminal TB3 to the output terminal TB4) is not affected even during the OFF operation of the FET (T1). This is the type of sensor to be measured.
  • the input determination circuit 14 determines that the FET (T1) is to be driven and sends the H level signal to one input terminal of the AND circuit AND1. In addition, an output command signal is transmitted to the charge pump 13.
  • the relay circuit 11a Since the relay circuit 11a has the same configuration as the relay circuit 11, the description of the configuration is omitted. At this time, the suffix “a” is attached to each component of the relay circuit 11a.
  • the output signal of the current determination circuit 15 is at L level
  • the output signal of the NOT circuit NOT1 is at H level
  • this is supplied to the other input terminal of the AND circuit AND1, so that the output signal of the AND circuit AND1 Becomes H level
  • the H level signal is output to the drive circuit 12.
  • the drive circuit 12 outputs the voltage signal output from the charge pump 13 to the gate of the FET (T1), so that the FET (T1) is turned on. Therefore, the current Id flows through the FET (T1). That is, the current Id flows through the path of the power source VB ⁇ the power source terminal TB3 ⁇ the FET (T1) ⁇ the current sensor 17 ⁇ the output terminal TB4 ⁇ the load RL ⁇ the ground. Similarly, the current Ida flows through the relay circuit 11a, and a current obtained by adding the currents Id and Ida flows through the load RL. In other words, the current flowing through the load RL is distributed to the currents Id and Ida and flows through the relay circuits 11 and 11a, respectively. The load RL is driven by this load current.
  • the currents Id and Ida flowing through the FETs (T1) and (T1a) of the relay circuits 11 and 11a are not uniform, for example, a large amount of current concentrates on the FET (T1), and the FET (T1) at time t1. Is greater than the threshold current Ith, the current determination circuit 15 detects the occurrence of an overcurrent, and the current determination circuit 15 outputs an H level signal. This H level signal is output to the diagnosis control circuit 16 and also output to the negation circuit NOT1.
  • the drive circuit 12 stops outputting the drive signal. Accordingly, the FET (T1) is turned off and the relay circuit 11 is cut off.
  • the diagnosis control circuit 16 outputs an H level diagnosis signal to the gate of the FET (T2) when the H level signal is supplied, and turns on the FET (T2).
  • the diagnostic terminal TB2 is grounded to the L level.
  • all the terminals TB1, TB1a, TB2a connected to the diagnosis terminal TB2 are at the L level. That is, since the control signal supplied to the input terminal TB1a of the relay circuit 11a changes from the H level to the L level, the FET (T1a) of the relay circuit 11a is cut off.
  • the operation when an overcurrent occurs in the relay circuit 11 has been described, but the same operation is performed when an overcurrent occurs in the relay circuit 11a. That is, when an overcurrent is generated in the relay circuit 11a, the diagnosis terminal TB2a of the relay circuit 11a becomes L level. Therefore, all the terminals TB1, TB1a and TB2 connected to the diagnosis terminal TB2a become L level. Thus, the FET (T1) of the relay circuit 11 can be cut off.
  • the input signal is set to the L level at time t2 shown in FIG.
  • the input determination circuit 14 is latched at the L level and holds the input terminals TB1 and TB1a of the relay circuits 11 and 11a at the L level even when the input signal is again set at the H level at time t3.
  • a reset signal (not shown) is input (time t4), the latch is released and the relay circuits 11 and 11a can be operated again.
  • the FETs (T1) and (T1a) are driven when an H level signal is supplied to the input terminals TB1 and TB1a, and one of the relay circuits is provided.
  • the diagnosis terminal TB2 is set to L level.
  • these terminals TB1, TB1a, TB2 and TB2a are all at the L level. Therefore, when an abnormality such as overcurrent or overheating is detected in at least one of the relay circuits 11 and 11a, the FETs (T1) and (T1a) of both the relay circuits 11 and 11a are immediately cut off. Can do.
  • the load driving device of the present invention has been described based on the illustrated embodiment. However, the present invention is not limited to this, and the configuration of each part is replaced with an arbitrary configuration having the same function. Can do.
  • the present invention can also be applied to a case in which three or more relay circuits are provided.
  • a rear defogger or the like mounted on a vehicle is used as a load.
  • the present invention is not limited to this, and can be applied to a load circuit other than the vehicle.
  • the input terminals TB1 and TB1a are set to the H level when the FETs (T1) and (T1a) are turned on, and the diagnosis terminals TB2 and TB2a are set to the L level when an abnormality occurs. It is also possible to reverse the H level and the L level. That is, the input terminals TB1 and TB1a can be set to L level when the FETs (T1) and (T1a) are turned on, and the diagnosis terminals TB2 and TB2a can be set to H level when an abnormality occurs.
  • the MOSFET is described as an example of the semiconductor switch.
  • the present invention is not limited to this, and other semiconductor switches such as an IGBT can be used.
  • the present invention can be used when a load is driven by connecting a plurality of semiconductor switches in parallel.

Landscapes

  • Electronic Switches (AREA)

Abstract

Disclosed is a load drive circuit provided with a plurality of relay circuits between a power source and a load to control the load to drive or stop by activating the respective relay circuits in conjunction with each other, wherein a diagnosis terminal and an input terminal of each relay circuit is connected. Then, during a normal operation, the diagnosis terminal is opened, and an H-level signal is supplied to the input terminal, to activate the relay circuit. When a malfunction occurs in any of the relay circuits, the diagnosis terminal of the relay circuit is made to L-level. Thereby, each input terminal is changed to L-level, and the operation of each relay circuit is blocked. As a result, a load circuit can be protected against overcurrent and overheating.

Description

負荷駆動装置Load drive device
 本発明は、電源と負荷を接続する配線に複数のリレー回路を並列に配置し、各リレー回路を連動して作動させることにより、負荷の駆動、停止を制御する負荷駆動装置に係り、特に、一つのリレー回路にて異常が発生した場合に、このリレー回路を含む全てのリレー回路を即時に遮断して回路を保護する技術に関する。 The present invention relates to a load driving device that controls driving and stopping of a load by arranging a plurality of relay circuits in parallel on a wiring connecting a power source and a load and operating each relay circuit in conjunction with each other. The present invention relates to a technique for protecting a circuit by immediately shutting off all the relay circuits including the relay circuit when an abnormality occurs in one relay circuit.
 車両に搭載されるランプ、モータ等の負荷は、バッテリと負荷との間にMOSFET(以下、「FET」と略す)を設け、該FETのオン、オフを切り替えることにより、負荷の駆動、停止を制御している。また、例えば、リヤデフォッガのように、駆動時に大電流が流れる負荷については、一つの半導体スイッチでは負荷の定常電流に耐えることができない場合がある。そこで従来より、電源と負荷との間に、互いに並列に接続された2個のリレー回路を設け、各リレー回路に設けられる半導体スイッチを連動して作動させることにより、負荷電流を2個の半導体スイッチに分散させている。 Loads such as lamps and motors mounted on the vehicle are provided with a MOSFET (hereinafter abbreviated as “FET”) between the battery and the load, and the FET is turned on and off to drive and stop the load. I have control. Further, for example, for a load in which a large current flows during driving, such as a rear defogger, a single semiconductor switch may not be able to withstand the steady current of the load. Therefore, conventionally, two relay circuits connected in parallel to each other are provided between a power source and a load, and a semiconductor switch provided in each relay circuit is operated in conjunction with each other, whereby a load current is supplied to two semiconductors. Distributed to switches.
 このような駆動回路においては、一つのリレー回路に過電流や過熱等の異常が発生した場合には、異常の発生源となるリレー回路の半導体スイッチを遮断すると共に、他のリレー回路の半導体スイッチを遮断する必要がある。このため、特開2006-238635号公報(特許文献1)に記載されているように、一方のリレー回路が遮断されたことをマイクロコンピュータが検出した場合に、他方のリレー回路を遮断する技術が提案されている。 In such a drive circuit, when an abnormality such as overcurrent or overheating occurs in one relay circuit, the semiconductor switch of the relay circuit that is the source of the abnormality is shut off and the semiconductor switch of another relay circuit It is necessary to shut off. For this reason, as described in Japanese Patent Application Laid-Open No. 2006-238635 (Patent Document 1), when the microcomputer detects that one of the relay circuits is cut off, there is a technique for cutting off the other relay circuit. Proposed.
 図1は、マイクロコンピュータを用いて複数のリレー回路のうちの一つで異常が発生した場合に、他の全てのリレー回路の半導体スイッチを遮断する機能を備える負荷駆動装置の構成を示すブロック図である。図1に示すように、各リレー回路101,102はそれぞれFET(T1),(T1a)を備えており、これらが互いに並列に接続されて、負荷RLに流れる電流を分散する。 FIG. 1 is a block diagram showing a configuration of a load driving device having a function of shutting off semiconductor switches of all other relay circuits when an abnormality occurs in one of a plurality of relay circuits using a microcomputer. It is. As shown in FIG. 1, each of the relay circuits 101 and 102 includes FETs (T1) and (T1a), which are connected in parallel to distribute the current flowing through the load RL.
 また、各リレー回路101,102は、それぞれ入力端子111,115を備え、且つ、ダイアグ端子112,116を備えており、入力端子111,115はマイクロコンピュータ103の出力端子121に接続され、ダイアグ端子112,116はマイクロコンピュータ103の入力端子122に接続されている。 Each of the relay circuits 101 and 102 includes input terminals 111 and 115, and also includes diagnosis terminals 112 and 116. The input terminals 111 and 115 are connected to the output terminal 121 of the microcomputer 103, and the diagnosis terminals are connected. Reference numerals 112 and 116 are connected to an input terminal 122 of the microcomputer 103.
 そして、マイクロコンピュータ103より、負荷RLの駆動指令信号が出力されると、この駆動指令信号は、出力端子121,及び各入力端子111,115を介して各リレー回路101,102に送信され、各FET(T1),(T1a)のオン、オフを制御する。また、例えば、リレー回路101で過電流や過熱等の異常が発生した場合には、ダイアグ端子112よりダイアグ信号(異常検出信号)が出力され、このダイアグ信号は入力端子122を介してマイクロコンピュータ103に入力される。 When the drive command signal for the load RL is output from the microcomputer 103, the drive command signal is transmitted to the relay circuits 101 and 102 via the output terminal 121 and the input terminals 111 and 115. The FETs (T1) and (T1a) are turned on and off. For example, when an abnormality such as overcurrent or overheating occurs in the relay circuit 101, a diagnosis signal (abnormality detection signal) is output from the diagnosis terminal 112, and the diagnosis signal is output from the microcomputer 103 via the input terminal 122. Is input.
 マイクロコンピュータ103は、ダイアグ信号の入力を検出すると、駆動指令信号の出力を停止して各リレー回路101,102のFET(T1),(T1a)を遮断し、負荷回路を過電流或いは過熱から保護する。 When the microcomputer 103 detects the input of the diagnosis signal, the microcomputer 103 stops outputting the drive command signal, shuts off the FETs (T1) and (T1a) of the relay circuits 101 and 102, and protects the load circuit from overcurrent or overheating. To do.
特開2006-238635号公報JP 2006-238635 A
 しかしながら、従来における負荷駆動回路においては、一つのリレー回路にて異常が発生した場合に、このリレー回路より出力されるダイアグ信号をマイクロコンピュータ103で検出し、マイクロコンピュータ103の制御により駆動指令信号を停止するようにしているので、構成が大規模化し、複雑化するという問題が発生していた。 However, in the conventional load drive circuit, when an abnormality occurs in one relay circuit, a diagnosis signal output from the relay circuit is detected by the microcomputer 103, and a drive command signal is controlled by the microcomputer 103. Since the operation is stopped, the configuration becomes large and complicated.
 本発明は、このような従来の課題を解決するためになされたものであり、その目的とするところは、簡単な装置構成で、複数の系列のリレー回路のうちの一つのリレー回路にて異常検出信号が発生した際、即時に全てのリレー回路を停止させて負荷回路を保護することが可能な負荷駆動装置を提供することにある。 The present invention has been made in order to solve the above-described conventional problems, and the object of the present invention is to provide a simple apparatus configuration and to detect an abnormality in one relay circuit among a plurality of relay circuits. An object of the present invention is to provide a load driving device capable of protecting a load circuit by immediately stopping all relay circuits when a detection signal is generated.
 上記目的を達成するため、本発明の第1のアスペクトは、半導体スイッチ及び該半導体スイッチのオン、オフを制御する制御回路を備えたリレー回路を複数個並列に接続したリレー回路群を有し、電源と負荷を接続する電路に前記リレー回路群を配置し、前記各半導体スイッチを連動して作動させて、前記負荷の駆動、停止を制御する負荷駆動装置であって、前記各リレー回路は、第1レベル及び第2レベルで変化する制御信号が入力される入力端子と、前記入力端子と接続される異常検知用端子と、前記制御信号が前記第1レベルである場合に、前記半導体スイッチに駆動信号を出力する駆動制御回路と、リレー回路に異常が発生した場合に、前記異常検知端子を第2レベルとする異常時制御回路と、を備え、前記各リレー回路の、前記入力端子どうしは互いに接続され、且つ前記異常検知用端子どうしは互いに接続され、少なくとも一つの前記リレー回路にて、前記半導体スイッチに前記駆動信号が出力されているときに、前記異常検知端子が前記第2レベルとされた場合には、前記入力端子を前記第2レベルとして、全てのリレー回路の駆動信号を遮断するものである。 In order to achieve the above object, a first aspect of the present invention includes a relay circuit group in which a plurality of relay circuits including a semiconductor switch and a control circuit for controlling on / off of the semiconductor switch are connected in parallel. The relay circuit group is arranged in an electric path connecting a power source and a load, and the semiconductor switches are operated in conjunction with each other to drive and stop the load. An input terminal to which a control signal changing at the first level and the second level is input, an abnormality detection terminal connected to the input terminal, and the semiconductor switch when the control signal is at the first level. A drive control circuit that outputs a drive signal; and an abnormality control circuit that sets the abnormality detection terminal to a second level when an abnormality occurs in the relay circuit. The force detection terminals are connected to each other, and the abnormality detection terminals are connected to each other. When the drive signal is output to the semiconductor switch in at least one of the relay circuits, the abnormality detection terminal is When the second level is set, the input terminal is set to the second level, and the drive signals of all the relay circuits are cut off.
 前記各リレー回路は更に、前記半導体スイッチに流れる電流を検出する電流検出センサと、前記電流検出センサでの検出電流が予め設定した閾値電流に達したことを検出する電流判定手段と、を有し、前記異常時制御回路は、前記検出電流が前記閾値電流を超えた場合に、前記異常検知端子を第2レベルとするようにしても良い。 Each of the relay circuits further includes a current detection sensor that detects a current flowing through the semiconductor switch, and a current determination unit that detects that a current detected by the current detection sensor has reached a preset threshold current. The abnormality control circuit may set the abnormality detection terminal to the second level when the detected current exceeds the threshold current.
 前記第1レベルはHレベル及びLレベルのうちの一方であり、前記第2レベルはHレベル及びLレベルのうちの他方であるように設定しても良い。 The first level may be one of the H level and the L level, and the second level may be the other of the H level and the L level.
 本発明の第1のアスペクトに係る過電流検出装置では、複数のリレー回路のうちの少なくとも一つのリレー回路にて異常が発生した場合には、この異常発生源となるリレー回路の異常検出端子、及びその他全てのリレー回路の異常検出端子が第2レベル(例えば、Lレベル)とされる。更に、各異常検出端子は、各リレー回路の入力端子に接続されるので、該入力端子が第2レベルとされ、各リレー回路に設けられる半導体スイッチが遮断される。従って、マイクロコンピュータ等の装置を用いること無く簡単な構成で負荷回路全体を過電流や過熱から保護することができる。 In the overcurrent detection device according to the first aspect of the present invention, when an abnormality occurs in at least one of the plurality of relay circuits, the abnormality detection terminal of the relay circuit that is the source of the abnormality, In addition, the abnormality detection terminals of all other relay circuits are set to the second level (for example, L level). Further, since each abnormality detection terminal is connected to the input terminal of each relay circuit, the input terminal is set to the second level, and the semiconductor switch provided in each relay circuit is shut off. Therefore, the entire load circuit can be protected from overcurrent and overheating with a simple configuration without using a device such as a microcomputer.
図1は、従来における負荷駆動装置の構成を示す説明図である。FIG. 1 is an explanatory diagram showing a configuration of a conventional load driving device. 図2は、本発明の一実施形態に係る負荷駆動装置の構成を示す回路図である。FIG. 2 is a circuit diagram showing a configuration of a load driving device according to an embodiment of the present invention. 図3は、本発明の一実施形態に係る負荷駆動装置の、各半導体スイッチに流れる電流の変化、及び各信号の変化を示すタイミングチャートである。FIG. 3 is a timing chart showing a change in current flowing through each semiconductor switch and a change in each signal in the load driving device according to the embodiment of the present invention.
 以下、本発明の実施形態を図面に基づいて説明する。図2は、本発明の一実施形態に係る過電流検出装置の構成を示すブロックである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 is a block diagram illustrating a configuration of an overcurrent detection device according to an embodiment of the present invention.
 図2に示すように、この負荷駆動装置は、電源VBと負荷RLとの間に、互いに並列に接続されたリレー回路11,11aが設けられ、各リレー回路11,11aに設けられたFET(T1),(T1a)を連動してオン、オフ動作させることにより、負荷RLの駆動、停止を制御する。即ち、電源VB(出力電圧も同一の符号VBで示す)は、各リレー回路11,11aの電源端子TB3,TB3aにそれぞれ接続され、更に、各出力端子TB4,TB4aは負荷RLの一端に接続され、該負荷RLの他端はグランドに接地されている。また、各リレー回路11,11aの入力端子TB1,TB1aには、FET(T1),(T1a)のオン、オフを制御するための図示しないスイッチ回路に接続され、該スイッチ回路より制御信号が供給される。更に、各入力端子TB1,TB1aは、各リレー回路11,11aのダイアグ端子(異常検知用端子)TB2,TB2aに接続されている。 As shown in FIG. 2, in this load driving device, relay circuits 11, 11a connected in parallel to each other are provided between a power source VB and a load RL, and FETs provided in the relay circuits 11, 11a ( The driving and stopping of the load RL are controlled by operating T1) and (T1a) in an on / off manner. That is, the power supply VB (the output voltage is also indicated by the same reference symbol VB) is connected to the power supply terminals TB3 and TB3a of the relay circuits 11 and 11a, respectively, and the output terminals TB4 and TB4a are connected to one end of the load RL. The other end of the load RL is grounded. Further, the input terminals TB1 and TB1a of the relay circuits 11 and 11a are connected to a switch circuit (not shown) for controlling the on / off of the FETs (T1) and (T1a), and a control signal is supplied from the switch circuit. Is done. Further, the input terminals TB1 and TB1a are connected to diagnostic terminals (abnormality detection terminals) TB2 and TB2a of the relay circuits 11 and 11a, respectively.
 図2に示すリレー回路11は、N型MOSFET(T1)(半導体スイッチ、以下、「FET」と略す)と、該FET(T1)に流れる電流を検出する電流センサ(電流検出センサ)17との直列接続回路を備え、FET(T1)のドレインは電源端子TB3に接続され、電流センサ17の一端は出力端子TB4に接続されている。 The relay circuit 11 shown in FIG. 2 includes an N-type MOSFET (T1) (semiconductor switch, hereinafter abbreviated as “FET”) and a current sensor (current detection sensor) 17 that detects a current flowing through the FET (T1). A series connection circuit is provided, the drain of the FET (T1) is connected to the power supply terminal TB3, and one end of the current sensor 17 is connected to the output terminal TB4.
 更に、入力端子TB1に接続される入力判定回路14と、FET(T1)のゲートに駆動信号を出力する駆動回路(駆動制御回路)12と、駆動回路12に駆動電圧を供給するチャージポンプ13と、電流センサ17による検出電流Idが予め設定した閾値電流Ithを超えているか否かを判定する電流判定回路(電流判定手段)15と、検出電流Idが閾値電流Ithを超えている場合にダイアグ信号(異常検出信号)を出力するダイアグ制御回路(異常時制御回路)16と、該ダイアグ制御回路16よりダイアグ信号が出力された際にオンとなって、ダイアグ端子(異常検知端子)TB2をLレベルとするN型MOSFET(T2)(以下、FET(T2)と略す)と、否定回路NOT1と、アンド回路AND1と、を備えている。 Furthermore, an input determination circuit 14 connected to the input terminal TB1, a drive circuit (drive control circuit) 12 that outputs a drive signal to the gate of the FET (T1), a charge pump 13 that supplies a drive voltage to the drive circuit 12, and A current determination circuit (current determination means) 15 for determining whether or not the detection current Id detected by the current sensor 17 exceeds a preset threshold current Ith, and a diagnosis signal when the detection current Id exceeds the threshold current Ith A diagnostic control circuit (abnormality control circuit) 16 for outputting (abnormality detection signal) and turned on when a diagnostic signal is output from the diagnostic control circuit 16, and the diagnostic terminal (abnormality detection terminal) TB2 is set to L level. N-type MOSFET (T2) (hereinafter abbreviated as FET (T2)), a NOT circuit NOT1, and an AND circuit AND1.
 電流センサ17は、例えば、シャント抵抗であり、FET(T1)のオフ動作中においてもこれに影響されることなく、FET(T1)に流れる電流(電源端子TB3から出力端子TB4に流れる電流)を測定するタイプのセンサである。 The current sensor 17 is, for example, a shunt resistor, and the current flowing through the FET (T1) (the current flowing from the power supply terminal TB3 to the output terminal TB4) is not affected even during the OFF operation of the FET (T1). This is the type of sensor to be measured.
 入力判定回路14は、入力端子TB1に供給される制御信号がHレベルの場合には、FET(T1)を駆動させるものと判断して、Hレベルの信号をアンド回路AND1の一方の入力端子に出力し、更に、チャージポンプ13に出力指令信号を送信する。 When the control signal supplied to the input terminal TB1 is at the H level, the input determination circuit 14 determines that the FET (T1) is to be driven and sends the H level signal to one input terminal of the AND circuit AND1. In addition, an output command signal is transmitted to the charge pump 13.
 なお、リレー回路11aについてもリレー回路11と同一の構成であるので、構成の説明を省略する。この際、リレー回路11aについては各構成要素にサフィックス「a」を付することにする。 Since the relay circuit 11a has the same configuration as the relay circuit 11, the description of the configuration is omitted. At this time, the suffix “a” is attached to each component of the relay circuit 11a.
 次に、上述のように構成された本実施形態に係る負荷駆動装置の作用を、図3に示すタイミングチャートを参照して説明する。図3に示す時刻t0にて、図示しないスイッチ回路より出力される制御信号がLレベル(第2レベル)からHレベル(第1レベル)に切り替えられると、入力端子TB1にHレベルの制御信号が供給される。これにより、入力判定回路14は、チャージポンプ13に出力指令信号を送信し、且つ、アンド回路AND1の一方の入力端子にHレベルの信号を出力する。 Next, the operation of the load driving device according to the present embodiment configured as described above will be described with reference to the timing chart shown in FIG. When a control signal output from a switch circuit (not shown) is switched from L level (second level) to H level (first level) at time t0 shown in FIG. 3, an H level control signal is applied to input terminal TB1. Supplied. Thereby, the input determination circuit 14 transmits an output command signal to the charge pump 13, and outputs an H level signal to one input terminal of the AND circuit AND1.
 また、この時点で電流判定回路15の出力信号はLレベルであり、否定回路NOT1の出力信号はHレベルとなり、これがアンド回路AND1の他方の入力端子に供給されるので、アンド回路AND1の出力信号はHレベルとなり、該Hレベルの信号は駆動回路12に出力される。 At this time, the output signal of the current determination circuit 15 is at L level, the output signal of the NOT circuit NOT1 is at H level, and this is supplied to the other input terminal of the AND circuit AND1, so that the output signal of the AND circuit AND1 Becomes H level, and the H level signal is output to the drive circuit 12.
 これにより、駆動回路12は、チャージポンプ13より出力される電圧信号をFET(T1)のゲートに出力するので、該FET(T1)はオンとなる。従って、該FET(T1)には電流Idが流れる。即ち、電源VB→電源端子TB3→FET(T1)→電流センサ17→出力端子TB4→負荷RL→グランドの経路に電流Idが流れる。また、リレー回路11aについても同様に、電流Idaが流れ、電流IdとIdaを合計した電流が負荷RLに流れる。換言すれば、負荷RLに流れる電流は電流IdとIdaに分散されて、それぞれリレー回路11,11aに流れる。そして、この負荷電流により、負荷RLが駆動する。 Thereby, the drive circuit 12 outputs the voltage signal output from the charge pump 13 to the gate of the FET (T1), so that the FET (T1) is turned on. Therefore, the current Id flows through the FET (T1). That is, the current Id flows through the path of the power source VB → the power source terminal TB3 → the FET (T1) → the current sensor 17 → the output terminal TB4 → the load RL → the ground. Similarly, the current Ida flows through the relay circuit 11a, and a current obtained by adding the currents Id and Ida flows through the load RL. In other words, the current flowing through the load RL is distributed to the currents Id and Ida and flows through the relay circuits 11 and 11a, respectively. The load RL is driven by this load current.
 また、各リレー回路11,11aのFET(T1),(T1a)に流れる電流Id,Idaが均等にならず、例えばFET(T1)に多くの電流が集中し、時刻t1にてFET(T1)に流れる電流Idが閾値電流Ithを上回った場合には、電流判定回路15にて過電流の発生が検出され、電流判定回路15はHレベルの信号を出力する。このHレベルの信号は、ダイアグ制御回路16に出力され、且つ否定回路NOT1に出力される。 In addition, the currents Id and Ida flowing through the FETs (T1) and (T1a) of the relay circuits 11 and 11a are not uniform, for example, a large amount of current concentrates on the FET (T1), and the FET (T1) at time t1. Is greater than the threshold current Ith, the current determination circuit 15 detects the occurrence of an overcurrent, and the current determination circuit 15 outputs an H level signal. This H level signal is output to the diagnosis control circuit 16 and also output to the negation circuit NOT1.
 従って、否定回路NOT1の出力信号はLレベルとなり、アンド回路AND1の出力信号がLレベルに転じるので、駆動回路12は駆動信号の出力を停止する。従って、FET(T1)はオフとなり、リレー回路11は遮断される。 Therefore, since the output signal of the NOT circuit NOT1 becomes L level and the output signal of the AND circuit AND1 changes to L level, the drive circuit 12 stops outputting the drive signal. Accordingly, the FET (T1) is turned off and the relay circuit 11 is cut off.
 更に、ダイアグ制御回路16は、Hレベルの信号が供給されたことにより、FET(T2)のゲートにHレベルのダイアグ信号を出力し、該FET(T2)をオンとする。これにより、ダイアグ端子TB2はグランドに接地され、Lレベルとなる。その結果、時刻t1において、このダイアグ端子TB2に接続された各端子TB1,TB1a,TB2aは全てLレベルとなる。即ち、リレー回路11aの入力端子TB1aに供給される制御信号がHレベルからLレベルへと転じるので、リレー回路11aのFET(T1a)は遮断される。 Further, the diagnosis control circuit 16 outputs an H level diagnosis signal to the gate of the FET (T2) when the H level signal is supplied, and turns on the FET (T2). As a result, the diagnostic terminal TB2 is grounded to the L level. As a result, at time t1, all the terminals TB1, TB1a, TB2a connected to the diagnosis terminal TB2 are at the L level. That is, since the control signal supplied to the input terminal TB1a of the relay circuit 11a changes from the H level to the L level, the FET (T1a) of the relay circuit 11a is cut off.
 また、上記の例では、リレー回路11にて過電流が発生した場合の動作について説明したが、リレー回路11aにおいて過電流が発生した場合においても同様の動作となる。即ち、リレー回路11aに過電流が発生した場合には、リレー回路11aのダイアグ端子TB2aがLレベルとなるので、このダイアグ端子TB2aに接続された各端子TB1,TB1a,TB2は全てLレベルとなって、リレー回路11のFET(T1)を遮断することができる。 In the above example, the operation when an overcurrent occurs in the relay circuit 11 has been described, but the same operation is performed when an overcurrent occurs in the relay circuit 11a. That is, when an overcurrent is generated in the relay circuit 11a, the diagnosis terminal TB2a of the relay circuit 11a becomes L level. Therefore, all the terminals TB1, TB1a and TB2 connected to the diagnosis terminal TB2a become L level. Thus, the FET (T1) of the relay circuit 11 can be cut off.
 その後、図3に示す時刻t2にて入力信号がLレベルとされる。この際、入力判定回路14はLレベルにラッチされて、時刻t3にて再度入力信号をHレベルとした場合でも、リレー回路11,11aの入力端子TB1,TB1aをLレベルに保持する。そして、図示しないリセット信号が入力された場合に(時刻t4)、ラッチが解除されて再度リレー回路11,11aの作動が可能となる。 Thereafter, the input signal is set to the L level at time t2 shown in FIG. At this time, the input determination circuit 14 is latched at the L level and holds the input terminals TB1 and TB1a of the relay circuits 11 and 11a at the L level even when the input signal is again set at the H level at time t3. When a reset signal (not shown) is input (time t4), the latch is released and the relay circuits 11 and 11a can be operated again.
 このようにして本実施形態に係る負荷駆動装置では、入力端子TB1,TB1aにHレベルの信号が供給された場合にFET(T1),(T1a)が駆動するようにし、且つ、一方のリレー回路(例えば、11)に異常が発生した場合には、ダイアグ端子TB2をLレベルとする。この際、各リレー回路11,11aの入力端子TB1,TB1a、及びダイアグ端子TB2,TB2aは全て接続されているので、これらの端子TB1,TB1a,TB2,TB2aは全てLレベルとなる。従って、各リレー回路11,11aのうち少なくとも一方で過電流や過熱等の異常が検出された場合には、即時に双方のリレー回路11,11aのFET(T1),(T1a)を遮断することができる。 As described above, in the load driving device according to the present embodiment, the FETs (T1) and (T1a) are driven when an H level signal is supplied to the input terminals TB1 and TB1a, and one of the relay circuits is provided. When an abnormality occurs (for example, 11), the diagnosis terminal TB2 is set to L level. At this time, since the input terminals TB1 and TB1a and the diagnostic terminals TB2 and TB2a of the relay circuits 11 and 11a are all connected, these terminals TB1, TB1a, TB2 and TB2a are all at the L level. Therefore, when an abnormality such as overcurrent or overheating is detected in at least one of the relay circuits 11 and 11a, the FETs (T1) and (T1a) of both the relay circuits 11 and 11a are immediately cut off. Can do.
 従って、従来のように、マイクロコンピュータを用いた制御を実行することなく、簡単な構成で異常検出時に全てのリレー回路11,11aをオフ状態とすることができ、回路規模を小型化することができる。 Therefore, it is possible to turn off all the relay circuits 11 and 11a when an abnormality is detected with a simple configuration without executing control using a microcomputer as in the prior art, and the circuit scale can be reduced. it can.
 以上、本発明の負荷駆動装置を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置き換えることができる。 The load driving device of the present invention has been described based on the illustrated embodiment. However, the present invention is not limited to this, and the configuration of each part is replaced with an arbitrary configuration having the same function. Can do.
 例えば、本実施形態では、2系統のリレー回路11,11aを設ける例について説明したが、3系統以上のリレー回路を設ける場合についても適用することができる。また、本実施形態では、車両に搭載されるリヤデフォッガ等を負荷とする例について説明したが、本発明はこれに限定されるものではなく、車両以外の負荷回路についても適用することができる。 For example, in the present embodiment, an example in which two relay circuits 11 and 11a are provided has been described, but the present invention can also be applied to a case in which three or more relay circuits are provided. In the present embodiment, an example in which a rear defogger or the like mounted on a vehicle is used as a load has been described. However, the present invention is not limited to this, and can be applied to a load circuit other than the vehicle.
 更に、本実施形態では、FET(T1),(T1a)のオン時に各入力端子TB1,TB1aをHレベルとし、異常が発生した場合にダイアグ端子TB2,TB2aをLレベルとする例について説明したが、HレベルとLレベルを反対とすることも可能である。即ち、FET(T1),(T1a)のオン時に各入力端子TB1,TB1aをLレベルとし、異常が発生した場合にダイアグ端子TB2,TB2aをHレベルとすることも可能である。 Furthermore, in the present embodiment, an example has been described in which the input terminals TB1 and TB1a are set to the H level when the FETs (T1) and (T1a) are turned on, and the diagnosis terminals TB2 and TB2a are set to the L level when an abnormality occurs. It is also possible to reverse the H level and the L level. That is, the input terminals TB1 and TB1a can be set to L level when the FETs (T1) and (T1a) are turned on, and the diagnosis terminals TB2 and TB2a can be set to H level when an abnormality occurs.
 また、本実施形態では、半導体スイッチとしてMOSFETを例に挙げて説明したが、本発明はこれに限定されるものではなく、IGBT等の他の半導体スイッチを用いることも可能である。 In this embodiment, the MOSFET is described as an example of the semiconductor switch. However, the present invention is not limited to this, and other semiconductor switches such as an IGBT can be used.
 本発明は、複数の半導体スイッチを並列に接続して負荷を駆動する場合に利用することができる。 The present invention can be used when a load is driven by connecting a plurality of semiconductor switches in parallel.

Claims (3)

  1.  半導体スイッチ及び該半導体スイッチのオン、オフを制御する制御回路を備えたリレー回路を複数個並列に接続したリレー回路群を有し、電源と負荷を接続する電路に前記リレー回路群を配置し、前記各半導体スイッチを連動して作動させて、前記負荷の駆動、停止を制御する負荷駆動装置であって、
     前記各リレー回路は、
     第1レベル及び第2レベルで変化する制御信号が入力される入力端子と、
     前記入力端子と接続される異常検知用端子と、
     前記制御信号が前記第1レベルである場合に、前記半導体スイッチに駆動信号を出力する駆動制御回路と、
     リレー回路に異常が発生した場合に、前記異常検知端子を第2レベルとする異常時制御回路と、を備え、
     前記各リレー回路の、前記入力端子どうしは互いに接続され、且つ前記異常検知用端子どうしは互いに接続され、
     少なくとも一つの前記リレー回路にて、前記半導体スイッチに前記駆動信号が出力されているときに、前記異常検知端子が前記第2レベルとされた場合には、前記入力端子を前記第2レベルとして、全てのリレー回路の駆動信号を遮断する負荷駆動装置。
    A relay circuit group having a plurality of relay circuits connected in parallel with a semiconductor switch and a control circuit for controlling on / off of the semiconductor switch, and arranging the relay circuit group in an electric circuit connecting a power source and a load, A load driving device that operates the semiconductor switches in conjunction with each other to control driving and stopping of the load,
    Each of the relay circuits is
    An input terminal to which a control signal changing at the first level and the second level is input;
    An abnormality detection terminal connected to the input terminal;
    A drive control circuit for outputting a drive signal to the semiconductor switch when the control signal is at the first level;
    An abnormality control circuit that sets the abnormality detection terminal to the second level when an abnormality occurs in the relay circuit;
    In each of the relay circuits, the input terminals are connected to each other, and the abnormality detection terminals are connected to each other,
    In the at least one relay circuit, when the drive signal is output to the semiconductor switch and the abnormality detection terminal is set to the second level, the input terminal is set to the second level, A load drive device that cuts off the drive signals of all relay circuits.
  2.  前記各リレー回路は更に、
     前記半導体スイッチに流れる電流を検出する電流検出センサと、
     前記電流検出センサでの検出電流が予め設定した閾値電流に達したことを検出する電流判定手段と、を有し、
     前記異常時制御回路は、前記検出電流が前記閾値電流を超えた場合に、前記異常検知端子を第2レベルとする請求項1に記載の負荷駆動装置。
    Each of the relay circuits further includes
    A current detection sensor for detecting a current flowing through the semiconductor switch;
    Current determination means for detecting that the current detected by the current detection sensor has reached a preset threshold current; and
    2. The load driving device according to claim 1, wherein the abnormality control circuit sets the abnormality detection terminal to a second level when the detected current exceeds the threshold current. 3.
  3.  前記第1レベルはHレベル及びLレベルのうちの一方であり、前記第2レベルはHレベル及びLレベルのうちの他方である請求項1または請求項2のいずれかに記載の負荷駆動装置。 3. The load driving apparatus according to claim 1, wherein the first level is one of an H level and an L level, and the second level is the other of the H level and the L level.
PCT/JP2011/067866 2010-09-21 2011-08-04 Load drive device WO2012039200A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010210693A JP2012070047A (en) 2010-09-21 2010-09-21 Load driving device
JP2010-210693 2010-09-21

Publications (1)

Publication Number Publication Date
WO2012039200A1 true WO2012039200A1 (en) 2012-03-29

Family

ID=45873695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067866 WO2012039200A1 (en) 2010-09-21 2011-08-04 Load drive device

Country Status (2)

Country Link
JP (1) JP2012070047A (en)
WO (1) WO2012039200A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103795277A (en) * 2012-10-30 2014-05-14 康舒科技股份有限公司 Power supply with output protection function and control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014017672A (en) * 2012-07-09 2014-01-30 Auto Network Gijutsu Kenkyusho:Kk Load drive circuit
JP2019041198A (en) * 2017-08-24 2019-03-14 矢崎総業株式会社 Load control device and load control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09130217A (en) * 1995-10-27 1997-05-16 Hitachi Ltd Semiconductor device
JPH11252785A (en) * 1998-03-04 1999-09-17 Toshiba Corp Semiconductor stack and semiconductor device
JP2002185295A (en) * 2000-12-12 2002-06-28 Mitsubishi Electric Corp Semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000312433A (en) * 1999-02-26 2000-11-07 Yazaki Corp Switch device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09130217A (en) * 1995-10-27 1997-05-16 Hitachi Ltd Semiconductor device
JPH11252785A (en) * 1998-03-04 1999-09-17 Toshiba Corp Semiconductor stack and semiconductor device
JP2002185295A (en) * 2000-12-12 2002-06-28 Mitsubishi Electric Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103795277A (en) * 2012-10-30 2014-05-14 康舒科技股份有限公司 Power supply with output protection function and control method thereof
CN103795277B (en) * 2012-10-30 2016-05-04 康舒科技股份有限公司 There is power supply unit and the control method thereof of output protecting function

Also Published As

Publication number Publication date
JP2012070047A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
US10457321B2 (en) Electronic control unit and electric power steering apparatus equipped with the same
US8624438B2 (en) Power supply unit and its control device
JP5157429B2 (en) Electric power steering device
WO2013137244A1 (en) Inverter device and power steering device
KR101711711B1 (en) Switch driving circuit, inverter apparatus and power steering apparatus
US9735767B2 (en) Electronic control apparatus having switching element and drive circuit
JP4934628B2 (en) Dual system power supply
JP4957822B2 (en) Power supply
JP6030849B2 (en) Semiconductor switch control device
JP2020120479A (en) Power supply device
JP5615470B1 (en) Power supply control device and programmable logic controller
JP7124716B2 (en) Motor drive device and electric power steering device
WO2012039200A1 (en) Load drive device
US9035658B2 (en) Method for detecting a breakdown in a switching current source and corresponding power source
JP5675245B2 (en) Load drive device
JP5185021B2 (en) Load circuit protection device
WO2015064003A1 (en) Vehicular open/close body control device, control method, and vehicular open/close body having said control device
JP3171147U (en) Alarm signal output device, load protection device, and motor control device
JP4205072B2 (en) Power supply device
KR20010084792A (en) Protection circuit for intelligent power module
KR100738450B1 (en) A parallel driving circuit of switching device
KR20190106181A (en) Methods for controlling EPS that cuts motor drive power when overcurrent occurs
JP3171146U (en) Alarm signal output device, load protection device, and motor control device
JP2006180591A (en) Power supply and electric circuit
JP4802749B2 (en) Load protection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11826646

Country of ref document: EP

Kind code of ref document: A1