WO2012039057A1 - Laser processing apparatus - Google Patents

Laser processing apparatus Download PDF

Info

Publication number
WO2012039057A1
WO2012039057A1 PCT/JP2010/066560 JP2010066560W WO2012039057A1 WO 2012039057 A1 WO2012039057 A1 WO 2012039057A1 JP 2010066560 W JP2010066560 W JP 2010066560W WO 2012039057 A1 WO2012039057 A1 WO 2012039057A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
processing
condensing
workpiece
Prior art date
Application number
PCT/JP2010/066560
Other languages
French (fr)
Japanese (ja)
Inventor
望月 学
満 板持
浩義 廣田
Original Assignee
パイオニア株式会社
株式会社パイオニアFa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 株式会社パイオニアFa filed Critical パイオニア株式会社
Priority to CN201080003896.9A priority Critical patent/CN102612419B/en
Priority to PCT/JP2010/066560 priority patent/WO2012039057A1/en
Priority to JP2011517708A priority patent/JP4803566B1/en
Publication of WO2012039057A1 publication Critical patent/WO2012039057A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming

Definitions

  • the present invention relates to a technical field of a laser processing apparatus that performs processing by, for example, forming a condensing part of a laser beam on the surface of a material to cause a change in the structure of the material in the vicinity of the condensing part.
  • the laser light emitted from the laser light source is condensed on the surface of the material placed on the stage, and a chemical or physical change due to heat treatment is caused in the minute volume near the condensing part. Processing with.
  • the material surface is not necessarily flat, and the positional relationship between the condensing part of the laser beam and the material surface changes as appropriate during processing, and thus condensing control is required to follow the change in the positional relationship.
  • a prior art document to be described later describes a configuration in which laser light emitted from a laser light source is split into two, and one is processed laser light and the other is distance measuring laser light.
  • the condensing position of the processing laser beam is controlled by calculation based on an electric signal generated from the reflected light of the ranging laser beam. For this reason, it is supposed that the condensing part of the laser beam for processing can be moved following the change in the positional relationship between the condensing part of the laser beam and the material surface.
  • the present invention has been made in view of, for example, the above-described problems, and can accurately perform high-precision and high-speed processing by appropriately following the focusing position of the laser beam for processing with respect to the structure of the material surface. It is an object to provide a laser processing apparatus.
  • a laser processing apparatus of the present invention is a laser processing apparatus that performs processing by condensing laser light on a processing target, and is a first processing unit that performs processing on the processing target.
  • a first condensing unit that performs processing by forming a first condensing unit; and a second condensing unit that forms a second condensing unit that is a condensing unit of the second laser light at a predetermined position of the object to be processed.
  • the light receiving means Based on the light collecting means, the light receiving means for receiving the reflected light of the second laser light reflected by the workpiece, the second light based on the reflected light of the second laser light received by the light receiving means.
  • a focus servo means for determining a position of the light collecting portion; and Control means for controlling the operation of the first light condensing means so as to form the first light condensing part at a position determined based on the position, and the numerical aperture of the first light condensing means is the second It is larger than the numerical aperture of the light collecting means.
  • An embodiment of a laser processing apparatus of the present invention is a laser processing apparatus that performs processing by condensing laser light on a processing object, and irradiates the first laser light for processing the processing object.
  • a first condensing unit that performs processing by forming a second condensing unit that forms a second condensing unit that is a condensing unit of the second laser light at a predetermined position of the processing target; Based on the light receiving means for receiving the reflected light of the second laser light reflected by the workpiece and the reflected light of the second laser light received by the light receiving means, the position of the second condensing unit A focus servo means for determining the position and the position of the second light collecting section. Control means for controlling the operation of the first light collecting means so as to form the first light collecting portion at a position where the first light collecting means is formed, and the numerical aperture of the first light collecting means is the opening of the second light collecting means. Greater than the number.
  • a first laser beam for processing a processing object such as a glass substrate having a film structure on the surface or an opaque material
  • a second laser beam for focus control for operating the focus servo means for adjusting the focus for example, a first laser beam for processing a processing object such as a glass substrate having a film structure on the surface or an opaque material, and the first laser beam.
  • a second laser beam for focus control for operating the focus servo means for adjusting the focus.
  • the first irradiation means is a laser light source that irradiates the processing object with the first laser light for processing.
  • the first condensing means includes, for example, a condensing lens that can move in the optical axis direction of the first laser light, and condenses the first laser light at a predetermined position on the front surface or the back surface of the workpiece. A condensing part is formed.
  • the surface of the object to be processed indicates a surface relatively close to the first emitting means serving as the light source of the first laser light, among the surfaces of the object to be processed by the first laser light. It is.
  • the back surface of the object to be processed is intended to indicate a surface existing on the side opposite to the surface through the object to be processed among the surfaces of the object to be processed by the first laser beam.
  • the first laser light is incident on the inside of the processing object from the front surface, passes through the processing object, and forms a first condensing portion on the back surface.
  • the second irradiation means is a laser light source that irradiates the workpiece with a second laser beam different from the first laser beam.
  • the wavelength of the second laser light is preferably different from the wavelength of the first laser light, but may be the same.
  • the second condensing unit includes, for example, a condensing lens that can move in the optical axis direction of the second laser light, and condenses the second laser light onto the object to be processed to form a second condensing unit.
  • the second condensing means may condense the second laser light on the surface of the processing object, may condense it inside the processing object, or may condense it at other positions. May be.
  • the first irradiating means and the second irradiating means are preferably arranged at a predetermined interval in a plane in which the optical axes of the first laser light and the second laser light are parallel and orthogonal to the optical axis.
  • the predetermined interval is an interval in which the light beam of the first laser light irradiated from the first irradiation unit and the light beam of the second laser beam irradiated from the second irradiation unit do not overlap each other. It is set according to the luminous flux angle of light.
  • the first laser beam and the second laser beam are spaced apart from each other within a plane orthogonal to the optical axis direction of each laser beam.
  • the light is condensed at separate positions.
  • the return light reflected by the workpiece enters the light receiving means after passing through the optical path through which the second laser light has passed.
  • the light receiving means uses, for example, an astigmatism method to focus an electric signal indicating whether or not the second laser beam is focused on a desired position on the object to be processed and, if not focused, an amount of defocus. Input to servo means. Further, the light receiving means may detect the amount of focus deviation by some other method such as a knife edge method based on the return light of the second laser light.
  • the focus servo means is a servo mechanism for focusing the second laser beam on the workpiece.
  • the focus servo unit moves, for example, the second condensing unit so as to correct the focus shift amount of the second laser light grasped from the electric signal input from the light receiving unit. Therefore, for example, even when the surface of the workpiece has irregularities or warpage, and the optical path length from the second irradiation means changes, it is possible to readjust the focus with high accuracy and high speed.
  • the control means moves the focus position of the first laser light in the optical axis direction in accordance with the movement of the focus position of the second laser light by the focus servo means.
  • the control means moves the focus position of the first laser light in synchronization with the movement of the focus position of the second laser light by the focus servo means.
  • the control unit receives an electric signal indicating the focus shift of the second laser beam similar to that received by the focus servo unit, or an electric signal indicating the movement amount of the focus position based on the focus shift amount, and the like.
  • the first condensing means is moved in the optical axis direction of the first laser light according to the input. For this reason, the focus of the first laser beam can be readjusted with high accuracy and high speed in accordance with the unevenness and warpage of the surface of the workpiece. As a result, high-precision laser processing of the workpiece is possible.
  • the numerical aperture of the first light converging means is set larger than the numerical aperture of the second light converging means. Specifically, this is to indicate that the first laser light is condensed by a condensing lens having a larger numerical aperture than the condensing lens that condenses the second laser light.
  • Such a configuration leads to stabilization of the operation of the focus servo means, such as reducing the influence on the focus servo due to disturbances such as vibration of the apparatus.
  • the numerical aperture of the second condensing means is a value determined based on the thickness between the front surface and the back surface of the processing object and the refractive index. That's it.
  • the first laser light for processing is applied to the front surface or the back surface of the processing object by the focus servo control based on the reflected light from the processing object of the second laser light. Focus on accuracy.
  • the processing object is a transparent material having a certain degree of transparency to the laser light
  • the light receiving means for detecting the defocus of the second laser light is from the surface of the processing object.
  • the reflected light and the reflected light from the back surface that has passed through the workpiece are incident.
  • astigmatism method which is a general defocus detection method
  • astigmatism is generated for such reflected light.
  • the astigmatic difference based on astigmatism in the reflected light from the front surface and the back surface of the workpiece may interfere with each other.
  • Such astigmatism appears as a phase difference of the reflected light of the second laser light incident on the light receiving means, for example, as a scale indicating the defocus of the second laser light.
  • the astigmatic difference in the reflected light from the front and back surfaces of the workpiece interferes with each other, it is possible to detect an appropriate defocus of the second laser light from the reflected light of the second laser light received by the light receiving means. This leads to a malfunction of the focus servo means. Therefore, it is preferable that the astigmatic difference in the reflected light of the second laser light is set to be small for focus control by a suitable focus servo means.
  • the case where the astigmatism from the front and back surfaces of the processing object interferes with each other means, for example, that the astigmatism in reflected light from each of the front and back surfaces of the processing object is the front and back surfaces of the processing object. (That is, the optical path length of the second laser light between the front surface and the back surface of the workpiece) becomes relatively larger than a predetermined reference.
  • the astigmatic difference relates to the detectable range of the focus shift of the second laser beam in the light receiving means, setting it extremely small leads to narrowing the operating range of the focus servo means. This can also hinder accurate focus control by the focus servo means.
  • the astigmatic difference changes according to the numerical aperture of a condensing lens that is an example of the second condensing means, and in a predetermined region of the numerical aperture, the reciprocal of the numerical aperture. And the astigmatic difference are related by a quadratic function. Therefore, in order to operate the focus servo means appropriately, the numerical aperture of the second light collecting means is set within an appropriate range with respect to the optical path length of the second laser light between the front surface and the back surface of the workpiece. It is preferable. Note that the optical path length between the front surface and the back surface of the workpiece is determined by the thickness and refractive index between the front surface and the back surface of the workpiece.
  • the astigmatism difference from the front surface and the back surface of the workpiece has a predetermined distance. It is preferable that they are separated from each other. For example, it is preferable that the distance between the front surface and the back surface of the workpiece is at least one time as large as the astigmatic difference. Under the condition, the condition that the astigmatic difference is less than half of the quotient obtained by dividing the thickness of the workpiece by the refractive index is derived. The permissible condition of the numerical aperture of the second condensing means having a quadratic function relation is determined for the astigmatic difference thus conditioned.
  • the focus servo means can be suitably operated even on the workpiece having transparency to the second laser light, and appropriate focus control can be performed.
  • the appropriate numerical aperture of the second light collecting means changes according to the thickness of the workpiece.
  • a thickness of about 0.5 mm is often adopted as the thickness of the processing target.
  • the numerical aperture of the second light collecting means may be set to be 0.1 or more.
  • the first condensing means is located at a position determined based on the position of the second condensing unit on the front surface or the back surface of the processing object. 1 Condensing part is formed.
  • the first condensing unit is configured to be able to move the first condensing part of the first laser light between the front surface and the back surface of the workpiece.
  • the first condensing unit includes a condensing lens that condenses the first laser light and an actuator that moves the condensing lens in the optical axis direction of the first laser light.
  • the actuator moves the first condensing unit by moving the condensing lens in the optical axis direction of the first laser light by a predetermined movement amount determined according to the thickness of the workpiece.
  • the predetermined movement amount corresponds to the optical distance between the front surface and the back surface in the optical axis direction of the first laser light, which is determined by the thickness and refractive index of the workpiece.
  • the first and second irradiation means when the first and second irradiation means irradiate laser light, the first and second irradiation means irradiate laser light.
  • the apparatus further includes moving means for relatively moving the first laser beam and the workpiece.
  • the moving means is, for example, an actuator that can move or rotate the stage on which the workpiece is fixed in a plane orthogonal to the optical axis direction of the first laser beam.
  • the moving means moves the stage relative to the first laser beam by moving the stage during the irradiation of the first laser beam and the second laser beam.
  • the modified region is intermittently or continuously formed along the movement of the processing object on the front surface or the back surface of the processing object by the first laser light irradiated intermittently or continuously. For this reason, it becomes possible to process a desired position on the front surface or the back surface of the processing object.
  • the moving means may be an actuator or the like that moves the first irradiation means for irradiating the first laser light as another aspect.
  • the actuator moves or rotates, for example, a laser light source, which is an example of the first irradiation means, in a plane perpendicular to the optical axis direction of the first laser light during irradiation of the first laser light and the second laser light.
  • the processing object and the first laser beam are moved relative to each other. Even if such a configuration is adopted, it is possible to receive the same effects as those described above.
  • an actuator that moves the first condensing means that condenses the first laser light on the object to be processed may be employed. According to such an actuator, it is possible to change the optical path of the first laser light by moving the first condensing means, and to move the first laser light relatively with respect to the workpiece, and the same effect as described above. Can enjoy.
  • the present invention is not limited to the above-described configuration, and other configurations that can realize the relative movement between the first laser beam and the workpiece by any mechanical or optical means may be similarly employed.
  • the second condensing means is spaced a predetermined distance from the surface of the processing object in the optical axis direction of the second laser light in the processing object.
  • the second light collecting part is formed at a predetermined position.
  • the second laser light is collected not at the surface but at a position separated in the depth direction with respect to the workpiece that is transparent to the second laser light, such as a transparent material.
  • the size of the beam spot of the second laser beam at the second focusing point formed on the surface of the workpiece is larger than that when the second laser beam is focused on the surface of the workpiece.
  • the size of the beam spot on the surface of the workpiece is relatively large, the influence of the defocus of the second laser beam due to the surface surface of the workpiece and the minute irregularities such as the structure is relatively To drop. For this reason, it is possible to suppress the influence on the operation of the focus servo means due to such minute unevenness.
  • the range of the position of the second light collecting portion formed in this aspect is that the above-described focus control can be appropriately performed, and the influence on the focus control due to the unevenness of the surface of the workpiece is eliminated as much as possible.
  • the purpose is to indicate a possible range.
  • position adjustment by a servo is performed so that the second light collecting unit is positioned at a predetermined position appropriately determined from within such a range.
  • the laser processing apparatus includes the first irradiation unit, the second irradiation unit, the first light collecting unit, the second light collecting unit, the light receiving unit, and the focus servo. Means and control means.
  • the laser processing apparatus 1 is a laser beam L1 for processing and a focus of the laser light L1 on a processing target object 50 such as a glass substrate having a film structure or an opaque material.
  • a laser beam L2 for focus control for operating a focus servo for adjustment is emitted.
  • FIG. 1 is a schematic diagram showing the overall configuration of the laser processing apparatus 1.
  • the laser processing apparatus 1 includes a control unit 11, a stage 12, a focus control optical system 2 mainly related to emission of a laser beam L ⁇ b> 2 for focus servo control, and a main processing tool.
  • a control unit 11 a stage 12
  • a focus control optical system 2 mainly related to emission of a laser beam L ⁇ b> 2 for focus servo control
  • a main processing tool a main processing tool.
  • Two optical systems including a processing optical system 3 related to emission of the laser light L1 are provided.
  • the control unit 11 is an arithmetic unit, and controls the operation by supplying a control signal to each unit of the laser processing apparatus 1.
  • the control unit 11 further includes memory storage means for storing an operation program, performs an operation according to an electric signal from each unit, and supplies a control signal based on the operation result to each unit.
  • the stage 12 is a member on which the workpiece 50 is fixed and placed.
  • the stage 12 is supported by a stage actuator 12a.
  • the stage actuator 12a includes a drive amplifier that supplies current in accordance with a control signal supplied from the control unit 11, and includes an actuator that moves the stage 12 in response to supply of current from the drive amplifier.
  • the stage actuator 12 typically moves or rotates the stage 12 in a plane orthogonal to the optical axes of the laser beam L1 and laser beam L2 for processing (that is, in the XY plane in FIG. 1). By such movement or rotation of the stage 12, the workpiece 50 placed on the stage 12 moves relative to the condensing part F1 of the laser light L1.
  • the processing laser light L 1 is scanned linearly, for example, by moving the stage 12 in a state where the laser light L 1 is focused on the surface of the processing target object 50, and the surface of the processing target object 50.
  • a modified region is formed in a desired region.
  • the focus control optical system 2 includes a focus light source 21, a beam splitter 22, a quarter-wave plate 23, a focusing condenser lens 24, a cylindrical lens 25, and a quadrant PD (Photo (Detector: light receiving element). 26 and a calculation unit 27.
  • the focus light source 21 is an example of the second emission means of the present invention, and includes, for example, a laser diode for generating laser light and an application means for applying a high-frequency superimposed pulse to the generated laser light.
  • the laser beam L2 for focus control is emitted.
  • the laser beam L2 is an example of the second laser beam of the present invention, and is, for example, a laser beam having a wavelength of about 680 nm on which high frequency superimposition has been performed.
  • the laser light L2 emitted from the focusing light source 21 passes through the beam splitter 22 and the quarter wavelength plate 23 and enters the focusing condenser lens 24.
  • the beam splitter 22 is disposed on the optical path of the laser beam L2, and emits the incident laser beam L2 in the direction of the focusing condenser lens 24, and returns the laser beam L2 incident through the focusing condenser lens 24.
  • L3 is reflected and emitted in the direction of the cylindrical lens 25.
  • the quarter-wave plate 23 is a quartz plate or the like having a refractive index corresponding to the wavelength of the laser beam L2, which is disposed on the optical path of the laser beam L2 that has passed through the beam splitter 22.
  • the quarter-wave plate 23 causes a phase difference in the passing laser beam L2, and converts linearly polarized light into circularly polarized light or elliptically polarized light.
  • the focusing condenser lens 24 will be described by referring to the upper surface S1 of the workpiece 50 placed on the stage 12 (the surface above the Z axis in FIG. 1, hereinafter simply referred to as “upper surface S1”.
  • the surface below the axis is a lens that focuses the laser light L2 on the surface (simply referred to as “lower surface S2”) to form a condensing portion F2.
  • the focusing condenser lens 24 is supported by a focusing lens block 24a.
  • the numerical aperture of the focusing condenser lens 24 is determined based on the thickness of the workpiece 50 in the Z direction, as will be described later.
  • the numerical aperture of the focusing condenser lens 24 is preferably determined in consideration of the influence of the reflected light of the laser light L2 from the lower surface S2 of the workpiece 50.
  • the numerical aperture of the focusing condenser lens 24 is set to be larger than 0.1.
  • the focusing lens block 24a supports the focusing condenser lens 24, and moves to move the focusing condenser lens 24 together with the supporting member in the optical axis direction of the laser light L2 (that is, the Z direction in FIG. 1).
  • the moving member is, for example, an actuator such as a voice coil that can move the focusing lens 24 with a thrust according to a focus shift and a focus error signal FE voltage supplied from the calculation unit 27.
  • the focus lens block 24a moves the focus position of the laser beam L2 in the Z direction by moving the focus condenser lens 24 in the Z direction.
  • the focusing lens 24 and the focusing lens block 24a include a linear scale 24b for detecting the position of the focusing lens 24 (typically, the position of the laser light L2 in the optical axis direction).
  • the linear scale 24b is a device capable of detecting the position of the focusing condenser lens 24 moved by the focusing lens block 24a by optical, magnetic, or some other means.
  • the linear scale 24 b outputs the detected position data of the focusing condenser lens 24 to the calculation unit 27.
  • a part of the laser beam L2 that forms the condensing part F2 is reflected on the upper surface S1 of the workpiece 50.
  • a part of the laser beam L2 that passes through the workpiece 50 is reflected on the lower surface S2 of the workpiece 50.
  • These reflected lights are emitted upward as the return light L3.
  • the return light L3 enters the beam splitter 22 through the focusing condenser lens 24 and the 1 ⁇ 4 reflector 23, is reflected by the beam splitter 22, and enters the quadrant PD 26 through the cylindrical lens 25.
  • the cylindrical lens 25 is a semi-cylindrical lens which is an example of a component of the light receiving means in the present embodiment.
  • the cylindrical lens 25 adds astigmatism by changing the spot shape of the return light L3 that passes therethrough.
  • the return light L3 passing through the cylindrical lens 25 is in a first direction (for example, the X direction in FIG. 1) orthogonal to the optical axis direction of the return light L3 (for example, the Y direction in FIG. 1).
  • the optical axis direction and the second direction (for example, the Z direction in FIG. 1) orthogonal to the first direction have different light collection characteristics.
  • the quadrant PD 26 is an example of a component of the light receiving means in the present embodiment, and is arranged at the focus position of the return light L3 when the laser light L2 is focused on the upper surface S1 of the workpiece 50.
  • the 4-split PD 26 includes four light receiving elements that receive the return light L3 and output a voltage corresponding to the amount of light, and a calculation unit that measures and calculates the voltage supplied from each light receiving element.
  • the return light L3 forms a circular beam spot in the quadrant PD 26 at the focus position due to a change in the condensing characteristic of the cylindrical lens 25, and when the focus position is deviated, the return light L3 is in the first direction or the second direction.
  • An elliptical beam spot having one of the major axes is formed.
  • the sum of the voltages output from the light-receiving elements A and C and the voltage output from the light-receiving elements B and D are as follows.
  • a focus error signal FE having a voltage corresponding to the difference from the sum of the two is generated and input to the calculation unit 27.
  • the laser beam L2 When the laser beam L2 is appropriately focused on the upper surface S1 of the workpiece 50 (that is, when the condensing unit F2 is the focal point of the laser beam L2), the laser beam L2 enters the quadrant PD 26 via the cylindrical lens 25.
  • the light spot shape is circular.
  • the sum of the voltages output from the light receiving elements A and C is equal to the sum of the voltages output from the light receiving elements B and D, and the voltage of the focus error signal FE is “0”.
  • the spot shape of the return light incident on the quadrant PD 26 is elliptical.
  • the sum of the voltages output from the light receiving elements A and C or the sum of the voltages output from the light receiving elements B and D becomes greater than the other depending on the direction in which the focus is shifted.
  • the voltage of the error signal FE is “0>” or “0 ⁇ ”.
  • the 4-split PD 26 is connected to the PD actuator 26a, and can move within a predetermined range in the optical axis direction of the return light L3 by the operation of the PD actuator 26a.
  • the PD actuator 26a has a drive amplifier that supplies a drive current according to a control signal indicating the Z-axis target value supplied from the control unit 11, for example, and moves the quadrant PD 26 according to the drive current.
  • the calculation unit 27 Based on the focus error signal FE supplied from the 4-split PD 26, the calculation unit 27 detects whether or not the focus of the light condensing unit F2 is deviated and, if it is deviated, detects the deviation amount.
  • the calculation unit 27 supplies a control signal including the detected focus shift amount to the focus lens block 24a and the processing lens block 33a.
  • the configuration of the processing optical system 3 of the laser processing apparatus 1 will be described.
  • the processing optical system 3 includes a processing light source 31 that emits a processing laser beam L1, a diverging lens 32, and a processing condensing lens 33.
  • the processing light source 31 is an example of the first emitting means of the present invention, and includes a laser generation unit, a concentrating element, a phase modulator, a resonator, and the like (not shown), and directs the laser light L1 toward the diverging lens 32.
  • the laser beam L1 is an example of the first laser beam of the present invention, and is, for example, an ultraviolet laser.
  • the diverging lens 32 is a lens that adjusts the light beam angle of the incident laser light L1 and emits it in the direction of the processing condenser lens 33.
  • the diverging lens 32 is supported by the D lens block 32a.
  • the D lens block 32a supports the diverging lens 32 and the diverging lens 32 together with the support member in accordance with the control signal supplied from the control unit 11 in the optical axis direction of the laser beam L1 (that is, FIG. 1).
  • a moving member that moves in the Z direction).
  • the moving member is, for example, an actuator such as a voice coil that is driven according to a control signal.
  • the D lens block 32a moves the diverging lens 32 in the Z direction, thereby changing the light beam angle of the laser light L1 to an arbitrary angle, so that the laser light L1 collected by the processing condenser lens 33 is collected. Move the focus position in the Z direction.
  • the D lens block 32a sets the position of the diverging lens 32 according to the control signal from the control unit 11 so that the laser light L1 incident on the processing condenser lens 33 becomes parallel light.
  • the processing condensing lens 33 is a lens that condenses the laser light L1 on the upper surface S1 or the lower surface S2 of the workpiece 50 placed on the stage 12 to form the condensing part F1.
  • the processing condensing lens 33 is supported by a processing lens block 33a.
  • the numerical aperture of the processing condenser lens 33 is set to be at least larger than the numerical aperture of the focusing condenser lens 24.
  • the processing lens block 33a supports the processing condensing lens 33, and moves to move the processing condensing lens 33 together with the supporting member in the optical axis direction of the laser beam L1 (that is, the Z direction in FIG. 1).
  • the moving member is, for example, an actuator such as a voice coil that can move the processing condensing lens 33 with a thrust according to the focus shift and focus error signal FE voltage supplied from the calculation unit 27.
  • the processing lens block 33a moves the focus position of the laser light L1 in the Z direction by moving the processing condenser lens 33 in the Z direction.
  • the processing lens block 33a receives a control signal similar to that received by the focusing lens block 24a, and the processing lens block 33a is moved by the focusing lens block 24a.
  • the laser beam L1 is preferably focused on the upper surface S1 or the lower surface S2 of the workpiece 50 by moving the same amount in the Z direction.
  • the processing condenser lens 33 and the processing lens block 33a include a linear scale 33b for detecting the position of the processing condenser lens 33 (typically, the position of the laser light L2 in the optical axis direction).
  • the linear scale 33b is a device capable of detecting the position of the processing condenser lens 33 moved by the processing lens block 33a by optical, magnetic, or some other means.
  • the linear scale 33 b outputs the detected position data of the processing condenser lens 33 to the calculation unit 27.
  • the positional relationship of the processing optical system 3 with respect to the focusing optical system 2 is set so that the condensing part F1 is formed at a predetermined distance from the condensing part F2 in the XY plane.
  • the positional relationship between the focusing condenser lens 24 and the processing condenser lens 33 is kept constant.
  • the calculation unit 27 notifies the focus lens block 24 a of a change in the position of the processing condenser lens 33 input from the linear scale 33 b and synchronizes the focusing condenser lens 24 with the processing condenser lens 33. To move.
  • the calculation unit 27 notifies the processing lens block 33 a of a change in the position of the focusing condenser lens 24 input from the linear scale 24 b, and synchronizes the processing condenser lens 33 with the focusing condenser lens 24. To move.
  • astigmatism due to the cylindrical lens 25 is imparted to the return light L ⁇ b> 3 incident on the quadrant PD 26.
  • the computing unit 27 can set the focus error signal generation range to a desired value according to the astigmatism based on the astigmatism.
  • the astigmatic difference is the length of an elliptical beam spot incident on two directions orthogonal to the optical axis of the return light L3 in which the astigmatism occurs in the cylindrical lens 25 and perpendicular to each other (for example, the quadrant PD 26).
  • Axis and minor axis directions Differences in the optical axis direction between the respective beam waist positions.
  • FIG. 2 is a graph showing an S-shaped waveform with respect to the voltage of the time-series focus error signal FE corresponding to the return light L3.
  • the focus error signal generation range is, for example, a range of focus shift that can be detected by the four-divided PD 26, and is represented by a distance between ends of the S-shaped waveform on the horizontal axis.
  • the astigmatic difference is represented by the distance between peaks of the focus error signal FE voltage on the horizontal axis in the S-shaped waveform.
  • a focus error signal is generated by increasing the amount of astigmatism (and hence astigmatism) generated by the cylindrical lens 25 or by increasing the astigmatism difference by reducing the numerical aperture of the focusing condenser lens 24.
  • the range becomes wider.
  • the reflected light component reflected on the upper surface S1 of the workpiece 50 and the reflected light component reflected on the lower surface S2 of the laser light L2 enter the quadrant PD 26 as the return light L3.
  • the computing unit 27 preferably computes the amount of focus deviation from the focus error signal FE based on the reflected light component from the upper surface S1 of the workpiece 50 out of the return light L3 incident on the quadrant PD 26. Therefore, in the return light L3, it is preferable that the reflected light component reflected on the upper surface S1 of the workpiece 50 and the reflected light component reflected on the lower surface S2 can be appropriately distinguished.
  • the focus error signal FE shown in FIG. 2 the relationship between the reflected light component reflected on the upper surface S1 of the workpiece 50 incident on the quadrant PD 26 and the reflected light component reflected on the lower surface S2 is shown in FIG.
  • the return light L3 the reflected light component reflected on the upper surface S1 and the reflected light component reflected on the lower surface S2 of the workpiece 50 pass through the cylindrical lens 25, respectively.
  • a similar astigmatic difference is added.
  • the S-shaped waveform based on the reflected light component from the upper surface S ⁇ b> 1 of the workpiece 50 and the S-shaped waveform based on the reflected light component from the lower surface S ⁇ b> 2 are mutually the upper surface S ⁇ b> 1 of the workpiece 50.
  • the optical path length between the lower surface S2 that is, the distance between the upper surface S1 and the lower surface S2 determined by the Z-direction thickness T and the refractive index N of the workpiece 50).
  • the astigmatic difference of the reflected light component from the upper surface S1 and the astigmatic difference of the reflected light component from the lower surface S2 overlap, it is appropriate according to the focus shift of the laser light L2 on the upper surface S1 of the workpiece 50.
  • the focus error signal FE is not output, and an accurate focus operation may not be performed.
  • the astigmatic difference of the reflected light component from the upper surface S1 and the astigmatic difference of the reflected light component from the lower surface S2 are separated with a predetermined margin therebetween.
  • the margin is at least one time astigmatic difference or more. In the region where the numerical aperture of the focusing condenser lens 24 is low, the astigmatic difference between the reflected light component reflected on the upper surface S1 and the reflected light component reflected on the lower surface S2 is substantially the same. Become.
  • the astigmatic difference is preferably less than or equal to half of the optical path length between the upper surface S1 and the lower surface S2 of the workpiece 50. Is set. In other words, the astigmatic difference is set to be equal to or less than half of the interval T / N between the upper surface S1 and the lower surface S2 determined by the thickness T and the refractive index N of the workpiece 50.
  • the processing lens block 33a of the processing optical system 3 processes the laser light L1 by operating the processing condensing lens 33 in synchronization with the focusing operation of the focusing lens 24 in the focus control optical system 2.
  • the object 50 is focused on the upper surface S1 or the lower surface S2.
  • stable focus control equivalent to the stable focus control performed in the focus control optical system 2 can be applied to the laser light L1, and the condensing unit F1 is placed on the upper surface of the workpiece 50 with high accuracy.
  • S1 or the lower surface S2 can be focused.
  • servo control is performed to control the thrust (and hence acceleration) for operating the focusing lens 24 in accordance with the focus shift of the focusing unit F2 of the laser beam L2.
  • the condensing part F1 of the laser light L1 can be switched between the upper surface S1 and the lower surface S2 of the processing object 50 by the operation of the processing lens block 33a.
  • the processing lens block 33a has an optical path in which the focus position of the laser beam L1 depends on the distance between the upper surface S1 and the lower surface S2 of the processing object 50, that is, the Z-direction thickness T and the refractive index N of the processing object 50.
  • the processing condensing lens 33 is moved in the Z direction so as to move by a long distance. This mode of movement is shown in the schematic diagram of FIG.
  • the processing lens block 33a moves the focus position of the laser beam L1 from the upper surface S1 to the lower surface S2 of the processing object 50
  • the processing lens block 33 is moved to the processing object 50 in the direction of the processing object 50 by an interval T between the upper surface S1 and the lower surface S2. Move / N minutes. With this movement, the focus position of the laser beam L1 moves from the upper surface S1 to the lower surface S2 of the workpiece 50.
  • the processing lens block 33a moves the processing condensing lens 33 following the focus control by the focus control optical system 2 in a state where the focus position is moved to the lower surface S2 of the processing object 50.
  • the condensing part F1 of the laser beam L1 can be suitably focused on the lower surface S2 of the workpiece 50.
  • the laser beam L1 causes a modification by vaporization or the like in a minute volume of about 10 cubic micrometers in the vicinity of the condensing portion F1 on the upper surface S1 or the lower surface S2 of the workpiece 50. Therefore, the numerical aperture of the processing condensing lens 33 is determined in accordance with the size of the condensing part F1 corresponding to the volume causing the modification, which is larger than the numerical aperture of the focusing condensing lens 24 as described above. It is preferred that Preferably, the size of the light collecting portion F1 formed at the focus position is adjusted to about 1 square micrometer.
  • the in-plane orthogonal to the optical axis direction of the laser light L1 That is, a minute modified region can be formed on the upper surface S1 and the lower surface S2) of the workpiece 50.
  • the laser processing apparatus 1 controls the processing condensing lens 33 to form the condensing portion F1 inside the processing object 50 such as transparent glass by the operation of the processing focus block 33a.
  • a minute modified region can be formed inside the object 50.
  • the laser beam L1 in the optical axis direction in addition to the improvement of the processing accuracy in the plane orthogonal to the optical axis direction of the laser light L1, the laser beam L1 in the optical axis direction (in other words, the depth inside the processing object 50). In the vertical direction, more modified regions can be formed.
  • a highly accurate cut surface can be obtained.
  • movement in the optical axis direction due to residual error after focus servo close can be suppressed to a minute region of about 10 nanometers, for example.
  • an error range of about 1 micrometer is allowed at the position of the modified region to be formed.
  • the servo gain in focus control is set low.
  • the modified region can be formed with sufficient accuracy.
  • the laser processing apparatus 1 performs focus control by focusing the focusing portion F2 of the focusing laser beam L2 on the upper surface S1 of the processing object 50, and performs the focus control.
  • the condensing part F1 of the processing laser beam L1 is focused on the upper surface S1 of the processing object 50.
  • the processing optical system 1 uses the laser light L1 to process the film structure formed on the upper surface S1 of the processing object 50 or to trim the upper surface S1. And so on.
  • the condensing part of the processing laser beam L1 suitably following the uneven structure formed on the upper surface S1 of the processing object 50 F1 can be focused on the upper surface S1. Therefore, high-precision and high-speed machining can be realized on the upper surface S1, the lower surface S2, or the inside of the workpiece 50 without being affected by the uneven structure due to wrinkles or the like on the upper surface S1 of the workpiece 50.
  • the processing optical system 1 moves the light condensing part F1 of the laser light L1 to the lower surface S2 of the workpiece 50, thereby forming a film structure formed on the lower surface S2.
  • the above processing and the trimming processing of the lower surface S2 can be performed in the same manner.
  • the focus control optical system 2 is configured so that the condensing part F2 of the laser light L2 is not the surface of the processing object 50, as shown in FIG. You may focus on the predetermined depth inside the workpiece 50.
  • the size of the beam spot of the laser beam L2 formed on the surface of the processing object 50 is larger than that in the case where the condensing unit F2 is focused on the surface of the processing object 50. For this reason, the influence on the focus control due to relatively small irregularities such as scratches and structures formed on the surface of the workpiece 50 can be suppressed.
  • FIG. 7 is a schematic diagram showing an overall configuration of the laser processing apparatus 1 ′.
  • the same number is attached
  • a lens block 24c is arranged instead of the focusing lens block 24a.
  • the lens block 24 c includes a moving member that supports the focusing condenser lens 24 and the processing condenser lens 33 and that can move in synchronization with the focusing condenser lens 24 and the processing condenser lens 33 ( (See dashed line).
  • the moving member is an actuator such as a voice coil capable of moving the focusing condenser lens 24 and the processing condenser lens 33 with a thrust according to the focus shift and the focus error signal FE voltage supplied from the calculation unit 27.
  • the lens block 24c moves the focusing condenser lens 24 in the optical axis direction (that is, the Z direction) of the laser light L2 by the operation of the moving member, and at the same time, moves the condenser condenser lens 33 for processing by the same amount. It is moved in the optical axis direction of L1 (that is, the Z direction).
  • the lens block 24c supports and moves the processing condensing lens 33 together with the processing lens block 33a.
  • the processing condensing lens 33 is supported in a movable manner by the processing lens block 33a, and further supported by the lens block 24c in a movable manner along with the processing lens block 33a.
  • the processing lens block 33a moves the processing condensing lens 33 in the Z direction by an interval between the upper surface S1 and the lower surface S2 of the processing object 50 (for example, T / N). ) By moving, the focus position of the laser beam L1 is moved from the upper surface S1 of the workpiece 50 to the lower surface S2.
  • the processing lens block 33a moves the processing condensing lens 33 based on one data of the processing condensing lens 33 detected by the attached linear scale 33b.
  • the processing condenser lens 33 can be moved in synchronization with the movement of the focusing condenser lens 24 based on focus control. For this reason, the laser beam L1 for processing can be focused on the upper surface S1, the lower surface S1, or a desired position inside the processing object 50 without being affected by irregularities such as wrinkles on the upper surface S1 of the processing object 50. .
  • FIG. 8 is a schematic diagram showing an overall configuration of the laser processing apparatus 1 ′′.
  • the same number is attached
  • a lens block 24d is arranged instead of the focusing lens block 24a and the processing lens block 33a.
  • the lens block 24 d includes a moving member that supports the focusing condenser lens 24 and the processing condenser lens 33 and that can move in synchronization with the focusing condenser lens 24 and the processing condenser lens 33 ( (See dashed line).
  • the moving member is an actuator such as a voice coil capable of moving the focusing condenser lens 24 and the processing condenser lens 33 with a thrust according to the focus shift and the focus error signal FE voltage supplied from the calculation unit 27.
  • the lens block 24c moves the focusing condenser lens 24 in the optical axis direction (that is, the Z direction) of the laser light L2 by the operation of the moving member, and at the same time, moves the condenser condenser lens 33 for processing by the same amount. It is moved in the optical axis direction of L1 (that is, the Z direction).
  • the processing condenser lens 33 can be moved in synchronization with the movement of the focusing condenser lens 24 based on focus control. For this reason, the laser beam L1 for processing can be focused on the upper surface S1, the lower surface S1, or a desired position inside the processing object 50 without being affected by irregularities such as wrinkles on the upper surface S1 of the processing object 50. .
  • the processing condenser lens 33 is made independent of the focusing condenser lens 24 by a mechanism (not shown) or manually by an operator of the laser processing apparatus 1 ′′.
  • the focus position of the laser beam L1 can be moved to the upper surface S1, the lower surface S1, or a desired position inside the workpiece 50.
  • the operator moves the processing condensing lens 33 in the Z direction by an amount of movement (T / N) determined according to the thickness T and the refractive index N of the workpiece 50 in the Z direction.
  • the focus position of the laser beam L1 is moved from the upper surface S1 to the lower surface S2 of the workpiece 50.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser processing apparatus (1) is provided with: a first radiation means (31), which radiates a first laser beam (L1) for processing a subject to be processed; a second radiation means (21), which radiates a second laser beam (L2); a first light collecting means (33), which performs processing by forming, on the front surface (S1) or the rear surface (S2) of the subject to be processed, a first light collected area (F1), which is an area where the first laser beam is collected; a second light collecting means (24), which forms, at a predetermined position on the subject to be processed, a second light collected area (F2) where the second laser beam is collected; a light receiving means (26), which receives reflected light (L3) of the second laser beam that is reflected by the subject to be processed; focus servo means (27, 24a), which determine the position of the second light collected area on the basis of the reflected light of the second laser beam, said reflected light being received by the light receiving means; and a control means (33a), which controls the operation of the first light collecting means such that the first light collected area is formed at a position determined on the basis of the position of the second light collected area. The numerical aperture of the first light collecting means is larger than that of the second light collecting means.

Description

レーザ加工装置Laser processing equipment
 本発明は、例えば、材料表面にレーザ光の集光部を形成することで、集光部近傍の材料の構造に変化を生じさせ、加工を行うレーザ加工装置の技術分野に関する。 The present invention relates to a technical field of a laser processing apparatus that performs processing by, for example, forming a condensing part of a laser beam on the surface of a material to cause a change in the structure of the material in the vicinity of the condensing part.
 この種の装置では、レーザ光源から出射されるレーザ光をステージ上に載置される材料表面に集光させ、集光部近傍の微小体積に熱処理による化学的または物理的な変化を生じさせることで加工を行う。所望の位置に所望の加工を実施するためには、レーザ光の集光部と材料表面との位置関係を一定に保つことが重要とされる。しかしながら、材料表面は、必ずしも平坦ではなく、レーザ光の集光部と材料表面との位置関係は、加工時に適宜変化するため、該位置関係の変化に追従する集光制御が要求される。 In this type of equipment, the laser light emitted from the laser light source is condensed on the surface of the material placed on the stage, and a chemical or physical change due to heat treatment is caused in the minute volume near the condensing part. Processing with. In order to perform desired processing at a desired position, it is important to keep the positional relationship between the condensing part of the laser beam and the material surface constant. However, the material surface is not necessarily flat, and the positional relationship between the condensing part of the laser beam and the material surface changes as appropriate during processing, and thus condensing control is required to follow the change in the positional relationship.
 例えば、後述する先行技術文献には、レーザ光源から出射されるレーザ光を2つに分光し、一方を加工用のレーザ光、他方を測距用のレーザ光とする構成について説明されている。該構成においては、測距用のレーザ光の反射光から生成される電気信号に基づく演算により、加工用のレーザ光の集光位置の制御を行っている。このため、レーザ光の集光部と材料表面との位置関係の変化に対して、加工用のレーザ光の集光部を追従して移動させることが出来るとされている。 For example, a prior art document to be described later describes a configuration in which laser light emitted from a laser light source is split into two, and one is processed laser light and the other is distance measuring laser light. In this configuration, the condensing position of the processing laser beam is controlled by calculation based on an electric signal generated from the reflected light of the ranging laser beam. For this reason, it is supposed that the condensing part of the laser beam for processing can be moved following the change in the positional relationship between the condensing part of the laser beam and the material surface.
特開平6-190578号公報JP-A-6-190578
 先行技術文献に説明される構成によれば、演算時の遅延により、集光位置制御の遅延や、材料表面の構造に対する適切な追従が行えないなどの技術的問題が考えられる。これは、高精度且つ高速度の加工が要求されるレーザ加工装置の運用においては、好ましくない。また、単一のレーザ光源からのレーザ光を加工用のレーザ光と測距用のレーザ光とに分光しているため、何らかの要因で材料の加工条件が変更される場合、測距用のレーザ光に対しても影響が生じ、演算に影響する虞がある。 According to the configuration described in the prior art document, there may be a technical problem such as a delay in condensing position control and an appropriate follow-up to the structure of the material surface due to a delay in calculation. This is not preferable in the operation of a laser processing apparatus that requires high-precision and high-speed processing. In addition, since the laser beam from a single laser light source is split into a processing laser beam and a ranging laser beam, if the processing conditions of the material are changed for some reason, the ranging laser It also affects light and may affect the calculation.
 本発明は、例えば上述の問題点に鑑み為されたものであり、加工用のレーザ光の集光位置を材料表面の構造に対して適切に追従し、高精度且つ高速度な加工を実現可能とするレーザ加工装置を提供することを課題とする。 The present invention has been made in view of, for example, the above-described problems, and can accurately perform high-precision and high-speed processing by appropriately following the focusing position of the laser beam for processing with respect to the structure of the material surface. It is an object to provide a laser processing apparatus.
 上記課題を解決するために、本発明のレーザ加工装置は、加工対象物にレーザ光を集光させることで、加工を行うレーザ加工装置であって、前記加工対象物に加工を行うための第1レーザ光を照射する第1照射手段と、前記加工対象物に第2レーザ光を照射する第2照射手段と、前記加工対象物の表面又は裏面に前記第1レーザ光の集光部である第1集光部を形成することで加工を行う第1集光手段と、前記加工対象物の所定の位置に前記第2レーザ光の集光部である第2集光部を形成する第2集光手段と、前記加工対象物において反射される前記第2レーザ光の反射光を受光する受光手段と、前記受光手段に受光される前記第2レーザ光の反射光に基づいて、前記第2集光部の位置を決定するフォーカスサーボ手段と、前記第2集光部の位置に基づいて決定される位置に前記第1集光部を形成するように前記第1集光手段の動作を制御する制御手段とを備え、前記第1集光手段の開口数が前記第2集光手段の開口数よりも大きい。 In order to solve the above-described problems, a laser processing apparatus of the present invention is a laser processing apparatus that performs processing by condensing laser light on a processing target, and is a first processing unit that performs processing on the processing target. A first irradiating means for irradiating one laser beam; a second irradiating means for irradiating the workpiece with a second laser beam; and a condensing part for the first laser beam on the front or back surface of the workpiece. A first condensing unit that performs processing by forming a first condensing unit; and a second condensing unit that forms a second condensing unit that is a condensing unit of the second laser light at a predetermined position of the object to be processed. Based on the light collecting means, the light receiving means for receiving the reflected light of the second laser light reflected by the workpiece, the second light based on the reflected light of the second laser light received by the light receiving means. A focus servo means for determining a position of the light collecting portion; and Control means for controlling the operation of the first light condensing means so as to form the first light condensing part at a position determined based on the position, and the numerical aperture of the first light condensing means is the second It is larger than the numerical aperture of the light collecting means.
実施例のレーザ加工装置の基本的な構成を示すブロック図である。It is a block diagram which shows the basic composition of the laser processing apparatus of an Example. フォーカスエラー信号の非点隔差を示すS字波形を示すグラフである。It is a graph which shows the S-shaped waveform which shows the astigmatic difference of a focus error signal. 非点隔差と集光レンズの開口数の関係を示すグラフの例である。It is an example of the graph which shows the relationship between an astigmatic difference and the numerical aperture of a condensing lens. 加工対象物の上面及び下面からの反射光における非点隔差を示すグラフである。It is a graph which shows the astigmatic difference in the reflected light from the upper surface and lower surface of a workpiece. 加工用集光レンズの動作による加工用レーザ光の集光部の移動の態様を示す図である。It is a figure which shows the aspect of a movement of the condensing part of the process laser beam by operation | movement of the process condensing lens. 実施例のレーザ加工装置を用いたレーザ加工の態様を示す図である。It is a figure which shows the aspect of the laser processing using the laser processing apparatus of an Example. レーザ加工装置の変形例の基本的な構成を示すブロック図である。It is a block diagram which shows the basic composition of the modification of a laser processing apparatus. レーザ加工装置の変形例の基本的な構成を示すブロック図である。It is a block diagram which shows the basic composition of the modification of a laser processing apparatus.
 本発明のレーザ加工装置の実施形態は、加工対象物にレーザ光を集光させることで、加工を行うレーザ加工装置であって、前記加工対象物に加工を行うための第1レーザ光を照射する第1照射手段と、前記加工対象物に第2レーザ光を照射する第2照射手段と、前記加工対象物の表面又は裏面に前記第1レーザ光の集光部である第1集光部を形成することで加工を行う第1集光手段と、前記加工対象物の所定の位置に前記第2レーザ光の集光部である第2集光部を形成する第2集光手段と、前記加工対象物において反射される前記第2レーザ光の反射光を受光する受光手段と、前記受光手段に受光される前記第2レーザ光の反射光に基づいて、前記第2集光部の位置を決定するフォーカスサーボ手段と、前記第2集光部の位置に基づいて決定される位置に前記第1集光部を形成するように前記第1集光手段の動作を制御する制御手段とを備え、前記第1集光手段の開口数が前記第2集光手段の開口数よりも大きい。 An embodiment of a laser processing apparatus of the present invention is a laser processing apparatus that performs processing by condensing laser light on a processing object, and irradiates the first laser light for processing the processing object. First irradiating means, second irradiating means for irradiating the processing object with a second laser beam, and a first condensing part that is a condensing part for the first laser light on the front surface or the back surface of the processing object. A first condensing unit that performs processing by forming a second condensing unit that forms a second condensing unit that is a condensing unit of the second laser light at a predetermined position of the processing target; Based on the light receiving means for receiving the reflected light of the second laser light reflected by the workpiece and the reflected light of the second laser light received by the light receiving means, the position of the second condensing unit A focus servo means for determining the position and the position of the second light collecting section. Control means for controlling the operation of the first light collecting means so as to form the first light collecting portion at a position where the first light collecting means is formed, and the numerical aperture of the first light collecting means is the opening of the second light collecting means. Greater than the number.
 本発明のレーザ加工装置の実施形態によれば、例えば表面に膜構造を有するガラス基板や、不透明な材料などの加工対象物に対して、加工用の第1レーザ光及び、該第1レーザ光のフォーカス調整のためのフォーカスサーボ手段を動作させるフォーカス制御用の第2レーザ光とが出射される。 According to the embodiment of the laser processing apparatus of the present invention, for example, a first laser beam for processing a processing object such as a glass substrate having a film structure on the surface or an opaque material, and the first laser beam. And a second laser beam for focus control for operating the focus servo means for adjusting the focus.
 第1照射手段は、加工対象物に対し、加工用の第1レーザ光を照射するレーザ光源である。第1集光手段は、例えば該第1レーザ光の光軸方向に移動可能な集光レンズを備え、第1レーザ光を加工対象物の表面又は裏面の所定の位置に集光させ、第1集光部を形成する。ここに、加工対象物の表面とは、第1レーザ光による加工の対象となる加工対象物の面の内、第1レーザ光の光源となる第1出射手段に相対的に近い面を示す趣旨である。他方で、加工対象物の裏面とは、第1レーザ光による加工の対象となる加工対象物の面の内、加工対象物を介して表面と反対側に存在する面を示す趣旨である。第1レーザ光は、該裏面を加工する際には、表面から加工対象物内部に入射し、加工対象物内部を透過して該裏面に第1集光部を形成する。 The first irradiation means is a laser light source that irradiates the processing object with the first laser light for processing. The first condensing means includes, for example, a condensing lens that can move in the optical axis direction of the first laser light, and condenses the first laser light at a predetermined position on the front surface or the back surface of the workpiece. A condensing part is formed. Here, the surface of the object to be processed indicates a surface relatively close to the first emitting means serving as the light source of the first laser light, among the surfaces of the object to be processed by the first laser light. It is. On the other hand, the back surface of the object to be processed is intended to indicate a surface existing on the side opposite to the surface through the object to be processed among the surfaces of the object to be processed by the first laser beam. When processing the back surface, the first laser light is incident on the inside of the processing object from the front surface, passes through the processing object, and forms a first condensing portion on the back surface.
 第2照射手段は、加工対象物に対し、第1レーザ光とは異なる第2レーザ光を照射するレーザ光源である。尚、第2レーザ光の波長は、第1レーザ光の波長と異なっていることが好ましいが、同一であってもよい。第2集光手段は、例えば該第2レーザ光の光軸方向に移動可能な集光レンズを備え、第2レーザ光を加工対象物に集光させ、第2集光部を形成する。尚、第2集光手段は、第2レーザ光を加工対象物の表面に集光させてもよいし、加工対象物の内部に集光させてもよいし、それ以外の位置に集光させてもよい。 The second irradiation means is a laser light source that irradiates the workpiece with a second laser beam different from the first laser beam. The wavelength of the second laser light is preferably different from the wavelength of the first laser light, but may be the same. The second condensing unit includes, for example, a condensing lens that can move in the optical axis direction of the second laser light, and condenses the second laser light onto the object to be processed to form a second condensing unit. The second condensing means may condense the second laser light on the surface of the processing object, may condense it inside the processing object, or may condense it at other positions. May be.
 第1照射手段と第2照射手段とは、好適には第1レーザ光と第2レーザ光との光軸が平行、且つ光軸と直交する面内において所定の間隔離隔して配置される。ここに、所定の間隔とは、第1照射手段より照射される第1レーザ光の光束と、第2照射手段により照射される第2レーザ光の光束とが互いに重ならない間隔であり、各レーザ光の光束角度などに応じて設定される。尚、このように配置される第1照射手段と第2照射手段とによれば、第1レーザ光と第2レーザ光とは、各レーザ光の光軸方向に直交する面内で所定の間隔離隔した位置に夫々集光される。 The first irradiating means and the second irradiating means are preferably arranged at a predetermined interval in a plane in which the optical axes of the first laser light and the second laser light are parallel and orthogonal to the optical axis. Here, the predetermined interval is an interval in which the light beam of the first laser light irradiated from the first irradiation unit and the light beam of the second laser beam irradiated from the second irradiation unit do not overlap each other. It is set according to the luminous flux angle of light. According to the first irradiation means and the second irradiation means arranged in this way, the first laser beam and the second laser beam are spaced apart from each other within a plane orthogonal to the optical axis direction of each laser beam. The light is condensed at separate positions.
 尚、第2レーザ光のうち、加工対象物において反射する戻り光は、第2レーザ光が通過した光路を通過した後に、受光手段に入射する。受光手段は、例えば非点収差法を用いて、第2レーザ光が加工対象物における所望の位置にフォーカスしているか否かを、又フォーカスしていない場合はフォーカスずれ量を示す電気信号をフォーカスサーボ手段に入力する。また、受光手段は、第2レーザ光の戻り光に基づいて、ナイフエッジ法など、その他何らかの手法によりフォーカスずれ量の検出を行ってもよい。 Of the second laser light, the return light reflected by the workpiece enters the light receiving means after passing through the optical path through which the second laser light has passed. The light receiving means uses, for example, an astigmatism method to focus an electric signal indicating whether or not the second laser beam is focused on a desired position on the object to be processed and, if not focused, an amount of defocus. Input to servo means. Further, the light receiving means may detect the amount of focus deviation by some other method such as a knife edge method based on the return light of the second laser light.
 フォーカスサーボ手段は、第2レーザ光を加工対象物にフォーカスさせるためのサーボ機構である。フォーカスサーボ手段は、受光手段から入力される電気信号より把握される第2レーザ光のフォーカスずれ量を補正するよう、例えば第2集光手段を移動させる。従って、例えば、加工対象物の表面に凹凸や反りなどがあり、第2照射手段からの光路長が変化する場合であっても、高精度且つ高速でフォーカスの再調整が可能となる。 The focus servo means is a servo mechanism for focusing the second laser beam on the workpiece. The focus servo unit moves, for example, the second condensing unit so as to correct the focus shift amount of the second laser light grasped from the electric signal input from the light receiving unit. Therefore, for example, even when the surface of the workpiece has irregularities or warpage, and the optical path length from the second irradiation means changes, it is possible to readjust the focus with high accuracy and high speed.
 制御手段は、フォーカスサーボ手段による第2レーザ光のフォーカス位置の移動に応じて、第1レーザ光のフォーカス位置を光軸方向に移動する。言い換えれば、制御手段は、フォーカスサーボ手段による第2レーザ光のフォーカス位置の移動に同期して、第1レーザ光のフォーカス位置を移動させる。例えば、制御手段は、フォーカスサーボ手段が受けるものと同様の第2レーザ光のフォーカスずれを示す電気信号、又は該フォーカスずれ量に基づくフォーカス位置の移動量などを示す電気信号の入力を受け、該入力に応じて第1集光手段を第1レーザ光の光軸方向に移動させる。このため、第1レーザ光についても、加工対象物の表面の凹凸や反りに合わせて、高精度且つ高速でフォーカスの再調整が可能となる。結果、高精度な加工対象物のレーザ加工が可能となる。 The control means moves the focus position of the first laser light in the optical axis direction in accordance with the movement of the focus position of the second laser light by the focus servo means. In other words, the control means moves the focus position of the first laser light in synchronization with the movement of the focus position of the second laser light by the focus servo means. For example, the control unit receives an electric signal indicating the focus shift of the second laser beam similar to that received by the focus servo unit, or an electric signal indicating the movement amount of the focus position based on the focus shift amount, and the like. The first condensing means is moved in the optical axis direction of the first laser light according to the input. For this reason, the focus of the first laser beam can be readjusted with high accuracy and high speed in accordance with the unevenness and warpage of the surface of the workpiece. As a result, high-precision laser processing of the workpiece is possible.
 尚、レーザ加工装置の実施形態では、第1集光手段の開口数は、第2集光手段の開口数と比較して大きく設定される。これは、具体的には、第2レーザ光を集光させる集光レンズと比較してより大きな開口数を有する集光レンズにより、第1レーザ光が集光されることを示す趣旨である。このような構成は、装置の振動などの外乱によるフォーカスサーボへの影響を低減させるなど、フォーカスサーボ手段の動作の安定化に繋がる。 In the embodiment of the laser processing apparatus, the numerical aperture of the first light converging means is set larger than the numerical aperture of the second light converging means. Specifically, this is to indicate that the first laser light is condensed by a condensing lens having a larger numerical aperture than the condensing lens that condenses the second laser light. Such a configuration leads to stabilization of the operation of the focus servo means, such as reducing the influence on the focus servo due to disturbances such as vibration of the apparatus.
 本発明のレーザ加工装置の実施形態の一の態様では、前記第2集光手段の開口数は、前記加工対象物の表面及び裏面の間の厚さ、並びに屈折率に基づいて決定される値以上である。 In one aspect of the embodiment of the laser processing apparatus of the present invention, the numerical aperture of the second condensing means is a value determined based on the thickness between the front surface and the back surface of the processing object and the refractive index. That's it.
 上述のように、レーザ加工装置の実施形態においては、第2レーザ光の加工対象物からの反射光に基づくフォーカスサーボ制御により、加工用の第1レーザ光を加工対象物の表面又は裏面に高精度にフォーカスさせる。このとき、加工対象物がレーザ光に対してある程度の透過性を有する透明材料である場合、第2レーザ光のフォーカスずれを検出するための受光手段に対しては、加工対象物の表面からの反射光と、加工対象物を透過した裏面からの反射光とが入射する。一般的なフォーカスずれの検出手法である非点収差法においては、かかる反射光に対して非点収差を発生させている。このとき、加工対象物の表面及び裏面からの反射光における非点収差に基づく非点隔差が相互に干渉し合う場合がある。 As described above, in the embodiment of the laser processing apparatus, the first laser light for processing is applied to the front surface or the back surface of the processing object by the focus servo control based on the reflected light from the processing object of the second laser light. Focus on accuracy. At this time, when the processing object is a transparent material having a certain degree of transparency to the laser light, the light receiving means for detecting the defocus of the second laser light is from the surface of the processing object. The reflected light and the reflected light from the back surface that has passed through the workpiece are incident. In the astigmatism method, which is a general defocus detection method, astigmatism is generated for such reflected light. At this time, the astigmatic difference based on astigmatism in the reflected light from the front surface and the back surface of the workpiece may interfere with each other.
 かかる非点隔差は、第2レーザ光のフォーカスずれを示す尺度として、例えば、受光手段に入射する第2レーザ光の反射光の位相差として現れる。加工対象物の表面及び裏面からの反射光における非点隔差が相互に干渉する場合、受光手段において受光される第2レーザ光の反射光からは、適切な第2レーザ光のフォーカスずれを検出出来ず、フォーカスサーボ手段の誤動作に繋がる。従って、好適なフォーカスサーボ手段によるフォーカス制御のためには、第2レーザ光の反射光における非点隔差は小さく設定されることが好ましい。尚、加工対象物の表面及び裏面からの非点隔差が相互に干渉する場合とは、例えば、加工対象物の表面及び裏面の夫々からの反射光における非点隔差が加工対象物の表面及び裏面の間隔(つまり、加工対象物の表面及び裏面間の第2レーザ光の光路長)に対して、所定の基準を超えて相対的に大きくなる場合である。 Such astigmatism appears as a phase difference of the reflected light of the second laser light incident on the light receiving means, for example, as a scale indicating the defocus of the second laser light. When the astigmatic difference in the reflected light from the front and back surfaces of the workpiece interferes with each other, it is possible to detect an appropriate defocus of the second laser light from the reflected light of the second laser light received by the light receiving means. This leads to a malfunction of the focus servo means. Therefore, it is preferable that the astigmatic difference in the reflected light of the second laser light is set to be small for focus control by a suitable focus servo means. Note that the case where the astigmatism from the front and back surfaces of the processing object interferes with each other means, for example, that the astigmatism in reflected light from each of the front and back surfaces of the processing object is the front and back surfaces of the processing object. (That is, the optical path length of the second laser light between the front surface and the back surface of the workpiece) becomes relatively larger than a predetermined reference.
 他方で、非点隔差は、受光手段における第2レーザ光のフォーカスずれの検出可能範囲に係るため、極端に小さく設定することで、フォーカスサーボ手段の動作範囲を狭めてしまうことに繋がる。このこともまた、フォーカスサーボ手段による正確なフォーカス制御を妨げる可能性がある。 On the other hand, since the astigmatic difference relates to the detectable range of the focus shift of the second laser beam in the light receiving means, setting it extremely small leads to narrowing the operating range of the focus servo means. This can also hinder accurate focus control by the focus servo means.
 非点隔差は、第2集光手段の例である集光レンズの開口数に応じて変化することが本願発明者等により知られており、開口数の所定の領域においては、開口数の逆数と非点隔差との関係は2次関数により関連付けられる。従って、フォーカスサーボ手段を適切に動作させるために、加工対象物の表面及び裏面間の第2レーザ光の光路長に対して、第2集光手段の開口数が適切な範囲内に設定されることが好ましい。尚、加工対象物の表面及び裏面間の光路長は、加工対象物の表面及び裏面間の厚さと屈折率とにより決定される。 It is known by the inventors of the present application that the astigmatic difference changes according to the numerical aperture of a condensing lens that is an example of the second condensing means, and in a predetermined region of the numerical aperture, the reciprocal of the numerical aperture. And the astigmatic difference are related by a quadratic function. Therefore, in order to operate the focus servo means appropriately, the numerical aperture of the second light collecting means is set within an appropriate range with respect to the optical path length of the second laser light between the front surface and the back surface of the workpiece. It is preferable. Note that the optical path length between the front surface and the back surface of the workpiece is determined by the thickness and refractive index between the front surface and the back surface of the workpiece.
 加工対象物の表面及び裏面からの非点隔差が相互に干渉せず、フォーカスサーボ手段を適切に動作させるためには、加工対象物の表面及び裏面からの非点隔差が所定の間隔を有して離隔していることが好ましい。例えば、加工対象物の表面及び裏面の相互の間隔は、非点隔差に対して少なくとも1倍以上あることが好ましい。該条件下では、非点隔差の大きさは、加工対象物の厚さを屈折率で割った商の半分以下であるとの条件が導かれる。このように条件づけられる非点隔差に対して、二次関数的な関連を有する第2集光手段の開口数の許容条件が決定される。 In order for the astigmatism difference from the front surface and the back surface of the workpiece to not interfere with each other and the focus servo means to operate properly, the astigmatism difference from the front surface and the back surface of the workpiece has a predetermined distance. It is preferable that they are separated from each other. For example, it is preferable that the distance between the front surface and the back surface of the workpiece is at least one time as large as the astigmatic difference. Under the condition, the condition that the astigmatic difference is less than half of the quotient obtained by dividing the thickness of the workpiece by the refractive index is derived. The permissible condition of the numerical aperture of the second condensing means having a quadratic function relation is determined for the astigmatic difference thus conditioned.
 上述した構成によれば、第2レーザ光に対する透過性を有する加工対象物に対しても、好適にフォーカスサーボ手段を動作させることが可能となり、適切なフォーカス制御が実施可能となる。 According to the above-described configuration, the focus servo means can be suitably operated even on the workpiece having transparency to the second laser light, and appropriate focus control can be performed.
 上述したように、加工対象物の厚さに応じて第2集光手段の適切な開口数が変化する。硬質ガラスやシリコン基板などを加工対象物とする一般的なレーザ加工においては、加工対象物の厚さとして0.5ミリメートル程度の厚さが採用される場合が多い。このような場合においては、例えば、前記第2集光手段の開口数は、0.1以上であるように設定してもよい。 As described above, the appropriate numerical aperture of the second light collecting means changes according to the thickness of the workpiece. In general laser processing using a hard glass or a silicon substrate as a processing target, a thickness of about 0.5 mm is often adopted as the thickness of the processing target. In such a case, for example, the numerical aperture of the second light collecting means may be set to be 0.1 or more.
 このような設定を用いることで、一般的なレーザ加工の加工対象物となる0.5ミリメートル厚の硬質ガラスやシリコン基板に対して好適な加工を行うことが可能となる。 By using such a setting, it is possible to perform suitable processing on a hard glass or silicon substrate having a thickness of 0.5 mm, which is a general laser processing object.
 本発明のレーザ加工装置の実施形態の他の態様では、前記第1集光手段は、前記加工対象物の表面又は裏面における前記第2集光部の位置に基づいて決定される位置に前記第1集光部を形成する。 In another aspect of the embodiment of the laser processing apparatus of the present invention, the first condensing means is located at a position determined based on the position of the second condensing unit on the front surface or the back surface of the processing object. 1 Condensing part is formed.
 この態様によれば、第1集光手段は、第1レーザ光の第1集光部を加工対象物の表面及び裏面の間で移動可能な構成となる。例えば、第1集光手段は、第1レーザ光を集光する集光レンズと、該集光レンズを第1レーザ光の光軸方向に移動させるアクチュエータを備える。該構成において、アクチュエータは、集光レンズを、加工対象物の厚さに応じて決定される所定の移動量分第1レーザ光の光軸方向に移動させることで、第1集光部の移動を行う。より具体的には、該所定の移動量は、加工対象物の厚さと屈折率とにより決定される、第1レーザ光の光軸方向における表面及び裏面間の光学距離に相当する。 According to this aspect, the first condensing unit is configured to be able to move the first condensing part of the first laser light between the front surface and the back surface of the workpiece. For example, the first condensing unit includes a condensing lens that condenses the first laser light and an actuator that moves the condensing lens in the optical axis direction of the first laser light. In this configuration, the actuator moves the first condensing unit by moving the condensing lens in the optical axis direction of the first laser light by a predetermined movement amount determined according to the thickness of the workpiece. I do. More specifically, the predetermined movement amount corresponds to the optical distance between the front surface and the back surface in the optical axis direction of the first laser light, which is determined by the thickness and refractive index of the workpiece.
 このように構成することで、種々の加工対象物に対して、好適に加工用の第1レーザ光を加工の対象となる表面又は裏面に集光させることが可能となる。 With such a configuration, it is possible to suitably focus the first laser beam for processing on the front surface or the back surface to be processed for various processing objects.
 本発明のレーザ加工装置の実施形態の他の態様では、前記第1及び第2照射手段がレーザ光を照射する際に、前記第1及び第2照射手段がレーザ光を照射する際に、前記第1レーザ光と前記加工対象物とを相対的に移動させる移動手段を更に備える。 In another aspect of the embodiment of the laser processing apparatus of the present invention, when the first and second irradiation means irradiate laser light, the first and second irradiation means irradiate laser light. The apparatus further includes moving means for relatively moving the first laser beam and the workpiece.
 移動手段は、例えば、加工対象物が固定されるステージを第1レーザ光の光軸方向に直行する面内において移動又は回転可能なアクチュエータなどである。移動手段は、第1レーザ光及び第2レーザ光の照射中に、ステージを移動させることで、加工対象物を第1レーザ光に対して相対的に移動させる。このとき、断続的または連続的に照射される第1レーザ光により、加工対象物の表面又は裏面に、加工対象物の移動に沿って断続的または連続的に改質領域が形成される。このため、加工対象物の表面又は裏面の所望の位置に加工を施すことが可能となる。 The moving means is, for example, an actuator that can move or rotate the stage on which the workpiece is fixed in a plane orthogonal to the optical axis direction of the first laser beam. The moving means moves the stage relative to the first laser beam by moving the stage during the irradiation of the first laser beam and the second laser beam. At this time, the modified region is intermittently or continuously formed along the movement of the processing object on the front surface or the back surface of the processing object by the first laser light irradiated intermittently or continuously. For this reason, it becomes possible to process a desired position on the front surface or the back surface of the processing object.
 また、移動手段は、他の態様として、第1レーザ光を照射する第1照射手段を移動させるアクチュエータ等であってもよい。該アクチュエータは、第1レーザ光及び第2レーザ光の照射中に、例えば第1照射手段の例であるレーザ光源を第1レーザ光の光軸方向に直行する面内において移動又は回転させることにより、加工対象物と第1レーザ光とを相対的に移動する。このような構成を採用しても、上述した効果と同等の効果を享受することが可能となる。 Further, the moving means may be an actuator or the like that moves the first irradiation means for irradiating the first laser light as another aspect. The actuator moves or rotates, for example, a laser light source, which is an example of the first irradiation means, in a plane perpendicular to the optical axis direction of the first laser light during irradiation of the first laser light and the second laser light. The processing object and the first laser beam are moved relative to each other. Even if such a configuration is adopted, it is possible to receive the same effects as those described above.
 移動手段の更なる態様として、第1レーザ光を加工対象物に集光する第1集光手段を移動するアクチュエータを採用してもよい。かかるアクチュエータによれば、第1集光手段を移動させることで、第1レーザ光の光路を変更し、加工対象物に対して相対的に移動することが可能となり、上述したものと同様の効果が享受出来る。 As a further aspect of the moving means, an actuator that moves the first condensing means that condenses the first laser light on the object to be processed may be employed. According to such an actuator, it is possible to change the optical path of the first laser light by moving the first condensing means, and to move the first laser light relatively with respect to the workpiece, and the same effect as described above. Can enjoy.
 尚、第1照射手段、第1集光手段又は加工対象物が固定されるステージ等を移動させるアクチュエータを複数組み合わせた移動手段を用いてもよい。また、上述した構成に限られず、その他機械的、光学的等の何らかの手段で第1レーザ光と加工対象物との相対的な移動を実現可能な構成についても同様に採用してよい。 In addition, you may use the moving means which combined several actuators which move the stage etc. to which the 1st irradiation means, the 1st condensing means, or the workpiece is fixed. Further, the present invention is not limited to the above-described configuration, and other configurations that can realize the relative movement between the first laser beam and the workpiece by any mechanical or optical means may be similarly employed.
 本発明のレーザ加工装置の実施形態の他の態様は、前記第2集光手段は、前記加工対象物における、前記第2レーザ光の光軸方向における前記加工対象物の表面から所定距離離隔した所定の位置に前記第2集光部を形成する。 In another aspect of the embodiment of the laser processing apparatus of the present invention, the second condensing means is spaced a predetermined distance from the surface of the processing object in the optical axis direction of the second laser light in the processing object. The second light collecting part is formed at a predetermined position.
 この態様によれば、透明材料であるなど、第2レーザ光に対して透過性を有する加工対象物に対して、第2レーザ光は、表面でなく所定距離深さ方向に離隔した位置に集光される。このとき、加工対象物の表面に形成される第2集光点における第2レーザ光のビームスポットのサイズは、加工対象物の表面に第2レーザ光を集光する場合と比較して大きくなる。このように加工対象物の表面におけるビームスポットのサイズが相対的に大きい場合、加工対象物の表面の傷や構造物などの微小な凹凸に起因する第2レーザ光のフォーカスずれの影響が相対的に低下する。このため、かかる微小な凹凸によるフォーカスサーボ手段の動作への影響を抑制することが出来る。 According to this aspect, the second laser light is collected not at the surface but at a position separated in the depth direction with respect to the workpiece that is transparent to the second laser light, such as a transparent material. To be lighted. At this time, the size of the beam spot of the second laser beam at the second focusing point formed on the surface of the workpiece is larger than that when the second laser beam is focused on the surface of the workpiece. . As described above, when the size of the beam spot on the surface of the workpiece is relatively large, the influence of the defocus of the second laser beam due to the surface surface of the workpiece and the minute irregularities such as the structure is relatively To drop. For this reason, it is possible to suppress the influence on the operation of the focus servo means due to such minute unevenness.
 尚、この態様において形成される第2集光部の位置の範囲とは、上述したフォーカス制御が適切に実施可能であって、加工対象物表面の凹凸によるフォーカス制御への影響を可能な限り排除可能である範囲を示す趣旨である。また、フォーカス制御においては、このような範囲内から適切に決定された所定の位置に第2集光部が位置するよう、サーボによる位置調整が実施される。 Note that the range of the position of the second light collecting portion formed in this aspect is that the above-described focus control can be appropriately performed, and the influence on the focus control due to the unevenness of the surface of the workpiece is eliminated as much as possible. The purpose is to indicate a possible range. In focus control, position adjustment by a servo is performed so that the second light collecting unit is positioned at a predetermined position appropriately determined from within such a range.
 以上、説明したように、本発明のレーザ加工装置の実施形態は、第1照射手段と、第2照射手段と、第1集光手段と、第2集光手段と、受光手段と、フォーカスサーボ手段と、制御手段とを備える。 As described above, the laser processing apparatus according to the embodiment of the present invention includes the first irradiation unit, the second irradiation unit, the first light collecting unit, the second light collecting unit, the light receiving unit, and the focus servo. Means and control means.
 このため、加工対象物の表面に形成される凹凸構造などの影響を抑制し、好適に加工用の第1レーザ光を加工対象物の表面又は裏面にフォーカスさせることが可能となる。 For this reason, it is possible to suppress the influence of the concavo-convex structure formed on the surface of the object to be processed, and to suitably focus the first laser beam for processing on the surface or the back surface of the object to be processed.
 以下、本発明の実施例を図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (1)レーザ加工装置の構成
 レーザ加工装置1は、例えば膜構造を有するガラス基板や、不透明な材料などの加工対象物50に対して、加工用のレーザ光L1及び、該レーザ光L1のフォーカス調整のためのフォーカスサーボを動作させるフォーカス制御用のレーザ光L2とを出射する。図1を参照して、本発明のレーザ加工装置の具体例である、レーザ加工装置1の基本的な構成について説明する。図1はレーザ加工装置1の全体的な構成を示す模式図である。
(1) Configuration of Laser Processing Apparatus The laser processing apparatus 1 is a laser beam L1 for processing and a focus of the laser light L1 on a processing target object 50 such as a glass substrate having a film structure or an opaque material. A laser beam L2 for focus control for operating a focus servo for adjustment is emitted. With reference to FIG. 1, the fundamental structure of the laser processing apparatus 1 which is a specific example of the laser processing apparatus of this invention is demonstrated. FIG. 1 is a schematic diagram showing the overall configuration of the laser processing apparatus 1.
 図1に示されるように、レーザ加工装置1は、制御部11と、ステージ12と、主にフォーカスサーボ制御用のレーザ光L2の出射に係るフォーカス制御用光学系2と、主に加工用のレーザ光L1の出射に係る加工用光学系3との2つの光学系を備える。 As shown in FIG. 1, the laser processing apparatus 1 includes a control unit 11, a stage 12, a focus control optical system 2 mainly related to emission of a laser beam L <b> 2 for focus servo control, and a main processing tool. Two optical systems including a processing optical system 3 related to emission of the laser light L1 are provided.
 制御部11は、演算装置であり、レーザ加工装置1の各部に対して制御信号を供給することで動作を制御する。制御部11は、動作プログラムを格納するメモリの記憶手段を更に備え、各部からの電気信号に応じて演算を行い、演算結果に基づく制御信号を各部に供給する。 The control unit 11 is an arithmetic unit, and controls the operation by supplying a control signal to each unit of the laser processing apparatus 1. The control unit 11 further includes memory storage means for storing an operation program, performs an operation according to an electric signal from each unit, and supplies a control signal based on the operation result to each unit.
 ステージ12は、加工対象物50を固定して載置する部材である。ステージ12は、ステージアクチュエータ12aにより支持される。ステージアクチュエータ12aは、制御部11より供給される制御信号に応じて電流の供給を行う駆動アンプを備え、該駆動アンプからの電流の供給に応じて、ステージ12を移動するアクチュエータ等を備える。ステージアクチュエータ12は、典型的には、加工用のレーザ光L1及びレーザ光L2の夫々の光軸に直交する面内(つまり、図1におけるXY面内)でステージ12を移動又は回転する。このようなステージ12の移動又は回転により、ステージ12上に載置される加工対象物50が、レーザ光L1の集光部F1に対して相対的に移動する。レーザ加工装置1では、レーザ光L1を加工対象物50の表面に集光させた状態でステージ12を移動することにより、加工用レーザ光L1を例えば直線状に走査させ、加工対象物50の表面の所望の領域に改質領域を形成する。 The stage 12 is a member on which the workpiece 50 is fixed and placed. The stage 12 is supported by a stage actuator 12a. The stage actuator 12a includes a drive amplifier that supplies current in accordance with a control signal supplied from the control unit 11, and includes an actuator that moves the stage 12 in response to supply of current from the drive amplifier. The stage actuator 12 typically moves or rotates the stage 12 in a plane orthogonal to the optical axes of the laser beam L1 and laser beam L2 for processing (that is, in the XY plane in FIG. 1). By such movement or rotation of the stage 12, the workpiece 50 placed on the stage 12 moves relative to the condensing part F1 of the laser light L1. In the laser processing apparatus 1, the processing laser light L 1 is scanned linearly, for example, by moving the stage 12 in a state where the laser light L 1 is focused on the surface of the processing target object 50, and the surface of the processing target object 50. A modified region is formed in a desired region.
 フォーカス制御用光学系2の各部の構成について説明する。フォーカス制御用光学系2は、フォーカス用光源21と、ビームスプリッタ22と、1/4波長板23と、フォーカス用集光レンズ24と、シリンドリカルレンズ25と、4分割PD(Photo Detector:受光素子)26と、演算部27とを備える。 The configuration of each part of the focus control optical system 2 will be described. The focus control optical system 2 includes a focus light source 21, a beam splitter 22, a quarter-wave plate 23, a focusing condenser lens 24, a cylindrical lens 25, and a quadrant PD (Photo (Detector: light receiving element). 26 and a calculation unit 27.
 フォーカス用光源21は、本発明の第2出射手段の一例であって、例えば、レーザ光を発生させるためのレーザダイオードと、発生したレーザ光に対して高周波重畳パルスを印加するための印加手段とを備え、フォーカス制御用のレーザ光L2を出射する。レーザ光L2は、本発明の第2レーザ光の一例であって、例えば、高周波重畳が施された波長680nm程度のレーザ光などである。フォーカス用光源21から出射されたレーザ光L2は、ビームスプリッタ22、1/4波長板23を透過して、フォーカス用集光レンズ24へと入射する。 The focus light source 21 is an example of the second emission means of the present invention, and includes, for example, a laser diode for generating laser light and an application means for applying a high-frequency superimposed pulse to the generated laser light. The laser beam L2 for focus control is emitted. The laser beam L2 is an example of the second laser beam of the present invention, and is, for example, a laser beam having a wavelength of about 680 nm on which high frequency superimposition has been performed. The laser light L2 emitted from the focusing light source 21 passes through the beam splitter 22 and the quarter wavelength plate 23 and enters the focusing condenser lens 24.
 ビームスプリッタ22は、レーザ光L2の光路上に配置され、入射したレーザ光L2をフォーカス用集光レンズ24方向に出射させるとともに、フォーカス用集光レンズ24を介して入射するレーザ光L2の戻り光L3を反射してシリンドリカルレンズ25方向に出射させる。 The beam splitter 22 is disposed on the optical path of the laser beam L2, and emits the incident laser beam L2 in the direction of the focusing condenser lens 24, and returns the laser beam L2 incident through the focusing condenser lens 24. L3 is reflected and emitted in the direction of the cylindrical lens 25.
 1/4波長板23は、ビームスプリッタ22を通過したレーザ光L2の光路上に配置される、レーザ光L2の波長に応じた屈折率を有する水晶板などである。1/4波長板23は、通過するレーザ光L2に位相差を生じさせ、直線偏光を円偏光又は楕円偏光に変換する。 The quarter-wave plate 23 is a quartz plate or the like having a refractive index corresponding to the wavelength of the laser beam L2, which is disposed on the optical path of the laser beam L2 that has passed through the beam splitter 22. The quarter-wave plate 23 causes a phase difference in the passing laser beam L2, and converts linearly polarized light into circularly polarized light or elliptically polarized light.
 フォーカス用集光レンズ24は、ステージ12上に載置される加工対象物50の上面表面S1(図1におけるZ軸上方の表面、以降、単に「上面S1」と称して説明する。また、Z軸下方の表面については、単に「下面S2」と称して説明する)にレーザ光L2を集光させ、集光部F2を形成するレンズである。フォーカス用集光レンズ24は、フォーカス用レンズブロック24aにより支持される。フォーカス用集光レンズ24の開口数は、後述するように加工対象物50のZ方向厚さに基づいて決定される。また、フォーカス用集光レンズ24の開口数は、加工対象物50の下面S2からのレーザ光L2の反射光による影響を加味して決定されることが好ましい。例えば、フォーカス用集光レンズ24の開口数は、0.1より大きく設定される。 The focusing condenser lens 24 will be described by referring to the upper surface S1 of the workpiece 50 placed on the stage 12 (the surface above the Z axis in FIG. 1, hereinafter simply referred to as “upper surface S1”. The surface below the axis is a lens that focuses the laser light L2 on the surface (simply referred to as “lower surface S2”) to form a condensing portion F2. The focusing condenser lens 24 is supported by a focusing lens block 24a. The numerical aperture of the focusing condenser lens 24 is determined based on the thickness of the workpiece 50 in the Z direction, as will be described later. The numerical aperture of the focusing condenser lens 24 is preferably determined in consideration of the influence of the reflected light of the laser light L2 from the lower surface S2 of the workpiece 50. For example, the numerical aperture of the focusing condenser lens 24 is set to be larger than 0.1.
 フォーカス用レンズブロック24aは、フォーカス用集光レンズ24を支持する支持部材と、支持部材と共にフォーカス用集光レンズ24をレーザ光L2の光軸方向(つまり、図1のZ方向)に移動させる移動部材とを備える。移動部材は、例えば演算部27から供給されるフォーカスずれ及びフォーカスエラー信号FE電圧に応じた推力でフォーカス用集光レンズ24を移動可能なボイスコイルなどのアクチュエータである。フォーカス用レンズブロック24aは、フォーカス用集光レンズ24をZ方向に移動させることで、レーザ光L2のフォーカス位置をZ方向に移動する。 The focusing lens block 24a supports the focusing condenser lens 24, and moves to move the focusing condenser lens 24 together with the supporting member in the optical axis direction of the laser light L2 (that is, the Z direction in FIG. 1). A member. The moving member is, for example, an actuator such as a voice coil that can move the focusing lens 24 with a thrust according to a focus shift and a focus error signal FE voltage supplied from the calculation unit 27. The focus lens block 24a moves the focus position of the laser beam L2 in the Z direction by moving the focus condenser lens 24 in the Z direction.
 また、フォーカス用集光レンズ24及びフォーカス用レンズブロック24aには、フォーカス用集光レンズ24の位置(典型的には、レーザ光L2の光軸方向における位置)を検出するためのリニアスケール24bが付属する。リニアスケール24bは、光学的、磁気的、若しくはその他何らかの手段により、フォーカス用レンズブロック24aにより移動されるフォーカス用集光レンズ24の位置を検出可能な装置である。リニアスケール24bは、検出したフォーカス用集光レンズ24の位置データを演算部27に出力する。 The focusing lens 24 and the focusing lens block 24a include a linear scale 24b for detecting the position of the focusing lens 24 (typically, the position of the laser light L2 in the optical axis direction). Accompanying. The linear scale 24b is a device capable of detecting the position of the focusing condenser lens 24 moved by the focusing lens block 24a by optical, magnetic, or some other means. The linear scale 24 b outputs the detected position data of the focusing condenser lens 24 to the calculation unit 27.
 加工対象物50の上面S1では、集光部F2を形成するレーザ光L2の一部が反射する。また、加工対象物50の下面S2では、加工対象物50を透過するレーザ光L2の一部が反射する。これらの反射光は、戻り光L3としてZ軸上方に出射される。戻り光L3は、フォーカス用集光レンズ24、1/4反射板23を介してビームスプリッタ22に入射し、ビームスプリッタ22において反射され、シリンドリカルレンズ25を介して4分割PD26に入射する。 A part of the laser beam L2 that forms the condensing part F2 is reflected on the upper surface S1 of the workpiece 50. In addition, a part of the laser beam L2 that passes through the workpiece 50 is reflected on the lower surface S2 of the workpiece 50. These reflected lights are emitted upward as the return light L3. The return light L3 enters the beam splitter 22 through the focusing condenser lens 24 and the ¼ reflector 23, is reflected by the beam splitter 22, and enters the quadrant PD 26 through the cylindrical lens 25.
 シリンドリカルレンズ25は、本実施例における受光手段の構成要素の一例である、半円筒形状のレンズである。シリンドリカルレンズ25は、通過する戻り光L3のスポット形状を変更することで、非点収差を付加する。具体的には、シリンドリカルレンズ25を通過する戻り光L3は、戻り光L3の光軸方向(例えば、図1のY方向)に対して、直交する第1方向(例えば、図1のX方向)と、光軸方向及び該第1方向と直交する第2方向(例えば、図1のZ方向)とでは異なる集光特性を有するようになる。 The cylindrical lens 25 is a semi-cylindrical lens which is an example of a component of the light receiving means in the present embodiment. The cylindrical lens 25 adds astigmatism by changing the spot shape of the return light L3 that passes therethrough. Specifically, the return light L3 passing through the cylindrical lens 25 is in a first direction (for example, the X direction in FIG. 1) orthogonal to the optical axis direction of the return light L3 (for example, the Y direction in FIG. 1). In addition, the optical axis direction and the second direction (for example, the Z direction in FIG. 1) orthogonal to the first direction have different light collection characteristics.
 4分割PD26は、本実施例における受光手段の構成要素の一例であって、レーザ光L2が加工対象物50の上面S1にフォーカスする場合の戻り光L3のフォーカス位置に配置される。4分割PD26は、戻り光L3を受光し、光量に応じた電圧を出力する4つの受光素子と、各受光素子より供給される電圧を測定し、演算する演算部を備える。 The quadrant PD 26 is an example of a component of the light receiving means in the present embodiment, and is arranged at the focus position of the return light L3 when the laser light L2 is focused on the upper surface S1 of the workpiece 50. The 4-split PD 26 includes four light receiving elements that receive the return light L3 and output a voltage corresponding to the amount of light, and a calculation unit that measures and calculates the voltage supplied from each light receiving element.
 戻り光L3は、シリンドリカルレンズ25による集光特性の変化により、フォーカス位置においては4分割PD26において円形のビームスポットを形成し、フォーカス位置がずれている場合には、第1方向又は第2方向のいずれかを長軸とする楕円形のビームスポットを形成する。 The return light L3 forms a circular beam spot in the quadrant PD 26 at the focus position due to a change in the condensing characteristic of the cylindrical lens 25, and when the focus position is deviated, the return light L3 is in the first direction or the second direction. An elliptical beam spot having one of the major axes is formed.
 4分割PD26は、例えば、4つの受光素子を時計回りにA、B、C、Dとする場合、受光素子A及びCより出力される電圧の和と、受光素子B及びDより出力される電圧の和との差分に応じた電圧を有するフォーカスエラー信号FEを生成し、演算部27へ入力する。 For example, when the four light-receiving PDs 26 are set to A, B, C, and D in the clockwise direction, the sum of the voltages output from the light-receiving elements A and C and the voltage output from the light-receiving elements B and D are as follows. A focus error signal FE having a voltage corresponding to the difference from the sum of the two is generated and input to the calculation unit 27.
 レーザ光L2が加工対象物50の上面S1において適切にフォーカスしている場合(つまり、集光部F2がレーザ光L2の焦点である場合)、シリンドリカルレンズ25を介して4分割PD26に入射する戻り光のスポット形状は円形となる。この場合、受光素子A及びCより出力される電圧の和と、受光素子B及びDより出力される電圧の和とは等しく、フォーカスエラー信号FEの電圧は「0」となる。 When the laser beam L2 is appropriately focused on the upper surface S1 of the workpiece 50 (that is, when the condensing unit F2 is the focal point of the laser beam L2), the laser beam L2 enters the quadrant PD 26 via the cylindrical lens 25. The light spot shape is circular. In this case, the sum of the voltages output from the light receiving elements A and C is equal to the sum of the voltages output from the light receiving elements B and D, and the voltage of the focus error signal FE is “0”.
 他方で、Z軸のいずれかの方向にフォーカスがずれている場合、4分割PD26に入射する戻り光のスポット形状は楕円形となる。この場合、フォーカスがずれている方向に応じて、受光素子A及びCより出力される電圧の和と、受光素子B及びDより出力される電圧の和とのいずれかが他方より大きくなり、フォーカスエラー信号FEの電圧は「0>」又は「0<」となる。 On the other hand, when the focus is deviated in any direction of the Z-axis, the spot shape of the return light incident on the quadrant PD 26 is elliptical. In this case, either the sum of the voltages output from the light receiving elements A and C or the sum of the voltages output from the light receiving elements B and D becomes greater than the other depending on the direction in which the focus is shifted. The voltage of the error signal FE is “0>” or “0 <”.
 4分割PD26は、PDアクチュエータ26aに接続され、PDアクチュエータ26aの動作により戻り光L3の光軸方向の所定範囲内で移動可能である。PDアクチュエータ26aは、例えば制御部11より供給されるZ軸目標値を示す制御信号に応じた駆動電流を供給する駆動アンプを有し、該駆動電流に応じて、4分割PD26を移動させる。演算部27は、4分割PD26より供給されるフォーカスエラー信号FEに基づいて、集光部F2のフォーカスがずれているか否か、また、ずれている場合にはそのずれ量を検出する。演算部27は、検出されるフォーカスずれ量を含む制御信号をフォーカス用レンズブロック24a及び加工用レンズブロック33aに供給する。 The 4-split PD 26 is connected to the PD actuator 26a, and can move within a predetermined range in the optical axis direction of the return light L3 by the operation of the PD actuator 26a. The PD actuator 26a has a drive amplifier that supplies a drive current according to a control signal indicating the Z-axis target value supplied from the control unit 11, for example, and moves the quadrant PD 26 according to the drive current. Based on the focus error signal FE supplied from the 4-split PD 26, the calculation unit 27 detects whether or not the focus of the light condensing unit F2 is deviated and, if it is deviated, detects the deviation amount. The calculation unit 27 supplies a control signal including the detected focus shift amount to the focus lens block 24a and the processing lens block 33a.
 レーザ加工装置1の加工用光学系3の構成について説明する。加工用光学系3は、加工用のレーザ光L1を出射する加工用光源31と、ダイバージングレンズ32と、加工用集光レンズ33とを備える。 The configuration of the processing optical system 3 of the laser processing apparatus 1 will be described. The processing optical system 3 includes a processing light source 31 that emits a processing laser beam L1, a diverging lens 32, and a processing condensing lens 33.
 加工用光源31は、本発明の第1出射手段の一例であって、夫々不図示のレーザ発生部、結集素子、位相変調器及び共振器などを備え、レーザ光L1をダイバージングレンズ32方向へ出射する。レーザ光L1は、本発明の第1レーザ光の一例であって、例えば紫外線レーザなどである。 The processing light source 31 is an example of the first emitting means of the present invention, and includes a laser generation unit, a concentrating element, a phase modulator, a resonator, and the like (not shown), and directs the laser light L1 toward the diverging lens 32. Exit. The laser beam L1 is an example of the first laser beam of the present invention, and is, for example, an ultraviolet laser.
 ダイバージングレンズ32は、入射したレーザ光L1の光束角度を調整し、加工用集光レンズ33方向へ出射させるレンズである。ダイバージングレンズ32は、Dレンズブロック32aにより支持される。Dレンズブロック32aは、ダイバージングレンズ32を支持する支持部材と、制御部11から供給される制御信号に応じて、支持部材と共にダイバージングレンズ32をレーザ光L1の光軸方向(つまり、図1のZ方向)に移動させる移動部材とを備える。移動部材は、例えば制御信号に応じて駆動するボイスコイルなどのアクチュエータである。Dレンズブロック32aは、ダイバージングレンズ32をZ方向に移動させることで、レーザ光L1の光束角度を任意の角度に変更することで、加工用集光レンズ33により集光されるレーザ光L1のフォーカス位置をZ方向に移動する。Dレンズブロック32aは、制御部11からの制御信号に応じて、加工用集光レンズ33に入射するレーザ光L1が平行光となるように、ダイバージングレンズ32の位置を設定する。 The diverging lens 32 is a lens that adjusts the light beam angle of the incident laser light L1 and emits it in the direction of the processing condenser lens 33. The diverging lens 32 is supported by the D lens block 32a. The D lens block 32a supports the diverging lens 32 and the diverging lens 32 together with the support member in accordance with the control signal supplied from the control unit 11 in the optical axis direction of the laser beam L1 (that is, FIG. 1). And a moving member that moves in the Z direction). The moving member is, for example, an actuator such as a voice coil that is driven according to a control signal. The D lens block 32a moves the diverging lens 32 in the Z direction, thereby changing the light beam angle of the laser light L1 to an arbitrary angle, so that the laser light L1 collected by the processing condenser lens 33 is collected. Move the focus position in the Z direction. The D lens block 32a sets the position of the diverging lens 32 according to the control signal from the control unit 11 so that the laser light L1 incident on the processing condenser lens 33 becomes parallel light.
 加工用集光レンズ33は、ステージ12上に載置される加工対象物50の上面S1又は下面S2にレーザ光L1を集光させ、集光部F1を形成するレンズである。加工用集光レンズ33は、加工用レンズブロック33aにより支持される。また、加工用集光レンズ33の開口数は、少なくともフォーカス用集光レンズ24の開口数より大きく設定される。 The processing condensing lens 33 is a lens that condenses the laser light L1 on the upper surface S1 or the lower surface S2 of the workpiece 50 placed on the stage 12 to form the condensing part F1. The processing condensing lens 33 is supported by a processing lens block 33a. The numerical aperture of the processing condenser lens 33 is set to be at least larger than the numerical aperture of the focusing condenser lens 24.
 加工用レンズブロック33aは、加工用集光レンズ33を支持する支持部材と、支持部材と共に加工用集光レンズ33をレーザ光L1の光軸方向(つまり、図1のZ方向)に移動させる移動部材とを備える。移動部材は、例えば演算部27から供給されるフォーカスずれ及びフォーカスエラー信号FE電圧に応じた推力で加工用集光レンズ33を移動可能なボイスコイルなどのアクチュエータである。加工用レンズブロック33aは、加工用集光レンズ33をZ方向に移動させることで、レーザ光L1のフォーカス位置をZ方向に移動する。具体的には、加工用レンズブロック33aは、フォーカス用レンズブロック24aが受けるものと同様の制御信号を受け、加工用集光レンズ33をフォーカス用レンズブロック24aによるフォーカス用集光レンズ24の移動量と同量Z方向に移動させることで、好適には、加工対象物50の上面S1又は下面S2にレーザ光L1をフォーカスさせる。 The processing lens block 33a supports the processing condensing lens 33, and moves to move the processing condensing lens 33 together with the supporting member in the optical axis direction of the laser beam L1 (that is, the Z direction in FIG. 1). A member. The moving member is, for example, an actuator such as a voice coil that can move the processing condensing lens 33 with a thrust according to the focus shift and focus error signal FE voltage supplied from the calculation unit 27. The processing lens block 33a moves the focus position of the laser light L1 in the Z direction by moving the processing condenser lens 33 in the Z direction. Specifically, the processing lens block 33a receives a control signal similar to that received by the focusing lens block 24a, and the processing lens block 33a is moved by the focusing lens block 24a. The laser beam L1 is preferably focused on the upper surface S1 or the lower surface S2 of the workpiece 50 by moving the same amount in the Z direction.
 また、加工用集光レンズ33及び加工用レンズブロック33aには、加工用集光レンズ33の位置(典型的には、レーザ光L2の光軸方向における位置)を検出するためのリニアスケール33bが付属する。リニアスケール33bは、光学的、磁気的、若しくはその他何らかの手段により、加工用レンズブロック33aにより移動される加工用集光レンズ33の位置を検出可能な装置である。リニアスケール33bは、検出した加工用集光レンズ33の位置データを演算部27に出力する。 The processing condenser lens 33 and the processing lens block 33a include a linear scale 33b for detecting the position of the processing condenser lens 33 (typically, the position of the laser light L2 in the optical axis direction). Accompanying. The linear scale 33b is a device capable of detecting the position of the processing condenser lens 33 moved by the processing lens block 33a by optical, magnetic, or some other means. The linear scale 33 b outputs the detected position data of the processing condenser lens 33 to the calculation unit 27.
 加工用光学系3は、集光部F2に対してXY平面内において所定の間隔離隔した位置に集光部F1が形成されるよう、フォーカス用光学系2に対する位置関係が設定されている。 The positional relationship of the processing optical system 3 with respect to the focusing optical system 2 is set so that the condensing part F1 is formed at a predetermined distance from the condensing part F2 in the XY plane.
 尚、レーザ光L1の光路中には、他に、加工対象物50の上面S1又は下面S2に好適に改質領域を形成するためにレーザ出力、光軸及びレーザ形状などを調整するための各種構成が配置されていても良い。 In addition, in the optical path of the laser beam L1, there are various other types for adjusting the laser output, the optical axis, the laser shape, and the like in order to suitably form a modified region on the upper surface S1 or the lower surface S2 of the workpiece 50. A configuration may be arranged.
 レーザ加工装置1においては、フォーカス用集光レンズ24と、加工用集光レンズ33との位置関係は、一定に保たれる。例えば、演算部27は、リニアスケール33bから入力される加工用集光レンズ33の位置の変化をフォーカス用レンズブロック24aに通知し、フォーカス用集光レンズ24を加工用集光レンズ33に同期させて移動するよう指示する。また、演算部27は、リニアスケール24bから入力されるフォーカス用集光レンズ24の位置の変化を加工用レンズブロック33aに通知し、加工用集光レンズ33をフォーカス用集光レンズ24に同期させて移動するよう指示する。 In the laser processing apparatus 1, the positional relationship between the focusing condenser lens 24 and the processing condenser lens 33 is kept constant. For example, the calculation unit 27 notifies the focus lens block 24 a of a change in the position of the processing condenser lens 33 input from the linear scale 33 b and synchronizes the focusing condenser lens 24 with the processing condenser lens 33. To move. In addition, the calculation unit 27 notifies the processing lens block 33 a of a change in the position of the focusing condenser lens 24 input from the linear scale 24 b, and synchronizes the processing condenser lens 33 with the focusing condenser lens 24. To move.
 レーザ加工装置1においては、4分割PD26に入射する戻り光L3には、シリンドリカルレンズ25による非点収差が付与されている。演算部27は、該非点収差に基づく非点隔差に応じて、フォーカスエラー信号発生範囲を所望の値に設定することが出来る。非点隔差は、シリンドリカルレンズ25において非点収差が生じた戻り光L3の光軸に対して直交し、且つ相互に直交する2方向(例えば、4分割PD26に入射する楕円形のビームスポットの長軸及び短軸方向)夫々のビームウエスト位置の光軸方向における差である。 In the laser processing apparatus 1, astigmatism due to the cylindrical lens 25 is imparted to the return light L <b> 3 incident on the quadrant PD 26. The computing unit 27 can set the focus error signal generation range to a desired value according to the astigmatism based on the astigmatism. The astigmatic difference is the length of an elliptical beam spot incident on two directions orthogonal to the optical axis of the return light L3 in which the astigmatism occurs in the cylindrical lens 25 and perpendicular to each other (for example, the quadrant PD 26). Axis and minor axis directions) Differences in the optical axis direction between the respective beam waist positions.
 図2は、戻り光L3に応じた時系列的なフォーカスエラー信号FEの電圧についてのS字波形を示すグラフである。フォーカスエラー信号発生範囲は、例えば、4分割PD26において検出可能なフォーカスずれの範囲であり、横軸上のS字波形の端部間の距離で表される。また、非点隔差は、S字波形における横軸上のフォーカスエラー信号FE電圧のピーク間距離で表される。 FIG. 2 is a graph showing an S-shaped waveform with respect to the voltage of the time-series focus error signal FE corresponding to the return light L3. The focus error signal generation range is, for example, a range of focus shift that can be detected by the four-divided PD 26, and is represented by a distance between ends of the S-shaped waveform on the horizontal axis. The astigmatic difference is represented by the distance between peaks of the focus error signal FE voltage on the horizontal axis in the S-shaped waveform.
 シリンドリカルレンズ25が発生させる非点収差(ひいては、非点隔差)の量を大きくすることや、フォーカス用集光レンズ24の開口数を小さくすることにより非点隔差を広げることで、フォーカスエラー信号発生範囲が広くなる。このときの非点隔差とフォーカス用集光レンズ24の開口数NAの逆数とは、例えば、0.05<=NA<=0.35となる領域では、図3に示されるように、2次関数で関連付けられる。 A focus error signal is generated by increasing the amount of astigmatism (and hence astigmatism) generated by the cylindrical lens 25 or by increasing the astigmatism difference by reducing the numerical aperture of the focusing condenser lens 24. The range becomes wider. The astigmatic difference at this time and the reciprocal of the numerical aperture NA of the focusing condenser lens 24 are, for example, in the region where 0.05 <= NA <= 0.35, as shown in FIG. Associated with a function.
 4分割PD26には、戻り光L3として、レーザ光L2のうち、加工対象物50の上面S1において反射される反射光成分と、下面S2において反射される反射光成分とが入射する。演算部27は、好適には、4分割PD26に入射する戻り光L3のうち、加工対象物50の上面S1からの反射光成分に基づくフォーカスエラー信号FEより、フォーカスずれ量を演算する。従って、戻り光L3のうち、加工対象物50の上面S1において反射される反射光成分と、下面S2において反射される反射光成分とが適切に区別可能であることが好ましい。 The reflected light component reflected on the upper surface S1 of the workpiece 50 and the reflected light component reflected on the lower surface S2 of the laser light L2 enter the quadrant PD 26 as the return light L3. The computing unit 27 preferably computes the amount of focus deviation from the focus error signal FE based on the reflected light component from the upper surface S1 of the workpiece 50 out of the return light L3 incident on the quadrant PD 26. Therefore, in the return light L3, it is preferable that the reflected light component reflected on the upper surface S1 of the workpiece 50 and the reflected light component reflected on the lower surface S2 can be appropriately distinguished.
 例えば、図2に示されるフォーカスエラー信号FEについて、4分割PD26に入射する加工対象物50の上面S1において反射される反射光成分と、下面S2において反射される反射光成分との関係は、図4のグラフに示される態様となる。図4に示されるように、戻り光L3のうち、加工対象物50の上面S1において反射される反射光成分と、下面S2において反射される反射光成分との夫々にシリンドリカルレンズ25を通過する影響により、同様の非点隔差が付加される。 For example, regarding the focus error signal FE shown in FIG. 2, the relationship between the reflected light component reflected on the upper surface S1 of the workpiece 50 incident on the quadrant PD 26 and the reflected light component reflected on the lower surface S2 is shown in FIG. The mode shown in the graph of FIG. As shown in FIG. 4, of the return light L3, the reflected light component reflected on the upper surface S1 and the reflected light component reflected on the lower surface S2 of the workpiece 50 pass through the cylindrical lens 25, respectively. Thus, a similar astigmatic difference is added.
 図4に示されるように、加工対象物50の上面S1からの反射光成分に基づくS字波形と、下面S2からの反射光成分に基づくS字波形とは、互いに加工対象物50の上面S1及び下面S2間の光路長(つまり、加工対象物50のZ方向厚さTと屈折率Nとにより決定される上面S1と下面S2との間隔)離隔している。 As shown in FIG. 4, the S-shaped waveform based on the reflected light component from the upper surface S <b> 1 of the workpiece 50 and the S-shaped waveform based on the reflected light component from the lower surface S <b> 2 are mutually the upper surface S <b> 1 of the workpiece 50. And the optical path length between the lower surface S2 (that is, the distance between the upper surface S1 and the lower surface S2 determined by the Z-direction thickness T and the refractive index N of the workpiece 50).
 このとき、上面S1からの反射光成分の非点隔差と、下面S2からの反射光成分の非点隔差とが重なり合う場合、加工対象物50の上面S1におけるレーザ光L2のフォーカスずれに応じた適切なフォーカスエラー信号FEが出力されず、正確なフォーカス動作が行えない可能性がある。このため、上面S1からの反射光成分の非点隔差と下面S2からの反射光成分の非点隔差とは、所定のマージンを挟んで離隔していることが好ましい。本願発明者等による実験結果によれば、該マージンが少なくとも非点隔差の1倍以上であることが安定したフォーカス制御には好ましいとされる。尚、フォーカス用集光レンズ24の開口数が低い領域においては、上面S1において反射される反射光成分と、下面S2において反射される反射光成分との夫々の非点隔差広さが略同一となる。 At this time, when the astigmatic difference of the reflected light component from the upper surface S1 and the astigmatic difference of the reflected light component from the lower surface S2 overlap, it is appropriate according to the focus shift of the laser light L2 on the upper surface S1 of the workpiece 50. The focus error signal FE is not output, and an accurate focus operation may not be performed. For this reason, it is preferable that the astigmatic difference of the reflected light component from the upper surface S1 and the astigmatic difference of the reflected light component from the lower surface S2 are separated with a predetermined margin therebetween. According to the experiment result by the inventors of the present application, it is preferable for the stable focus control that the margin is at least one time astigmatic difference or more. In the region where the numerical aperture of the focusing condenser lens 24 is low, the astigmatic difference between the reflected light component reflected on the upper surface S1 and the reflected light component reflected on the lower surface S2 is substantially the same. Become.
 上述の実験結果に鑑み、安定したフォーカス制御を実現するために、本実施例においては、好適には、非点隔差は、加工対象物50の上面S1及び下面S2間の光路長の半分以下に設定される。言い換えれば、非点隔差は、加工対象物50の厚さTと屈折率Nとにより決定される上面S1と下面S2との間隔T/Nの半分以下に設定される。 In view of the above experimental results, in order to realize stable focus control, in this embodiment, the astigmatic difference is preferably less than or equal to half of the optical path length between the upper surface S1 and the lower surface S2 of the workpiece 50. Is set. In other words, the astigmatic difference is set to be equal to or less than half of the interval T / N between the upper surface S1 and the lower surface S2 determined by the thickness T and the refractive index N of the workpiece 50.
 上述したように、非点隔差は、フォーカス用集光レンズ24の開口数NAの逆数と2次関数的な関係を有する。従って、フォーカス用集光レンズ24の開口数NAは、加工対象物50のZ方向厚さT及び屈折率Nに応じて決定されることが好ましい。例えば、厚さT=0.5ミリメートル、屈折率N=1.5のガラスを加工対象物50とする場合、非点隔差は0.18ミリメートルとなり、フォーカス用集光レンズ24の開口数NA>=0.1となるよう設定することで、安定したフォーカス制御が実現出来る。 As described above, the astigmatic difference has a quadratic function relationship with the inverse of the numerical aperture NA of the focusing condenser lens 24. Therefore, it is preferable that the numerical aperture NA of the focusing condenser lens 24 is determined according to the thickness T and the refractive index N of the workpiece 50. For example, when a glass having a thickness T = 0.5 mm and a refractive index N = 1.5 is used as the workpiece 50, the astigmatic difference is 0.18 mm, and the numerical aperture NA of the focusing condenser lens 24> By setting to be equal to 0.1, stable focus control can be realized.
 加工用光学系3の加工用レンズブロック33aは、フォーカス制御用光学系2におけるフォーカス用集光レンズ24のフォーカス動作に同期して加工用集光レンズ33を動作させることで、レーザ光L1を加工対象物50の上面S1又は下面S2にフォーカスさせる。これにより、フォーカス制御用光学系2において実施される安定したフォーカス制御と同等の安定したフォーカス制御をレーザ光L1に対しても適用可能となり、高精度に集光部F1を加工対象物50の上面S1又は下面S2にフォーカスさせることが出来る。尚、フォーカス制御用光学系2においては、レーザ光L2の集光部F2のフォーカスずれに応じてフォーカス用集光レンズ24を動作させる推力(ひいては、加速度)を制御するサーボ制御が実施される。このため、加工対象物50の上面S1における凹凸構造などによってレーザ光L2のフォーカス位置が変化する場合であっても、該変化に対して比較的高速に応答することが出来る。従って、加工対象物50のレーザ加工のための加工速度を低下させることなく、迅速かつ正確な加工が可能となる。 The processing lens block 33a of the processing optical system 3 processes the laser light L1 by operating the processing condensing lens 33 in synchronization with the focusing operation of the focusing lens 24 in the focus control optical system 2. The object 50 is focused on the upper surface S1 or the lower surface S2. As a result, stable focus control equivalent to the stable focus control performed in the focus control optical system 2 can be applied to the laser light L1, and the condensing unit F1 is placed on the upper surface of the workpiece 50 with high accuracy. S1 or the lower surface S2 can be focused. In the focus control optical system 2, servo control is performed to control the thrust (and hence acceleration) for operating the focusing lens 24 in accordance with the focus shift of the focusing unit F2 of the laser beam L2. For this reason, even when the focus position of the laser beam L2 changes due to the uneven structure on the upper surface S1 of the workpiece 50, it is possible to respond to the change relatively quickly. Accordingly, rapid and accurate processing can be performed without reducing the processing speed for laser processing of the processing object 50.
 レーザ加工装置1の加工用光学系3では、加工用レンズブロック33aの動作などにより、レーザ光L1の集光部F1を加工対象物50の上面S1及び下面S2の間で切り替え可能となる。 
 このとき、加工用レンズブロック33aは、レーザ光L1のフォーカス位置が加工対象物50の上面S1及び下面S2の間隔、つまり加工対象物50のZ方向厚さTと屈折率Nとに応じた光路長分移動するよう、加工用集光レンズ33をZ方向に移動させる。かかる移動の態様について、図5の模式図に示す。
In the processing optical system 3 of the laser processing apparatus 1, the condensing part F1 of the laser light L1 can be switched between the upper surface S1 and the lower surface S2 of the processing object 50 by the operation of the processing lens block 33a.
At this time, the processing lens block 33a has an optical path in which the focus position of the laser beam L1 depends on the distance between the upper surface S1 and the lower surface S2 of the processing object 50, that is, the Z-direction thickness T and the refractive index N of the processing object 50. The processing condensing lens 33 is moved in the Z direction so as to move by a long distance. This mode of movement is shown in the schematic diagram of FIG.
 加工用レンズブロック33aは、レーザ光L1のフォーカス位置を加工対象物50の上面S1から下面S2に移動するに際して、加工用集光レンズ33を加工対象物50方向に上面S1及び下面S2の間隔T/N分移動する。かかる移動により、レーザ光L1のフォーカス位置が加工対象物50の上面S1から下面S2に移動する。 When the processing lens block 33a moves the focus position of the laser beam L1 from the upper surface S1 to the lower surface S2 of the processing object 50, the processing lens block 33 is moved to the processing object 50 in the direction of the processing object 50 by an interval T between the upper surface S1 and the lower surface S2. Move / N minutes. With this movement, the focus position of the laser beam L1 moves from the upper surface S1 to the lower surface S2 of the workpiece 50.
 また、加工対象物50の下面S2にフォーカス位置が移動される状態で、上述したフォーカス制御用光学系2によるフォーカス制御に追従して、加工用レンズブロック33aが加工用集光レンズ33を移動させることで、好適にレーザ光L1の集光部F1を加工対象物50の下面S2にフォーカスさせることが出来る。 Further, the processing lens block 33a moves the processing condensing lens 33 following the focus control by the focus control optical system 2 in a state where the focus position is moved to the lower surface S2 of the processing object 50. Thereby, the condensing part F1 of the laser beam L1 can be suitably focused on the lower surface S2 of the workpiece 50.
 本実施例のレーザ加工装置1では、レーザ光L1は、加工対象物50の上面S1又は下面S2における集光部F1近傍の10立方マイクロメートル程度の微小体積に気化などによる改質を生じさせる。このため、加工用集光レンズ33の開口数は、上述したようにフォーカス用集光レンズ24の開口数より大きく、且つ改質を生じさせる体積に応じた集光部F1のサイズに応じて決定されることが好ましい。好適には、フォーカス位置において形成される集光部F1のサイズは、1平方マイクロメートル程度に調整される。 In the laser processing apparatus 1 of the present embodiment, the laser beam L1 causes a modification by vaporization or the like in a minute volume of about 10 cubic micrometers in the vicinity of the condensing portion F1 on the upper surface S1 or the lower surface S2 of the workpiece 50. Therefore, the numerical aperture of the processing condensing lens 33 is determined in accordance with the size of the condensing part F1 corresponding to the volume causing the modification, which is larger than the numerical aperture of the focusing condensing lens 24 as described above. It is preferred that Preferably, the size of the light collecting portion F1 formed at the focus position is adjusted to about 1 square micrometer.
 加工用集光レンズ33によりレーザ光1が加工対象物50の上面S1又は下面S2における比較的微小な領域に集光部F1を形成するため、レーザ光L1の光軸方向に直行する面内(つまり、加工対象物50の上面S1及び下面S2)において、微小な改質領域を形成することが出来る。このように微小な改質領域を多数形成することで、加工対象物50の上面S1又は下面S2により高精度な加工を施すことが可能となる。 In order to form the condensing part F1 in the comparatively minute area | region in the upper surface S1 or the lower surface S2 of the workpiece 50 by the processing condensing lens 33, the in-plane orthogonal to the optical axis direction of the laser light L1 ( That is, a minute modified region can be formed on the upper surface S1 and the lower surface S2) of the workpiece 50. By forming a large number of minute modified regions in this way, it becomes possible to perform highly accurate machining on the upper surface S1 or the lower surface S2 of the workpiece 50.
 尚、レーザ加工装置1は、加工用フォーカスブロック33a等の動作により、加工用集光レンズ33が集光部F1を透明なガラス等の加工対象物50内部に形成するよう制御することで、加工対象物50の内部にも同様に微小な改質領域を形成することが出来る。特に、加工対象物50の内部においては、レーザ光L1の光軸方向に直行する面内における加工精度の向上に加えて、レーザ光L1の光軸方向(言い換えれば、加工対象物50内部における深さ方向)においても、より多くの改質領域を形成することが出来る。このように深さ方向について多数形成される改質領域を起点として、加工対象物50の切断を行う場合、高精度な切断面を得ることが出来る。 The laser processing apparatus 1 controls the processing condensing lens 33 to form the condensing portion F1 inside the processing object 50 such as transparent glass by the operation of the processing focus block 33a. Similarly, a minute modified region can be formed inside the object 50. In particular, in the inside of the processing object 50, in addition to the improvement of the processing accuracy in the plane orthogonal to the optical axis direction of the laser light L1, the laser beam L1 in the optical axis direction (in other words, the depth inside the processing object 50). In the vertical direction, more modified regions can be formed. Thus, when the workpiece 50 is cut from the modified regions formed in large numbers in the depth direction, a highly accurate cut surface can be obtained.
 また、フォーカスサーボクローズ後の残留エラーに起因する光軸方向への移動も例えば、10ナノメートル程度の微小な領域に抑制することが出来る。一般的な、加工対象物50へのレーザ加工において、形成される改質領域の位置には、1マイクロメートル程度の誤差範囲が許容されることから、例えば、フォーカス制御におけるサーボゲインを低く設定したとしても、充分な精度で改質領域の形成を行うことが出来る。 Also, movement in the optical axis direction due to residual error after focus servo close can be suppressed to a minute region of about 10 nanometers, for example. In general laser processing on the workpiece 50, an error range of about 1 micrometer is allowed at the position of the modified region to be formed. For example, the servo gain in focus control is set low. However, the modified region can be formed with sufficient accuracy.
 (2)レーザ加工装置の動作
 続いて、図6を参照して、実施例のレーザ加工装置1の動作について説明する。
(2) Operation of Laser Processing Apparatus Next, the operation of the laser processing apparatus 1 of the embodiment will be described with reference to FIG.
 図6(a)に示されるように、レーザ加工装置1は、フォーカス用のレーザ光L2の集光部F2を加工対象物50の上面S1にフォーカスさせることでフォーカス制御を行い、該フォーカス制御に同期して加工用のレーザ光L1の集光部F1を加工対象物50の上面S1にフォーカスさせる。この状態で、ステージアクチュエータ12aがステージ12を移動することで、加工用光学系1は、レーザ光L1により、加工対象物50の上面S1に形成される膜構造の加工や、上面S1のトリミング加工などを行う。従って、レーザ加工装置1を用いた加工対象物50のレーザ加工によれば、加工対象物50の上面S1に形成される凹凸構造などに好適に追従して加工用のレーザ光L1の集光部F1を上面S1にフォーカスさせることが出来る。従って、加工対象物50の上面S1における瑕疵等による凹凸構造の影響を受けることなく、加工対象物50の上面S1、下面S2又は内部において高精度かつ高速度な加工を実現出来る。 As shown in FIG. 6A, the laser processing apparatus 1 performs focus control by focusing the focusing portion F2 of the focusing laser beam L2 on the upper surface S1 of the processing object 50, and performs the focus control. In synchronism, the condensing part F1 of the processing laser beam L1 is focused on the upper surface S1 of the processing object 50. In this state, when the stage actuator 12a moves the stage 12, the processing optical system 1 uses the laser light L1 to process the film structure formed on the upper surface S1 of the processing object 50 or to trim the upper surface S1. And so on. Therefore, according to the laser processing of the processing object 50 using the laser processing apparatus 1, the condensing part of the processing laser beam L1 suitably following the uneven structure formed on the upper surface S1 of the processing object 50 F1 can be focused on the upper surface S1. Therefore, high-precision and high-speed machining can be realized on the upper surface S1, the lower surface S2, or the inside of the workpiece 50 without being affected by the uneven structure due to wrinkles or the like on the upper surface S1 of the workpiece 50.
 また、加工用光学系1は、図6(b)に示されるように、レーザ光L1の集光部F1を加工対象物50の下面S2に移動することで、下面S2に形成される膜構造の加工や、下面S2のトリミング加工なども同様に行うことができる。 Further, as shown in FIG. 6B, the processing optical system 1 moves the light condensing part F1 of the laser light L1 to the lower surface S2 of the workpiece 50, thereby forming a film structure formed on the lower surface S2. The above processing and the trimming processing of the lower surface S2 can be performed in the same manner.
 また、本実施例のレーザ加工装置1においては、フォーカス制御用光学系2は、レーザ光L2の集光部F2を、加工対象物50表面でなく、図6(c)に示されるように、加工対象物50内部の所定の深さにフォーカスしてもよい。この場合、加工対象物50の表面に形成されるレーザ光L2のビームスポットのサイズは、加工対象物50表面に集光部F2がフォーカスする場合と比較して、大きくなる。このため、加工対象物50表面に形成される傷や構造物などの比較的小さい凹凸に起因するフォーカス制御への影響を抑制することが出来る。 Further, in the laser processing apparatus 1 of the present embodiment, the focus control optical system 2 is configured so that the condensing part F2 of the laser light L2 is not the surface of the processing object 50, as shown in FIG. You may focus on the predetermined depth inside the workpiece 50. In this case, the size of the beam spot of the laser beam L2 formed on the surface of the processing object 50 is larger than that in the case where the condensing unit F2 is focused on the surface of the processing object 50. For this reason, the influence on the focus control due to relatively small irregularities such as scratches and structures formed on the surface of the workpiece 50 can be suppressed.
 (3)第1変形例
 図7を参照して、実施例に係るレーザ加工装置1の変形例であるレーザ加工装置1’について説明する。図7はレーザ加工装置1’の全体的な構成を示す模式図である。尚、図7及び以下に示すレーザ加工装置1’の構成について、図1に示されるレーザ加工装置1と同様の構成については、同一の番号を付して説明を省略している。
(3) First Modification A laser processing apparatus 1 ′, which is a modification of the laser processing apparatus 1 according to the embodiment, will be described with reference to FIG. FIG. 7 is a schematic diagram showing an overall configuration of the laser processing apparatus 1 ′. In addition, about the structure of laser processing apparatus 1 'shown in FIG. 7 and the following, about the structure similar to the laser processing apparatus 1 shown in FIG. 1, the same number is attached | subjected and description is abbreviate | omitted.
 図7に示されるように、レーザ加工装置1’では、フォーカス用レンズブロック24aの代わりに、レンズブロック24cが配置される。レンズブロック24cは、フォーカス用集光レンズ24と加工用集光レンズ33とを支持し、且つフォーカス用集光レンズ24と加工用集光レンズ33とを同期して移動可能な移動部材を備える(破線部参照)。 As shown in FIG. 7, in the laser processing apparatus 1 ', a lens block 24c is arranged instead of the focusing lens block 24a. The lens block 24 c includes a moving member that supports the focusing condenser lens 24 and the processing condenser lens 33 and that can move in synchronization with the focusing condenser lens 24 and the processing condenser lens 33 ( (See dashed line).
 移動部材は、演算部27から供給されるフォーカスずれ及びフォーカスエラー信号FE電圧に応じた推力でフォーカス用集光レンズ24及び加工用集光レンズ33を移動可能なボイスコイルなどのアクチュエータである。レンズブロック24cは、移動部材の動作により、フォーカス用集光レンズ24をレーザ光L2の光軸方向(つまり、Z方向)に移動させると同時に、同量分、加工用集光レンズ33をレーザ光L1の光軸方向(つまり、Z方向)に移動させる。 The moving member is an actuator such as a voice coil capable of moving the focusing condenser lens 24 and the processing condenser lens 33 with a thrust according to the focus shift and the focus error signal FE voltage supplied from the calculation unit 27. The lens block 24c moves the focusing condenser lens 24 in the optical axis direction (that is, the Z direction) of the laser light L2 by the operation of the moving member, and at the same time, moves the condenser condenser lens 33 for processing by the same amount. It is moved in the optical axis direction of L1 (that is, the Z direction).
 レンズブロック24cは、加工用レンズブロック33aごと加工用集光レンズ33を支持し、移動する。言い換えれば、加工用集光レンズ33は加工用レンズブロック33aにより移動可能な態様で支持され、更にレンズブロック24cにより、加工用レンズブロック33aごと移動可能な態様で支持される。 The lens block 24c supports and moves the processing condensing lens 33 together with the processing lens block 33a. In other words, the processing condensing lens 33 is supported in a movable manner by the processing lens block 33a, and further supported by the lens block 24c in a movable manner along with the processing lens block 33a.
 加工用レンズブロック33aは、演算部27から供給される制御信号に応じて、加工用集光レンズ33をZ方向に加工対象物50の上面S1及び下面S2の間隔分(例えば、T/N分)移動することで、レーザ光L1のフォーカス位置を加工対象物50の上面S1から下面S2に移動する。加工用レンズブロック33aは、付属のリニアスケール33bにより検出される加工用集光レンズ33の一データに基づいて、かかる加工用集光レンズ33の移動を行う。 In accordance with a control signal supplied from the calculation unit 27, the processing lens block 33a moves the processing condensing lens 33 in the Z direction by an interval between the upper surface S1 and the lower surface S2 of the processing object 50 (for example, T / N). ) By moving, the focus position of the laser beam L1 is moved from the upper surface S1 of the workpiece 50 to the lower surface S2. The processing lens block 33a moves the processing condensing lens 33 based on one data of the processing condensing lens 33 detected by the attached linear scale 33b.
 以上説明したレーザ加工装置1’によれば、レーザ加工装置1と同様に、フォーカス制御に基づくフォーカス用集光レンズ24の移動に同期して、加工用集光レンズ33を移動させることが出来る。このため、加工対象物50の上面S1における瑕疵等の凹凸の影響を受けず、加工対象物50の上面S1、下面S1又は内部における所望の位置に加工用のレーザ光L1をフォーカスさせることが出来る。 According to the laser processing apparatus 1 ′ described above, similarly to the laser processing apparatus 1, the processing condenser lens 33 can be moved in synchronization with the movement of the focusing condenser lens 24 based on focus control. For this reason, the laser beam L1 for processing can be focused on the upper surface S1, the lower surface S1, or a desired position inside the processing object 50 without being affected by irregularities such as wrinkles on the upper surface S1 of the processing object 50. .
 (4)第2変形例
 図8を参照して、実施例に係るレーザ加工装置1の第2の変形例であるレーザ加工装置1’’について説明する。図8はレーザ加工装置1’’の全体的な構成を示す模式図である。尚、図8及び以下に示すレーザ加工装置1’’の構成について、図1に示されるレーザ加工装置1と同様の構成については、同一の番号を付して説明を省略している。
(4) Second Modification With reference to FIG. 8, a laser processing apparatus 1 ″ that is a second modification of the laser processing apparatus 1 according to the embodiment will be described. FIG. 8 is a schematic diagram showing an overall configuration of the laser processing apparatus 1 ″. In addition, about the structure of the laser processing apparatus 1 '' shown in FIG. 8 and the following, about the structure similar to the laser processing apparatus 1 shown in FIG. 1, the same number is attached | subjected and description is abbreviate | omitted.
 図8に示されるように、レーザ加工装置1’では、フォーカス用レンズブロック24a及び加工用レンズブロック33aの代わりに、レンズブロック24dが配置される。レンズブロック24dは、フォーカス用集光レンズ24と加工用集光レンズ33とを支持し、且つフォーカス用集光レンズ24と加工用集光レンズ33とを同期して移動可能な移動部材を備える(破線部参照)。 As shown in FIG. 8, in the laser processing apparatus 1 ', a lens block 24d is arranged instead of the focusing lens block 24a and the processing lens block 33a. The lens block 24 d includes a moving member that supports the focusing condenser lens 24 and the processing condenser lens 33 and that can move in synchronization with the focusing condenser lens 24 and the processing condenser lens 33 ( (See dashed line).
 移動部材は、演算部27から供給されるフォーカスずれ及びフォーカスエラー信号FE電圧に応じた推力でフォーカス用集光レンズ24及び加工用集光レンズ33を移動可能なボイスコイルなどのアクチュエータである。レンズブロック24cは、移動部材の動作により、フォーカス用集光レンズ24をレーザ光L2の光軸方向(つまり、Z方向)に移動させると同時に、同量分、加工用集光レンズ33をレーザ光L1の光軸方向(つまり、Z方向)に移動させる。 The moving member is an actuator such as a voice coil capable of moving the focusing condenser lens 24 and the processing condenser lens 33 with a thrust according to the focus shift and the focus error signal FE voltage supplied from the calculation unit 27. The lens block 24c moves the focusing condenser lens 24 in the optical axis direction (that is, the Z direction) of the laser light L2 by the operation of the moving member, and at the same time, moves the condenser condenser lens 33 for processing by the same amount. It is moved in the optical axis direction of L1 (that is, the Z direction).
 以上説明したレーザ加工装置1’によれば、レーザ加工装置1と同様に、フォーカス制御に基づくフォーカス用集光レンズ24の移動に同期して、加工用集光レンズ33を移動させることが出来る。このため、加工対象物50の上面S1における瑕疵等の凹凸の影響を受けず、加工対象物50の上面S1、下面S1又は内部における所望の位置に加工用のレーザ光L1をフォーカスさせることが出来る。 According to the laser processing apparatus 1 ′ described above, similarly to the laser processing apparatus 1, the processing condenser lens 33 can be moved in synchronization with the movement of the focusing condenser lens 24 based on focus control. For this reason, the laser beam L1 for processing can be focused on the upper surface S1, the lower surface S1, or a desired position inside the processing object 50 without being affected by irregularities such as wrinkles on the upper surface S1 of the processing object 50. .
 尚、第2変形例のレーザ加工装置1’’においては、図示されない機構又はレーザ加工装置1’’のオペレータによる手動などにより、加工用集光レンズ33をフォーカス用集光レンズ24とは独立してZ方向に移動することで、レーザ光L1のフォーカス位置を加工対象物50の上面S1、下面S1又は内部における所望の位置に移動可能となる。例えば、オペレータは、加工対象物50のZ方向の厚さT及び屈折率Nに応じて決定される移動量(T/N)分、加工用集光レンズ33をZ方向に移動させることで、レーザ光L1のフォーカス位置を加工対象物50の上面S1から下面S2に移動する。 In the laser processing apparatus 1 ″ of the second modification, the processing condenser lens 33 is made independent of the focusing condenser lens 24 by a mechanism (not shown) or manually by an operator of the laser processing apparatus 1 ″. By moving in the Z direction, the focus position of the laser beam L1 can be moved to the upper surface S1, the lower surface S1, or a desired position inside the workpiece 50. For example, the operator moves the processing condensing lens 33 in the Z direction by an amount of movement (T / N) determined according to the thickness T and the refractive index N of the workpiece 50 in the Z direction. The focus position of the laser beam L1 is moved from the upper surface S1 to the lower surface S2 of the workpiece 50.
 本発明は、上述した実施例に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴なうレーザ加工装置などもまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification, and a laser accompanying such a change. Processing devices and the like are also included in the technical scope of the present invention.
 1…レーザ加工装置、
 11…制御部、
 12…ステージ、
 12a…ステージアクチュエータ
 2…フォーカス制御用光学系、
 21…フォーカス用光源
 22…ビームスプリッタ
 23…1/4波長板、
 24…フォーカス用集光レンズ、
 24a…フォーカス用レンズブロック
 25…シリンドリカルレンズ、
 26…4分割受光素子(PD:Photo Detector)、
 26a…PDアクチュエータ、
 3…加工用光学系、
 31…加工用光源、
 32…ダイバージングレンズ、
 33…加工用集光レンズ
 33a…加工用レンズブロック
 L1…加工用のレーザ光、
 L2…フォーカス制御用のレーザ光
 F1…加工用のレーザ光の集光部、
 F2…フォーカス制御用のレーザ光の集光部、
 S1…加工対象物の上面表面、
 S2…加工対象物の下面表面。
1 ... Laser processing equipment,
11 ... control unit,
12 ... stage,
12a ... Stage actuator 2 ... Optical system for focus control,
21 ... Focusing light source 22 ... Beam splitter 23 ... 1/4 wavelength plate,
24 ... Focusing condenser lens,
24a ... Focusing lens block 25 ... Cylindrical lens,
26 ... 4 split photo detector (PD: Photo Detector),
26a ... PD actuator,
3 ... Processing optical system,
31 ... Light source for processing,
32 ... Diverging lens,
33 ... Condensing lens for processing 33a ... Lens block for processing L1 ... Laser light for processing,
L2 ... Laser light for focus control F1 ... Condensing part of laser light for processing,
F2 ... Focusing part of laser beam for focus control,
S1 ... upper surface of the workpiece,
S2: The lower surface of the workpiece.

Claims (6)

  1.  加工対象物にレーザ光を集光させることで、加工を行うレーザ加工装置であって、
     前記加工対象物に加工を行うための第1レーザ光を照射する第1照射手段と、
     前記加工対象物に第2レーザ光を照射する第2照射手段と、
     前記加工対象物の表面又は裏面に前記第1レーザ光の集光部である第1集光部を形成することで加工を行う第1集光手段と、
     前記加工対象物の所定の位置に前記第2レーザ光の集光部である第2集光部を形成する第2集光手段と、
     前記加工対象物において反射される前記第2レーザ光の反射光を受光する受光手段と、
     前記受光手段に受光される前記第2レーザ光の反射光に基づいて、前記第2集光部の位置を決定するフォーカスサーボ手段と、
     前記第2集光部の位置に基づいて決定される位置に前記第1集光部を形成するように前記第1集光手段の動作を制御する制御手段と
     を備え、
     前記第1集光手段の開口数が前記第2集光手段の開口数よりも大きいことを特徴とするレーザ加工装置。
    A laser processing apparatus that performs processing by condensing laser light on a processing object,
    First irradiation means for irradiating a first laser beam for processing the workpiece;
    Second irradiation means for irradiating the workpiece with a second laser beam;
    A first condensing unit that performs processing by forming a first condensing unit that is a condensing unit of the first laser light on a front surface or a back surface of the processing object;
    A second condensing unit that forms a second condensing part that is a condensing part of the second laser light at a predetermined position of the processing object;
    A light receiving means for receiving the reflected light of the second laser light reflected by the workpiece;
    Focus servo means for determining the position of the second light converging unit based on the reflected light of the second laser light received by the light receiving means;
    Control means for controlling the operation of the first light collecting means so as to form the first light collecting part at a position determined based on the position of the second light collecting part;
    The laser processing apparatus, wherein the numerical aperture of the first light collecting means is larger than the numerical aperture of the second light collecting means.
  2.  前記第2集光手段の開口数は、前記加工対象物の表面及び裏面の間の厚さ、並びに屈折率に基づいて決定される値以上であることを特徴とする請求項1に記載のレーザ加工装置。 2. The laser according to claim 1, wherein the numerical aperture of the second light collecting unit is equal to or greater than a value determined based on a thickness between a front surface and a back surface of the workpiece and a refractive index. Processing equipment.
  3.  前記第2集光手段の開口数は、0.1以上であることを特徴とする請求項2に記載のレーザ加工装置。 The laser processing apparatus according to claim 2, wherein the numerical aperture of the second condensing means is 0.1 or more.
  4.  前記第1集光手段は、前記加工対象物の表面又は裏面における前記第2集光部の位置に基づいて決定される位置に前記第1集光部を形成することを特徴とする請求項1又は2に記載のレーザ加工装置。 The said 1st condensing means forms the said 1st condensing part in the position determined based on the position of the said 2nd condensing part in the surface or the back surface of the said workpiece. Or the laser processing apparatus of 2.
  5.  前記第1及び第2照射手段がレーザ光を照射する際に、前記第1レーザ光と前記加工対象物とを相対的に移動させる移動手段を更に備えることを特徴とする請求項1又は2に記載のレーザ加工装置。 3. The apparatus according to claim 1, further comprising a moving unit that relatively moves the first laser beam and the workpiece when the first and second irradiation units irradiate the laser beam. The laser processing apparatus as described.
  6.  前記第2集光手段は、前記加工対象物における、前記第2レーザ光の光軸方向における前記加工対象物の表面から所定距離離隔した所定の位置に前記第2集光部を形成することを特徴とする請求項1に記載のレーザ加工装置。 The second condensing unit forms the second condensing part at a predetermined position separated from the surface of the processing object in the optical axis direction of the second laser light by a predetermined distance in the processing object. The laser processing apparatus according to claim 1, wherein the apparatus is a laser processing apparatus.
PCT/JP2010/066560 2010-09-24 2010-09-24 Laser processing apparatus WO2012039057A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080003896.9A CN102612419B (en) 2010-09-24 2010-09-24 Laser processing device
PCT/JP2010/066560 WO2012039057A1 (en) 2010-09-24 2010-09-24 Laser processing apparatus
JP2011517708A JP4803566B1 (en) 2010-09-24 2010-09-24 Laser processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/066560 WO2012039057A1 (en) 2010-09-24 2010-09-24 Laser processing apparatus

Publications (1)

Publication Number Publication Date
WO2012039057A1 true WO2012039057A1 (en) 2012-03-29

Family

ID=44946858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066560 WO2012039057A1 (en) 2010-09-24 2010-09-24 Laser processing apparatus

Country Status (3)

Country Link
JP (1) JP4803566B1 (en)
CN (1) CN102612419B (en)
WO (1) WO2012039057A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189498A (en) * 2016-08-10 2016-11-04 国立大学法人埼玉大学 Substrate processing method and substrate processing apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10029396B2 (en) * 2014-10-30 2018-07-24 Shachihata Inc. Seal carving apparatus and thermal carving machine
EP3305459B1 (en) * 2015-06-01 2020-10-07 Panasonic Intellectual Property Management Co., Ltd. Laser welding method, laser welding conditions determining method, and laser welding system
JP6594680B2 (en) * 2015-07-07 2019-10-23 日立オートモティブシステムズ株式会社 Method and apparatus for manufacturing hollow composite magnetic member and fuel injection valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190578A (en) * 1992-12-25 1994-07-12 Isuzu Motors Ltd Laser beam machine
JPH08250021A (en) * 1995-03-13 1996-09-27 Canon Inc Manufacturing method for surface conduction electron emitting element and manufacture thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5101073B2 (en) * 2006-10-02 2012-12-19 浜松ホトニクス株式会社 Laser processing equipment
JP5199789B2 (en) * 2008-08-25 2013-05-15 株式会社ディスコ Laser processing apparatus and laser processing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190578A (en) * 1992-12-25 1994-07-12 Isuzu Motors Ltd Laser beam machine
JPH08250021A (en) * 1995-03-13 1996-09-27 Canon Inc Manufacturing method for surface conduction electron emitting element and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189498A (en) * 2016-08-10 2016-11-04 国立大学法人埼玉大学 Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
CN102612419B (en) 2016-01-06
CN102612419A (en) 2012-07-25
JP4803566B1 (en) 2011-10-26
JPWO2012039057A1 (en) 2014-02-03

Similar Documents

Publication Publication Date Title
TWI417509B (en) A measuring device and a laser processing machine which are held at the chuck table
JP6148075B2 (en) Laser processing equipment
WO2015137004A1 (en) Laser dicing device and dicing method
JP2011110591A (en) Laser machining device
JP6119963B2 (en) Automatic focus control device, semiconductor inspection device and microscope
JP4803566B1 (en) Laser processing equipment
JP6817027B2 (en) Laser processing equipment
TW201838751A (en) Evaluation jig and evaluation method for height position detection unit of laser processing device to evaluate the height position detection unit under the situation without using the evaluation plate-like object having a known height position
JP5636920B2 (en) Laser processing apparatus and servo control method of laser processing apparatus
JP4925934B2 (en) Focusing device and processing device provided with the same
JP6525224B2 (en) Laser dicing machine
JP5195649B2 (en) Laser processing apparatus and focus servo control method for laser processing apparatus
KR101912450B1 (en) Laser processing apparatus and optical system of the same
KR20220146323A (en) Adjustment method of laser machining apparatus, and laser machining apparatus
JP2005316069A (en) Laser beam condensing optical system and laser machining device
JP6653454B2 (en) Laser dicing equipment
JP2020082149A (en) Laser irradiation system
JP2012024787A (en) Laser machining apparatus
JP5644368B2 (en) Laser processing apparatus and laser irradiation position control method for laser processing apparatus
KR101482784B1 (en) Method and apparatus for high speed laser processing
KR101262859B1 (en) Apparatus for workpiece processing using laser
JP5353844B2 (en) Laser processing apparatus and focus servo control method of laser processing apparatus
JP2018176212A (en) Laser beam machining apparatus and laser beam machining method
JP2016139725A (en) Laser dicing device
JP2011104630A (en) Laser beam machining apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003896.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011517708

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857551

Country of ref document: EP

Kind code of ref document: A1