WO2012038243A2 - Générateur refroidi par air - Google Patents

Générateur refroidi par air Download PDF

Info

Publication number
WO2012038243A2
WO2012038243A2 PCT/EP2011/065323 EP2011065323W WO2012038243A2 WO 2012038243 A2 WO2012038243 A2 WO 2012038243A2 EP 2011065323 W EP2011065323 W EP 2011065323W WO 2012038243 A2 WO2012038243 A2 WO 2012038243A2
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
generator according
pyramids
pole
generator
Prior art date
Application number
PCT/EP2011/065323
Other languages
German (de)
English (en)
Other versions
WO2012038243A3 (fr
Inventor
Stefan Baumeister
Simon Andreas Frutiger
Benjamin Jordan
Original Assignee
Alstom Hydro France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Hydro France filed Critical Alstom Hydro France
Priority to EP11752231.8A priority Critical patent/EP2619882A2/fr
Priority to CA2811534A priority patent/CA2811534A1/fr
Priority to CN201180045514.3A priority patent/CN103109442B/zh
Publication of WO2012038243A2 publication Critical patent/WO2012038243A2/fr
Publication of WO2012038243A3 publication Critical patent/WO2012038243A3/fr
Priority to US13/848,194 priority patent/US20130217317A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer

Definitions

  • the present invention relates to the field of rotary electric machines. It relates to an air-cooled generator according to the preamble of claim 1.
  • the surfaces have already been optimized, for example by cooling fins, which increase the active surface area.
  • cooling fins which increase the active surface area.
  • the direction of the flow of the cooling medium is of great importance. Due to the design but not all cooling surfaces of
  • Generators are optimally flown.
  • such cooling surfaces are typically located in the region of the pole coils of the rotor.
  • Fig. 1 shows in a
  • Each of the poles 1 1 has a pole coil 12.
  • the individual poles 1 1 are separated in the circumferential direction by pole gaps 14 from each other.
  • the basis of the temperature calculation in air-cooled machines is the following physical formula:
  • the simplest cooling geometry is a smooth surface. Although this geometry is independent of the direction of flow, it has the minimum possible
  • FIGS. 6 and 7 make it clear that, in the case of a faulty flow, the
  • Cooling ribs 18 and 21 (flow direction transverse to the cooling fins) can come to areas, namely the recessed spaces 19 and 22, in which the flow rates are very low or recirculations or
  • the object is solved by the entirety of the features of claim 1.
  • the inventive generator which is flowed through to dissipate heat loss of cooling air, wherein the cooling air sweeps over surfaces acting as cooling surfaces and thereby absorbs heat from these interfaces, characterized in that the interfaces arranged distributed with the cooling surface increasing local elevations are provided.
  • Cooling surface are distributed.
  • the local surveys can take the form of simple
  • the local surveys in the form of cones or truncated cones.
  • Another development is characterized in that the local
  • Elevations have the shape of cylinders or cuboids. According to a particularly preferred development, the local
  • a surface equipped with pyramidal or pyramidal elevations not only promotes the turbulence of the cooling medium passing past, but also prevents or reduces the formation of a thermal boundary layer in the wall region by deflecting flowing cooling medium away from the surface to be cooled, thereby mixing promotes the coolant perpendicular to the flow direction.
  • the generator comprises a rotor having a plurality of poles, which are separated from each other by pole gaps and which are each provided with a pole coil, and that provided with the local elevations cooling surfaces in the
  • Pole back region are arranged.
  • a further embodiment of the invention is characterized in that the generator comprises a rotor with a plurality of poles, which are separated from each other by pole gaps and are each provided with a pole coil, and that provided with the local elevations cooling surfaces in the
  • Ventilation of the pole coils are arranged.
  • FIG. 1 Show it a perspective view of a section of a generator rotor having a plurality of poles, which are cooled by means of flowing cooling air; the pole gaps of the rotor, which are important for the cooling, according to FIG. 1; the important for the cooling entries for the ventilation of the pole coils; in perspective a section of a generator rotor having a plurality of poles, which are cooled by means of flowing cooling air; the pole gaps of the rotor, which are important for the cooling, according to FIG. 1; the important for the cooling entries for the ventilation of the pole coils; in perspective a section of a generator rotor having a plurality of poles, which are cooled by means of flowing cooling air; the pole gaps of the rotor, which are important for the cooling, according to FIG. 1; the important for the cooling entries for the ventilation of the pole coils; in perspective a section of a generator rotor having a plurality of poles, which are cooled by means of flowing cooling air; the pole gaps of the rot
  • Cooling effect should be as independent as possible of the flow conditions.
  • the cooling surface is provided with local elevations, which are distributed over the surface so that largely independent of the flow direction of the cooling air flowing above a uniformly high heat transfer between the cooling surface and cooling air.
  • Fig. 8 is a detail of a as a perspective view
  • pyramid shape is by no means limited to the use of pyramids or stumps with a quadrangular layout.
  • pyramidal bodies can be used with triangular or polygonal base. Also, it does not necessarily have to be a regular pyramid, that is, not all the side edges of the
  • Pyramid or the pyramid stump be the same length.
  • Heat transfer coefficient ⁇ and the increased cooling surface also increases the dissipated heat loss Q at the same cooling surface temperature.
  • a significant advantage of the pyramid structure is also due to a further effect.
  • a pyramid structure as exemplified in FIG. 8, not only increases the available heat transfer area and the turbulence of the flowing cooling medium, but also promotes the same
  • Cooling medium so it contributes to a mixing of the same perpendicular to the flow direction.
  • the cooling medium flows against the side surfaces of the pyramidal body (24, 26, 29), it is deflected away from the wall to be cooled. It forms one of the surface to be cooled
  • Main flow direction is aligned.
  • pole gap regions 15 of the generator 10 for example at one or more pole coil or pole body surfaces, and according to FIG. 3 the rear ventilation of the pole coils 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

La présente invention concerne un générateur refroidi par air, traversé par de l'air de refroidissement pour évacuer la chaleur dissipée, l'air de refroidissement passant sur des surfaces limites (23) faisant office de surfaces de refroidissement et absorbant ainsi la chaleur de ces surfaces limites (23). Le transfert de chaleur est maximisé, avec une consommation d'air de refroidissement minimale, par le fait que les surfaces limites (23) sont pourvues de parties saillantes (24) locales réparties, augmentant la surface de refroidissement et le coefficient de transfert de chaleur. Ces parties saillantes locales sont notamment réalisées de manière avantageuse en tant que corps en forme de pyramides ou de pyramides tronquées (24, 26, 29).
PCT/EP2011/065323 2010-09-21 2011-09-05 Générateur refroidi par air WO2012038243A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11752231.8A EP2619882A2 (fr) 2010-09-21 2011-09-05 Générateur refroidi par air
CA2811534A CA2811534A1 (fr) 2010-09-21 2011-09-05 Generateur refroidi par air
CN201180045514.3A CN103109442B (zh) 2010-09-21 2011-09-05 空冷的发电机
US13/848,194 US20130217317A1 (en) 2010-09-21 2013-03-21 Air-cooled generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01526/10A CH703820A1 (de) 2010-09-21 2010-09-21 Luftgekühlter generator.
CH01526/10 2010-09-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/848,194 Continuation US20130217317A1 (en) 2010-09-21 2013-03-21 Air-cooled generator

Publications (2)

Publication Number Publication Date
WO2012038243A2 true WO2012038243A2 (fr) 2012-03-29
WO2012038243A3 WO2012038243A3 (fr) 2012-11-22

Family

ID=43030405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/065323 WO2012038243A2 (fr) 2010-09-21 2011-09-05 Générateur refroidi par air

Country Status (6)

Country Link
US (1) US20130217317A1 (fr)
EP (1) EP2619882A2 (fr)
CN (1) CN103109442B (fr)
CA (1) CA2811534A1 (fr)
CH (1) CH703820A1 (fr)
WO (1) WO2012038243A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133780A1 (fr) * 2013-02-27 2014-09-04 Magnadrive Corporation Appareil, systèmes et procédés destinés à réduire le bruit produit par des accouplements tournants
WO2014182357A1 (fr) * 2013-05-07 2014-11-13 Magnadrive Corporation Appareil, systemes et procedes de reduction d'un bruit genere par des couplages et des entrainements tournants
WO2016177640A1 (fr) * 2015-05-07 2016-11-10 Wobben Properties Gmbh Rotor d'une éolienne à entraînement direct

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160056676A1 (en) * 2014-08-25 2016-02-25 GM Global Technology Operations LLC Partially segmented wound rotor assembly for high copper fill and method
US20170338720A1 (en) * 2016-04-06 2017-11-23 James Rhett Mayor Enhanced convective rotor cooling
CN108574385A (zh) * 2017-03-08 2018-09-25 赵文忠 能有效改变磁路长度的马达结构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740402A1 (fr) 1995-04-26 1996-10-30 ABB Management AG Machine hydro-électrique à axe vertical

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT298607B (de) * 1969-10-17 1972-04-15 Siemens Ag Elektrische maschine mit ausgepraegten laeuferpolen
US3684007A (en) * 1970-12-29 1972-08-15 Union Carbide Corp Composite structure for boiling liquids and its formation
JPS5813837B2 (ja) * 1978-05-15 1983-03-16 古河電気工業株式会社 凝縮伝熱管
US4621953A (en) * 1984-12-14 1986-11-11 Foster Wheeler Energy Corporation Anti-erosion protrusions for wear surfaces in fluid conduits
US5070937A (en) * 1991-02-21 1991-12-10 American Standard Inc. Internally enhanced heat transfer tube
US5361828A (en) * 1993-02-17 1994-11-08 General Electric Company Scaled heat transfer surface with protruding ramp surface turbulators
DE4333404A1 (de) * 1993-09-30 1995-04-06 Siemens Ag Durchlaufdampferzeuger mit vertikal angeordneten Verdampferrohren
CN1084876C (zh) * 1994-08-08 2002-05-15 运载器有限公司 传热管
JP3707250B2 (ja) * 1997-08-06 2005-10-19 富士電機システムズ株式会社 回転電気機械の円筒形回転子
KR100518695B1 (ko) * 1998-03-31 2005-10-05 산요덴키가부시키가이샤 흡수식 냉동기 및 그에 사용하는 전열관
DE19817333C5 (de) * 1998-04-18 2007-04-26 Conti Temic Microelectronic Gmbh Elektrische Antriebseinheit aus Elektromotor und Elektronikmodul
US6182743B1 (en) * 1998-11-02 2001-02-06 Outokumpu Cooper Franklin Inc. Polyhedral array heat transfer tube
JP2002372390A (ja) * 2001-06-12 2002-12-26 Kobe Steel Ltd 流下液膜式蒸発器用伝熱管
US7311137B2 (en) * 2002-06-10 2007-12-25 Wolverine Tube, Inc. Heat transfer tube including enhanced heat transfer surfaces
WO2005034305A1 (fr) * 2003-10-02 2005-04-14 Amada Company, Limited Moteur synchrone
DE102007055910A1 (de) * 2007-10-25 2009-04-30 Baumüller Nürnberg GmbH Kühlmantel insbesondere für elektrische Maschinen sowie Herstellungsverfahren dafür
US8875780B2 (en) * 2010-01-15 2014-11-04 Rigidized Metals Corporation Methods of forming enhanced-surface walls for use in apparatae for performing a process, enhanced-surface walls, and apparatae incorporating same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0740402A1 (fr) 1995-04-26 1996-10-30 ABB Management AG Machine hydro-électrique à axe vertical

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014133780A1 (fr) * 2013-02-27 2014-09-04 Magnadrive Corporation Appareil, systèmes et procédés destinés à réduire le bruit produit par des accouplements tournants
CN105027401A (zh) * 2013-02-27 2015-11-04 麦格纳驱动公司 用于降低由旋转耦合产生的噪声的装置、系统以及方法
WO2014182357A1 (fr) * 2013-05-07 2014-11-13 Magnadrive Corporation Appareil, systemes et procedes de reduction d'un bruit genere par des couplages et des entrainements tournants
CN105379085A (zh) * 2013-05-07 2016-03-02 麦格纳驱动公司 用于降低由旋转耦合器和传动器产生的噪声的装置、系统以及方法
WO2016177640A1 (fr) * 2015-05-07 2016-11-10 Wobben Properties Gmbh Rotor d'une éolienne à entraînement direct

Also Published As

Publication number Publication date
US20130217317A1 (en) 2013-08-22
CN103109442B (zh) 2015-11-25
CA2811534A1 (fr) 2012-03-29
CN103109442A (zh) 2013-05-15
CH703820A1 (de) 2012-03-30
EP2619882A2 (fr) 2013-07-31
WO2012038243A3 (fr) 2012-11-22

Similar Documents

Publication Publication Date Title
WO2012038243A2 (fr) Générateur refroidi par air
EP2688183B1 (fr) Bobine électrique fabriquée selon une technique de coulage
DE102013101747B4 (de) Kühler
DE102010061493B4 (de) Drehende elektrische Maschine mit Kühlungsmechanismus
DE60128585T2 (de) Gasgekühlte dynamoelektrische Maschine
DE102012012294A1 (de) Fahrzeug mit einer Batterieanordnung
EP2742578A2 (fr) Machine dynamoélectrique à boîtier autoporteur
DE102008037146A1 (de) Verbesserte Bauform und Betrieb eines Lüfters
EP2601474A2 (fr) Echangeur de chaleur en forme de plaque pour un dispositif de refroidissement comprenant au moins un paquet d'échangeurs de chaleur
DE112007000019T5 (de) Wärmeaustauscher
DE102017207361A1 (de) Kühler zur Kühlung von elektrischen Anordnungen
WO2015003699A2 (fr) Machine électrique
DE102013220313A1 (de) Stapelscheiben-Wärmetauscher
EP3326264A1 (fr) Anneau statorique, générateur et éolienne équipée
DE102012204197A1 (de) Elektrische Maschine mit Phasentrenner
DE112019007545T5 (de) Kühlkörper für rotierende elektromaschine-frequenzumrichter baugruppe und entsprechende rotierende elektromaschine
WO2014005910A2 (fr) Moteur électrique comprenant un groupe de lamelles de stator pourvu de générateurs de tourbillon pour un système de refroidissement intégré
DE102019000723A1 (de) Kühler
DE102008016758A1 (de) Stator für eine elektrische Maschine sowie elektrische Maschine mit einem solchen Stator
DE102017209604A1 (de) Batteriemodul mit Strömungsleitformation im Modulgehäuse
DE10208564A1 (de) Luftspule für rotierende elektrische Maschinen und deren Herstellungsverfahren
DE112018002692T5 (de) Rotierende elektrische maschine
WO2017097634A1 (fr) Échangeur de chaleur, en particulier pour un véhicule automobile, muni de conduites de fluide flexibles et d'une structure de retenue
EP3180839B1 (fr) Générateur synchrone, en particulier générateur annulaire synchrone multipolaire d'une éolienne à entraînement direct, et éolienne munie de celui-ci
DE102017214949A1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045514.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11752231

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2811534

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011752231

Country of ref document: EP