WO2012037871A1 - 一种小区间干扰协调的模拟方法及设备 - Google Patents
一种小区间干扰协调的模拟方法及设备 Download PDFInfo
- Publication number
- WO2012037871A1 WO2012037871A1 PCT/CN2011/079832 CN2011079832W WO2012037871A1 WO 2012037871 A1 WO2012037871 A1 WO 2012037871A1 CN 2011079832 W CN2011079832 W CN 2011079832W WO 2012037871 A1 WO2012037871 A1 WO 2012037871A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell
- icic
- neighboring
- rntp
- user class
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/28—TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
- H04W52/281—TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
- H04W52/244—Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
Definitions
- the present invention relates to the field of wireless communications, and in particular, to a method and a device for simulating inter-cell interference coordination. Background technique
- LTE Long Term Evolution
- UMTS Universal Mobile Telecommunications System
- the existing downlink semi-static ICIC technology mainly focuses on the research of dynamic simulation platform or the realization of existing network products.
- the platform or network environment is dynamic, and can realize the information interaction of Sl and X2 interfaces, which is in line with the realization of semi-static ICIC scheme. demand.
- the network planning optimization software itself is the abstraction and simulation of the network environment. As a static simulation platform, it cannot simulate the information interaction of the X2 interface.
- Summary of the invention Embodiments of the present invention provide a method and a device for simulating inter-cell interference coordination, which are used to simulate a downlink ICIC in LTE in a static environment.
- a method for simulating an ICIC which includes the following steps:
- the power allocation is controlled after resource scheduling according to the priority of the PRB;
- An embodiment of the present invention provides an ICIC simulation device, including:
- a user determining module configured to determine a UE belonging to a central user class and a UE belonging to an edge user class
- a neighboring cell determining module configured to determine a neighboring cell that performs ICIC interaction with the local cell
- a priority determining module configured to determine a PRB priority of each UE participating in the ICIC according to the RNTP preset value and the neighbor cell information;
- the scheduling and power control module is configured to control power allocation according to the priority of the PRB, and the notification module is configured to determine an actual RNTP of the cell according to the resource scheduling situation, and notify the neighboring cell.
- the PRB priority of each UE participating in the ICIC is determined according to the RNTP preset value and the neighbor cell information; and then the power allocation is controlled after the cell performs resource scheduling according to the priority of the PRB;
- the situation sets the actual RNTP of the cell and informs the neighboring cell.
- each cell determines the actual resources to be used according to the situation of the neighboring cell and its own resources, and provides the resources actually used by itself to each neighboring cell for resource setting of each cell, although there is no
- the information of the X2 interface but also implements the ICIC process between the cells. Therefore, the technical solution provided by the embodiment of the present invention can simulate and implement the downlink semi-static ICIC technology in the static programming simulation platform that cannot simulate the interaction of the X2 interface information. .
- the technical solution provided by the embodiment of the present invention can simulate ICIC in a static environment (or various conditions without interface information), simulate a real network situation to construct a model, and seek an optimal solution for ICIC implementation by adjusting parameters in different scenarios. It provides a reference for the scheme selection and ICIC related parameter setting of ICIC in actual implementation. At the same time, it also determines various network planning parameters, such as downlink transmission power, after considering semi-static ICIC in the actual network. DRAWINGS
- FIG. 1 is a schematic flow chart showing an implementation process of an ICIC simulation method according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of an ICIC implementation process of all cells in an embodiment of the present invention.
- FIG. 3 is a schematic structural diagram of an analog device of an ICIC according to an embodiment of the present invention.
- the downlink channel of the 3GPP LTE system adopts Orthogonal Frequency Division Multiplexing (OFDM) technology as its transmission technology.
- OFDM Orthogonal Frequency Division Multiplexing
- LTE uses OFDM technology to plan frequency resources for a cell, it uses subcarrier orthogonality to avoid interference between users in the cell. Therefore, the small interval interference will become the main source of interference between users in the LTE system.
- the LTE system introduces a key technology: Inter-Impact Interference Coordination (ICIC) technology.
- ICIC Inter-Impact Interference Coordination
- the existing icic technology mainly focuses on the research of dynamic simulation platform or the realization of existing network products.
- the platform or network environment is dynamic and can realize the information interaction of the Sl and X2 interfaces, which meets the implementation requirements of the semi-static ICIC scheme.
- network planning optimization itself is an abstraction and simulation of the network environment.
- As a static simulation scheme it cannot simulate the information interaction of the X2 interface. Therefore, existing technologies cannot be directly applied to network planning.
- the technical solution provided by the embodiment of the present invention will consider the idea of semi-static ICIC, and approximate the implementation of the downlink semi-static ICIC on the static platform. Specific embodiments of the present invention will be described below with reference to the accompanying drawings.
- the network planning software LTE eNPS will be taken as an example for the network planning.
- the related invention and the discussion of the present invention are all related to the LTE eNPS, the technical solution provided by the embodiment of the present invention is creative and half
- the idea of static ICIC, which approximates the implementation of downlink semi-static ICIC on a static platform, is also applicable to other types of network planning software that provide similar functions. Therefore, the reference to LTE eNPS is only an example and does not play a limiting role.
- Figure 1 is a schematic diagram of the implementation process of the ICIC simulation method. As shown in the figure, the following steps can be included in the simulation of the ICIC:
- Step 101 Determine a UE that belongs to a central user class and a UE that belongs to an edge user class.
- Step 102 Determine a neighboring cell that performs ICIC interaction with the local cell.
- Step 103 Determine a physical resource block (PRB) priority of each UE participating in the ICIC according to a preset Narrowband Tx power indicator (RNTP) preset value and neighbor cell information.
- PRB physical resource block
- RTP Narrowband Tx power indicator
- Step 104 After performing resource scheduling according to the PRB priority, control power allocation.
- Step 105 Determine an actual RNTP of the cell according to the resource scheduling situation, and notify the neighboring cell of the actual RNTP of the cell.
- the UE belonging to the central user class and the UE belonging to the edge user class may be determined according to the difference between the quality of the neighboring cell and the quality of the local cell.
- the so-called user location refers to whether the user belongs to the central user class or the edge user class.
- the determination of the location of the user is not uniquely determined by the distance between the user and the base station of the cell to which it belongs. Since the UE is sprinkled in the LTE e PS, the UE location will not change. Therefore, the idea of the A3 event can be borrowed to determine whether the UE is a central user or an edge user.
- the A3 event is described as follows: ⁇ Mn+ 0 f nJr C> cn-Hy S >M S+ Of S +Ocs+Off, that is, if the quality of any neighboring cell is greater than a threshold value, the UE is The edge user of the cell, otherwise the center user.
- the method when determining the neighboring cell that performs ICIC interaction with the local cell, the method may include:
- the basic neighbor cell list is determined according to the base station spacing, the antenna direction angle, and the pilot signal coverage overlap condition; the cell-specific reference signals (CRS) received by the UE belonging to the edge user class are measured. Calculating the signal to interference and noise ratio between the UE belonging to the edge user class and each neighboring cell (ie,
- variable values are sorted from high to low, and the M neighboring cells with the largest variable value are selected as the neighboring cells that perform ICIC interaction with the local cell, or a certain threshold is set, and the variable value is greater than the The first M neighbor cells of the threshold are used as neighbor cells for ICIC interaction with the local cell.
- the downlink neighboring cell can be determined according to the CRS. The specific steps can be as follows:
- the base neighboring cell list is determined by factors such as the base station spacing, the antenna direction angle, and the pilot signal coverage overlap condition.
- the CRS of the local cell received by the edge UE is used as a measurement quantity, and the signal to interference and noise ratio between the edge UE and each neighboring cell is calculated.
- the interactive neighbor cell list is determined at the same time. Or setting a certain threshold.
- the first M are neighbor cells that perform ICIC interaction with the local cell, otherwise, several neighboring cells take several neighboring cells. As an interactive neighbor cell. 3. Determine the PRB priority of each UE participating in the ICIC according to the RNTP preset value and the neighbor cell information.
- the cell resource planning and PRB priority setting in this ICIC may be:
- the RNTP of the neighboring cell the RNTP of the local cell, the number of neighboring cells performing ICIC interaction, the number of PRBs of the own cell and the neighboring cell, and the index number, the PRB for the interference level of 0 and 1 is the central user class.
- the UE and the UE of the edge user class respectively set the priority of the PRB.
- all the PRB resources can be used by both the edge user and the central user, and the central user or the edge user resource available indication (both available) is input into the scheduling module.
- the edge - d ! set is determined according to the predicted number of PRBs, the RNTP flag, and the RNTP setting priority, and then the PRB priority is input to the scheduling and power control module.
- the RNTP is a relatively narrow-band transmit power indicator, which is used to indicate the downlink transmit power level on the PRB of the local cell, and inform the neighboring cells which PRBs to transmit with high power, and the neighboring cells try to avoid these PRBs when scheduling the edge UE; RNTP sets the priority. It is related to the interference level of the neighboring cell and the interference power of the neighboring cell.
- the RNTPs on each PRB the RNTPs of the plurality of neighboring cells that are notified, whether there is RNTP indicated as 1 on the PRB, and if present, the interference level of the PRB Is 1, otherwise 0; Calculate the neighbor cell interference power of the PRB with the interference level of 1, and sort.
- the higher the interference power the smaller the setting priority of RNTP; the RNTP setting priority of the PRB with the interference level of 0 is higher than the RNTP setting of the PRB with the interference level of 1.
- the RNTP value is set for the cell, and the neighboring cell with which the ICIC interacts is notified; or the RNTP is set according to the interference level, and the RNTP setting result is notified to the neighboring cell.
- the specific method of setting RNTP according to the interference level is as follows: If the number of PRBs with the interference level of 0 is greater than N, the RNTP flags of the N PRBs are sequentially set to 1 according to the set resource allocation order, and the other position flags are 0. Otherwise, Press RNTP to set the priority from high to low, and set the RNTP flag of N PRBs to 1 and the other location flags to 0. 4) Calculate the priority of each PRB and enter the scheduling module.
- the neighboring cell interference power, the neighboring cell RNTP, the local cell RNTP, the number of neighboring cells performing ICIC interaction, the number of PRBs of the local cell and the neighboring cell, and the index number, and various factors in different cell environments can be used.
- the PRB with interference level 0 is first assigned to the edge user, and when it is left, it is allocated to the central user.
- A is a UE-specific parameter configured by higher layer signaling, and an Energy Per Resource Element (EPRE) and a cell-specific resource of a Physical Downlink Shared Channel (PDSCH) on each OFDM symbol.
- EPRE Energy Per Resource Element
- PDSCH Physical Downlink Shared Channel
- RS reference signal
- a semi-static ICIC adjustment (ie, scheduling num times, doing an ICIC) can be performed after each resource is scheduled for num.
- the flag for the end of each ICIC adjustment is that the cell and all its neighboring cells have undergone a resource adjustment update.
- the system load information can be obtained according to the average resource utilization rate of the system after a period of time or several times of scheduling, and the ICIC simulation can be determined by comparing the system load and the ICIC system load threshold.
- whether to initiate the ICIC adjustment may be to perform ICIC simulation when the RNTP, the predicted number of PRBs, the RNTP threshold, or a combination thereof are notified by the cell.
- the neighboring cells when performing ICIC simulation, may be sequentially adjusted according to the simulation mode of the current cell, until all neighboring cells have completed one adjustment in the current ICIC cycle.
- Step 201 Enter a "downstream semi-static ICIC" implementation interface
- Step 202 Compare the system load and the ICIC system load threshold to determine whether to adopt a semi-static ICIC mode
- system load information can be obtained according to the average resource utilization rate of the system after a period of time or several times of scheduling. Determine whether semi-static ICIC is used by comparing the system load and the ICIC system load threshold;
- Step 203 Determine user location information, and input a scheduling and power control module.
- Step 204 Determine a neighbor cell list and a neighbor cell priority level for performing ICIC interaction with the local cell.
- Step 205 PRB number prediction; In this step, the number of PRBs required by the cell edge user can be predicted;
- Step 206 Plan resources, determine resources, and input scheduling and power control modules.
- resource available settings can be made and input to the scheduling and power control module
- Step 207 Presetting a RNTP threshold of the local cell.
- Step 208 Determine a priority of the R TP setting for the PRB of the cell.
- Step 209 Perform RNTP setting of the PRB for the cell, and obtain a set of preferential use frequency resources planned by the edge user as ed S e - dl to notify the neighboring cell;
- Step 210 Set a PRB use priority, and input a scheduling and power control module.
- Step 211 Input a scheduling situation into a scheduling and a power control module, and control power allocation.
- RNTP can be set to inform the neighboring cell. Calculate the ICIC PRB priority and enter the schedule.
- the RNTP setup mode is converted to the pre-set mode.
- the ICIC PRB priority is calculated according to the RNTP preset value and the neighbor cell information, and the scheduling is notified, and then the actual RNTP of the cell is set according to the scheduling situation, and the neighboring cell is notified;
- Step 212 determining whether to complete the ICIC adjustment of the neighboring cell of the cell, if yes, go to step 213, otherwise go to step 205;
- Step 213 Determine whether the ICIC adjustment of all the cells is completed. If yes, go to step 215. Otherwise, go to step 214.
- Step 214 Re-use the neighboring cell of the cell as the local cell, and prepare to start ICIC adjustment of the neighboring cell of the neighboring cell. , proceeds to step 205;
- Step 215 ending the call of the downlink semi-static ICIC.
- steps 212 to 214 it is mainly determined whether all cells have completed this ICIC adjustment.
- this ICIC adjustment process whether or not the cell has been adjusted, some will be skipped, and no adjustment will be made.
- the adjustment is as follows: According to the priority order in the neighbor cell list, that is, the interference of the neighboring cell to the neighboring cell from high to low, the ICIC adjustment of the neighboring cell is performed in sequence. Then, the part cell is the target cell, and the neighboring cells of each neighboring cell are adjusted until all the cells have completed the adjustment in the current ICIC cycle. That is, when performing ICIC simulation, starting from the current cell, each neighboring cell is sequentially adjusted according to the simulation mode of the cell, until all neighboring cells have completed an adjustment in the current ICIC cycle.
- an ICIC simulation device is also provided in the embodiment of the present invention. Since the principle of solving the problem of the device is similar to the simulation method for inter-cell interference coordination, the implementation of the device can refer to the implementation of the method, and the method is repeated. I won't go into details here.
- Figure 3 is a schematic diagram showing the structure of an ICIC analog device. As shown in the figure, the device may include:
- a user determining module 301 configured to determine a UE belonging to a central user class and a UE belonging to an edge user class;
- the neighboring cell determining module 302 is configured to determine a neighboring cell that performs ICIC interaction with the local cell
- the priority determining module 303 is configured to determine, according to the RNTP preset value and neighbor cell information, each UE participating in the ICIC PRB priority;
- the scheduling and power control module 304 is configured to control power allocation according to the priority of the PRB, and the notification module 305 is configured to set an actual RNTP of the current cell according to the scheduling situation, and notify the neighboring cell.
- the priority determining module may include:
- a PRB number determining unit configured to predict a PRB number used by a UE of an edge user class according to a spectrum efficiency and a data rate requirement of a UE of each edge user class in the current period of the scheduling period;
- An edge user resource determining unit configured to determine, according to the predicted PRB number, the neighboring cell RNTP flag, and the RNTP setting priority, the priority frequency resource set of the UE of the edge user class and the RNTP preset value on each PRB;
- the priority determining unit is configured to: according to the neighboring cell interference power, the neighboring cell RNTP, the local cell RNTP, the number of neighboring cells performing ICIC interaction, the number of PRBs of the local cell and the part cell, and the index number, and the interference level is 0 and
- the PRB of 1 sets the priority of the PRB for the UE of the central user class and the UE of the edge user class, respectively.
- the user determining module may be further configured to determine, according to the difference between the quality of the neighboring cell and the quality of the local cell, the UE that belongs to the central user class and the UE that belongs to the edge user class.
- the neighboring cell determining module may include:
- a basic neighboring cell determining unit configured to determine a basic neighbor cell list according to a base station spacing, an antenna direction angle, and a pilot signal coverage overlapping condition
- a Geometry determining unit configured to calculate a signal to interference and noise ratio Geometry between the UE belonging to the edge user class and each neighboring cell by using the CRS of the local cell received by the UE belonging to the edge user class as a measurement quantity;
- a Geometry processing unit configured to determine a neighboring cell corresponding to the strongest Geometry of the UE, and add a variable value corresponding to the neighboring cell to the UE; the UE that belongs to the edge user class is traversed, and all UEs belonging to the edge user class in the cell are calculated. And the Geometry between each neighboring cell increases the variable value of the neighboring cell corresponding to the strongest Geometry of the UE by one;
- a neighboring cell determining unit configured to sort the variable values of the neighboring cells of the cell from high to low, and select M neighboring cells with the largest variable value as neighboring cells that perform ICIC interaction with the local cell; or, the variable value is greater than the preset gate.
- the first M neighbor cells of the limit are used as neighbor cells for ICIC interaction with the local cell.
- the device may further include:
- the ICIC startup module 306 is configured to obtain system load information according to the average resource utilization rate of the system after a period of time or several times of scheduling, and determine whether to perform ICIC simulation by comparing the system load and the ICIC system load threshold.
- the device may further include:
- the ICIC adjustment module 307 is configured to perform ICIC adjustment when the RNTP, the predicted number of PRBs, the RNTP threshold, or a combination thereof notified by the cell changes.
- the device may further include:
- the ICIC adjustment control module 308 is configured to sequentially adjust each neighboring cell according to the simulation mode of the local cell when performing ICIC simulation, until all neighboring cells complete the adjustment in the current ICIC cycle.
- the module set for ICIC processing for each cell is identified by a dotted line frame in units of cells, and The Nth cell identity of a cell.
- the method for determining the location of the user is provided: borrowing the idea of the A3 event, that is, using the difference between the quality of the neighboring cell and the quality of the cell, dividing the center user and the edge user.
- a method for determining a neighboring cell that performs ICIC interaction with the local cell is provided: calculating a Geometry between each edge UE and a neighboring cell in all neighbor cell lists, and obtaining according to the sorting result of the Geometry.
- the static semi-static ICIC solution is implemented in a static platform without interaction information of the X2 interface.
- the RTP setting mode is converted into a preset mode.
- the method is changed to: according to the RNTP preset value and the neighbor cell information, calculate the ICIC PRB priority, inform the scheduling, and then set the actual RNTP of the cell according to the scheduling situation, and inform the neighboring cell;
- ICIC adjustment the notified RNTP, the predicted number of PRBs, and the RNTP threshold, and any changes are adjusted;
- the ICIC adjustment time between neighboring cells is staggered. First adjust the cell, then adjust the neighboring cell of the cell, and then use the neighboring cell as the target cell, and adjust the neighboring cell of the neighboring cell according to the priority of the neighboring cell list... until all neighboring cells are in this ICIC An adjustment was completed within the cycle.
- the technical solution provided by the embodiment of the present invention provides a scheme for simulating and implementing a downlink semi-static ICIC technology in a static planning simulation platform capable of simulating X2 interface information interaction.
- embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
- a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
- the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
- the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
- These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
- the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种小区间干扰协调的模拟方法及设备,包括:确定属于中心用户类的用户设备与属于边缘用户类的用户设备;确定与本小区进行小区间干扰协调交互的邻小区;根据相对窄带发射功率指示预设值和邻小区信息确定参与小区间干扰协调的各用户设备的物理资源块优先级;根据物理资源块的优先级进行资源调度后对功率分配进行控制;根据调度情况设置本小区实际相对窄带发射功率指示,并告知邻小区。本申请能够在无法模拟X2接口信息交互的静态规划仿真平台中,模拟和实现下行半静态小区间干扰协调技术。
Description
一种小区间干扰协调的模拟方法及设备 本申请要求在 2010年 9月 20日提交中国专利局、 申请号为 201010288652.1、发明名称为 "一种小区间干扰协调的模拟方法及设备"的中国专利申请的优先权, 其全部内容通过引用 结合在本申请中。 技术领域
本发明涉及无线通信领域, 特别涉及一种小区间干扰协调的模拟方法及设备。 背景技术
2004年底, 第 3 代合作项目 (3rd Generation partnership project, 3 GPP )将通用移动 通信系统(Universal Mobile Telecommunications System, UMTS )技术的长期演进 ( Long Term Evolution, LTE )项目的研究提上了日程。 为了能与可以支持 20MHz带宽的全球微 波接入互联技术( World Interoperability for Microwave Access, WiMAX )相抗衡, LTE选 用了正交频分复用 (Orthogonal Frequency Division Multiplex , OFDM ) 和频分多址 ( Frequency Division Multiple Access, FDMA )技术作为其核心传输技术。
如何提高边缘用户吞吐量, 保证边缘用户服务质量( Quality of Service , QoS )是 LTE 系统需要考虑的一个问题。 小区边缘用户离基站距离较远, 信号衰减比较大, 同时由于采 用了 OFDM技术, 小区频 i普资源会发生重叠,这将对被千扰小区的边缘用户造成较大的千 扰, 造成小区边缘用户的低信干噪比( Signal to Interference plus Noise Ratio, SINR )。 因 此, LTE系统采用了小区间干扰协调 (Inter-Cell Interference Coordinate, ICIC )技术来抑 制小区间千扰, 保证 LTE系统性能。
从网络规划平台来说, 由于 LTE与其他通信标准间的差异, 现有的诸多规划平台并不 能直接套用到 LTE系统中。 此外, 作为一种新技术, 现有的规划平台未曾涉及过 ICIC的 实现问题, 而半静态 ICIC方案实现时所需完成的 X2接口的信息交互, 也是 ICIC在静态 规划软件中得以实现的一个难题。 因此, 如何将半静态 ICIC方案, 运用于针对 LTE系统 的网络规划软件中, 仿真模拟网络情况, 是现有技术中亟需解决的一个难题。
现有的下行半静态 I C I C技术主要侧重于动态仿真平台的研究或现网产品的实现, 其平 台或网络环境是动态的, 并且能够实现 Sl、 X2接口的信息交互, 符合半静态 ICIC方案的实 现需求。而网络规划优化软件本身就是对网络环境的抽象和模拟,作为一种静态仿真平台, 并不能模拟 X2接口的信息交互。 发明内容
本发明实施例提供一种小区间干扰协调的模拟方法及设备, 用以在静态环境中模拟 LTE中的下行 ICIC。
本发明实施例中提供了一种 ICIC的模拟方法 , 包括如下步骤:
确定属于中心用户类的 UE与属于边缘用户类的 UE;
确定与本小区进行 ICIC交互的邻小区;
根据 RNTP预设值和邻小区信息确定参与 ICIC的各 UE的 PRB优先级;
根据 PRB的优先级进行资源调度后对功率分配进行控制;
根据资源调度情况确定本小区实际 RNTP, 并告知邻小区。
本发明实施例中提供了一种 ICIC的模拟设备, 包括:
用户确定模块, 用于确定属于中心用户类的 UE与属于边缘用户类的 UE;
邻小区确定模块, 用于确定与本小区进行 ICIC交互的邻小区;
优先级确定模块,用于根据 RNTP预设值和邻小区信息确定参与 ICIC的各 UE的 PRB 优先级;
调度和功控模块, 用于根据 PRB的优先级进行资源调度后, 对功率分配进行控制; 通知模块, 用于根据资源调度情况确定本小区实际 RNTP, 并告知邻小区。
本发明在实施过程中,首先根据 RNTP预设值和邻小区信息确定参与 ICIC的各 UE的 PRB优先级; 然后在本小区根据 PRB的优先级进行资源调度后对功率分配进行控制; 在 根据调度情况设置本小区实际 RNTP, 并且告知邻小区。 在该过程中, 每一个小区都会根 据邻小区的情况以及自身的资源情况来确定实际采用的资源, 并将自身实际使用的资源情 况提供给各邻小区, 供各部小区进行资源设置, 虽然没有来自 X2接口的信息, 但是也实 现了各个小区间的 ICIC过程, 因此也使得本发明实施例提供的技术方案能够在无法模拟 X2接口信息交互的静态规划仿真平台中, 模拟和实现下行半静态 ICIC技术。
本发明实施例提供的技术方案可以在静态环境(或各种无接口信息的条件) 中模拟 ICIC, 模拟实际网络情况构建模型, 通过对不同场景下的参数调整, 寻求 ICIC 实现的最 佳方案, 为 ICIC在实际实现中的方案选取和 ICIC相关参数设定提供可参照的依据; 同时 确定在实际网络中考虑半静态 ICIC以后的各项网络规划参数, 如下行发射功率等等。 附图说明
图 1为本发明实施例中 ICIC的模拟方法实施流程示意图;
图 2为本发明实施例中所有小区的 ICIC实施流程示意图;
图 3为本发明实施例中 ICIC的模拟设备结构示意图。 具体实施方式
3GPP LTE 系统下行信道采用了正交频分复用 (OFDM )技术作为其传输技术。 LTE 采用 OFDM技术为小区规划频率资源时,利用子载波正交性,规避小区内各用户间的干扰。 因此, 小区间千扰将成为 LTE系统内用户间的主要千扰源。 为了保证良好的通信质量, 特 别是小区边缘用户的传输性能, LTE系统引入了一项关键技术: 小区间干扰协调 (ICIC ) 技术。
ICIC在 LTE规划中的实现效果将直接影响网络规划性能。 但是, 目前所知的网络规 划中暂未涉及 ICIC 的实现问题。 随着网络规划需求的提高, 这将是网络规划优化工作中 亟待填补的一环。 鉴于此, 本文提出了一种在 LTE系统中模拟实现下行半静态 ICIC技术 的方案。
现有的 icic技术主要侧重于动态仿真平台的研究或现网产品的实现。 其平台或网络 环境是动态的,并且能够实现 Sl、 X2接口的信息交互,符合半静态 ICIC方案的实现需求。 然而, 网络规划优化本身就是对网络环境的抽象和模拟, 作为一种静态仿真方案, 并不能 模拟 X2接口的信息交互。 因此, 现有的技术并不能直接应用到网络规划中。 为了尽可能 地贴合协议, 达到所要求的协调效果, 本发明实施例提供的技术方案将考虑采用半静态 ICIC的思想, 在静态平台上近似模拟下行半静态 ICIC的实现。 下面结合附图对本发明的 具体实施方式进行说明。
实施中, 为便于理解, 对于网络规划将以网络规划软件 LTE eNPS为例进行说明, 尽 管相关发明和本发明的讨论都关于 LTE eNPS, 但本发明实施例提供的技术方案中创造性 的、 以半静态 ICIC的思想, 在静态平台上近似模拟下行半静态 ICIC的实现技术, 也适用 于提供类似功能的其他类型的网络规划软件, 因此对 LTE eNPS的引用仅作为示例而不起 限制的作用。
图 1为 ICIC的模拟方法实施流程示意图, 如图所示, 在模拟 ICIC时可以包括如下步 骤:
步骤 101、 确定属于中心用户类的 UE与属于边缘用户类的 UE;
步骤 102、 确定与本小区进行 ICIC交互的邻小区;
步骤 103、根据相对窄带发射功率指示( Relative Narrowband Tx power indicator, RNTP ) 预设值和邻小区信息,确定参与 ICIC的各 UE的物理资源块( physical resource block, PRB ) 优先级;
步骤 104、 根据 PRB优先级进行资源调度后 , 对功率分配进行控制;
步骤 105、 根据资源调度情况确定本小区实际 RNTP, 并将该本小区实际 RNTP告知 邻小区。
下面对本方案实现时涉及的几个环节进行说明。
1、 用户位置的确定。
实施中, 在确定属于中心用户类的 UE与属于边缘用户类的 UE时, 可以根据邻小区 质量与本小区质量的差值, 确定属于中心用户类的 UE与属于边缘用户类的 UE。
具体的, 所谓用户位置, 这里指用户归属于中心用户类还是边缘用户类。 用户位置的 判定, 并非由用户与所属小区基站空间距离的远近唯一决定。 由于 LTE e PS中, UE—旦 被撒下, UE位置将不会变化。 所以, 可以借用 A3事件的思想, 判定 UE是中心用户还是 边缘用户。
A3事件描述如下: ^^Mn+ 0fnJr C>cn-HyS >MS+OfS+Ocs+Off, 即 ^ 的任一邻小区质量比本小区质量大于一个门限值时, 该 UE为本小区的边缘用户, 否则为 中心用户。
2、 与本小区进行 ICIC交互的邻小区的确定。
实施中, 在确定与本小区进行 ICIC交互的邻小区时, 可以包括:
根据基站间距、 天线方向角、 导频信号覆盖交叠情况因素, 确定基本邻小区列表; 以属于边缘用户类的 UE 接收的本小区小区专用参考信号 (Cell-specific reference signals, CRS ) 为测量量, 计算属于边缘用户类的 UE 和各个邻小区之间的信干噪比 (即
Geometry );
确定该 UE最强的 Geometry对应的邻小区 , 将该邻小区对应的变量值加 1 ;
遍历本小区属于边缘用户类的 UE,对本小区所有属于边缘用户类的 UE计算其与各个 邻小区之间的 Geometry, 将该 UE最强的 Geometry对应的邻小区的变量值加 1;
对本小区的各邻小区的变量值从高到低排序,选择变量值最大的 M个邻小区作为与本 小区进行 ICIC交互的邻小区, 或者, 设定某一门限值, 将变量值大于该门限值的前 M个 邻小区作为与本小区进行 ICIC交互的邻小区。
具体的, 在现网或 LTE eNPS规划软件中, 小区间的位置关系并不满足理论上的拓朴 结构。 因而, 究竟选择哪些邻小区作为与本小区实现 ICIC 交互的邻小区, 是规划时必须 考虑的一个问题。 可依 CRS确定下行的交互邻小区。 具体步驟则可以如下:
利用基站间距、 天线方向角、 导频信号覆盖交叠情况等因素, 确定基本邻小区列表; 以边缘 UE接收的本小区 CRS为测量量, 计算边缘 UE和各个邻小区之间的信干噪比 (即 Geometry ); 确定该 UE最强的 Geometry对应的邻小区, 将该邻 d、区对应的变量值加 1; 遍历本小区边缘 UE, 对本小区所有边缘 UE计算其与各个邻小区之间的 Geometry, 将该 UE最强的 Geometry对应的邻小区的变量值加 1 ; 对本小区各邻小区的变量值从高到低排 序, 选择变量值最大的 M个邻小区 (典型取值为: M=6 )作为与本小区进行 ICIC交互的 邻小区, 同时确定交互邻小区列表。 或者设定某一门限值, 当大于该门限值的变量值大于 M个, 则取前 M个为与本小区进行 ICIC交互的邻小区, 否则有几个邻小区就取几个邻小 区作为交互邻小区。
3、 根据 RNTP预设值和邻小区信息确定参与 ICIC的各 UE的 PRB优先级。
实施中, 对于本次 ICIC中的小区资源规划与 PRB优先级设置可以是:
根据一段时间或几次调度周期内本小区每个边缘用户类的 UE的频谱效率和数据速率 要求, 预测边缘用户类的 UE使用的 PRB个数;
根据预测的 PRB个数、 邻小区 RNTP标志和 RNTP设置优先级, 确定边缘用户类的
UE的优先使用频率资源集合以及各个 PRB上的 RNTP预设值;
根据邻小区干扰功率、 邻小区 RNTP、 本小区 RNTP、 进行 ICIC交互的邻小区个数、 本小区和邻小区的 PRB个数和索引号, 针对干扰等级为 0和 1的 PRB , 为中心用户类的
UE和边缘用户类的 UE分别设置 PRB的优先级。
具体的,对于边缘用户和中心用户均可使用所有 PRB资源, 将中心用户或边缘用户资 源可用指示 (均可用)输入调度模块。 设边缘用户规划的优先使用频率资源集合为 edge-dl。
R
根据预测的 PRB个数、 RNTP标志和 RNTP设置优先级来确定 edge-d!集合, 然后将 和 PRB优先级, 输入给调度和功控模块。 其中, RNTP即相对窄带发射功率指示, 用来指示本小区 PRB上的下行发送功率等级, 通知邻小区哪些 PRB以高功率发送, 邻小 区在调度边缘 UE时尽量避开这些 PRB; RNTP设置优先级与邻小区千扰等级、 邻小区千 扰功率等有关。
具体实施中, 可以是:
1 ) 确定小区 RNTP门限, 可根据小区类型、 小区规模、 预测的 PRB个数、 一段时间 内的发射功率、 用户所处环境等因素设置。
2 ) 确定 PRB的 RNTP设置优先级。
根据被告知的多个邻 '〗、区在每个 PRB上的 RNTP, 判断被告知的多个邻小区的 RNTP 中, 是否存在 RNTP在该 PRB上指示为 1 , 如果存在, 该 PRB的干扰等级为 1 , 否则为 0; 计算千扰等级为 1的 PRB的邻小区干扰功率, 并排序。 干扰功率越大, RNTP的设置优先 级越小; 千扰等级为 0的 PRB的 RNTP设置优先级比干扰等级为 1的 PRB的 RNTP设置 优先级高。
3 ) RNTP设置。
可采用两种方式: 根据与 RNTP门限值的比较, 为本小区设置 RNTP的值, 告知与之 进行 ICIC交互的邻小区; 或根据干扰等级设置 RNTP, 并将 RNTP设置结果告知邻小区。 根据千扰等级设置 RNTP的具体做法为: 若千扰等级为 0的 PRB个数大于 N,按设定的资 源分配顺序依次将 N个 PRB的 RNTP标志为 1 , 其他位置标志为 0 , 否则, 按 RNTP设置 优先级从高到低依次将 N个 PRB的 RNTP标志为 1, 其他位置标志为 0。
4 )计算每个 PRB的优先级, 并输入调度模块。
经过上述方式便可以根据邻小区千扰功率、 邻小区 RNTP、 本小区 RNTP、 进行 ICIC 交互的邻小区个数、本小区和邻小区的 PRB个数和索引号, 以及各种因素在不同小区环境 等因素下的作用优先级, 针对干扰等级为 0和 1的 PRB, 为中心用户和边缘用户分别设置 资源使用优先级, 并将设置结果输入给调度模块。 实施中, 原则上, 干扰等级为 0的 PRB 先分配给边缘用户使用, 还有剩余时, 再分配给中心用户使用。
4、 功率调整。
实施中,在根据 PRB的优先级进行资源调度后对功率分配进行控制时,可以对中心用 户和边缘用户设置不同的 值,典型的, 为边缘用户设置的 值大于或等于为中心用户 设置的 值。 A为由高层信令配置的 UE专属参数, 与每个 OFDM符号上的物理下行链 路共享信道 ( Physical Downlink Shared Channel, PDSCH )的每资源单元的能量( Energy Per Resource Element, EPRE )和小区专属参考信号 ( reference signals, RS )的 EPRE有关。
5、 半静态 ICIC调整周期。
可在资源每更新调度 num次后, 进行一次半静态 ICIC的调整(即调度 num次, 做一 次 ICIC )。每次 ICIC调整结束的标志是, 本小区和其所有邻小区都进行过一次资源的调整 更新。
实施中, 可以根据前一段时间或者几次调度后系统平均资源利用率获得系统负荷信 息, 通过比较系统负荷和 ICIC系统负荷门限的大小来判定是否进行 ICIC的模拟。
实施中,是否发起 ICIC调整可以是在本小区被告知的 RNTP、预测的 PRB个数、 RNTP 门限之一或者其组合发生变化时进行 ICIC的模拟。
实施中, 在进行 ICIC 的模拟时, 可以以本小区为始, 按本小区的模拟方式依次调整 各邻小区, 直至所有邻小区都在本次 ICIC周期内完成过一次调整。
下面以在 LTE e PS规划软件中的实施为例来进行说明。
图 2为所有小区的 ICIC实施流程示意图, 如图所示, 可以包括如下步骤: 步骤 201、 进入 "下行半静态 ICIC" 实现界面;
步骤 202、 比较系统负荷和 ICIC系统负荷门限的大小来判定是否采用半静态 ICIC方 式;
本步骤中, 可以根据前一段时间或者几次调度后系统平均资源利用率获得系统负荷信 息。 通过比较系统负荷和 ICIC系统负荷门限的大小, 判定半静态 ICIC是否采用;
步骤 203、 确定用户位置信息, 并输入调度和功控模块;
步骤 204、 确定与本小区进行 ICIC交互的邻小区列表和邻小区优先级;
步骤 205、 PRB个数预测;
本步骤中, 可以预测小区边缘用户需要的 PRB个数;
步驟 206、 规划资源, 确定资源可用, 输入调度和功控模块;
本步骤中, 可以进行资源可用设置, 输入给调度和功控模块;
步骤 207、 预置本小区 RNTP门限值;
步骤 208、 为本小区的 PRB确定 R TP设置优先级;
步骤 209、 为本小区进行 PRB的 RNTP设置, 获得边缘用户规划的优先使用频率资源 集合为 edSe- dl , 告知邻小区;
步骤 210、 设置 PRB使用优先级, 输入调度和功控模块;
步骤 211、 将调度情况输入调度和功控模块, 对功率分配进行控制;
在步驟 206至 211中, 可以设置 RNTP, 告知邻小区。 计算 ICIC PRB优先级, 并输入 调度。 当平台优化为可实现联合调度时, RNTP设置方式转化为预设置方式。 此时的做法 变为, 根据 RNTP预设值和邻小区信息, 计算 ICIC PRB优先级, 告知调度, 再根据调度 情况设置本小区实际 RNTP, 并告知邻小区;
步骤 212、 判断是否完成本小区的邻小区的 ICIC调整, 是则转入步骤 213 , 否则转入 步骤 205;
步骤 213、判断是否完成所有小区的 ICIC调整,是则转入步骤 215 ,否则转入步骤 214; 步骤 214、 将本小区的邻小区再当做本小区, 准备开始进行邻小区的邻小区的 ICIC调 整, 转入步骤 205;
步骤 215、 结束调用下行半静态 ICIC。
在步驟 212至 214中, 主要是判定是否所有小区均完成本次 ICIC调整。 在本次 ICIC 调整流程中, 有无对该小区做过调整, 有则跳过, 无则调整。 调整思路如下: 根据邻小区 列表中的优先级顺序, 即本小区对邻小区的干扰从高到低的顺序, 依次进行邻小区的 ICIC 调整。接着,设部小区为目标小区,调整各邻小区的邻小区 ... ...直至所有小区都在本次 ICIC 周期内完成过一次调整。 即在进行 ICIC 的模拟时, 以本小区为始, 按本小区的模拟方式 依次调整各邻小区, 直至所有邻小区都在本次 ICIC周期内完成过一次调整。
基于同一发明构思, 本发明实施例中还提供了一种 ICIC 的模拟设备, 由于该设备解 决问题的原理与小区间干扰协调的模拟方法相似, 因此该设备的实施可以参见方法的实 施, 重复之处不再赘述。
图 3为 ICIC的模拟设备结构示意图, 如图所示, 设备中可以包括:
用户确定模块 301 , 用于确定属于中心用户类的 UE与属于边缘用户类的 UE;
邻小区确定模块 302, 用于确定与本小区进行 ICIC交互的邻小区;
优先级确定模块 303 , 用于根据 RNTP预设值和邻小区信息确定参与 ICIC的各 UE的
PRB优先级;
调度和功控模块 304, 用于根据 PRB的优先级进行资源调度后对功率分配进行控制; 通知模块 305 , 用于根据调度情况设置本小区实际 RNTP , 并告知邻小区。
实施中, 优先级确定模块可以包括:
PRB 个数确定单元, 用于根据一段时间或多次调度周期内本小区每个边缘用户类的 UE的频谱效率和数据速率要求, 预测边缘用户类的 UE使用的 PRB个数;
边缘用户资源确定单元, 用于根据预测的 PRB个数、 邻小区 RNTP标志和 RNTP设 置优先级,确定边缘用户类的 UE的优先使用频率资源集合以及各个 PRB上的 RNTP预设 值;
优先级确定单元,用于根据邻小区千扰功率、邻小区 RNTP、本小区 RNTP、进行 ICIC 交互的邻小区个数、本小区和部小区的 PRB个数和索引号,针对干扰等级为 0和 1的 PRB, 为中心用户类的 UE和边缘用户类的 UE分别设置 PRB的优先级。
实施中, 用户确定模块还可以进一步用于根据邻小区质量与本小区质量的差值, 确定 属于中心用户类的 UE与属于边缘用户类的 UE。
实施中, 邻小区确定模块可以包括:
基本邻小区确定单元,用于根据基站间距、天线方向角、导频信号覆盖交叠情况因素, 确定基本邻小区列表;
Geometry确定单元,用于以属于边缘用户类的 UE接收的本小区 CRS为测量量,计算 属于边缘用户类的 UE和各个邻小区之间的信干噪比 Geometry;
Geometry处理单元 , 用于确定该 UE最强的 Geometry对应的邻小区, 将该邻小区对 应的变量值加 1 ; 遍历本小区属于边缘用户类的 UE, 对本小区所有属于边缘用户类的 UE 计算其与各个邻小区之间的 Geometry, 将该 UE最强的 Geometry对应的邻小区的变量值 加 1 ;
邻小区确定单元, 用于对本小区各邻小区的变量值从高到低排序, 选择变量值最大的 M个邻小区作为与本小区进行 ICIC交互的邻小区; 或者, 将变量值大于预设门限值的前 M个邻小区作为与本小区进行 ICIC交互的邻小区。
实施中, 设备中还可以进一步包括:
ICIC启动模块 306 , 用于根据前一段时间或者几次调度后系统平均资源利用率获得系 统负荷信息,通过比较系统负荷和 ICIC系统负荷门限的大小来判定是否进行 ICIC的模拟。
实施中, 设备中还可以进一步包括:
ICIC调整模块 307, 用于在本小区被告知的 RNTP、 预测的 PRB个数、 RNTP门限之 一或者其组合发生变化时进行 ICIC的调整。
实施中, 设备中还可以进一步包括:
ICIC调整控制模块 308 , 用于在进行 ICIC的模拟时, 以本小区为始, 按本小区的模 拟方式依次调整各邻小区, 直至所有邻小区都在本次 ICIC周期内完成过一次调整。
图 3中为了表现出 ICIC调整控制模块与对每一个小区进行 ICIC处理的模块集合之间 的关系, 以小区为单位用虚线框将对每一个小区进行 ICIC处理的模块集合标识出来, 并 以第一小区 第 N小区标识。
为了描述的方便, 以上所述装置的各部分, 以功能分为各种模块或单元分别描述。 当 然, 在实施本发明时可以把各模块或单元的功能在同一个或多个软件或硬件中实现。
由上述实施例可见, 本发明实施例中提出了一种在规划软件中模拟实现下行半静态 ICIC技术的方案。
具体的, 提供了用户位置确定方式: 借用 A3事件的思想, 即利用邻小区质量与本小 区质量的差值, 划分中心用户和边缘用户。
具体的,提供了与本小区进行 ICIC交互的邻小区确定方式: 计算各边缘 UE与所有邻 小区列表中的邻小区之间的 Geometry, 根据对 Geometry的排序结果获得。
具体的,提供了在无 X2接口交互信息的静态平台中,模拟实现下行半静态 ICIC方案, 当平台优化为可实现联合调度时,将 R TP设置方式转化为预设置方式。并且将做法变为: 根据 RNTP预设值和邻小区信息, 计算 ICIC PRB优先级, 告知调度, 再根据调度情况设 置本小区实际 RNTP, 并告知邻小区;
具体的, 提供了发送 RNTP的模拟的方式: 有设置即告知;
具体的,提供了是否发起 ICIC调整的方式:被告知的 RNTP、预测的 PRB个数、 RNTP 门限, 任一变化即调整;
具体的, 提供了小区错开调整的方式: 邻小区之间的 ICIC调整时刻错开。 先调整本 小区, 再调整本小区的邻小区, 再以邻小区为目标小区, 根据邻小区列表优先级, 依次调 整邻小区的邻小区 ......直至所有邻小区都在本次 ICIC周期内完成过一次调整。
本发明实施例提供的技术方案提供了一种在无法模拟 X2接口信息交互的静态规划仿 真平台中, 模拟和实现下行半静态 ICIC技术的方案。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可采用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介质(包括但不限于磁盘存储器、 CD-ROM, 光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、 设备(系统)、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机
程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步驟。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。
Claims
1、 一种小区间干扰协调 ICIC的模拟方法, 其特征在于, 包括如下步骤:
确定属于中心用户类的用户设备 UE与属于边缘用户类的 UE;
确定与本小区进行 ICIC交互的邻小区;
根据相对窄带发射功率指示 RNTP预设值和邻小区信息,确定参与 ICIC的各 UE的物 理资源块 PRB优先级;
根据 PRB优先级进行资源调度后, 对功率分配进行控制;
根据资源调度情况确定本小区实际 RNTP, 并将该本小区实际 RNTP告知邻小区。
2、 如权利要求 1所述的方法, 其特征在于, 根据 RNTP预设值和邻小区信息确定参 与 ICIC的各 UE的 PRB优先级, 包括:
根据一段时间或多个调度周期内本小区每个边缘用户类的 UE的频傳效率和数据速率 要求, 预测边缘用户类的 UE使用的 PRB个数;
根据预测的边缘用户类的 UE使用的 PRB个数、邻小区 RNTP标志和 RNTP设置优先 级, 确定边缘用户类的 UE的优先使用频率资源集合以及各个 PRB上的 RNTP预设值; 根据邻小区干扰功率、 邻小区 RNTP、 本小区 RNTP、 进行 ICIC交互的邻小区个数、 本小区和邻小区的 PRE个数和索引号, 针对干扰等级为 0和 1的 PRB , 为中心用户类的 UE和边缘用户类的 UE分别设置 PRB的优先级。
3、如权利要求 1所述的方法, 其特征在于, 在确定属于中心用户类的 UE与属于边缘 用户类的 UE时, 根据邻小区质量与本小区质量的差值确定属于中心用户类的 UE与属于 边缘用户类的 UE。
4、 如权利要求 1所述的方法, 其特征在于, 在确定与本小区进行 ICIC交互的邻小区 时, 包括:
根据基站间距、 天线方向角、 导频信号覆盖交叠情况因素, 确定基本邻小区列表; 以属于边缘用户类的 UE接收的本小区小区专用参考信号 CRS为测量量,计算属于边 缘用户类的 UE和各个邻小区之间的信千噪比 Geometry;
确定该 UE最强的 Geometry对应的邻小区, 将该邻小区对应的变量值加 1 ;
遍历本小区属于边缘用户类的 UE,对本小区所有属于边缘用户类的 UE计算其与各个 邻小区之间的 Geometry, 将该 UE最强的 Geometry对应的邻小区的变量值加 1;
对本小区的各邻小区的变量值从高到低排序,选择变量值最大的 M个邻小区作为与本 小区进行 ICIC交互的邻小区, 或者, 将变量值大于预设门限值的 M个邻小区作为与本小 区进行 ICIC交互的邻小区。
5、 如权利要求 1至 4任一权利要求所述的方法, 其特征在于, 根据一段时间或者多 次调度后系统平均资源利用率获得系统负荷信息, 通过比较系统负荷和 ICIC 系统负荷门 限的大小来判定是否进行 ICIC的模拟。
6、 如权利要求 1至 5任一权利要求所述的方法, 其特征在于, 是否发起 ICIC调整是 在本小区被告知的 RNTP、 预测的 PRB个数、 RNTP门限之一或者其组合发生变化时进行 ICIC的调整。
7、如权利要求 1至 6任一权利要求所述的方法,其特征在于,在进行 ICIC的模拟时, 以本小区为始, 按本小区的模拟方式依次调整各邻小区, 直至所有邻小区都在本次 ICIC 周期内完成过一次调整。
8、 一种 ICIC的模拟设备, 其特征在于, 包括:
用户确定模块, 用于确定属于中心用户类的 UE与属于边缘用户类的 UE;
邻小区确定模块, 用于确定与本小区进行 ICIC交互的邻小区;
优先级确定模块, 用于根据 RNTP预设值和邻小区信息, 确定参与 ICIC的各 UE的 PRB优先级;
调度和功控模块, 用于根据 PRB的优先级进行资源调度后, 对功率分配进行控制; 通知模块, 用于根据资源调度情况确定本小区实际 RNTP, 并将该本小区实际 RNTP 告知邻小区。
9、 如权利要求 8所述的设备, 其特征在于, 优先级确定模块包括:
PRB 个数确定单元, 用于根据一段时间或多个调度周期内本小区每个边缘用户类的 UE的频谱效率和数据速率要求, 预测边缘用户类的 UE使用的 PRB个数;
边缘用户资源确定单元, 用于根据预测的 PRB个数、 邻小区 RNTP标志和 RNTP设 置优先级,确定边缘用户类的 UE的优先使用频率资源集合以及各个 PRB上的 RNTP预设 值;
优先级确定单元,用于根据邻小区干扰功率、邻小区 RNTP、本小区 RNTP、进行 ICIC 交互的邻小区个数、本小区和邻小区的 PRB个数和索引号,针对干扰等级为 0和 1的 PRB, 为中心用户类的 UE和边缘用户类的 UE分别设置 PRB的优先级。
10、 如权利要求 8所述的设备, 其特征在于, 用户确定模块进一步用于根据邻小区质 量与本小区质量的差值, 确定属于中心用户类的 UE与属于边缘用户类的 UE。
11、 如权利要求 8所述的设备, 其特征在于, 邻小区确定模块包括:
基本部小区确定单元,用于根据基站间距、天线方向角、导频信号覆盖交叠情况因素, 确定基本邻小区列表;
Geometry确定单元,用于以属于边缘用户类的 UE接收的本小区 CRS为测量量,计算 属于边缘用户类的 UE和各个邻小区之间的信干噪比 Geometry;
Geometry处理单元, 用于确定该 UE最强的 Geometry对应的邻小区, 将该邻小区对 应的变量值加 1 ; 遍历本小区属于边缘用户类的 UE, 对本小区所有属于边缘用户类的 UE 计算其与各个邻小区之间的 Geometry, 将该 UE最强的 Geometry对应的邻小区的变量值 加 1 ;
邻小区确定单元, 用于对本小区各邻小区的变量值从高到低排序, 选择变量值最大的 M个邻小区作为与本小区进行 ICIC交互的邻小区, 或者, 将变量值大于预设门限值的前 M个邻小区作为与本小区进行 ICIC交互的邻小区。
12、 如权利要求 8至 11任一权利要求所述的设备, 其特征在于, 进一步包括: ICIC启动模块,用于根据一段时间或者多次调度后系统平均资源利用率获得系统负荷 信息, 通过比较系统负荷和 ICIC系统负荷门限的大小来判定是否进行 ICIC的模拟。
13、 如权利要求 8至 12任一权利要求所述的设备, 其特征在于, 进一步包括:
ICIC调整模块, 用于在本小区被告知的 RNTP、 预测的 PRB个数、 RNTP门限之一或 者其组合发生变化时进行 ICIC的调整。
14、 如权利要求 8至 13任一权利要求所述的设备, 其特征在于, 进一步包括: ICIC调整控制模块, 用于在进行 ICIC的模拟时, 以本小区为始, 按本小区的模拟方 式依次调整各邻小区, 直至所有邻小区都在本次 ICIC周期内完成过一次调整。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010288652.1A CN102413499B (zh) | 2010-09-20 | 2010-09-20 | 一种小区间干扰协调的模拟方法及设备 |
CN201010288652.1 | 2010-09-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012037871A1 true WO2012037871A1 (zh) | 2012-03-29 |
Family
ID=45873437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/079832 WO2012037871A1 (zh) | 2010-09-20 | 2011-09-19 | 一种小区间干扰协调的模拟方法及设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102413499B (zh) |
WO (1) | WO2012037871A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220240257A1 (en) * | 2021-01-26 | 2022-07-28 | Verizon Patent And Licensing Inc. | Interference avoidance based on multiple outer loop link adaptation (olla) processes |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103797878B (zh) | 2012-07-30 | 2017-09-26 | 华为技术有限公司 | 一种lte系统中的干扰协调方法 |
CN102905301B (zh) * | 2012-10-19 | 2015-05-20 | 中兴通讯股份有限公司 | Lte规划仿真中邻区模拟加载方法和装置 |
CN105210429B (zh) * | 2013-05-10 | 2019-08-06 | 上海诺基亚贝尔股份有限公司 | 用于小区间干扰协调的信令通知方法和装置 |
CN103813347B (zh) | 2014-02-28 | 2018-01-26 | 电信科学技术研究院 | 一种基站频率资源配置方法及网络设备 |
CN103906125B (zh) * | 2014-03-28 | 2017-11-24 | 京信通信系统(中国)有限公司 | 一种相对窄带发射功率测量方法及装置 |
CN105530692A (zh) * | 2014-10-27 | 2016-04-27 | 中兴通讯股份有限公司 | 一种下行发送功率控制的方法和装置 |
CN105916205B (zh) * | 2016-06-22 | 2019-04-30 | 中国联合网络通信集团有限公司 | 一种分配资源的方法及装置 |
WO2019061527A1 (zh) * | 2017-09-30 | 2019-04-04 | 华为技术有限公司 | 一种干扰处理方法、网络设备及通信设备 |
CN114258072B (zh) * | 2020-09-25 | 2023-09-19 | 中国移动通信集团山东有限公司 | 干扰场景功率自适应收缩开启方法及系统 |
CN115996099B (zh) * | 2021-10-19 | 2024-08-27 | 中国移动通信集团重庆有限公司 | 一种干扰程度的确定方法、装置、设备及存储介质 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101651879A (zh) * | 2008-08-13 | 2010-02-17 | 华为技术有限公司 | 小区间干扰协调的方法、装置和系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101141777B (zh) * | 2007-06-26 | 2010-09-08 | 中兴通讯股份有限公司 | 一种自动邻区规划的方法 |
CN101500237B (zh) * | 2008-02-02 | 2013-05-01 | 夏普株式会社 | 动态干扰协调方法及基站 |
CN101668304B (zh) * | 2008-09-04 | 2012-08-15 | 电信科学技术研究院 | 一种高干扰指示参数的测量、指示方法及装置 |
CN101674680A (zh) * | 2008-09-10 | 2010-03-17 | 华为技术有限公司 | 频带划分的方法、装置和基站 |
CN101772176B (zh) * | 2008-12-30 | 2012-05-02 | 电信科学技术研究院 | 干扰协调方法及接入网设备 |
CN101827383B (zh) * | 2009-03-06 | 2013-06-05 | 电信科学技术研究院 | 一种预测时频资源的方法和基站 |
-
2010
- 2010-09-20 CN CN201010288652.1A patent/CN102413499B/zh active Active
-
2011
- 2011-09-19 WO PCT/CN2011/079832 patent/WO2012037871A1/zh active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101651879A (zh) * | 2008-08-13 | 2010-02-17 | 华为技术有限公司 | 小区间干扰协调的方法、装置和系统 |
Non-Patent Citations (4)
Title |
---|
CATT: "Considerations on Spatial Domain Coordination in LTE-A", RL-094144, 3GPP TSG RAN WG1 MEETING #58BIS, 16 October 2009 (2009-10-16) * |
HUAWEI: "The synchronization impacts analysis on ICIC and MBSFN", R4-101730, 3GPP TSG-RAN WG4 MEETING #55, 14 May 2010 (2010-05-14) * |
INTEL CORPORATION (UK) LTD: "Non-CA based PDCCH Interference Mitigation in LTE-A", R1-102814, 3GPP TSG RAN WG1 MEETING #61, 14 May 2010 (2010-05-14) * |
KYOCERA: "Network Assisted Interference Coordination between Macro eNodeB and Home eNodeB in Downlink", R4-093620, TSG-RAN WORKING GROUP 4(RADIO) MEETING #52BIS, 16 October 2009 (2009-10-16) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220240257A1 (en) * | 2021-01-26 | 2022-07-28 | Verizon Patent And Licensing Inc. | Interference avoidance based on multiple outer loop link adaptation (olla) processes |
US11812456B2 (en) * | 2021-01-26 | 2023-11-07 | Verizon Patent And Licensing Inc. | Interference avoidance based on multiple outer loop link adaptation (OLLA) processes |
Also Published As
Publication number | Publication date |
---|---|
CN102413499A (zh) | 2012-04-11 |
CN102413499B (zh) | 2014-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012037871A1 (zh) | 一种小区间干扰协调的模拟方法及设备 | |
WO2012037868A1 (zh) | 一种小区间干扰协调的模拟方法及设备 | |
JP6336596B2 (ja) | 集中仮想スケジューラ、リアルスケジューラ、スケジューリングシステム、方法、及びプログラム | |
US20190123882A1 (en) | Fractional frequency reuse schemes assigned to radio nodes in an lte network | |
EP2761797B1 (en) | Methods and apparatus for interference management | |
CN102017682B (zh) | 一种下行小区间干扰协调方法和基站 | |
WO2013127324A1 (zh) | 一种基站及进行tdd基站上下行子帧配置的方法 | |
JP5512476B2 (ja) | セル間干渉協調方法及び基地局 | |
WO2016074446A1 (zh) | 一种频谱资源自优化的节能方法、装置和系统 | |
EP2826277A1 (en) | Hierarchical network and interference management | |
JP2012129793A (ja) | 基地局、及び保護サブフレーム使用状況通知方法 | |
WO2011066787A1 (zh) | 一种分层网络中避免信号干扰的方法及基站 | |
Pratap et al. | Maximizing fairness for resource allocation in heterogeneous 5G networks | |
CN103313251A (zh) | 一种基于势博弈理论的多小区协作资源分配方法 | |
CN102223645B (zh) | 一种蜂窝移动通信系统的干扰协调自优化方法 | |
CN102905302A (zh) | 一种混合网中上行干扰控制方法 | |
Özcan et al. | Uplink scheduling in multi-cell OFDMA networks: A comprehensive study | |
US10075255B2 (en) | Physical downlink control channel (PDCCH) inter-cell-interference coordination | |
Lai et al. | Online user and power allocation in dynamic NOMA-Based mobile edge computing | |
Gao et al. | A mobility load balancing algorithm based on handover optimization in LTE network | |
WO2016107549A1 (zh) | 一种参考信号的配置方法及装置、基站和用户设备 | |
WO2014024025A1 (en) | Method and apparatus for managing comp related measurement sets | |
Gu et al. | A novel traffic capacity planning methodology for LTE radio network dimensioning | |
JP2014531835A (ja) | マルチポイント協調システムにおけるスケジューリング割当方法及び装置 | |
CN105282849B (zh) | 一种调度方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11826398 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11826398 Country of ref document: EP Kind code of ref document: A1 |