WO2012036383A2 - 중간엽 줄기세포의 심장성 세포로의 분화 유도를 위한 단백질 티로신 키나아제 저해제의 용도 - Google Patents

중간엽 줄기세포의 심장성 세포로의 분화 유도를 위한 단백질 티로신 키나아제 저해제의 용도 Download PDF

Info

Publication number
WO2012036383A2
WO2012036383A2 PCT/KR2011/006020 KR2011006020W WO2012036383A2 WO 2012036383 A2 WO2012036383 A2 WO 2012036383A2 KR 2011006020 W KR2011006020 W KR 2011006020W WO 2012036383 A2 WO2012036383 A2 WO 2012036383A2
Authority
WO
WIPO (PCT)
Prior art keywords
mesenchymal stem
stem cells
cells
cardiac
alkoxy
Prior art date
Application number
PCT/KR2011/006020
Other languages
English (en)
French (fr)
Other versions
WO2012036383A3 (ko
Inventor
황기철
장양수
Original Assignee
파미셀 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 파미셀 주식회사 filed Critical 파미셀 주식회사
Priority to US13/822,758 priority Critical patent/US20130164847A1/en
Priority to CN2011800446106A priority patent/CN103140579A/zh
Publication of WO2012036383A2 publication Critical patent/WO2012036383A2/ko
Publication of WO2012036383A3 publication Critical patent/WO2012036383A3/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases [EC 2.]
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells

Definitions

  • the present invention relates to the use of a PTK inhibitor for inducing differentiation of mesenchymal stem cells into cardiac cells, and to a pharmaceutical composition for treating heart disease comprising cardiac cells differentiated from mesenchymal stem cells by PTK inhibitors.
  • the present invention differentiates mesenchymal stem cells into mesenchymal cells, which can achieve electromechanical integration with cardiac muscle after transplantation from mesenchymal stem cells for use as cell therapy for myocardial infarction, heart failure, arrhythmia, etc. To provide a method of deriving.
  • mesenchymal stem cells for cardiac characterization before delivery of mesenchymal stem cells to the infarcted heart, which may result in improved contractile function and electrical safety.
  • PTK protein tyrosine kinase
  • the present invention provides a method for inducing differentiation of mesenchymal stem cells into cardiac cells, including the use of a PTK inhibitor for inducing differentiation of mesenchymal stem cells into cardiac cells, and treating the mesenchymal stem cells with a PTK inhibitor. And it provides a composition for inducing differentiation of mesenchymal stem cells into cardiac cells comprising a PTK inhibitor.
  • the type of PTK inhibitor used for inducing differentiation of mesenchymal stem cells into cardiac cells is not particularly limited.
  • the PTK inhibitor can be a compound of Formula 1.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently H, C 1-12 alkyl, C 1-12 alkoxy, hydroxy, carboxy or halogen atom,
  • R 7 is C 6-12 aryl unsubstituted or substituted with one or more substituents selected from the group consisting of C 1-12 alkyl, C 1-12 alkoxy, hydroxy, carboxy and halogen atoms.
  • a "substituted" group is where one or more hydrogen atoms have been replaced by one or more non-hydrogen atom groups, provided that the valence requirements are met and chemically stable compounds must be generated from the substitution.
  • all substituents are to be interpreted as being optionally substituted, unless expressly stated to be “unsubstituted.”
  • the substituents of R 1 to R 6 may each be substituted with one or more of the substituents defined above.
  • Alkyl generally refers to straight-chain and branched saturated hydrocarbon groups having the specified number of carbon atoms (eg, 1 to 12 carbon atoms).
  • alkyl groups include, without limitation, methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl, i-butyl, t-butyl, pent-1-yl, pent-2-yl, pent-3- 1, 3-methylbut-1-yl, 3-methylbut-2-yl, 2-methylbut-2-yl, 2,2,2-trimethyleth-1-yl, n-hexyl, n-heptyl and n-octyl and the like.
  • Alkoxy refers to alkyl-O-, wherein alkyl is defined above.
  • alkoxy groups include without limitation methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy, t-butoxy, n-pentoxy, s-pentoxy and the like. do.
  • Alkoxy may be attached to a parent group or substrate at any ring atom if the attachment does not violate valence requirements.
  • an alkoxy group may include one or more non-hydrogen substituents unless the attachment would violate valence requirements.
  • Carboxy refers to -C (O) OH, a divalent radical.
  • (O) means that oxygen is bonded to a atom such as carbon or sulfur through a double bond.
  • Aryl refers to monovalent and divalent aromatic groups, respectively, including 5- and 6-membered monocyclic aromatic groups containing 0-4 heteroatoms independently selected from nitrogen, oxygen, and sulfur. When aryl contains one or more heteroatoms, it is also referred to as "heteroaryl”.
  • Examples of monocyclic aryl groups include, but are not limited to, phenyl, pyrrolyl, furanyl, thiophenyl, thiazolyl, isothiazolyl, imidazolyl, triazolyl, tetrazolyl, pyrazolyl, oxazolyl, isoxazolyl, pyridinyl , Pyrazinyl, pyridazinyl, pyrimidinyl and the like.
  • Aryl groups also include bicyclic groups, tricyclic groups, etc., including fused 5- and 6-membered rings as defined above.
  • polycyclic aryl groups include without limitation naphthyl, bifenyl, anthracenyl, pyrenyl, carbazolyl, benzoxazolyl, benzodioxazolyl, benzothiazolyl, benzoimidazolyl, benzothiopheneyl, quinolinyl , Isoquinolinyl, indolyl, benzofuranyl, furinyl, indolizinyl and the like.
  • the aryl group can be attached to the parent group or substrate at any ring atom as long as the attachment does not violate valence requirements.
  • an aryl group may include one or more non-hydrogen substituents if the substitution does not violate valence requirements.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently H, C 1-4 alkyl or C 1-4 alkoxy,
  • R 7 may be phenyl unsubstituted or substituted with one or more substituents selected from the group consisting of C 1-4 alkyl, C 1-4 alkoxy, hydroxy, carboxy and halogen atoms.
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 are each independently H or C 1-4 alkoxy
  • R 7 may be C 1-4 alkyl, C 1-4 alkoxy, or phenyl unsubstituted or substituted with a halogen atom.
  • the PTK inhibitor can be N- (3-bromophenyl) -6,7-diethoxyquinazolin-4-amine.
  • mesenchymal stem cells used for inducing differentiation into cardiac cells in the present invention is also not particularly limited.
  • Mesodermal stem cells used in the present invention can be used regardless of where they are derived from.
  • Mesenchymal stem cells can be obtained from known mesenchymal stem cell sources, for example bone marrow, tissue, embryo, umbilical cord blood, blood or body fluids. Animals to be harvested, such as bone marrow and tissue may be mammals. When the animal is a human, bone marrow, tissue, or the like may be from the patient's own or another person to be administered as a cell therapy the mesoderm stem cells induced differentiation into cardiac cells by treatment of the composition of the present invention. Methods for obtaining mesenchymal stem cells from such known mesenchymal stem cell sources are well known in the art.
  • the method of treating the PTK inhibitor for mesenchymal stem cells is not particularly limited. PTK inhibitors and mesenchymal stem cells may be contacted for a certain period of time so that PTK in the mesenchymal stem cells can be inhibited. In one embodiment, the treatment of the PTK inhibitor can be carried out by culturing the mesenchymal stem cells in a medium containing the PTK inhibitor.
  • the concentration of PTK inhibitors treated on mesenchymal stem cells may vary depending on the type of PTK inhibitor, the duration of treatment on mesenchymal stem cells, or the degree of differentiation into cardiac cells. In one embodiment, the concentration of PTK inhibitor can be used in the range of 0.01-100 ⁇ M.
  • culturing in a medium containing PTK inhibitor may be performed for 5 to 15 days, but is not limited thereto.
  • the duration of treatment of PTK inhibitors on mesenchymal stem cells may vary depending on the type or concentration of PTK inhibitor being treated.
  • cardiac cells includes all cells in the process of differentiation from mesenchymal stem cells to cardiomyocytes or cardiomyocytes.
  • cardiac cells and “cardiomyocytes” are used interchangeably.
  • cardiac cells differentiated from mesenchymal stem cells by treatment with PTK inhibitors express the expression of cardiac specific markers.
  • Cardiac cells obtained according to the method of the present invention may be that the expression of cardiac specific markers is increased compared to mesenchymal stem cells.
  • the cardiac specific marker may be selected from the group consisting of, but not limited to, cardiac troponin T (cTnT), myosin light chain (MLC) and myosin heavy chain (MHC).
  • the cardiac cells may be that the expression of Cx43 (connexin 43) is increased compared to the mesenchymal stem cells.
  • the cardiac cells may be that the expression of Ca 2+ homeostasis-related protein is increased compared to the mesenchymal stem cells.
  • Ca 2+ homeostasis-related proteins may be, but are not limited to, SERCA 2a or LTCC.
  • the present invention also provides a composition for inducing differentiation of mesenchymal stem cells into cardiac cells comprising a PTK inhibitor.
  • the type of PTK inhibitor used in the present invention is not particularly limited.
  • the PTK inhibitor can be a compound of Formula 1.
  • Embodiments of the compound of formula 1 are as described above.
  • the composition may include a medium generally used in the culture of mesoderm stem cells. Although not limited thereto, such a medium may include, for example, Minimum Essential Medium alpha (MEM-alpha), Mesenchymal Stem Cell Growth Medium (MSCGM), Dulbecco's Modified Eagle's Medium (DMEM), and the like.
  • MEM-alpha Minimum Essential Medium alpha
  • MSCGM Mesenchymal Stem Cell Growth Medium
  • DMEM Dulbecco's Modified Eagle's Medium
  • the composition for inducing differentiation of mesenchymal stem cells into cardiac cells containing PTK inhibitor may be introduced into the body separately from mesenchymal stem cells. That is, a composition containing a PTK inhibitor may be separately administered before or after the mesenchymal stem cells or simultaneously with the mesenchymal stem cells.
  • the composition may comprise a known pharmaceutical carrier suitable for administration of a PTK inhibitor.
  • the present invention provides a pharmaceutical composition for treating heart disease comprising cardiac cells differentiated from mesenchymal stem cells by the above method.
  • the pharmaceutical composition for treating heart disease is not limited thereto, but may be usefully used for the treatment of heart diseases such as myocardial infarction, heart failure, and arrhythmia.
  • the pharmaceutical composition may further include a known carrier used in the art for transplantation of stem cells.
  • the effective amount of the cardiac cells may be 1 ⁇ 10 4 to 1 ⁇ 10 8 cells / kg. However, their dose may be increased or decreased depending on the weight, age, sex, and extent of the lesion of the patient.
  • the preparations according to the invention can be applied to the human body by parenteral or topical administration.
  • the active ingredient is suspended or dissolved in a pharmaceutically acceptable carrier according to the method described above, wherein a water-soluble carrier is preferably used.
  • Transplantation of mesenchymal stem cells into the heart can provide immunological and functional improvement of the infarcted heart but cannot provide electrical stability, whereas mesenchymal stem cells treated with PTK inhibitors induce differentiation into cardiac cells Improved electromechanical integration with heart tissue provides electrical stability, which can effectively treat heart diseases such as myocardial infarction, heart failure, and arrhythmia.
  • FIG 6 shows the actual image and activity map of the infarcted heart.
  • FIG. 8 is a graph showing action potential durations (APDs) recorded from zones in which mesenchymal stem cells were transplanted.
  • FIG. 9 shows ectopic rhythms in the sham-infused myocardium.
  • CV 10 is a graph showing local conduction velocity (CV) in sham-infused heart and MSCs implanted heart.
  • 11 shows the results of an electrical vulnerability test according to a burst pacing protocol.
  • FIG. 12 shows a sequential voltage map during ventricular tachycardia (VT) at the MSCs-grafted site.
  • VT ventricular tachycardia
  • FIG. 13 shows the results of a sandwich ELISA showing that the degree of differentiation into cardiomyocytes increased with treatment concentration of Compound # 23.
  • DMEM-Low Glucose obtained from MSCs (approximately 100 g) of femoral and tibial bone marrow fluid (approximately 100 g) of 4 week old male Sprague-Dawley rats and supplemented with 10% FBS and 1% antibiotic-penicillin / streptomycin solution (Invitrogen) Cultured in the medium. The collected medium was centrifuged at 1,600 rpm for 5 minutes, resuspended in MSC medium, and then percol density gradient centrifugation was performed at 1,600 rpm for 30 minutes with Ficoll-Paque TM PLUS (GE Healthcare Life Sciences).
  • Bone marrow monocyte cells were recovered from the intermediate interface after centrifugation, washed twice with PBS, then resuspended in 10% FBS-DMEM and plated in 100 cm 2 flasks. Culture conditions were maintained at 37 ° C. in a humid atmosphere containing 5% CO 2 . After 72 hours, non-attached cells were dropped from the flasks and the adhered cells were washed thoroughly twice with PBS. Fresh MSC medium was added and medium changed every 3 days for about 10 days to obtain MSCs. The characteristics of MSCs were verified by immunophenotyping. Cells were labeled for various markers conjugated with fluorescent antibodies (CD14, CD34, CD71, CD90, CD105 and ICAM-1; Santacruz Biotechnology), analyzed by flow cytometry and immunofluorescence.
  • fluorescent antibodies CD14, CD34, CD71, CD90, CD105 and ICAM-1; Santacruz Biotechnology
  • MSCs were aliquoted at 60 x plates at 2 x 10 5 cells / ml using the same medium as above, and the protein tyrosine kinase (PTK) inhibitor N- (3-bromophenyl) -6,7-die Treatment of oxyquinazolin-4-amine (N-3-bromophenyl) -6,7-diethoxyquinazolin-4-amine (Sigma) with a final concentration of 1 ⁇ M or 10 ⁇ M and containing the compound every 3 days It was replaced with fresh medium and incubated for 9 days.
  • PTK protein tyrosine kinase
  • Cardiomyocytes were obtained from Sprague-Dawley neonatal rat heart. To reduce erythrocytes, isolated heart tissue was washed with Dulbecco's phosphate-buffered saline solution (pH 7.4 Gibco BRL, NY). Using micro-incision scissors, the heart is incised to approximately 0.5 mm 3 pieces and 4 ml of collagenase II (1.4 mg / ml, 270 units / mg, Gibco BRL, NY) for 5 minutes at 37 ° C. In a humid chamber. The supernatant was then removed and washed with 10% FBS DMEM. The cells were resuspended in the same amount of fresh medium containing 10% FBS.
  • the remaining tissues were treated with fresh collagenase II solution for an additional 5 minutes. The incubation process was repeated until the tissue was completely degraded. The resulting supernatant was centrifuged at 2000 rpm for 2 minutes at room temperature. The cell pellet was resuspended in 5 ml of cell culture medium, which was plated in a culture dish and incubated for at least 2 hours at 37 ° C. in a 5% CO 2 incubator. Attached cells are fibroblasts and non-attached cells are cardiomyocytes. Unattached cardiomyocytes were replated in 100 mm culture dishes (5 ⁇ 10 5 cells / ml) and incubated with ⁇ -MEM supplemented with 10% FBS.
  • the heart was exposed through 2-cm extra left thoracotomy.
  • the pericardium was cut and a 6-0 silk suture (Johnson & Johnson) was placed in the proximal portion of the left coronary artery under the left atrial appendage.
  • the tip of the ligation was passed through a short plastic tube to form a noose.
  • the noose was pressed onto the heart surface just above the coronary artery and the hemostat was applied to the noose. After 50 minutes of occlusion, the hemostat was removed and the noose was released for reperfusion, allowing the ligation to loosen on the heart surface.
  • TTC staining was used to assess myocardial tissue viability and to measure myocardial infarction size.
  • Tissue pieces were incubated for 20 minutes at 37 ° C. in a 1% 2,3,5-triphenyltetrazolium chloride (TTC) solution at pH 7.4.
  • Tissues were fixed overnight at 4 ° C. with 10% PBS-buffer formalin.
  • the heart was cut in the transverse axis and the size of myocardial infarction was assessed as a percentage of the cross-sectional area of the infarcted tissue of the left ventricle relative to the cross-sectional area of the entire left ventricle. Both sides of each TTC-stained tissue piece were photographed with a digital camera. Infarcted areas were measured using Image J 1.40g software.
  • the implants were sacrificed at several intervals and their hearts were cut out.
  • the heart was sparged-fixed for 10 hours (vol / vol) neutral buffered formaldehyde for 24 hours, cut transversely into four equally thick sections and embedded in paraffin in the usual manner. 5- ⁇ m thick sections were mounted on gelatin-coated glass slides so that different staining could be used on successive sections of tissue cuts through the implant area.
  • Immunological analysis was performed using the manufacturer's instructions (Vector Laboratories). In summary, tissue sections were deparaffinized, rehydrated and rinsed with PBS. Antigen retrieval was performed by microwaveing with 10 mM sodium citrate, pH 6.0 for 10 minutes.
  • Sections were incubated in 3% H 2 O 2 to quench endogenous peroxidase. Samples were blocked in 2.5% normal horse serum and incubated with primary antibodies (CD31, collagen I, fibronectin, alpha smooth muscle actin). Biotinylated pan-specific pluripotent secondary antibodies and streptavidin / peroxidase complex reagents were used for cardiac sections, which were stained with antibodies using a DAB substrate kit. Counterstaining was performed with 1% methyl green and dehydration proceeded with 100% N-butanol, ethanol and xylene. Another sequential section was analyzed with rabbit anti-connectin 43. FITC-conjugated goat anti-rabbit IgG was used as secondary antibody.
  • the perfusion pressure was adjusted to ⁇ 60 mm Hg with a peristaltic pump.
  • the heart was stained with a voltage sensitive dye, di-4 ANEPPS (Invitrogen), and 2.5 ml of stock solution (1 mg / ml of dimethyl sulfoxide, DMSO) was carried through a baffle trap on the aortic cannula.
  • the heart was placed in the chamber to maintain temperature and to reduce the artificial consequences of movement, and 5 mM blebbistatin was added to the perfusate.
  • the heart was illuminated with quasi-monochromatic light (500 ⁇ 30 nm) using two green LED lamps (LL-50R30-G25, Optronix, Seoul, Korea).
  • the emitted fluorescence was filtered through a long-pass filter with a cutoff wavelength of 600 nm for V m recording. Fluorescence images obtained from the anterior surface of the heart were taken with a CCD camera (Model CA D1-0128T, Dalsa, Waterloo, Ontario, Canada) with a spatial resolution of 78 x 78 mm 2 per pixel and a maximum time resolution of 490 frames / sec. . The field of view was adjusted to 1.0 x 1.0 cm 2 to obtain 128 x 128 sites simultaneously.
  • Optical recordings of the rhythm were continuously monitored by ECGs obtained by placing bipoles (one on top of the left ventricle and the other on the high side wall of the right ventricle) using the Biopac System (BIOPAC Systems Inc.). Vulnerability to VT was tested by burst stimulations of the ventricles performed with stimulation cycle length (S1S1-CL) starting at 300 ms and decreasing by 10-ms in steps of 10 ms. Data was analyzed with commercially available software using Matlab (Mathworks, Natick).
  • Activity and repolarization time points at each site were determined from (dF / dt) max and (d 2 F / dt 2 ) max , which appeared to coincide with ⁇ 97% repolarization and recovery from non-compliance to the baseline.
  • the data were calculated using the first derivative / second derivative (dF / dt, d 2 F / dt 2 ) in the spatial domain using a polynomial filter (3 rd order, 13 points) in the temporal domain. Isochronal maps of activity were generated as previously described (Choi, BR & Salama, G., J Physiol 529 Pt 1, 171-188 (2000)).
  • the conduction velocity in the infarct or normal region was measured under point stimulation at a cycle length of 280 ms for 20 beats.
  • Local conduction velocity vectors were estimated from the seven nearest pixels of each pixel within the active time of its temporal wavelength (Efimov, IR, et al., Circulation 90, 1469-1480 (1994)).
  • the local CV distribution can have high frequency components, such as close proximity, motion artifacts caused by transmural activity and collisions between wavelengths.
  • the local CV was spatially filtered using 7 x 7 nearest neighbor gaussian convolution, and the extreme change in the magnitude was suppressed using log-transformation.
  • Rise time was determined from an action-potential amplitude of 10% to 90% from the action potential and low-pass filtered with an averaging kernel of 1ms.
  • Immunocytochemical characterization of MSCs was verified as follows. Cells were incubated in a 4-well slide chamber, washed with PBS and incubated for 10 minutes with 1% paraformaldehyde solution. Cells were then washed twice with PBS and infiltrated with 0.1% Triton X-100 for 7 minutes. Thereafter, cells were blocked for 1 hour with blocking solution (PBS containing 2% bovine serum albumin and 10% horse serum) and FITC-conjugated mouse, rabbit and goat antibodies (Jackson Immunoresearch) used as secondary antibodies. Laboratories) were combined. Then they were detected by confocal microscopy (Carl Zeiss).
  • Capture antibody 100 ng was bound to polyvinylchloride (PVC) microtiter high binding plate (96 wells) at 4 ° C. overnight. Plates were washed twice with PBS and captured antibody with PBS containing 5% BSA was blocked overnight at room temperature under a humid atmosphere. After washing the plate twice with PBS, 5 ug of cell lysate was added to each well with blocking buffer and the plate was incubated at 37 ° C. for 1.5 hours. Plates were washed four times with PBS containing 0.02% tween-20. After adding the detector antibody, the plates were incubated for 2 hours at room temperature in a humid atmosphere and washed four times with PBS containing 0.02% tween-20.
  • PVC polyvinylchloride
  • TMB tetramethylbenzidine
  • Cells were washed once with PBS, 20 mM Tris (pH 7.5), 150 mM NaCl, 1 mM Na 2 -EDTA, 1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM ⁇ -glycerophosphate, It was dissolved for about 20 minutes in lysis buffer (Cell Signaling Technology) containing 1 mM Na 3 VO 4 , 1 mg / ml leupeptin and 1 mM phenylmethylsulfonyl fluoride. Cell lysates were centrifuged at 12,000 g for 10 minutes to obtain supernatant. Protein concentration was measured using the Bradford Protein Assay Kit (Bio-Rad).
  • Quantitative proteins were separated on a 12% sodium dodecyl sulfate-polyacrylamide gel and transferred to a polyvinylidene difluoride membrane (Millipore). After blocking the membrane with Tris-buffered saline-Tween 20 (TBS-T, 0.1% Tween 20) containing 5% nonfat dry milk, the membrane was washed twice with TBS-T and the primary antibody (ERK and p Incubated overnight at 4 ° C with Santa Cruz Biotechnology (ERK). The membrane was washed three times with TBS-T for 10 minutes and then incubated with horseradish peroxidase-conjugated secondary antibody for 1 hour at room temperature. After extensive washing, the bands were detected with enhanced chemiluminescent reagents (GE Healthcare Life Sciences). Band intensities were quantified using Image J 1.40g software (NIH).
  • Complementary DNA was generated with Reverse Transcription System (Promega) according to the manufacturer's instructions.
  • RNA 1 ⁇ g total RNA was added to 5 mmol / L MgCl 2 , 10 mmol / L Tris-HCl (pH 9.0 at 25 ° C.), 50 mmol / L KCl, 0.1% Triton X-100, 1 mmol / L dNTP, 20 U RNase 20 ⁇ l reaction mix containing inhibitor, 0.5 ⁇ g oligo- (dT) 15 primer, 10 U reverse transcriptase was reversed at 42 ° C. for 15 minutes and heated at 99 ° C. for 5 minutes to terminate the reaction. I was.
  • PCR mix was combined with 200 mM Tri-HCl (pH 8.8), 100 mM KCl, 1.5 mmol / L MgSO 4 , 1% Triton X-100, 0.1 mM dNTP and 1.25 U Taq polymerase in a total volume of 25 ⁇ l. Each primer of pmol / ⁇ l is contained.
  • PCR conditions were as follows: 1 cycle of denaturing for 3 minutes at 94 ° C., 35 cycles of denaturation for 30 seconds at 94 ° C., annealing for 30 seconds at 49 ° C., 2 minutes extension at 72 ° C., and final extension at 72 ° C. for 10 minutes.
  • RT-PCR products were separated by electrophoresis on 1.2% agarose gel and visualized by staining with ethidium bromide.
  • cytokines in the region into which cells were injected were measured using rat cytokine array 3.1 (RayBiotech) according to the manufacturer's instructions.
  • 1 x Cell Lysis Buffer was used to extract proteins from tissue. After extraction, the sample was centrifuged to store the supernatant. Protein concentration was measured and diluted with 2 x Cell Lysis Buffer with H 2 O. 2 ml 1 x Blocking Buffer was added to the sample and incubated at room temperature for 30 minutes to block the membrane. Membranes were incubated with 1 ml of sample for 1-2 hours at room temperature, removed from each vessel and washed three times for 5 minutes at room temperature with 2 ml of 1 ⁇ Wash Buffer I while shaking.
  • the blot was then washed twice with 2 ml of 1 x Wash Buffer II for 5 minutes at room temperature while shaking. 100 ⁇ l of biotin-conjugated anti-cytokine was gently mixed with 1 ⁇ blocking buffer and incubated for 1-2 hours at room temperature. Wash Buffer I and II were poured into blots five times and 1,000-fold diluted HRP-conjugated streptavidin was injected into each membrane for 2 hours at room temperature. Wash Buffer I and II were poured into the blot five times and samples were added with 250 ⁇ l of 1 ⁇ Detection Buffer C and 250 ⁇ l of 1 ⁇ Detection Buffer D at room temperature for 2 minutes. Finally, the array was exposed to x-ray film and the signal was detected using a chemiluminescent imaging system.
  • ECG surface 6-lead ECG (lead II shown in the figure) was obtained for 5 minutes in rats implanted with control, sham, MSCs, and CPMs.
  • R-R interval, PR interval, QRS duration, QT and corrected QT duration were measured by continuous evaluation as previously described. All data were obtained at 1 ksps (kilo-sample per second) using the Bard stamp amplifier system (C.R. Bard Inc.).
  • left ventricular catheter insertion was performed on days 7-11.
  • a Millar Mikro-tip 2 F pressure transducer (model SPR-838, Millar Instruments, Houston, TX) was inserted into the left ventricle through the right carotid artery under zoletil (20 mg / kg) and xylazine (5 mg / kg) anesthesia.
  • Real time pressure-volume loops were recorded by blind investigators and all data analyzed offline using PVAN 3.5 software (Millar).
  • MSCs-grafted myocardium were examined through the immunological assay described above.
  • 2 shows the results of TTC staining to assess the viability of myocardial tissue and to measure myocardial infarction size.
  • 3 shows the results of Masson's trichrome staining to detect interstitial fibrosis in cell transplants. Compared with the sham-injected region, the degree of fibrosis mixed with the surviving myocardium, which promotes re-entry, was reduced in the mesenchymal stem cell transplanted region.
  • left ventricular end diastolic diameter (LVEDD); Left ventricular end systolic diameter (LVESD); Fractional shortening (FS); Left ventricular end diastolic volume (LVEDV); Left ventricular end systolic volume (LVESV); Left ventricular ejection fraction (LVEF).
  • mesenchymal stem cells were electrically stable in the infarcted heart by optical mapping using Langendorff perfusion and electrical weakness tests. The effect on the was further evaluated.
  • FIG. 6 shows the actual image (left panel) of the infarcted heart.
  • the infarcted area is clearly identified by the blue color change, and the marginal portion 2 in which slow propagation occurs can be identified from the activity map (middle and right panels).
  • 7 shows action potentials in control, sham-infused, MSCs-, and CPMs-grafted hearts.
  • ectopic pulsation results in mesenchymal stem cell transplantation.
  • action potential durations recorded from the zone where the mesenchymal stem cells were transplanted were similar to the uninfarcted area (101.9 in MSCs-grafted heart). ⁇ 14.9 ms vs. 103.5 ⁇ 14.1 ms, and 92 ⁇ 7.4 mm / ms vs.
  • the local conduction velocity (CV) from the time of activation of the action potential was still lower in the region where mesenchymal stem cells were transplanted compared to other non-infarcted regions, which was mesenchymal stem It may be due to the nature of not responding to the stimulation of cells and their ability to act as a current sink (Chang, MG , et al. Circulation 113, 1832-1841 (2006); Beeres, SL , et al. J Am Coll Cardiol 46, 1943-1952 (2005)).
  • FIG. 11 shows the results of an electrical vulnerability test according to a burst pacing protocol.
  • the left panel of FIG. 11 shows a graph of ventricular tachycardia (VT) or ventricular fibrillation (VF) induction of normal, sham-injected and MSCs-transplanted groups.
  • VT ventricular tachycardia
  • VF ventricular fibrillation
  • Fig. 1h shows representative examples of ECG in the burst pacing protocol electrical vulnerability ex vivo test. Burst stimulations of 220 ms cycle length (CL) induced VT in the sham-operated heart. While reducing the CL stepwise to 90 ms, VT was readily induced at 100 ms of CL in MSC implanted hearts, while not at 90 ms of CL in normal controls. Arrows indicate electrical stimulation.
  • FIG. 12 shows a sequential voltage map during ventricular tachycardia (VT) at the MSCs-grafted site. It can be seen that the single re-entry forming the helical wavelength slowly propagates to the MSCs-injection area (red circle) (top view of the left panel) and is fixed to the MSCs-injection area (lower view of the left panel). Here, the white arrows indicate the direction of wave propagation. The right panel shows a visual recording of action potentials. This is a result showing that the flow of electricity is not smooth at the injection site of MSCs.
  • VT ventricular tachycardia
  • FIG. 13 is a result of a sandwich ELISA showing that the degree of differentiation into cardiomyocytes increases with the treatment concentration of compound # 23.
  • PTK inhibitors were found to induce differentiation of mesenchymal stem cells into cardiomyocytes by increasing the expression of cardiac troponin T (cTnT) in a dose dependent manner.
  • MSCs have several potential advantages over other stem cells for heart repair, they still face some challenges to be addressed in preclinical studies. Although preconditioning of MSCs, including genetic modifications, has been done to increase the therapeutic efficacy, the most obvious concern is how implanted MSCs can complete electromechanical integration with host tissues. Our results show for the first time that new cell types derived from MSCs overcome the suboptimal prevention of sudden death caused by pure MSCs after transplantation, and to improve electromechanical integration in cell-based therapies for myocardial infarction. Provide a new strategy. In conclusion, the modification of MSCs into cardiomyocytes by PTK inhibitors that are compatible with the electromechanical properties of host tissues after transplantation may be the best therapeutic strategy for the clinical application of MSCs to infarcted myocardium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Developmental Biology & Embryology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Hematology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Rheumatology (AREA)
  • Cardiology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

본 발명은 중간엽 줄기세포의 심장성 세포로의 분화 유도를 위한 PTK 저해제의 용도 및 PTK 저해제에 의해 중간엽 줄기세포로부터 분화 유도된 심장성 세포를 포함하는 심장질환 치료용 의약 조성물에 관한 것이다. 중간엽 줄기세포의 심장으로의 이식은 경색된 심장의 면역학적 및 기능적 개선을 가져다 주긴 하나 전기적 안정성을 제공할 수 없는 반면, PTK 저해제로 처리된 중간엽 줄기세포는 심장성 세포로 분화 유도됨으로써 호스트 심장 조직과의 전기기계적 통합이 개선되어 전기적 안정성을 제공하게 되므로 심근경색, 심부전, 부정맥 등의 심장 질환을 효과적으로 치료할 수 있게 된다.

Description

중간엽 줄기세포의 심장성 세포로의 분화 유도를 위한 단백질 티로신 키나아제 저해제의 용도
본 발명은 중간엽 줄기세포의 심장성 세포로의 분화 유도를 위한 PTK 저해제의 용도 및 PTK 저해제에 의해 중간엽 줄기세포로부터 분화 유도된 심장성 세포를 포함하는 심장질환 치료용 의약 조성물에 관한 것이다.
많은 다양한 세포 유형들이 허혈성 심장에 대한 줄기세포 치료제의 후보로서 고려되었지만, 전기기계적 통합의 측면에서 이상적인 세포 유형은 아직까지 발견되지 않고 있다(Segers, V.F. & Lee, R.T. Nature 451, 937-942 (2008)). 실제로, 순수한 중간엽 줄기세포(mesenchymal stem cells, MSCs)의 심근세포로의 분화는 생체 내에서 극히 낮은 비율로 관찰되었을 뿐만 아니라, 이식된 줄기세포와 심장근육과의 전기기계적 통합 능력은 불확실하다(Chang, M.G., et al. Circulation 113, 1832-1841 (2006)).
사실, 본 발명자들은 이전에 중간엽 줄기세포의 이점을 증가시키기 위한 많은 연구(Song, S.W., et al. Stem Cells 27, 1358-1365 (2009); Chang, W., et al. Stem Cells 27, 2283-2292 (2009); Song, H., et al. Stem Cells 25, 1431-1438 (2007))의 수행을 통해 이식 세포의 생존율을 향상시키거나 경색 심장의 기능적인 향상을 유도하였으나, 중간엽 줄기세포의 이식이 경색 후의 급작스런 사망의 발생을 줄이지는 못하는 것을 발견하였다. 기능의 향상에도 불구하고 생존율이 개선되지 못하는 것은 이식한 줄기세포와 심장 근육과의 이종성으로 인해 전기적인 통합성을 이루지 못하기 때문이다.
본 발명은 중간엽 줄기세포의 심근경색, 심부전, 부정맥 등에 대한 세포치료제로서의 활용을 위해 중간엽 줄기세포로부터 이식 후 심장근육과의 전기기계적인 통합성을 이룰 수 있는 세포인 심장성 세포로의 분화를 유도하는 방법을 제공하고자 한다.
이식된 세포와 심근 간의 이종성을 피하기 위해서는 중간엽 줄기세포를 경색된 심장으로 전달하기 전에 심인성 특성에 대한 중간엽 줄기세포의 조절이 필요할 수 있으며, 이는 수축 기능과 전기적 안전성의 개선을 가져다 줄 수 있을 것이다.
이러한 점에 착안하여 본 발명자들은 중간엽 줄기세포를 심근세포로 유도할 수 있는 방법에 대해 지속적으로 연구하였다. 그 결과, 단백질 티로신 키나아제(Protein Tyrosine Kinase, PTK) 저해제가 중간엽 줄기세포를 심장성 세포로 분화 유도할 수 있음을 밝혔다. 하기 실시예에서는 PTK 저해제에 의해 엑스 비보(ex vivo) 상에서 변형된 랫트의 중간엽 줄기세포가 변형을 거치치 않은 순수한 중간엽 줄기세포와 비교하여 심장성 세포로 분화됨을 보여준다.
따라서, 본 발명은 중간엽 줄기세포의 심장성 세포로의 분화 유도를 위한 PTK 저해제의 용도, PTK 저해제를 중간엽 줄기세포에 처리하는 것을 포함하는 중간엽 줄기세포의 심장성 세포로의 분화 유도 방법 및 PTK 저해제를 포함하는 중간엽 줄기세포의 심장성 세포로의 분화 유도용 조성물을 제공한다.
본 발명에 있어서, 중간엽 줄기세포의 심장성 세포로의 분화 유도에 사용되는 PTK 저해제의 종류는 특별히 제한되지 않는다.
한 구체예에서, PTK 저해제는 화학식 1의 화합물일 수 있다.
[화학식 1]
Figure PCTKR2011006020-appb-I000001
상기 식에서,
R1, R2, R3, R4, R5 및 R6는 각각 독립적으로 H, C1-12알킬, C1-12알콕시, 하이드록시, 카르복시 또는 할로겐 원자이고,
R7은 C1-12알킬, C1-12알콕시, 하이드록시, 카르복시 및 할로겐 원자로 이루어진 군으로부터 선택되는 하나 이상의 치환체로 치환되거나 비치환된 C6-12아릴이다.
여기에서, "치환된" 기는 하나 이상의 수소 원자가 하나 이상의 비-수소원자기로 대체된 것이나, 단 원자가(valence) 요구조건이 만족되어야 하고 화학적으로 안정한 화합물이 치환으로부터 발생되어야 한다. 본 명세서 내에서, 명시적으로 "비치환된"이라고 기재되지 않은 한, 모든 치환기는 치환 또는 비치환될 수 있는 것으로 해석되어야 한다. 예를 들어, R1 내지 R6의 치환기는 각각 상기 정의된 치환기 중 하나 이상으로 다시 치환될 수 있다.
"알킬"은 일반적으로 명시된 수의 탄소원자 (예컨대, 1 내지 12개의 탄소원자)를 갖는 직쇄 및 분지형 포화 탄화수소 기를 의미한다. 알킬기의 예는 제한없이 메틸, 에틸, n-프로필, i-프로필, n-부틸, s-부틸, i-부틸, t-부틸, 펜트-1-일, 펜트-2-일, 펜트-3-일, 3-메틸부트-1-일, 3-메틸부트-2-일, 2-메틸부트-2-일, 2,2,2-트리메틸에트-1-일, n-헥실, n-헵틸 및 n-옥틸 등을 포함한다.
"알콕시"는 알킬-O-를 말하며, 여기에서 알킬은 상기 정의되어 있다. 알콕시 기의 예는 제한없이 메톡시, 에톡시, n-프로폭시, i-프로폭시, n-부톡시, s-부톡시, t-부톡시, n-펜톡시, s-펜톡시 등을 포함한다. 알콕시는 부착이 원자가 필요조건을 위반하지 않는다면 임의의 고리 원자에서 부모 기(parent group) 또는 기재(substrate)에 부착될 수 있다. 마찬가지로, 알콕시기는 부착이 원자가 요구조건을 위반하지 않는다면 하나 이상의 비수소 치환기를 포함할 수 있다.
"카르복시"는 2가 라디칼인 -C(O)OH를 나타낸다. 본 명세서에서 (O)는 탄소나 황과 같은 원자에 산소가 이중결합을 통해 결합되어 있음을 의미한다.
"아릴"은 질소, 산소 및 황으로부터 독립적으로 선택된 0 내지 4개의 헤테로원자를 함유하는 5- 및 6-원 일환 방향족 기를 포함한 각각 일가 및 이가 방향족 기를 말한다. 아릴이 하나 이상의 헤테로원자를 포함하는 경우 "헤테로아릴"이라고도 언급한다. 일환 아릴기의 예는 제한없이 페닐, 피롤릴, 퓨란일, 티오펜에일, 티아졸릴, 이소티아졸릴, 이미다졸릴, 트리아졸릴, 테트라졸릴, 피라졸릴, 옥사졸릴, 이소옥사졸릴, 피리딘일, 피라진일, 피리다진일, 피리미딘일 등을 포함한다. 아릴기는 또한 상기 정의된 융합된 5- 및 6-원 고리를 포함한 이환 기, 삼환 기 등을 포함한다. 다환 아릴기의 예는 제한없이 나프틸, 바이펜일, 안트라센일, 피렌일, 카바졸릴, 벤족사졸릴, 벤조다이옥사졸릴, 벤조티아졸릴, 벤조이미다졸릴, 벤조티오펜에일, 퀸올린일, 이소퀸올린일, 인돌릴, 벤조퓨란일, 푸린일, 인돌리진일 등을 포함한다. 상기 아릴기는 부착이 원자가 요구조건을 위반하지 않는다면 임의의 고리 원자에서 부모 기 또는 기재에 부착될 수 있다. 마찬가지로, 아릴기는 치환이 원자가 요구조건을 위반하지 않는다면 하나 이상의 비-수소 치환기를 포함할 수 있다.
한 구체예에서, R1, R2, R3, R4, R5 및 R6는 각각 독립적으로 H, C1-4알킬 또는 C1-4알콕시이고,
R7은 C1-4알킬, C1-4알콕시, 하이드록시, 카르복시 및 할로겐 원자로 이루어진 군으로부터 선택되는 하나 이상의 치환체로 치환되거나 비치환된 페닐일 수 있다.
다른 구체예에서, R1, R2, R3, R4, R5 및 R6는 각각 독립적으로 H 또는 C1-4알콕시이고,
R7은 C1-4알킬, C1-4알콕시, 또는 할로겐 원자로 치환되거나 비치환된 페닐일 수 있다.
또 다른 구체예에서, PTK 저해제는 N-(3-브로모페닐)-6,7-디에톡시퀴나졸린-4-아민일 수 있다.
또한, 본 발명에 있어서 심장성 세포로의 분화 유도를 위해 사용되는 중간엽 줄기세포의 종류 또한 특별히 제한되지 않는다. 본 발명에서 사용되는 중배엽 줄기세포는 그것이 어디로부터 유래한 것인지 관계없이 이용될 수 있다. 중간엽 줄기세포는 공지의 중간엽 줄기세포 공급원, 예를 들어 골수, 조직, 배아, 제대혈, 혈액 또는 체액으로부터 얻을 수 있다. 골수, 조직 등의 채취 대상인 동물은 포유동물일 수 있다. 상기 동물이 인간일 경우 골수, 조직 등은 본 발명의 조성물의 처리에 의해 심장성 세포로의 분화가 유도된 중배엽 줄기세포를 세포치료제로서 투여하게 될 환자 자신의 것이나 타인 유래의 것일 수 있다. 이러한 공지의 중간엽 줄기세포 공급원으로부터 중간엽 줄기세포를 수득하는 방법에 대해서는 당업계에 잘 알려져 있다.
한편, 중간엽 줄기세포에 대해PTK 저해제를 처리하는 방법은 특별히 제한되지 않는다. 일정 시간 동안 PTK 저해제와 중간엽 줄기세포를 접촉시켜 중간엽 줄기세포 내의 PTK가 저해될 수 있기만 하면 된다. 한 구체예에서, PTK 저해제의 처리는 중간엽 줄기세포를 PTK 저해제를 포함하는 배지에서 배양함으로써 수행할 수 있다.
중간엽 줄기세포에 처리되는 PTK 저해제의 농도는 구체적은 PTK 저해제의 종류, 중간엽 줄기세포에 처리되는 기간, 또는 심장성 세포로의 분화 요구 정도 등에 따라 달라질 수 있을 것이다. 한 구체예에서, PTK 저해제의 농도는 0.01 내지 100 μM의 범위에서 사용될 수 있다.
중간엽 줄기세포의 분화 유도에 일반적으로 요구되는 시간을 고려할 때, PTK 저해제를 포함하는 배지에서의 배양은 5일 내지 15일 동안 수행될 수 있으나, 이에 제한되는 것은 아니다. 중간엽 줄기세포에 대한 PTK 저해제의 처리의 기간은 처리되는 PTK 저해제의 종류 또는 농도에 따라 달라질 수 있을 것이다.
본 발명에 있어서 "심장성 세포"는 중간엽 줄기세포로부터 분화 유도된 심근세포 또는 심근세포로의 분화 과정에 있는 세포를 모두 포함한다. 본 명세서에서 "심장성 세포"와 "심근세포"는 상호교환적으로 사용된다. 본 발명에 있어서, PTK 저해제의 처리에 의해 중간엽 줄기세포로부터 분화 유도된 심장성 세포는 심장 특이적 마커의 발현을 나타낸다. 본 발명의 방법에 따라 수득한 심장성 세포는 심장 특이적 마커의 발현이 중간엽 줄기세포에 비해 증가되어 있는 것일 수 있다. 심장 특이적 마커는 이에 제한되는 것은 아니나, cTnT(cardiac troponin T), MLC(myosin light chain) 및 MHC(myosin heavy chain)으로 이루어진 군으로부터 선택되는 것일 수 있다. 또한, 상기 심장성 세포는 Cx43(connexin 43)의 발현이 중간엽 줄기세포에 비해 증가되어 있는 것일 수 있다. 추가로, 상기 심장성 세포는 Ca2+ 항상성-관련 단백질 의 발현이 중간엽 줄기세포에 비해 증가되어 있는 것일 수 있다. Ca2+ 항상성-관련 단백질은 이에 제한되는 것은 아니나, SERCA 2a 또는 LTCC일 수 있다.
본 발명은 또한 PTK 저해제를 포함하는 중간엽 줄기세포의 심장성 세포로의 분화 유도용 조성물을 제공한다. 앞서 설명한 바와 같이, 본 발명에서 사용되는 PTK 저해제의 종류는 특별히 제한되지 않는다. 한 구체예에서, PTK 저해제는 화학식 1의 화합물일 수 있다. 화학식 1의 화합물의 구체예는 앞서 설명한 바와 같다. 상기 조성물은 중배엽 줄기세포의 배양시 일반적으로 사용되는 배지를 포함할 수 있다. 이에 제한되는 것은 아니나, 이러한 배지로는 예컨대, MEM-alpha (Minimum Essential Medium alpha), MSCGM(Mesenchymal Stem Cell Growth Medium), DMEM (Dulbecco's Modified Eagle's Medium) 등이 포함될 수 있다.
다르게는, PTK 저해제를 포함하는 중간엽 줄기세포의 심장성 세포로의 분화 유도용 조성물은 중간엽 줄기세포와는 별도로 체내에 도입될 수도 있을 것이다. 즉, 중간엽 줄기세포의 투여 전이나 후, 또는 중간엽 줄기세포의 투여와 동시에 PTK 저해제를 포함하는 조성물이 별도로 투여될 수도 있다. 이 경우 상기 조성물은 PTK 저해제의 투여에 적합한 공지의 약제학적 담체를 포함할 수 있다.
또한 본 발명은 상기 방법에 의해 중간엽 줄기세포로부터 분화 유도된 심장성 세포를 포함하는 심장질환 치료용 의약 조성물을 제공한다. 이러한 심장질환 치료용 의약 조성물은 이에 제한되는 것은 아니나 심근경색, 심부전, 부정맥 등의 심장질환의 치료를 위해 유용하게 사용될 수 있다. 상기 의약 조성물은 줄기세포의 이식을 위해 당업계에서 사용되고 있는 공지의 담체를 추가로 포함할 수 있다. 또한, 상기 심장성 세포의 유효량은 1×104 내지 1×108 세포/㎏일 수 있다. 그러나, 이들의 용량은 환자의 체중, 연령, 성별, 병변의 정도에 따라 적의 증감될 수 있다. 본 발명에 따른 제제는 비경구 또는 국소투여에 의해 인체에 적용될 수 있다. 이러한 목적을 위해, 유효성분을 퉁상의 방법에 따라 약제학적으로 허용가능한 담체에 현탁시키거나 용해시키는데, 이 때 수용성 담체를 사용하는 것이 바람직하다.
중간엽 줄기세포의 심장으로의 이식은 경색된 심장의 면역학적 및 기능적 개선을 가져다 주긴 하나 전기적 안정성을 제공할 수 없는 반면, PTK 저해제로 처리된 중간엽 줄기세포는 심장성 세포로 분화 유도됨으로써 호스트 심장 조직과의 전기기계적 통합이 개선되어 전기적 안정성을 제공하게 되므로 심근경색, 심부전, 부정맥 등의 심장 질환을 효과적으로 치료할 수 있게 된다.
도 1은 손상 및 치료 후 11일 동안의 대조군(n=12), sham-주입된 랫트(n=27), 및 MSCs-이식된 랫트(n=19)에서의 급사 발생율을 보여주는 그래프이다.
도 2는 심근 조직의 생존력을 평가하고 심근 경색 크기를 측정하기 위한 TTC 염색의 결과를 보여준다.
도 3은 세포 이식체 내의 간질 섬유화를 탐지하기 위한 Masson's trichrome 염색의 결과를 보여준다.
도 4는 세포자멸사 세포 수의 측정을 위한 TUNEL 어세이의 결과를 보여준다.
도 5는 염증성 세포 침윤물의 측정을 위한 H & E 염색 결과를 보여준다.
도 6은 경색된 심장의 실제 이미지 및 활동성 맵을 보여준다.
도 7은 대조군, sham-주입된, MSCs-, 및 CPMs-이식된 심장에서의 활동 전위를 보여준다.
도 8은 중간엽 줄기세포가 이식된 구역으로부터 기록된 활동 전위 지속시간(action potential durations, APDs)을 보여주는 그래프이다.
도 9는 sham-주입된 심근 내 변연부에서의 이소성 박동을 보여주는 도면이다.
도 10은 sham-주입된 심장 및 MSCs 이식된 심장에서의 국부 전도 속도(CV)를 보여주는 그래프이다.
도 11은 초고속 조율 프로토콜(burst pacing protocol)에 따른 전기적 취약성 테스트의 결과를 보여준다.
도 12는 MSCs-이식된 부위에서의 심실성 빈맥(VT) 동안의 순차적인 전압도(voltage map)를 보여준다.
도 13은 화합물 #23의 처리 농도에 따라 심근세포로의 분화 정도가 증가함을 보여주는 샌드위치 ELISA의 결과를 보여준다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
[실시예]
랫트 MSCs의 분리 및 배양
4주령 수컷 Sprague-Dawley 랫트의 대퇴골 및 경골의 골수천자액(약 100g)으로부터 MSCs를 얻고, 10% FBS와 1% 항생-페니실린/스트렙토마이신 용액(Invitrogen)이 보충된 10 ml의 DMEM-저 글루코스 배지에서 배양하였다. 수집된 배지를 1,600 rpm으로 5 분 동안 원심분리하고, MSC 배지 중에 재현탁시킨 다음, Ficoll-PaqueTM PLUS (GE Healthcare Life Sciences)로 퍼콜 밀도 구배 원심분리를 1,600 rpm으로 30 분 동안 수행하였다. 원심분리 후 중간 인터페이스로부터 골수 단핵구 세포들을 회수하고, PBS로 2회 세척한 후, 10% FBS-DMEM 중에서 재현탁시키고, 100 cm2 플라스크에 플레이팅하였다. 배양 조건은 5% CO2를 포함하는 습윤한 대기에서 37℃를 유지시켰다. 72 시간 후, 비-부착된 세포들을 플라스크로부터 떨구어 내어 버리고, 부착된 세포들은 PBS로 2회 완전히 세척하였다. 신선한 MSC 배지를 가하고, 약 10일 동안 매 3일마다 배지를 교체하여 MSCs를 얻었다. MSCs의 특성을 면역표현형분석(immunophenotyping)에 의해 검증하였다. 세포들을 형광 항체와 컨쥬게이션되는 다양한 마커에 대해 라벨링하고 (CD14, CD34, CD71, CD90, CD105 and ICAM-1; Santacruz Biotechnology), 유세포분석 및 면역형광분석에 의해 분석하였다.
PTK 저해에 의한 랫트 MSCs의 엑스 비보 변형
2계대에서, MSCs를 60 mm 플레이트에 2 x 105 cells/ml로 위와 동일한 배지를 이용하여 분주하고, 단백질 티로신 키나아제(PTK) 저해제인 N-(3-브로모페닐)-6,7-디에톡시퀴나졸린-4-아민 (N-3-bromophenyl)-6,7-diethoxyquinazolin-4-amine)(Sigma)를 최종 농도 1 μM 또는 10 μM로 처리하고 매 3일에 한 번씩 상기 화합물을 함유한 신선한 배지로 교체하여 9일간 배양하였다.
Figure PCTKR2011006020-appb-I000002
신생 랫트 심실 심근세포의 분리 및 배양
심근세포는 Sprague-Dawley 신생 랫트 심장으로부터 얻었다. 적혈구를 감소시키기 위해, 분리된 심장 조직을 Dulbecco's phosphate-buffered saline solution (pH 7.4 Gibco BRL, NY)으로 세척하였다. 마이크로-절개용 가위를 이용하여, 심장을 대략 0.5 mm3 조각이 되도록 절개하고, 4 ml의 콜라게나아제 II(1.4 mg/ml, 270 units/mg, Gibco BRL, NY)로 5분 동안 37℃의 습윤한 챔버에서 처리하였다. 그런 다음, 상층액을 제거하고 10% FBS DMEM로 세척하였다. 세포들을 10% FBS를 함유한 동량의 신선한 배지에 재현탁하였다. 남아있는 조직들을 신선한 콜라게나아제 II 용액으로 추가 5분간 처리하였다. 조직이 완전히 분해될 때까지 인큐베이션 과정을 반복하였다. 생성된 상층액을 실온에서 2000 rpm으로 2분 동안 원심분리하였다. 세포 펠렛을 5 ml의 세포 배양 배지에 재현탁하고, 이를 배양 접시에 플레이팅하고 5% CO2 인큐베이터 내에서 37℃에서 적어도 2시간 동안 인큐베이션하였다. 부착된 세포들은 섬유아세포이고, 비-부착된 세포들은 심근세포이다. 부착되지 않은 심근세포들을 100 mm 배양 접시에 다시 플레이팅하고(5 ×105cell/ml), 10% FBS가 보충된 α-MEM으로 인큐베이션하였다. 그런 다음 세포들을 37℃의 CO2 인큐베이터에서 배양하였다. 섬유아세포에 의한 오염을 박기 위해, 0.1mM 5-브로모-2'-데옥시우리딘 (Brd-U) (Sigma, MO)이 포함된 α-MEM을 사용하였다.
심근경색의 유도 및 세포의 이식
동물 연구에 대한 모든 실험 과정은 연세대학교 의과대학 실험동물운영위원회에 의해 승인을 받았으며, 동물 보호에 대한 위원회의 가이드라인과 조정에 따라 수행되었다. 심근 경색은 8주령의 Sprague-Dawley 수컷 랫트에서 이전에 기술된 방법에 따라(Song, S.W., et al. Stem Cells 27, 1358-1365 (2009)) 좌전하방(LAD) 관상 동맥의 수술로 인한 폐색에 의해 야기되었다. 요약하면, 졸레틸 (20 mg/kg) 및 자일라진 (5 mg/kg)으로의 마취 유도 후, 3번째와 4번째 갈비뼈를 잘라 흉부를 열고, 심장을 늑간 공간을 통해 몸 밖으로 꺼내었다. 심장을 2-cm 좌외 개흉술을 통해 노출시켰다. 심장막을 자르고, 6-0 실크 봉합사(Johnson & Johnson)를 좌심방 부속물 아래의 왼쪽 관상동맥의 근위 부분에 두었다. 결찰사의 끝은 짧은 길이의 플라스틱 튜브를 통해 통과시켜 올가미를 형성하였다. 관상동맥 폐색을 위해, 올가미를 관상동맥 바로 위의 심장 표면 상으로 누르고 올가미에 지혈기를 적용하였다. 50분간의 폐색 후, 지혈기를 제거하고 재관류를 위해 올가미를 풀어 결찰사가 심장 표면 상으로 느슨해 지게 두었다. 이식을 위해, 세포들을 30 ㎕의 PBS에 현탁시키고 (1×106 cells), 30-게이지의 바늘을 가진 Hamilton syringe (Hamilton Co.)를 이용하여 손상된 영역에서부터 변연부까지 주입하였다. 수술 동안, 동물을 하버드 산소호흡기를 이용하여 95% O2 및 5% CO2로 산소호흡시켰다. 생존 세포에 대해 DAPI로 MSCs로 레이블링하기 위해, 멸균 DAPI 용액을 50㎍/ml의 최종 농도로 이식한 날 배양 배지에 가하였다. 염료는 배양 접시에 30분 동안 남아있게 하였다. 세포를 6회 PBS로 세척하여 모든 과량 및 결합되지 않은 DAPI를 제거하였다. 레이블링된 세포를 0.25% (wt/vol) 트립신으로 탈착시키고 이식을 위해 PBS 중에 현탁시켰다. 이식된 랫트는 심근경색 1주 후 형태학적 분석을 위해, 그리고 경색 3주째에 심장초음파검사를 위해 이용되었다. Sham 집단은 심근경색 유발 랫트에 동일한 양의 PBS만을 주입하였다.
경색 크기의 측정
심근 조직의 생존력을 평가하고 심근 경색 크기를 측정하기 위하여 TTC 염색이 사용되었다. 조직 조각을 pH 7.4의 1% 2,3,5-트리페닐테트라졸륨 클로라이드 (TTC) 용액 중에서 37℃에서 20분 동안 인큐베이션하였다. 조직을 10% PBS-완충 포르말린으로 4℃에서 밤새 고정하였다. 심장을 횡축으로 절단하고, 심근경색의 크기를 전체 좌심실의 단면적에 대한 좌심실의 경색된 조직의 단면적의 퍼센테이지로서 평가하였다. 각 TTC-염색된 조직 조각의 양 측면을 디지털 카메라로 촬영하였다. 경색된 영역은 Image J 1.40g software를 이용하여 측정하였다.
세포가 이식된 심장의 면역학적 분석
각 군에 해당하는 세포들을 이식한 후, 수 회의 간격을 두고 이식체를 희생시키고 그들의 심장을 잘라내었다. 심장을 10% (vol/vol) 중성 완충 포름알데히드로 24시간 동안 살포-고정하고, 4개의 동등하게 두꺼운 절편으로 횡으로 절단하고, 통상의 방법으로 파라핀으로 포매시켰다. 5-㎛ 두께의 절편을 젤라틴-코팅된 글라스 슬라이드 상에 마운팅하여, 이식 지역을 통한 조직 컷의 연속적인 절편 상에 상이한 염색이 이용될 수 있도록 하였다. 면역학적 분석은 제조자의 지시서를 이용하여 수행하였다(Vector Laboratories). 요약하면, 조직 절편을 탈파라핀화하고, 재수화시키고, PBS로 헹구었다. 항원 검출(antigen retrieval)은 10 mM 소듐 시트레이트(pH 6.0)로 10분 동안 마이크로웨이빙(microwaving)함으로써 수행하였다. 절편을 3% H2O2 중에서 인큐베이션하여 내재적인 퍼옥시다아제를 퀀칭하였다. 샘플을 2.5% 정상 호오스 혈청 중에서 블로킹하고, 1차 항체(CD31, collagenⅠ, fibronectin, alpha smooth muscle actin)로 인큐베이션하였다. 비오틴화된 pan-특이적 다능적 2차 항체 및 스트렙타비딘/퍼옥시다아제 복합 시약이 심장 절편에 대해 사용되었으며, 이들은 DAB 기질 키트를 이용하여 항체로 염색되었다. 대비염색은 1% 메틸 그린으로 수행되었으며, 탈수는 100% N-부탄올, 에탄올 및 자일렌으로 진행되었다. 다른 순차적인 절편은 래빗 항-커넥신 43으로 분석했다. FITC-컨쥬게이트된 염소 항-래빗 IgG를 2차 항체로서 사용하였다. 모든 이미지는 반사광 형광 현미경(reflected light fluorescence microscopy) 하에서 여기 필터(excitation filter)를 이용하여 만들었으며, MetaMorph software ver. 4.6 (Universal Imaging Corp)이 구비된 컴퓨터로 전송했다. 세포 이식체 내의 간질 섬유화를 탐지하기 위해, Masson's trichrome 염색을 이용하여 분석하고 Image J 1.40g 소프트웨어로 측정하였다. 헤마토실린 및 에오신 (HE) 염색을 수행하여 형태적 변화 및 염증성 세포 침윤물을 측정하고, 처리에 대해 모르는 3 사람이 조심스럽게 분석하였다.
시각적 맵핑(Optical mapping)
성체 수컷 랫트(250-300 g)에게 헤파린 (200 U/kg)에 더하여 졸레틸(20 mg/kg) 및 자일라진 (5 mg/kg)을 주입하였다. 심장을 절단해 내고, 대동맥을 통해 95% O2 및 5% CO2 조건으로 pH 7.4의 Tyrode's solution 용액(125 NaCl, 24 NaHCO3, 1.0 MgCl2, 4.0 KCl, 1.2 NaH2PO4, 5 Dextrose, 25 Mannitol, 1.25 CaCl2(in mM))을 역으로 관류시켰다. 온도를 37.0±0.2℃로 유지하고 연동 펌프(peristaltic pump )로 관류 압력을 ~ 60 mm Hg로 조절하였다. 심장을 전압 민감성 염료, di-4 ANEPPS (Invitrogen)로 염색하고, 2.5 ml의 스톡 용액(1 mg/ml of dimethyl sulfoxide, DMSO)을 대동맥 카눌라 상의 버플 트랩을 통해 운반했다. 심장을 챔버에 두어 온도를 유지시키고 움직임에 의한 인위적인 결과를 감소시키고, 5 mM 블레비스타틴(blebbistatin)을 상기 관류액에 가하였다. 심장을 두 개의 녹색 LED 램프(LL-50R30-G25, Optronix, Seoul, Korea)를 이용하여 준-단색광(quasi-monochromatic light)(500±30 nm)으로 조명하였다. 발광된 형광을 Vm 레코딩을 위해 600nm의 컷오프 파장을 갖는 장파장 필터(long-pass filter)를 통해 필터링하였다. 심장의 전방 표면으로부터 얻은 형광 이미지를 픽셀당 78 x 78 mm2 의 공간 해상도 및 490 frames/sec 의 최대 시간 해상도를 갖는 CCD 카메라(Model CA D1-0128T, Dalsa, Waterloo, Ontario, Canada)로 촬영했다. 시야는 1.0 x 1.0 cm2로 조정하여 동시에 128 x 128 sites를 획득했다. 리듬의 광학적 레코딩은 Biopac System (BIOPAC Systems Inc.)을 이용하여 bipoles(좌심실의 꼭대기에 하나, 우심실의 고측벽에 다른 하나)을 넓게 위치시켜 얻은 ECGs에 의해 계속적으로 모니터링하였다. VT에 대한 취약성은 300 ms으로 시작하여 10-ms씩 단계적으로 감소시켜 90 ms까지 낮춘 stimulation cycle length (S1S1-CL)로 수행된 심실의 급작스러운 자극(burst stimulations)에 의해 시험하였다. 데이터는 Matlab (Mathworks, Natick)을 이용한 상용화된 소프트웨어로 분석하였다. 각 부위에서의 활동 및 재분극 시점은 (dF/dt)max and (d2F/dt2)max 로부터 측정하였으며, 이는 baseline에 대한 ~97% 재분극 및 불응으로부터의 회복과 동시에 일어나는 것으로 보였다. 데이터는 공간 영역 내에서 일계도함수/이계도함수(dF/dt, d2F/dt2)는 시간 영역에서의 다항식 필터(3rd order, 13 points)를 이용하여 계산하였다. 활동의 등시도(isochronal maps)는 이전에 기술된 바와 같이 생성하였다(Choi, B.R. & Salama, G., J Physiol 529 Pt 1, 171-188 (2000)). 경색 또는 정상 영역에서의 전도 속도는 20 박동에 대해 280 ms의 사이클 길이에서 포인트 자극(point stimulation) 하에서 측정되었다. 국부적인 전도 속도 벡터는 그것의 시간적 파장의 활동 시간 내의 각 픽셀의 7개의 가장 가까운 픽셀들로부터 추정하였다(Efimov, I.R., et al., Circulation 90, 1469-1480 (1994)). 국부적인 CV의 분포는 근접한 곳, 전층활동(transmural activity)에 의해 야기되는 운동 인공물(motion artifact) 및 파장 간의 충돌과 같은 고빈도의 성분들을 가질 수 있다. 국부적인 CV의 SNR(신호 대 노이즈 비율)을 개선하기 위해, 국부적인 CV는 7 x 7 nearest neighbor gaussian convolution를 이용하여 공간적으로 여과하였으며, 그 크기의 극한 변화를 로그-변환을 이용하여 억제하였다. 상승 시간은 활동 전위로부터의 10% 내지 90%의 활동-전위 진폭으로부터 측정하였으며, 1ms의 averaging kernel로 저역-통과 필터링을 하였다 (low-pass filtered).
면역형광법
MSCs의 면역세포화학적 특성화는 아래와 같이 검증되었다. 세포를 4-웰 슬라이드 챔버에서 배양하고, PBS로 세척하고, 1% 파라포름알데히드 용액으로 10분 동안 인큐베이션하였다. 그런 다음, 세포를 PBS로 2회 세척하고, 0.1% Triton X-100로 7분 동안 침투시켰다. 이 후, 세포들을 블로킹 용액(2% 소 혈청 알부민 및 10% 말 혈청을 함유한 PBS)으로 1시간 동안 블로킹시키고, 2차 항체로서 사용된 FITC-컨쥬게이트된 마우스, 래빗 및 염소 항체(Jackson Immunoresearch Laboratories)를 결합시켰다. 그런 다음 공초점 현미경(Carl Zeiss)으로 그들을 탐지하였다.
샌드위치 ELISA
100 ng의 포획항체(Capture antibody)를 폴리비닐클로라이드(PVC) 마이크로타이터 고결합성 플레이트(96 웰)에 4℃에서, 밤새 결합시켰다. 플레이트를 PBS로 2회 세척하고, 5% BSA를 함유한 PBS로 포획항체를 습윤 대기 하 실온에서 밤새 블로킹시켰다. PBS로 플레이트를 2회 세척한 후, 5 ug의 세포분해물을 블로킹 버퍼와 함께 각 웰에 가하고, 플레이트를 37℃에서 1.5시간 동안 인큐베이션하였다. 플레이트를 0.02% tween-20을 함유한 PBS로 4회 세척하였다. 탐지 항체(detector antibody)를 가한 후, 플레이트를 습윤 대기하 실온에서 2시간 동안 인큐베이션하고, 0.02% tween-20을 함유한 PBS로 4회 세척하였다. 그런 다음, 플레이트를 3% BSA를 이용해 1:1000으로 희석된 퍼옥시다아제가 컨쥬게이션되어 있는 2차 항체로 다시 37℃에서 1.5 시간 동안 인큐베이션하고, 또한 0.02% tween-20을 함유한 PBS로 4회 세척하였다. 최종적으로, 100 ㎕의 테트라메틸벤지딘(TMB) 용액(Sigma)을 기질(substrate)로서 부었다. 10분 후, 25 ㎕의 0.1 M H2SO4을 가하여 반응을 중지시킨 후, 즉시 ELISA 플레이트 리더기(Bio-Rad)로 450 nm에서의 흡광도를 측정하였다.
웨스턴 블롯
세포들을 PBS로 1회 세척하고, 20 mM Tris (pH 7.5), 150 mM NaCl, 1 mM Na2-EDTA, 1 mM EGTA, 1% Triton, 2.5 mM 소듐 피로포스페이트, 1 mM β-글리세로포스페이트, 1 mM Na3VO4, 1 mg/ml 류펩틴 및 1 mM 페닐메틸설포닐 플루오라이드를 함유하는 용해 버퍼(Cell Signaling Technology)로 약 20분 동안 용해시켰다. 세포용해물을 12,000 g로 10분 동안 원심분리시키고, 상층액을 얻었다. 단백질 농도는 Bradford Protein Assay Kit (Bio-Rad)를 이용하여 측정하였다. 정량적인 단백질은 12% 소듐 도데실 설페이트-폴리아크릴아마이드 겔로 분리하고, 폴리비닐리덴 디플루오라이드 멤브레인(Millipore)으로 이동시켰다. 5% 무지방 분유를 함유한 Tris-buffered saline-Tween 20 (TBS-T, 0.1% Tween 20)으로 멤브레인을 블로킹 한 후, 멤브레인을 TBS-T로 2회 세척하고, 1차 항체 (ERK and p-ERK; Santa Cruz Biotechnology)와 함께 4℃에서 밤새 인큐베이션하였다. 멤브레인을 TBS-T로 10분 동안 3회 세척한 다음, 호오스래디쉬 퍼옥시다아제-컨쥬게이트된 2차 항체로 실온에서 1시간 동안 인큐베이션하였다. 광범위한 세척 후, 밴드를 향상된 화학발광 시약(GE Healthcare Life Sciences)으로 탐지하였다. 밴드 강도는 Image J 1.40g software (NIH)를 이용하여 정량하였다.
RT-PCR
다양한 유전자의 발현 수준은 역전사 중합효소 연쇄 반응(RT-PCR)에 의해 분석하였다. 전체 RNA를 60 mm 플레이트 당 500 ㎕의 Tri-reagent (Sigma)로 추출하였다. Tri-reagent 위에 100 ㎕의 클로로포름을 붓고 약 10초 동안 샘플을 볼텍싱하였다. 그런 다음, 샘플을 12,000 g로 4℃에서 15분 동안 원심분리하였다. 이 후, 튜브에 3개의 층이 나타났고, 맨 위의 투명한 층을 새로운 튜브로 모았다. 그런 다음, 250 ㎕의 2-프로판올을 상기 샘플에 가하고, 혼합물을 다시 약 30초 동안 볼텍싱하였다. 그리고 나서 원심분리를 12,000 g로 4℃에서 10분 동안 수행하였다. 다음으로, 상층액을 버리고, 펠렛을 에틸피로카보네이트 (DEPC; Sigma) water에 희석된 75% 에탄올 (Duksan)으로 세척하였다. 이 시점에서 원심분리를 7,500 g로 4℃에서 5분 동안 수행하고, 펠렛을 실온에서 약 7분 동안 건조시켰다. 최종적으로 뉴클라아제가 없는 30 ㎕의 물을 가했다. RNA의 질과 양은 DU 640 spectrophotometer (Effendorf)를 이용하여 OD260/OD280 값으로 측정하였다. 상보적인 DNA를 제조자의 지시에 따라 Reverse Transcription System (Promega)으로 생성하였다. 1㎍의 전체 RNA를 5 mmol/L MgCl2, 10 mmol/L Tris-HCl (pH 9.0 at 25℃), 50 mmol/L KCl, 0.1% Triton X-100, 1 mmol/L dNTP, 20 U RNase 저해제, 0.5 ㎍ oligo-(dT)15 프라이머, 10 U의 역전사효소를 함유하는 20 ㎕의 반응 혼합물(reaction mix)로 42℃에서 15분 동안 역전시키고, 99℃에서 5분 동안 가열하여 반응을 종결시켰다. PCR 믹스는 총 부피 25 ㎕로 200 mM Tri-HCl (pH 8.8), 100 mM KCl, 1.5 mmol/L MgSO4, 1% Triton X-100, 0.1 mM dNTP 및 1.25 U의 Taq 폴리머라아제와 함께 10 pmol/㎕의 각각의 프라이머를 함유하고 있다. PCR 조건은 다음과 같았다: 94℃에서 3분간 denaturing을 1 사이클, 94℃에서 30초간 denaturation 35 사이클, 49℃에서 30초간 annealing, 그리고 72℃에서 2분간 extension, 72℃에서 10분간 최종 extension. RT-PCR 산물을 1.2% 아가로즈 겔에서 전기영동으로 분리하고, 에티듐 브로마이드로 염색하여 가시화하였다.
사이토카인의 탐지
세포가 주입된 영역 내의 사이토카인의 발현 수준을 rat cytokine array 3.1 (RayBiotech)을 이용하여 제조자의 지시에 따라 측정하였다. 조직으로부터 단백질을 추출하기 위해 1 x Cell Lysis Buffer를 사용하였다. 추출 후, 샘플을 원심분리하여, 상층액을 저장하였다. 단백질 농도를 측정하고, H2O를 포함한 2 x Cell Lysis Buffer로 희석하였다. 샘플에 2 ml 1 x Blocking Buffer를 가하고, 실온에서 30분 동안 인큐베이션하여 멤브레인을 블로킹하였다. 멤브레인을 1 ml의 샘플과 함께 실온에서 1-2시간 동안 인큐베이션하고, 각 용기로부터 옮기고, 쉐이킹하면서 2 ml의 1X Wash Buffer I으로 실온에서 5분 동안 3회 세척하였다. 그런 다음 블롯을 쉐이킹하면서 2 ml의 1 x Wash Buffer II로 실온에서 5분 동안 2회 세척하였다. 100 ㎕의 비오틴-컨쥬게이션된 항-사이토카인을 1 x 블로킹 버퍼와 부드럽게 혼합하고, 1-2시간 동안 실온에서 인큐베이션하였다. Wash Buffer I 및 II를 블롯으로 5회 붓고, 1,000 배 희석된 HRP-컨쥬게이션된 스트렙타비딘을 각 멤브레인에 실온에서 2시간 동안 주입하였다. Wash Buffer I 및 II를 블롯에 5회 붓고, 샘플을 250 ㎕의 1 x Detection Buffer C 및 250 ㎕의 1 x Detection Buffer D와 함께 실온에서 2분 동안 가하였다. 최종적으로, 어레이를 x-선 필름에 노출시키고, 화학발광 이미징 시스템을 이용하여 신호를 탐지하였다.
Surface ECG
surface 6-lead ECG (lead II는 도면에 도시)를 대조군, sham, MSCs, 및 CPMs이 이식된 랫트에서 5분 동안 얻었다. R-R 간격, PR 간격, QRS 지속시간, QT 및 보정된 QT 지속시간을 이전에 기술한 바와 같이 연속적인 평가에 의해 측정하였다. 모든 데이터는 Bard stamp amplifier System (C.R. Bard Inc.)을 이용하여 1 ksps (kilo-sample per second)에서 획득하였다.
이소프로테레놀의 전신 투여
2mg/kg의 이소프로테레놀을 무선 ECG 측정기 부착 후 복강내로 주사하였다. 주사 직후 15분 동안 조기 심실 수축의 발생 회수를 계산하였다.
좌심실 카테터 삽입
침범적인 혈류역학적 조사를 위해, 좌심실 카테터 삽입을 수술 7일 내지 11일째에 수행하였다. 졸레틸(20 mg/kg) 및 자일라진(5 mg/kg) 마취하에서 Millar Mikro-tip 2 F pressure transducer (model SPR-838, Millar Instruments, Houston, TX)를 우측 경동맥을 통해 좌심실 내로 삽입하였다. 맹검 조사자에 의해 실시간 압력-부피 루프(Real time pressure-volume loops)를 기록시켰으며, 모든 데이터는 PVAN 3.5 software (Millar)을 이용하여 오프라인으로 분석하였다.
통계학적 분석
연속적인 변수에 대한 데이터는 평균±SE로 표현하고, 카테고리별 변수에 대해서는 비율로 표현했다. 두 군에 대한 통계학적 분석은 Student's t-test에 의해 수행했다. 둘 이상의 군에 대한 시험은 bonferroni test 를 이용하는 one-way ANOVA 에 의해 수행하였다. 카테고리별 변수에 대해서는 hi-square test 또는 Fisher exact test를 수행하였다. 생존율은 log-rank test를 포함하는 the Kaplan-Meier method에 의해 수행하였다. P value <0.05로 유의성을 고려하였다.
[비교실험예 1] 경색된 심근에서의 MSCs 이식의 효과 확인
심근세포로의 분화 유도 과정을 거치지 않은 순수한 MSCs를 경색된 심근에 이식한 효과를 다각도로 조사하였다.
(1) 급사 발생율의 조사
먼저 MSCs를 이식한 군의 급사 발생율을 조사하였다. 도 1은 손상 및 치료 후 11일 동안의 대조군(n=12), sham-주입된 랫트(n=27), 및 MSCs-이식된 랫트(n=19)에서의 급사 발생율을 보여주는 그래프이다. 도 1에서 볼 수 있는 바와 같이, 중간엽 줄기세포의 이식이 급작스런 사망의 발생을 줄일 수는 있지만 생존율의 개선에 있어서는 명백히 차선책일 수밖에 없음을 발견했다.
(2) 면역학적 분석
다음으로, MSCs-이식된 심근을 상기 기술된 면역학적 분석을 통해 조사하였다. 도2는 심근 조직의 생존력을 평가하고 심근 경색 크기를 측정하기 위한 TTC 염색의 결과를 보여준다. 도 2에서 확인할 수 있는 바와 같이, sham-주입 영역에 비해 중간엽 줄기세포가 이식된 영역에서 경색의 크기가 줄어듦을 알 수 있다. 도 3은 세포 이식체 내의 간질 섬유화를 탐지하기 위한 Masson's trichrome 염색의 결과를 보여준다. sham-주입 영역에 비해 중간엽 줄기세포가 이식된 영역에서 re-entry 를 촉진시키는 생존한 심근과 섞인 섬유화의 정도가 감소하였음을 알 수 있다. 또한, 도 4는 세포자멸사 세포 수의 측정을 위한 TUNEL 어세이의 결과를 보여준다. sham-주입 영역에 비해 중간엽 줄기세포가 이식된 영역에서 허혈에 의해 유도된 세포자멸성 세포의 수가 유의하게 감소하였음을 알 수 있다.
이들 결과는 밀집한 섬유증이 세포의 재생에 대한 엄청난 물리적 장벽이 되며(Segers, V.F. & Lee, R.T. Nature 451, 937-942 (2008)), re-entry 를 촉진하는 직접적인 파장 전달을 방해하는 전기적 장벽으로 나타난다(de Bakker, J.M., et al. Circulation 88, 915-926 (1993); Anderson, K.P., et al. J Clin Invest 92, 122-140 (1993))는 보고들에 의해 뒷받침된다.
또한, 과도한 염증은 비균일한 전도 및 지연된 재분극을 야기할 수 있을 뿐만 아니라(Hoffman, B.F., et al., J Cardiovasc Electrophysiol 8, 679-687 (1997); Ishii, Y., et al. Circulation 111, 2881-2888 (2005).), 전구 세포들의 보충 및 생존의 방해를 야기할 수 있다(Poss, K.D., Wilson, L.G. & Keating, M.T. Heart regeneration in zebrafish. Science 298, 2188-2190 (2002))고 알려져 있다. 따라서, 중간엽 줄기세포의 이식에 따른 염증성 세포 침윤물의 변화를 추가로 조사하였다. 도 5는 염증성 세포 침윤물의 측정을 위한 H & E 염색 결과를 보여준다. 중간엽 줄기세포-주입군이 변연 부위에서 sham-주입된 군에 비해 염증성 세포 침윤물이 더 적은 것을 발견하였다.
(3) 심장초음파 분석
중간엽 줄기세포의 이식에 따른 심장의 기능적 개선 여부를 경흉부 심장초음파(transthoracic echocardiography)를 통해 조사하였다. 그 결과, 아래 표 1에서 볼 수 있는 바와 같이, 경흉부 심장초음파에 의해 측정된 수축기 수행능 및 심치수가 중간엽 줄기세포가 주입된 래트에서 개선되었음을 확인하였다.
표 1
Figure PCTKR2011006020-appb-T000001
약어: LVEDD(left ventricular end diastolic diameter, 좌심실이완기말직경); LVESD(left ventricular end systolic diameter, 좌심실수축기말직경); FS(fractional shortening, 좌심실 단축률); LVEDV(left ventricular end diastolic volume, 좌심실이완기말용적); LVESV(left ventricular end systolic volume, 좌심실수축기말용적); LVEF(left ventricular ejection fraction, 좌심실박출계수).
그러나, 이러한 면역학적 및 기능적 개선에도 불구하고, 이식 7일 내지 11일 후의 대부분의 이식된 중간엽 줄기세포가 여전히 cardiac troponin T (cTnT)를 발현하지 않음을 발견하였는데, 이는 그들이 여전히 심근세포로 분화되지 않았으며, 따라서 그들이 전류 싱크로서 작용함으로써 회귀성 부정맥을 유도할 수 있음을 제시한다.
(4) 전기적 안정성 분석
따라서, 손상 및 치료 7일 내지 11일 후 대조군인 sham-주입된 심장 및 줄기세포-이식된 심장에서, Langendorff 관류 및 전기적 약점 테스트를 이용한 광학적 맵핑에 의해 경색된 심장에서 중간엽 줄기세포가 전기적 안정성에 미치는 효과에 대해 추가로 평가하였다.
도 6은 경색된 심장의 실제 이미지(좌측 패널)를 보여준다. 경색된 영역은 청색성 색상 변화에 의해 확연하게 확인되며, 느린 전파가 발생하는 변연부(2)는 활동성 맵으로부터 확인할 수 있다(중간 및 우측 패널). 도 7은 대조군, sham-주입된, MSCs-, 및 CPMs-이식된 심장에서의 활동 전위를 보여준다. 동방결절 리듬 및 전기적 자극 하에서, 심근경색의 부정맥발생의 메커니즘으로서 특징되는 경색된 심근의 변연부로부터의 빈번한 자발적인 중심 활동(frequent spontaneous focal activity)의 존재와는 달리, 이소성 박동은 중간엽 줄기세포가 이식된 심장에서 더 억제되었다 (sham-이식된 군 46%, n=13, 중간엽 줄기세포 이식된 군 22%, n=9). 게다가, 도 8에서 볼 수 있는 바와 같이, 중간엽 줄기세포가 이식된 구역으로부터 기록된 활동 전위 지속시간(action potential durations, APDs)은 미-경색된 영역과 유사한 반면(MSCs-이식된 심장에서 101.9±14.9 ms vs.103.5±14.1 ms, 그리고 sham-주입된 심장에서 92±7.4 mm/ms vs. 93.2±7.1 mm/ms, p>0.05), sham-operated heart의 변연부(border zone)는 정상 구역과 비교하여 단축된 APDs를 나타냈다(93.9±16.2 ms vs.128.8±18 ms, *p<0.05).
그러나, 도 9에서 볼 수 있는 바와 같이, 중간엽 줄기세포가 이식된 심장에서, APDs는 경색 구역으로 전파되긴 하지만 비 균일하며 느린 전파를 나타냈는데, 이는 안정한 회귀 순환 운동(circuit movement)을 이끌어 내기 위해 요구되는 조건들이 제거되지 않았음을 나타낸다(Takahashi, T., et al. Heart Rhythm 1, 451-459 (2004)). 도 10은 sham-주입된 심장 및 MSCs 이식된 심장에서의 국부 전도 속도(CV)를 보여주는 그래프이다. sham-주입된 심장에서 미-경색된 영역과 비교하여 변연부에서 측정된 CV는 감소하였다 (n=8, 0.14±0.1mm/ms vs. 0.91±0.07 mm/ms, ***p<0.0001). MSC 이식된 병변에서는 이보다 3배 이상 증가되어 있긴 하나, MSC 이식된 병변의 CV는 정상부위와 비교하여 여전히 침체되어 있다 (n=7, 0.45±0.1mm/ms vs. 0.91±0.1mm/ms, **p<0.001). 도 10으로부터 확인할 수 있는 바와 같이, 활동 전위의 활성화 시점으로부터의 국부적인 전도 속도 (CV)는 다른 미-경색된 영역과 비교하여 중간엽 줄기세포가 이식된 영역에서 여전히 낮았는데, 이는 중간엽 줄기세포의 자극에 반응하지 않는 본성과 전류 싱크로서 작용하는 그들의 능력에 기인하는 것일 수 있음을 제시한다(Chang, M.G., et al. Circulation 113, 1832-1841 (2006); Beeres, S.L., et al. J Am Coll Cardiol 46, 1943-1952 (2005)).
도 11은 초고속 조율 프로토콜(burst pacing protocol)에 따른 전기적 취약성 테스트의 결과를 보여준다. 도 11의 좌측 패널에서는 정상, sham-주입군 및 MSCs-이식군의 심실성 빈맥(VT) 또는 심실 세동(VF) 유도성에 대한 그래프를 나타내었다. 대조군(n=12)과 비교하여 sham 주입된 군(n=13)에서 VT 또는 VF 유도에 대해 현저하게 감수성이 증가되어 있다(sham에서 69.2% vs. 대조군에서 0%, p=0.0005). sham 주입군과 비교하여 MSCs (n=9) 이식이 VT 유도성을 감소시키는 경향이 있긴 했지만 (MSCs 이식군에서 44.4% vs. sham 주입군에서 69.2%, p=0.38), 치명적인 심실성 부정맥은 MSCs의 이식 후에도 빈번하게 남아있다 (MSCs 이식군에서 44.4% vs. 대조군에서 0%, p=0.017). Fig 1h의 우측 패널에서는 초고속 조율 프로토콜(burst pacing protocol) 전기적 취약성 엑스 비보 시험에서의 ECG의 대표적인 예들을 보여준다. 220ms의 cycle length (CL)의 급작스러운 자극(burst stimulations)은 sham-operated 심장에서 VT를 유도했다. CL을 단계적으로 90ms까지 감소시키는 동안, VT가 MSC 이식된 심장에서 100ms의 CL에서 쉽게 유도된 반면, 정상 대조군에서는 90ms의 CL에서도 유도되지 않았다. 화살표는 전기적 자극을 나타낸다.
도 12는 MSCs-이식된 부위에서의 심실성 빈맥(VT) 동안의 순차적인 전압도(voltage map)를 보여준다. 나선형 파장을 형성하는 Single re-entry가 천천히 MSCs-주입 영역(적색 동그라미)으로 전파되고(좌측 패널의 상부 도면), MSCs-주입 영역으로 고정됨을 확인할 수 있다(좌측 패널의 하부 도면). 여기에서 흰색 화살표는 파두 전파의 방향을 나타낸다. 우측 패널은 활동 전위를 시각적 레코딩을 보여준다. 이는 전기의 흐름이 MSCs 주입 부위에서 원활하지 않음을 보여주는 결과이다.
[실험예 1] MSCs를 PTK 저해제로 분화유도한 심근성 세포(CPMs)의 특성 확인
본 발명자들은 중간엽 줄기세포를 심근세포로 분화 유도할 수 있는 방법에 대해 지속적으로 연구하고, 심근세포로 분화유도할 수 있는 화합물을 스크리닝하고자 조사한 결과, PTK 저해제인 화합물 #23(N-(3-브로모페닐)-6,7-디에톡시퀴나졸린-4-아민), 즉 화학식 1의 화합물이 중간엽 줄기세포를 심근세포로 분화 유도할 수 있음을 확인할 수 있었다. 도 13은 화합물 #23의 처리 농도에 따라 심근세포로의 분화 정도가 증가함을 보여주는 샌드위치 ELISA의 결과이다. 도 13에서 알 수 있는 바와 같이, PTK 저해제는 투여량 의존적인 방식으로 cardiac troponin T (cTnT)의 발현량을 증가시켜 중간엽 줄기세포의 심근세포로의 분화를 유도하는 것으로 확인되었다.
MSCs는 심장 수복을 위한 다른 줄기세포에 비해 여러가지 잠재적인 이점을 갖긴 하지만, 그들은 여전히 전임상 연구에서 해결되어야 할 몇 가지 과제에 직면해 있다. 유전적 변형을 포함한 MSCs의 전제조건화가 치료적 효능을 증가시키기 위해 수행되었음에도 불구하고, 대부분의 분명한 관심사는 어떻게 이식된 MSCs가 호스트 조직과의 전기기계적 통합을 완성시킬 수 있을지에 대한 것이다. 우리의 결과는 MSCs로부터 유래한 새로운 세포 타입이 이식 후 순수한 MSCs에 의해 야기되는 급사의 차선적 예방을 극복함을 최초로 보여주며, 심근 경색에 대한 세포-기반의 치료법에서 전자기계적 통합을 향상시키기 위한 새로운 전략을 제공한다. 결론적으로, 이식 후 숙주 조직의 전기기계성과의 조화시킬 수 있는 PTK 저해제에 의한 MSCs의 심근세포로의 변형은 경색된 심근에 대한 MSCs의 임상적 적용을 위한 최상의 치료적 전략일 수 있다.

Claims (20)

  1. PTK(Protein Tyrosine Kinase) 저해제를 중간엽 줄기세포에 처리하는 것을 포함하는 중간엽 줄기세포의 심장성 세포로의 분화 유도 방법.
  2. 제1항에 있어서,
    PTK 저해제는 하기 화학식 1의 화합물인 중간엽 줄기세포의 심장성 세포로의 분화 유도 방법:
    [화학식 1]
    Figure PCTKR2011006020-appb-I000003
    상기 식에서,
    R1, R2, R3, R4, R5 및 R6는 각각 독립적으로 H, C1-12알킬, C1-12알콕시, 하이드록시, 카르복시 또는 할로겐 원자이고,
    R7은 C1-12알킬, C1-12알콕시, 하이드록시, 카르복시 및 할로겐 원자로 이루어진 군으로부터 선택되는 하나 이상의 치환체로 치환되거나 비치환된 C6-12아릴이다.
  3. 제2항에 있어서,
    R1, R2, R3, R4, R5 및 R6는 각각 독립적으로 H, C1-4알킬 또는 C1-4알콕시이고,
    R7은 C1-4알킬, C1-4알콕시, 하이드록시, 카르복시 및 할로겐 원자로 이루어진 군으로부터 선택되는 하나 이상의 치환체로 치환되거나 비치환된 페닐인
    중간엽 줄기세포의 심장성 세포로의 분화 유도 방법
  4. 제2항에 있어서,
    R1, R2, R3, R4, R5 및 R6는 각각 독립적으로 H 또는 C1-4알콕시이고,
    R7은 C1-4알킬, C1-4알콕시, 또는 할로겐 원자로 치환되거나 비치환된 페닐인
    중간엽 줄기세포의 심장성 세포로의 분화 유도 방법
  5. 제1항에 있어서,
    PTK 저해제는 N-(3-브로모페닐)-6,7-디에톡시퀴나졸린-4-아민인 중간엽 줄기세포의 심장성 세포로의 분화 유도 방법.
  6. 제1항에 있어서,
    골수, 조직, 배아, 제대혈, 혈액 또는 체액으로부터 얻은 것인 중간엽 줄기세포의 심장성 세포로의 분화 유도 방법.
  7. 제1항에 있어서,
    PTK 저해제의 처리는 중간엽 줄기세포를 PTK 저해제를 포함하는 배지에서 배양함으로써 수행되는 것인 중간엽 줄기세포의 심장성 세포로의 분화 유도 방법.
  8. 제7항에 있어서,
    배양은 5일 내지 15일 동안 수행되는 것인 중간엽 줄기세포의 심장성 세포로의 분화 유도 방법.
  9. 제1항에 있어서,
    심장성 세포는 심근세포 특이적 마커의 발현이 중간엽 줄기세포에 비해 증가되어 있는 것인 중간엽 줄기세포의 심장성 세포로의 분화 유도 방법.
  10. 제9항에 있어서,
    심근세포 특이적 마커는 cTnT(cardiac troponin T), MLC(myosin light chain) 및 MHC(myosin heavy chain)으로 이루어진 군으로부터 선택되는 것인 중간엽 줄기세포의 심장성 세포로의 분화 유도 방법.
  11. 제1항에 있어서,
    심장성 세포는 Cx43(connexin 43)의 발현이 중간엽 줄기세포에 비해 증가되어 있는 것인 중간엽 줄기세포의 심장성 세포로의 분화 유도 방법.
  12. 제1항에 있어서,
    심장성 세포는 Ca2+ 항상성-관련 단백질의 발현이 중간엽 줄기세포에 비해 증가되어 있는 것인 중간엽 줄기세포의 심장성 세포로의 분화 유도 방법.
  13. 제12항에 있어서,
    Ca2+ 항상성-관련 단백질은 SERCA 2a 또는 LTCC인 중간엽 줄기세포의 심장성 세포로의 분화 유도 방법.
  14. PTK(Protein Tyrosine Kinase) 저해제를 포함하는 중간엽 줄기세포의 심장성 세포로의 분화 유도용 조성물.
  15. 제14항에 있어서,
    PTK 저해제는 화학식 1의 화합물인 중간엽 줄기세포의 심장성 세포로의 분화 유도용 조성물:
    [화학식 1]
    Figure PCTKR2011006020-appb-I000004
    상기 식에서,
    R1, R2, R3, R4, R5 및 R6는 각각 독립적으로 H, C1-12알킬, C1-12알콕시, 하이드록시, 카르복시 또는 할로겐 원자이고,
    R7은 C1-12알킬, C1-12알콕시, 하이드록시, 카르복시 및 할로겐 원자로 이루어진 군으로부터 선택되는 하나 이상의 치환체로 치환되거나 비치환된 C6-12아릴이다.
  16. 제15항에 있어서,
    R1, R2, R3, R4, R5 및 R6는 각각 독립적으로 H, C1-4알킬 또는 C1-4알콕시이고,
    R7은 C1-4알킬, C1-4알콕시, 하이드록시, 카르복시 및 할로겐 원자로 이루어진 군으로부터 선택되는 하나 이상의 치환체로 치환되거나 비치환된 페닐인
    중간엽 줄기세포의 심장성 세포로의 분화 유도용 조성물
  17. 제15항에 있어서,
    R1, R2, R3, R4, R5 및 R6는 각각 독립적으로 H 또는 C1-4알콕시이고,
    R7은 C1-4알킬, C1-4알콕시, 또는 할로겐 원자로 치환되거나 비치환된 페닐인
    중간엽 줄기세포의 심장성 세포로의 분화 유도용 조성물
  18. 제14항에 있어서,
    PTK 저해제는 N-(3-브로모페닐)-6,7-디에톡시퀴나졸린-4-아민인 중간엽 줄기세포의 심장성 세포로의 분화 유도용 조성물.
  19. 제1항 내지 제13항 중 어느 한 항에 따른 방법에 의해 중간엽 줄기세포로부터 분화 유도된 심장성 세포를 포함하는 심장질환 치료용 의약 조성물.
  20. 제19항에 있어서,
    심장질환은 심근경색, 심부전 또는 부정맥인 심장질환 치료용 의약 조성물.
PCT/KR2011/006020 2010-09-16 2011-08-17 중간엽 줄기세포의 심장성 세포로의 분화 유도를 위한 단백질 티로신 키나아제 저해제의 용도 WO2012036383A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/822,758 US20130164847A1 (en) 2010-09-16 2011-08-17 Use of a protein tyrosine kinase inhibitor for inducing the differentiation of mesenchymal stem cells into cardiogenic cells
CN2011800446106A CN103140579A (zh) 2010-09-16 2011-08-17 蛋白酪氨酸激酶抑制剂在诱导间充质干细胞向心源性细胞分化中的应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100091189A KR20120029225A (ko) 2010-09-16 2010-09-16 중간엽 줄기세포의 심장성 세포로의 분화 유도를 위한 ptk 저해제의 용도
KR10-2010-0091189 2010-09-16

Publications (2)

Publication Number Publication Date
WO2012036383A2 true WO2012036383A2 (ko) 2012-03-22
WO2012036383A3 WO2012036383A3 (ko) 2012-05-10

Family

ID=45832038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006020 WO2012036383A2 (ko) 2010-09-16 2011-08-17 중간엽 줄기세포의 심장성 세포로의 분화 유도를 위한 단백질 티로신 키나아제 저해제의 용도

Country Status (4)

Country Link
US (1) US20130164847A1 (ko)
KR (1) KR20120029225A (ko)
CN (1) CN103140579A (ko)
WO (1) WO2012036383A2 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101697437B1 (ko) 2015-10-12 2017-01-17 전남대학교병원 중간엽줄기세포의 심근유사세포 분화유도용 아피시딘 함유 조성물

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116840A2 (en) * 2008-03-21 2009-09-24 Industry-Academic Cooperation Foundation, Yonsei University Chemical reagents regulating stem cell fate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116840A2 (en) * 2008-03-21 2009-09-24 Industry-Academic Cooperation Foundation, Yonsei University Chemical reagents regulating stem cell fate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAPTISTA ET AL.: 'Myocardium expression of connexion 43, SERCA2a, and myosin heavy chain isoforms are preserved in nitrofen-induced congenital diaphragmatic hernia rat model' JOURNAL OF PEDIATRIC SURGERY vol. 41, 2006, pages 1532 - 1538 *
HWANG ET AL.: 'Chemicals that modulate stem cell differentiation' PNAS vol. 105, no. 21, 27 May 2008, pages 7467 - 7471 *

Also Published As

Publication number Publication date
KR20120029225A (ko) 2012-03-26
CN103140579A (zh) 2013-06-05
WO2012036383A3 (ko) 2012-05-10
US20130164847A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
Liao et al. Proarrhythmic risk of embryonic stem cell–derived cardiomyocyte transplantation in infarcted myocardium
Mills et al. Stem cell therapy enhances electrical viability in myocardial infarction
Hu et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis
Masuzawa et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury
JP5968442B2 (ja) 心筋梗塞の修復再生を誘導する多能性幹細胞
Zheng et al. Comparison of cardiac stem cells and mesenchymal stem cells transplantation on the cardiac electrophysiology in rats with myocardial infarction
JP6253589B2 (ja) Hmgb1断片を利用した新規心筋梗塞の治療法
US20060110374A1 (en) Method to accelerate stem cell recruitment and homing
Panda et al. Improved conduction and increased cell retention in healed MI using mesenchymal stem cells suspended in alginate hydrogel
Atoui et al. Marrow stromal cells as universal donor cells for myocardial regenerative therapy: their unique immune tolerance
Eun et al. Implanted bone marrow-derived mesenchymal stem cells fail to metabolically stabilize or recover electromechanical function in infarcted hearts
Zheng et al. Improvements of cardiac electrophysiologic stability and ventricular fibrillation threshold in rats with myocardial infarction treated with cardiac stem cells
KR101777414B1 (ko) 줄기세포 및/또는 전구세포의 활성화제
WO2017146468A1 (ko) 줄기세포의 효능 개선을 위한 조성물 및 방법
WO2012036383A2 (ko) 중간엽 줄기세포의 심장성 세포로의 분화 유도를 위한 단백질 티로신 키나아제 저해제의 용도
WO2012036512A2 (ko) 중간엽 줄기세포의 연골 세포로의 분화 유도를 위한 화합물의 용도
WO2018199107A1 (ja) 組織再生を誘導するためのペプチドとその利用
Xiao Cell and gene therapy for arrhythmias: Repair of cardiac conduction damage
US20180201903A1 (en) Method of differentiating mesenchymal stem cells into cardiomyocytes
Law et al. Myoblast therapies constitute a safe and efficacious platform technology of regenerative medicine for the human health industry
WO2014042292A1 (ko) 단백질 인산화효소 c 활성화제를 포함하는 줄기세포 부착 촉진용 조성물 및 줄기세포의 부착 촉진 방법
WO2018088821A1 (ko) 히스톤 탈아세틸화 저해제 및 프라이밍 인자를 유효성분으로 포함하는 줄기세포 활성 촉진용 조성물
KR20110109159A (ko) 중간엽 줄기세포의 심장성 세포로의 분화 유도를 위한 pkc 활성화제의 용도
Neef et al. Dynamic Support Culture of Murine Skeletal Muscle‐Derived Stem Cells Improves Their Cardiogenic Potential In Vitro
RU2773055C2 (ru) Пептид для индукции регенерации ткани и его применение

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044610.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825343

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13822758

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825343

Country of ref document: EP

Kind code of ref document: A2