WO2012036033A1 - Planetary gear device - Google Patents

Planetary gear device Download PDF

Info

Publication number
WO2012036033A1
WO2012036033A1 PCT/JP2011/070331 JP2011070331W WO2012036033A1 WO 2012036033 A1 WO2012036033 A1 WO 2012036033A1 JP 2011070331 W JP2011070331 W JP 2011070331W WO 2012036033 A1 WO2012036033 A1 WO 2012036033A1
Authority
WO
WIPO (PCT)
Prior art keywords
planetary gear
gear
planetary
elastic ring
carrier
Prior art date
Application number
PCT/JP2011/070331
Other languages
French (fr)
Japanese (ja)
Inventor
酒井 俊行
Original Assignee
アイシン精機 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機 株式会社 filed Critical アイシン精機 株式会社
Publication of WO2012036033A1 publication Critical patent/WO2012036033A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/2809Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels
    • F16H1/2836Toothed gearings for conveying rotary motion with gears having orbital motion with means for equalising the distribution of load on the planet-wheels by allowing limited movement of the planets relative to the planet carrier or by using free floating planets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/2863Arrangements for adjusting or for taking-up backlash

Definitions

  • the present invention relates to a planetary gear device.
  • the planetary gear device is used in a wide range of fields because the input shaft and the output shaft can be arranged on the same coaxial line, a large reduction ratio can be obtained, and a large torque can be transmitted.
  • a plurality of planetary gears have a structure that is disadvantageous to sound, such as taking a larger backlash from the accuracy limit of the gear teeth and shaft, etc. due to the structure that revolves while rotating by rotating with the sun gear and the internal gear. It has become. For this reason, various devices for suppressing the hitting sound have been proposed (for example, Patent Document 1).
  • the internal gear is divided into two, the two divided gears are connected by a tension coil spring, and the two split gears are pulled together by the elastic force of the coil spring.
  • the two split gears maintain the contact surface pressure of each tooth surface constant in meshing between the internal gear and the planetary gear and meshing between the planetary gear and the sun gear by the elastic force of the tension coil spring. I try to suppress the sound.
  • the hitting prevention structure of the planetary gear device has to divide each gear, which increases the number of parts and makes the structure more complicated, requiring much labor for assembly.
  • an object of the present invention is to provide a planetary gear device that has a low number of parts, has a simpler structure, and is easy to assemble and excellent in silent performance.
  • a planetary gear device in one aspect of the present invention, includes a sun gear having a central axis, and four planetary gears connected and supported at equal intervals in the circumferential direction by two carriers. There are two planetary gears in one set, and the two planetary gears in each set face each other across the sun gear, and each planetary gear is supported by a support shaft, and four planetary gears and four The planetary gear support shafts are integrally connected in the circumferential direction around the sun gear, and the support shafts of the first planetary gears of the first set opposite to each other with the sun gear interposed therebetween are connected to the internal gear and the sun gear.
  • the elastic force is applied in the direction of either the internal gear or the sun gear to the support shafts of the second planetary gears of the second set that are opposed to each other with the sun gear sandwiched between them.
  • a planetary gear device provided with an elastic ring for imparting.
  • the elastic ring is configured such that the support shafts of the two planetary gears of the first set facing each other with the sun gear interposed therebetween are disposed on either the internal gear or the sun gear, and The support shafts of the second planetary gears of the second set facing each other with the gears interposed therebetween are each given elastic force to the other of the internal gear and the sun gear. Accordingly, the planetary gears facing each other across the sun gear are pressed against the internal teeth of the internal gear and the external teeth of the sun gear, respectively, without rattling, and a plurality of simultaneous meshing of the planetary gears due to backlash. Rotates quietly without any humming. As a result, the planetary gear device has an excellent silent performance with a small number of parts, a simple structure, and easy assembly.
  • the elastic ring is an elliptical elastic ring having a major axis and a minor axis, and the elastic ring is on the major axis line across the intersection where the major axis and the minor axis intersect, and the diameter of the elastic ring
  • a pair of first bearing holes at two positions at the center of the width in the direction and a pair of second bearings at the two positions on the short diameter line across the intersection and at the center of the radial width of the elastic ring A pair of first bearing holes, a first set of two planetary gear support shafts, and a pair of second bearing holes of a second set of two planetary gear support shafts, respectively. Connect with elastic deformation.
  • the support shaft of the planetary gear that is penetrated and supported by the first bearing hole of the elastic ring is elastic in the direction of the internal gear.
  • a force is applied, and the support shaft of the planetary gear that is supported through the second bearing hole of the elastic ring is given an elastic force in the direction of the sun gear.
  • the two planetary gears of the first set facing each other across the sun gear are pressed against the internal teeth of the internal gear without rattling, and the second planet gears facing each other across the sun gear The two planetary gears in the set are pressed against the external teeth of the sun gear without rattling.
  • the elastic ring is a perfect circular elastic ring, and the elastic ring is on a first line passing through the central point of the elastic ring and at an equal first distance across the central point.
  • a pair of second bearing holes are provided at two positions of the elastic ring at a distance, and the support shafts of the first set of two planetary gears are provided in the pair of first bearing holes, and the second bearing holes are provided in the second pair.
  • the support shafts of the two planetary gears in the set are connected by being elastically deformed.
  • the support shaft of the planetary gear that is supported by the first bearing hole of the elastic ring is elastic in the direction of the internal gear.
  • a force is applied, and the support shaft of the planetary gear that is supported through the second bearing hole of the elastic ring is given an elastic force in the direction of the sun gear.
  • the two planetary gears of the first set facing each other across the sun gear are pressed against the internal teeth of the internal gear without rattling, and the second planet gears facing each other across the sun gear The two planetary gears in the set are pressed against the external teeth of the sun gear without rattling.
  • each of the support shafts of the four planetary gears has a first shaft portion and a second shaft portion
  • the two carriers are the first shafts of the support shafts of the four planetary gears.
  • the second shaft portions of the support shafts of the four planetary gears are connected to each other by being elastically deformed and arranged on the two carriers.
  • the support shaft of the planetary gear supported through the first bearing hole is given an elastic force in the direction of the internal gear with the first carrier as a fulcrum. Further, the support shaft of the planetary gear supported through the second bearing hole of the elastic ring is given an elastic force in the direction of the sun gear with the first carrier as a fulcrum.
  • the elastic ring is composed of the two carriers that integrally connect the support shafts of the four planetary gears in the circumferential direction with the sun gear in the circumferential direction.
  • the support shaft of the planetary gear that is supported through the first bearing hole of the carrier has an elastic force in the direction of the internal gear.
  • the support shaft of the planetary gear, which is supported through the second bearing hole of the carrier is given an elastic force in the direction of the sun gear.
  • the two planetary gears of the first set facing each other across the sun gear are pressed against the internal teeth of the internal gear without rattling, and the second planet gears facing each other across the sun gear
  • the two planetary gears in the set are pressed against the external teeth of the sun gear without rattling.
  • the bearing hole formed in the first carrier has a circular cross section
  • the bearing hole formed in the second carrier is a long hole in the radial direction centered on the central axis of the planetary gear device. is there.
  • the narrow slot of the bearing slot formed in the second carrier matches the diameter of the support shaft, and the wide interval is longer than the diameter of the support shaft.
  • the second carrier can support the support shaft of each planetary gear so as to be rotatable within the bearing slot, and can bias the support shaft in the radial direction along the bearing slot.
  • the shape of the bearing hole formed in the carrier penetrating and supporting the support shaft protruding from one side of the planetary gear is formed so that the inner diameter thereof is expanded toward the planetary gear.
  • the shaft when the shaft is rotated by the elastic ring with the bearing hole as a fulcrum, the shaft can be easily rotated.
  • an internal gear, a sun gear, four planetary gears, and a carrier are arranged in a cylindrical gear case.
  • a sun gear, four planet gears, and a carrier are disposed in the internal gear.
  • FIG. 1 is an overall perspective view of a planetary gear device according to a first embodiment.
  • the front view which shows the state by which the planetary gear was attached to the 1st carrier of 1st Embodiment.
  • the front view which shows the state by which the planetary gear was attached to the 2nd carrier of 1st Embodiment.
  • FIG. 6 is a main part cross-sectional view for explaining another example of the first carrier.
  • a planetary gear device 1 includes an internal gear 10, a sun gear 20, four planetary gears 30, first and second carriers 40 and 50, an elastic ring, in a cylindrical gear case 2. 60.
  • Internal gear 10 The internal gear 10 is made of synthetic resin, is formed in a cylindrical shape, and an internal tooth 11 is formed on the inner peripheral surface thereof.
  • the internal gear 10 is disposed so that its outer peripheral surface is slidable with respect to the inner peripheral surface of the gear case 2 with respect to the synthetic resin gear case 2 formed in a cylindrical shape.
  • the central axis of the internal gear 10 coincides with the gear case 2, i.e., the central axis C ⁇ b> 1 of the planetary gear device 1, and the internal gear 10 is accommodated in the gear case 2 so as to be rotatable about the central axis C ⁇ b> 1.
  • Sun gear 20 The sun gear 20 is a spur gear made of synthetic resin having outer teeth 21 formed on the outer peripheral surface, and is disposed at the center position of the internal gear 10. Specifically, the sun gear 20 is rotatably arranged such that the center axis of the rotation shaft 22 coincides with the center axis C1 of the planetary gear device 1.
  • Planetary gear 30 The four planetary gears 30 are synthetic resin spur gears having outer teeth 31 formed on the outer peripheral surface thereof, and are respectively disposed between the internal gear 10 and the sun gear 20.
  • the outer teeth 31 of the planetary gears 30 mesh with the inner teeth 11 of the inner gear 10 and the outer teeth 21 of the sun gear 20.
  • the four planetary gears 30 are in a set of two, and the two planetary gears 30 of the set are arranged opposite to each other with the sun gear 20 in between (see FIGS. 3 and 4).
  • Each of the two planetary gears 30 in the first set is disposed at an interval of 90 degrees with respect to the center axis of the sun gear 20 with respect to the two planetary gears 30 in the second set. Yes. That is, the straight line connecting the two planetary gears 30 in the first set is substantially perpendicular to the straight line connecting the two planetary gears 30 in the second set.
  • Each of the four planetary gears 30 has a metal shaft 33 penetrating at the center thereof, and is supported so as to be rotatable in the radial direction and immovable in the thrust direction with respect to the shaft 33. Therefore, the central axis of the shaft 33 coincides with the central axis of the planetary gear 30.
  • first shaft portion 33 a the shaft portion protruding from the first side (first carrier 40 side) of the planetary gear 30 is referred to as a first shaft portion 33 a, and the second side (second carrier 50).
  • second shaft portion 33b The shaft portion protruding from the side) is referred to as a second shaft portion 33b.
  • the two planetary gears 30 of the first set and the two planetary gears 30 of the second set are particularly distinguished and described, for convenience of explanation, the two planetary gears 30 of the first set are described.
  • the code is expressed as “30A”
  • the code of the second planetary gear 30 in the second set is expressed as “30B”.
  • First carrier 40 As shown in FIG. 3, the first shaft portion 33a of the shaft 33 protruding from the first side of each planetary gear 30 penetrates and supports the bearing holes 41 formed in the first carrier 40 made of an annular synthetic resin. Has been.
  • Each bearing hole 41 formed in the first carrier 40 has a circular cross section, and rotatably supports the first shaft portion 33a. Therefore, the first carrier 40 supports each planetary gear 30 so as to be rotatable about the central axis of the first shaft portion 33a (the central axis of the planetary gear 30).
  • first carrier 40 holds the first shaft portions 33a (the planetary gears 30) of the shafts 33 at equal intervals of 90 ° in the circumferential direction around the central axis of the sun gear 20.
  • Second carrier 50 As shown in FIG. 4, the second shaft portion 33 b of the shaft 33 protruding from the second side of each planetary gear 30 passes through a bearing slot 51 formed in the second carrier 50 made of an annular synthetic resin. It is supported.
  • each bearing slot 51 formed in the second carrier 50 is a slot that is long in the radial direction centered on the central axis C ⁇ b> 1 of the planetary gear device 1, and has a width thereof.
  • the narrow interval coincides with the diameter of the shaft 33, and the wide interval is longer than the diameter of the shaft 33.
  • the second carrier 50 supports the second shaft portion 33 b of the shaft 33 protruding from the second side of each planetary gear 30 so as to be rotatable in the bearing elongated hole 51, and also along the bearing elongated hole 51.
  • the biaxial portion 33b can be biased in the radial direction.
  • the second carrier 50 has the second shaft portion 33b of the shaft 33 protruding from the second side of each planetary gear 30 at an equal interval of 90 ° with respect to the circumferential direction around the central axis C1 of the planetary gear device 1. Hold on.
  • Elastic ring 60 The second shaft portion 33 b of each shaft 33 protruding from each bearing elongated hole 51 formed in the second carrier 50 penetrates either the first bearing hole 61 or the second bearing hole 62 formed in the elastic ring 60. It is supported.
  • the first bearing hole 61 and the second bearing hole 62 have a circular cross section and support the second shaft portion 33b in a rotatable manner.
  • the elastic ring 60 is made of synthetic resin. As shown in FIG. 7, the elastic ring 60 has an elliptical outer shape when no external force is applied, and the central axis perpendicular to the intersection point P ⁇ b> 1 where the major axis and the minor axis intersect is the second elastic ring 60. When the shaft portion 33b is supported through, it coincides with the central axis C1 of the planetary gear device 1.
  • a line passing through the center position of the elastic ring 60 in the width direction (radial direction centering on the intersection P1) is referred to as an annular line Lz.
  • the elliptical elastic ring 60 is a second shaft portion projecting from the first set of planetary gears 30A at two positions on the long diameter line L1 intersecting the annular line Lz and facing each other across the intersection point P1.
  • a first bearing hole 61 for penetrating and supporting 33b is provided.
  • the elastic ring 60 is a second shaft portion that protrudes from the second set of planetary gears 30B at two positions on the short diameter line L2 intersecting the annular line Lz and facing each other across the intersection point P1.
  • a second bearing hole 62 for penetrating and supporting 33b is provided.
  • the first bearing hole 61 and the second bearing hole 62 have different distances to the intersection point P1. That is, the distance D1 to the intersection P1 of the first bearing hole 61 located on the long diameter line L1 is longer than the distance D2 to the intersection P1 of the second bearing hole 62 located on the short diameter line L2.
  • the second shaft portion 33b of the shaft 33 protruding from the two planetary gears 30A of the first set is passed through the first bearing holes 61 of the elastic ring 60, respectively, and the two planetary gears of the second set are set.
  • the second shaft portion 33b of the shaft 33 protruding from 30B is passed through the second bearing hole 62 of the elastic ring 60, respectively.
  • the first bearing hole 61 of the elastic ring 60 tries to be elastically deformed and restored so that the distance D1 to the intersection P1 is shortened (in the shrinking direction).
  • the second shaft portion 33b of 33 is given an elastic force in a direction away from the intersection P1.
  • the shaft 33 is a planetary gear 30A attached to the shaft 33 by rotating in a direction away from the central axis C1 along the bearing long hole 51 with the first shaft portion 33a as a fulcrum.
  • the portion on the second shaft portion 33 b side of the external teeth 31 that mesh with the 10 internal teeth 11 is pressed against the internal teeth 11 of the internal gear 10.
  • the second bearing hole 62 of the elastic ring 60 tends to be elastically deformed and restored so that the distance D2 to the intersection P1 is increased (in the extending direction).
  • the second shaft portion 33b is given an elastic force in a direction approaching the intersection P1.
  • the shaft 33 is a planetary gear 30B attached to the shaft 33 and rotated in the direction approaching the central axis C1 along the bearing long hole 51 with the first shaft portion 33a as a fulcrum.
  • the portion of the external tooth 31 that meshes with the external tooth 21 on the second shaft portion 33 b side is pressed against the external tooth 21 of the sun gear 20.
  • the two planetary gears 30A of the first set are connected to the internal teeth 11 of the internal gear 10 without the portions of the external teeth 31 on the second shaft portion 33b side being rattled. It will be in the state of being pushed. Further, the second planetary gear 30B of the second set is in a state in which the portion of the outer teeth 31 on the second shaft portion 33b side is pressed against the outer teeth 21 of the sun gear 20 without rattling.
  • the four planetary gears 30 are pressed against the internal teeth 11 of the internal gear 10 or the external teeth 21 of the sun gear 20 by one elliptical elastic ring 60 without rattling. It becomes.
  • the rotation shaft 22 of the sun gear 20 is input to the first carrier 40. It rotates in the same direction as the shaft and at a higher speed.
  • the four planetary gears 30 rattle against the internal teeth 11 of the internal gear 10 or the external teeth 21 of the sun gear 20 by one elliptical elastic ring 60, respectively. Since it rotates from the state where it is pushed and applied without rotation, there is no hitting sound caused by a plurality of simultaneous meshing of the planetary gear 30 due to backlash, and it rotates gently.
  • first and second carriers 40 and 50 include two planetary gears 30 as one set, and the two planetary gears 30 of each set face each other across the central axis C1.
  • the two planetary gears 30A of the first set are spaced 90 degrees from the second planetary gear 30B of the second set about the central axis of the sun gear 20. Arranged.
  • the elastic ring 60 changes from an elliptical shape to a circular shape as shown in FIG. 8, and the first and second carriers 40 and 50 (elastic ring 60) are held in a well-balanced manner, thereby further improving the silent performance.
  • the planetary gear unit 1 is used with the first carrier 40 as the input shaft and the rotation shaft 22 of the sun gear 20 as the output shaft, but the first carrier 40 is used as the output shaft and the rotation shaft 22 of the sun gear 20 is used as the output shaft.
  • the input shaft, the internal gear 10 as an input shaft, the first carrier 40 as an output shaft, the first carrier 40 as an input shaft, and the internal gear 10 as an output shaft may be used.
  • the internal gear 10 may be used as an input shaft, the rotary shaft 22 of the sun gear 20 as an output shaft, the rotary shaft 22 of the sun gear 20 as an input shaft, and the internal gear 10 as an output shaft.
  • the present embodiment is characterized by members that press the four planetary gears 30 against the internal teeth 11 of the internal gear 10 and the external teeth 21 of the sun gear 20, respectively, and these members are elastic rings of the first embodiment. 60.
  • FIG. 9 shows the elastic ring 70 of the present embodiment.
  • the second shaft portion of each shaft 33 protruding from each bearing slot 51 formed in the second carrier 50. 33b is supported through.
  • the elastic ring 70 is made of synthetic resin. As shown in FIG. 9, the outer shape of the elastic ring 70 is a perfect circle when no external force is applied, and the central axis perpendicular to the center point P2 is supported by the elastic ring 70 penetrating each second shaft portion 33b. At the same time as the central axis C1 of the planetary gear unit 1.
  • the elastic ring 70 includes a first bearing hole 61 that penetrates and supports the second shaft portion 33b protruding from the first set of planetary gears 30A at two positions facing each other across the center point P2. Further, the elastic ring 70 is located at two positions opposite to each other with the center point P2 interposed therebetween, and at a distance of 90 ° with respect to the first bearing hole 61 about the center point P2, the second set of planetary gears 30B. 2nd bearing hole 62 which penetrates and supports the 2nd axis part 33b which projected from was provided.
  • the distance between the first bearing hole 61 and the second bearing hole 62 is different from the center point P2. That is, the first bearing hole 61 is formed near the outer surface of the elastic ring 70 and the second bearing hole 62 is formed near the inner surface of the elastic ring 70, and the center of the first bearing hole 61 is formed as in the first embodiment.
  • the distance D1 to the axis is longer than the distance D2 to the center point P2 of the second bearing hole 62.
  • the second shaft portion 33b of the shaft 33 protruding from the two planetary gears 30A of the first set is passed through the first bearing holes 61 of the elastic ring 70, respectively, and the two planetary gears of the second set are set.
  • the second shaft portion 33b of the shaft 33 protruding from 30B is passed through the second bearing hole 62 of the elastic ring 70, respectively.
  • the first bearing hole 61 of the elastic ring 70 is elastically deformed and restored so that the distance D1 to the center point P2 is shortened (in the shrinking direction).
  • the second shaft portion 33b of the shaft 33 is given an elastic force in a direction away from the center point P2.
  • the shaft 33 is a planetary gear 30A attached to the shaft 33 by rotating in a direction away from the center point P2 along the bearing elongated hole 51 with the first shaft portion 33a as a fulcrum.
  • the portion on the second shaft portion 33 b side of the external teeth 31 that mesh with the 10 internal teeth 11 is pressed against the internal teeth 11 of the internal gear 10.
  • the second bearing hole 62 of the elastic ring 70 is elastically deformed and restored so that the distance D2 to the center point P2 becomes longer (in the extending direction).
  • the second shaft portion 33b of 33 is given an elastic force in a direction approaching the center point P2.
  • the shaft 33 is the planetary gear 30B attached to the shaft 33 and rotated in the direction approaching the center point P2 along the bearing elongated hole 51 with the first shaft portion 33a as a fulcrum.
  • the portion of the external tooth 31 that meshes with the external tooth 21 on the second shaft portion 33 b side is pressed against the external tooth 21 of the sun gear 20.
  • the two planetary gears 30A of the first set are connected to the internal teeth 11 of the internal gear 10 without the back teeth of the external teeth 31 on the second shaft portion 33b side. It will be in the state of being pushed. Further, the second planetary gear 30B of the second set is in a state in which the portion of the outer teeth 31 on the second shaft portion 33b side is pressed against the outer teeth 21 of the sun gear 20 without rattling.
  • the four planetary gears 30 are pressed against the internal teeth 11 of the internal gear 10 or the external teeth 21 of the sun gear 20 by one elastic ring 70 without rattling. Therefore, similarly to the first embodiment, the reduction in the number of parts, the structure, and the assembly can be simplified.
  • the four planetary gears 30 are formed by one shape elastic ring 70 at the start of rotation. Rotating from the state of being pressed against the internal teeth 11 of the internal gear 10 or the external teeth 21 of the sun gear 20 without rattling, respectively, is caused by a plurality of simultaneous meshing of the planetary gear 30 due to backlash. It rotates gently without hitting.
  • the circular elastic ring 70 of the present embodiment is the same as the first embodiment by making the distances D1 and D2 to the central axis of the first bearing hole 61 and the second bearing hole 62 different from each other. It has a great effect.
  • Third Embodiment Next, a third embodiment of the planetary gear device of the present invention will be described with reference to FIGS.
  • This embodiment is characterized in that the elastic rings 60 and 70 of the first and second embodiments are omitted, and the functions of the elastic rings 60 and 70 are provided in the first and second carriers.
  • FIG. 11 shows the planetary gear device 1 of the present embodiment
  • FIG. 12 shows the first carrier 80 that penetrates and supports the first shaft portion 33a of the shaft 33 protruding from the first side of each planetary gear 30.
  • These show the 2nd carrier 90 which penetrates and supports the 2nd axial part 33b of the shaft 33 protruded from the 2nd side of each planetary gear 30.
  • the first carrier 80 is made of synthetic resin.
  • the outer shape of the first carrier 80 is elliptical when no external force is applied, and the intersection point P1 where the major axis and minor axis intersect with each other is when the first carrier 80 supports each first shaft portion 33a. This coincides with the central axis C1 of the planetary gear device 1.
  • a line passing through the center position of the first carrier 80 in the width direction (radial direction centering on the intersection P1) is referred to as an annular line Lz.
  • the first carrier 80 having an elliptical shape is a first shaft projecting from the first set of planetary gears 30A at two positions on the long diameter line L1 intersecting the annular line Lz and facing each other across the intersection point P1.
  • a first bearing hole 61 for penetrating and supporting the portion 33a is provided.
  • the first carrier 80 is a first shaft projecting from the second set of planetary gears 30B at two positions on the minor line L2 intersecting the annular line Lz and facing each other across the intersection P1.
  • a second bearing hole 62 for penetrating and supporting the portion 33a is provided.
  • the first bearing hole 61 and the second bearing hole 62 have different distances to the intersection point P1, and the distance to the intersection point P1 of the first bearing hole 61 located on the long diameter line L1. D1 is longer than the distance D2 to the intersection P1 of the second bearing hole 62 located on the short diameter line L2.
  • the first shaft portion 33a of the shaft 33 protruding from the two planetary gears 30A of the first set is passed through the first bearing holes 61 of the first carrier 80, respectively, and two planets of the second set are set.
  • the first shaft portion 33a of the shaft 33 protruding from the gear 30B is passed through the second bearing hole 62 of the first carrier 80, respectively.
  • the first bearing hole 61 of the first carrier 80 is elastically deformed and restored so that the distance D1 to the intersection P1 is shortened (in the shrinking direction).
  • the first shaft portion 33a of the shaft 33 is given an elastic force in a direction away from the central axis C1.
  • the second bearing hole 62 of the first carrier 80 tends to be elastically deformed and restored so that the distance D2 to the intersection P1 becomes longer (in the extending direction).
  • the first shaft portion 33a of 33 is given an elastic force in a direction approaching the central axis C1.
  • FIG. 14 shows a second carrier 90 that penetrates and supports the second shaft portion 33b of the shaft 33 protruding from the second side of each planetary gear 30.
  • the second carrier 90 is made of synthetic resin.
  • the second carrier 90 has an elliptical outer shape that is the same as that of the first carrier 80 in the state where no external force is applied, and the second carrier 90 is connected to the second carrier 90 at each intersection P1 where the major axis and minor axis intersect.
  • the shaft portion 33b When the shaft portion 33b is supported through, it coincides with the central axis C1 of the planetary gear device 1.
  • a line passing through the center position of the second carrier 90 in the width direction (radial direction centering on the intersection P1) is referred to as an annular line Lz.
  • the elliptical second carrier 90 is a second shaft protruding from the first set of planetary gears 30A at two positions on the long diameter line L1 intersecting with the annular line Lz and facing each other across the intersection point P1.
  • a first bearing hole 61 is provided for penetrating and supporting the portion 33b.
  • the second carrier 90 is a second shaft projecting from the second set of planetary gears 30B at two positions on the short diameter line L2 intersecting the annular line Lz and facing each other across the intersection point P1.
  • a second bearing hole 62 is provided for penetrating and supporting the portion 33b.
  • first bearing hole 61 and the second bearing hole 62 are different in distance to the intersection point P1 as in the first carrier 80, and the distance to the intersection point P1 of the first bearing hole 61 located on the long diameter line L1. D1 is longer than the distance D2 to the intersection P1 of the second bearing hole 62 located on the short diameter line L2.
  • the second shaft portion 33b of the shaft 33 protruding from the two planetary gears 30A of the first set is passed through the first bearing holes 61 of the second carrier 90, respectively, and the two planets of the second set are set.
  • the second shaft portion 33b of the shaft 33 protruding from the gear 30B is passed through the second bearing hole 62 of the second carrier 90, respectively.
  • the first bearing hole 61 of the second carrier 90 is elastically deformed and restored so that the distance D1 to the intersection P1 is shortened (in the shrinking direction).
  • the second shaft portion 33b of the shaft 33 is given an elastic force in a direction away from the central axis C1.
  • the second bearing hole 62 of the second carrier 90 tends to be elastically deformed and restored so that the distance D2 to the intersection P1 is increased (in the extending direction), and thus the shaft that is penetrated and supported by the second bearing hole 62.
  • the first shaft portion 33a of 33 is given an elastic force in a direction approaching the central axis C1.
  • the first and second planetary gears 30A are configured such that the first and second carriers 80 and 90 intersect the first and second shaft portions 33a and 33b of the shaft 33 at the same time.
  • the second planetary gear 30B of the second set includes the first and second carriers 80 and 90 that intersect the first and second shaft portions 33a and 33b of the shaft 33 at the same time.
  • the two planetary gears 30A of the first set are pressed against the internal teeth 11 of the internal gear 10 without the entire internal gear 10 side of the external teeth 31 being rattled. It becomes a state. Further, the two planet gears 30B of the second set are in a state of being pressed against the outer teeth 21 of the sun gear 20 without rattling the entire outer teeth 31 of the sun gear 20 side.
  • the four planetary gears 30 are pushed by the first carrier 80 and the second carrier 90 against the internal teeth 11 of the corresponding internal gear 10 or the external teeth 21 of the sun gear 20 without rattling. It will be attached. Therefore, unlike the first and second embodiments, the elastic rings 60 and 70 are unnecessary, and the number of parts can be reduced, and the structure and assembly can be simplified. In addition, since the first carrier 80 and the second carrier 90 have the same shape, they can be shared with each other and parts management is facilitated.
  • the rotary shaft 22 of the sun gear 20 is opposite to the input shaft of the internal gear 10. Rotate at an increased speed in the direction.
  • the four planetary gears 30 are respectively corresponding to the internal teeth 11 of the corresponding internal gear 10 or the external teeth 21 of the sun gear 20 in the first carrier 80 and the second carrier 90, respectively. Since each of them rotates from a state where they are pushed without rattling, they rotate quietly without hitting sound caused by a plurality of simultaneous meshing of the planetary gear 30 due to backlash.
  • the meshing action of the gears wins and the centering action works, and the inclination of the shaft 33 of the planetary gear 30 by the first and second carriers 80 and 90 is increased. And the same axis rotation as a normal planetary gear.
  • the first and second carriers 80 and 90 are changed from the elliptical shape to the circular shapes shown in FIGS. 13 and 15, respectively, and the first and second carriers 80 and 90 are held in a well-balanced manner to further improve the silent performance.
  • the planetary gear device 1 is used with the internal gear 10 as the input shaft and the rotating shaft 22 of the sun gear 20 as the output shaft has been described.
  • the internal gear 10 may be used as an output shaft
  • the rotary shaft 22 of the sun gear 20 may be used as an input shaft.
  • the shape of the bearing hole 41 formed in the first carrier 40 that penetrates and supports the first shaft portion 33a of the shaft 33 protruding from the first side of each planetary gear 30 is illustrated in FIG. As shown in FIG. 16, the inner diameter of the planetary gear 30 may be increased toward the planetary gear 30.
  • both the first carrier 80 and the second carrier 90 have the function of the elastic ring 60, but either one may have the function of the elastic ring 60. .
  • the shapes of the first carrier 80 and the second carrier 90 are the same as the elliptical elastic ring 60 of the first embodiment, but the circular elastic ring 70 of the second embodiment and It may be carried out in the same manner, and the circumferential positions of the first carrier 80 and the second carrier 90 may be shifted from each other by 90 degrees.
  • the first embodiment is specifically described in the planetary gear device 1 in which the internal gear 10, the sun gear 20, the four planetary gears 30, and the first and second carriers 40 and 50 are arranged in the cylindrical gear case 2.
  • the gear case 2 may be omitted.
  • such an embodiment may be embodied in the planetary gear device 1 in which the sun gear 20, the four planetary gears 30, the first and second carriers 40 and 50 are arranged in the internal gear 10.
  • the planetary gear 30 is supported so as to be rotatable in the radial direction with respect to the shaft 33 and immovable in the thrust direction, but is not rotatable in the radial direction with respect to the shaft 33. It may be fixed.
  • the shaft 33 can be integrally formed with the same synthetic resin as the planetary gear 30.
  • the shaft 33 needs to be supported rotatably with respect to the first and second carriers 40 and 50.
  • the internal gear 10, the sun gear 20, the four planetary gears 30, the first and second carriers 40, 50, 80, 90, and the elastic rings 60, 70 are molded from synthetic resin.
  • mold with metals, such as rubber

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

A planetary gear device is provided with: a sun gear having a central axis; four planetary gears connected to and supported by two carriers at equal intervals in the circumferential direction; and an elastic ring for integrally connecting the support shaft of the four planetary gears in the circumferential direction with the sun gear in the center. The four planetary gears constitute two sets of two each. The two planetary gears in each set face one another with the sun gear therebetween, and each planetary gear is supported by means of the support shaft. The elastic ring applies, from the direction of an internal gear or the sun gear, elastic force to the support shaft of two planetary gears in a first set facing one another with the sun gear therebetween. Moreover, the elastic ring applies, from the direction in which the elastic ring did not apply elastic force to the support shaft of the first set of planetary gears, elastic force to the support shaft of two planetary gears in a second set facing one another with the sun gear therebetween.

Description

遊星歯車装置Planetary gear set
 本発明は、遊星歯車装置に関する。 The present invention relates to a planetary gear device.
 遊星歯車装置は、入力軸と出力軸とが同軸線上に配置でき、大きな減速比が取得でき、しかも、大きなトルク伝達ができることから、広い分野で利用されている。ところで、複数個設けられた遊星歯車は、太陽歯車と内歯車に噛み合って自転しながら公転する構造上、ギア歯及び軸の精度限界からバックラッシュを大きめに取る等、音に対して不利な構造となっている。このため、打音を抑える工夫が種々提案されている(例えば、特許文献1)。 The planetary gear device is used in a wide range of fields because the input shaft and the output shaft can be arranged on the same coaxial line, a large reduction ratio can be obtained, and a large torque can be transmitted. By the way, a plurality of planetary gears have a structure that is disadvantageous to sound, such as taking a larger backlash from the accuracy limit of the gear teeth and shaft, etc. due to the structure that revolves while rotating by rotating with the sun gear and the internal gear. It has become. For this reason, various devices for suppressing the hitting sound have been proposed (for example, Patent Document 1).
 特許文献1では、内歯車を2つに分割しその分割した2つの分割歯車を引張コイルスプリングで連結し、そのコイルスプリングの弾性力にて、2つの分割歯車を互いに引っ張り合うようにさせる。そして、2つの分割歯車が引張コイルスプリングの弾性力にて、内歯車と遊星歯車との噛み合い及び遊星歯車と太陽歯車との噛み合いにおいて、各歯面の接触面圧を一定に維持させ、噛み合い打音を抑えるようにしている。 In Patent Document 1, the internal gear is divided into two, the two divided gears are connected by a tension coil spring, and the two split gears are pulled together by the elastic force of the coil spring. The two split gears maintain the contact surface pressure of each tooth surface constant in meshing between the internal gear and the planetary gear and meshing between the planetary gear and the sun gear by the elastic force of the tension coil spring. I try to suppress the sound.
特開2003-247631号公報Japanese Patent Laid-Open No. 2003-247631
 しかしながら、上記遊星歯車装置の打音防止構造は、各歯車を分割しなければならず、部品数が増え構造がより複雑となり組付けに非常に手間を要していた。 However, the hitting prevention structure of the planetary gear device has to divide each gear, which increases the number of parts and makes the structure more complicated, requiring much labor for assembly.
 また、分割歯車を互いに引っ張り合うようにしているため、内歯車と遊星歯車との噛み合いは、各歯面の接触面圧を一定に維持させるのに十分であるが、遊星歯車と太陽歯車との噛み合いにおいては、各歯面の接触面圧を一定に維持させるには十分でなかった。 In addition, since the split gears are pulled with each other, the meshing between the internal gear and the planetary gear is sufficient to keep the contact surface pressure of each tooth surface constant, but between the planetary gear and the sun gear. In meshing, it was not sufficient to keep the contact surface pressure of each tooth surface constant.
 上記問題を解消するために、本発明の目的は、部品数が少なく構造がより簡単で組付けが容易な静音性能に優れた遊星歯車装置を提供することにある。 In order to solve the above-described problems, an object of the present invention is to provide a planetary gear device that has a low number of parts, has a simpler structure, and is easy to assemble and excellent in silent performance.
 本発明の1態様において、遊星歯車装置であって、中心軸線を有する太陽歯車と、2個のキャリヤに周方向で等間隔に連結支持された4個の遊星歯車であって、該4個の遊星歯車は2個1組であり、それぞれの組の2個の遊星歯車は太陽歯車を挟んで相対向し、各遊星歯車は支持軸により支持されている、4個の遊星歯車と、4個の遊星歯車の支持軸を、太陽歯車を中心に周方向に一体連結するとともに、太陽歯車を挟んで相対向する第1の組の2個の遊星歯車の支持軸に、内歯車及び太陽歯車のいずれか一方の方向に弾性力を付与し、且つ太陽歯車を挟んで相対向する第2の組の2個の遊星歯車の支持軸に、内歯車及び太陽歯車のいずれか他方の方向に弾性力を付与する弾性リングと、を備えた遊星歯車装置が提供される。 In one aspect of the present invention, a planetary gear device includes a sun gear having a central axis, and four planetary gears connected and supported at equal intervals in the circumferential direction by two carriers. There are two planetary gears in one set, and the two planetary gears in each set face each other across the sun gear, and each planetary gear is supported by a support shaft, and four planetary gears and four The planetary gear support shafts are integrally connected in the circumferential direction around the sun gear, and the support shafts of the first planetary gears of the first set opposite to each other with the sun gear interposed therebetween are connected to the internal gear and the sun gear. The elastic force is applied in the direction of either the internal gear or the sun gear to the support shafts of the second planetary gears of the second set that are opposed to each other with the sun gear sandwiched between them. There is provided a planetary gear device provided with an elastic ring for imparting.
 上記構成によれば、弾性リングは、太陽歯車を挟んで相対向する第1の組の2個の前記遊星歯車の支持軸同士を、内歯車及び前記太陽歯車のいずれか一方に、且つ、太陽歯車を挟んで相対向する第2の組の2個の遊星歯車の支持軸同士を、内歯車及び太陽歯車のいずれか他方にそれぞれ弾性力を付与する。従って、太陽歯車を挟んで相対向する遊星歯車は、それぞれ内歯車の内歯及び太陽歯車の外歯に対して、それぞれガタ付くことなく押して付けられ、バックラッシュによる遊星歯車の複数の同時噛合いに起因する打音もなく静かに回転する。その結果、遊星歯車装置は、部品数が少なく構造がより簡単で組付けが容易な静音性能に優れたものとなる。 According to the above configuration, the elastic ring is configured such that the support shafts of the two planetary gears of the first set facing each other with the sun gear interposed therebetween are disposed on either the internal gear or the sun gear, and The support shafts of the second planetary gears of the second set facing each other with the gears interposed therebetween are each given elastic force to the other of the internal gear and the sun gear. Accordingly, the planetary gears facing each other across the sun gear are pressed against the internal teeth of the internal gear and the external teeth of the sun gear, respectively, without rattling, and a plurality of simultaneous meshing of the planetary gears due to backlash. Rotates quietly without any humming. As a result, the planetary gear device has an excellent silent performance with a small number of parts, a simple structure, and easy assembly.
 1実施形態において、弾性リングは、長径と短径を有する楕円形の弾性リングであり、弾性リングは、その長径と短径とが交差する交点を挟んで長径線上であって、弾性リングの径方向の幅の中心位置にある2位置に一対の第1軸受穴と、交点を挟んで短径線上であって、弾性リングの径方向の幅の中心位置にある2位置に一対の第2軸受穴とを備え、一対の第1軸受穴に第1の組の2個の遊星歯車の支持軸を、一対の第2軸受穴に第2の組の2個の遊星歯車の支持軸を、それぞれ弾性変形させて連結する。 In one embodiment, the elastic ring is an elliptical elastic ring having a major axis and a minor axis, and the elastic ring is on the major axis line across the intersection where the major axis and the minor axis intersect, and the diameter of the elastic ring A pair of first bearing holes at two positions at the center of the width in the direction and a pair of second bearings at the two positions on the short diameter line across the intersection and at the center of the radial width of the elastic ring A pair of first bearing holes, a first set of two planetary gear support shafts, and a pair of second bearing holes of a second set of two planetary gear support shafts, respectively. Connect with elastic deformation.
 上記構成によれば、弾性リングが弾性変形された状態から楕円形状に復元しようとすることから、弾性リングの第1軸受穴に貫通支持された遊星歯車の支持軸は、内歯車の方向に弾性力が付与され、弾性リングの第2軸受穴に貫通支持された遊星歯車の支持軸は太陽歯車の方向に弾性力が付与される。そして、太陽歯車を挟んで相対向する第1の組の2個の遊星歯車は、ガタ付くことなく内歯車の内歯に押して付けられた状態となり、太陽歯車を挟んで相対向する第2の組の2個の遊星歯車は、ガタ付くことなく太陽歯車の外歯に押して付けられた状態となる。 According to the above configuration, since the elastic ring attempts to restore an elliptical shape from the elastically deformed state, the support shaft of the planetary gear that is penetrated and supported by the first bearing hole of the elastic ring is elastic in the direction of the internal gear. A force is applied, and the support shaft of the planetary gear that is supported through the second bearing hole of the elastic ring is given an elastic force in the direction of the sun gear. The two planetary gears of the first set facing each other across the sun gear are pressed against the internal teeth of the internal gear without rattling, and the second planet gears facing each other across the sun gear The two planetary gears in the set are pressed against the external teeth of the sun gear without rattling.
 別の実施形態において、弾性リングは、真円形の弾性リングであって、弾性リングは、その弾性リングの中心点を通過する第1線上であって、中心点を挟んで等しい第1距離にある弾性リングの2位置に一対の第1軸受穴と、弾性リングの中心点を通過するとともに第1線と直交する第2線上であって、中心点を挟んで等しく且つ第1距離より短い第2距離にある弾性リングの2位置に一対の第2軸受穴とを備え、一対の第1軸受穴に第1の組の2個の遊星歯車の支持軸を、一対の第2軸受穴に第2の組の2個の遊星歯車の支持軸を、それぞれ弾性変形させて連結する。 In another embodiment, the elastic ring is a perfect circular elastic ring, and the elastic ring is on a first line passing through the central point of the elastic ring and at an equal first distance across the central point. A pair of first bearing holes at two positions of the elastic ring, and a second line that passes through the central point of the elastic ring and is on a second line orthogonal to the first line and is equal to the central point and shorter than the first distance. A pair of second bearing holes are provided at two positions of the elastic ring at a distance, and the support shafts of the first set of two planetary gears are provided in the pair of first bearing holes, and the second bearing holes are provided in the second pair. The support shafts of the two planetary gears in the set are connected by being elastically deformed.
 上記構成によれば、弾性リングが弾性変形された状態から円形状に復元しようとすることから、弾性リングの第1軸受穴に貫通支持された遊星歯車の支持軸は、内歯車の方向に弾性力が付与され、弾性リングの第2軸受穴に貫通支持された遊星歯車の支持軸は太陽歯車の方向に弾性力が付与される。そして、太陽歯車を挟んで相対向する第1の組の2個の遊星歯車は、ガタ付くことなく内歯車の内歯に押して付けられた状態となり、太陽歯車を挟んで相対向する第2の組の2個の遊星歯車は、ガタ付くことなく太陽歯車の外歯に押して付けられた状態となる。 According to the above configuration, since the elastic ring tries to restore the circular shape from the elastically deformed state, the support shaft of the planetary gear that is supported by the first bearing hole of the elastic ring is elastic in the direction of the internal gear. A force is applied, and the support shaft of the planetary gear that is supported through the second bearing hole of the elastic ring is given an elastic force in the direction of the sun gear. The two planetary gears of the first set facing each other across the sun gear are pressed against the internal teeth of the internal gear without rattling, and the second planet gears facing each other across the sun gear The two planetary gears in the set are pressed against the external teeth of the sun gear without rattling.
 また別の実施形態において、4個の遊星歯車の支持軸の各々は、第1軸部および第2軸部を有し、2個のキャリヤは、4個の遊星歯車の支持軸の第1軸部を連結支持する第1キャリヤと、4個の遊星歯車の支持軸の第2軸部を連結支持する、遊星歯車に関して第1キャリヤと反対側の第2キャリアとを備え、弾性リングは、第2キャリヤに配置されるとともに、4個の遊星歯車の支持軸の第2軸部をそれぞれ弾性変形させて連結する。 In another embodiment, each of the support shafts of the four planetary gears has a first shaft portion and a second shaft portion, and the two carriers are the first shafts of the support shafts of the four planetary gears. A first carrier that links and supports the second carrier, and a second carrier that links and supports the second shafts of the support shafts of the four planetary gears, and is opposite to the first carrier with respect to the planetary gear. The second shaft portions of the support shafts of the four planetary gears are connected to each other by being elastically deformed and arranged on the two carriers.
 上記構成によれば、第1軸受穴に貫通支持された遊星歯車の支持軸は、第1キャリヤを支点とする内歯車の方向に弾性力が付与される。また、弾性リングの第2軸受穴に貫通支持された遊星歯車の支持軸は、第1キャリヤを支点とする太陽歯車の方向に弾性力が付与される。 According to the above configuration, the support shaft of the planetary gear supported through the first bearing hole is given an elastic force in the direction of the internal gear with the first carrier as a fulcrum. Further, the support shaft of the planetary gear supported through the second bearing hole of the elastic ring is given an elastic force in the direction of the sun gear with the first carrier as a fulcrum.
 さらに別の実施形態において、弾性リングは、4個の前記遊星歯車の支持軸を、太陽歯車を中心軸線に周方向に一体連結する前記2個のキャリヤで構成される。 In yet another embodiment, the elastic ring is composed of the two carriers that integrally connect the support shafts of the four planetary gears in the circumferential direction with the sun gear in the circumferential direction.
 上記構成によれば、キャリヤが弾性変形された状態から元の状態に復元しようとすることから、キャリヤの第1軸受穴に貫通支持された遊星歯車の支持軸は、内歯車の方向に弾性力が付与され、キャリヤの第2軸受穴に貫通支持された遊星歯車の支持軸は太陽歯車の方向に弾性力が付与される。そして、太陽歯車を挟んで相対向する第1の組の2個の遊星歯車は、ガタ付くことなく内歯車の内歯に押して付けられた状態となり、太陽歯車を挟んで相対向する第2の組の2個の遊星歯車は、ガタ付くことなく太陽歯車の外歯に押して付けられた状態となる。 According to the above configuration, since the carrier tries to restore from the elastically deformed state to the original state, the support shaft of the planetary gear that is supported through the first bearing hole of the carrier has an elastic force in the direction of the internal gear. And the support shaft of the planetary gear, which is supported through the second bearing hole of the carrier, is given an elastic force in the direction of the sun gear. The two planetary gears of the first set facing each other across the sun gear are pressed against the internal teeth of the internal gear without rattling, and the second planet gears facing each other across the sun gear The two planetary gears in the set are pressed against the external teeth of the sun gear without rattling.
 
 別の実施形態において、第1キャリヤに形成された軸受穴は断面円形を呈し、第2キャリヤに形成された軸受穴は、遊星歯車装置の中心軸線を中心とし、その径方向に長い長穴である。

In another embodiment, the bearing hole formed in the first carrier has a circular cross section, and the bearing hole formed in the second carrier is a long hole in the radial direction centered on the central axis of the planetary gear device. is there.
 別の実施形態において、第2キャリヤに形成された軸受長穴は、その幅狭の間隔が支持軸の直径と一致し、その幅広の間隔が支持軸の直径より長い。 In another embodiment, the narrow slot of the bearing slot formed in the second carrier matches the diameter of the support shaft, and the wide interval is longer than the diameter of the support shaft.
 上記構成によれば、第2キャリヤは、各遊星歯車の支持軸を、軸受長穴内で回転可能に支持するとともに、軸受長穴に沿って支持軸をその径方向に偏倚させることができる。 According to the above configuration, the second carrier can support the support shaft of each planetary gear so as to be rotatable within the bearing slot, and can bias the support shaft in the radial direction along the bearing slot.
 別の実施形態において、遊星歯車の一側から突出した支持軸を貫通支持するキャリヤに形成された軸受穴の形状を、遊星歯車に向かうほどその内径が拡開するように形成する。 In another embodiment, the shape of the bearing hole formed in the carrier penetrating and supporting the support shaft protruding from one side of the planetary gear is formed so that the inner diameter thereof is expanded toward the planetary gear.
 上記構成によれば、シャフトが弾性リングにて軸受穴を支点として回動するとき、シャフトの回動を容易にすることができる。 According to the above configuration, when the shaft is rotated by the elastic ring with the bearing hole as a fulcrum, the shaft can be easily rotated.
 別の実施形態において、円筒状のギアケース内に、内歯車、太陽歯車、4個の遊星歯車、キャリヤが配置される。 In another embodiment, an internal gear, a sun gear, four planetary gears, and a carrier are arranged in a cylindrical gear case.
 上記構成によれば、
 別の実施形態において、内歯車内に、太陽歯車、4個の遊星歯車、キャリヤが配置される。
According to the above configuration,
In another embodiment, a sun gear, four planet gears, and a carrier are disposed in the internal gear.
第1実施形態の遊星歯車装置の全体斜視図。1 is an overall perspective view of a planetary gear device according to a first embodiment. 第1実施形態の遊星歯車装置の分解斜視図。The disassembled perspective view of the planetary gear apparatus of 1st Embodiment. 第1実施形態の第1キャリヤに遊星歯車が取着された状態を示す正面図。The front view which shows the state by which the planetary gear was attached to the 1st carrier of 1st Embodiment. 第1実施形態の第2キャリヤに遊星歯車が取着された状態を示す正面図。The front view which shows the state by which the planetary gear was attached to the 2nd carrier of 1st Embodiment. 第1実施形態の第2キャリヤの正面図。The front view of the 2nd carrier of 1st Embodiment. 第1実施形態の第2キャリヤに形成した軸受長穴の説明するための説明図。Explanatory drawing for demonstrating the bearing long hole formed in the 2nd carrier of 1st Embodiment. 第1実施形態の外力を加えていない状態での弾性リングの正面図。The front view of the elastic ring in the state which is not applying the external force of 1st Embodiment. 第1実施形態の調芯作用が働いている状態での弾性リングの正面図。The front view of the elastic ring in the state which the alignment action of 1st Embodiment is working. 第2実施形態の外力を加えていない状態での弾性リングの正面図。The front view of the elastic ring in the state which is not applying the external force of 2nd Embodiment. 第2実施形態の調芯作用が働いている状態での弾性リングの正面図。The front view of the elastic ring in the state which the alignment action of 2nd Embodiment is working. 第3実施形態の遊星歯車装置の分解斜視図。The exploded perspective view of the planetary gear apparatus of 3rd Embodiment. 第3実施形態の外力を加えていない状態での第1キャリヤの正面図。The front view of the 1st career in the state where the external force of a 3rd embodiment is not applied. 第3実施形態の調芯作用が働いている状態での第1キャリヤの正面図。The front view of the 1st career in the state where the alignment operation of a 3rd embodiment is working. 第3実施形態の外力を加えていない状態での第2キャリヤの正面図。The front view of the 2nd carrier in the state where the external force of 3rd Embodiment is not applied. 第3実施形態の調芯作用が働いている状態での第2キャリヤの正面図。The front view of the 2nd carrier in the state where the alignment action of 3rd Embodiment is working. 第1キャリヤの別例を説明するための要部断面図。FIG. 6 is a main part cross-sectional view for explaining another example of the first carrier.
第1実施形態
 以下、本発明の遊星歯車装置の第1実施形態を図面に従って説明する。
First Embodiment Hereinafter, a first embodiment of a planetary gear device of the present invention will be described with reference to the drawings.
 図1、図2において、遊星歯車装置1は、その円筒状のギアケース2内に、内歯車10、太陽歯車20、4個の遊星歯車30、第1及び第2キャリヤ40,50、弾性リング60を備えている。
内歯車10
 内歯車10は、合成樹脂製であって、円筒状に形成され、その内周面に内歯11が形成されている。内歯車10は、円筒状に形成された合成樹脂製のギアケース2に対して、その外周面が同ギアケース2の内周面に対して摺動可能に配設されている。内歯車10の中心軸線はギアケース2、即ち、遊星歯車装置1の中心軸線C1と一致し、内歯車10はその中心軸線C1を中心にギアケース2内を回転可能に収容されている。
太陽歯車20
 太陽歯車20は、外周面に外歯21が形成された合成樹脂製の平歯車であって、内歯車10の中心位置に配設されている。詳述すると、太陽歯車20は、その回転軸22の中心軸線が、遊星歯車装置1の中心軸線C1と一致するように回転可能に配置されている。
遊星歯車30
 4個の遊星歯車30は、外周面に外歯31が形成された合成樹脂製の平歯車であって、内歯車10と太陽歯車20の間にそれぞれ配置される。そして、各遊星歯車30の外歯31が内歯車10の内歯11と太陽歯車20の外歯21と噛合するようになっている。
1 and 2, a planetary gear device 1 includes an internal gear 10, a sun gear 20, four planetary gears 30, first and second carriers 40 and 50, an elastic ring, in a cylindrical gear case 2. 60.
Internal gear 10
The internal gear 10 is made of synthetic resin, is formed in a cylindrical shape, and an internal tooth 11 is formed on the inner peripheral surface thereof. The internal gear 10 is disposed so that its outer peripheral surface is slidable with respect to the inner peripheral surface of the gear case 2 with respect to the synthetic resin gear case 2 formed in a cylindrical shape. The central axis of the internal gear 10 coincides with the gear case 2, i.e., the central axis C <b> 1 of the planetary gear device 1, and the internal gear 10 is accommodated in the gear case 2 so as to be rotatable about the central axis C <b> 1.
Sun gear 20
The sun gear 20 is a spur gear made of synthetic resin having outer teeth 21 formed on the outer peripheral surface, and is disposed at the center position of the internal gear 10. Specifically, the sun gear 20 is rotatably arranged such that the center axis of the rotation shaft 22 coincides with the center axis C1 of the planetary gear device 1.
Planetary gear 30
The four planetary gears 30 are synthetic resin spur gears having outer teeth 31 formed on the outer peripheral surface thereof, and are respectively disposed between the internal gear 10 and the sun gear 20. The outer teeth 31 of the planetary gears 30 mesh with the inner teeth 11 of the inner gear 10 and the outer teeth 21 of the sun gear 20.
 4個の遊星歯車30は、2個1組とし、それぞれその組の2個の遊星歯車30が太陽歯車20を挟んで相対向して配置されている(図3、図4参照)。そして、第1の組の2個の遊星歯車30の各々は、第2の組の2個の遊星歯車30に対して、太陽歯車20の中心軸線を中心として、90度の間隔で配置されている。つまり、第1の組の2個の遊星歯車30を結ぶ直線は、第2の組の2個の遊星歯車30を結ぶ直線に対して実質的に垂直である。 The four planetary gears 30 are in a set of two, and the two planetary gears 30 of the set are arranged opposite to each other with the sun gear 20 in between (see FIGS. 3 and 4). Each of the two planetary gears 30 in the first set is disposed at an interval of 90 degrees with respect to the center axis of the sun gear 20 with respect to the two planetary gears 30 in the second set. Yes. That is, the straight line connecting the two planetary gears 30 in the first set is substantially perpendicular to the straight line connecting the two planetary gears 30 in the second set.
 4個の遊星歯車30の各々は、その中心位置に金属製のシャフト33が貫通されていて、シャフト33に対してラジアル方向に回転可能かつスラスト方向に移動不能に支持されている。従って、シャフト33の中心軸線は、遊星歯車30の中心軸線と一致する。 Each of the four planetary gears 30 has a metal shaft 33 penetrating at the center thereof, and is supported so as to be rotatable in the radial direction and immovable in the thrust direction with respect to the shaft 33. Therefore, the central axis of the shaft 33 coincides with the central axis of the planetary gear 30.
 なお、遊星歯車30を貫通支持するシャフト33について、遊星歯車30の第1側(第1キャリヤ40側)から突出した軸部を第1軸部33aといい、その第2側(第2キャリヤ50側)から突出した軸部を第2軸部33bという。 For the shaft 33 that penetrates and supports the planetary gear 30, the shaft portion protruding from the first side (first carrier 40 side) of the planetary gear 30 is referred to as a first shaft portion 33 a, and the second side (second carrier 50). The shaft portion protruding from the side) is referred to as a second shaft portion 33b.
 また、第1の組の2個の遊星歯車30と第2の組の2個の遊星歯車30を、特に区別して説明するときには、説明の便宜上、第1の組の2個の遊星歯車30の符号を「30A」と、第2の組の2個の遊星歯車30の符号を「30B」として表現する。
第1キャリヤ40
 各遊星歯車30の第1側から突出したシャフト33の第1軸部33aは、図3に示すように、環状の合成樹脂製よりなる第1キャリヤ40に形成された軸受穴41にそれぞれ貫通支持されている。第1キャリヤ40に形成された各軸受穴41は、断面円形であって、第1軸部33aを回転可能に支持している。従って、第1キャリヤ40は、各遊星歯車30を、第1軸部33aの中心軸線(遊星歯車30の中心軸線)を中心に、回転可能に支持している。
When the two planetary gears 30 of the first set and the two planetary gears 30 of the second set are particularly distinguished and described, for convenience of explanation, the two planetary gears 30 of the first set are described. The code is expressed as “30A”, and the code of the second planetary gear 30 in the second set is expressed as “30B”.
First carrier 40
As shown in FIG. 3, the first shaft portion 33a of the shaft 33 protruding from the first side of each planetary gear 30 penetrates and supports the bearing holes 41 formed in the first carrier 40 made of an annular synthetic resin. Has been. Each bearing hole 41 formed in the first carrier 40 has a circular cross section, and rotatably supports the first shaft portion 33a. Therefore, the first carrier 40 supports each planetary gear 30 so as to be rotatable about the central axis of the first shaft portion 33a (the central axis of the planetary gear 30).
 しかも、第1キャリヤ40は、各シャフト33の第1軸部33a(各遊星歯車30)を、太陽歯車20の中心軸線を中心としてその周方向において互いに90°の等間隔に保持している。
第2キャリヤ50
 各遊星歯車30の第2側から突出したシャフト33の第2軸部33bは、図4に示すように、環状の合成樹脂製よりなる第2キャリヤ50に形成された軸受長穴51にそれぞれ貫通支持されている。
Moreover, the first carrier 40 holds the first shaft portions 33a (the planetary gears 30) of the shafts 33 at equal intervals of 90 ° in the circumferential direction around the central axis of the sun gear 20.
Second carrier 50
As shown in FIG. 4, the second shaft portion 33 b of the shaft 33 protruding from the second side of each planetary gear 30 passes through a bearing slot 51 formed in the second carrier 50 made of an annular synthetic resin. It is supported.
 第2キャリヤ50に形成された各軸受長穴51は、図5、図6に示すように、遊星歯車装置1の中心軸線C1を中心とし、その径方向に長い長穴であって、その幅狭の間隔がシャフト33の直径と一致し、その幅広の間隔がシャフト33の直径より長い。 As shown in FIGS. 5 and 6, each bearing slot 51 formed in the second carrier 50 is a slot that is long in the radial direction centered on the central axis C <b> 1 of the planetary gear device 1, and has a width thereof. The narrow interval coincides with the diameter of the shaft 33, and the wide interval is longer than the diameter of the shaft 33.
 従って、第2キャリヤ50は、各遊星歯車30の第2側から突出したシャフト33の第2軸部33bを、軸受長穴51内で回転可能に支持するとともに、軸受長穴51に沿って第2軸部33bをその径方向に偏倚させることができるようになっている。しかも、第2キャリヤ50は、各遊星歯車30の第2側から突出したシャフト33の第2軸部33bを、遊星歯車装置1の中心軸線C1を中心としてその周方向において互いに90°の等間隔に保持している。
弾性リング60
 第2キャリヤ50に形成された各軸受長穴51から突出した各シャフト33の第2軸部33bは、弾性リング60に形成された第1軸受穴61及び第2軸受穴62のいずれかに貫通支持されている。第1軸受穴61及び第2軸受穴62は、断面円形であって、第2軸部33bを回転可能に支持している。
Accordingly, the second carrier 50 supports the second shaft portion 33 b of the shaft 33 protruding from the second side of each planetary gear 30 so as to be rotatable in the bearing elongated hole 51, and also along the bearing elongated hole 51. The biaxial portion 33b can be biased in the radial direction. In addition, the second carrier 50 has the second shaft portion 33b of the shaft 33 protruding from the second side of each planetary gear 30 at an equal interval of 90 ° with respect to the circumferential direction around the central axis C1 of the planetary gear device 1. Hold on.
Elastic ring 60
The second shaft portion 33 b of each shaft 33 protruding from each bearing elongated hole 51 formed in the second carrier 50 penetrates either the first bearing hole 61 or the second bearing hole 62 formed in the elastic ring 60. It is supported. The first bearing hole 61 and the second bearing hole 62 have a circular cross section and support the second shaft portion 33b in a rotatable manner.
 弾性リング60は、合成樹脂で形成されている。弾性リング60は、図7に示すように、外力を加えない状態では外形が楕円形状をなし、その長径と短径とが交差する交点P1を直交する中心軸線が、弾性リング60が各第2軸部33bを貫通支持した時、遊星歯車装置1の中心軸線C1と一致する。ここで、弾性リング60の幅方向(交点P1を中心に径方向)の中心位置を通る線を環状線Lzという。 The elastic ring 60 is made of synthetic resin. As shown in FIG. 7, the elastic ring 60 has an elliptical outer shape when no external force is applied, and the central axis perpendicular to the intersection point P <b> 1 where the major axis and the minor axis intersect is the second elastic ring 60. When the shaft portion 33b is supported through, it coincides with the central axis C1 of the planetary gear device 1. Here, a line passing through the center position of the elastic ring 60 in the width direction (radial direction centering on the intersection P1) is referred to as an annular line Lz.
 楕円形状の弾性リング60は、環状線Lzと交差する長径線L1上であって、前記交点P1を挟んで相対向する2位置に、第1の組の遊星歯車30Aから突出した第2軸部33bを貫通支持する第1軸受穴61を備えている。また、弾性リング60は、環状線Lzと交差する短径線L2上であって、前記交点P1を挟んで相対向する2位置に、第2の組の遊星歯車30Bから突出した第2軸部33bを貫通支持する第2軸受穴62を備えている。 The elliptical elastic ring 60 is a second shaft portion projecting from the first set of planetary gears 30A at two positions on the long diameter line L1 intersecting the annular line Lz and facing each other across the intersection point P1. A first bearing hole 61 for penetrating and supporting 33b is provided. The elastic ring 60 is a second shaft portion that protrudes from the second set of planetary gears 30B at two positions on the short diameter line L2 intersecting the annular line Lz and facing each other across the intersection point P1. A second bearing hole 62 for penetrating and supporting 33b is provided.
 従って、第1軸受穴61と第2軸受穴62は、交点P1までの距離が相違する。即ち、長径線L1上に位置する第1軸受穴61の交点P1までの距離D1は、短径線L2上に位置する第2軸受穴62の交点P1までの距離D2より長い。本実施形態では、距離D1と距離D2の平均値(=(D1+D2)/2)が、太陽歯車20の中心軸線(遊星歯車装置1の中心軸線C1)から各遊星歯車30の中心軸線までの距離D0(図4参照)と一致するが、D0,D1,D2の関係は、D1>D0、D2<D0を満足する距離関係であれば良い。 Therefore, the first bearing hole 61 and the second bearing hole 62 have different distances to the intersection point P1. That is, the distance D1 to the intersection P1 of the first bearing hole 61 located on the long diameter line L1 is longer than the distance D2 to the intersection P1 of the second bearing hole 62 located on the short diameter line L2. In the present embodiment, the average value of the distance D1 and the distance D2 (= (D1 + D2) / 2) is a distance from the center axis of the sun gear 20 (center axis C1 of the planetary gear device 1) to the center axis of each planetary gear 30. Although it coincides with D0 (see FIG. 4), the relationship between D0, D1, and D2 may be a distance relationship that satisfies D1> D0 and D2 <D0.
 そして、第1の組の2個の遊星歯車30Aから突出したシャフト33の第2軸部33bを、それぞれ弾性リング60の第1軸受穴61に貫通させ、第2の組の2個の遊星歯車30Bから突出したシャフト33の第2軸部33bを、それぞれ弾性リング60の第2軸受穴62に貫通させる。 Then, the second shaft portion 33b of the shaft 33 protruding from the two planetary gears 30A of the first set is passed through the first bearing holes 61 of the elastic ring 60, respectively, and the two planetary gears of the second set are set. The second shaft portion 33b of the shaft 33 protruding from 30B is passed through the second bearing hole 62 of the elastic ring 60, respectively.
 この時、弾性リング60の第1軸受穴61は、交点P1までの距離D1が短くなるように(縮む方向に)弾性変形し復元しようとするため、第1軸受穴61に貫通支持されたシャフト33の第2軸部33bは、交点P1から離間する方向に弾性力が付与される。 At this time, the first bearing hole 61 of the elastic ring 60 tries to be elastically deformed and restored so that the distance D1 to the intersection P1 is shortened (in the shrinking direction). The second shaft portion 33b of 33 is given an elastic force in a direction away from the intersection P1.
 これによって、シャフト33は第1軸部33aを支点として軸受長穴51に沿って中心軸線C1から離間する方向に回動し、同シャフト33に取着された遊星歯車30Aであって、内歯車10の内歯11と噛合する外歯31の第2軸部33b側の部分が、内歯車10の内歯11に押して付けられた状態となる。 As a result, the shaft 33 is a planetary gear 30A attached to the shaft 33 by rotating in a direction away from the central axis C1 along the bearing long hole 51 with the first shaft portion 33a as a fulcrum. The portion on the second shaft portion 33 b side of the external teeth 31 that mesh with the 10 internal teeth 11 is pressed against the internal teeth 11 of the internal gear 10.
 一方、弾性リング60の第2軸受穴62は、交点P1までの距離D2が長くなるように(伸びる方向に)弾性変形し復元しようとするため、第2軸受穴62に貫通支持されたシャフト33の第2軸部33bは、交点P1に近づく方向に弾性力が付与される。 On the other hand, the second bearing hole 62 of the elastic ring 60 tends to be elastically deformed and restored so that the distance D2 to the intersection P1 is increased (in the extending direction). The second shaft portion 33b is given an elastic force in a direction approaching the intersection P1.
 これによって、シャフト33は第1軸部33aを支点として軸受長穴51に沿って中心軸線C1に近づく方向に回動し、同シャフト33に取着された遊星歯車30Bであって、太陽歯車20の外歯21と噛合する外歯31の第2軸部33b側の部分が、太陽歯車20の外歯21に押して付けられた状態となる。 As a result, the shaft 33 is a planetary gear 30B attached to the shaft 33 and rotated in the direction approaching the central axis C1 along the bearing long hole 51 with the first shaft portion 33a as a fulcrum. The portion of the external tooth 31 that meshes with the external tooth 21 on the second shaft portion 33 b side is pressed against the external tooth 21 of the sun gear 20.
 つまり、遊星歯車装置1が静止状態において、第1の組の2個の遊星歯車30Aは、その外歯31の第2軸部33b側の部分がガタ付くことなく内歯車10の内歯11に押して付けられた状態となる。また、第2の組の2個の遊星歯車30Bは、その外歯31の第2軸部33b側の部分がガタ付くことなく太陽歯車20の外歯21に押して付けられた状態となる。 In other words, when the planetary gear device 1 is stationary, the two planetary gears 30A of the first set are connected to the internal teeth 11 of the internal gear 10 without the portions of the external teeth 31 on the second shaft portion 33b side being rattled. It will be in the state of being pushed. Further, the second planetary gear 30B of the second set is in a state in which the portion of the outer teeth 31 on the second shaft portion 33b side is pressed against the outer teeth 21 of the sun gear 20 without rattling.
 しかも、4個の遊星歯車30は、1つの楕円形状の弾性リング60にて、内歯車10の内歯11又は太陽歯車20の外歯21に対して、それぞれガタ付くことなく押して付けられた状態となる。 In addition, the four planetary gears 30 are pressed against the internal teeth 11 of the internal gear 10 or the external teeth 21 of the sun gear 20 by one elliptical elastic ring 60 without rattling. It becomes.
 ここで、例えば、第1キャリヤ40を入力軸とし、太陽歯車20の回転軸22を出力軸として、遊星歯車装置1を使用した場合、太陽歯車20の回転軸22は、第1キャリヤ40の入力軸と同方向に回転すると共に増速して回転する。 Here, for example, when the planetary gear device 1 is used with the first carrier 40 as an input shaft and the rotation shaft 22 of the sun gear 20 as an output shaft, the rotation shaft 22 of the sun gear 20 is input to the first carrier 40. It rotates in the same direction as the shaft and at a higher speed.
 このとき、回転開始時は、4個の遊星歯車30は、1つの楕円形状の弾性リング60にて、内歯車10の内歯11又は太陽歯車20の外歯21に対して、それぞれガタ付くことなく押して付けられた状態から回転するため、バックラッシュによる遊星歯車30の複数の同時噛合いに起因する打音もなく、静かに回転する。 At this time, at the start of rotation, the four planetary gears 30 rattle against the internal teeth 11 of the internal gear 10 or the external teeth 21 of the sun gear 20 by one elliptical elastic ring 60, respectively. Since it rotates from the state where it is pushed and applied without rotation, there is no hitting sound caused by a plurality of simultaneous meshing of the planetary gear 30 due to backlash, and it rotates gently.
 また、第1及び第2キャリヤ40,50(弾性リング60)は、4個の遊星歯車30を2個1組とし、それぞれその組の2個の遊星歯車30が中心軸線C1を挟んで相対向して連結支持するとともに、第1の組の2個の遊星歯車30Aの各々は、第2の組の2個の遊星歯車30Bに対して、太陽歯車20の中心軸線を中心として90度の間隔で配置した。 In addition, the first and second carriers 40 and 50 (elastic ring 60) include two planetary gears 30 as one set, and the two planetary gears 30 of each set face each other across the central axis C1. The two planetary gears 30A of the first set are spaced 90 degrees from the second planetary gear 30B of the second set about the central axis of the sun gear 20. Arranged.
 従って、第1キャリヤ40の定常回転トルクが大きくなると、歯車の噛み合い作用が勝って調芯作用が働き、弾性リング60による遊星歯車30のシャフト33の傾きがなくなり、通常の遊星歯車と同じ軸回転となる。その結果、弾性リング60は、楕円形状から図8に示す円形となり、第1及び第2キャリヤ40,50(弾性リング60)がバランスよく保持され静音性能をより向上させる。 Therefore, when the steady rotational torque of the first carrier 40 increases, the meshing action of the gears wins and the centering action works, the inclination of the shaft 33 of the planetary gear 30 by the elastic ring 60 is eliminated, and the same shaft rotation as that of a normal planetary gear is achieved. It becomes. As a result, the elastic ring 60 changes from an elliptical shape to a circular shape as shown in FIG. 8, and the first and second carriers 40 and 50 (elastic ring 60) are held in a well-balanced manner, thereby further improving the silent performance.
 なお、ここでは、第1キャリヤ40を入力軸、太陽歯車20の回転軸22を出力軸として、遊星歯車装置1を使用したが、第1キャリヤ40を出力軸、太陽歯車20の回転軸22を入力軸としたり、内歯車10を入力軸、第1キャリヤ40を出力軸としたり、また、第1キャリヤ40を入力軸、内歯車10を出力軸としたりして使用してもよい。さらに、内歯車10を入力軸、太陽歯車20の回転軸22を出力軸としたり、太陽歯車20の回転軸22を入力軸、内歯車10を出力軸としたりして使用してもよい。 Here, the planetary gear unit 1 is used with the first carrier 40 as the input shaft and the rotation shaft 22 of the sun gear 20 as the output shaft, but the first carrier 40 is used as the output shaft and the rotation shaft 22 of the sun gear 20 is used as the output shaft. The input shaft, the internal gear 10 as an input shaft, the first carrier 40 as an output shaft, the first carrier 40 as an input shaft, and the internal gear 10 as an output shaft may be used. Further, the internal gear 10 may be used as an input shaft, the rotary shaft 22 of the sun gear 20 as an output shaft, the rotary shaft 22 of the sun gear 20 as an input shaft, and the internal gear 10 as an output shaft.
 次に、上記のように構成した遊星歯車装置1の効果について説明する。
(1)本実施形態によれば、回転開始時において、4個の遊星歯車30は、それぞれ内歯車10の内歯11及び太陽歯車20の外歯21に対して、それぞれガタ付くことなく押して付けられた状態から回転するため、バックラッシュによる遊星歯車30の複数の同時噛合いに起因する打音もなく静かに回転させることができる。
(2)本実施形態によれば、1つの楕円形状の弾性リング60が、4個の遊星歯車30をそれぞれ内歯車10の内歯11及び太陽歯車20の外歯21に対して、それぞれガタ付くことなく押して付ける部材である。
Next, effects of the planetary gear device 1 configured as described above will be described.
(1) According to this embodiment, at the start of rotation, the four planetary gears 30 are pressed against the internal teeth 11 of the internal gear 10 and the external teeth 21 of the sun gear 20 without rattling. Since it rotates from the state which was carried out, it can be made to rotate quietly without the hitting sound resulting from the simultaneous meshing | engagement of the planetary gear 30 by backlash.
(2) According to this embodiment, one elliptical elastic ring 60 rattles the four planetary gears 30 with respect to the internal teeth 11 of the internal gear 10 and the external teeth 21 of the sun gear 20, respectively. It is a member to be pressed without any problems.
 従って、構造、組付けが簡便となり、コストダウンが図ることができる。
第2実施形態
 次に、本発明の遊星歯車装置の第2実施形態を図面に従って説明する。
Therefore, the structure and assembly are simplified and the cost can be reduced.
Second Embodiment Next, a planetary gear device according to a second embodiment of the present invention will be described with reference to the drawings.
 本実施形態は、4個の遊星歯車30をそれぞれ内歯車10の内歯11及び太陽歯車20の外歯21に対して押して付ける部材に特徴を有し、かかる部材は第1実施形態の弾性リング60と相違する。 The present embodiment is characterized by members that press the four planetary gears 30 against the internal teeth 11 of the internal gear 10 and the external teeth 21 of the sun gear 20, respectively, and these members are elastic rings of the first embodiment. 60.
 そのため、本実施形態では、説明の便宜上、第1実施形態と相違する点について詳細に説明し、第1実施形態と共通の部分については符号を同じにしてその詳細な説明を省略する。 Therefore, in this embodiment, for the sake of convenience of explanation, points different from the first embodiment will be described in detail, and the same reference numerals will be used for portions common to the first embodiment, and detailed description thereof will be omitted.
 図9は、本実施形態の弾性リング70を示し、第1実施形態の弾性リング60と同様に、第2キャリヤ50に形成された各軸受長穴51から突出した各シャフト33の第2軸部33bを貫通支持する。 FIG. 9 shows the elastic ring 70 of the present embodiment. Like the elastic ring 60 of the first embodiment, the second shaft portion of each shaft 33 protruding from each bearing slot 51 formed in the second carrier 50. 33b is supported through.
 弾性リング70は、合成樹脂で形成されている。弾性リング70は、図9に示すように、外力を加えない状態では外形が真円形状をなし、中心点P2を直交する中心軸線が、弾性リング70が各第2軸部33bを貫通支持した時、遊星歯車装置1の中心軸線C1と一致する。 The elastic ring 70 is made of synthetic resin. As shown in FIG. 9, the outer shape of the elastic ring 70 is a perfect circle when no external force is applied, and the central axis perpendicular to the center point P2 is supported by the elastic ring 70 penetrating each second shaft portion 33b. At the same time as the central axis C1 of the planetary gear unit 1.
 弾性リング70は、中心点P2を挟んで相対向する2位置に、第1の組の遊星歯車30Aから突出した第2軸部33bを貫通支持する第1軸受穴61を備えている。また、弾性リング70は、中心点P2を挟んで相対向する2位置であって第1軸受穴61に対して中心点P2を中心として90°の間隔位置に、第2の組の遊星歯車30Bから突出した第2軸部33bを貫通支持する第2軸受穴62を備えている。 The elastic ring 70 includes a first bearing hole 61 that penetrates and supports the second shaft portion 33b protruding from the first set of planetary gears 30A at two positions facing each other across the center point P2. Further, the elastic ring 70 is located at two positions opposite to each other with the center point P2 interposed therebetween, and at a distance of 90 ° with respect to the first bearing hole 61 about the center point P2, the second set of planetary gears 30B. 2nd bearing hole 62 which penetrates and supports the 2nd axis part 33b which projected from was provided.
 第1軸受穴61と第2軸受穴62は、中心点P2までの距離が相違する。つまり、第1軸受穴61は弾性リング70の外面寄りに、第2軸受穴62は弾性リング70の内面寄りに偏倚させて形成させ、第1実施形態と同様に、第1軸受穴61の中心軸線までの距離D1が、第2軸受穴62の中心点P2までの距離D2より長い。 The distance between the first bearing hole 61 and the second bearing hole 62 is different from the center point P2. That is, the first bearing hole 61 is formed near the outer surface of the elastic ring 70 and the second bearing hole 62 is formed near the inner surface of the elastic ring 70, and the center of the first bearing hole 61 is formed as in the first embodiment. The distance D1 to the axis is longer than the distance D2 to the center point P2 of the second bearing hole 62.
 そして、第1の組の2個の遊星歯車30Aから突出したシャフト33の第2軸部33bを、それぞれ弾性リング70の第1軸受穴61に貫通させ、第2の組の2個の遊星歯車30Bから突出したシャフト33の第2軸部33bを、それぞれ弾性リング70の第2軸受穴62に貫通させる。 Then, the second shaft portion 33b of the shaft 33 protruding from the two planetary gears 30A of the first set is passed through the first bearing holes 61 of the elastic ring 70, respectively, and the two planetary gears of the second set are set. The second shaft portion 33b of the shaft 33 protruding from 30B is passed through the second bearing hole 62 of the elastic ring 70, respectively.
 この時、弾性リング70の第1軸受穴61は、中心点P2までの距離D1が短くなるように(縮む方向に)弾性変形し復元しようとするため、第1軸受穴61に貫通支持されたシャフト33の第2軸部33bは、中心点P2から離間する方向に弾性力が付与される。 At this time, the first bearing hole 61 of the elastic ring 70 is elastically deformed and restored so that the distance D1 to the center point P2 is shortened (in the shrinking direction). The second shaft portion 33b of the shaft 33 is given an elastic force in a direction away from the center point P2.
 これによって、シャフト33は第1軸部33aを支点として軸受長穴51に沿って中心点P2から離間する方向に回動し、同シャフト33に取着された遊星歯車30Aであって、内歯車10の内歯11と噛合する外歯31の第2軸部33b側の部分が、内歯車10の内歯11に押して付けられた状態となる。 As a result, the shaft 33 is a planetary gear 30A attached to the shaft 33 by rotating in a direction away from the center point P2 along the bearing elongated hole 51 with the first shaft portion 33a as a fulcrum. The portion on the second shaft portion 33 b side of the external teeth 31 that mesh with the 10 internal teeth 11 is pressed against the internal teeth 11 of the internal gear 10.
 一方、弾性リング70の第2軸受穴62は、中心点P2までの距離D2が長くなるように(伸びる方向に)弾性変形し復元しようとするため、第2軸受穴62に貫通支持されたシャフト33の第2軸部33bは、中心点P2に近づく方向に弾性力が付与される。 On the other hand, the second bearing hole 62 of the elastic ring 70 is elastically deformed and restored so that the distance D2 to the center point P2 becomes longer (in the extending direction). The second shaft portion 33b of 33 is given an elastic force in a direction approaching the center point P2.
 これによって、シャフト33は第1軸部33aを支点として軸受長穴51に沿って中心点P2に近づく方向に回動し、同シャフト33に取着された遊星歯車30Bであって、太陽歯車20の外歯21と噛合する外歯31の第2軸部33b側の部分が、太陽歯車20の外歯21に押して付けられた状態となる。 As a result, the shaft 33 is the planetary gear 30B attached to the shaft 33 and rotated in the direction approaching the center point P2 along the bearing elongated hole 51 with the first shaft portion 33a as a fulcrum. The portion of the external tooth 31 that meshes with the external tooth 21 on the second shaft portion 33 b side is pressed against the external tooth 21 of the sun gear 20.
 従って、遊星歯車装置1が静止状態において、第1の組の2個の遊星歯車30Aは、その外歯31の第2軸部33b側の部分がガタ付くことなく内歯車10の内歯11に押して付けられた状態となる。また、第2の組の2個の遊星歯車30Bは、その外歯31の第2軸部33b側の部分がガタ付くことなく太陽歯車20の外歯21に押して付けられた状態となる。 Therefore, when the planetary gear device 1 is stationary, the two planetary gears 30A of the first set are connected to the internal teeth 11 of the internal gear 10 without the back teeth of the external teeth 31 on the second shaft portion 33b side. It will be in the state of being pushed. Further, the second planetary gear 30B of the second set is in a state in which the portion of the outer teeth 31 on the second shaft portion 33b side is pressed against the outer teeth 21 of the sun gear 20 without rattling.
 しかも、4個の遊星歯車30は、1つの弾性リング70にて、内歯車10の内歯11又は太陽歯車20の外歯21に対して、それぞれガタ付くことなく押して付けられた状態となる。従って、第1実施形態と同様に、部品点数の削減、構造及び組付けが簡便にすることができる。 Moreover, the four planetary gears 30 are pressed against the internal teeth 11 of the internal gear 10 or the external teeth 21 of the sun gear 20 by one elastic ring 70 without rattling. Therefore, similarly to the first embodiment, the reduction in the number of parts, the structure, and the assembly can be simplified.
 そして、例えば、第1キャリヤ40を入力軸、太陽歯車20の回転軸22を出力軸として回転させたとき、回転開始時は、4個の遊星歯車30は、1つの形状の弾性リング70にて、内歯車10の内歯11又は太陽歯車20の外歯21に対して、それぞれガタ付くことなく押して付けられた状態から回転するため、バックラッシュによる遊星歯車30の複数の同時噛合いに起因する打音もなく、静かに回転する。 For example, when the first carrier 40 is rotated as the input shaft and the rotation shaft 22 of the sun gear 20 is rotated as the output shaft, the four planetary gears 30 are formed by one shape elastic ring 70 at the start of rotation. Rotating from the state of being pressed against the internal teeth 11 of the internal gear 10 or the external teeth 21 of the sun gear 20 without rattling, respectively, is caused by a plurality of simultaneous meshing of the planetary gear 30 due to backlash. It rotates gently without hitting.
 そして、第1キャリヤ40の定常回転トルクが大きくなると、歯車の噛み合い作用が勝って調芯作用が働き、弾性リング60による遊星歯車30のシャフト33の傾きがなくなり、通常の遊星歯車と同じ軸回転となる。その結果、距離D1と距離D2がほぼ等しくなり、弾性リング70は、円形状から図10に示す楕円形状となって、第1及び第2キャリヤ40,50(弾性リング60)がバランスよく保持され静音性能をより向上させる。 When the steady rotational torque of the first carrier 40 increases, the meshing action of the gear wins and the centering action works, the inclination of the shaft 33 of the planetary gear 30 by the elastic ring 60 is eliminated, and the same shaft rotation as that of a normal planetary gear is achieved. It becomes. As a result, the distance D1 and the distance D2 are substantially equal, and the elastic ring 70 is changed from a circular shape to an elliptical shape shown in FIG. 10, and the first and second carriers 40 and 50 (elastic ring 60) are held in a balanced manner. Improve silent performance more.
 このように、本実施形態の円形の弾性リング70であって、第1軸受穴61と第2軸受穴62の中心軸線までの距離D1,D2をそれぞれ相違させることによって、第1実施形態と同様な効果を有する。
第3実施形態
 次に、本発明の遊星歯車装置の第3実施形態を図11~図15に従って説明する。
As described above, the circular elastic ring 70 of the present embodiment is the same as the first embodiment by making the distances D1 and D2 to the central axis of the first bearing hole 61 and the second bearing hole 62 different from each other. It has a great effect.
Third Embodiment Next, a third embodiment of the planetary gear device of the present invention will be described with reference to FIGS.
 本実施形態は、第1及び第2実施形態の弾性リング60,70を省略し、弾性リング60,70の機能を第1及び第2キャリヤに設けた点に特徴を有する。 This embodiment is characterized in that the elastic rings 60 and 70 of the first and second embodiments are omitted, and the functions of the elastic rings 60 and 70 are provided in the first and second carriers.
 そのため、本実施形態では、説明の便宜上、相違する点について詳細に説明し、第1及び第2実施形態と共通の部分については符号を同じにしてその詳細な説明を省略する。 Therefore, in the present embodiment, for the sake of convenience of explanation, differences will be described in detail, and the same reference numerals are used for portions common to the first and second embodiments, and detailed description thereof is omitted.
 図11は本実施形態の遊星歯車装置1を示し、図12は、各遊星歯車30の第1側から突出したシャフト33の第1軸部33aを貫通支持する第1キャリヤ80を示し、図14は、各遊星歯車30の第2側から突出したシャフト33の第2軸部33bを貫通支持する第2キャリヤ90を示す。 11 shows the planetary gear device 1 of the present embodiment, and FIG. 12 shows the first carrier 80 that penetrates and supports the first shaft portion 33a of the shaft 33 protruding from the first side of each planetary gear 30. These show the 2nd carrier 90 which penetrates and supports the 2nd axial part 33b of the shaft 33 protruded from the 2nd side of each planetary gear 30. FIG.
 第1キャリヤ80は、合成樹脂で形成されている。そして、第1キャリヤ80は、外力を加えない状態では外形が楕円形状をなし、その長径と短径とが交差する交点P1が、第1キャリヤ80が各第1軸部33aを貫通支持した時、遊星歯車装置1の中心軸線C1と一致する。ここで、第1キャリヤ80の幅方向(交点P1を中心に径方向)の中心位置を通る線を環状線Lzという。 The first carrier 80 is made of synthetic resin. The outer shape of the first carrier 80 is elliptical when no external force is applied, and the intersection point P1 where the major axis and minor axis intersect with each other is when the first carrier 80 supports each first shaft portion 33a. This coincides with the central axis C1 of the planetary gear device 1. Here, a line passing through the center position of the first carrier 80 in the width direction (radial direction centering on the intersection P1) is referred to as an annular line Lz.
 楕円形状の第1キャリヤ80は、環状線Lzと交差する長径線L1上であって、前記交点P1を挟んで相対向する2位置に、第1の組の遊星歯車30Aから突出した第1軸部33aを貫通支持する第1軸受穴61を備えている。また、第1キャリヤ80は、環状線Lzと交差する短径線L2上であって、前記交点P1を挟んで相対向する2位置に、第2の組の遊星歯車30Bから突出した第1軸部33aを貫通支持する第2軸受穴62を備えている。 The first carrier 80 having an elliptical shape is a first shaft projecting from the first set of planetary gears 30A at two positions on the long diameter line L1 intersecting the annular line Lz and facing each other across the intersection point P1. A first bearing hole 61 for penetrating and supporting the portion 33a is provided. Further, the first carrier 80 is a first shaft projecting from the second set of planetary gears 30B at two positions on the minor line L2 intersecting the annular line Lz and facing each other across the intersection P1. A second bearing hole 62 for penetrating and supporting the portion 33a is provided.
 つまり、第1実施形態と同様に、第1軸受穴61と第2軸受穴62は、交点P1までの距離が相違し、長径線L1上に位置する第1軸受穴61の交点P1までの距離D1は、短径線L2上に位置する第2軸受穴62の交点P1までの距離D2より長い。 That is, as in the first embodiment, the first bearing hole 61 and the second bearing hole 62 have different distances to the intersection point P1, and the distance to the intersection point P1 of the first bearing hole 61 located on the long diameter line L1. D1 is longer than the distance D2 to the intersection P1 of the second bearing hole 62 located on the short diameter line L2.
 そして、第1の組の2個の遊星歯車30Aから突出したシャフト33の第1軸部33aを、それぞれ第1キャリヤ80の第1軸受穴61に貫通させ、第2の組の2個の遊星歯車30Bから突出したシャフト33の第1軸部33aを、それぞれ第1キャリヤ80の第2軸受穴62に貫通させる。 Then, the first shaft portion 33a of the shaft 33 protruding from the two planetary gears 30A of the first set is passed through the first bearing holes 61 of the first carrier 80, respectively, and two planets of the second set are set. The first shaft portion 33a of the shaft 33 protruding from the gear 30B is passed through the second bearing hole 62 of the first carrier 80, respectively.
 この時、第1キャリヤ80の第1軸受穴61は、交点P1までの距離D1が短くなるように(縮む方向に)弾性変形し復元しようとするため、第1軸受穴61に貫通支持されたシャフト33の第1軸部33aは、中心軸線C1から離間する方向に弾性力が付与される。 At this time, the first bearing hole 61 of the first carrier 80 is elastically deformed and restored so that the distance D1 to the intersection P1 is shortened (in the shrinking direction). The first shaft portion 33a of the shaft 33 is given an elastic force in a direction away from the central axis C1.
 一方、第1キャリヤ80の第2軸受穴62は、交点P1までの距離D2が長くなるように(伸びる方向に)弾性変形し復元しようとするため、第2軸受穴62に貫通支持されたシャフト33の第1軸部33aは、中心軸線C1に近づく方向に弾性力が付与される。 On the other hand, the second bearing hole 62 of the first carrier 80 tends to be elastically deformed and restored so that the distance D2 to the intersection P1 becomes longer (in the extending direction). The first shaft portion 33a of 33 is given an elastic force in a direction approaching the central axis C1.
 図14は、各遊星歯車30の第2側から突出したシャフト33の第2軸部33bを貫通支持する第2キャリヤ90を示す。 FIG. 14 shows a second carrier 90 that penetrates and supports the second shaft portion 33b of the shaft 33 protruding from the second side of each planetary gear 30. FIG.
 第2キャリヤ90は、合成樹脂で形成されている。そして、第2キャリヤ90は、外力を加えない状態では外形が第1キャリヤ80と同一形状の楕円形状をなし、その長径と短径とが交差する交点P1が、第2キャリヤ90が各第2軸部33bを貫通支持した時、遊星歯車装置1の中心軸線C1と一致する。ここで、第2キャリヤ90の幅方向(交点P1を中心に径方向)の中心位置を通る線を環状線Lzという。 The second carrier 90 is made of synthetic resin. The second carrier 90 has an elliptical outer shape that is the same as that of the first carrier 80 in the state where no external force is applied, and the second carrier 90 is connected to the second carrier 90 at each intersection P1 where the major axis and minor axis intersect. When the shaft portion 33b is supported through, it coincides with the central axis C1 of the planetary gear device 1. Here, a line passing through the center position of the second carrier 90 in the width direction (radial direction centering on the intersection P1) is referred to as an annular line Lz.
 楕円形状の第2キャリヤ90は、環状線Lzと交差する長径線L1上であって、前記交点P1を挟んで相対向する2位置に、第1の組の遊星歯車30Aから突出した第2軸部33bを貫通支持する第1軸受穴61を備えている。また、第2キャリヤ90は、環状線Lzと交差する短径線L2上であって、前記交点P1を挟んで相対向する2位置に、第2の組の遊星歯車30Bから突出した第2軸部33bを貫通支持する第2軸受穴62を備えている。 The elliptical second carrier 90 is a second shaft protruding from the first set of planetary gears 30A at two positions on the long diameter line L1 intersecting with the annular line Lz and facing each other across the intersection point P1. A first bearing hole 61 is provided for penetrating and supporting the portion 33b. Further, the second carrier 90 is a second shaft projecting from the second set of planetary gears 30B at two positions on the short diameter line L2 intersecting the annular line Lz and facing each other across the intersection point P1. A second bearing hole 62 is provided for penetrating and supporting the portion 33b.
 つまり、第1軸受穴61と第2軸受穴62は、第1キャリヤ80と同様に、交点P1までの距離が相違し、長径線L1上に位置する第1軸受穴61の交点P1までの距離D1は、短径線L2上に位置する第2軸受穴62の交点P1までの距離D2より長い。 That is, the first bearing hole 61 and the second bearing hole 62 are different in distance to the intersection point P1 as in the first carrier 80, and the distance to the intersection point P1 of the first bearing hole 61 located on the long diameter line L1. D1 is longer than the distance D2 to the intersection P1 of the second bearing hole 62 located on the short diameter line L2.
 そして、第1の組の2個の遊星歯車30Aから突出したシャフト33の第2軸部33bを、それぞれ第2キャリヤ90の第1軸受穴61に貫通させ、第2の組の2個の遊星歯車30Bから突出したシャフト33の第2軸部33bを、それぞれ第2キャリヤ90の第2軸受穴62に貫通させる。 Then, the second shaft portion 33b of the shaft 33 protruding from the two planetary gears 30A of the first set is passed through the first bearing holes 61 of the second carrier 90, respectively, and the two planets of the second set are set. The second shaft portion 33b of the shaft 33 protruding from the gear 30B is passed through the second bearing hole 62 of the second carrier 90, respectively.
 この時、第2キャリヤ90の第1軸受穴61は、交点P1までの距離D1が短くなるように(縮む方向に)弾性変形し復元しようとするため、第1軸受穴61に貫通支持されたシャフト33の第2軸部33bは、中心軸線C1から離間する方向に弾性力が付与される。 At this time, the first bearing hole 61 of the second carrier 90 is elastically deformed and restored so that the distance D1 to the intersection P1 is shortened (in the shrinking direction). The second shaft portion 33b of the shaft 33 is given an elastic force in a direction away from the central axis C1.
 一方、第2キャリヤ90の第2軸受穴62は、交点P1までの距離D2が長くなるように(伸びる方向に)弾性変形し復元しようとするため、第2軸受穴62に貫通支持されたシャフト33の第1軸部33aは、中心軸線C1に近づく方向に弾性力が付与される。 On the other hand, the second bearing hole 62 of the second carrier 90 tends to be elastically deformed and restored so that the distance D2 to the intersection P1 is increased (in the extending direction), and thus the shaft that is penetrated and supported by the second bearing hole 62. The first shaft portion 33a of 33 is given an elastic force in a direction approaching the central axis C1.
 従って、遊星歯車装置1が静止状態において、第1の組の2個の遊星歯車30Aは、第1及び第2キャリヤ80,90がシャフト33の第1及び第2軸部33a,33bを同時に交点P1から離間する方向に弾性力を付与し復元させることによって、ガタ付くことなく内歯車10の内歯11に押して付けられた状態となる。 Therefore, when the planetary gear device 1 is stationary, the first and second planetary gears 30A are configured such that the first and second carriers 80 and 90 intersect the first and second shaft portions 33a and 33b of the shaft 33 at the same time. By applying an elastic force in a direction away from P1 and restoring it, it is pushed against the internal teeth 11 of the internal gear 10 without rattling.
 また、遊星歯車装置1が静止状態において、第2の組の2個の遊星歯車30Bは、第1及び第2キャリヤ80,90がシャフト33の第1及び第2軸部33a,33bを同時に交点P1に近づく方向に弾性力を付与し復元させることによって、ガタ付くことなく太陽歯車20の外歯21に押して付けられた状態となる。 When the planetary gear device 1 is stationary, the second planetary gear 30B of the second set includes the first and second carriers 80 and 90 that intersect the first and second shaft portions 33a and 33b of the shaft 33 at the same time. By applying and restoring the elastic force in the direction approaching P1, the outer teeth 21 of the sun gear 20 are pushed and attached without rattling.
 つまり、遊星歯車装置1が静止状態において、第1の組の2個の遊星歯車30Aは、その外歯31の内歯車10側全体がガタ付くことなく内歯車10の内歯11に押して付けられた状態となる。また、第2の組の2個の遊星歯車30Bは、その外歯31の太陽歯車20側全体がガタ付くことなく太陽歯車20の外歯21に押して付けられた状態となる。 That is, when the planetary gear device 1 is stationary, the two planetary gears 30A of the first set are pressed against the internal teeth 11 of the internal gear 10 without the entire internal gear 10 side of the external teeth 31 being rattled. It becomes a state. Further, the two planet gears 30B of the second set are in a state of being pressed against the outer teeth 21 of the sun gear 20 without rattling the entire outer teeth 31 of the sun gear 20 side.
 しかも、4個の遊星歯車30は、第1キャリヤ80と第2キャリヤ90にて、それぞれ対応する内歯車10の内歯11又は太陽歯車20の外歯21に対して、それぞれガタ付くことなく押して付けられた状態となる。従って、第1及び第2実施形態のように、弾性リング60,70が不要となり、部品点数の削減、構造及び組付けが簡便にすることができる。しかも、第1キャリヤ80と第2キャリヤ90は、同一形状なので、互いに共用でき部品管理も容易となる。 Moreover, the four planetary gears 30 are pushed by the first carrier 80 and the second carrier 90 against the internal teeth 11 of the corresponding internal gear 10 or the external teeth 21 of the sun gear 20 without rattling. It will be attached. Therefore, unlike the first and second embodiments, the elastic rings 60 and 70 are unnecessary, and the number of parts can be reduced, and the structure and assembly can be simplified. In addition, since the first carrier 80 and the second carrier 90 have the same shape, they can be shared with each other and parts management is facilitated.
 ここで、例えば、遊星歯車装置1を、内歯車10を入力軸、太陽歯車20の回転軸22を出力軸として使用した場合、太陽歯車20の回転軸22は、内歯車10の入力軸と逆方向に、増速して回転する。 Here, for example, when the planetary gear device 1 is used with the internal gear 10 as an input shaft and the rotary shaft 22 of the sun gear 20 as an output shaft, the rotary shaft 22 of the sun gear 20 is opposite to the input shaft of the internal gear 10. Rotate at an increased speed in the direction.
 このとき、回転開始時は、4個の遊星歯車30は、第1キャリヤ80と第2キャリヤ90にて、それぞれ対応する内歯車10の内歯11又は太陽歯車20の外歯21に対して、それぞれガタ付くことなく押して付けられた状態から回転するため、バックラッシュによる遊星歯車30の複数の同時噛合いに起因する打音もなく、静かに回転する。 At this time, at the start of rotation, the four planetary gears 30 are respectively corresponding to the internal teeth 11 of the corresponding internal gear 10 or the external teeth 21 of the sun gear 20 in the first carrier 80 and the second carrier 90, respectively. Since each of them rotates from a state where they are pushed without rattling, they rotate quietly without hitting sound caused by a plurality of simultaneous meshing of the planetary gear 30 due to backlash.
 そして、第1及び第2キャリヤ80,90の定常回転トルクが大きくなると、歯車の噛み合い作用が勝って調芯作用が働き、第1及び第2キャリヤ80,90による遊星歯車30のシャフト33の傾きがなくなり、通常の遊星歯車と同じ軸回転となる。その結果、第1及び第2キャリヤ80,90は、楕円形状からそれぞれ、図13、図15に示す円形となり、第1及び第2キャリヤ80,90がバランスよく保持され静音性能をより向上させる。 When the steady rotational torque of the first and second carriers 80 and 90 increases, the meshing action of the gears wins and the centering action works, and the inclination of the shaft 33 of the planetary gear 30 by the first and second carriers 80 and 90 is increased. And the same axis rotation as a normal planetary gear. As a result, the first and second carriers 80 and 90 are changed from the elliptical shape to the circular shapes shown in FIGS. 13 and 15, respectively, and the first and second carriers 80 and 90 are held in a well-balanced manner to further improve the silent performance.
 なお、ここでは、遊星歯車装置1を、内歯車10を入力軸、太陽歯車20の回転軸22を出力軸として使用した場合を説明したが、これに限定されるものではなく、上述したように、内歯車10を出力軸、太陽歯車20の回転軸22を入力軸として使用する等してもよい。 Here, the case where the planetary gear device 1 is used with the internal gear 10 as the input shaft and the rotating shaft 22 of the sun gear 20 as the output shaft has been described. However, the present invention is not limited to this, as described above. The internal gear 10 may be used as an output shaft, and the rotary shaft 22 of the sun gear 20 may be used as an input shaft.
 尚、上記実施形態は以下のように変更してもよい。 The above embodiment may be modified as follows.
 ・上記第1及び第2実施形態では、各遊星歯車30の第1側から突出したシャフト33の第1軸部33aを貫通支持する第1キャリヤ40に形成された軸受穴41の形状を、図16に示すように、遊星歯車30に向かうほどその内径が拡開するように形成してもよい。 In the first and second embodiments, the shape of the bearing hole 41 formed in the first carrier 40 that penetrates and supports the first shaft portion 33a of the shaft 33 protruding from the first side of each planetary gear 30 is illustrated in FIG. As shown in FIG. 16, the inner diameter of the planetary gear 30 may be increased toward the planetary gear 30.
 これによって、シャフト33が弾性リング60にて軸受穴41を支点として、回動するとき、シャフト33の回動を容易にすることができる。 Thus, when the shaft 33 is rotated by the elastic ring 60 with the bearing hole 41 as a fulcrum, the rotation of the shaft 33 can be facilitated.
 ・上記第3実施形態では、第1キャリヤ80と第2キャリヤ90の両方に、弾性リング60の機能を持たせたが、いずれか一方に弾性リング60の機能を持たせて実施させてもよい。 In the third embodiment, both the first carrier 80 and the second carrier 90 have the function of the elastic ring 60, but either one may have the function of the elastic ring 60. .
 ・上記第3実施形態では、第1キャリヤ80と第2キャリヤ90の形状を、第1実施形態の楕円形状の弾性リング60と同じにしたが、第2実施形態の円形状の弾性リング70と同じにして実施してもよく、第1キャリヤ80と第2キャリヤ90の周方向の位置を互いに90度ずらして配置してもよい。 In the third embodiment, the shapes of the first carrier 80 and the second carrier 90 are the same as the elliptical elastic ring 60 of the first embodiment, but the circular elastic ring 70 of the second embodiment and It may be carried out in the same manner, and the circumferential positions of the first carrier 80 and the second carrier 90 may be shifted from each other by 90 degrees.
 ・上記第1実施形態は、円筒状のギアケース2内に、内歯車10、太陽歯車20、4個の遊星歯車30、第1及び第2キャリヤ40,50を配置した遊星歯車装置1に具体化されたが、ギアケース2を省略してもよい。例えば、かかる実施形態が、内歯車10内に、太陽歯車20、4個の遊星歯車30、第1及び第2キャリヤ40,50を配置した遊星歯車装置1に具体化されてもよい。 The first embodiment is specifically described in the planetary gear device 1 in which the internal gear 10, the sun gear 20, the four planetary gears 30, and the first and second carriers 40 and 50 are arranged in the cylindrical gear case 2. However, the gear case 2 may be omitted. For example, such an embodiment may be embodied in the planetary gear device 1 in which the sun gear 20, the four planetary gears 30, the first and second carriers 40 and 50 are arranged in the internal gear 10.
 ・上記第1実施形態では、遊星歯車30は、シャフト33に対してラジアル方向に回転可能かつスラスト方向に移動不能に支持されるようにしたが、シャフト33に対してラジアル方向に回転不能可能に固着するようにしてもよい。この場合、シャフト33を遊星歯車30と同じ合成樹脂で一体的に成形することができる。 In the first embodiment, the planetary gear 30 is supported so as to be rotatable in the radial direction with respect to the shaft 33 and immovable in the thrust direction, but is not rotatable in the radial direction with respect to the shaft 33. It may be fixed. In this case, the shaft 33 can be integrally formed with the same synthetic resin as the planetary gear 30.
 また、この場合、シャフト33は、第1及び第2キャリヤ40,50に対して回転可能に支持される必要がある。 In this case, the shaft 33 needs to be supported rotatably with respect to the first and second carriers 40 and 50.
 ・上記第1~第3実施形態では、内歯車10、太陽歯車20、4個の遊星歯車30、第1及び第2キャリヤ40,50,80,90、弾性リング60,70を合成樹脂で成形したが、ゴム、アルミ、ステレス、鉄等の金属で成形してもよい。 In the first to third embodiments, the internal gear 10, the sun gear 20, the four planetary gears 30, the first and second carriers 40, 50, 80, 90, and the elastic rings 60, 70 are molded from synthetic resin. However, you may shape | mold with metals, such as rubber | gum, aluminum, stainless steel, and iron.

Claims (10)

  1. 遊星歯車装置であって、
     中心軸線を有する太陽歯車と、
     2個のキャリヤに周方向で等間隔に連結支持された4個の遊星歯車であって、該4個の遊星歯車は2個1組であり、それぞれの組の2個の遊星歯車は太陽歯車を挟んで相対向し、各遊星歯車は支持軸により支持されている、4個の遊星歯車と、
     前記4個の遊星歯車の支持軸を、前記太陽歯車を中心に周方向に一体連結するとともに、前記太陽歯車を挟んで相対向する第1の組の2個の前記遊星歯車の支持軸に、内歯車及び前記太陽歯車のいずれか一方の方向に弾性力を付与し、且つ前記太陽歯車を挟んで相対向する第2の組の2個の遊星歯車の支持軸に、前記内歯車及び前記太陽歯車のいずれか他方の方向に弾性力を付与する弾性リングと、
    を備えた遊星歯車装置。
    A planetary gear set,
    A sun gear having a central axis;
    Four planetary gears connected and supported by two carriers at equal intervals in the circumferential direction, the four planetary gears being one set, and the two planetary gears of each set being sun gears 4 planetary gears that are opposed to each other with each planetary gear supported by a support shaft,
    The support shafts of the four planetary gears are integrally connected in the circumferential direction around the sun gear, and the support shafts of the two planetary gears of the first set facing each other with the sun gear interposed therebetween, The internal gear and the sun gear are provided on the support shafts of a second set of two planetary gears that impart elastic force in one direction of the internal gear and the sun gear and are opposed to each other with the sun gear interposed therebetween. An elastic ring for applying an elastic force in the other direction of the gear;
    A planetary gear device comprising:
  2. 請求項1に記載の遊星歯車装置において、
     前記弾性リングは、長径と短径を有する楕円形の弾性リングであり、
     前記弾性リングは、その長径と短径とが交差する交点を挟んで長径線上であって、前記弾性リングの径方向の幅の中心位置にある2位置に一対の第1軸受穴と、前記交点を挟んで短径線上であって、前記弾性リングの径方向の幅の中心位置にある2位置に一対の第2軸受穴とを備え、
     前記一対の第1軸受穴に第1の組の2個の遊星歯車の支持軸を、前記一対の第2軸受穴に第2の組の2個の遊星歯車の支持軸を、それぞれ弾性変形させて連結した遊星歯車装置。
    The planetary gear set according to claim 1,
    The elastic ring is an elliptical elastic ring having a major axis and a minor axis,
    The elastic ring has a pair of first bearing holes at two positions on the long diameter line across the intersection where the major axis and the minor axis intersect, and at the center position of the radial width of the elastic ring, and the intersection A pair of second bearing holes at two positions on the short-diameter line across the center of the radial width of the elastic ring,
    The pair of first bearing holes are elastically deformed in the first set of two planetary gear support shafts, and the pair of second bearing holes are in the second set of two planetary gear support shafts. Connected planetary gear unit.
  3. 請求項1に記載の遊星歯車装置において、
     前記弾性リングは、真円形の弾性リングであって、
     前記弾性リングは、その弾性リングの中心点を通過する第1線上であって、中心点を挟んで等しい第1距離にある弾性リングの2位置に一対の第1軸受穴と、
     前記弾性リングの中心点を通過するとともに前記第1線と直交する第2線上であって、中心点を挟んで等しく且つ前記第1距離より短い第2距離にある弾性リングの2位置に一対の第2軸受穴とを備え、
     前記一対の第1軸受穴に第1の組の2個の遊星歯車の支持軸を、前記一対の第2軸受穴に第2の組の2個の遊星歯車の支持軸を、それぞれ弾性変形させて連結した遊星歯車装置。
    The planetary gear set according to claim 1,
    The elastic ring is a perfect circular elastic ring,
    The elastic ring has a pair of first bearing holes at two positions of the elastic ring on a first line passing through a central point of the elastic ring and at an equal first distance across the central point;
    A pair of elastic rings on a second line that passes through the center point of the elastic ring and is perpendicular to the first line and is equal to the center point and at a second distance shorter than the first distance. A second bearing hole,
    The pair of first bearing holes are elastically deformed in the first set of two planetary gear support shafts, and the pair of second bearing holes are in the second set of two planetary gear support shafts. Connected planetary gear unit.
  4. 請求項2又は3に記載の遊星歯車装置において、
    前記4個の前記遊星歯車の支持軸の各々は、第1軸部および第2軸部を有し、
     前記2個のキャリヤは、4個の前記遊星歯車の支持軸の第1軸部を連結支持する第1キャリヤと、4個の前記遊星歯車の支持軸の第2軸部を連結支持する、遊星歯車に関して第1キャリヤと反対側の第2キャリアとを備え、
     前記弾性リングは、前記第2キャリヤに配置されるとともに、4個の前記遊星歯車の支持軸の第2軸部をそれぞれ弾性変形させて連結した遊星歯車装置。
    In the planetary gear set according to claim 2 or 3,
    Each of the support shafts of the four planetary gears has a first shaft portion and a second shaft portion,
    The two carriers include a first carrier that connects and supports the first shaft portions of the support shafts of the four planetary gears, and a planet that connects and supports the second shaft portions of the support shafts of the four planetary gears. A second carrier opposite to the first carrier with respect to the gear,
    The elastic ring is a planetary gear device that is arranged on the second carrier and is connected by elastically deforming the second shaft portions of the support shafts of the four planetary gears.
  5. 請求項2又は3に記載の遊星歯車装置において、
     前記弾性リングは、4個の前記遊星歯車の支持軸を、前記太陽歯車を中心軸線に周方向に一体連結する前記2個のキャリヤで構成される遊星歯車装置。
    In the planetary gear set according to claim 2 or 3,
    The elastic ring is a planetary gear device constituted by the two carriers that integrally connect the support shafts of the four planetary gears to the central axis in the circumferential direction.
  6.  請求項2又は3に記載の遊星歯車装置において、
     前記第1キャリヤに形成された軸受穴は断面円形を呈し、前記第2キャリヤに形成された軸受穴は、前記遊星歯車装置の中心軸線を中心とし、その径方向に長い長穴である遊星歯車装置。
    In the planetary gear set according to claim 2 or 3,
    The bearing hole formed in the first carrier has a circular cross section, and the bearing hole formed in the second carrier is a planetary gear that is a long hole in the radial direction centered on the central axis of the planetary gear device. apparatus.
  7.  請求項6に記載の遊星歯車装置において、
     前記第2キャリヤに形成された軸受長穴は、その幅狭の間隔が前記支持軸の直径と一致し、その幅広の間隔が前記支持軸の直径より長い遊星歯車装置。
    The planetary gear set according to claim 6,
    The elongated bearing hole formed in the second carrier is a planetary gear device in which the narrow interval coincides with the diameter of the support shaft, and the wide interval is longer than the diameter of the support shaft.
  8.  請求項1乃至7のいずれか一項に記載の遊星歯車装置において、
     前記遊星歯車の一側から突出した前記支持軸を貫通支持する前記キャリヤに形成された軸受穴の形状を、前記遊星歯車に向かうほどその内径が拡開するように形成する遊星歯車装置。
    The planetary gear device according to any one of claims 1 to 7,
    A planetary gear device, wherein a shape of a bearing hole formed in the carrier that penetrates and supports the support shaft protruding from one side of the planetary gear is formed such that an inner diameter thereof is expanded toward the planetary gear.
  9.  請求項1乃至8のいずれか一項に記載の遊星歯車装置において、
     円筒状のギアケース内に、前記内歯車、前記太陽歯車、前記4個の遊星歯車、前記キャリヤが配置される遊星歯車装置。
    The planetary gear device according to any one of claims 1 to 8,
    A planetary gear device in which the internal gear, the sun gear, the four planetary gears, and the carrier are arranged in a cylindrical gear case.
  10.  請求項1乃至7のいずれか一項に記載の遊星歯車装置において、
     前記内歯車内に、前記太陽歯車、前記4個の遊星歯車、前記キャリヤが配置される遊星歯車装置。
    The planetary gear device according to any one of claims 1 to 7,
    A planetary gear device in which the sun gear, the four planetary gears, and the carrier are arranged in the internal gear.
PCT/JP2011/070331 2010-09-16 2011-09-07 Planetary gear device WO2012036033A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-208321 2010-09-16
JP2010208321A JP5429119B2 (en) 2010-09-16 2010-09-16 Planetary gear set

Publications (1)

Publication Number Publication Date
WO2012036033A1 true WO2012036033A1 (en) 2012-03-22

Family

ID=45831500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070331 WO2012036033A1 (en) 2010-09-16 2011-09-07 Planetary gear device

Country Status (2)

Country Link
JP (1) JP5429119B2 (en)
WO (1) WO2012036033A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012207255A1 (en) * 2012-05-02 2013-11-07 Zf Friedrichshafen Ag Planetary gear of combustion engine, has planet gear portions that are displaced and spring-loaded in opposite direction, so that gear portions are respectively pressed to play-free engage the meshing portions to ring gear and sun gear
WO2014180982A3 (en) * 2013-05-10 2014-12-31 Schwäbische Hüttenwerke Automotive GmbH Drive for a compressor for increasing the charging pressure of an internal combustion engine
WO2015188803A3 (en) * 2014-06-07 2016-05-26 Günther Zimmer Planetary gearbox with two sun wheels and minimum teeth play
CN106988676A (en) * 2017-04-06 2017-07-28 安徽理工大学 A kind of indexing mechanism of tunnel hydraulic drill rig
US20240125255A1 (en) * 2022-10-14 2024-04-18 Borgwarner Inc. Variable camshaft timing sun gear cushion ring

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492799A (en) * 2013-06-28 2016-04-13 冯哈伯微电机有限公司 A backlash-free planetary gear assembly
KR102657742B1 (en) * 2021-11-11 2024-04-15 주식회사 현대케피코 Motor integrated reducer and its assembly method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238551U (en) * 1988-09-06 1990-03-14
JPH0348045A (en) * 1989-07-14 1991-03-01 Fuji Hensokuki Kk Planetary gear device having two sets of floating carriers
JPH0559017U (en) * 1992-01-18 1993-08-03 株式会社ハーモニック・ドライブ・システムズ Backlashless planetary gear unit
JPH0732248U (en) * 1993-11-22 1995-06-16 株式会社椿本チエイン Backlash adjusting device for planetary gear mechanism
JPH09144818A (en) * 1995-11-20 1997-06-03 Kinichi Ogawa Planetary gear device
JPH1182697A (en) * 1997-09-09 1999-03-26 Harmonic Drive Syst Ind Co Ltd Planetary gear device fitted with backlash adjustment mechanism

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238551U (en) * 1988-09-06 1990-03-14
JPH0348045A (en) * 1989-07-14 1991-03-01 Fuji Hensokuki Kk Planetary gear device having two sets of floating carriers
JPH0559017U (en) * 1992-01-18 1993-08-03 株式会社ハーモニック・ドライブ・システムズ Backlashless planetary gear unit
JPH0732248U (en) * 1993-11-22 1995-06-16 株式会社椿本チエイン Backlash adjusting device for planetary gear mechanism
JPH09144818A (en) * 1995-11-20 1997-06-03 Kinichi Ogawa Planetary gear device
JPH1182697A (en) * 1997-09-09 1999-03-26 Harmonic Drive Syst Ind Co Ltd Planetary gear device fitted with backlash adjustment mechanism

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012207255A1 (en) * 2012-05-02 2013-11-07 Zf Friedrichshafen Ag Planetary gear of combustion engine, has planet gear portions that are displaced and spring-loaded in opposite direction, so that gear portions are respectively pressed to play-free engage the meshing portions to ring gear and sun gear
WO2014180982A3 (en) * 2013-05-10 2014-12-31 Schwäbische Hüttenwerke Automotive GmbH Drive for a compressor for increasing the charging pressure of an internal combustion engine
WO2015188803A3 (en) * 2014-06-07 2016-05-26 Günther Zimmer Planetary gearbox with two sun wheels and minimum teeth play
CN107110334A (en) * 2014-06-07 2017-08-29 京特·齐默尔 The planetary transmission minimized comprising two central gears and back lash
CN107110334B (en) * 2014-06-07 2020-04-10 京特·齐默尔 Planetary gear transmission comprising two sun gears and minimizing backlash
CN106988676A (en) * 2017-04-06 2017-07-28 安徽理工大学 A kind of indexing mechanism of tunnel hydraulic drill rig
US20240125255A1 (en) * 2022-10-14 2024-04-18 Borgwarner Inc. Variable camshaft timing sun gear cushion ring
US11965439B1 (en) * 2022-10-14 2024-04-23 Borgwarner Inc. Variable camshaft timing sun gear cushion ring

Also Published As

Publication number Publication date
JP5429119B2 (en) 2014-02-26
JP2012062974A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
WO2012036033A1 (en) Planetary gear device
KR101700726B1 (en) Strain wave gear device, friction engagement type strain wave device, and wave generator
CN104321558B (en) Wave generator of strain wave gear device
JP5925387B2 (en) Wave generator and wave gear device
KR101748177B1 (en) Wave gear device with composite roller bearing
WO2010047189A1 (en) Gear transmitting device
JP2018059556A (en) Cycloid speed reducer reduced in backlash
JP3186812U (en) Variable speed transmission bearing
KR101724659B1 (en) Reverse cycloid reducer
JP6194241B2 (en) Gear transmission
JP5998423B2 (en) Decelerator
KR101699813B1 (en) Strain wave gear device
JP2019027519A (en) Wave gear device
JP5480845B2 (en) Planetary gear mechanism
WO2020218505A1 (en) Speed reducer and driving device
JP2008256103A (en) Rocking gear device
JP2016211643A (en) Speed reducer and manufacturing method of speed reducer
WO2016027323A1 (en) Facing-type strain wave gearing
JP2017067259A (en) Support structure of double-helical gear
WO2017006443A1 (en) Strain wave gearing and wave generator
JP6632341B2 (en) Wave gear device with traction drive mechanism
JP2019039545A (en) Reduction gear and driving device
JP7149158B2 (en) Eccentric oscillating reduction gear
JP5353504B2 (en) Flexure meshing gear unit
JP2002161948A (en) Inner pin supporting structure for planetary gear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825039

Country of ref document: EP

Kind code of ref document: A1