WO2012035968A1 - Hydrogen/air secondary cell - Google Patents

Hydrogen/air secondary cell Download PDF

Info

Publication number
WO2012035968A1
WO2012035968A1 PCT/JP2011/069549 JP2011069549W WO2012035968A1 WO 2012035968 A1 WO2012035968 A1 WO 2012035968A1 JP 2011069549 W JP2011069549 W JP 2011069549W WO 2012035968 A1 WO2012035968 A1 WO 2012035968A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
air
negative electrode
hydrogen
electrode
Prior art date
Application number
PCT/JP2011/069549
Other languages
French (fr)
Japanese (ja)
Inventor
正嗣 盛満
浩二 高野
Original Assignee
学校法人同志社
九州電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人同志社, 九州電力株式会社 filed Critical 学校法人同志社
Publication of WO2012035968A1 publication Critical patent/WO2012035968A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention uses oxygen in the atmosphere as a positive electrode active material, hydrogen in a hydrogen storage alloy as a negative electrode active material, and an alkaline aqueous solution as an electrolytic solution.
  • the present invention relates to an air secondary battery.
  • the air battery is a battery using air in the atmosphere as a positive electrode active material, and a commercially available zinc / air primary battery is well known.
  • air batteries having a structure similar to that of a zinc / air primary battery, there are batteries using aluminum or iron as a negative electrode active material, all of which have been confirmed to function as primary batteries, but have not yet been put into practical use.
  • air batteries are not yet put into practical use as secondary batteries except for mechanically charged zinc / air secondary batteries.
  • a mechanical rechargeable zinc / air secondary battery is one that only discharges as a reaction inside the battery, and can be reused by taking out the zinc negative electrode after discharge and replacing it with a new zinc negative electrode. .
  • an air battery using an alkaline aqueous solution as an electrolyte a battery using hydrogen as a negative electrode active material has been developed.
  • the present inventors have disclosed an air secondary battery including an air electrode obtained by mixing nickel powder, a pyrochlore oxide containing iridium, and a binder, and a negative electrode using a hydrogen storage alloy (patent) Document 1) and (Non-Patent Document 1).
  • this secondary battery is referred to as a hydrogen / air secondary battery.
  • the charge / discharge reaction of the hydrogen / air secondary battery is expressed by the following equation.
  • M is a hydrogen storage alloy
  • MH means a hydrogen storage alloy in a state of storing hydrogen.
  • hydrogen is released from the hydrogen storage alloy at the negative electrode, and oxygen is reduced at the air electrode to produce water.
  • water increases in the alkaline aqueous solution used for the electrolytic solution.
  • in charging water in the alkaline aqueous solution is decomposed, hydrogen is occluded in the negative electrode, and oxygen is generated in the air electrode.
  • the hydrogen / air secondary battery is a secondary battery using only water as an active material, and is characterized in that the amount of water in the electrolytic solution changes depending on the amount of charge / discharge electricity. This is a battery reaction peculiar to hydrogen / air secondary batteries.
  • Patent Document 2 to Patent Document 4 disclose air batteries, which use an organic solvent or an ionic liquid as an electrolytic solution, or use lithium as a negative electrode active material.
  • the hydrogen / air secondary battery of Patent Document 1 has a simple configuration that can be charged and discharged with an air electrode, a negative electrode, and an alkaline aqueous solution, has a high energy density and a high output density, and has a large capacity by stacking. Is easy.
  • the inventors of this patent have conducted various studies. As a result, in this battery, water in the electrolytic solution is reduced by charging, so that the amount of the electrolytic solution between the air electrode and the negative electrode is small, or a so-called battery separator.
  • the conventional hydrogen / air secondary battery has a problem that when charging / discharging is repeated, the discharge voltage decreases or the charging voltage increases, making subsequent charging / discharging difficult. Further, when the discharge current is increased, the discharge capacity becomes extremely small, and when the charge current is increased, there is a problem that the charge voltage becomes high and the charge cannot be continued at a stage before full charge. Furthermore, there has been a problem that when the discharge is performed at a very high current, the electrolyte leaks through the air electrode. In particular, when the electrode area is increased or the battery capacity is increased, there is a problem that the charge / discharge characteristics are deteriorated.
  • the hydrogen / air secondary battery of the present invention has the following configuration.
  • the hydrogen / air secondary battery according to claim 1 of the present invention uses an air electrode disposed in a battery container and a hydrogen storage alloy disposed in the battery container so as to face the air electrode.
  • a hydrogen / air secondary battery comprising a negative electrode and an electrolytic solution holding body that is disposed between the air electrode and the negative electrode and holds an electrolytic solution, wherein the electrolytic solution is reduced by a charging reaction
  • the electrolyte solution storage part which stores the electrolyte solution which increases by discharge reaction in the said battery container, At least one part of the said electrolyte solution holding body is immersed in the said electrolyte solution in the said electrolyte solution storage part have.
  • the battery container has an electrolyte solution storage unit that supplies an electrolyte solution that decreases due to a charging reaction or stores an electrolyte solution that increases due to a discharge reaction, and at least a part of the electrolyte solution holder is in the electrolyte solution storage unit.
  • the amount of electrolyte increased by the discharge between the air electrode and the negative electrode via the electrolyte holder is increased by the pressure increase caused by the water generated between the air electrode and the negative electrode during discharge.
  • the amount of electrolyte to be adjusted can be adjusted by changing the porosity and thickness of the electrolyte holder, and the required optimum amount of electrolyte is always maintained between the air electrode and the negative electrode regardless of the charge / discharge capacity of the battery. can do.
  • At least one pair of an air electrode and a negative electrode is disposed in the battery container.
  • the air electrode and the negative electrode may be disposed horizontally or vertically.
  • an electrolytic solution holder that holds an electrolytic solution that is an alkaline aqueous solution is disposed between the air electrode and the negative electrode.
  • On the opposite side of the air electrode from the electrolyte holder there is an air passage formed in the battery container so that oxygen necessary for discharging can be taken into the air electrode or oxygen generated by charging can be dissipated from the air electrode. is there.
  • This vent path may simply be an opening formed in the battery container.
  • the battery container is provided with an electrolytic solution storage part, and a part of the electrolytic solution holding body is immersed in the electrolytic solution in the electrolytic solution storage part.
  • the electrolytic solution storage section has a volume suitable for the charge / discharge capacity of the battery so that the electrolytic solution that decreases by the charging reaction can be supplied or the electrolytic solution that increases by the discharging reaction can be stored. Furthermore, the flow of the electrolytic solution is ensured between the electrolytic solution storage unit and the electrolytic solution holding body, and this increases the electrolytic solution by water generated between the air electrode and the negative electrode during discharge.
  • the electrolyte is stored in the electrolyte storage unit via the liquid holder, and the electrolyte is reduced by the decomposition of water between the air electrode and the negative electrode during charging. To be replenished between the air electrode and the negative electrode.
  • the air electrode is basically composed of a conductive substance that imparts conductivity to the air electrode, a catalyst, and a binder. These are integrally formed in a mixed state, and are further formed integrally with a current collector for outputting electric power to the outside during discharging and facilitating input of electric power from an external power source during charging.
  • a conductive substance that imparts conductivity to the air electrode, a catalyst, and a binder. These are integrally formed in a mixed state, and are further formed integrally with a current collector for outputting electric power to the outside during discharging and facilitating input of electric power from an external power source during charging.
  • Carbon, metal, or the like can be used as the conductive material, but those that are stable against oxygen reduction and oxygen generation in an alkaline aqueous solution are preferable. Examples of the carbon material include graphite, glassy carbon, fullerene, carbon nanotube, carbon having other structures, and graphite having excellent oxidation resistance that is heat-treated at high temperature is particularly preferable.
  • nickel
  • a catalyst having activity for oxygen reduction and oxygen generation is used.
  • precious metals such as platinum and silver, metal oxides, metal sulfides, metal nitrides, metal carbides, metal oxides, metal sulfides, metal carbides, metal carbide oxides, etc. with nitrogen substitution, Metal, oxygen, nitrogen, and carbon composite oxide (MeC x N y O z : Me is a metal or alloy, C is carbon, N is nitrogen, O is oxygen, and x, y, and z indicate the composition ratio. ) And other oxygen reduction catalysts that have catalytic activity for oxygen reduction, and oxide activity such as iridium oxide and ruthenium oxide, metal sulfides, and metal composite oxides.
  • the oxygen generation catalyst having the same can be used together to impart oxygen reduction activity and oxygen generation activity to the air electrode.
  • a bifunctional metal, alloy, or compound having both oxygen reduction activity and oxygen generation activity can be used. Examples of such dual functional materials include complex oxides classified into pyrochlore type, perovskite type, spinel type, and the like.
  • the binder has water repellency with respect to the electrolyte so that an air flow path can be formed inside the air electrode, and allows air to flow through the gap while binding the conductive substances to each other.
  • Resin-based materials such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and ethylene / vinyl acetate copolymer (EVA) can be used.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • EVA ethylene / vinyl acetate copolymer
  • a dispersion solution in which such a binder is dispersed in an appropriate solution may be used as a starting material. it can.
  • the current collector can be made of various shapes of metal, such as mesh, fiber, or porous material, or conductive organic matter. However, the shape needs to have an opening for taking in oxygen in the atmosphere. is there.
  • the material for the current collector is preferably nickel. Note that the materials, structures, and shapes used for the conductive material, catalyst, binder, and current collector are particularly limited to those listed above as long as they exhibit their respective functions as described above. It is not something.
  • a method generally used for producing an air electrode such as a press method or an extrusion method can be used.
  • the conductive substance, the catalyst, and the binder are in the form of powder or particles, they can be produced by mixing them in a dry or wet manner and then forming them into a thin plate using a roll press. Moreover, it can be produced by putting a mixture in a specific mold and molding it.
  • the conductive material is a porous body such as nickel foam
  • the catalyst and the binder can be introduced into the porous body, and then the entire conductive material can be pressurized to be integrally molded. .
  • the current collector may be integrated with the air electrode as described above, or may be further integrated with the current collector after the conductive material, the catalyst, and the binder are integrally formed. Furthermore, when producing an air electrode, you may heat-process after the process of the above shaping
  • the hydrogen storage alloy used for the negative electrode is La-Ni alloy, La-Nd-Ni alloy, La-Gd-Ni alloy, La-Y-Ni alloy, La-Co-Ni alloy, La-Ce. -Ni alloy, La-Ni-Ag alloy, La-Ni-Fe alloy, La-Ni-Cr alloy, La-Ni-Pd alloy, La-Ni-Cu alloy, La-Ni-Al Alloy, La-Ni-Mn alloy, La-Ni-In alloy, La-Ni-Sn alloy, La-Ni-Ga alloy, La-Ni-Si alloy, La-Ni-Ge alloy La-Ni-Al-Co alloy, La-Ni-Al-Mn alloy, La-Ni-Al-Cr alloy, La-Ni-Al-Cu alloy, La-Ni-Al-Si alloy La-Ni-Al-Ti alloys, La-Ni-Al-Zr alloys Gold, La—
  • Alloys composed of combinations of two or more of Ti, Fe, Mn, Al, Ce, Ca, Mg, Zr, Nb, V, Co, Ni, and Cr elements
  • Metals that form hydrides such as Ti, V, Zr, La, Pd, and Pt (having hydrogen storage properties) or hydrides of the above alloys and metals (substances that store hydrogen) ) Can be used, but hydrogen storage and release If possible materials, but it is not particularly limited to the above composition.
  • Batteries using an alkaline aqueous solution as the electrolytic solution holder such as zinc / air primary batteries, nickel / hydrogen secondary batteries, alkaline batteries, alkaline manganese batteries, nickel / cadmium batteries, etc.
  • a separator material or the like can be used.
  • Such materials are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 7-272771, 11-293564, 2007-154402, 2007-284845, 2009-224100, and Japanese Patent Publication. This is disclosed in Japanese Patent Application Laid-Open No. 2009-516781 and Japanese Patent Application Laid-Open No. 2010-70870.
  • ion permeable films such as cellophane, films such as polypropylene and polyethylene, polyvinyl alcohol fibers, cellulose fibers, polyamide fibers, polyolefin fibers, and ethylene-vinyl alcohol copolymer fibers.
  • ultrafine fibers, core-sheath type composite fibers, those subjected to hydrophilic treatment, and the like are also used.
  • the electrolytic solution holding body only needs to have a function of isolating the air electrode and the negative electrode and holding the electrolytic solution. Therefore, the electrolytic solution holding body has ion conductivity or ion permeability while holding the electrolytic solution, and has alkali resistance and electrolysis.
  • the liquid is not particularly limited as long as it has liquid absorption.
  • a metal or alloy other than a hydrogen storage alloy is used for the negative electrode. Since a short circuit does not occur, so-called separation property, which is a function intended for this, is not necessarily required for the electrolyte solution holder of the hydrogen / air secondary battery of the present invention.
  • the invention according to claim 2 is the hydrogen / air secondary battery according to claim 1, wherein the air electrode contains nickel, a pyrochlore oxide containing iridium, and a binder. It has the composition which becomes. With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained. (1) High catalytic ability for oxygen generation and oxygen reduction is obtained by electronic and chemical interaction between the pyrochlore oxide containing iridium and nickel. Can also proceed smoothly. (2) The combination of iridium-containing pyrochlore oxide and nickel suppresses the oxidation and reduction of nickel that may occur as a side reaction at the air electrode, thereby reducing nickel consumption and carbon powder.
  • the pyrochlore oxide containing iridium is a B site in A 2 B 2 O 7-x (where ⁇ 1 ⁇ x ⁇ 1), which is a general expression representing the molar composition of the pyrochlore oxide.
  • a site element include bismuth and lead.
  • Pyrochlore oxide containing iridium is supported on nickel and / or in contact with nickel against both alkaline aqueous solution and air, and is a high catalyst for both oxygen reduction and oxygen generation Has activity.
  • a third aspect of the present invention is the hydrogen / air secondary battery according to the second aspect, wherein the pyrochlore oxide containing the iridium is a bismuth iridium oxide.
  • the pyrochlore oxide containing the iridium is a bismuth iridium oxide.
  • Bismuth iridium oxide is a simple process in which a bismuth compound such as bismuth nitrate and an iridium compound such as chloroiridic acid are used as starting materials, and a precursor material is synthesized by a method called a coprecipitation method, followed by heat treatment. Therefore, a highly active catalyst constituting the air electrode can be easily obtained.
  • the bismuth iridium oxide is an oxide represented by Bi 2 Ir 2 O 7-x in the composition formula of the pyrochlore oxide shown above.
  • those in which bismuth at the A site and / or iridium at the B site are partially substituted with other elements are also included.
  • a fourth aspect of the present invention is the hydrogen / air secondary battery according to any one of the first to third aspects, wherein the two air electrodes are disposed so as to face the negative electrode.
  • the electrolyte solution holding body is configured to be disposed between the negative electrode and each air electrode.
  • a fifth aspect of the present invention is the hydrogen / air secondary battery according to the fourth aspect, wherein at least a part of the plurality of electrolytic solution holders is immersed in the electrolytic solution in the common electrolytic solution storage unit. It has the composition which has. With this configuration, in addition to the operation obtained in the fourth aspect, the following operation can be obtained. (1) Since at least some of the plurality of electrolytic solution holders are immersed in the electrolytic solution in the common electrolytic solution storage unit, the structure of the electrolytic solution storage unit in the battery container can be simplified (2 ) Compared to the case where the electrolyte storage part is not common and is arranged for each electrolyte holder, the volume of the electrolyte storage part can be reduced, and the volume of the entire battery container is also reduced. The hit energy density and output density can be improved.
  • a sixth aspect of the present invention is the hydrogen / air secondary battery according to the fifth aspect, wherein a plurality of the electrolytic solution holders are connected in the common electrolytic solution storage unit. Yes.
  • the following operation can be obtained. (1) Since a plurality of electrolyte holders are connected in a common electrolyte storage part, the plurality of electrolyte holders are integrated with each other with respect to two or more air electrodes via the electrolyte storage part. The number of members of the electrolytic solution holder can be reduced.
  • a seventh aspect of the present invention is the hydrogen / air secondary battery according to any one of the first to sixth aspects, wherein the negative electrode and one or two of the air electrodes facing the negative electrode are provided.
  • a plurality of pairs of electrodes whose longitudinal directions are arranged in parallel with the horizontal direction are stacked in the battery container.
  • the invention according to claim 8 is the hydrogen / air secondary battery according to any one of claims 1 to 6, wherein the negative electrode and one or two of the air electrodes facing the negative electrode are provided.
  • a plurality of pairs of electrodes whose longitudinal directions are arranged in parallel with the vertical direction are arranged in parallel in the battery container.
  • the following action is obtained.
  • a plurality of electrode pairs, in which the longitudinal direction of one or two air electrodes facing the negative electrode and the negative electrode is arranged in parallel with the vertical direction, are arranged in parallel in the battery container. Maximum dischargeable current, power density, and energy density can be improved.
  • the volume occupied by the whole battery can be reduced as compared with the case where a plurality of batteries each made up of a single electrode pair are connected.
  • the electrolyte holder between the air electrode and the negative electrode from the electrolyte storage part corresponds to the decrease / increase in water between the air electrode and the negative electrode during charge / discharge.
  • the electrolyte can be supplied at a more appropriate timing, or the electrolyte can be stored at a more appropriate timing from the electrolyte holder between the air electrode and the negative electrode to the electrolyte reservoir.
  • the following advantageous effects can be obtained.
  • the first aspect of the invention the following advantageous effects can be obtained. (1) Since the increase or decrease in the amount of the electrolyte between the air electrode and the negative electrode can be adjusted by the electrolyte holder and the electrolyte storage unit, the amount of the electrolyte between the air electrode and the negative electrode can always be kept constant.
  • the battery resistance is increased by increasing the electrode reaction resistance of the negative electrode and the air electrode due to the decrease in the amount of the electrolyte between the air electrode and the negative electrode during charging, and the non-uniform reaction distribution on the electrode And a decrease in the amount of hydrogen stored in the hydrogen storage alloy of the negative electrode can be suppressed.
  • the battery resistance is increased by increasing the electrode reaction resistance of the negative electrode and the air electrode due to the decrease in the amount of the electrolyte between the air electrode and the negative electrode during charging, and the non-uniform reaction distribution on the electrode And a decrease in the amount of hydrogen stored in the hydrogen storage alloy of the negative electrode can be suppressed.
  • the density can be improved.
  • the leakage of the electrolyte and the heat generation associated with the battery reaction are suppressed, and the safety of the battery can be improved.
  • the following advantageous effects can be obtained.
  • the resistance of the air electrode during charging and discharging can be reduced as compared to the case where a pyrochlore type oxide is used.
  • bismuth iridium oxide has particularly high catalytic activity for oxygen generation and oxygen reduction, and has a high air electrode for charge / discharge cycles even at high current density and high temperature operation. Since it has durability, it becomes possible to improve the maximum current that can be charged and discharged of the battery, and it is possible to widen the operating temperature range.
  • the maximum current that can be charged / discharged by the battery is improved, so that the maximum output of the battery can be further increased.
  • a secondary battery with high safety and recyclability in a life cycle can be provided in a power source for a mobile body, a power source for an electric vehicle / hybrid vehicle, a power source for an electric motorcycle, and the like.
  • a secondary battery with high safety can be provided even when used as a power source for devices used near the human body, such as a power source for hearing aids or a power source for mobile devices.
  • a single battery can be charged / discharged at a higher current, and the polarization at the time of charging / discharging can be reduced. Therefore, the maximum current that can be charged / discharged is improved, and the energy density and output density of the battery are increased. Can be high.
  • the dead space inside the battery can be reduced compared to the case where one air electrode is disposed opposite to the negative electrode, so that the energy density and output density of the battery can be further increased. Can be improved.
  • the following advantageous effect can be obtained. (1) Since the structure of the electrolyte storage part in the battery container can be simplified and the volume thereof can be reduced, the overall volume of the battery is also reduced, and the energy density and output density per volume are high, so that it can be mounted at a high density. And high output performance.
  • the following advantageous effect is obtained.
  • the number of members of the electrolytic solution holder is small, and the amount of electrolytic solution in the electrolytic solution holder can be kept uniform with respect to the space between the plurality of air electrodes and the negative electrode. It is possible to prevent the balance of the amount of the existing electrolyte from being lost, to suppress the difference in the voltage between the electrodes, and to achieve excellent output uniformity and stability.
  • FIG. 2 is a schematic cross-sectional view of the main part of the hydrogen / air secondary battery according to Embodiment 1 of the present invention.
  • Cross-sectional schematic diagram of relevant parts of a modification of the hydrogen / air secondary battery of Embodiment 1 of the present invention Sectional schematic diagram of relevant parts of the hydrogen / air secondary battery of Embodiment 2 of the present invention
  • Sectional schematic diagram of relevant parts of a modification of the hydrogen / air secondary battery of Embodiment 2 of the present invention Cross-sectional schematic diagram of relevant parts of a hydrogen / air secondary battery according to Embodiment 3 of the present invention
  • Sectional schematic diagram of relevant parts of a hydrogen / air secondary battery according to Embodiment 4 of the present invention Sectional schematic diagram of relevant parts of a hydrogen / air secondary battery according to Embodiment 5 of the present invention
  • Sectional schematic diagram of relevant parts of a hydrogen / air secondary battery according to Embodiment 6 of the present invention The figure which shows the cycle dependence of the charge / discharge voltage of
  • FIG. 1 is a schematic cross-sectional view of the relevant part of a hydrogen / air secondary battery according to Embodiment 1 of the present invention.
  • 1 is a hydrogen / air secondary battery according to Embodiment 1 of the present invention
  • 1a is a battery container of the hydrogen / air secondary battery 1
  • 2 is bismuth iridium, which is a pyrochlore oxide containing nickel and iridium.
  • the air electrode 3 formed by mixing the oxide and the binder and horizontally disposed in the battery container 1 a is disposed horizontally in the battery container 1 a so as to face the air electrode 2.
  • Negative electrode 4 using hydrogen storage alloy, 4 is disposed between air electrode 2 and negative electrode 3, and is an electrolytic solution holder that holds an electrolytic solution that is an alkaline aqueous solution, and 5 is opposite to electrolytic solution holder 4 of air electrode 2.
  • an air passage formed in the battery case 1a so that oxygen necessary for discharge can be taken into or discharged from the air electrode 2 is formed in the battery case 1a.
  • An electrolyte storage part formed at one end in the longitudinal direction of the electrolyte holder 4 Part is immersed in the electrolyte in the electrolytic solution reservoir 6, between the electrolyte storage unit 6 and the electrolytic solution holding body 4 to flow of the electrolyte is ensured.
  • the electrolyte is increased by the water generated between the air electrode 2 and the negative electrode 3 at the time of discharge, but this is stored in the electrolyte storage unit 6 via the electrolyte holder 4, and the air is charged at the time of charging.
  • the electrolytic solution decreases due to the decomposition of water between the electrode 2 and the negative electrode 3, but this is replenished from the electrolytic solution storage unit 6 through the electrolytic solution holder 4.
  • the amount of the electrolyte solution held in the electrolyte solution holder 4 is always kept constant.
  • the electrolytic solution storage unit 6 supplies sufficient electrolytic solution to the electrolytic solution holder 4 in which the electrolytic solution decreases due to the charging reaction, and can reliably store the electrolytic solution that increases in the electrolytic solution holder 4 due to the discharge reaction. Furthermore, the volume is suitable for the charge / discharge capacity of the battery.
  • the ventilation path 5 may simply be an opening formed in the battery container 1.
  • FIG. 2 is a schematic cross-sectional view of an essential part of a modification of the hydrogen / air secondary battery according to Embodiment 1 of the present invention.
  • the hydrogen / air secondary battery 1A in the modification of the first embodiment is different from that of the first embodiment in that the two ends of the electrolytic solution holder 4 are immersed in the electrolytic solution in the battery container 1a.
  • One electrolyte storage part 6 is formed.
  • an electrolyte holding body is used at the time of discharge by utilizing a pressure increase caused by water generated between the air electrode 2 and the negative electrode 3 due to discharge and a pressure drop caused by water decreasing between the air electrode 2 and the negative electrode 3 due to charging.
  • 4 can be stored in the electrolyte storage units 6 at both ends, and the amount of electrolyte decreased by the electrolyte holder 4 can be supplied from the electrolyte storage units 6 at both ends during charging. Can do.
  • the amount of the electrolyte solution held in the electrolyte solution holder 4 is always kept constant.
  • the hydrogen / air secondary battery according to Embodiment 1 configured as described above has the following effects.
  • the battery container has an electrolyte solution storage unit that supplies an electrolyte solution that decreases due to a charging reaction or stores an electrolyte solution that increases due to a discharge reaction, and at least a part of the electrolyte solution holder is in the electrolyte solution storage unit.
  • the amount of electrolyte increased by the discharge between the air electrode and the negative electrode via the electrolyte holder is increased by the pressure increase caused by the water generated between the air electrode and the negative electrode during discharge.
  • the bismuth iridium oxide forming the air electrode is a catalytic activity for oxygen generation during charging and oxygen reduction during discharge in the air electrode, particularly in combination with nickel among pyrochlore oxides containing iridium.
  • Bismuth iridium oxide is a simple process in which a bismuth compound such as bismuth nitrate and an iridium compound such as chloroiridic acid are used as starting materials, a precursor material is synthesized by a method called a coprecipitation method, and then heat treatment is performed. Therefore, a highly active catalyst constituting the air electrode can be easily obtained.
  • FIG. 3 is a schematic cross-sectional view of the main part of the hydrogen / air secondary battery according to Embodiment 2 of the present invention
  • FIG. 4 is a cross-sectional view of the main part of a modification of the hydrogen / air secondary battery according to Embodiment 2 of the present invention. It is a schematic diagram. In FIG.
  • the hydrogen / air secondary battery 1B of the second embodiment is different from that of the first embodiment in that the air electrode 2, the negative electrode 3, and the electrolyte holding body 4 are arranged in the vertical direction.
  • the electrolyte solution storage part 6 is arrange
  • Embodiment 2 also includes an arrangement in which the electrolyte storage unit 6 is turned upside down in FIG.
  • the hydrogen / air secondary battery 1C according to the modification of the second embodiment is different from the second embodiment in that both ends of the electrolytic solution holder 4 are immersed in the electrolytic solution in the battery container 1a.
  • two electrolyte storage parts 6 are formed, which corresponds to a vertical arrangement of the hydrogen / air secondary battery 1A in the modification of the first embodiment.
  • the following functions are provided.
  • the electrolyte holder between the air electrode and the negative electrode from the electrolyte storage part corresponds to the decrease / increase in water between the air electrode and the negative electrode during charge / discharge.
  • the electrolyte can be supplied at a more appropriate timing, or the electrolyte can be stored at a more appropriate timing from the electrolyte holder between the air electrode and the negative electrode to the electrolyte reservoir.
  • FIG. 5 is a schematic cross-sectional view of the relevant part of a hydrogen / air secondary battery according to Embodiment 3 of the present invention.
  • the hydrogen / air secondary battery 1D of the third embodiment is different from the modification of the second embodiment in that two air electrodes 2 are arranged opposite to both sides of the negative electrode 3 to hold the electrolyte solution.
  • the body 4 is disposed between the negative electrode 3 and each air electrode 2.
  • the air passage 5 can be shared between the adjacent air electrodes 2.
  • the negative electrode 3, the air electrode 2, and the electrolytic solution holding body 4 are arranged in the vertical direction in the battery container 1a.
  • the structure may be arranged in the horizontal direction as in the first embodiment.
  • FIG. 6 is a schematic cross-sectional view of the relevant part of a hydrogen / air secondary battery according to Embodiment 4 of the present invention.
  • the hydrogen / air secondary battery 1E of the fourth embodiment is different from that of the third embodiment in that both ends of the two electrolyte holding bodies 4a and 4b are electrolyzed in a common electrolyte storage section 6. It is a point immersed in the liquid.
  • the air passage 5 can be shared between the adjacent air electrodes 2.
  • the negative electrode 3, the air electrode 2, and the electrolyte solution holders 4a and 4b are arranged in the vertical direction in the battery container 1a.
  • the structure may be arranged in the horizontal direction. Good.
  • FIG. 7 is a schematic cross-sectional view of the relevant part of a hydrogen / air secondary battery according to Embodiment 5 of the present invention.
  • the hydrogen / air secondary battery 1 ⁇ / b> F of the fifth embodiment is different from the fourth embodiment in that two electrolyte solution holders 4 a and 4 b are connected by a connecting portion 4 c in a common electrolyte storage unit 6. It is an integrated point.
  • the electrolytic solution holders 4a and 4b and the connection portion 4c may be integrated as a matter of course.
  • the structure of FIG. 7 can be set as one set, and a plurality of sets can be arranged in parallel in one battery container 1a.
  • the air passage 5 can be shared between the adjacent air electrodes 2.
  • the negative electrode 3, the air electrode 2, and the electrolytic solution holders 4a and 4b are arranged in the vertical direction in the battery container 1a.
  • the structure may be arranged in the horizontal direction. Good.
  • the hydrogen / air secondary battery in the fifth embodiment configured as described above, in addition to the functions in the fourth embodiment, the following functions are provided.
  • FIG. 8 is a schematic cross-sectional view of the relevant part of a hydrogen / air secondary battery according to Embodiment 6 of the present invention.
  • the hydrogen / air secondary battery 1G of the sixth embodiment is different from that of the fifth embodiment in that the two airs facing the negative electrode 3 and the negative electrode 3 in the hydrogen / air secondary battery 1F of the fifth embodiment.
  • all the electrolytic solution holders 4a and 4b are connected by the connecting portions 4c and 4d, and are immersed in the electrolytic solution by the common electrolytic solution storage unit 6.
  • the configurations of 3 to 5 hydrogen / air secondary batteries 1D to 1F may be arranged in the battery container 1a. Further, in the present embodiment, the case where the number of electrode pairs arranged in parallel in the battery container 1a is two has been described, but the number of electrode pairs can be appropriately selected.
  • the negative electrode 3, the air electrode 2, and the electrolyte solution holders 4a and 4b are arranged in the vertical direction in the battery container 1a, the structure may be arranged in the horizontal direction as in the first embodiment.
  • the electrolytic solution holders 4a and 4b and the connection portions 4c and 4d may be integrated as well.
  • the following functions are provided.
  • (1) Maximum discharge as a unit cell is possible by arranging two pairs of electrode pairs in which the negative electrode and the two air electrodes facing the negative electrode are arranged in parallel in the vertical direction in the battery container Current, power density, and energy density can be improved.
  • the pressure increases due to water generated between the air electrode and the negative electrode by discharge, and the pressure decrease due to water that decreases between the air electrode and the negative electrode due to charging, and gravity.
  • the electrolyte holder between the air electrode and the negative electrode from the electrolyte storage part corresponds to the decrease / increase in water between the air electrode and the negative electrode during charge / discharge.
  • the electrolyte can be supplied at a more appropriate timing, or the electrolyte can be stored at a more appropriate timing from the electrolyte holder between the air electrode and the negative electrode to the electrolyte reservoir.
  • Example 1 Bi (NO 3 ) 3 ⁇ 5H 2 O and H 2 IrCl 6 ⁇ 6H 2 O are dissolved in 75 ° C. distilled water so as to have the same concentration, stirred and mixed, and then added with a 2 mol / L NaOH aqueous solution. It was. At that time, the bath temperature was 75 ° C., and the mixture was stirred for 3 days while carrying out oxygen bubbling. The solution containing the precipitate formed thereby was kept at 85 ° C. and evaporated to dryness to obtain a paste. The paste-like material was transferred to an evaporating dish, dried at 120 ° C.
  • the mixture is made into a clay and then dried at room temperature for about 30 minutes, and then pressed into a disk shape (diameter: 13 mm, thickness: 0.3 mm) at 100 kg / cm 2 on a nickel mesh as a current collector. After that, heat treatment was performed in a nitrogen atmosphere at 370 ° C. for 13 minutes to produce an air electrode.
  • Hydrogen storage alloy (MmNi 4.10 Mn 0.40 Al 0.10 Co 0.50 , capacity density 310 mAh / g), nickel powder (purity 99.8%, average particle size 3-7 ⁇ m) and polyethylene in a weight ratio of 2 : 3: After mixing at 0.12, press-molded into a disk shape at 5 t / cm 2 and further heat-treated at 150 ° C. for 60 minutes in a vacuum heating furnace to obtain a negative electrode (theoretical capacity: 31 mAh) having almost the same area as the air electrode. Produced. A nickel ribbon was resistance-welded to the negative electrode as a lead.
  • FIG. 1 A hydrogen / air secondary battery having a structure was prepared using PTFE (polytetrafluoroethylene) as a material for a battery container.
  • PTFE polytetrafluoroethylene
  • a space serving as an electrolytic solution storage unit was disposed, and 5 mL of the electrolytic solution was injected into the space.
  • the area of the electrolytic solution holder is larger than that of the air electrode and the negative electrode, and a part of the electrolytic solution holder is immersed in the electrolytic solution in the electrolytic solution storage unit.
  • a nickel wire was used for the lead of the air electrode.
  • Example 1 The same hydrogen / air secondary battery as that of Example 1 was manufactured except that the battery container was not provided with a space serving as an electrolyte solution storage unit, and the electrolyte solution holding body had almost the same area as the air electrode and the negative electrode. In addition, the electrolyte solution hold
  • FIG. 9 shows the results of charging and discharging the batteries of Example 1 and Comparative Example 1 at room temperature and 2 mA, and recording the battery voltage during charging and discharging.
  • the horizontal axis represents the number of charge / discharge cycles (times), and the vertical axis represents the battery voltage (V) during discharge and charge.
  • charge / discharge of 300 cycles or more was possible, and a stable voltage with an average discharge voltage of 0.9 to 0.73 V (see white circle) and an average charge voltage of 1.5 V (see gray circle) was shown.
  • Comparative Example 1 the initial charge / discharge test showed substantially the same discharge voltage and charge voltage as in Example 1 (see white squares and gray squares), but the charge / discharge was completed in 10 cycles, and 11 cycles.
  • FIG. 2 shows the air electrode and negative electrode, a commercially available alkaline battery separator (manufactured by Yuasa Membrane Systems Co., Ltd., Yumigrapher) and a nonwoven fabric as the electrolyte holder, and a 7 mol / L KOH aqueous solution as the electrolyte.
  • a hydrogen / air secondary battery having the structure described above was fabricated using PTFE (polytetrafluoroethylene) as a material for the battery container.
  • PTFE polytetrafluoroethylene
  • a space serving as an electrolytic solution storage unit was disposed, and 5 mL of the electrolytic solution was injected into the space.
  • the area of the electrolytic solution holder is larger than that of the air electrode and the negative electrode, and a part of the electrolytic solution holder is immersed in the electrolytic solution in the electrolytic solution storage unit.
  • a nickel wire was used for the lead of the air electrode.
  • Example 2 The same hydrogen / air secondary battery as that of Example 2 was manufactured except that the battery container was not provided with a space serving as an electrolyte solution storage unit, and the electrolyte solution holding body had almost the same area as the air electrode and the negative electrode. In addition, the electrolyte solution hold
  • FIG. 10 shows the results of recording the battery voltage during discharge when the batteries of Example 2 and Comparative Example 2 were charged and discharged at room temperature and a constant current.
  • Example 2 is 50 mA
  • Comparative Example 2 is 30 mA.
  • discharge for 10 hours was possible with respect to discharge at 50 mA, and a stable discharge voltage was obtained.
  • Comparative Example 2 the discharge time was 7.5 hours despite discharge at a lower current than that in Example 2.
  • the discharge electricity amount of Example 2 was 508 mAh
  • the discharge electricity amount of Comparative Example 2 was 219 mAh
  • Example 2 was able to discharge twice or more that of Comparative Example 2.
  • Example 2 The volume energy density was 308 Wh / L in Example 2 and 115 Wh / L in Comparative Example 2. In Example 2, the energy density was improved 2.7 times compared to Comparative Example 2. In addition, as a result of measuring the maximum dischargeable current value with a dischargeable limit voltage at which a stable discharge voltage can be obtained being 0.1 V, Example 2 is 600 mA and Comparative Example 2 is 150 mA. In Example 2, the maximum dischargeable current value was improved four times. Further, the utilization rate of the hydrogen storage alloy for the negative electrode was 84% in Example 2 and 29% in Comparative Example 2, and the utilization rate was improved about 3 times.
  • the present invention suppresses a large change in voltage during charging and discharging, is excellent in charge / discharge cycle characteristics, has no electrolyte leakage, and is excellent in rechargeability and durability.
  • Hydrogen / air secondary with excellent operational stability, high quality, and long life that can perform stable charge and discharge even when the battery capacity is large or when the discharge current or charge current is large.
  • batteries for mobile devices such as personal computers, mobile phones, portable music players, portable video players, and portable book terminals, electric work machines such as electric cars, hybrid cars, electric bikes, electric bicycles, excavators, and electric construction Power or auxiliary batteries for machinery, etc., batteries for power storage and output regulation of fuel cells for automobiles, households, businesses, and industries, solar power generation, wind power generation, hydroelectric power generation, raw power generation It can be used, such as the power storage and output adjustment batteries such as power generation.
  • mobile devices such as personal computers, mobile phones, portable music players, portable video players, and portable book terminals
  • electric work machines such as electric cars, hybrid cars, electric bikes, electric bicycles, excavators, and electric construction Power or auxiliary batteries for machinery, etc.
  • batteries for power storage and output regulation of fuel cells for automobiles, households, businesses, and industries solar power generation, wind power generation, hydroelectric power generation, raw power generation It can be used, such as the power storage and output adjustment batteries such as power generation.

Abstract

Provided is an air secondary cell having excellent durability and electrical charge/discharge cycle properties. A hydrogen/air secondary cell provided with: an air electrode which is arranged inside a cell container; a negative electrode which is arranged inside the cell container so as to face the air electrode, and which uses a hydrogen absorbing alloy; and an electrolyte retaining body which is arranged between the air electrode and the negative electrode and which retains electrolyte. The secondary cell has, inside the cell container, an electrolyte storage section which carries out the supply of electrolyte which decreases due to a charge reaction and carries out the storage of electrolyte which increases due to a discharge reaction, and at least part of the electrolyte retaining body is immersed in the electrolyte in the electrolyte storage section.

Description

水素/空気二次電池Hydrogen / air secondary battery
 本発明は、大気中の酸素を正極活物質、水素吸蔵合金中の水素を負極活物質、アルカリ性水溶液を電解液とし、放電で水を生成し、充電で水が分解する反応を利用する水素/空気二次電池に関する。 The present invention uses oxygen in the atmosphere as a positive electrode active material, hydrogen in a hydrogen storage alloy as a negative electrode active material, and an alkaline aqueous solution as an electrolytic solution. The present invention relates to an air secondary battery.
 空気電池は、大気中の空気を正極活物質とする電池であり、市販されている亜鉛/空気一次電池がよく知られている。亜鉛/空気一次電池と類似な構造を有する空気電池には、負極活物質にアルミニウムや鉄を用いる電池があり、いずれも一次電池としての機能は確認されているが、実用化には至っていない。
 一方、空気電池は機械式充電型の亜鉛/空気二次電池を除いて、二次電池としてはいまだ実用化されていない。機械式充電型の亜鉛/空気二次電池とは、電池内部の反応としては放電だけを行うもので、放電後の亜鉛負極を外部に取り出し、新しい亜鉛負極と取り替えることで再利用できるものである。したがって、一般に知られる二次電池のように、電池内での反応によって再充電することで繰り返し利用できるものではない。上記のような亜鉛、アルミニウム、鉄などを負極活物質に用いる空気電池は、通常アルカリ性の水溶液を電解液として用いている。
The air battery is a battery using air in the atmosphere as a positive electrode active material, and a commercially available zinc / air primary battery is well known. Among air batteries having a structure similar to that of a zinc / air primary battery, there are batteries using aluminum or iron as a negative electrode active material, all of which have been confirmed to function as primary batteries, but have not yet been put into practical use.
On the other hand, air batteries are not yet put into practical use as secondary batteries except for mechanically charged zinc / air secondary batteries. A mechanical rechargeable zinc / air secondary battery is one that only discharges as a reaction inside the battery, and can be reused by taking out the zinc negative electrode after discharge and replacing it with a new zinc negative electrode. . Therefore, unlike a generally known secondary battery, it cannot be used repeatedly by recharging by a reaction in the battery. An air battery using zinc, aluminum, iron, or the like as the negative electrode active material as described above usually uses an alkaline aqueous solution as an electrolytic solution.
 一方、アルカリ性水溶液を電解液とする空気電池には、負極活物質に水素を用いる電池も開発されている。
 例えば、本発明者らは、ニッケル粉末と、イリジウムを含むパイロクロア型酸化物と、結着剤を混合してなる空気極と、水素吸蔵合金を用いた負極を備えた空気二次電池を(特許文献1)および(非特許文献1)に開示した。以下では、この二次電池を水素/空気二次電池と記す。
On the other hand, as an air battery using an alkaline aqueous solution as an electrolyte, a battery using hydrogen as a negative electrode active material has been developed.
For example, the present inventors have disclosed an air secondary battery including an air electrode obtained by mixing nickel powder, a pyrochlore oxide containing iridium, and a binder, and a negative electrode using a hydrogen storage alloy (patent) Document 1) and (Non-Patent Document 1). Hereinafter, this secondary battery is referred to as a hydrogen / air secondary battery.
 水素/空気二次電池の充放電反応は次式によって表される。
  放電:4MH+O→4M+2H
  充電:4M+2HO→4MH+O
 なお、式中のMは水素吸蔵合金であり、MHは水素を吸蔵した状態の水素吸蔵合金を意味する。
 上記の反応式の通り、放電では負極で水素吸蔵合金から水素が放出され、空気極で酸素が還元されて水が生成する。このとき、電解液に用いられているアルカリ性水溶液中で水が増加する。
 反対に、充電ではアルカリ性水溶液中の水が分解して、負極では水素が吸蔵され、空気極では酸素が発生する。発生した酸素は空気極内の空隙を通って大気中に放出される。
 すなわち、水素/空気二次電池は、水のみを活物質とする二次電池であり、充放電電気量に依存して電解液中の水の物質量が変化することが特徴である。これは水素/空気二次電池に特有の電池反応であり、水素吸蔵合金以外の負極を用いる空気電池や、空気電池以外のすべての一次電池、二次電池で水のみを活物質とするものはない。
 例えば、(特許文献2)~(特許文献4)には空気電池が開示さているが、これらは電解液に有機溶媒やイオン液体を用いるものや、負極活物質にリチウムを用いるものであり、電解液中の水を電池の活物質とする空気電池ではなく、後述するように、本発明が解決しようとする課題のポイントである電解液中の水の物質量の変化に関する課題は生じない。
The charge / discharge reaction of the hydrogen / air secondary battery is expressed by the following equation.
Discharge: 4MH + O 2 → 4M + 2H 2 O
Charging: 4M + 2H 2 O → 4MH + O 2
In the formula, M is a hydrogen storage alloy, and MH means a hydrogen storage alloy in a state of storing hydrogen.
As shown in the above reaction formula, in the discharge, hydrogen is released from the hydrogen storage alloy at the negative electrode, and oxygen is reduced at the air electrode to produce water. At this time, water increases in the alkaline aqueous solution used for the electrolytic solution.
On the contrary, in charging, water in the alkaline aqueous solution is decomposed, hydrogen is occluded in the negative electrode, and oxygen is generated in the air electrode. The generated oxygen is released into the atmosphere through a gap in the air electrode.
That is, the hydrogen / air secondary battery is a secondary battery using only water as an active material, and is characterized in that the amount of water in the electrolytic solution changes depending on the amount of charge / discharge electricity. This is a battery reaction peculiar to hydrogen / air secondary batteries. Air batteries that use negative electrodes other than hydrogen storage alloys, all primary batteries other than air batteries, and secondary batteries that use only water as the active material Absent.
For example, (Patent Document 2) to (Patent Document 4) disclose air batteries, which use an organic solvent or an ionic liquid as an electrolytic solution, or use lithium as a negative electrode active material. It is not an air battery that uses water in the liquid as an active material of the battery, but, as will be described later, there is no problem relating to the change in the amount of water in the electrolyte, which is the point of the problem to be solved by the present invention.
特開2006-196329号公報JP 2006-196329 A 特開2010-103064号公報JP 2010-103064 A 特開2010-103059号公報JP 2010-103059 A 特開2009-289616号公報JP 2009-289616 A
 (特許文献1)の水素/空気二次電池は、空気極と負極とアルカリ性水溶液で充放電が可能な簡単な構成で、高エネルギー密度、高出力密度を有し、かつ積層化による大容量化が容易である。しかし、本特許の発明者は様々な研究を行った結果、この電池では充電で電解液中の水が減少するため、空気極と負極の間の電解液量が少ない場合や、いわゆる電池セパレータと呼ばれる電解液保持体を用いて空気極と負極の間の電解液を保持している場合には、電解液の減少が空気極と負極の間で均一に起こらないと充電電圧が増加することを見出した。すなわち、電解液の減少が不均一な場合には、空気極と負極の間で水の分解が速い部分と遅い部分が生じることで、負極および/または空気極上での反応分布が不均一となり、反応抵抗が増加することで充電電圧が増加する。また、このような現象は、特に電極面積の大きな電池において顕著であることも見出した。さらに、放電では電解液中の水が増加するため、この電解液の増加分が、空気極と負極の間の空間または電解液保持体内に保持可能な量を超えると、空気極と負極の極間の増加や電解液の増加によるひずみを生じて、放電電圧が低下することを見出した。このような影響は、特に電池の容量を大きくすると顕著であることや、これが電解液の漏洩につながる原因となることも見出した。 The hydrogen / air secondary battery of Patent Document 1 has a simple configuration that can be charged and discharged with an air electrode, a negative electrode, and an alkaline aqueous solution, has a high energy density and a high output density, and has a large capacity by stacking. Is easy. However, the inventors of this patent have conducted various studies. As a result, in this battery, water in the electrolytic solution is reduced by charging, so that the amount of the electrolytic solution between the air electrode and the negative electrode is small, or a so-called battery separator. In the case where the electrolyte solution is held between the air electrode and the negative electrode using a so-called electrolyte solution holder, the charging voltage increases if the decrease in the electrolyte does not occur uniformly between the air electrode and the negative electrode. I found it. That is, when the decrease in the electrolyte is non-uniform, the reaction distribution on the negative electrode and / or air electrode becomes non-uniform due to the occurrence of a fast and slow part of water decomposition between the air electrode and the negative electrode, The charging voltage increases as the reaction resistance increases. It has also been found that such a phenomenon is remarkable particularly in a battery having a large electrode area. Furthermore, since the water in the electrolyte increases during discharge, if the increase in the electrolyte exceeds the amount that can be held in the space between the air electrode and the negative electrode or in the electrolyte holding body, the air electrode and the negative electrode It has been found that the discharge voltage is lowered due to distortion caused by an increase in time and an increase in electrolyte. It has also been found that such an effect is particularly significant when the battery capacity is increased, and that this leads to leakage of the electrolyte.
 すなわち、従来の水素/空気二次電池では、充放電を繰り返し行うと放電電圧が低下したり、充電電圧が高くなったりして、その後の充放電が困難になるという課題があった。また、放電電流を大きくすると放電容量が極端に小さくなり、充電電流を大きくすると満充電に至る以前の段階で、充電電圧が高くなって充電が継続できなくなるという課題があった。さらに、非常に高い電流で放電すると、空気極を通して電解液が漏洩するという課題があった。そして、特に、電極面積を大きくしたり、電池容量を大きくしたりすると、充放電特性が悪くなるという課題があった。
 よって、水素/空気二次電池の充放電サイクル特性、再充電性、耐久性を向上させるために、充電時に増加する電解液量と放電時に減少する電解液量を制御できるような構造が要望されていた。
That is, the conventional hydrogen / air secondary battery has a problem that when charging / discharging is repeated, the discharge voltage decreases or the charging voltage increases, making subsequent charging / discharging difficult. Further, when the discharge current is increased, the discharge capacity becomes extremely small, and when the charge current is increased, there is a problem that the charge voltage becomes high and the charge cannot be continued at a stage before full charge. Furthermore, there has been a problem that when the discharge is performed at a very high current, the electrolyte leaks through the air electrode. In particular, when the electrode area is increased or the battery capacity is increased, there is a problem that the charge / discharge characteristics are deteriorated.
Therefore, in order to improve the charge / discharge cycle characteristics, rechargeability, and durability of the hydrogen / air secondary battery, a structure capable of controlling the amount of electrolyte that increases during charging and the amount of electrolyte that decreases during discharging is desired. It was.
 本発明は上記課題を解決するもので、充電や放電の間の電圧の大きな変化を抑制し、充放電サイクル特性に優れ、電解液の漏洩がなく、再充電性や耐久性に優れ、特に負極や空気極の電極面積や電池容量が大きい場合や、さらには放電電流や充電電流が大きな作動の場合においても、安定した充放電を行うことができる動作安定性、高品質性、長寿命性に優れた水素/空気二次電池の提供を目的とする。 The present invention solves the above-mentioned problems, suppresses a large change in voltage during charging and discharging, has excellent charge / discharge cycle characteristics, does not leak electrolyte, has excellent rechargeability and durability, and is particularly negative electrode Even when the electrode area of the air electrode and the battery capacity are large, or even when the discharge current or charging current is large, the operation stability, high quality, and long life can be achieved. The object is to provide an excellent hydrogen / air secondary battery.
 上記従来の課題を解決するために本発明の水素/空気二次電池は、以下の構成を有している。
 本発明の請求項1に記載の水素/空気二次電池は、電池容器内に配設される空気極と、前記空気極に対向して前記電池容器内に配設される水素吸蔵合金を用いた負極と、前記空気極と前記負極との間に配設され電解液を保持する電解液保持体と、を備えた水素/空気二次電池であって、充電反応により減少する電解液の供給又は放電反応により増加する電解液の貯蔵を行う電解液貯蔵部を前記電池容器内に有し、前記電解液保持体の少なくとも一部が前記電解液貯蔵部内の前記電解液に浸漬している構成を有している。
 この構成により、以下のような作用が得られる。
(1)充電反応により減少する電解液の供給又は放電反応により増加する電解液の貯蔵を行う電解液貯蔵部を電池容器内に有し、電解液保持体の少なくとも一部が電解液貯蔵部内の電解液に浸漬していることにより、放電時には空気極と負極の間で生成する水による圧力上昇により、電解液保持体を介して空気極と負極の間で放電によって増加した分の電解液を電解液貯蔵部に貯蔵することが可能となり、また充電時には空気極と負極の間で減少する水による圧力低下を利用して、電解液貯蔵部から電解液保持体を介して充電によって減少した分の電解液を空気極と負極の間に供給することが可能となる。
(2)また、これによって空気極と負極の間では電解液保持体に保持された電解液量を常に一定に保つことができる。
(3)また、上記のような電解液の供給と貯蔵が、電解液保持体を介して、空気極-負極間と電解液貯蔵部との間で行われるため、空気極からの電解液の漏洩を抑制することが可能となる。
(4)また、上記のような電解液の供給と貯蔵が、電解液保持体を介して、空気極-負極間と電解液貯蔵部との間で行われるため、空気極-負極間に存在する電解液量を電解液保持体の空隙率を変えることで調整が可能となり、必要最適量の電解液量を空気極と負極の間に常に保持することができる。
(5)また、上記のような電解液の供給と貯蔵が、電解液保持体を介して、空気極-負極間と電解液貯蔵部との間で行われるため、空気極-負極間に存在する電解液量を電解液保持体の空隙率と厚みを変えることで調整が可能となり、電池の充放電容量の大小に関わらず必要最適量の電解液量を空気極と負極の間に常に保持することができる。
In order to solve the above conventional problems, the hydrogen / air secondary battery of the present invention has the following configuration.
The hydrogen / air secondary battery according to claim 1 of the present invention uses an air electrode disposed in a battery container and a hydrogen storage alloy disposed in the battery container so as to face the air electrode. A hydrogen / air secondary battery comprising a negative electrode and an electrolytic solution holding body that is disposed between the air electrode and the negative electrode and holds an electrolytic solution, wherein the electrolytic solution is reduced by a charging reaction Or the electrolyte solution storage part which stores the electrolyte solution which increases by discharge reaction in the said battery container, At least one part of the said electrolyte solution holding body is immersed in the said electrolyte solution in the said electrolyte solution storage part have.
With this configuration, the following effects can be obtained.
(1) The battery container has an electrolyte solution storage unit that supplies an electrolyte solution that decreases due to a charging reaction or stores an electrolyte solution that increases due to a discharge reaction, and at least a part of the electrolyte solution holder is in the electrolyte solution storage unit. By immersing in the electrolyte, the amount of electrolyte increased by the discharge between the air electrode and the negative electrode via the electrolyte holder is increased by the pressure increase caused by the water generated between the air electrode and the negative electrode during discharge. It is possible to store in the electrolyte storage unit, and the amount of decrease due to charging from the electrolyte storage unit through the electrolyte holder using the pressure drop due to water that decreases between the air electrode and the negative electrode during charging. This electrolyte solution can be supplied between the air electrode and the negative electrode.
(2) Moreover, the amount of the electrolyte solution held by the electrolyte solution holding body can always be kept constant between the air electrode and the negative electrode.
(3) Since the supply and storage of the electrolyte as described above are performed between the air electrode and the negative electrode and the electrolyte storage part via the electrolyte holder, the electrolyte from the air electrode Leakage can be suppressed.
(4) In addition, since the supply and storage of the electrolyte as described above are performed between the air electrode and the negative electrode and the electrolyte storage part via the electrolyte holder, it exists between the air electrode and the negative electrode. The amount of electrolytic solution to be adjusted can be adjusted by changing the porosity of the electrolytic solution holder, and the necessary and optimal amount of electrolytic solution can always be held between the air electrode and the negative electrode.
(5) Since the supply and storage of the electrolyte as described above is performed between the air electrode and the negative electrode and the electrolyte storage part via the electrolyte solution holder, it exists between the air electrode and the negative electrode. The amount of electrolyte to be adjusted can be adjusted by changing the porosity and thickness of the electrolyte holder, and the required optimum amount of electrolyte is always maintained between the air electrode and the negative electrode regardless of the charge / discharge capacity of the battery. can do.
 ここで、電池容器内には少なくとも1対の空気極と負極が配置される。電池容器内において空気極と負極は水平に配設してもよいし、鉛直に配設してもよい。また、電池容器内には、空気極と負極の間にアルカリ性水溶液である電解液を保持した電解液保持体が配設される。空気極の電解液保持体と反対の側は、放電に必要な酸素の空気極への取り込みもしくは充電で発生する酸素の空気極からの散逸が可能なように電池容器に形成された通気路がある。この通気路は単に電池容器に形成された開口部でもよい。また、電池容器には電解液貯蔵部が設けられ、電解液保持体の一部が電解液貯蔵部内の電解液に浸漬している。この電解液貯蔵部は、充電反応により減少する電解液を供給または放電反応により増加する電解液を貯蔵できるように、電池の充放電容量に適した体積となっている。さらに、電解液貯蔵部と電解液保持体の間では電解液の流れが確保され、これによって放電の際には空気極と負極の間で生成した水によって電解液が増加するが、これは電解液保持体を介して電解液貯蔵部に貯蔵され、充電の際には空気極と負極の間で水の分解によって電解液が減少するが、これは電解液保持体を介して電解液貯蔵部から空気極と負極の間に補充される。 Here, at least one pair of an air electrode and a negative electrode is disposed in the battery container. In the battery container, the air electrode and the negative electrode may be disposed horizontally or vertically. In the battery container, an electrolytic solution holder that holds an electrolytic solution that is an alkaline aqueous solution is disposed between the air electrode and the negative electrode. On the opposite side of the air electrode from the electrolyte holder, there is an air passage formed in the battery container so that oxygen necessary for discharging can be taken into the air electrode or oxygen generated by charging can be dissipated from the air electrode. is there. This vent path may simply be an opening formed in the battery container. Further, the battery container is provided with an electrolytic solution storage part, and a part of the electrolytic solution holding body is immersed in the electrolytic solution in the electrolytic solution storage part. The electrolytic solution storage section has a volume suitable for the charge / discharge capacity of the battery so that the electrolytic solution that decreases by the charging reaction can be supplied or the electrolytic solution that increases by the discharging reaction can be stored. Furthermore, the flow of the electrolytic solution is ensured between the electrolytic solution storage unit and the electrolytic solution holding body, and this increases the electrolytic solution by water generated between the air electrode and the negative electrode during discharge. The electrolyte is stored in the electrolyte storage unit via the liquid holder, and the electrolyte is reduced by the decomposition of water between the air electrode and the negative electrode during charging. To be replenished between the air electrode and the negative electrode.
 空気極は、空気極に導電性を付与する導電性物質と、触媒と、結着剤を基本として構成される。これらは混合された状態で一体に形成され、さらに放電時に外部へ電力を出力し、かつ充電時には外部電源から電力を入力することを容易にするための集電体と一体に形成される。導電性物質には炭素や金属などが使用できるが、アルカリ性水溶液中での酸素還元および酸素発生に対して安定であるものが好ましい。炭素材料してはグラファイト、グラッシーカーボン、フラーレン、カーボンナノチューブ、その他の構造の炭素などが挙げられるが、特に高温で熱処理され耐酸化性に優れたグラファイトなどが好ましい。さらに、導電性物質としては炭素材料に比べて、ニッケルがより好ましい。このような導電性物質は、粒子、粉末、繊維、チューブ、多孔質体など様々な形状のものが使用できる。 The air electrode is basically composed of a conductive substance that imparts conductivity to the air electrode, a catalyst, and a binder. These are integrally formed in a mixed state, and are further formed integrally with a current collector for outputting electric power to the outside during discharging and facilitating input of electric power from an external power source during charging. Carbon, metal, or the like can be used as the conductive material, but those that are stable against oxygen reduction and oxygen generation in an alkaline aqueous solution are preferable. Examples of the carbon material include graphite, glassy carbon, fullerene, carbon nanotube, carbon having other structures, and graphite having excellent oxidation resistance that is heat-treated at high temperature is particularly preferable. Furthermore, nickel is more preferable as the conductive substance than the carbon material. Such conductive substances can be used in various shapes such as particles, powders, fibers, tubes, and porous bodies.
 触媒には、酸素還元と酸素発生に対する活性を有するものが使用される。例えば、白金や銀のような貴金属、金属酸化物、金属硫化物、金属窒化物、金属炭化物、金属酸化物や金属硫化物や金属炭化物や金属炭化酸化物などの一部を窒素置換したもの、金属と酸素と窒素と炭素の複合酸化物(MeCxyz:ただし、Meは金属または合金、Cは炭素、Nは窒素、Oは酸素で、x、y、zは組成比を示す)などのように酸素還元に対して触媒活性を有する酸素還元触媒と、酸化イリジウムや酸化ルテニウムのような酸化物、金属硫化物、金属複合酸化物などのように酸素発生に対して触媒活性を有する酸素発生触媒を、ともに用いて空気極に酸素還元活性と酸素発生活性を付与することができる。また、酸素還元活性と酸素発生活性をともに有する二元機能性の金属、合金、化合物を用いることもできる。そのような二元機能性を有する物質としては、例えばパイロクロア型、ペロブスカイト型、スピネル型などに分類される複合酸化物などが挙げられる。 A catalyst having activity for oxygen reduction and oxygen generation is used. For example, precious metals such as platinum and silver, metal oxides, metal sulfides, metal nitrides, metal carbides, metal oxides, metal sulfides, metal carbides, metal carbide oxides, etc. with nitrogen substitution, Metal, oxygen, nitrogen, and carbon composite oxide (MeC x N y O z : Me is a metal or alloy, C is carbon, N is nitrogen, O is oxygen, and x, y, and z indicate the composition ratio. ) And other oxygen reduction catalysts that have catalytic activity for oxygen reduction, and oxide activity such as iridium oxide and ruthenium oxide, metal sulfides, and metal composite oxides. The oxygen generation catalyst having the same can be used together to impart oxygen reduction activity and oxygen generation activity to the air electrode. In addition, a bifunctional metal, alloy, or compound having both oxygen reduction activity and oxygen generation activity can be used. Examples of such dual functional materials include complex oxides classified into pyrochlore type, perovskite type, spinel type, and the like.
 結着剤は、空気極内部に空気の流路が形成できるように電解液に対して撥水性を有し、また導電性物質を相互に結着させながらその間隙に空気の流通を許容することを可能にするものであって、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、エチレン・酢酸ビニル共重合体(EVA)などの樹脂系材料などを用いることができる。また、導電性物質と、触媒と、結着剤を混合して一体に形成する際には、出発物質として、このような結着剤を適当な溶液中に分散させた分散溶液を用いることもできる。 The binder has water repellency with respect to the electrolyte so that an air flow path can be formed inside the air electrode, and allows air to flow through the gap while binding the conductive substances to each other. Resin-based materials such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and ethylene / vinyl acetate copolymer (EVA) can be used. In addition, when the conductive material, the catalyst, and the binder are mixed and formed integrally, a dispersion solution in which such a binder is dispersed in an appropriate solution may be used as a starting material. it can.
 集電体には網状、繊維状、多孔質体などの種々の形状の金属や導電性有機物などを用いることができるが、その形状については大気中の酸素を取り込む開口部を有することが必要である。集電体の材料としてはニッケルなどが好ましい。なお、導電性物質、触媒、結着剤、集電体に用いる材料・構造・形状は、上記に述べたようなそれぞれの機能を発揮するものであれば、特に上記に挙げたものに限定されるものではない。 The current collector can be made of various shapes of metal, such as mesh, fiber, or porous material, or conductive organic matter. However, the shape needs to have an opening for taking in oxygen in the atmosphere. is there. The material for the current collector is preferably nickel. Note that the materials, structures, and shapes used for the conductive material, catalyst, binder, and current collector are particularly limited to those listed above as long as they exhibit their respective functions as described above. It is not something.
 導電性物質と触媒と結着剤を一体とする方法には、プレス法や押し出し法などの一般に空気極を作製する際に用いられる方法が利用できる。例えば、導電性物質、触媒、結着剤が粉末状または粒子状であれば、これらを乾式または湿式で混合した後、ロールプレス機を用いて薄板状に成形することで作製できる。また、特定の型に混合物を入れて成型加工により作製することができる。また、導電性物質が発泡ニッケルなどの多孔質体である場合には、触媒と結着剤を多孔質体内部に導入し、その後導電性物質全体を加圧することで一体に成形することができる。また、集電体は上記に述べた空気極の成形の段階で一体としても、導電性物質、触媒、結着剤を一体に形成した後に、さらにこれを集電体と一体としてもよい。さらに、空気極を作製する際には、上記のような成形もしくは一体化の過程の後に、加熱処理を行ってもよい。 As a method for integrating the conductive material, the catalyst, and the binder, a method generally used for producing an air electrode such as a press method or an extrusion method can be used. For example, if the conductive substance, the catalyst, and the binder are in the form of powder or particles, they can be produced by mixing them in a dry or wet manner and then forming them into a thin plate using a roll press. Moreover, it can be produced by putting a mixture in a specific mold and molding it. Further, when the conductive material is a porous body such as nickel foam, the catalyst and the binder can be introduced into the porous body, and then the entire conductive material can be pressurized to be integrally molded. . Further, the current collector may be integrated with the air electrode as described above, or may be further integrated with the current collector after the conductive material, the catalyst, and the binder are integrally formed. Furthermore, when producing an air electrode, you may heat-process after the process of the above shaping | molding or integration.
 負極に用いる水素吸蔵合金については、La-Ni系合金、La-Nd-Ni系合金、La-Gd-Ni系合金、La-Y-Ni系合金、La-Co-Ni系合金、La-Ce-Ni系合金、La-Ni-Ag系合金、La-Ni-Fe系合金、La-Ni-Cr系合金、La-Ni-Pd系合金、La-Ni-Cu系合金、La-Ni-Al系合金、La-Ni-Mn系合金、La-Ni-In系合金、La-Ni-Sn系合金、La-Ni-Ga系合金、La-Ni-Si系合金、La-Ni-Ge系合金、La-Ni-Al-Co系合金、La-Ni-Al-Mn系合金、La-Ni-Al-Cr系合金、La-Ni-Al-Cu系合金、La-Ni-Al-Si系合金、La-Ni-Al-Ti系合金、La-Ni-Al-Zr系合金、La-Ni-Mn-Zr系合金、La-Ni-Mn-Ti系合金、La-Ni-Mn-V系合金、La-Ni-Cr-Mn系合金、La-Ni-Cr-Zr系合金、La-Ni-Fe-Zr系合金、La-Ni-Cu-Zr系合金、並びに、上記合金中のLa元素をミッシュメタルで置き換えた合金、また、Ti-Zr-Mn-Mo系合金やZr-Fe-Mn系合金、Mg-Ni系合金等のTi、Fe、Mn、Al、Ce、Ca、Mg、Zr、Nb、V、Co、Ni、Cr元素の2組以上の組合せからなる合金等の水素吸蔵合金、更には、Ti、V、Zr、La、Pd、Pt等の水素化物を形成する(水素吸蔵性を有する)金属、又は上記合金や金属の水素化物(水素を吸蔵した物質)などを用いることができるが、水素の吸蔵と放出が可能な材料であれば、特に上記の組成に限定されるものではない。 The hydrogen storage alloy used for the negative electrode is La-Ni alloy, La-Nd-Ni alloy, La-Gd-Ni alloy, La-Y-Ni alloy, La-Co-Ni alloy, La-Ce. -Ni alloy, La-Ni-Ag alloy, La-Ni-Fe alloy, La-Ni-Cr alloy, La-Ni-Pd alloy, La-Ni-Cu alloy, La-Ni-Al Alloy, La-Ni-Mn alloy, La-Ni-In alloy, La-Ni-Sn alloy, La-Ni-Ga alloy, La-Ni-Si alloy, La-Ni-Ge alloy La-Ni-Al-Co alloy, La-Ni-Al-Mn alloy, La-Ni-Al-Cr alloy, La-Ni-Al-Cu alloy, La-Ni-Al-Si alloy La-Ni-Al-Ti alloys, La-Ni-Al-Zr alloys Gold, La—Ni—Mn—Zr alloy, La—Ni—Mn—Ti alloy, La—Ni—Mn—V alloy, La—Ni—Cr—Mn alloy, La—Ni—Cr—Zr alloy Alloys, La—Ni—Fe—Zr alloys, La—Ni—Cu—Zr alloys, alloys in which the La element in the above alloys is replaced by misch metal, Ti—Zr—Mn—Mo alloys, Zr—Fe—Mn alloys, Mg—Ni alloys, etc. Alloys composed of combinations of two or more of Ti, Fe, Mn, Al, Ce, Ca, Mg, Zr, Nb, V, Co, Ni, and Cr elements Metals that form hydrides such as Ti, V, Zr, La, Pd, and Pt (having hydrogen storage properties) or hydrides of the above alloys and metals (substances that store hydrogen) ) Can be used, but hydrogen storage and release If possible materials, but it is not particularly limited to the above composition.
 電解液保持体にはアルカリ性水溶液を電解液に用いる電池、例えば、亜鉛/空気一次電池、ニッケル/水素二次電池、アルカリ電池、アルカリマンガン電池、ニッケル/カドミウム電池などで利用されている様々な電池セパレータの材料などを用いることができる。このような材料は、例えば、特開平7-272771号公報、特開平11-293564号公報、特開2007-154402号公報、特開2007-284845号公報、特開2009-224100号公報、特公表2009-516781号公報、特開2010-70870号公報などに開示されている。具体的な例としては、セロハンなどのイオン透過性フィルム、またはポリプロピレンやポリエチレンなどのフィルム、ポリビニルアルコール系繊維、セルロース系繊維、ポリアミド系繊維、ポリオレフィン系繊維、エチレン-ビニルアルコール系共重合体繊維を、単独、または混合、または積層してなる不織布、TiO2、K2Ti613、ZrO2、Al23、SiO2またはBNなどの無機化合物を多孔性樹脂シートに充填した複合膜、などが挙げられる。また、これらの材料については、極細繊維、芯鞘型複合繊維、親水化処理を施したものなども用いられる。電解液保持体は、空気極と負極を隔離し、電解液を保持できる機能を有していればよく、したがって電解液を保持した状態でイオン伝導性またはイオン透過性を持ち、耐アルカリ性と電解液吸液性を有するものであれば、特に上記に限定されるものではない。
 なお、本発明の水素/空気二次電池では、負極に水素吸蔵合金以外の金属または合金を用いる他の一次電池または二次電池のような負極でのデンドライト成長などによる負極と空気極の間の短絡は生じないため、これを意図した機能である、いわゆるセパレート性は、本発明の水素/空気二次電池の電解液保持体に必ずしも必要とするものではない。
Batteries using an alkaline aqueous solution as the electrolytic solution holder, such as zinc / air primary batteries, nickel / hydrogen secondary batteries, alkaline batteries, alkaline manganese batteries, nickel / cadmium batteries, etc. A separator material or the like can be used. Such materials are disclosed in, for example, Japanese Patent Application Laid-Open Nos. 7-272771, 11-293564, 2007-154402, 2007-284845, 2009-224100, and Japanese Patent Publication. This is disclosed in Japanese Patent Application Laid-Open No. 2009-516781 and Japanese Patent Application Laid-Open No. 2010-70870. Specific examples include ion permeable films such as cellophane, films such as polypropylene and polyethylene, polyvinyl alcohol fibers, cellulose fibers, polyamide fibers, polyolefin fibers, and ethylene-vinyl alcohol copolymer fibers. A composite film in which an inorganic compound such as TiO 2 , K 2 Ti 6 O 13 , ZrO 2 , Al 2 O 3 , SiO 2 or BN is filled in a porous resin sheet, Etc. Further, for these materials, ultrafine fibers, core-sheath type composite fibers, those subjected to hydrophilic treatment, and the like are also used. The electrolytic solution holding body only needs to have a function of isolating the air electrode and the negative electrode and holding the electrolytic solution. Therefore, the electrolytic solution holding body has ion conductivity or ion permeability while holding the electrolytic solution, and has alkali resistance and electrolysis. The liquid is not particularly limited as long as it has liquid absorption.
In the hydrogen / air secondary battery according to the present invention, a metal or alloy other than a hydrogen storage alloy is used for the negative electrode. Since a short circuit does not occur, so-called separation property, which is a function intended for this, is not necessarily required for the electrolyte solution holder of the hydrogen / air secondary battery of the present invention.
 請求項2に記載の発明は、請求項1に記載の水素/空気二次電池であって、前記空気極が、ニッケルと、イリジウムを含むパイロクロア型酸化物と、結着剤と、を含有してなる構成を有している。
 この構成により、請求項1で得られる作用に加え、以下のような作用が得られる。
(1)イリジウムを含むパイロクロア型酸化物とニッケルとの間における電子的および化学的な相互作用によって、酸素発生と酸素還元に対する高い触媒能が得られ、空気極内部における酸素発生と酸素還元をいずれも円滑に進行させることができる。
(2)イリジウムを含むパイロクロア型酸化物とニッケルとの組み合わせによって、空気極で副反応として生じる可能性があるニッケル自身の酸化や還元が抑制されることによって、ニッケルの消耗が低減され、炭素粉末を用いた空気極や、ニッケルと他の金属系および/または酸化物系の触媒とを混合した構成を有する空気極に比べて、酸素発生・還元サイクルに対する耐久性を向上させることができる。
(3)イリジウムを含むパイロクロア型酸化物とニッケルは、湿式または乾式のいずれの方法でも結着剤との混合、成形が容易であり、特別な装置を用いず空気極を製造することができる。
(4)白金などの高価な貴金属を触媒に用いないことから、これらに対して空気極のコストを低減できる。
The invention according to claim 2 is the hydrogen / air secondary battery according to claim 1, wherein the air electrode contains nickel, a pyrochlore oxide containing iridium, and a binder. It has the composition which becomes.
With this configuration, in addition to the operation obtained in the first aspect, the following operation can be obtained.
(1) High catalytic ability for oxygen generation and oxygen reduction is obtained by electronic and chemical interaction between the pyrochlore oxide containing iridium and nickel. Can also proceed smoothly.
(2) The combination of iridium-containing pyrochlore oxide and nickel suppresses the oxidation and reduction of nickel that may occur as a side reaction at the air electrode, thereby reducing nickel consumption and carbon powder. As compared with an air electrode using a metal electrode and an air electrode having a configuration in which nickel and another metal-based and / or oxide-based catalyst are mixed, durability against oxygen generation / reduction cycle can be improved.
(3) The pyrochlore-type oxide containing iridium and nickel can be easily mixed and molded with a binder by either wet or dry methods, and an air electrode can be produced without using a special device.
(4) Since expensive noble metals such as platinum are not used for the catalyst, the cost of the air electrode can be reduced.
 ここで、イリジウムを含むパイロクロア型酸化物とは、パイロクロア型酸化物のモル組成を表す一般的な表現であるA7-x(但し、-1≦x≦1)において、Bサイトの元素がイリジウムである酸化物であり、Aサイトの元素としてはビスマスや鉛などが挙げられる。ただし、Bサイトのイリジウムの一部を他の元素で部分的に置換したものも当然ながら含まれる。
 イリジウムを含むパイロクロア型酸化物は、ニッケル上に担持されているかおよび/またはアルカリ性水溶液と空気との両方に対してニッケルとともに接触した状態にあり、酸素還元および酸素発生のいずれに対しても高い触媒活性を有する。
Here, the pyrochlore oxide containing iridium is a B site in A 2 B 2 O 7-x (where −1 ≦ x ≦ 1), which is a general expression representing the molar composition of the pyrochlore oxide. Is an oxide in which the element is iridium, and examples of the A site element include bismuth and lead. However, as a matter of course, a part of iridium at the B site is partially substituted with another element.
Pyrochlore oxide containing iridium is supported on nickel and / or in contact with nickel against both alkaline aqueous solution and air, and is a high catalyst for both oxygen reduction and oxygen generation Has activity.
 請求項3に記載の発明は、請求項2に記載の水素/空気二次電池であって、前記イリジウムを含む前記パイロクロア型酸化物が、ビスマスイリジウム酸化物である構成を有している。
 この構成により、請求項2で得られる作用に加え、以下のような作用が得られる。
(1)ビスマスイリジウム酸化物は、イリジウムを含むパイロクロア型酸化物の中でも、特にニッケルとの組合せにおいて、空気極における充電時の酸素発生や放電時の酸素還元に対して触媒活性が高く、かつ高い電流密度や高温での作動においても充放電サイクルに対して高い耐久性を有する。
(2)鉛イリジウム酸化物のような他のパイロクロア型酸化物に対して、鉛のような有毒成分を含まないため、電池の製造・使用・廃棄・処分において安全性が高くなる。
(3)ビスマスイリジウム酸化物は、硝酸ビスマスのようなビスマス化合物と塩化イリジウム酸のようなイリジウム化合物を出発原料とし、共沈法と呼ばれる方法により前駆体物質を合成してから加熱処理するという簡単な方法で得られることから、空気極を構成する活性の高い触媒を容易に得ることができる。
A third aspect of the present invention is the hydrogen / air secondary battery according to the second aspect, wherein the pyrochlore oxide containing the iridium is a bismuth iridium oxide.
With this configuration, in addition to the operation obtained in the second aspect, the following operation can be obtained.
(1) Among bismuth iridium oxides, among pyrochlore-type oxides containing iridium, particularly in combination with nickel, the catalytic activity is high with respect to oxygen generation at the time of charging in the air electrode and oxygen reduction at the time of discharge. High durability against charge / discharge cycles even at current density and high temperature operation.
(2) Since other pyrochlore type oxides such as lead iridium oxide do not contain toxic components such as lead, the safety of the battery in manufacturing, use, disposal, and disposal increases.
(3) Bismuth iridium oxide is a simple process in which a bismuth compound such as bismuth nitrate and an iridium compound such as chloroiridic acid are used as starting materials, and a precursor material is synthesized by a method called a coprecipitation method, followed by heat treatment. Therefore, a highly active catalyst constituting the air electrode can be easily obtained.
 ここで、ビスマスイリジウム酸化物とは、さきに示したパイロクロア型酸化物の組成式においてBiIr7-xで示される酸化物である。ただし、Aサイトのビスマスおよび/またはBサイトのイリジウムの一部を他の元素で部分的に置換したものも当然ながら含まれる。 Here, the bismuth iridium oxide is an oxide represented by Bi 2 Ir 2 O 7-x in the composition formula of the pyrochlore oxide shown above. However, as a matter of course, those in which bismuth at the A site and / or iridium at the B site are partially substituted with other elements are also included.
 請求項4に記載の発明は、請求項1乃至3の内いずれか1項に記載の水素/空気二次電池であって、前記負極に対向して2つの前記空気極が配設され、前記電解液保持体が前記負極と各々の前記空気極との間にそれぞれ配設された構成を有している。
 この構成により、請求項1乃至3の内いずれか1項で得られる作用に加え、以下のような作用が得られる。
(1)負極に対向して2つの空気極が配設されることにより、負極の両側を電池反応に利用することが可能となり、単電池としてより高い電流での充放電が可能になるとともに、放電電圧の分極を小さくすることができる。
(2)負極に対向して1つの空気極を配設する場合に比べて、電池内部におけるデッドスペースを削減することができる。
A fourth aspect of the present invention is the hydrogen / air secondary battery according to any one of the first to third aspects, wherein the two air electrodes are disposed so as to face the negative electrode. The electrolyte solution holding body is configured to be disposed between the negative electrode and each air electrode.
With this configuration, in addition to the action obtained in any one of claims 1 to 3, the following action is obtained.
(1) By disposing two air electrodes opposite to the negative electrode, both sides of the negative electrode can be used for the battery reaction, and charging and discharging at a higher current as a single cell is possible. The polarization of the discharge voltage can be reduced.
(2) The dead space inside the battery can be reduced as compared with the case where one air electrode is disposed facing the negative electrode.
 請求項5に記載の発明は、請求項4に記載の水素/空気二次電池であって、複数の前記電解液保持体の少なくとも一部が共通の前記電解液貯蔵部内の前記電解液に浸漬している構成を有している。
 この構成により、請求項4で得られる作用に加え、以下のような作用が得られる。
(1)複数の電解液保持体の少なくとも一部が共通の電解液貯蔵部内の電解液に浸漬していることにより、電池容器内の電解液貯蔵部の構造を簡単にすることができる
(2)電解液貯蔵部が共通ではなく各電解液保持体に対して配置されている場合に比べて、電解液貯蔵部の容積を小さくすることが可能で、電池容器全体の体積も減少し、体積当たりのエネルギー密度や出力密度を向上させることができる。
A fifth aspect of the present invention is the hydrogen / air secondary battery according to the fourth aspect, wherein at least a part of the plurality of electrolytic solution holders is immersed in the electrolytic solution in the common electrolytic solution storage unit. It has the composition which has.
With this configuration, in addition to the operation obtained in the fourth aspect, the following operation can be obtained.
(1) Since at least some of the plurality of electrolytic solution holders are immersed in the electrolytic solution in the common electrolytic solution storage unit, the structure of the electrolytic solution storage unit in the battery container can be simplified (2 ) Compared to the case where the electrolyte storage part is not common and is arranged for each electrolyte holder, the volume of the electrolyte storage part can be reduced, and the volume of the entire battery container is also reduced. The hit energy density and output density can be improved.
 請求項6に記載の発明は、請求項5に記載の水素/空気二次電池であって、複数の前記電解液保持体が共通の前記電解液貯蔵部内で連結されている構成を有している。
 この構成により、請求項5で得られる作用に加え、以下のような作用が得られる。
(1)複数の電解液保持体が共通の電解液貯蔵部内で連結されていることにより、複数の電解液保持体が2つ以上の空気極に対して、電解液貯蔵部を介して一体となり、電解液保持体の部材点数を少なくすることができる。
(2)空気極と負極の間にある電解液保持体中の電解液量を、複数の空気極と負極の間に対して均一に保つことが可能となり、各々の空気極と負極の間に存在する電解液量のバランスが崩れることを防ぎ、各々の空気極と負極の間の極間電圧が異なることを抑制することができる。
A sixth aspect of the present invention is the hydrogen / air secondary battery according to the fifth aspect, wherein a plurality of the electrolytic solution holders are connected in the common electrolytic solution storage unit. Yes.
With this configuration, in addition to the operation obtained in the fifth aspect, the following operation can be obtained.
(1) Since a plurality of electrolyte holders are connected in a common electrolyte storage part, the plurality of electrolyte holders are integrated with each other with respect to two or more air electrodes via the electrolyte storage part. The number of members of the electrolytic solution holder can be reduced.
(2) It is possible to keep the amount of electrolyte in the electrolyte holder between the air electrode and the negative electrode uniform between the plurality of air electrodes and the negative electrode, and between each air electrode and the negative electrode. It is possible to prevent the balance of the amount of the existing electrolyte from being lost, and to prevent the interelectrode voltage between each air electrode and the negative electrode from being different.
 請求項7に記載の発明は、請求項1乃至6の内いずれか1項に記載の水素/空気二次電池であって、前記負極及び前記負極に対向する1つ又は2つの前記空気極の長手方向が水平方向と平行に配置される電極対が、前記電池容器内に複数組積層されている構成を有している。
 この構成により、請求項1乃至6の内いずれか1項で得られる作用に加え、以下のような作用が得られる。
(1)負極及び負極に対向する1つ又は2つの空気極の長手方向が水平方向と平行に配置される電極対が、電池容器内に複数組積層されていることによって、単電池としての最大放電可能電流、出力密度、エネルギー密度を向上させることができる。
(2)単一容器内に複数の電極対が積層されていることによって、単一の電極対からなる電池を複数接続する場合に比べて、電池全体で占める容積を減少させることができる。
A seventh aspect of the present invention is the hydrogen / air secondary battery according to any one of the first to sixth aspects, wherein the negative electrode and one or two of the air electrodes facing the negative electrode are provided. A plurality of pairs of electrodes whose longitudinal directions are arranged in parallel with the horizontal direction are stacked in the battery container.
With this configuration, in addition to the action obtained in any one of claims 1 to 6, the following action is obtained.
(1) The maximum as a single cell is obtained by laminating a plurality of electrode pairs in which the longitudinal direction of one or two air electrodes facing the negative electrode and the negative electrode is arranged in parallel with the horizontal direction in the battery container The dischargeable current, power density, and energy density can be improved.
(2) Since a plurality of electrode pairs are stacked in a single container, the volume occupied by the entire battery can be reduced as compared with the case where a plurality of batteries each made up of a single electrode pair are connected.
 請求項8に記載の発明は、請求項1乃至6の内いずれか1項に記載の水素/空気二次電池であって、前記負極及び前記負極に対向する1つ又は2つの前記空気極の長手方向が鉛直方向と平行に配置される電極対が、前記電池容器内に複数組並設されている構成を有している。
 この構成により、請求項1乃至6の内いずれか1項で得られる作用に加え、以下のような作用が得られる。
(1)負極及び負極に対向する1つ又は2つの空気極の長手方向が鉛直方向と平行に配置される電極対が、電池容器内に複数組並設されていることによって、単電池としての最大放電可能電流、出力密度、エネルギー密度を向上させることができる。
(2)単一容器内に複数の電極対が並設されていることによって、単一の電極対からなる電池を複数接続する場合に比べて、電池全体で占める体積を減少させることができる。
(3)空気極と負極を鉛直に配置することによって、放電によって空気極と負極の間で生成する水による圧力上昇と、充電によって空気極と負極の間で減少する水による圧力低下とともに、重力沈降と毛管現象との相互作用が加わることで、充放電時における空気極と負極間での水の減少・増加に対応して、電解液貯蔵部から空気極と負極の間の電解液保持体に電解液をより適切なタイミングで供給でき、または空気極と負極の間の電解液保持体から電解液貯蔵部へ電解液をより適切なタイミングで貯蔵できる。
The invention according to claim 8 is the hydrogen / air secondary battery according to any one of claims 1 to 6, wherein the negative electrode and one or two of the air electrodes facing the negative electrode are provided. A plurality of pairs of electrodes whose longitudinal directions are arranged in parallel with the vertical direction are arranged in parallel in the battery container.
With this configuration, in addition to the action obtained in any one of claims 1 to 6, the following action is obtained.
(1) A plurality of electrode pairs, in which the longitudinal direction of one or two air electrodes facing the negative electrode and the negative electrode is arranged in parallel with the vertical direction, are arranged in parallel in the battery container. Maximum dischargeable current, power density, and energy density can be improved.
(2) Since a plurality of electrode pairs are arranged in parallel in a single container, the volume occupied by the whole battery can be reduced as compared with the case where a plurality of batteries each made up of a single electrode pair are connected.
(3) By arranging the air electrode and the negative electrode vertically, the pressure increases due to water generated between the air electrode and the negative electrode by discharge, and the pressure decrease due to water that decreases between the air electrode and the negative electrode due to charging, and gravity. By adding the interaction between sedimentation and capillary action, the electrolyte holder between the air electrode and the negative electrode from the electrolyte storage part corresponds to the decrease / increase in water between the air electrode and the negative electrode during charge / discharge. In addition, the electrolyte can be supplied at a more appropriate timing, or the electrolyte can be stored at a more appropriate timing from the electrolyte holder between the air electrode and the negative electrode to the electrolyte reservoir.
 以上のように、本発明の水素/空気二次電池によれば、以下のような有利な効果が得られる。
 請求項1に記載の発明によれば、以下のような有利な効果が得られる。
(1)空気極と負極の間の電解液量の増加または減少を電解液保持体と電解液貯蔵部によって調整し、空気極と負極の間の電解液量を常に一定に保つことができることから、放電にともなう空気極と負極の間の電解液量の増加による電解液の電池容器からの漏洩、電解液量の増加による電池抵抗の増大、電解液量の増加による電極上での反応分布の不均一化による電極反応抵抗の増大、負極の水素吸蔵合金に吸蔵された水素の放電時における利用率の低下を抑制できる。
(2)(1)の効果とともに、充電時にともなう空気極と負極の間の電解液量の減少による負極や空気極の電極反応抵抗の増大、電極上での反応分布の不均一化による電池抵抗の増大、負極の水素吸蔵合金に吸蔵される水素量の減少を抑制できる。
(3)(1)および(2)の効果にともなって、電池の放電容量および充電容量の増加、水素吸蔵合金の利用率の向上、全電池抵抗の低減が可能となり、電池の出力密度およびエネルギー密度を向上させることができる。
(4)さらに、(1)および(2)の効果にともなって、電解液の漏洩や電池反応に伴う発熱が抑制され、電池の安全性を向上させることができる。
(5)さらに、(1)および(2)の効果にともなって、電池の充放電サイクル特性が向上し、電池寿命を長くすることができる。
(6)さらに、空気極と負極の間に必要最適量の電解液を保持することができ、かつ電池の充放電容量の大小に関わらず必要最適量の電解液を保持することができることから、多様な電池容量や電池サイズに対して、上記に述べた効果を発揮することができる。
As described above, according to the hydrogen / air secondary battery of the present invention, the following advantageous effects can be obtained.
According to the first aspect of the invention, the following advantageous effects can be obtained.
(1) Since the increase or decrease in the amount of the electrolyte between the air electrode and the negative electrode can be adjusted by the electrolyte holder and the electrolyte storage unit, the amount of the electrolyte between the air electrode and the negative electrode can always be kept constant. , Leakage of electrolyte from the battery container due to increase in the amount of electrolyte between the air electrode and negative electrode due to discharge, increase in battery resistance due to increase in the amount of electrolyte, and reaction distribution on the electrode due to increase in the amount of electrolyte It is possible to suppress an increase in electrode reaction resistance due to non-uniformization and a decrease in utilization rate during discharge of hydrogen stored in the hydrogen storage alloy of the negative electrode.
(2) In addition to the effects of (1), the battery resistance is increased by increasing the electrode reaction resistance of the negative electrode and the air electrode due to the decrease in the amount of the electrolyte between the air electrode and the negative electrode during charging, and the non-uniform reaction distribution on the electrode And a decrease in the amount of hydrogen stored in the hydrogen storage alloy of the negative electrode can be suppressed.
(3) Along with the effects of (1) and (2), it is possible to increase the discharge capacity and charge capacity of the battery, improve the utilization rate of the hydrogen storage alloy, and reduce the total battery resistance. The density can be improved.
(4) Furthermore, in accordance with the effects (1) and (2), the leakage of the electrolyte and the heat generation associated with the battery reaction are suppressed, and the safety of the battery can be improved.
(5) Furthermore, with the effects (1) and (2), the charge / discharge cycle characteristics of the battery are improved, and the battery life can be extended.
(6) Furthermore, since the necessary and optimum amount of electrolyte can be held between the air electrode and the negative electrode, and the necessary and optimum amount of electrolyte can be held regardless of the charge / discharge capacity of the battery, The effects described above can be exhibited for various battery capacities and battery sizes.
 請求項2に記載の発明によれば、請求項1に記載の効果に加えて以下のような有利な効果が得られる。
(1)酸素発生と酸素還元に対する高い触媒性が得られ、空気極内部における酸素発生と酸素還元をいずれも円滑に進行させることができることから、導電性物質としてのニッケルと触媒としてのイリジウムを含むパイロクロア型酸化物を用いる場合以外に比べて、充電及び放電における空気極の抵抗を低減できる。
(2)(1)の効果とともに、空気極の抵抗が低減できることによって電池抵抗が減少し、電池の電圧効率およびエネルギー効率を向上することができる。
(3)導電性物質としてニッケル以外の物質を用いる場合や、触媒にイリジウムを含むパイロクロア型酸化物以外の物質を用いる場合に比べて、導電性物質自身の酸化還元による消耗を抑制することができる。
(4)導電性物質としてニッケル以外の物質を用いる場合や、触媒にイリジウムを含むパイロクロア型酸化物以外の物質を用いる場合に比べて、触媒自身の酸化還元による消耗を抑制することができる。
(5)(3)および(4)の効果とともに、空気極の耐久性が向上され、電池の寿命を長くすることができる。
According to the invention described in claim 2, in addition to the effect described in claim 1, the following advantageous effects can be obtained.
(1) Since high catalytic properties for oxygen generation and oxygen reduction are obtained, and both oxygen generation and oxygen reduction inside the air electrode can proceed smoothly, it contains nickel as a conductive substance and iridium as a catalyst. The resistance of the air electrode during charging and discharging can be reduced as compared to the case where a pyrochlore type oxide is used.
(2) Along with the effect of (1), the resistance of the air electrode can be reduced, whereby the battery resistance is reduced, and the voltage efficiency and energy efficiency of the battery can be improved.
(3) Compared to the case where a substance other than nickel is used as the conductive substance or the case where a substance other than the pyrochlore oxide containing iridium is used as the catalyst, the consumption of the conductive substance itself due to oxidation and reduction can be suppressed. .
(4) Compared to the case where a substance other than nickel is used as the conductive substance, or the case where a substance other than the pyrochlore oxide containing iridium is used as the catalyst, the consumption of the catalyst itself due to oxidation and reduction can be suppressed.
(5) In addition to the effects of (3) and (4), the durability of the air electrode is improved, and the life of the battery can be extended.
 請求項3に記載の発明によれば、請求項2に記載の効果に加えて以下のような有利な効果が得られる。
(1)イリジウムを含むパイロクロア型酸化物の中でも、ビスマスイリジウム酸化物は特に酸素発生や酸素還元に対する触媒活性が高く、高い電流密度や高温での作動においても充放電サイクルに対して空気極が高い耐久性を有することから、電池の充放電可能な最大電流を向上させることが可能となり、また使用温度範囲を広くすることができる。
(2)(1)の効果とともに、電池の充放電可能な最大電流が向上することから、電池の最大出力をより高くすることが可能となる。
(3)(1)および(2)の効果とともに、高電流、高温での作動においても耐久性に優れた電池を提供することができる。
(4)ビスマスイリジウム酸化物は、鉛イリジウム酸化物のような有害物質を含まないことから、電池の製造・使用・廃棄・処分において安全性が高くなることによって、定置用電源、家庭用電源、移動体用電源、電気自動車・ハイブリッド自動車用電源、電動バイク用電源などにおいて、ライフサイクルにおける安全性やリサイクル性の高い二次電池を提供することが出来る。
(5)(4)の効果とともに、補聴器用電源やモバイル機器用電源など人体に近い位置で使用される機器の電源として用いる場合においても、安全性が高い二次電池を提供することができる。
According to the invention described in claim 3, in addition to the effect described in claim 2, the following advantageous effects can be obtained.
(1) Among pyrochlore oxides containing iridium, bismuth iridium oxide has particularly high catalytic activity for oxygen generation and oxygen reduction, and has a high air electrode for charge / discharge cycles even at high current density and high temperature operation. Since it has durability, it becomes possible to improve the maximum current that can be charged and discharged of the battery, and it is possible to widen the operating temperature range.
(2) Along with the effect of (1), the maximum current that can be charged / discharged by the battery is improved, so that the maximum output of the battery can be further increased.
(3) In addition to the effects of (1) and (2), it is possible to provide a battery having excellent durability even when operated at a high current and a high temperature.
(4) Since bismuth iridium oxide does not contain harmful substances such as lead iridium oxide, it is safer to manufacture, use, dispose of, and dispose of batteries. A secondary battery with high safety and recyclability in a life cycle can be provided in a power source for a mobile body, a power source for an electric vehicle / hybrid vehicle, a power source for an electric motorcycle, and the like.
(5) In addition to the effects of (4), a secondary battery with high safety can be provided even when used as a power source for devices used near the human body, such as a power source for hearing aids or a power source for mobile devices.
 請求項4に記載の発明によれば、請求項1乃至3の内いずれか1項に記載の効果に加えて以下のような有利な効果が得られる。
(1)単電池としてより高い電流での充放電が可能になるとともに、充放電時の分極を小さくすることができることから、充放電可能な最大電流が向上し、かつ電池のエネルギー密度や出力密度を高くすることができる。
(2)(1)の効果とともに、負極に対向して1つの空気極を配設する場合に比べて、電池内部におけるデッドスペースを削減することができることから、電池のエネルギー密度や出力密度をさらに向上させることができる。
According to the invention described in claim 4, in addition to the effect described in any one of claims 1 to 3, the following advantageous effects can be obtained.
(1) A single battery can be charged / discharged at a higher current, and the polarization at the time of charging / discharging can be reduced. Therefore, the maximum current that can be charged / discharged is improved, and the energy density and output density of the battery are increased. Can be high.
(2) In addition to the effects of (1), the dead space inside the battery can be reduced compared to the case where one air electrode is disposed opposite to the negative electrode, so that the energy density and output density of the battery can be further increased. Can be improved.
 請求項5に記載の発明によれば、請求項4に記載の効果に加えて以下のような有利な効果が得られる。
(1)電池容器内の電解液貯蔵部の構造を簡素化してその容積を小さくすることができることから、電池全体の体積も減少し、体積当たりのエネルギー密度や出力密度が高く、高密度に実装することができると共に高出力性に優れる。
According to the invention described in claim 5, in addition to the effect described in claim 4, the following advantageous effect can be obtained.
(1) Since the structure of the electrolyte storage part in the battery container can be simplified and the volume thereof can be reduced, the overall volume of the battery is also reduced, and the energy density and output density per volume are high, so that it can be mounted at a high density. And high output performance.
 請求項6に記載の発明によれば、請求項5に記載の効果に加えて以下のような有利な効果が得られる。
(1)電解液保持体の部材点数が少なく、複数の空気極と負極の間に対して電解液保持体中の電解液量を均一に保つことができ、各々の空気極と負極の間に存在する電解液量のバランスが崩れることを防ぎ、極間電圧が異なることを抑制することができ、出力の均一性、安定性に優れる。
According to the invention described in claim 6, in addition to the effect described in claim 5, the following advantageous effect is obtained.
(1) The number of members of the electrolytic solution holder is small, and the amount of electrolytic solution in the electrolytic solution holder can be kept uniform with respect to the space between the plurality of air electrodes and the negative electrode. It is possible to prevent the balance of the amount of the existing electrolyte from being lost, to suppress the difference in the voltage between the electrodes, and to achieve excellent output uniformity and stability.
 請求項7に記載の発明によれば、請求項1乃至6の内いずれか1項に記載の効果に加えて以下のような有利な効果が得られる。
(1)複数の空気極と負極を配置し、大きな電極面積と電池容量を確保することにより、単電池としての出力特性、エネルギー密度を向上させることができ、再充電性と耐久性に優れる。
According to the invention described in claim 7, in addition to the effect described in any one of claims 1 to 6, the following advantageous effects can be obtained.
(1) By arranging a plurality of air electrodes and negative electrodes and securing a large electrode area and battery capacity, the output characteristics and energy density as a unit cell can be improved, and rechargeability and durability are excellent.
 請求項8に記載の発明によれば、請求項1乃至6の内いずれか1項に記載の効果に加えて以下のような有利な効果が得られる。
(1)複数の空気極と負極を配置し、大きな電極面積と電池容量を確保することにより、単電池としての出力特性を向上させることができ、再充電性と耐久性に優れる。
(2)充放電時における空気極と負極の間での水の減少・増加に対応して、電解液保持体と電解液貯蔵部との間で、電解液をより適切なタイミングで供給または貯蔵して電解液保持体に保持される電解液量を常に一定に保ち、安定した充放電を行うことができ、動作安定性、高品質性、長寿命性に優れる。
According to the invention described in claim 8, in addition to the effect described in any one of claims 1 to 6, the following advantageous effects can be obtained.
(1) By arranging a plurality of air electrodes and negative electrodes and securing a large electrode area and battery capacity, output characteristics as a unit cell can be improved, and rechargeability and durability are excellent.
(2) Corresponding to the decrease / increase of water between the air electrode and the negative electrode during charging / discharging, supply or store the electrolyte at a more appropriate timing between the electrolyte holder and the electrolyte reservoir. Thus, the amount of the electrolytic solution held in the electrolytic solution holding body can always be kept constant, and stable charging / discharging can be performed, and the operational stability, high quality, and long life are excellent.
本発明の実施の形態1の水素/空気二次電池の要部断面模式図FIG. 2 is a schematic cross-sectional view of the main part of the hydrogen / air secondary battery according to Embodiment 1 of the present invention. 本発明の実施の形態1の水素/空気二次電池の変形例の要部断面模式図Cross-sectional schematic diagram of relevant parts of a modification of the hydrogen / air secondary battery of Embodiment 1 of the present invention 本発明の実施の形態2の水素/空気二次電池の要部断面模式図Sectional schematic diagram of relevant parts of the hydrogen / air secondary battery of Embodiment 2 of the present invention 本発明の実施の形態2の水素/空気二次電池の変形例の要部断面模式図Sectional schematic diagram of relevant parts of a modification of the hydrogen / air secondary battery of Embodiment 2 of the present invention 本発明の実施の形態3の水素/空気二次電池の要部断面模式図Cross-sectional schematic diagram of relevant parts of a hydrogen / air secondary battery according to Embodiment 3 of the present invention 本発明の実施の形態4の水素/空気二次電池の要部断面模式図Sectional schematic diagram of relevant parts of a hydrogen / air secondary battery according to Embodiment 4 of the present invention 本発明の実施の形態5の水素/空気二次電池の要部断面模式図Sectional schematic diagram of relevant parts of a hydrogen / air secondary battery according to Embodiment 5 of the present invention 本発明の実施の形態6の水素/空気二次電池の要部断面模式図Sectional schematic diagram of relevant parts of a hydrogen / air secondary battery according to Embodiment 6 of the present invention 水素/空気二次電池の充放電電圧のサイクル依存性を示す図The figure which shows the cycle dependence of the charge / discharge voltage of a hydrogen / air secondary battery 水素/空気二次電池の放電曲線を示す図The figure which shows the discharge curve of a hydrogen / air secondary battery
 以下、本発明の実施の形態における水素/空気二次電池について、図面を参照しながら説明する。
 (実施の形態1)
 図1は本発明の実施の形態1の水素/空気二次電池の要部断面模式図である。
 図1中、1は本発明の実施の形態1の水素/空気二次電池、1aは水素/空気二次電池1の電池容器、2はニッケルと、イリジウムを含むパイロクロア型酸化物であるビスマスイリジウム酸化物と、結着剤と、を混合して形成され、電池容器1a内に水平に配設された空気極、3は空気極2に対向して電池容器1a内に水平に配設された水素吸蔵合金を用いた負極、4は空気極2と負極3との間に配設されアルカリ性水溶液である電解液を保持する電解液保持体、5は空気極2の電解液保持体4と反対の側に、放電に必要な酸素の空気極2への取り込み若しくは充電で発生する酸素の空気極2からの散逸が可能なように電池容器1aに形成された通気路、6は電池容器1の長手方向の一端に形成された電解液貯蔵部であり、電解液保持体4の一部が電解液貯蔵部6内の電解液に浸漬し、電解液保持体4と電解液貯蔵部6の間では電解液の流れが確保されている。
Hereinafter, a hydrogen / air secondary battery according to an embodiment of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic cross-sectional view of the relevant part of a hydrogen / air secondary battery according to Embodiment 1 of the present invention.
In FIG. 1, 1 is a hydrogen / air secondary battery according to Embodiment 1 of the present invention, 1a is a battery container of the hydrogen / air secondary battery 1, and 2 is bismuth iridium, which is a pyrochlore oxide containing nickel and iridium. The air electrode 3 formed by mixing the oxide and the binder and horizontally disposed in the battery container 1 a is disposed horizontally in the battery container 1 a so as to face the air electrode 2. Negative electrode 4 using hydrogen storage alloy, 4 is disposed between air electrode 2 and negative electrode 3, and is an electrolytic solution holder that holds an electrolytic solution that is an alkaline aqueous solution, and 5 is opposite to electrolytic solution holder 4 of air electrode 2. On the side of this, an air passage formed in the battery case 1a so that oxygen necessary for discharge can be taken into or discharged from the air electrode 2 is formed in the battery case 1a. An electrolyte storage part formed at one end in the longitudinal direction of the electrolyte holder 4 Part is immersed in the electrolyte in the electrolytic solution reservoir 6, between the electrolyte storage unit 6 and the electrolytic solution holding body 4 to flow of the electrolyte is ensured.
 放電の際には空気極2と負極3の間で生成した水によって電解液が増加するが、これは電解液保持体4を介して電解液貯蔵部6に貯蔵され、充電の際には空気極2と負極3の間で水の分解によって電解液が減少するが、これは電解液保持体4を介して電解液貯蔵部6から補充される。この結果、空気極2と負極3の間では電解液保持体4に保持される電解液量が常に一定に保たれるようになる。
 尚、電解液貯蔵部6は、充電反応により電解液が減少する電解液保持体4に十分な電解液を供給し、放電反応により電解液保持体4で増加する電解液を確実に貯蔵できるように、電池の充放電容量に適した体積となっている。
 通気路5は単に電池容器1に形成された開口部でもよい。
The electrolyte is increased by the water generated between the air electrode 2 and the negative electrode 3 at the time of discharge, but this is stored in the electrolyte storage unit 6 via the electrolyte holder 4, and the air is charged at the time of charging. The electrolytic solution decreases due to the decomposition of water between the electrode 2 and the negative electrode 3, but this is replenished from the electrolytic solution storage unit 6 through the electrolytic solution holder 4. As a result, between the air electrode 2 and the negative electrode 3, the amount of the electrolyte solution held in the electrolyte solution holder 4 is always kept constant.
The electrolytic solution storage unit 6 supplies sufficient electrolytic solution to the electrolytic solution holder 4 in which the electrolytic solution decreases due to the charging reaction, and can reliably store the electrolytic solution that increases in the electrolytic solution holder 4 due to the discharge reaction. Furthermore, the volume is suitable for the charge / discharge capacity of the battery.
The ventilation path 5 may simply be an opening formed in the battery container 1.
 次に、本発明の実施の形態1の水素/空気二次電池の変形例について説明する。尚、実施の形態1と同様のものについては、同じ符号を付して説明を省略する。
 図2は本発明の実施の形態1の水素/空気二次電池の変形例の要部断面模式図である。
 図2において、実施の形態1の変形例における水素/空気二次電池1Aが実施の形態1と異なるのは、電池容器1aに電解液保持体4の両端部が電解液と浸漬するように2つの電解液貯蔵部6が形成されている点である。
 これにより、放電によって空気極2と負極3の間で生成する水による圧力上昇と、充電によって空気極2と負極3の間で減少する水による圧力低下を利用して、放電時には電解液保持体4で増加した分の電解液を両端の電解液貯蔵部6に貯蔵することができ、また充電時には電解液保持体4で減少した分の電解液を両端の電解液貯蔵部6から供給することができる。この結果、空気極2と負極3の間では電解液保持体4に保持される電解液量が常に一定に保たれるようになる。
Next, a modification of the hydrogen / air secondary battery according to Embodiment 1 of the present invention will be described. In addition, about the thing similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
FIG. 2 is a schematic cross-sectional view of an essential part of a modification of the hydrogen / air secondary battery according to Embodiment 1 of the present invention.
In FIG. 2, the hydrogen / air secondary battery 1A in the modification of the first embodiment is different from that of the first embodiment in that the two ends of the electrolytic solution holder 4 are immersed in the electrolytic solution in the battery container 1a. One electrolyte storage part 6 is formed.
Thus, an electrolyte holding body is used at the time of discharge by utilizing a pressure increase caused by water generated between the air electrode 2 and the negative electrode 3 due to discharge and a pressure drop caused by water decreasing between the air electrode 2 and the negative electrode 3 due to charging. 4 can be stored in the electrolyte storage units 6 at both ends, and the amount of electrolyte decreased by the electrolyte holder 4 can be supplied from the electrolyte storage units 6 at both ends during charging. Can do. As a result, between the air electrode 2 and the negative electrode 3, the amount of the electrolyte solution held in the electrolyte solution holder 4 is always kept constant.
 以上のように構成された実施の形態1における水素/空気二次電池によれば、以下の作用を有する。
(1)充電反応により減少する電解液の供給又は放電反応により増加する電解液の貯蔵を行う電解液貯蔵部を電池容器内に有し、電解液保持体の少なくとも一部が電解液貯蔵部内の電解液に浸漬していることにより、放電時には空気極と負極の間で生成する水による圧力上昇により、電解液保持体を介して空気極と負極の間で放電によって増加した分の電解液を電解液貯蔵部に貯蔵することが可能となり、また充電時には空気極と負極の間で減少する水による圧力低下を利用して、電解液貯蔵部から電解液保持体を介して充電によって減少した分の電解液を空気極と負極の間に供給することが可能となる。
(2)また、これによって空気極と負極の間では電解液保持体に保持された電解液量を常に一定に保つことができる。
(3)また、上記のような電解液の供給と貯蔵が、電解液保持体を介して、空気極-負極間と電解液貯蔵部との間で行われるため、空気極からの電解液の漏洩を抑制することが可能となる。
(4)また、上記のような電解液の供給と貯蔵が、電解液保持体を介して、空気極-負極間と電解液貯蔵部との間で行われるため、空気極-負極間に存在する電解液量を電解液保持体の空隙率を変えることで調整が可能となり、必要最適量の電解液量を空気極と負極の間に常に保持することができる。
(5)また、上記のような電解液の供給と貯蔵が、電解液保持体を介して、空気極-負極間と電解液貯蔵部との間で行われるため、空気極-負極間に存在する電解液量を電解液保持体の空隙率と厚みを変えることで調整が可能となり、電池の充放電容量の大小に関わらず必要最適量の電解液量を空気極と負極の間に常に保持することができる。
(6)イリジウムを含むパイロクロア型酸化物とニッケルとの間における電子的および化学的な相互作用によって、酸素発生と酸素還元に対する高い触媒能が得られ、空気極内部における酸素発生と酸素還元をいずれも円滑に進行させることができる。
(7)イリジウムを含むパイロクロア型酸化物とニッケルとの組み合わせによって、空気極で副反応として生じる可能性があるニッケル自身の酸化や還元が抑制されることによって、ニッケルの消耗が低減され、炭素粉末を用いた空気極や、ニッケルと他の金属系および/または酸化物系の触媒とを混合した構成を有する空気極に比べて、酸素発生・還元サイクルに対する耐久性を向上させることができる。
(8)イリジウムを含むパイロクロア型酸化物とニッケルは、湿式または乾式のいずれの方法でも結着剤との混合、成形が容易であり、特別な装置を用いなくても空気極を製造することができる。
(9)白金などの高価な貴金属を触媒に用いないことから、これらに対して空気極のコストを低減できる。
(10)空気極を形成するビスマスイリジウム酸化物は、イリジウムを含むパイロクロア型酸化物の中でも、特にニッケルとの組合せにおいて、空気極における充電時の酸素発生や放電時の酸素還元に対して触媒活性が高く、かつ高い電流密度や高温での作動においても充放電サイクルに対して高い耐久性を有する。
(11)鉛イリジウム酸化物のような他のパイロクロア型酸化物に対して、鉛のような有毒成分を含まないため、電池の製造・使用・廃棄・処分において安全性が高くなる。
(12)ビスマスイリジウム酸化物は、硝酸ビスマスのようなビスマス化合物と塩化イリジウム酸のようなイリジウム化合物を出発原料とし、共沈法と呼ばれる方法により前駆体物質を合成してから加熱処理するという簡単な方法で得られることから、空気極を構成する活性の高い触媒を容易に得ることができる。
The hydrogen / air secondary battery according to Embodiment 1 configured as described above has the following effects.
(1) The battery container has an electrolyte solution storage unit that supplies an electrolyte solution that decreases due to a charging reaction or stores an electrolyte solution that increases due to a discharge reaction, and at least a part of the electrolyte solution holder is in the electrolyte solution storage unit. By immersing in the electrolyte, the amount of electrolyte increased by the discharge between the air electrode and the negative electrode via the electrolyte holder is increased by the pressure increase caused by the water generated between the air electrode and the negative electrode during discharge. It is possible to store in the electrolyte storage unit, and the amount of decrease due to charging from the electrolyte storage unit through the electrolyte holder using the pressure drop due to water that decreases between the air electrode and the negative electrode during charging. This electrolyte solution can be supplied between the air electrode and the negative electrode.
(2) Moreover, the amount of the electrolyte solution held by the electrolyte solution holding body can always be kept constant between the air electrode and the negative electrode.
(3) Since the supply and storage of the electrolyte as described above are performed between the air electrode and the negative electrode and the electrolyte storage part via the electrolyte holder, the electrolyte from the air electrode Leakage can be suppressed.
(4) In addition, since the supply and storage of the electrolyte as described above are performed between the air electrode and the negative electrode and the electrolyte storage part via the electrolyte holder, it exists between the air electrode and the negative electrode. The amount of electrolytic solution to be adjusted can be adjusted by changing the porosity of the electrolytic solution holder, and the necessary and optimal amount of electrolytic solution can always be held between the air electrode and the negative electrode.
(5) Since the supply and storage of the electrolyte as described above is performed between the air electrode and the negative electrode and the electrolyte storage part via the electrolyte solution holder, it exists between the air electrode and the negative electrode. The amount of electrolyte to be adjusted can be adjusted by changing the porosity and thickness of the electrolyte holder, and the required optimum amount of electrolyte is always maintained between the air electrode and the negative electrode regardless of the charge / discharge capacity of the battery. can do.
(6) A high catalytic ability for oxygen generation and oxygen reduction is obtained by electronic and chemical interaction between the pyrochlore oxide containing iridium and nickel. Can also proceed smoothly.
(7) The combination of iridium-containing pyrochlore oxide and nickel suppresses the oxidation and reduction of nickel that may occur as a side reaction at the air electrode, thereby reducing nickel consumption and carbon powder. As compared with an air electrode using a metal electrode and an air electrode having a configuration in which nickel and another metal-based and / or oxide-based catalyst are mixed, durability against oxygen generation / reduction cycle can be improved.
(8) Pyrochlore oxide containing iridium and nickel can be easily mixed and molded with a binder by either wet or dry methods, and an air electrode can be produced without using a special device. it can.
(9) Since expensive noble metals such as platinum are not used for the catalyst, the cost of the air electrode can be reduced.
(10) The bismuth iridium oxide forming the air electrode is a catalytic activity for oxygen generation during charging and oxygen reduction during discharge in the air electrode, particularly in combination with nickel among pyrochlore oxides containing iridium. And high durability against charge / discharge cycles even at high current density and high temperature operation.
(11) Compared with other pyrochlore type oxides such as lead iridium oxide, since it does not contain toxic components such as lead, the safety of manufacturing, using, disposing and disposing of the battery is increased.
(12) Bismuth iridium oxide is a simple process in which a bismuth compound such as bismuth nitrate and an iridium compound such as chloroiridic acid are used as starting materials, a precursor material is synthesized by a method called a coprecipitation method, and then heat treatment is performed. Therefore, a highly active catalyst constituting the air electrode can be easily obtained.
(実施の形態2)
 実施の形態2における水素/空気二次電池について説明する。尚、実施の形態1と同様のものについては、同じ符号を付して説明を省略する。
 図3は本発明の実施の形態2の水素/空気二次電池の要部断面模式図であり、図4は本発明の実施の形態2の水素/空気二次電池の変形例の要部断面模式図である。
 図3において、実施の形態2の水素/空気二次電池1Bが実施の形態1と異なるのは、空気極2、負極3、電解液保持体4が鉛直方向に配置されている点であり、図3では電解液貯蔵部6がこれらの下方に配置されている。なお、図には示していないが、図3の上下を逆にして電解液貯蔵部6が上となるように配置したものも、本実施の形態2に含まれる。
 また、図4において、実施の形態2の変形例の水素/空気二次電池1Cが実施の形態2と異なるのは、電池容器1aに電解液保持体4の両端部が電解液に浸漬するように2つの電解液貯蔵部6が形成されている点であり、実施の形態1の変形例における水素/空気二次電池1Aを鉛直に配置したものに相当する。
(Embodiment 2)
A hydrogen / air secondary battery according to Embodiment 2 will be described. In addition, about the thing similar to Embodiment 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
FIG. 3 is a schematic cross-sectional view of the main part of the hydrogen / air secondary battery according to Embodiment 2 of the present invention, and FIG. 4 is a cross-sectional view of the main part of a modification of the hydrogen / air secondary battery according to Embodiment 2 of the present invention. It is a schematic diagram.
In FIG. 3, the hydrogen / air secondary battery 1B of the second embodiment is different from that of the first embodiment in that the air electrode 2, the negative electrode 3, and the electrolyte holding body 4 are arranged in the vertical direction. In FIG. 3, the electrolyte solution storage part 6 is arrange | positioned under these. Although not shown in the figure, Embodiment 2 also includes an arrangement in which the electrolyte storage unit 6 is turned upside down in FIG.
Also, in FIG. 4, the hydrogen / air secondary battery 1C according to the modification of the second embodiment is different from the second embodiment in that both ends of the electrolytic solution holder 4 are immersed in the electrolytic solution in the battery container 1a. In other words, two electrolyte storage parts 6 are formed, which corresponds to a vertical arrangement of the hydrogen / air secondary battery 1A in the modification of the first embodiment.
 以上のように構成された実施の形態2における水素/空気二次電池によれば、実施の形態1の作用に加え、以下の作用を有する。
(1)空気極と負極を鉛直に配置することによって、放電によって空気極と負極の間で生成する水による圧力上昇と、充電によって空気極と負極の間で減少する水による圧力低下とともに、重力沈降と毛管現象との相互作用が加わることで、充放電時における空気極と負極間での水の減少・増加に対応して、電解液貯蔵部から空気極と負極の間の電解液保持体に電解液をより適切なタイミングで供給でき、または空気極と負極の間の電解液保持体から電解液貯蔵部へ電解液をより適切なタイミングで貯蔵できる。
According to the hydrogen / air secondary battery in the second embodiment configured as described above, in addition to the functions in the first embodiment, the following functions are provided.
(1) By arranging the air electrode and the negative electrode vertically, the pressure increases due to the water generated between the air electrode and the negative electrode due to discharge, and the pressure decrease due to the water that decreases between the air electrode and the negative electrode due to charging, the gravity By adding the interaction between sedimentation and capillary action, the electrolyte holder between the air electrode and the negative electrode from the electrolyte storage part corresponds to the decrease / increase in water between the air electrode and the negative electrode during charge / discharge. In addition, the electrolyte can be supplied at a more appropriate timing, or the electrolyte can be stored at a more appropriate timing from the electrolyte holder between the air electrode and the negative electrode to the electrolyte reservoir.
(実施の形態3)
 実施の形態3における水素/空気二次電池について説明する。尚、実施の形態1又は2と同様のものについては、同じ符号を付して説明を省略する。
 図5は本発明の実施の形態3の水素/空気二次電池の要部断面模式図である。
 図5において、実施の形態3の水素/空気二次電池1Dが実施の形態2の変形例と異なるのは、負極3の両側に対向して2つの空気極2が配設され、電解液保持体4が負極3と各々の空気極2との間にそれぞれ配設されている点である。なお、図5の構成を一組として、1つの電池容器1aの中に複数組を並設することもできる。このとき、隣接する空気極2の間では通気路5を共通化することができる。
 尚、本実施の形態では、負極3、空気極2、電解液保持体4を電池容器1a内で鉛直方向に配置したが、実施の形態1と同様に水平方向に配置する構造としてもよい。
(Embodiment 3)
A hydrogen / air secondary battery according to Embodiment 3 will be described. In addition, about the thing similar to Embodiment 1 or 2, the same code | symbol is attached | subjected and description is abbreviate | omitted.
FIG. 5 is a schematic cross-sectional view of the relevant part of a hydrogen / air secondary battery according to Embodiment 3 of the present invention.
In FIG. 5, the hydrogen / air secondary battery 1D of the third embodiment is different from the modification of the second embodiment in that two air electrodes 2 are arranged opposite to both sides of the negative electrode 3 to hold the electrolyte solution. The body 4 is disposed between the negative electrode 3 and each air electrode 2. In addition, the structure of FIG. 5 can be set as one set, and a plurality of sets can be arranged in parallel in one battery container 1a. At this time, the air passage 5 can be shared between the adjacent air electrodes 2.
In the present embodiment, the negative electrode 3, the air electrode 2, and the electrolytic solution holding body 4 are arranged in the vertical direction in the battery container 1a. However, the structure may be arranged in the horizontal direction as in the first embodiment.
 以上のように構成された実施の形態3における水素/空気二次電池によれば、実施の形態2の作用に加え、以下の作用を有する。
(1)負極に対向して2つの空気極が配設されることにより、負極の両側を電池反応に利用することが可能となり、単電池としてより高い電流での充放電が可能になるとともに、放電電圧の分極が小さくなることで、エネルギー密度および出力密度を向上させることができる。
(2)負極に対向して1つの空気極を配設する場合に比べて、電池内部におけるデッドスペースを削減することができる。
According to the hydrogen / air secondary battery in the third embodiment configured as described above, in addition to the functions in the second embodiment, the following functions are provided.
(1) By disposing two air electrodes opposite to the negative electrode, both sides of the negative electrode can be used for the battery reaction, and charging and discharging at a higher current as a single cell is possible. Energy polarization and output density can be improved by reducing the polarization of the discharge voltage.
(2) The dead space inside the battery can be reduced as compared with the case where one air electrode is disposed facing the negative electrode.
(実施の形態4)
 実施の形態4における水素/空気二次電池について説明する。尚、実施の形態1乃至3と同様のものについては、同じ符号を付して説明を省略する。
 図6は本発明の実施の形態4の水素/空気二次電池の要部断面模式図である。
 図6において、実施の形態4の水素/空気二次電池1Eが実施の形態3と異なるのは、2つの電解液保持体4a,4bの両端部がそれぞれ共通の電解液貯蔵部6内の電解液に浸漬している点である。なお、図6の構成を一組として、1つの電池容器1aの中に複数組を並設することもできる。このとき、隣接する空気極2の間では通気路5を共通化することができる。
 尚、本実施の形態では、負極3、空気極2、電解液保持体4a,4bを電池容器1a内で鉛直方向に配置したが、実施の形態1と同様に水平方向に配置する構造としてもよい。
(Embodiment 4)
A hydrogen / air secondary battery according to Embodiment 4 will be described. In addition, about the thing similar to Embodiment 1 thru | or 3, the same code | symbol is attached | subjected and description is abbreviate | omitted.
FIG. 6 is a schematic cross-sectional view of the relevant part of a hydrogen / air secondary battery according to Embodiment 4 of the present invention.
In FIG. 6, the hydrogen / air secondary battery 1E of the fourth embodiment is different from that of the third embodiment in that both ends of the two electrolyte holding bodies 4a and 4b are electrolyzed in a common electrolyte storage section 6. It is a point immersed in the liquid. In addition, the structure of FIG. 6 can be set as one set, and a plurality of sets can be arranged in parallel in one battery container 1a. At this time, the air passage 5 can be shared between the adjacent air electrodes 2.
In the present embodiment, the negative electrode 3, the air electrode 2, and the electrolyte solution holders 4a and 4b are arranged in the vertical direction in the battery container 1a. However, as in the first embodiment, the structure may be arranged in the horizontal direction. Good.
 以上のように構成された実施の形態4における水素/空気二次電池によれば、実施の形態3の作用に加え、以下の作用を有する。
(1)複数の電解液保持体の少なくとも一部が共通の電解液貯蔵部内の電解液に浸漬していることにより、電池容器内の電解液貯蔵部の構造を簡単にすることができる。
(2)電解液貯蔵部が共通ではなく各電解液保持体に対して配置されている場合に比べて、電解液貯蔵部の容積を小さくすることが可能で、電池全体の体積も減少し、体積当たりのエネルギー密度や出力密度を向上させることができる。
According to the hydrogen / air secondary battery in the fourth embodiment configured as described above, in addition to the functions in the third embodiment, the following functions are provided.
(1) Since at least some of the plurality of electrolytic solution holders are immersed in the electrolytic solution in the common electrolytic solution storage unit, the structure of the electrolytic solution storage unit in the battery container can be simplified.
(2) Compared to the case where the electrolyte storage part is not common and is arranged for each electrolyte holder, the volume of the electrolyte storage part can be reduced, and the volume of the entire battery is also reduced. The energy density per volume and the power density can be improved.
(実施の形態5)
 実施の形態5における水素/空気二次電池について説明する。尚、実施の形態1乃至4と同様のものについては、同じ符号を付して説明を省略する。
 図7は本発明の実施の形態5の水素/空気二次電池の要部断面模式図である。
 図7において、実施の形態5の水素/空気二次電池1Fが実施の形態4と異なるのは、2つの電解液保持体4a,4bが共通の電解液貯蔵部6内で連結部4cによって連結されて一体化されている点である。なお、電解液保持体4a、4bと接続部4cはもとより一体であるものであってもよい。また、図7の構成を一組として、1つの電池容器1aの中に複数組を並設することもできる。このとき、隣接する空気極2の間では通気路5を共通化することができる。
 尚、本実施の形態では、負極3、空気極2、電解液保持体4a、4bを電池容器1a内で鉛直方向に配置したが、実施の形態1と同様に水平方向に配置する構造としてもよい。
(Embodiment 5)
A hydrogen / air secondary battery according to Embodiment 5 will be described. In addition, about the thing similar to Embodiment 1 thru | or 4, the same code | symbol is attached | subjected and description is abbreviate | omitted.
FIG. 7 is a schematic cross-sectional view of the relevant part of a hydrogen / air secondary battery according to Embodiment 5 of the present invention.
In FIG. 7, the hydrogen / air secondary battery 1 </ b> F of the fifth embodiment is different from the fourth embodiment in that two electrolyte solution holders 4 a and 4 b are connected by a connecting portion 4 c in a common electrolyte storage unit 6. It is an integrated point. The electrolytic solution holders 4a and 4b and the connection portion 4c may be integrated as a matter of course. Moreover, the structure of FIG. 7 can be set as one set, and a plurality of sets can be arranged in parallel in one battery container 1a. At this time, the air passage 5 can be shared between the adjacent air electrodes 2.
In the present embodiment, the negative electrode 3, the air electrode 2, and the electrolytic solution holders 4a and 4b are arranged in the vertical direction in the battery container 1a. However, as in the first embodiment, the structure may be arranged in the horizontal direction. Good.
 以上のように構成された実施の形態5における水素/空気二次電池によれば、実施の形態4の作用に加え、以下の作用を有する。
(1)2つの電解液保持体が共通の電解液貯蔵部内で連結されていることにより、2つの電解液保持体が2つの空気極に対して、電解液貯蔵部を介して一体となり、電解液保持体の部材点数を少なくすることができる。
(2)空気極と負極の間にある電解液保持体中の電解液量を、2つの空気極と負極の間に対して均一に保つことが可能となり、各々の空気極と負極の間に存在する電解液量のバランスが崩れることを防ぎ、各々の空気極と負極の間の極間電圧が異なることを抑制することができる。
According to the hydrogen / air secondary battery in the fifth embodiment configured as described above, in addition to the functions in the fourth embodiment, the following functions are provided.
(1) Since the two electrolyte holders are connected in the common electrolyte reservoir, the two electrolyte holders are integrated with the two air electrodes via the electrolyte reservoir. The number of members of the liquid holder can be reduced.
(2) It becomes possible to keep the amount of the electrolyte in the electrolyte holder between the air electrode and the negative electrode uniform between the two air electrodes and the negative electrode, and between each air electrode and the negative electrode. It is possible to prevent the balance of the amount of the existing electrolyte from being lost, and to prevent the interelectrode voltage between each air electrode and the negative electrode from being different.
(実施の形態6)
 実施の形態6における水素/空気二次電池について説明する。尚、実施の形態1乃至5と同様のものについては、同じ符号を付して説明を省略する。
 図8は本発明の実施の形態6の水素/空気二次電池の要部断面模式図である。
 図8において、実施の形態6の水素/空気二次電池1Gが実施の形態5と異なるのは、実施の形態5の水素/空気二次電池1Fにおける負極3及び負極3に対向する2つの空気極2の長手方向が鉛直方向と平行に配置される電極対が、電池容器1a内に2組並設され、電解液保持体4b同士が共通の電解液貯蔵部6内で連結部4dによって連結されて蛇行状に一体化され、隣接する2つの空気極2の間に電池容器1aの外部と連通する共通の通気路5aが形成されている点である。
 これにより、各々の空気極2と負極3の間の極間電圧のばらつきを抑制して、均一化することができる。
(Embodiment 6)
A hydrogen / air secondary battery according to Embodiment 6 will be described. In addition, about the thing similar to Embodiment 1 thru | or 5, the same code | symbol is attached | subjected and description is abbreviate | omitted.
FIG. 8 is a schematic cross-sectional view of the relevant part of a hydrogen / air secondary battery according to Embodiment 6 of the present invention.
In FIG. 8, the hydrogen / air secondary battery 1G of the sixth embodiment is different from that of the fifth embodiment in that the two airs facing the negative electrode 3 and the negative electrode 3 in the hydrogen / air secondary battery 1F of the fifth embodiment. Two pairs of electrode pairs in which the longitudinal direction of the pole 2 is arranged in parallel with the vertical direction are arranged in parallel in the battery container 1a, and the electrolyte holders 4b are connected to each other in the common electrolyte storage part 6 by the connecting part 4d. Thus, a common air passage 5a that is integrated in a meandering manner and communicates with the outside of the battery case 1a is formed between two adjacent air electrodes 2.
Thereby, the dispersion | variation in the voltage between each air electrode 2 and the negative electrode 3 can be suppressed, and it can equalize.
 本実施の形態では、上記のように全ての電解液保持体4a,4bを連結部4c,4dで接続し、共通の電解液貯蔵部6で電解液に浸漬するようにしたが、実施の形態3乃至5の水素/空気二次電池1D~1Fの構成を電池容器1a内に並設してもよい。
 また、本実施の形態では、電池容器1a内に並設する電極対の数が2組の場合について説明したが、電極対の数は、適宜、選択することができる。
 また、負極3、空気極2、電解液保持体4a、4bを電池容器1a内で鉛直方向に配置したが、実施の形態1と同様に水平方向に配置する構造としてもよい。なお、電解液保持体4a、4bと接続部4c、4dはもとより一体であるものであってもよい。
In the present embodiment, as described above, all the electrolytic solution holders 4a and 4b are connected by the connecting portions 4c and 4d, and are immersed in the electrolytic solution by the common electrolytic solution storage unit 6. The configurations of 3 to 5 hydrogen / air secondary batteries 1D to 1F may be arranged in the battery container 1a.
Further, in the present embodiment, the case where the number of electrode pairs arranged in parallel in the battery container 1a is two has been described, but the number of electrode pairs can be appropriately selected.
Moreover, although the negative electrode 3, the air electrode 2, and the electrolyte solution holders 4a and 4b are arranged in the vertical direction in the battery container 1a, the structure may be arranged in the horizontal direction as in the first embodiment. The electrolytic solution holders 4a and 4b and the connection portions 4c and 4d may be integrated as well.
 以上のように構成された実施の形態5における水素/空気二次電池によれば、実施の形態5の作用に加え、以下の作用を有する。
(1)負極及び負極に対向する2つの空気極の長手方向が鉛直方向と平行に配置される電極対が、電池容器内に2組並設されていることによって、単電池としての最大放電可能電流、出力密度、エネルギー密度を向上させることができる。
(2)単一容器内に複数の電極対が並設されていることによって、単一の電極対からなる電池を複数接続する場合に比べて、電池全体で占める体積を減少させることができる。
(3)空気極と負極を鉛直に配置することによって、放電によって空気極と負極の間で生成する水による圧力上昇と、充電によって空気極と負極の間で減少する水による圧力低下とともに、重力沈降と毛管現象との相互作用が加わることで、充放電時における空気極と負極間での水の減少・増加に対応して、電解液貯蔵部から空気極と負極の間の電解液保持体に電解液をより適切なタイミングで供給でき、または空気極と負極の間の電解液保持体から電解液貯蔵部へ電解液をより適切なタイミングで貯蔵できる。
According to the hydrogen / air secondary battery in the fifth embodiment configured as described above, in addition to the functions in the fifth embodiment, the following functions are provided.
(1) Maximum discharge as a unit cell is possible by arranging two pairs of electrode pairs in which the negative electrode and the two air electrodes facing the negative electrode are arranged in parallel in the vertical direction in the battery container Current, power density, and energy density can be improved.
(2) Since a plurality of electrode pairs are arranged in parallel in a single container, the volume occupied by the whole battery can be reduced as compared with the case where a plurality of batteries each made up of a single electrode pair are connected.
(3) By arranging the air electrode and the negative electrode vertically, the pressure increases due to water generated between the air electrode and the negative electrode by discharge, and the pressure decrease due to water that decreases between the air electrode and the negative electrode due to charging, and gravity. By adding the interaction between sedimentation and capillary action, the electrolyte holder between the air electrode and the negative electrode from the electrolyte storage part corresponds to the decrease / increase in water between the air electrode and the negative electrode during charge / discharge. In addition, the electrolyte can be supplied at a more appropriate timing, or the electrolyte can be stored at a more appropriate timing from the electrolyte holder between the air electrode and the negative electrode to the electrolyte reservoir.
 以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
 Bi(NO・5HOとHIrCl・6HOを同じ濃度となるように75℃の蒸留水に溶解し、攪拌・混合してから、2mol/LのNaOH水溶液を加えた。
 その際、浴温度は75℃で、酸素バブリングを行いながら3日間攪拌した。これによって生じた沈殿物を含む溶液を85℃で保持して蒸発乾固させてペースト状とした。このペースト状のものを蒸発皿に移し、120℃、12時間乾燥させてから乳鉢で粉砕した後に、空気雰囲気中で600℃、2時間焼成した。次に、焼成物中に含まれる副生成物を除去するために、70℃の蒸留水を用いて吸引ろ過し、パイロクロア型のビスマスイリジウム酸化物を単離した。さらに、これを120℃、12時間乾燥させた後に、乳鉢を用いて粉砕してビスマスイリジウム酸化物粉末を得た。
 このようにして得られたビスマスイリジウム酸化物粉末、ニッケル粉末(純度99.8%、粒径10~20μm)、市販のPTFE(ポリテトラフルオロエチレン)粒子を重量比で20:70:10となるように混合して粘土状とした後、常温で30分程度乾燥させたものを集電体となるニッケル網上に100kg/cmでディスク状(直径13mm、厚さ0.3mm)にプレス成形してから、窒素雰囲気中370℃で13分間熱処理して空気極を作製した。
Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
Example 1
Bi (NO 3 ) 3 · 5H 2 O and H 2 IrCl 6 · 6H 2 O are dissolved in 75 ° C. distilled water so as to have the same concentration, stirred and mixed, and then added with a 2 mol / L NaOH aqueous solution. It was.
At that time, the bath temperature was 75 ° C., and the mixture was stirred for 3 days while carrying out oxygen bubbling. The solution containing the precipitate formed thereby was kept at 85 ° C. and evaporated to dryness to obtain a paste. The paste-like material was transferred to an evaporating dish, dried at 120 ° C. for 12 hours, pulverized in a mortar, and then baked in an air atmosphere at 600 ° C. for 2 hours. Next, in order to remove by-products contained in the fired product, suction filtration was performed using distilled water at 70 ° C. to isolate pyrochlore-type bismuth iridium oxide. Furthermore, after drying this at 120 degreeC for 12 hours, it grind | pulverized using the mortar and obtained the bismuth iridium oxide powder.
The thus obtained bismuth iridium oxide powder, nickel powder (purity 99.8%, particle size 10 to 20 μm), and commercially available PTFE (polytetrafluoroethylene) particles have a weight ratio of 20:70:10. The mixture is made into a clay and then dried at room temperature for about 30 minutes, and then pressed into a disk shape (diameter: 13 mm, thickness: 0.3 mm) at 100 kg / cm 2 on a nickel mesh as a current collector. After that, heat treatment was performed in a nitrogen atmosphere at 370 ° C. for 13 minutes to produce an air electrode.
 水素吸蔵合金(MmNi4.10Mn0.40Al0.10Co0.50、容量密度310mAh/g)とニッケル粉末(純度99.8%,平均粒径3~7μm)とポリエチレンを重量比2:3:0.12で混合後、5t/cmでディスク状にプレス成形し、さらに真空加熱炉で150℃で60分間熱処理して、空気極とほぼ同じ面積の負極(理論容量31mAh)を作製した。負極にはリードとしてニッケルリボンを抵抗溶接した。
 上記の空気極および負極と、電解液保持体として市販のアルカリ電池用セパレータ(ユアサメンブレンシステムズ製、登録商標名:ユミグラフター)と、電解液として7mol/LのKOH水溶液を用い、図3に示した構造の水素/空気二次電池を、PTFE(ポリテトラフルオロエチレン)を電池容器の材料に使って作製した。PTFE容器には電解液貯蔵部となる空間を配置し、その内部に電解液5mLを注入した。また、電解液保持体の面積は、空気極および負極よりも大きくし、かつ電解液貯蔵部内の電解液に電解液保持体の一部が浸漬するようにした。なお、空気極のリードにはニッケル線を使用した。
Hydrogen storage alloy (MmNi 4.10 Mn 0.40 Al 0.10 Co 0.50 , capacity density 310 mAh / g), nickel powder (purity 99.8%, average particle size 3-7 μm) and polyethylene in a weight ratio of 2 : 3: After mixing at 0.12, press-molded into a disk shape at 5 t / cm 2 and further heat-treated at 150 ° C. for 60 minutes in a vacuum heating furnace to obtain a negative electrode (theoretical capacity: 31 mAh) having almost the same area as the air electrode. Produced. A nickel ribbon was resistance-welded to the negative electrode as a lead.
The above-described air electrode and negative electrode, a commercially available alkaline battery separator (manufactured by Yuasa Membrane Systems, registered trade name: Yumigrapher) as an electrolyte solution holder, and a 7 mol / L aqueous KOH solution as an electrolyte solution are shown in FIG. A hydrogen / air secondary battery having a structure was prepared using PTFE (polytetrafluoroethylene) as a material for a battery container. In the PTFE container, a space serving as an electrolytic solution storage unit was disposed, and 5 mL of the electrolytic solution was injected into the space. The area of the electrolytic solution holder is larger than that of the air electrode and the negative electrode, and a part of the electrolytic solution holder is immersed in the electrolytic solution in the electrolytic solution storage unit. A nickel wire was used for the lead of the air electrode.
(比較例1)
 電池容器に電解液貯蔵部となる空間を設けず、かつ電解液保持体を空気極および負極とほぼ同じ面積にしたことを除いて、実施例1と同じ水素/空気二次電池を作製した。尚、電解液保持体に保持された電解液は約60μLであった。
(Comparative Example 1)
The same hydrogen / air secondary battery as that of Example 1 was manufactured except that the battery container was not provided with a space serving as an electrolyte solution storage unit, and the electrolyte solution holding body had almost the same area as the air electrode and the negative electrode. In addition, the electrolyte solution hold | maintained at the electrolyte solution holder was about 60 microliters.
 実施例1及び比較例1の電池を室温、2mAで充放電し、充電時および放電時の電池電圧を記録した結果を図9に示す。
 図9中、横軸は充放電のサイクル数(回)であり、縦軸は放電時及び充電時の電池電圧(V)である。
 実施例1では、300サイクル以上の充放電で可能であり、平均放電電圧0.9~0.73V(白丸参照)、平均充電電圧1.5V(灰色丸参照)の安定な電圧を示した。
 これに対し、比較例1では、初期の充放電試験では実施例1とほぼ同じ放電電圧と充電電圧を示した(白四角、灰色四角参照)が、10サイクルで充放電が終了し、11サイクルからは充放電ができなくなった。比較例1の電池を解体した結果、電解液保持体にはほとんど電解液が残っていないことがわかった。
 以上の結果から、充放電時の電解液保持体における電解液(水)の減少、増加に対し、電解液貯蔵部からの電解液の供給及び電解液貯蔵部への電解液の貯蔵を行うことにより、電解液保持体に保持される電解液量を略一定に保つことができ、安定した充放電を繰り返し行うことが可能となり、動作安定性、高品質性、長寿命性に優れる水素/空気二次電池を実現できることが明らかとなった。
FIG. 9 shows the results of charging and discharging the batteries of Example 1 and Comparative Example 1 at room temperature and 2 mA, and recording the battery voltage during charging and discharging.
In FIG. 9, the horizontal axis represents the number of charge / discharge cycles (times), and the vertical axis represents the battery voltage (V) during discharge and charge.
In Example 1, charge / discharge of 300 cycles or more was possible, and a stable voltage with an average discharge voltage of 0.9 to 0.73 V (see white circle) and an average charge voltage of 1.5 V (see gray circle) was shown.
On the other hand, in Comparative Example 1, the initial charge / discharge test showed substantially the same discharge voltage and charge voltage as in Example 1 (see white squares and gray squares), but the charge / discharge was completed in 10 cycles, and 11 cycles. Can no longer charge / discharge. As a result of disassembling the battery of Comparative Example 1, it was found that almost no electrolyte remained in the electrolyte holder.
From the above results, supply of the electrolytic solution from the electrolytic solution storage unit and storage of the electrolytic solution in the electrolytic solution storage unit with respect to the decrease and increase of the electrolytic solution (water) in the electrolytic solution holder during charging and discharging. This makes it possible to keep the amount of electrolyte held in the electrolyte holder substantially constant, and to repeatedly perform stable charge and discharge, and to provide hydrogen / air with excellent operational stability, high quality, and long life. It became clear that a secondary battery could be realized.
(実施例2)
実施例1と同じ方法で作製したビスマスイリジウム酸化物粉末と、ニッケル粉末(純度99.8%、粒径10~20μm)、市販のPTFE(ポリテトラフルオロエチレン)粒子を重量比で20:70:10となるように混合し、ニッケル網とともにロールプレス機で加圧した後、窒素雰囲気中370℃で13分間熱処理して、角型の空気極(45mm×45mm,厚さ0.2mm)を作製した。また、実施例1と同じ水素吸蔵合金を用いて、これを発泡ニッケル内にEVA(エチルビニルアセテート)とともにロールプレスして成形し、空気極とほぼ同じ面積の負極(理論容量600mAh)を作製した.なお、水素吸蔵合金と発泡ニッケルとEVAの重量比は1:1:0.01とした。
 上記の空気極および負極と、電解液保持体として市販のアルカリ電池用セパレータ(ユアサメンブレンシステムズ製、登録商標名:ユミグラフター)と不織布、電解液として7mol/LのKOH水溶液を用い、図2に示した構造の水素/空気二次電池を、PTFE(ポリテトラフルオロエチレン)を電池容器の材料に使って作製した。PTFE容器には電解液貯蔵部となる空間を配置し、その内部に電解液5mLを注入した。また、電解液保持体の面積は、空気極および負極よりも大きくし、かつ電解液貯蔵部内の電解液に電解液保持体の一部が浸漬するようにした。なお、空気極のリードにはニッケル線を使用した。
(Example 2)
A bismuth iridium oxide powder produced by the same method as in Example 1, a nickel powder (purity 99.8%, particle size 10 to 20 μm), and commercially available PTFE (polytetrafluoroethylene) particles in a weight ratio of 20:70: After mixing with a nickel press and pressing with a roll press, heat treatment was performed at 370 ° C. for 13 minutes in a nitrogen atmosphere to produce a square air electrode (45 mm × 45 mm, thickness 0.2 mm) did. Further, using the same hydrogen storage alloy as in Example 1, this was roll-pressed together with EVA (ethyl vinyl acetate) in foamed nickel to form a negative electrode (theoretical capacity 600 mAh) having almost the same area as the air electrode. . The weight ratio of the hydrogen storage alloy, foamed nickel, and EVA was 1: 1: 0.01.
FIG. 2 shows the air electrode and negative electrode, a commercially available alkaline battery separator (manufactured by Yuasa Membrane Systems Co., Ltd., Yumigrapher) and a nonwoven fabric as the electrolyte holder, and a 7 mol / L KOH aqueous solution as the electrolyte. A hydrogen / air secondary battery having the structure described above was fabricated using PTFE (polytetrafluoroethylene) as a material for the battery container. In the PTFE container, a space serving as an electrolytic solution storage unit was disposed, and 5 mL of the electrolytic solution was injected into the space. The area of the electrolytic solution holder is larger than that of the air electrode and the negative electrode, and a part of the electrolytic solution holder is immersed in the electrolytic solution in the electrolytic solution storage unit. A nickel wire was used for the lead of the air electrode.
(比較例2)
 電池容器に電解液貯蔵部となる空間を設けず、かつ電解液保持体を空気極および負極とほぼ同じ面積にしたことを除いて、実施例2と同じ水素/空気二次電池を作製した。尚、電解液保持体に保持された電解液は約1mLであった。
(Comparative Example 2)
The same hydrogen / air secondary battery as that of Example 2 was manufactured except that the battery container was not provided with a space serving as an electrolyte solution storage unit, and the electrolyte solution holding body had almost the same area as the air electrode and the negative electrode. In addition, the electrolyte solution hold | maintained at the electrolyte solution holding body was about 1 mL.
 実施例2及び比較例2の電池を室温、一定電流で充放電したときの放電時の電池電圧を記録した結果を図10に示す。なお、実施例2は50mA、比較例2は30mAでの結果である。
 実施例2では、50mAでの放電に対して10時間もの放電が可能であり、安定した放電電圧が得られた。これに対して、比較例2では実施例2よりも低い電流で放電したにも関わらず放電時間は7.5時間であった。このとき実施例2の放電電気量は508mAh、比較例2の放電電気量は219mAhであり、実施例2は比較例2に対して2倍以上の放電が可能となった。また、体積エネルギー密度は実施例2が308Wh/L、比較例2は115Wh/Lであり、実施例2では比較例2に対してエネルギー密度が2.7倍に向上した。また、安定な放電電圧が得られる放電可能な限界電圧を0.1Vとして、放電可能な最大電流値を測定した結果、実施例2は600mA、比較例2は150mAであり、比較例2に対して実施例2は放電可能な最大電流値が4倍に向上した。さらに、負極の水素吸蔵合金の利用率は実施例2が84%、比較例2が29%であり、利用率が約3倍に向上した。
 以上の結果から、充放電時の電解液保持体における電解液(水)の減少、増加に対し、電解液貯蔵部からの電解液の供給及び電解液貯蔵部への電解液の貯蔵を行うことにより、電解液保持体に保持される電解液量を略一定に保つことができ、安定した放電を行うことが可能となり、これによって放電可能な最大電流値、出力、エネルギー密度が向上し、動作安定性、高品質性、長寿命性とともに放電特性に優れる水素/空気二次電池を実現できることが明らかとなった。
FIG. 10 shows the results of recording the battery voltage during discharge when the batteries of Example 2 and Comparative Example 2 were charged and discharged at room temperature and a constant current. In addition, Example 2 is 50 mA, and Comparative Example 2 is 30 mA.
In Example 2, discharge for 10 hours was possible with respect to discharge at 50 mA, and a stable discharge voltage was obtained. On the other hand, in Comparative Example 2, the discharge time was 7.5 hours despite discharge at a lower current than that in Example 2. At this time, the discharge electricity amount of Example 2 was 508 mAh, the discharge electricity amount of Comparative Example 2 was 219 mAh, and Example 2 was able to discharge twice or more that of Comparative Example 2. The volume energy density was 308 Wh / L in Example 2 and 115 Wh / L in Comparative Example 2. In Example 2, the energy density was improved 2.7 times compared to Comparative Example 2. In addition, as a result of measuring the maximum dischargeable current value with a dischargeable limit voltage at which a stable discharge voltage can be obtained being 0.1 V, Example 2 is 600 mA and Comparative Example 2 is 150 mA. In Example 2, the maximum dischargeable current value was improved four times. Further, the utilization rate of the hydrogen storage alloy for the negative electrode was 84% in Example 2 and 29% in Comparative Example 2, and the utilization rate was improved about 3 times.
From the above results, supply of the electrolytic solution from the electrolytic solution storage unit and storage of the electrolytic solution in the electrolytic solution storage unit with respect to the decrease and increase of the electrolytic solution (water) in the electrolytic solution holder during charging and discharging. Therefore, it is possible to keep the amount of electrolyte held in the electrolyte holder substantially constant and to perform stable discharge, thereby improving the maximum current value, output and energy density that can be discharged, and operating. It became clear that a hydrogen / air secondary battery with excellent discharge characteristics as well as stability, high quality and long life can be realized.
 本発明は、充電や放電の間の電圧の大きな変化を抑制し、充放電サイクル特性に優れ、電解液の漏洩がなく、再充電性や耐久性に優れ、特に負極や空気極の電極面積や電池容量が大きい場合や、さらには放電電流や充電電流が大きな作動の場合においても、安定した充放電を行うことができる動作安定性、高品質性、長寿命性に優れた水素/空気二次電池を提供し、パソコン、携帯電話、携帯音楽プレーヤー、携帯ビデオプレーヤー、携帯書籍端末などのモバイル機器の電源、電気自動車、ハイブリッド自動車、電動バイク、電動自転車、ショベルカーなどの電動作業機械や電動建設機械などの動力用または補助用電池、自動車用、家庭用、業務用、産業用の燃料電池の電力貯蔵用・出力調整用電池、太陽光発電、風力発電、水力発電、原子力発電などの電力貯蔵・出力調整用電池などに用いることができる。 The present invention suppresses a large change in voltage during charging and discharging, is excellent in charge / discharge cycle characteristics, has no electrolyte leakage, and is excellent in rechargeability and durability. Hydrogen / air secondary with excellent operational stability, high quality, and long life that can perform stable charge and discharge even when the battery capacity is large or when the discharge current or charge current is large. Provides batteries, power supplies for mobile devices such as personal computers, mobile phones, portable music players, portable video players, and portable book terminals, electric work machines such as electric cars, hybrid cars, electric bikes, electric bicycles, excavators, and electric construction Power or auxiliary batteries for machinery, etc., batteries for power storage and output regulation of fuel cells for automobiles, households, businesses, and industries, solar power generation, wind power generation, hydroelectric power generation, raw power generation It can be used, such as the power storage and output adjustment batteries such as power generation.
1,1A,1B,1C,1D,1E,1F,1G 水素/空気二次電池
1a 電池容器
2 空気極
3 負極
4,4a,4b 電解液保持体
4c,4d 接続部
5,5a 通気路
6 電解液貯蔵部
1, 1A, 1B, 1C, 1D, 1E, 1F, 1G Hydrogen / air secondary battery 1a Battery container 2 Air electrode 3 Negative electrode 4, 4a, 4b Electrolyte holder 4c, 4d Connection portion 5, 5a Air passage 6 Electrolysis Liquid storage part

Claims (8)

  1.  電池容器内に配設される空気極と、前記空気極に対向して前記電池容器内に配設される水素吸蔵合金を用いた負極と、前記空気極と前記負極との間に配設され電解液を保持する電解液保持体と、を備えた水素/空気二次電池であって、
    充電反応により減少する電解液の供給又は放電反応により増加する電解液の貯蔵を行う電解液貯蔵部を前記電池容器内に有し、前記電解液保持体の少なくとも一部が前記電解液貯蔵部内の前記電解液に浸漬していることを特徴とする水素/空気二次電池。
    An air electrode disposed in the battery container, a negative electrode using a hydrogen storage alloy disposed in the battery container opposite to the air electrode, and disposed between the air electrode and the negative electrode. A hydrogen / air secondary battery comprising an electrolyte solution holding body for holding an electrolyte solution,
    The battery container has an electrolyte storage part that supplies an electrolyte solution that decreases due to a charging reaction or stores an electrolyte solution that increases due to a discharge reaction, and at least a part of the electrolyte holder is in the electrolyte storage part. A hydrogen / air secondary battery characterized by being immersed in the electrolytic solution.
  2.  前記空気極が、ニッケルと、イリジウムを含むパイロクロア型酸化物と、結着剤と、を含有してなることを特徴とする請求項1に記載の水素/空気二次電池。 The hydrogen / air secondary battery according to claim 1, wherein the air electrode contains nickel, a pyrochlore oxide containing iridium, and a binder.
  3.  前記イリジウムを含む前記パイロクロア型酸化物が、ビスマスイリジウム酸化物であることを特徴とする請求項2に記載の水素/空気二次電池。 3. The hydrogen / air secondary battery according to claim 2, wherein the pyrochlore oxide containing iridium is bismuth iridium oxide.
  4.  前記負極に対向して2つの前記空気極が配設され、前記電解液保持体が前記負極と各々の前記空気極との間にそれぞれ配設されていることを特徴とする請求項1乃至3の内いずれか1項に記載の水素/空気二次電池。 The two air electrodes are disposed to face the negative electrode, and the electrolyte holder is disposed between the negative electrode and each of the air electrodes. The hydrogen / air secondary battery according to any one of the above.
  5.  複数の前記電解液保持体の少なくとも一部が共通の前記電解液貯蔵部内の前記電解液に浸漬していることを特徴とする請求項4に記載の水素/空気二次電池。 5. The hydrogen / air secondary battery according to claim 4, wherein at least a part of the plurality of electrolyte solution holders are immersed in the electrolyte solution in the common electrolyte solution storage unit.
  6.  複数の前記電解液保持体が共通の前記電解液貯蔵部内で連結されていることを特徴とする請求項5に記載の水素/空気二次電池。 The hydrogen / air secondary battery according to claim 5, wherein a plurality of the electrolyte solution holders are connected in a common electrolyte storage unit.
  7.  前記負極及び前記負極に対向する1つ又は2つの前記空気極の長手方向が水平方向と平行に配置される電極対が、前記電池容器内に複数組積層されていることを特徴とする請求項1乃至6の内いずれか1項に記載の水素/空気二次電池。 The electrode pair in which a longitudinal direction of the negative electrode and one or two of the air electrodes facing the negative electrode is arranged in parallel with a horizontal direction is laminated in the battery container. 7. The hydrogen / air secondary battery according to any one of 1 to 6.
  8.  前記負極及び前記負極に対向する1つ又は2つの前記空気極の長手方向が鉛直方向と平行に配置される電極対が、前記電池容器内に複数組並設されていることを特徴とする請求項1乃至6の内いずれか1項に記載の水素/空気二次電池。 A plurality of electrode pairs in which a longitudinal direction of the negative electrode and one or two air electrodes facing the negative electrode are arranged in parallel with a vertical direction are arranged in parallel in the battery container. Item 7. The hydrogen / air secondary battery according to any one of Items 1 to 6.
PCT/JP2011/069549 2010-09-16 2011-08-30 Hydrogen/air secondary cell WO2012035968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010208630A JP5626872B2 (en) 2010-09-16 2010-09-16 Hydrogen / air secondary battery
JP2010-208630 2010-09-16

Publications (1)

Publication Number Publication Date
WO2012035968A1 true WO2012035968A1 (en) 2012-03-22

Family

ID=45831439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069549 WO2012035968A1 (en) 2010-09-16 2011-08-30 Hydrogen/air secondary cell

Country Status (2)

Country Link
JP (1) JP5626872B2 (en)
WO (1) WO2012035968A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080968A1 (en) * 2011-11-29 2013-06-06 日産自動車株式会社 Water-activated air cell and water-activated air cell module
JP2016152068A (en) * 2015-02-16 2016-08-22 学校法人同志社 Positive electrode, air secondary battery using the same, and method for manufacturing positive electrode

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548096B2 (en) * 2010-10-27 2014-07-16 株式会社日立製作所 Metal-air secondary battery
JP5943194B2 (en) * 2011-04-27 2016-06-29 住友化学株式会社 Cathode catalyst for air secondary battery and air secondary battery
GB201213832D0 (en) * 2012-08-03 2012-09-19 Johnson Matthey Plc Cathode
JP6761655B2 (en) * 2016-03-29 2020-09-30 Fdk株式会社 Air secondary battery
JP2018055810A (en) * 2016-09-26 2018-04-05 Fdk株式会社 Air electrode for air secondary battery and air-hydrogen secondary battery including the air electrode
JP7149525B2 (en) * 2019-02-04 2022-10-07 Fdk株式会社 Air electrode catalyst for air secondary battery and air secondary battery
JP2020202155A (en) * 2019-06-13 2020-12-17 Fdk株式会社 Air electrode for air secondary battery, and air secondary battery
JP7299449B2 (en) * 2019-11-12 2023-06-28 Fdk株式会社 Air electrode for air secondary battery and air secondary battery including this air electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272771A (en) * 1994-03-31 1995-10-20 Agency Of Ind Science & Technol Air-metal hydride secondary battery
JPH11121030A (en) * 1997-08-01 1999-04-30 Space Syst Loral Inc Manufacture of bipolar cell and battery holding improved electrolyte
JPH11307140A (en) * 1998-04-17 1999-11-05 Electric Fuel Efl Ltd Cell for metal/air battery
WO2002017428A1 (en) * 2000-08-22 2002-02-28 Hitachi Maxell, Ltd. Air-hydrogen cell
JP2006196329A (en) * 2005-01-14 2006-07-27 Doshisha Air electrode and air secondary battery using this air electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07272771A (en) * 1994-03-31 1995-10-20 Agency Of Ind Science & Technol Air-metal hydride secondary battery
JPH11121030A (en) * 1997-08-01 1999-04-30 Space Syst Loral Inc Manufacture of bipolar cell and battery holding improved electrolyte
JPH11307140A (en) * 1998-04-17 1999-11-05 Electric Fuel Efl Ltd Cell for metal/air battery
WO2002017428A1 (en) * 2000-08-22 2002-02-28 Hitachi Maxell, Ltd. Air-hydrogen cell
JP2006196329A (en) * 2005-01-14 2006-07-27 Doshisha Air electrode and air secondary battery using this air electrode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAOKI OSADA ET AL.: "Suiso-Kuki Niji Denchi no Denkaieki Hoji Kozo to Juhoden Cycle Tokusei", DAI 51 KAI ABSTRACTS, BATTERY SYMPOSIUM IN JAPAN, 8 November 2010 (2010-11-08), pages 138 *
TAKAHITO KONDO ET AL.: "Suiso Kyuzo Gokin o Mochiiru Kuki Niji Denchi no Kozo to Juhoden Tokusei", DAI 50 KAI ABSTRACTS, BATTERY SYMPOSIUM IN JAPAN, 30 November 2009 (2009-11-30), pages 239 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080968A1 (en) * 2011-11-29 2013-06-06 日産自動車株式会社 Water-activated air cell and water-activated air cell module
JPWO2013080968A1 (en) * 2011-11-29 2015-04-27 日産自動車株式会社 Injection air battery and injection air battery module
JP2016152068A (en) * 2015-02-16 2016-08-22 学校法人同志社 Positive electrode, air secondary battery using the same, and method for manufacturing positive electrode

Also Published As

Publication number Publication date
JP5626872B2 (en) 2014-11-19
JP2012064477A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5626872B2 (en) Hydrogen / air secondary battery
JP6444205B2 (en) Positive electrode, manufacturing method thereof, and air secondary battery using the positive electrode
US7638216B2 (en) Fuel cell apparatus and associated method
JP4568124B2 (en) Air electrode and air secondary battery using the air electrode
JP2007509480A5 (en)
JP2007509480A (en) Electrode, its manufacturing method, metal / air fuel cell and metal hydride cell
US7435492B2 (en) Hybrid fuel cell
CA3068606A1 (en) Metal-hydrogen batteries for large-scale energy storage
WO2007078787A1 (en) Porous metal hydride electrode
Ishihara et al. Mesoporous MnCo2O4 spinel oxide for a highly active and stable air electrode for Zn-air rechargeable battery
Yaqoob et al. An overview of metal-air batteries, current progress, and future perspectives
JP6135024B1 (en) Fuel cell
JP6060335B2 (en) Reversible fuel cell with third electrode
JP2017228351A (en) Reversible fuel cell storage battery
JP4590533B2 (en) Air electrode, manufacturing method thereof, and air secondary battery using the air electrode
CN111082063B (en) Flexible conductive carbon/metal composite nanofiber membrane, preparation method and application thereof, and lithium-sulfur battery
JPH07282860A (en) Manufacture of alkaline secondary battery and catalytic electrode body
JP2013058336A (en) Metal-air battery
JP2016015264A (en) Composition, electrode with porous layer including the same, and metal air secondary battery having the same
KR101222514B1 (en) Zinc air using Ni foam and the manufacturing method of the same
WO2021095243A1 (en) Reversible fuel cell
JP2020087554A (en) Electrolyte solution for zinc battery and zinc battery
KR20120070729A (en) Zinc air having layered anode and the manufacturing method of the same
JPH05275108A (en) Battery
He et al. New Design of Zinc–Air Batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11824975

Country of ref document: EP

Kind code of ref document: A1