JP6761655B2 - Air secondary battery - Google Patents

Air secondary battery Download PDF

Info

Publication number
JP6761655B2
JP6761655B2 JP2016066380A JP2016066380A JP6761655B2 JP 6761655 B2 JP6761655 B2 JP 6761655B2 JP 2016066380 A JP2016066380 A JP 2016066380A JP 2016066380 A JP2016066380 A JP 2016066380A JP 6761655 B2 JP6761655 B2 JP 6761655B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
air
secondary battery
electrode
air electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016066380A
Other languages
Japanese (ja)
Other versions
JP2017183003A (en
Inventor
剛史 梶原
剛史 梶原
拓也 甲斐
拓也 甲斐
昇平 夘野木
昇平 夘野木
茂和 安岡
茂和 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2016066380A priority Critical patent/JP6761655B2/en
Publication of JP2017183003A publication Critical patent/JP2017183003A/en
Application granted granted Critical
Publication of JP6761655B2 publication Critical patent/JP6761655B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、充放電が可能な空気二次電池に関する。 The present invention relates to an air secondary battery capable of charging and discharging.

大気中の酸素を正極活物質とする空気電池は、エネルギー密度が高く、小型化、軽量化が容易であるエネルギー変換装置として近年注目を集めている。 An air battery using oxygen in the atmosphere as a positive electrode active material has been attracting attention in recent years as an energy conversion device having a high energy density and being easy to be miniaturized and lightened.

このような空気電池としては、補聴器等の電源に用いられる亜鉛空気一次電池がよく知られている。また充電が可能な空気二次電池は、従来のリチウムイオン電池の容量密度を超える新たな二次電池として実用化が期待されている。しかしながら負極用金属を用いる空気二次電池は、充放電の際の化学反応(以下、電池反応という)に伴い負極用金属の溶解析出反応が繰り返され、負極用金属が樹枝状に析出するいわゆるデンドライト成長をするため、内部短絡を引き起こすという問題があり、未だ実用化には至っていない。 As such an air battery, a zinc-air primary battery used as a power source for hearing aids and the like is well known. Further, the rechargeable air secondary battery is expected to be put into practical use as a new secondary battery that exceeds the capacity density of the conventional lithium ion battery. However, in an air secondary battery using a negative electrode metal, the dissolution and precipitation reaction of the negative electrode metal is repeated along with a chemical reaction (hereinafter referred to as a battery reaction) during charging and discharging, and the negative electrode metal is deposited in a dendritic shape, so-called dendrite. Since it grows, it has a problem of causing an internal short circuit, and has not yet been put into practical use.

ところで空気二次電池の一種として、アルカリ性水溶液を電解質とし、負極活物質に水素を用いる空気電池が公知である(例えば、特許文献1、非特許文献1参照。以下、水素空気二次電池という。)。水素空気二次電池は、負極用金属として水素吸蔵合金を用いるものの、負極活物質はこの水素吸蔵合金に吸蔵及び放出される水素であるため、電池反応に伴う水素吸蔵合金自体の溶解析出反応は起こらず、上記したようなデンドライト成長による内部短絡の問題は起こらない。このため水素空気二次電池は、空気二次電池の中でも実用化に近いと考えられている。 By the way, as a kind of air secondary battery, an air battery using an alkaline aqueous solution as an electrolyte and hydrogen as a negative electrode active material is known (see, for example, Patent Document 1 and Non-Patent Document 1. Hereinafter, a hydrogen air secondary battery is referred to. ). Although the hydrogen air secondary battery uses a hydrogen storage alloy as the metal for the negative electrode, the negative electrode active material is hydrogen stored and released in this hydrogen storage alloy, so that the dissolution and precipitation reaction of the hydrogen storage alloy itself accompanying the battery reaction occurs. It does not occur, and the problem of internal short circuit due to dendrite growth as described above does not occur. Therefore, the hydrogen air secondary battery is considered to be close to practical use among the air secondary batteries.

上記の水素空気二次電池のようにアルカリ電解液を用いる空気二次電池では、空気極において次式で表される充放電反応が起こる。
放電:O2+2H2O+4e-→4OH-・・・(1)
充電:4OH-→O2+2H2O+4e-・・・(2)
水素空気二次電池の空気極は、放電時には反応式(1)で表されるように酸素を還元して水酸化物イオンを生成し、充電時には反応式(2)で表されるように酸素と水を生成する。空気極で発生した酸素は、空気極における大気に開放されている部分から大気中に放出される。このように水素空気二次電池は、充放電時の電池反応に伴って電解液中の水分の量が変化する。
In an air secondary battery that uses an alkaline electrolytic solution like the hydrogen air secondary battery described above, a charge / discharge reaction represented by the following equation occurs at the air electrode.
Discharge: O 2 + 2H 2 O + 4e - → 4OH - ··· (1)
Charge: 4OH - → O 2 + 2H 2 O + 4e - ··· (2)
The air electrode of a hydrogen air secondary battery reduces oxygen as represented by the reaction formula (1) to generate hydroxide ions during discharge, and oxygen as represented by the reaction formula (2) during charging. And produce water. Oxygen generated at the air electrode is released into the atmosphere from the part of the air electrode that is open to the atmosphere. As described above, in the hydrogen air secondary battery, the amount of water in the electrolytic solution changes according to the battery reaction during charging and discharging.

特開2012−64477号公報Japanese Unexamined Patent Publication No. 2012-64477

M.Morimitsu,T.Kondo,N.Osada,K.Takano,Electrochemistry,vol.78,No5,pp.493−496(2010)M. Morimitsu, T.M. Kondo, N.M. Osada, K.K. Takano, Electrochemistry, vol. 78, No5, pp. 493-496 (2010)

ところで水素空気二次電池における空気極の放電反応は、空気極に含まれる触媒成分(固相)、電解液(液相)及び酸素(気相)の全てが存在する三相界面でのみ良好に進行する。このため三相界面が維持されていない状態、例えば空気極が電解液に完全に浸漬された状態では酸素が供給されず電池反応の進行が阻害されるといった不具合が生じ、空気極が電解液と接していない乾燥状態では放電電圧が低下してしまうといった不具合が生ずる。 By the way, the discharge reaction of the air electrode in the hydrogen air secondary battery is good only at the three-phase interface where all of the catalyst component (solid phase), electrolyte (liquid phase) and oxygen (gas phase) contained in the air electrode are present. proceed. For this reason, in a state where the three-phase interface is not maintained, for example, when the air electrode is completely immersed in the electrolytic solution, oxygen is not supplied and the progress of the battery reaction is hindered, and the air electrode becomes the electrolytic solution. In a dry state where they are not in contact with each other, there is a problem that the discharge voltage drops.

しかし水素空気二次電池の空気極は、上記したように放電時に水を消費し充電時に水を生成するため、三相界面を良好な状態に維持することが困難である。このため水素空気二次電池は、特に電極面積が大きく電池容量が大きいほど良好な三相界面を維持することがより困難になり、本来の目的である高容量化が達成できなくなってしまう。 However, as described above, the air electrode of the hydrogen air secondary battery consumes water at the time of discharge and generates water at the time of charging, so that it is difficult to maintain the three-phase interface in a good state. For this reason, in a hydrogen-air secondary battery, it becomes more difficult to maintain a good three-phase interface, particularly as the electrode area is large and the battery capacity is large, and the original purpose of increasing the capacity cannot be achieved.

また水素空気二次電池の空気極は、上記したように酸素(気相)が存在しなければ電池反応の進行が阻害されるため、一般的に空気の拡散経路を確保するために撥水性を有する素材で形成される。そのため空気極は、電解液の吸水性が低く、特に電解液が減少する放電時において安定的に放電を行うためには、空気極に電解液が十分に供給される必要がある。 Further, as described above, the air electrode of a hydrogen air secondary battery is water repellent in order to secure an air diffusion path because the progress of the battery reaction is hindered in the absence of oxygen (gas phase). It is made of the material that it has. Therefore, the air electrode has low water absorption of the electrolytic solution, and it is necessary to sufficiently supply the electrolytic solution to the air electrode in order to perform stable discharge especially at the time of discharge when the electrolytic solution decreases.

しかしながら、空気極に電解液の供給が十分に行われない場合には、電極体における電解液が枯渇し空気極内の三相界面を良好に維持できなくなるため、内部抵抗の増加によって放電電圧が低下してしまう虞が生ずる。 However, if the electrolytic solution is not sufficiently supplied to the air electrode, the electrolytic solution in the electrode body is depleted and the three-phase interface in the air electrode cannot be maintained well, so that the discharge voltage increases due to the increase in internal resistance. There is a risk that it will decrease.

本発明は、このような状況に鑑みてなされたものであり、その目的とするところは、空気極内の三相界面を良好に維持し、安定した充放電を行うことができる空気二次電池を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is an air secondary battery capable of maintaining a good three-phase interface in an air electrode and performing stable charging and discharging. Is to provide.

<本発明の第1の態様>
本発明の第1の態様は、空気極及び負極がセパレータを介して積層されてなる電極体と、前記電極体をアルカリ電解液と共に収容する筐体と、前記筐体と連通しており、充電時に増加する前記アルカリ電解液を貯蔵し、放電時に減少する前記アルカリ電解液を供給する電解液貯蔵部と、を備え、前記電解液貯蔵部の前記アルカリ電解液の液面高さが前記空気極の最上面よりも高い、空気二次電池である。
<First aspect of the present invention>
In the first aspect of the present invention, an electrode body in which an air electrode and a negative electrode are laminated via a separator, a housing containing the electrode body together with an alkaline electrolytic solution, and the housing are communicated with each other for charging. It is provided with an electrolytic solution storage unit that stores the alkaline electrolytic solution that increases with time and supplies the alkaline electrolytic solution that decreases during discharge, and the liquid level height of the alkaline electrolytic solution in the electrolytic solution storage unit is the air electrode. It is an air secondary battery that is higher than the top surface of.

空気二次電池は、電極体を収容する筐体と電解液貯蔵部とが連通するように形成されている。そのため電極体において充電時に増加したアルカリ電解液は、筐体から電解液貯蔵部へ移動して貯蔵される。また電極体において放電時に減少したアルカリ電解液は、電解液貯蔵部から筐体へ移動して供給される。ここで電極体の空気極における電解液の静水圧は、電解液貯蔵部における電解液の液面高さに応じて上昇することになる。そして電解液貯蔵部における電解液の液面高さは、電極体を構成する空気極の最上面の高さを基準としたときに、その基準よりも高くなるように電解液の量が設定されている。それによって空気極は、撥水性を有する素材で形成されているものの、電解液が減少する放電時においても内部の細孔に電解液が浸透しやすくなり、三相界面を良好に維持することができる。 The air secondary battery is formed so that the housing accommodating the electrode body and the electrolyte storage portion communicate with each other. Therefore, the alkaline electrolytic solution increased during charging in the electrode body is moved from the housing to the electrolytic solution storage unit and stored. Further, the alkaline electrolytic solution reduced at the time of discharge in the electrode body is transferred from the electrolytic solution storage unit to the housing and supplied. Here, the hydrostatic pressure of the electrolytic solution at the air electrode of the electrode body increases according to the liquid level height of the electrolytic solution in the electrolytic solution storage portion. The amount of the electrolytic solution is set so that the height of the electrolytic solution in the electrolytic solution storage portion is higher than the height of the uppermost surface of the air electrode constituting the electrode body as a reference. ing. As a result, although the air electrode is made of a water-repellent material, the electrolytic solution can easily permeate into the internal pores even during discharge when the electrolytic solution decreases, and the three-phase interface can be maintained well. it can.

これにより本発明の第1の態様によれば、空気極における電解液の静水圧を上昇させることができるため、空気極内の三相界面を良好に維持し、安定した充放電を行うことができる空気二次電池を提供することができるという作用効果が得られる。 As a result, according to the first aspect of the present invention, the hydrostatic pressure of the electrolytic solution at the air electrode can be increased, so that the three-phase interface in the air electrode can be well maintained and stable charging / discharging can be performed. The effect of being able to provide an air secondary battery that can be obtained can be obtained.

<本発明の第2の態様>
本発明の第2の態様は、前述した本発明の第1の態様において、空気を透過させ、前記アルカリ電解液を透過しない撥水性膜をさらに備え、前記筐体は、内外に空気を導通する通気口が形成され、前記撥水性膜は、一面側が前記空気極に接し、他面側が前記通気口を前記筐体内部から覆うように配置される、空気二次電池である。
<Second aspect of the present invention>
A second aspect of the present invention further includes, in the first aspect of the present invention described above, a water-repellent membrane that allows air to permeate and does not permeate the alkaline electrolyte, and the housing conducts air inside and outside. The water-repellent membrane is an air secondary battery in which a vent is formed, and the one side is in contact with the air electrode and the other side is arranged so as to cover the vent from the inside of the housing.

空気二次電池は、内部に収容された空気極が充電時に酸素を吸収し放電時に酸素を放出するため、筐体には内外に空気を導通する通気口が形成されている。また空気二次電池は、空気を透過させるが電解液を透過しない撥水性膜を備えている。その撥水性膜は、一面側が空気極に接し、他面側が通気口を筐体内部から覆うように配置されているため、筐体外部と空気極との間で空気を移動させることができ、ガス拡散層として機能する。また空気極が三相界面の形成に有利になるよう適度な撥水性を有しているのに対し、撥水性膜は、電解液を透過させないため、筐体内部の電解液が通気口から溢れ出ないようにすることができる。そのため空気二次電池は、充電時に電解液が増加した場合であっても、筐体から電解液が漏出することによる電解液の減少を防止することができる。 Since the air electrode housed inside the air secondary battery absorbs oxygen during charging and releases oxygen during discharging, the housing is provided with a vent for conducting air inside and outside. Further, the air secondary battery is provided with a water-repellent film that allows air to pass through but does not allow the electrolytic solution to pass through. Since the water-repellent film is arranged so that one side is in contact with the air electrode and the other side covers the vent from the inside of the housing, air can be moved between the outside of the housing and the air pole. Functions as a gas diffusion layer. Further, while the air electrode has appropriate water repellency so as to be advantageous for forming the three-phase interface, the water-repellent membrane does not allow the electrolytic solution to permeate, so that the electrolytic solution inside the housing overflows from the vent. It can be prevented from appearing. Therefore, the air secondary battery can prevent a decrease in the electrolytic solution due to leakage of the electrolytic solution from the housing even when the electrolytic solution increases during charging.

これにより本発明の第2の態様によれば、前述した本発明の第1の態様による作用効果に加え、筐体内部の電解液の静水圧を上昇させても、電解液の漏出を防止する空気二次電池を提供することができるという作用効果が得られる。 Thereby, according to the second aspect of the present invention, in addition to the action and effect according to the first aspect of the present invention described above, even if the hydrostatic pressure of the electrolytic solution inside the housing is increased, the leakage of the electrolytic solution is prevented. The effect of being able to provide an air secondary battery can be obtained.

<本発明の第3の態様>
本発明の第3の態様は、前述した本発明の第2の態様において、前記筐体は、前記通気口が複数形成され、さらに前記撥水性膜の表面に沿って複数の前記通気口を連通させる通気路が形成される、空気二次電池である。
<Third aspect of the present invention>
A third aspect of the present invention is that in the second aspect of the present invention described above, the housing is formed with a plurality of the vents, and the plurality of vents are communicated along the surface of the water-repellent film. It is an air secondary battery in which a ventilation path is formed.

空気二次電池の筐体は、内外に空気を導通する通気口が複数形成されている。そして筐体は、それらの複数の通気口を連通させる通気路がさらに形成されているので、いずれか一方の通気口から筐体内部に入った空気は、撥水性膜に触れながら通気路を通り、他方の通気口から筐体外部へ抜けることになる。また通気路は、撥水性膜の表面に沿って形成されている。それによって撥水性膜は、その通気路の空気の流れに触れることで空気極との空気の授受をスムーズに行うことができる。したがって空気二次電池は、筐体内部の空気が滞留することなく、空気極にスムーズに酸素を供給することができる。 The housing of the air secondary battery is formed with a plurality of vents for conducting air inside and outside. Then, since the housing is further formed with a ventilation path for communicating the plurality of ventilation holes, the air entering the inside of the housing from one of the ventilation holes passes through the ventilation path while touching the water-repellent membrane. , It will come out from the other vent to the outside of the housing. Further, the ventilation path is formed along the surface of the water-repellent membrane. As a result, the water-repellent membrane can smoothly transfer air to and from the air electrode by touching the air flow in the air passage. Therefore, the air secondary battery can smoothly supply oxygen to the air electrode without the air inside the housing staying.

これにより本発明の第3の態様によれば、前述した本発明の第1又は2の態様による作用効果に加え、空気極における電池反応において酸素が不足する虞を低減することができるという作用効果が得られる。 Thereby, according to the third aspect of the present invention, in addition to the action and effect according to the first or second aspect of the present invention described above, the possibility of lack of oxygen in the battery reaction at the air electrode can be reduced. Is obtained.

<本発明の第4の態様>
本発明の第4の態様は、前述した本発明の第1〜3のいずれかの態様において、前記電解液貯蔵部の前記アルカリ電解液の液面高さは、前記空気極における前記アルカリ電解液の吸収量が飽和した状態における前記電解液貯蔵部の前記アルカリ電解液の液面高さよりも低い、空気二次電池である。
<Fourth aspect of the present invention>
A fourth aspect of the present invention is that in any one of the first to third aspects of the present invention described above, the liquid level height of the alkaline electrolytic solution in the electrolytic solution storage unit is the alkaline electrolytic solution at the air electrode. This is an air secondary battery whose absorption amount is lower than the liquid level of the alkaline electrolytic solution in the electrolytic solution storage unit in a saturated state.

空気極は、内部の細孔に適度に電解液が浸透することにより、三相界面を良好に維持することができる。空気極における電解液の静水圧が過度に上昇した状態には、内部の細孔が全て電解液で満たされることによって空気極における電解液の吸収量が飽和してしまうことが生じ得る。そして電解液の吸収量が飽和した状態では、空気極は、内部に存在する酸素が減少するため、理想的な状態の三相界面から乖離してしまうことになる。そのため空気極における電解液の吸収量が飽和する状態における静水圧を事前に求めておき、その静水圧に至らないように電解液貯蔵部の電解液の液面高さの上限を設けることで、理想的な状態の三相界面を維持しやすくすることができる。 The air electrode can maintain a good three-phase interface by allowing the electrolytic solution to appropriately permeate the pores inside. In a state where the hydrostatic pressure of the electrolytic solution at the air electrode is excessively increased, the absorption amount of the electrolytic solution at the air electrode may be saturated because all the internal pores are filled with the electrolytic solution. When the absorption amount of the electrolytic solution is saturated, the air electrode deviates from the three-phase interface in the ideal state because the oxygen existing inside is reduced. Therefore, the hydrostatic pressure in a state where the absorption amount of the electrolytic solution at the air electrode is saturated is obtained in advance, and the upper limit of the liquid level height of the electrolytic solution in the electrolytic solution storage portion is set so as not to reach the hydrostatic pressure. It is possible to easily maintain the three-phase interface in an ideal state.

これにより本発明の第4の態様によれば、前述した本発明の第1〜3のいずれかの態様による作用効果に加え、より空気極内の三相界面を良好に維持し、安定した充放電を行うことができる空気二次電池を提供することができるという作用効果が得られる。 As a result, according to the fourth aspect of the present invention, in addition to the action and effect according to any one of the first to third aspects of the present invention described above, the three-phase interface in the air electrode is more favorably maintained and stable filling is performed. The effect of being able to provide an air secondary battery capable of discharging can be obtained.

本発明に係る空気二次電池のX−Z平面における断面図である。It is sectional drawing in the XZ plane of the air secondary battery which concerns on this invention. 図1中のA‐A線に沿う断面を示した断面図である。It is sectional drawing which showed the cross section along the line AA in FIG. 空気極の細孔を模式的に表す断面図である。It is sectional drawing which shows typically the pore of an air electrode. 充電特性を示すグラフである。It is a graph which shows the charging characteristic. 放電特性を示すグラフである。It is a graph which shows the discharge characteristic.

以下、本発明の実施形態について図面を参照しながら説明する。ここで図1及び図2において三次元空間の各方向を符号X、Y、Zで示す。
図1は、本発明に係る空気二次電池1のX−Z平面における断面図である。図2は、図1中のA‐A線に沿う断面を示した断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, in FIGS. 1 and 2, each direction of the three-dimensional space is indicated by reference numerals X, Y, and Z.
FIG. 1 is a cross-sectional view of the air secondary battery 1 according to the present invention in the XX plane. FIG. 2 is a cross-sectional view showing a cross section taken along the line AA in FIG.

空気二次電池1は、「筐体」としての電池ケース10、電解液貯蔵部30、連結部40を備える。 The air secondary battery 1 includes a battery case 10 as a "housing", an electrolytic solution storage unit 30, and a connecting unit 40.

電池ケース10は、内部に収容部11が形成され、電池ケース10の外部と収容部11との間に空気を導通する通気口12が形成されている。通気口12は、本実施例では電池ケース10のX方向に離間した位置に2つ形成されている。また電池ケース10は、2つの通気口12を結ぶ位置に蓋体13を備える。 The battery case 10 has an accommodating portion 11 formed inside, and a vent 12 for conducting air is formed between the outside of the battery case 10 and the accommodating portion 11. In this embodiment, two vents 12 are formed at positions separated from each other in the X direction of the battery case 10. Further, the battery case 10 is provided with a lid 13 at a position connecting the two vents 12.

電池ケース10は、負極21、セパレータ22、及び空気極23が積層された電極体20と撥水性膜24とを電解液と共に収容部11に収容する。 The battery case 10 accommodates the electrode body 20 in which the negative electrode 21, the separator 22, and the air electrode 23 are laminated and the water-repellent film 24 together with the electrolytic solution in the accommodating portion 11.

負極21は、詳細を後述するように水素吸蔵合金を含む素材で形成され、収容部11の内底面に配置されている。 The negative electrode 21 is formed of a material containing a hydrogen storage alloy and is arranged on the inner bottom surface of the accommodating portion 11, as described in detail later.

セパレータ22は、一般的なニッケル水素電池用のセパレータであり、負極21に載置されると共に、四方の端部が電池ケース10の上部と下部とによって挟み込まれて固定される。ここで電池ケース10は、セパレータ22の端部の隙間から外部に電解液が漏出しないようガスケット14で封止されている。 The separator 22 is a general separator for a nickel-metal hydride battery, and is placed on the negative electrode 21 and has four end portions sandwiched and fixed by the upper and lower portions of the battery case 10. Here, the battery case 10 is sealed with a gasket 14 so that the electrolytic solution does not leak to the outside through the gap at the end of the separator 22.

空気極23は、詳細を後述するように酸素発生と酸素還元の二元機能を有する触媒を含み、酸素の出入りを妨げないように適度な撥水性を備えると共に、セパレータ22に載置される。 The air electrode 23 includes a catalyst having a dual function of oxygen evolution and oxygen reduction, as will be described in detail later, has appropriate water repellency so as not to hinder the inflow and outflow of oxygen, and is placed on the separator 22.

撥水性膜24は、空気を透過させるが電解液を透過させない素材で形成され、空気極23に載置されると共に、上面が2つの通気口12及び蓋体13に接するように配置される。蓋体13は、図2に示すようにZ−Y平面における断面が複数の山谷を有する形状であり、その谷の部分が2つの通気口12を連通させるX方向の複数の通気路130を構成すると共に、その山の頂部が撥水性膜24をZ方向上側から押さえつけて固定している。 The water-repellent film 24 is made of a material that allows air to pass through but does not allow the electrolytic solution to pass through, is placed on the air electrode 23, and is arranged so that the upper surface is in contact with the two vents 12 and the lid 13. As shown in FIG. 2, the lid 13 has a shape having a plurality of peaks and valleys in a cross section in the ZZ plane, and the valley portions constitute a plurality of ventilation passages 130 in the X direction in which the two vents 12 communicate with each other. At the same time, the top of the mountain presses and fixes the water-repellent film 24 from the upper side in the Z direction.

2つの通気口12は、いずれか一方から他方へ、通気路130を通じて空気が流れる。通気路130を流れる空気は、その通気路130に面する撥水性膜24の内部に拡散する。そして撥水性膜24は、内部に拡散した空気を直下に接する空気極23に透過させる。それによって撥水性膜24は、ガス拡散層として機能する。また撥水性膜24は、空気極23から発生する酸素を通気路130へ透過させる。通気路130へ透過した酸素は、通気口12を通じて電池ケース10の外部の大気中に放出される。 Air flows from one of the two vents 12 to the other through the vent 130. The air flowing through the air passage 130 diffuses inside the water-repellent membrane 24 facing the air passage 130. Then, the water-repellent film 24 allows the air diffused inside to permeate through the air electrode 23 which is in direct contact with the air electrode 23. As a result, the water-repellent film 24 functions as a gas diffusion layer. Further, the water-repellent membrane 24 allows oxygen generated from the air electrode 23 to permeate through the air passage 130. Oxygen that has permeated through the ventilation path 130 is released into the atmosphere outside the battery case 10 through the ventilation port 12.

ここで電池ケース10は、例えば送風機を設けることによって、2つの通気口12の間に強制的に空気の流れを形成するのが好ましい。それによって空気二次電池1は、撥水性膜24を介して空気極23に安定的に酸素が供給され、高容量や高出力に対応することができる。 Here, it is preferable that the battery case 10 forcibly forms an air flow between the two vents 12 by providing, for example, a blower. As a result, the air secondary battery 1 can stably supply oxygen to the air electrode 23 via the water-repellent film 24, and can cope with high capacity and high output.

一方、電池ケース10の内部の電解液は、撥水性膜24によって通気口12及び通気路130への透過が妨げられる。そのため電池ケース10の内部の電解液の圧力が上昇したときに、通気口12を介して電解液が外部へ漏出する虞を低減することができる。 On the other hand, the electrolytic solution inside the battery case 10 is prevented from permeating through the vent 12 and the vent 130 by the water-repellent film 24. Therefore, when the pressure of the electrolytic solution inside the battery case 10 rises, the possibility that the electrolytic solution leaks to the outside through the vent 12 can be reduced.

電解液貯蔵部30は、内部に電解液を貯蔵すると共に、連結部40を介して電池ケース10に連結されている。そして電解液貯蔵部30の内部と電池ケース10の収容部11とが連結されているため、電解液は、両者の間を移動することができる。このため充電時に空気極23が水を生成することにより電解液が増加した場合には、収容部11の内部の過剰な電解液は、電解液貯蔵部30へ移動して貯蔵される。また放電時に空気極23が水を分解することにより電解液が減少した場合には、電解液貯蔵部30に貯蔵された電解液が収容部11へ移動して空気極23における電解液の不足を補うことができる。 The electrolytic solution storage unit 30 stores the electrolytic solution inside and is connected to the battery case 10 via the connecting unit 40. Since the inside of the electrolyte storage unit 30 and the storage unit 11 of the battery case 10 are connected to each other, the electrolyte can move between the two. Therefore, when the electrolytic solution increases due to the air electrode 23 generating water during charging, the excess electrolytic solution inside the accommodating unit 11 is moved to the electrolytic solution storage unit 30 and stored. Further, when the electrolytic solution is reduced due to the decomposition of water by the air electrode 23 during discharge, the electrolytic solution stored in the electrolytic solution storage unit 30 moves to the storage unit 11 to reduce the shortage of the electrolytic solution in the air electrode 23. Can be supplemented.

次に空気極23における三相界面について、より具体的に説明する。
図3は、空気極23の細孔を模式的に表す断面図である。
Next, the three-phase interface at the air electrode 23 will be described more specifically.
FIG. 3 is a cross-sectional view schematically showing the pores of the air electrode 23.

より詳しくは図3は、空気極23の細孔を直径dの円形の孔と仮定し、この細孔の一方側に空気が存在すると共に他方側から電解液が浸透する瞬間の三相界面の状態を示す。このとき電解液の特性から決まる表面張力をγ、空気極23と電解液との接触角をΘとすると、細孔に電解液が浸透する瞬間の電解液の浸透圧POは次式で表される。
O=4γcosΘ/d・・・(3)
式(3)においてcosΘの値は、空気極23の撥水性度合いが高いほど大きくなり浸透圧POを上昇させる。また細孔の直径dが小さいほど浸透圧POが上昇する。このため空気極23の細孔に電解液を適度に浸透させるために必要な圧力は、空気極23の撥水性度合と細孔径分布に依存する。そして空気極23の細孔に電解液が浸透して三相界面が良好に維持されるためには、特に放電時において電解液が減少した場合であっても、電解液の圧力が式(3)で表される浸透圧POよりも高い状態である必要がある。
More specifically, FIG. 3 assumes that the pores of the air electrode 23 are circular pores having a diameter d, and the three-phase interface at the moment when air is present on one side of the pores and the electrolytic solution permeates from the other side. Indicates the state. The surface tension determined by the characteristics of this time the electrolyte gamma, tables in when the air electrode 23 and the contact angle Θ with the electrolytic solution, osmotic pressure P O of the moment of the electrolyte electrolyte into the pores to penetrate the following formula Will be done.
PO = 4γcosΘ / d ... (3)
In the formula (3), the value of cos Θ increases as the degree of water repellency of the air electrode 23 increases, and the osmotic pressure PO increases. The higher the diameter d of the pores is less osmotic pressure P O is increased. Therefore, the pressure required to appropriately permeate the electrolytic solution into the pores of the air electrode 23 depends on the degree of water repellency of the air electrode 23 and the pore size distribution. Then, in order for the electrolytic solution to permeate into the pores of the air electrode 23 and maintain a good three-phase interface, the pressure of the electrolytic solution is expressed by the formula (3) even when the electrolytic solution is reduced especially during discharge. ) it must be higher than the osmotic pressure P O, represented by.

ここで空気二次電池1は、図1に示すように、電解液貯蔵部30における液面高さが空気極23の最上面を基準として高さHだけ高く設定されている。電解液貯蔵部30の内部は電池ケース10の収容部11に連通し、また負極21及びセパレータ22は電解液を透過する。そのため空気極23における電解液の静水圧PHは、電解液貯蔵部30の液面高さを高くすることによって次式に従って上昇させることができる。
H=ρGH・・・(4)
ここでρは電解液の密度、Gは重力加速度を表す。具体的には例えばρ=1.23g/cm3、G=9.8m/s2とした場合、H=10mmの条件下において静水圧PHは約120Paとなる。
Here, as shown in FIG. 1, in the air secondary battery 1, the liquid level height in the electrolytic solution storage unit 30 is set higher by the height H with respect to the uppermost surface of the air electrode 23. The inside of the electrolytic solution storage unit 30 communicates with the accommodating unit 11 of the battery case 10, and the negative electrode 21 and the separator 22 allow the electrolytic solution to permeate. As hydrostatic pressure P H of the electrolytic solution in the cathode 23 for it can be increased according to the following equation by increasing the liquid level of the electrolyte storage unit 30.
P H = ρGH ··· (4)
Here, ρ represents the density of the electrolytic solution, and G represents the gravitational acceleration. Specifically, for example ρ = 1.23g / cm 3, when the G = 9.8m / s 2, the hydrostatic pressure P H under the conditions of H = 10 mm is about 120 Pa.

このため電解液貯蔵部30における液面高さが空気極23の最上面よりも高い状態であることによって、空気極23において電解液が空気極23の細孔に浸透するために必要な浸透圧POを電解液の静水圧PHが下回る虞を低減することができる。それによって空気二次電池1は、電解液が減少する放電時であっても空気極23の内部の電解液が枯渇せず安定的に放電を行うことができる。 Therefore, when the liquid level height in the electrolytic solution storage unit 30 is higher than the uppermost surface of the air electrode 23, the osmotic pressure required for the electrolytic solution to permeate the pores of the air electrode 23 in the air electrode 23. the P O can reduce the risk of hydrostatic pressure P H of the electrolyte is below. As a result, the air secondary battery 1 can perform stable discharge without depleting the electrolytic solution inside the air electrode 23 even at the time of discharge when the electrolytic solution is reduced.

一方、充電時において電解液が増加した場合には、空気極23において過剰に生成された電解液が電解液貯蔵部30に移動して貯蔵される。ここで空気極23における電解液の静水圧PHが過剰に上昇した場合には、空気極23による電解液の吸収量が飽和することが起こり得る。しかし撥水性膜24は、空気極23の上面に接すると共に、通気口12及び通気路130を電池ケース10の内側から覆うため、電解液の圧力が上昇した場合であっても電解液が電池ケース10の外部へ漏出する虞を低減することができる。それによって、例えば、充放電を繰り返すことにより空気極23と電池ケース10との隙間や空気極23自体に亀裂が発生した場合であっても、電解液の漏出による減少を防止することができる。 On the other hand, when the electrolytic solution increases during charging, the electrolytic solution excessively generated in the air electrode 23 moves to the electrolytic solution storage unit 30 and is stored. Here, if the hydrostatic pressure P H of the electrolytic solution in the cathode 23 is excessively increased, it may occur that the absorption amount of the electrolytic solution due to the air electrode 23 is saturated. However, since the water-repellent film 24 is in contact with the upper surface of the air electrode 23 and covers the vent 12 and the ventilation path 130 from the inside of the battery case 10, the electrolytic solution remains in the battery case even when the pressure of the electrolytic solution rises. The risk of leakage to the outside of 10 can be reduced. As a result, for example, even if a gap between the air electrode 23 and the battery case 10 or a crack occurs in the air electrode 23 itself due to repeated charging and discharging, it is possible to prevent a decrease due to leakage of the electrolytic solution.

また上述のように空気極23による電解液の吸収量が飽和した場合には、空気極23の内部の細孔が全て電解液で満たされることになり、三相界面の面積が最適値よりも減少してしまう虞が生ずる。そのため電解液貯蔵部30における電解液の液面高さは、そのような状態にならない範囲で、上限値が設定されるのが好ましい。例えば電解液貯蔵部30における電解液の量を徐々に増加し、空気極23の内部の細孔が全て電解液で埋まった時点の液面高さHLを事前に確認しておく。そして充放電に使用する空気二次電池1の製造工程において、電解液を注ぎ入れるときに電解液貯蔵部30における電解液の液面高さHを0からHLの間に設定する。それによって空気二次電池1は、空気極23に対する電解液の過剰な浸透を抑制することができ、三相界面の面積が最適値よりも減少することによって放電電圧が低下する虞を低減することができる。
[実施例]
Further, when the amount of the electrolytic solution absorbed by the air electrode 23 is saturated as described above, all the pores inside the air electrode 23 are filled with the electrolytic solution, and the area of the three-phase interface is larger than the optimum value. There is a risk that it will decrease. Therefore, it is preferable that the upper limit of the height of the electrolytic solution in the electrolytic solution storage unit 30 is set within a range that does not cause such a state. For example, the amount of the electrolytic solution in the electrolytic solution storage unit 30 is gradually increased, and the liquid level height HL at the time when all the pores inside the air electrode 23 are filled with the electrolytic solution is confirmed in advance. Then, in the manufacturing process of the air secondary battery 1 used for charging / discharging, the liquid level height H of the electrolytic solution in the electrolytic solution storage unit 30 is set between 0 and HL when the electrolytic solution is poured. As a result, the air secondary battery 1 can suppress excessive permeation of the electrolytic solution into the air electrode 23, and reduce the possibility that the discharge voltage is lowered due to the area of the three-phase interface being reduced from the optimum value. Can be done.
[Example]

1.空気二次電池1の製造
(実施例1)
(1)空気極23の製造
(触媒合成)
空気極23の触媒には、酸素発生と酸素還元に対する二元触媒活性を持つバイクロア型のビスマスイリジウム酸化物を使用した。Bi(NO43・5H2OとH2IrCl6・6H2Oとを同じ濃度になるように75℃の蒸留水に溶解し、撹拌・混合してから、2Mol%/LのNaOH水溶液を加えた。このときの浴温度は75℃であり、酸素パブリングを行いながら3日間撹拌した。これによって生じた沈殿物を含む溶液を85℃に維持し蒸発乾燥させてペースト状とした。このペースト状の生成物を蒸発皿に移し、120℃の環境下で12時間乾燥させてから乳鉢で粉砕した後、空気雰囲気下600℃の環境下で2時間焼成した。また焼成物中に含まれる副生成物を除去するため、70℃の蒸留水を用いて吸引濾過し、バイクロア型のビスマスイリジウム酸化物を単離した。さらにこれを120℃の環境下で12時間乾燥させた後、乳鉢を用いて粉砕することにより空気極23の触媒を合成した。
1. 1. Manufacture of air secondary battery 1 (Example 1)
(1) Manufacture of air electrode 23 (catalyst synthesis)
As the catalyst of the air electrode 23, a Baicloa-type bismuth iridium oxide having a dual catalytic activity for oxygen evolution and oxygen reduction was used. Bi (NO 4) 3 · 5H and 2 O and H 2 IrCl 6 · 6H 2 O was dissolved in 75 ° C. of distilled water to the same concentration, stirred and mixed, NaOH aqueous solution of 2 mol% / L Was added. The bath temperature at this time was 75 ° C., and the mixture was stirred for 3 days while performing oxygen publing. The solution containing the resulting precipitate was maintained at 85 ° C. and evaporated to dryness to form a paste. The paste-like product was transferred to an evaporating dish, dried in an environment of 120 ° C. for 12 hours, pulverized in a mortar, and then baked in an environment of 600 ° C. in an air atmosphere for 2 hours. Further, in order to remove the by-products contained in the calcined product, suction filtration was performed using distilled water at 70 ° C. to isolate a bismuth iridium oxide of the Baicloa type. Further, this was dried in an environment of 120 ° C. for 12 hours and then pulverized using a mortar to synthesize a catalyst for the air electrode 23.

(空気極極板)
このようにして得られたビスマスイリジウム酸化物の粉末、ニッケル粉末(粒径10〜20μm)、及び市販のPTFE粒子を質量比で20:70:10となるように混合して粘土状になったものを板状に成型した。これを常温で30分間乾燥した後、ニッケルメッシュにプレス圧着した。さらに窒素ガス雰囲気下で370℃、13分間焼成した後、所定のサイズに裁断して空気極23を作製した。
(Air electrode plate)
The bismuth iridium oxide powder thus obtained, nickel powder (particle size 10 to 20 μm), and commercially available PTFE particles were mixed so as to have a mass ratio of 20:70:10 to form a clay. The thing was molded into a plate shape. This was dried at room temperature for 30 minutes and then press-bonded to a nickel mesh. Further, after firing at 370 ° C. for 13 minutes in a nitrogen gas atmosphere, the air electrode 23 was prepared by cutting into a predetermined size.

(2)負極の製造
(水素吸蔵合金)
Nd、Zr、Mg、Ni、Alを所定の合金組成になるように混合した。これをアルゴンガス雰囲気中で高周波誘導溶解炉にて融解し、鋳型に流し込み、常温まで冷却して合金インゴットを得た。またこの合金インゴットを1000℃、10時間、アルゴンガス雰囲気中で熱処理を行い、組成が(Nd0.99Zr0.010.89Mg0.11Ni3.33Al0.17のインゴットを得た。このインゴットを不活性雰囲気中で機械的に粉砕して篩分けし、粒径60μmの水素吸蔵合金の粉末を得た。
(2) Manufacture of negative electrode (hydrogen storage alloy)
Nd, Zr, Mg, Ni and Al were mixed so as to have a predetermined alloy composition. This was melted in an argon gas atmosphere in a high-frequency induction melting furnace, poured into a mold, and cooled to room temperature to obtain an alloy ingot. Further, this alloy ingot was heat-treated at 1000 ° C. for 10 hours in an argon gas atmosphere to obtain an ingot having a composition of (Nd 0.99 Zr 0.01 ) 0.89 Mg 0.11 Ni 3.33 Al 0.17 . The ingot was mechanically pulverized and sieved in an inert atmosphere to obtain a hydrogen storage alloy powder having a particle size of 60 μm.

(負極極板)
得られた水素吸蔵合金の粉末100質量部に対して、ポリアクリル酸ナトリウム0.2質量部、カルボシメチルセルロース0.04質量部、スチレンブタジエンゴム(SBR)のディスバージョン30質量部、カーボンブラック0.5質量部、及び水22.4質量部を添加して混練し、負極合材のペーストを調整した。この活物質スラリーを発砲ニッケルに充填し、乾燥後ロール圧延して、体積当たりの合金量を高め、所定のサイズに裁断して負極21を作製した。
(Negative electrode plate)
0.2 parts by mass of sodium polyacrylate, 0.04 parts by mass of carbosimyl cellulose, 30 parts by mass of styrene butadiene rubber (SBR) disversion, and 0 carbon black with respect to 100 parts by mass of the obtained hydrogen storage alloy powder. 5.5 parts by mass and 22.4 parts by mass of water were added and kneaded to prepare a paste of the negative electrode mixture. This active material slurry was filled with foamed nickel, dried, and then rolled to increase the amount of alloy per volume, and cut into a predetermined size to prepare a negative electrode 21.

(負極容量の測定)
上記工程で作製した負極21と、負極21に対し十分に容量の大きな焼結式の水酸化ニッケル正極と、ニッケル水素電池用のセパレータ22を組み合わせ、アクリルケースに挿入し、電解液を一定量注液し、負極容量規制のニッケル水素二次電池の単極セルを作製した。この単極セルを5時間休止後、0.5Itで2.8時間充電後、同レートで放電し(終止電圧=0.70V)、これを複数回繰り返して得られた電池容量の最大値を負極21の容量とした。このとき負極21の容量は640mAhであった。
(Measurement of negative electrode capacity)
The negative electrode 21 produced in the above step, the sintered nickel hydroxide positive electrode having a sufficiently large capacity with respect to the negative electrode 21, and the separator 22 for a nickel-metal hydride battery are combined, inserted into an acrylic case, and a fixed amount of electrolytic solution is injected. A unipolar cell of a nickel-metal hydride secondary battery with a negative electrode capacity regulation was prepared. After resting this unipolar cell for 5 hours, charging it at 0.5 It for 2.8 hours, discharging it at the same rate (final voltage = 0.70V), and repeating this multiple times, the maximum value of the battery capacity obtained is obtained. The capacity of the negative electrode 21 was set. At this time, the capacity of the negative electrode 21 was 640 mAh.

(3)収容部11の構成
上記工程で容量測定を行なった負極21(40mm×40mm、厚さ0.25mm)と、ニッケル水素電池用のセパレータと、上記工程で作製した空気極23(40mm×40mm、厚さ0.2mm)と、PTFEとカーボンにより撥水処理を施したカーボン不織布(45mm×45mm、厚さ0.2mm)をこの順番で重ねて電池ケース10の収容部11に配置し、蓋体13を取り付けることによりZ方向から押さえつけるように固定した。5mol/LのKOH水溶液を電解液として使用し、電解液貯蔵部30に注ぎ入れることにより、電解液貯蔵部30に連通した収容部11に対しても電解液を注いだ。実施例1では、空気極最上面の高さを基準としたときの電解液貯蔵部30における電解液の液面高さHが10mmになるまで電解液を注ぎ、空気二次電池1とした。このとき注いだ電解液の量は、約50mLであった。
(3) Configuration of Housing Unit 11 The negative electrode 21 (40 mm × 40 mm, thickness 0.25 mm) whose capacity was measured in the above step, the separator for nickel-metal hydride battery, and the air electrode 23 (40 mm ×) produced in the above step. 40 mm (40 mm, 0.2 mm thick) and a carbon non-woven fabric (45 mm × 45 mm, 0.2 mm thick) water-repellent treated with PTFE and carbon were stacked in this order and placed in the housing portion 11 of the battery case 10. By attaching the lid 13, it was fixed so as to be pressed from the Z direction. By using a 5 mol / L KOH aqueous solution as an electrolytic solution and pouring it into the electrolytic solution storage unit 30, the electrolytic solution was also poured into the storage unit 11 communicating with the electrolytic solution storage unit 30. In Example 1, the electrolytic solution was poured until the liquid level height H of the electrolytic solution in the electrolytic solution storage unit 30 when the height of the uppermost surface of the air electrode was used as a reference became 10 mm, and the air secondary battery 1 was used. The amount of the electrolytic solution poured at this time was about 50 mL.

(電池特性評価)
上記構成の空気二次電池1を25℃環境下で1時間静置し、電極体20に電解液を吸収させた後、空気極23の触媒量1gに対し100mAとなる電流値で10時間充電した。また同レートで空気二次電池1の放電(終止電圧=0.00V)を行なった。そして充放電中のセル電圧を測定した。尚、通気路130には実施例の充放電を通して、常に、1分間当たり0.8mLの大気を流し続けた。
(Battery characteristic evaluation)
The air secondary battery 1 having the above configuration is allowed to stand in an environment of 25 ° C. for 1 hour, and after the electrode body 20 absorbs the electrolytic solution, it is charged for 10 hours at a current value of 100 mA with respect to 1 g of the catalyst amount of the air electrode 23. did. Further, the air secondary battery 1 was discharged (final voltage = 0.00V) at the same rate. Then, the cell voltage during charging and discharging was measured. Through the charging and discharging of the examples, 0.8 mL of air was constantly flowing through the ventilation path 130 per minute.

(実施例2)
上記の実施例1における充放電の終了後、実施例1の空気二次電池1を1時間静置し、電解液貯蔵部30における電解液の液面高さHが5mmになるように再設定することにより、実施例2の空気二次電池1とした。そして実施例2の空気二次電池1に対して、実施例1と同様に1サイクルの充放電を行うことにより電池特性を評価した。
(Example 2)
After the completion of charging and discharging in Example 1, the air secondary battery 1 of Example 1 is allowed to stand for 1 hour, and the height H of the electrolytic solution in the electrolytic solution storage unit 30 is reset to 5 mm. As a result, the air secondary battery 1 of Example 2 was obtained. Then, the air secondary battery 1 of Example 2 was charged and discharged for one cycle in the same manner as in Example 1 to evaluate the battery characteristics.

(実施例3)
上記の実施例2における充放電の終了後、実施例2の空気二次電池1を1時間静置し、電解液貯蔵部30における電解液の液面高さHが0mmになるように再設定することにより、実施例3の空気二次電池1とした。そして実施例3の空気二次電池1に対して、実施例1と同様に1サイクルの充放電を行うことにより電池特性を評価した。
(Example 3)
After the completion of charging and discharging in Example 2 above, the air secondary battery 1 of Example 2 is allowed to stand for 1 hour, and the height H of the electrolytic solution in the electrolytic solution storage unit 30 is reset to 0 mm. As a result, the air secondary battery 1 of Example 3 was obtained. Then, the air secondary battery 1 of Example 3 was charged and discharged for one cycle in the same manner as in Example 1 to evaluate the battery characteristics.

(比較例1)
上記の実施例3における充放電の終了後、実施例3の空気二次電池1を1時間静置し、電解液貯蔵部30における電解液の液面高さHが−10mmになるように再設定することにより、比較例1の空気二次電池1とした。そして比較例1の空気二次電池1に対して、実施例1と同様に1サイクルの充放電を行うことにより電池特性を評価した。尚、比較例1では電解液貯蔵部30における電解液の液面の高さが収容部11の底面よりも低くなるものの、少なくともセパレータ22及び負極21が電解液を保持しているため、充放電自体は可能である。
(Comparative Example 1)
After the charging / discharging in Example 3 is completed, the air secondary battery 1 of Example 3 is allowed to stand for 1 hour, and the electrolytic solution in the electrolytic solution storage unit 30 is reconstituted so that the liquid level H of the electrolytic solution becomes −10 mm. By setting, the air secondary battery 1 of Comparative Example 1 was used. Then, the air secondary battery 1 of Comparative Example 1 was charged and discharged for one cycle in the same manner as in Example 1 to evaluate the battery characteristics. In Comparative Example 1, although the height of the electrolytic solution in the electrolytic solution storage section 30 is lower than that of the bottom surface of the accommodating section 11, at least the separator 22 and the negative electrode 21 hold the electrolytic solution, so that charging and discharging are performed. It is possible in itself.

2.空気二次電池1の評価結果
(1)充電特性
図4は、実施例1〜3及び比較例1における充電特性を示すグラフである。図4において横軸は空気二次電池1を充電することにより増加する充電容量を示し、縦軸はそのときのセル電圧を示す。ある充電容量まで空気二次電池1を充電するときに、よりセル電圧が上昇する二次電池ほど、内部における反応抵抗が高く、充電時に高い電圧を印加する必要がある。図4より、実施例1〜3では充電特性がほとんど変わらず、比較例1ではセル電圧が上昇している。より具体的には、空気二次電池1を10時間充電した時点の電圧を充電電圧とすると、実施例2の充電電圧は実施例1の充電電圧よりも0.9mV高く、実施例3の充電電圧は実施例1の充電電圧よりも2.0mV高かった。比較例1の充電電圧に関しては、実施例1の充電電圧よりも17.3mV高かった。
2. 2. Evaluation Results of Air Secondary Battery 1 (1) Charging Characteristics FIG. 4 is a graph showing charging characteristics in Examples 1 to 3 and Comparative Example 1. In FIG. 4, the horizontal axis represents the charging capacity increased by charging the air secondary battery 1, and the vertical axis represents the cell voltage at that time. When the air secondary battery 1 is charged to a certain charge capacity, the secondary battery whose cell voltage rises has a higher internal reaction resistance, and it is necessary to apply a higher voltage during charging. From FIG. 4, the charging characteristics are almost the same in Examples 1 to 3, and the cell voltage is increased in Comparative Example 1. More specifically, assuming that the voltage at the time when the air secondary battery 1 is charged for 10 hours is the charging voltage, the charging voltage of Example 2 is 0.9 mV higher than the charging voltage of Example 1, and the charging of Example 3 is performed. The voltage was 2.0 mV higher than the charging voltage of Example 1. The charging voltage of Comparative Example 1 was 17.3 mV higher than the charging voltage of Example 1.

(2)放電特性
図5は、実施例1〜3及び比較例1における放電特性を示すグラフである。図5において横軸は空気二次電池1を放電することにより減少する充電容量を示し、縦軸はそのときのセル電圧を示す。ある放電容量まで空気二次電池1を放電するときに、よりセル電圧が下降する二次電池ほど、内部における反応抵抗が高く、放電時に高い電圧を出力することができなくなってしまう。図5より、放電特性は実施例1が最も良好で、実施例2、実施例3、比較例1の順で低下していく。より具体的には、空気二次電池1の充電容量の50%まで放電したときの電圧を放電電圧とすると、実施例2の放電電圧は実施例1の放電電圧よりも4.4mV低く、実施例3の放電電圧は実施例1の充電電圧よりも7.1mV低かった。比較例1の放電電圧に関しては、実施例1の放電電圧よりも17.8mV低かった。
(2) Discharge Characteristics FIG. 5 is a graph showing discharge characteristics in Examples 1 to 3 and Comparative Example 1. In FIG. 5, the horizontal axis represents the charge capacity that is reduced by discharging the air secondary battery 1, and the vertical axis represents the cell voltage at that time. When the air secondary battery 1 is discharged to a certain discharge capacity, the secondary battery in which the cell voltage drops further has a higher internal reaction resistance, and it becomes impossible to output a high voltage at the time of discharging. From FIG. 5, the discharge characteristics are the best in Example 1, and decrease in the order of Example 2, Example 3, and Comparative Example 1. More specifically, assuming that the voltage when discharged to 50% of the charge capacity of the air secondary battery 1 is the discharge voltage, the discharge voltage of the second embodiment is 4.4 mV lower than the discharge voltage of the first embodiment. The discharge voltage of Example 3 was 7.1 mV lower than the charge voltage of Example 1. The discharge voltage of Comparative Example 1 was 17.8 mV lower than the discharge voltage of Example 1.

3.特性評価の考察
上記の評価結果から、電解液貯蔵部30における電解液の液面高さHを高くすることにより、充電時における反応抵抗を抑制して充電特性を向上させることができた。これは電極体20に電解液が速やかに供給されることで、電解液が枯渇しなかったためと考えられる。また電解液貯蔵部30における電解液の液面高さHを高くすることにより、放電時における反応抵抗を抑制して放電特性を向上させることができた。これは電解液が減少する放電時であっても、電解液の静水圧の低下が抑制され、撥水性を有する空気極23の内部の細孔に電解液が浸透したことにより、放電に有利な三相界面が多く形成されたことに起因すると考えられる。
3. 3. Consideration of characteristic evaluation From the above evaluation results, it was possible to suppress the reaction resistance during charging and improve the charging characteristics by increasing the liquid level height H of the electrolytic solution in the electrolytic solution storage unit 30. It is considered that this is because the electrolytic solution was promptly supplied to the electrode body 20 and the electrolytic solution was not exhausted. Further, by increasing the liquid level height H of the electrolytic solution in the electrolytic solution storage unit 30, it was possible to suppress the reaction resistance at the time of discharge and improve the discharge characteristics. This is advantageous for electric discharge because the decrease in the hydrostatic pressure of the electrolytic solution is suppressed and the electrolytic solution permeates into the pores inside the water-repellent air electrode 23 even at the time of discharge when the electrolytic solution decreases. It is considered that this is due to the formation of many three-phase interfaces.

以上で実施形態の説明を終えるが、本発明は上記の実施形態に限定されるものではない。例えば上記の空気二次電池1は、水素空気二次電池を例として説明したが、アルカリ電解液を使用するその他の空気二次電池においても空気極23における電池反応は同様であり、適用が可能である。また上記の空気二次電池1は、電解液の静水圧によって空気極23における細孔へ浸透させたが、ポンプ等を用いて電解液の圧力を調整しても同様の作用効果が得られる。 Although the description of the embodiment is completed above, the present invention is not limited to the above embodiment. For example, the above-mentioned air secondary battery 1 has been described by taking a hydrogen air secondary battery as an example, but the battery reaction at the air electrode 23 is the same in other air secondary batteries using an alkaline electrolytic solution, and the application is possible. Is. Further, the above-mentioned air secondary battery 1 is permeated into the pores in the air electrode 23 by the hydrostatic pressure of the electrolytic solution, but the same effect can be obtained even if the pressure of the electrolytic solution is adjusted by using a pump or the like.

1 空気二次電池
10 電池ケース
11 収容部
12 通気口
13 蓋体
14 ガスケット
20 電極体
21 負極
22 セパレータ
23 空気極
24 撥水性膜
30 電解液貯蔵部
40 連結部
130 通気路
1 Air secondary battery 10 Battery case 11 Storage part 12 Vent 13 Lid body 14 Gasket 20 Electrode body 21 Negative electrode 22 Separator 23 Air electrode 24 Water repellent membrane 30 Electrolyte storage part 40 Connection part 130 Ventilation path

Claims (2)

空気極及び負極がセパレータを介して鉛直方向に積層されてなる電極体と、
前記電極体をアルカリ電解液と共に収容する筐体と、
前記筐体と前記電極体との間の空間に連通しており、充電時に増加する前記アルカリ電解液を貯蔵し、放電時に減少する前記アルカリ電解液を供給する電解液貯蔵部と、
空気を透過させ、前記アルカリ電解液を透過しない撥水性膜と、を備え、
前記筐体は、内外に空気を導通する通気口が形成され、
前記撥水性膜は、一面側が前記空気極に接し、他面側が前記通気口を前記筐体内部から覆うように配置され、
前記電解液貯蔵部の前記アルカリ電解液の液面高さは、前記空気極の最上面よりも高く、前記空気極における前記アルカリ電解液の吸収量が飽和した状態における前記電解液貯蔵部の前記アルカリ電解液の液面高さよりも低い、空気二次電池。
An electrode body in which the air electrode and the negative electrode are vertically laminated via a separator,
A housing that houses the electrode body together with the alkaline electrolytic solution,
An electrolytic solution storage unit that communicates with the space between the housing and the electrode body, stores the alkaline electrolytic solution that increases during charging, and supplies the alkaline electrolytic solution that decreases during discharge.
A water-repellent membrane that allows air to permeate and does not permeate the alkaline electrolytic solution.
The housing is formed with vents that conduct air inside and outside.
The water-repellent membrane is arranged so that one side is in contact with the air electrode and the other side covers the vent from the inside of the housing.
The liquid level of the alkaline electrolyte of the electrolyte reservoir, the rather high than the top surface of the air electrode, the absorption amount of the alkaline electrolyte in the air electrode of the electrolyte storage unit in a state saturated An air secondary battery that is lower than the liquid level of the alkaline electrolyte .
請求項1に記載の空気二次電池において、前記筐体は、前記通気口が複数形成され、さらに前記撥水性膜の表面に沿って複数の前記通気口を連通させる通気路が形成される、空気二次電池。 In the air secondary battery according to claim 1, the housing is formed with a plurality of the vents, and further, a vent is formed along the surface of the water-repellent film to communicate the plurality of vents. Air secondary battery.
JP2016066380A 2016-03-29 2016-03-29 Air secondary battery Active JP6761655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016066380A JP6761655B2 (en) 2016-03-29 2016-03-29 Air secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016066380A JP6761655B2 (en) 2016-03-29 2016-03-29 Air secondary battery

Publications (2)

Publication Number Publication Date
JP2017183003A JP2017183003A (en) 2017-10-05
JP6761655B2 true JP6761655B2 (en) 2020-09-30

Family

ID=60006215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016066380A Active JP6761655B2 (en) 2016-03-29 2016-03-29 Air secondary battery

Country Status (1)

Country Link
JP (1) JP6761655B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017217543A (en) * 2017-09-22 2017-12-14 株式会社大一商会 Game machine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351448A (en) * 1976-10-21 1978-05-10 Kogyo Gijutsuin Method of operating metal air battery
JP4434246B2 (en) * 2007-07-24 2010-03-17 トヨタ自動車株式会社 Air battery system
JP5446392B2 (en) * 2009-04-01 2014-03-19 トヨタ自動車株式会社 Air battery
JP5626872B2 (en) * 2010-09-16 2014-11-19 学校法人同志社 Hydrogen / air secondary battery
JP6183040B2 (en) * 2013-08-02 2017-08-23 日産自動車株式会社 Air battery system

Also Published As

Publication number Publication date
JP2017183003A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US9293791B2 (en) Zinc secondary battery
Chakkaravarthy et al. Zinc—air alkaline batteries—A review
JP5056942B2 (en) Air electrode and non-aqueous air battery
ES2406964T3 (en) New positive silver electrode for alkaline batteries
JP5626872B2 (en) Hydrogen / air secondary battery
EA013282B1 (en) Bifunctional air electrode
US20150162571A1 (en) Concave cell design for an alkaline battery with a comb spacer
WO2015004069A1 (en) Rechargeable zinc-air flow battery
JP2013222610A (en) Metal-air battery
JP6288655B2 (en) Reversible fuel cell storage battery
JP6836603B2 (en) Metal-air battery
US11355751B2 (en) Air electrode for air secondary battery and air secondary battery
US8304121B2 (en) Primary aluminum hydride battery
JP6263371B2 (en) Metal air battery
JP6761655B2 (en) Air secondary battery
JP6811086B2 (en) Air secondary battery
JP2020087554A (en) Electrolyte solution for zinc battery and zinc battery
KR101713401B1 (en) Zinc-air secondary battery and preparation method thereof
JP2022172734A (en) Air electrode catalyst, air electrode containing air electrode catalyst, and air secondary battery containing air electrode
JPH0447676A (en) Manufacture of sealed storage battery
JP2020176210A (en) Porous film and zinc battery
JP7414584B2 (en) Air electrode for air secondary battery and air secondary battery
JP2020061222A (en) Negative electrode for nickel zinc battery and nickel zinc battery
JP7256350B2 (en) Hydrogen-absorbing alloy negative electrode for hydrogen-air secondary battery, and hydrogen-air secondary battery including this hydrogen-absorbing alloy negative electrode
US20150162570A1 (en) Beveled cell design for an alkaline battery to remove gas

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200520

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20200625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200907

R150 Certificate of patent or registration of utility model

Ref document number: 6761655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250