WO2012035875A1 - Alicyclic polyester and production method therefor - Google Patents

Alicyclic polyester and production method therefor Download PDF

Info

Publication number
WO2012035875A1
WO2012035875A1 PCT/JP2011/066209 JP2011066209W WO2012035875A1 WO 2012035875 A1 WO2012035875 A1 WO 2012035875A1 JP 2011066209 W JP2011066209 W JP 2011066209W WO 2012035875 A1 WO2012035875 A1 WO 2012035875A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
compound
acid
group
alicyclic polyester
Prior art date
Application number
PCT/JP2011/066209
Other languages
French (fr)
Japanese (ja)
Inventor
川上 広幸
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to JP2012533904A priority Critical patent/JPWO2012035875A1/en
Publication of WO2012035875A1 publication Critical patent/WO2012035875A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to electronic materials used for semiconductors and liquid crystals, optical materials represented by optical fibers, optical lenses, and the like, as well as alicyclic polyesters used for display-related materials and medical materials, and methods for producing the same.
  • polyester resins are used in a wide range of fields because they can be formed into films, sheets, deformed materials, fibers, tubes, containers and the like by various forming methods.
  • the most frequently used polyesters are aromatic polyesters made from aromatic dicarboxylic acids such as terephthalic acid or isophthalic acid, and these have excellent heat resistance and toughness because they contain aromatic groups.
  • Polyesters having an alicyclic structure are starting to be partially used in fields requiring transparency because of their excellent heat resistance, transparency and water resistance.
  • a saturated cycloaliphatic primary diol such as 1,4-cyclohexanedimethanol have been proposed (see Patent Document 1). Since the diol has an alkylene group inserted between a hydroxyl group and a saturated cycloaliphatic group, the resulting alicyclic polyester resin has an aliphatic property, and a cyclohexane ring skeleton has low heat resistance. Does not provide sufficient characteristics.
  • an alicyclic polyester comprising a dicarboxylic acid component composed mainly of 4,4′-bicyclohexyldicarboxylic acid and an alicyclic diol (see Patent Document 2)
  • Polyesters having a norbornane skeleton see Patent Documents 3 to 5
  • polyesters having a tricyclodecane skeleton see Patent Documents 6 to 8 have been proposed, but the heat resistance is still insufficient.
  • the present invention has been made in view of the above-mentioned conventional problems, and its object is to provide a highly heat-resistant alicyclic polyester excellent in both heat resistance and transparency and a method for producing the same.
  • R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.
  • the alicyclic polyester which is excellent in both heat resistance and transparency, and its manufacturing method can be provided. Since the alicyclic polyester of the present invention has excellent heat resistance and transparency, it is an optical material typified by electronic components used in semiconductors and liquid crystals, optical fibers, optical lenses, and the like, as well as display-related materials and medical materials. Can be used.
  • the alicyclic polyester of the present invention is characterized by having a structural unit represented by the following general formula (I).
  • the alicyclic polyester of the present invention has an all-cycloaliphatic structure, it has excellent transparency, and since it has a tricyclodecane skeleton, it exhibits heat resistance equal to or higher than that of aromatics. It can be used as an electronic material, an optical material typified by an optical fiber, an optical lens, etc., a display-related material, or a medical material.
  • the number average molecular weight (measured by GPC method and calculated using a standard polystyrene calibration curve) of the alicyclic polyester of the present invention is preferably 2,000 to 250,000, and preferably 3,000 to 220,000. More preferably. When the number average molecular weight is less than 2,000, the heat resistance and the like tend to decrease, and when it exceeds 250,000, the moldability tends to decrease.
  • the production method of the alicyclic polyester of the present invention includes a tricyclodecane monomethanol monocarboxylic acid derivative represented by the following general formula (II): Is characterized by homopolymerization.
  • R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.
  • the alkyl group represented by R is not particularly limited as long as it is an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group, and among them, a methyl group, an ethyl group, a propyl group , Isopropyl group, butyl group, isobutyl group, amyl group, and isoamyl group are preferable.
  • tricyclodecane monomethanol monocarboxylic acid derivative represented by the general formula (II) include 4-hydroxymethyl-8-carboxy-tricyclo [5.5.2.1.0 2,6 ] decane, 3-hydroxymethyl-8-carboxy-tricyclo [5.2.1.0 2,6 ] decane, 3-hydroxymethyl-9-carboxy-tricyclo [5.2.1.0 2,6 ] decane, 4- Hydroxymethyl-8-methoxycarbonyl-tricyclo [5.2.1.0 2,6 ] decane, 3-hydroxymethyl-8-methoxycarbonyl-tricyclo [5.2.1.0 2,6 ] decane, 3- hydroxymethyl-9-methoxycarbonyl - tricyclo [5.2.1.0 2,6] decane, 4-hydroxymethyl-8-butoxycarbonyl - tricyclo [ .2.1.0 2,6] decane, 3-hydroxymethyl-8-butoxycarbonyl - tricyclo [5.2.1.0 2,6] decane, 3-hydroxymethyl-9-butoxycarbonyl - tricyclo [5.2.1.0
  • tricyclodecane monomethanol monocarboxylic acid derivative represented by the general formula (II) used in the present invention has the following formula ( It can be obtained by hydroformylating a compound represented by the following general formula (IV) obtained by hydroesterifying the 6-membered ring side of dicyclopentadiene represented by III).
  • R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.
  • the tricyclodecane monomethanol monocarboxylic acid derivative used in the present invention is represented by the following formula (III) in the presence of a catalyst system containing a ruthenium compound, a cobalt compound, and a halide salt.
  • the dicyclopentadiene and formic acid compound (HCOOR) are reacted to produce a tricyclodecene monocarboxylic acid derivative represented by the following general formula (IV) to which —C (O) R is added.
  • R in the formic acid compound (HCOOR) represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.
  • a formic acid compound corresponding to —C (O) OR of the target tricyclodecane monomethanol monocarboxylic acid derivative is used.
  • formic acid methyl formate, ethyl formate, propyl formate, isopropyl formate Butyl formate, isobutyl formate, amyl formate, isoamyl formate, vinyl formate, benzyl formate and the like.
  • methyl formate is preferable from the viewpoint of cost and reactivity.
  • the reaction of the dicyclopentadiene represented by the formula (III) and the formic acid compound is carried out in the presence of a catalyst system containing a ruthenium compound, a cobalt compound, and a halide salt.
  • the ruthenium compound that can be used in the present invention is not particularly limited.
  • suitable compounds include [Ru (CO) 3 Cl 2 ] 2 , [RuCl 2 (CO) 2 ] n (n is an unspecified natural number), [Ru (CO) 3 Cl 3 ] ⁇ ,
  • Examples include ruthenium compounds having both a carbonyl ligand and a halogen ligand in the molecule, such as [Ru 3 (CO) 11 Cl] ⁇ and [Ru 4 (CO) 13 Cl] ⁇ . From the viewpoint of improving the reaction rate, [Ru (CO) 3 Cl 2 ] 2 and [RuCl 2 (CO) 2 ] n are more preferable.
  • Ruthenium compounds having the above ligands are RuCl 3 , Ru 3 (CO) 12 , RuCl 2 (C 8 H 12 ), Ru (CO) 3 (C 8 H 8 ), Ru (CO) 3 (C 8 H). 12 ), and Ru (C 8 H 10 ) (C 8 H 12 ) or the like as a precursor compound to produce the ruthenium compound before or during the hydrocarboxylation or hydroesterification reaction. It may be introduced into the system.
  • the amount of the ruthenium compound used is preferably 1/10000 to 1 equivalent, more preferably 1/1000 to 1/50 equivalent, relative to 1 equivalent of dicyclopentadiene as a raw material. Considering the production cost, it is preferable that the amount of the ruthenium compound used is smaller, but if it is less than 1/10000 equivalent, the reaction tends to become extremely slow. Moreover, even if it exceeds 1 equivalent, the reaction rate does not increase, but only the production cost tends to increase.
  • the cobalt compound that can be used in the present invention is not particularly limited.
  • suitable compounds include cobalt compounds having a carbonyl ligand such as Co 2 (CO) 8 , Co (CO) 4 , and Co 4 (CO) 12 , cobalt acetate, cobalt propionate, cobalt benzoate, and citric acid.
  • cobalt compounds having a carboxylic acid compound such as cobalt as a ligand, and cobalt phosphate.
  • Co 2 (CO) 8 cobalt acetate, and cobalt citrate are more preferable.
  • the amount of the cobalt compound used is 1/100 to 10 equivalents, preferably 1/10 to 5 equivalents, relative to 1 equivalent of the ruthenium compound. Even if the ratio of the cobalt compound to the ruthenium compound is lower than 1/100 or higher than 10, the amount of the tricyclodecene monocarboxylic acid derivative represented by the general formula (IV) tends to be remarkably reduced. is there.
  • the halide salt that can be used in the present invention is not particularly limited as long as it is a compound composed of a halide ion such as chloride ion, bromide ion, and iodide ion, and a cation.
  • the cation may be either an inorganic ion or an organic ion.
  • the halide salt may contain one or more halogen ions in the molecule.
  • the inorganic ions constituting the halide salt may be one metal ion selected from alkali metals and alkaline earth metals. Specific examples include lithium, sodium, potassium, rubidium, cesium, calcium, and strontium.
  • the organic ion may be a monovalent or higher-valent organic group derived from an organic compound.
  • examples include ammonium, phosphonium, pyrrolidinium, pyridium, imidazolium, and iminium, and the hydrogen atom of these ions may be substituted with a hydrocarbon group such as alkyl and aryl.
  • suitable organic ions include tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, tetrapentylammonium, tetrahexylammonium, tetraheptylammonium, tetraoctylammonium, and trioctyl.
  • butylmethylpyrrolidinium, bis (triphenylphosphine) iminium, trioctylmethylammonium and the like are more preferable from the viewpoint of improving the reaction rate.
  • the halide salt used in the present invention does not need to be a solid salt, and an ionic liquid containing halide ions that becomes liquid near room temperature or in a temperature range of 100 ° C. or less may be used.
  • ionic liquids include 1-ethyl-3-methylimidazolium, 1-propyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-pentyl-3.
  • halide salts are chloride salts, bromide salts, and iodide salts, and the cation is an organic ion.
  • specific examples of the halide salt suitable in the present invention include butylmethylpyrrolidinium chloride, bis (triphenylphosphine) iminium iodide, trioctylmethylammonium chloride and the like.
  • the added amount of the halide salt is, for example, 1 to 1000 equivalents, preferably 2 to 50 equivalents, per 1 equivalent of the ruthenium compound.
  • the reaction rate can be effectively increased.
  • the addition amount exceeds 1000 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
  • the reaction of dicyclopentadiene with a formic acid compound to obtain a tricyclodecane monomethanol monocarboxylic acid derivative for use in the present invention is necessary for a specific catalyst system containing a ruthenium compound, a cobalt compound, and a halide salt. Accordingly, it is possible to further enhance the effect of promoting the reaction by the catalyst system by adding at least one selected from a basic compound, a phenol compound, and an organic halogen compound.
  • the basic compound used in the present invention may be an inorganic compound or an organic compound.
  • the basic inorganic compound include alkali metal and alkaline earth metal carbonates, hydrogen carbonates, hydroxide salts, alkoxides, and the like.
  • Specific examples of basic organic compounds include primary amine compounds, secondary amine compounds, tertiary amine compounds, pyridine compounds, imidazole compounds, and quinoline compounds.
  • a tertiary amine compound is preferable from the viewpoint of the reaction promoting effect.
  • suitable tertiary amine compounds that can be used in the present invention include trialkylamine, N-alkylpyrrolidine, quinuclidine, and triethylenediamine.
  • the amount of the basic compound added is not particularly limited, but is, for example, 1 to 1000 equivalents, preferably 2 to 200 equivalents, per 1 equivalent of the ruthenium compound.
  • the addition amount 1 equivalent or more By making the addition amount 1 equivalent or more, the expression of the promoting effect tends to become more prominent.
  • the addition amount exceeds 1000 equivalents even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
  • the phenol compound used in the present invention is not particularly limited. Specific examples of usable phenol compounds include phenol, cresol, alkylphenol, methoxyphenol, phenoxyphenol, chlorophenol, trifluoromethylphenol, hydroquinone and catechol.
  • the amount of the phenol compound added is not particularly limited, but is, for example, 1 to 1000 equivalents, preferably 2 to 200 equivalents, per 1 equivalent of the ruthenium compound. By making the addition amount 1 equivalent or more, the reaction promoting effect tends to be more pronounced. Moreover, when the addition amount exceeds 1000 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
  • the organic halogen compound used in the present invention is not particularly limited. Specific examples of usable organic halogen compounds include monohalogenated methane, dihalogenated methane, dihalogenated ethane, trihalogenated methane, tetrahalogenated methane, and halogenated benzene.
  • the amount of the organic halogen compound added is not particularly limited, but is, for example, 1 to 1000 equivalents, preferably 2 to 200 equivalents, per 1 equivalent of the ruthenium compound. By making the addition amount 1 equivalent or more, the reaction promoting effect tends to be more pronounced. Moreover, when the addition amount exceeds 1000 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
  • the reaction can proceed without using any solvent.
  • a solvent may be used.
  • the solvent that can be used is not particularly limited as long as the compound used as a raw material can be dissolved.
  • solvents that can be suitably used include n-pentane, n-hexane, n-heptane, cyclohexane, benzene, toluene, o-xylene, p-xylene, m-xylene, ethylbenzene, cumene, tetrahydrofuran, and N-methylpyrrolidone.
  • the reaction of dicyclopentadiene and formic acid compound for obtaining the tricyclodecane monomethanol monocarboxylic acid derivative used in the present invention is preferably carried out in a temperature range of 80 ° C. to 200 ° C.
  • the reaction is more preferably carried out in the temperature range of 100 ° C to 160 ° C.
  • the reaction rate is increased and the reaction is facilitated efficiently.
  • the reaction temperature is controlled to 200 ° C. or lower, decomposition of the formic acid compound used as a raw material can be suppressed.
  • reaction temperature exceeds the boiling point of either dicyclopentadiene or formic acid compound used as a raw material, it is necessary to carry out the reaction in a pressure resistant vessel.
  • the completion of the reaction can be confirmed using a well-known analytical technique such as gas chromatography or NMR.
  • the reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon.
  • -C (O) OR is added to pentadiene, and -C (O) OR is added to the 8-position or 9-position of the tricyclo [5.2.1.0 2,6 ] dec-3-ene skeleton. It has an added structure.
  • the tricyclodecene monocarboxylic acid derivative represented by the following formula (IV) obtained by the above method is hydroformylated to obtain the following formula: A tricyclodecane monomethanol monocarboxylic acid derivative represented by (II) is obtained.
  • the hydroformylation reaction of the tricyclodecene monocarboxylic acid derivative represented by the general formula (IV) is a generally known hydroformylation method, for example, Catalyst Course Vol. 7, Catalytic Society, Kodansha (1985). ), Using a transition metal complex catalyst such as cobalt, ruthenium, rhodium, etc., and reacting carbon monoxide with hydrogen to add aldehyde, followed by further hydrogenation, or carbon monoxide A method of directly adding alcohol by reacting hydrogen with hydrogen can be used.
  • the hydroformylation method using carbon dioxide and hydrogen described below is more preferable.
  • carbon dioxide and hydrogen may be supplied in the form of a mixed gas, or may be supplied separately.
  • the mixed gas is a mixed gas (raw material gas) mainly composed of carbon dioxide and hydrogen.
  • the carbon dioxide content is preferably 10 to 95 vol%, more preferably 50 to 80 vol%, and the hydrogen content is Preferably, it is 5 to 90 vol%, more preferably 20 to 50 vol%.
  • the catalyst system for the hydroformylation reaction preferably contains a ruthenium compound, and the ruthenium compound that can be used is not particularly limited.
  • suitable compounds include [Ru (CO) 3 Cl 2 ] 2 , [RuCl 2 (CO) 2 ] n , (n is an unspecified natural number), [Ru (CO) 3 Cl 3 ] ⁇ , [Ru 3 (CO) 11 Cl] ⁇ , [Ru 4 (CO) 13 Cl] ⁇ , etc., and ruthenium compounds having both a carbonyl ligand and a halogen ligand in the molecule. From the viewpoint of improving the reaction rate, [Ru (CO) 3 Cl 2 ] 2 and [RuCl 2 (CO) 2 ] n are more preferable.
  • Ruthenium compounds having the above ligands are RuCl 3 , Ru 3 (CO) 12 , RuCl 2 (C 8 H 12 ), Ru (CO) 3 (C 8 H 8 ), Ru (CO) 3 (C 8 H). 12 ), Ru (C 8 H 10 ) (C 8 H 12 ) or the like as a precursor compound, and the ruthenium compound is prepared and introduced into the reaction system before or during the reaction of hydroformylation. Also good.
  • the amount of the ruthenium compound used is preferably 1/10000 to 1 equivalent, more preferably 1/1000 to 1/50 equivalent, relative to 1 equivalent of the tricyclodecene monocarboxylic acid derivative represented by the formula (IV) as the raw material. It is. Considering the production cost, it is preferable that the amount of the ruthenium compound used is smaller, but if it is less than 1/10000 equivalent, the reaction tends to become extremely slow. Moreover, even if it exceeds 1 equivalent, the reaction rate does not increase, but only the production cost tends to increase.
  • the tricyclodecene monocarboxylic acid derivative represented by the formula (IV) of the present invention at least selected from a cobalt compound, a halide salt, a phenol compound and an acid, if necessary, for the catalyst system containing a ruthenium compound.
  • the cobalt compound that can be used as a catalyst for the hydroformylation reaction is not particularly limited.
  • suitable compounds include cobalt compounds having a carbonyl ligand such as Co 2 (CO) 8 , HCo (CO) 4 , and Co 4 (CO) 12 , cobalt acetate, cobalt propionate, cobalt benzoate, and citric acid.
  • cobalt compounds having a carboxylic acid compound such as cobalt as a ligand, and cobalt phosphate.
  • Co 2 (CO) 8 cobalt acetate, and cobalt citrate are more preferable.
  • the amount of the cobalt compound used is 1/100 to 10 equivalents, preferably 1/10 to 5 equivalents per 1 equivalent of the ruthenium compound. Even if the ratio of the cobalt compound to the ruthenium compound is lower than 1/100 or higher than 10, the production amount of the tricyclodecane monomethanol monocarboxylic acid derivative tends to be remarkably reduced.
  • the halide salt that can be used in the present invention is not particularly limited as long as it is a compound composed of a halide ion such as chloride ion, bromide ion, and iodide ion, and a cation.
  • the cation may be either an inorganic ion or an organic ion.
  • the halide salt may contain one or more halogen ions in the molecule.
  • the inorganic ions constituting the halide salt may be one metal ion selected from alkali metals and alkaline earth metals. Specific examples include lithium, sodium, potassium, rubidium, cesium, calcium, and strontium.
  • the organic ion may be a monovalent or higher-valent organic group derived from an organic compound.
  • examples include ammonium, phosphonium, pyrrolidinium, pyridium, imidazolium, and iminium, and the hydrogen atom of these ions may be substituted with a hydrocarbon group such as alkyl and aryl.
  • suitable organic ions include tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, tetrapentylammonium, tetrahexylammonium, tetraheptylammonium, tetraoctylammonium, and trioctyl.
  • quaternary ammonium salts such as hexadecyltrimethylammonium chloride and hexadecyltrimethylammonium bromide are more preferable from the viewpoint of improving the reaction rate.
  • the halide salt that can be used in the present invention does not need to be a solid salt, and an ionic liquid containing halide ions that becomes liquid near room temperature or in a temperature range of 100 ° C. or lower may be used.
  • ionic liquids include 1-ethyl-3-methylimidazolium, 1-propyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-pentyl-3.
  • halide salts described above preferred halide salts are chloride salts, bromide salts, and iodide salts, and the cation is an organic ion.
  • specific examples of the halide salt suitable in the present invention include hexadecyltrimethylammonium chloride, hexadecyltrimethylammonium bromide and the like.
  • the added amount of the halide salt is, for example, 1 to 1000 equivalents, preferably 2 to 50 equivalents, per 1 equivalent of the ruthenium compound.
  • the reaction rate can be effectively increased.
  • the addition amount exceeds 1000 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
  • the phenol compound used in the present invention is not particularly limited. Specific examples of usable phenol compounds include phenol, cresol, alkylphenol, methoxyphenol, phenoxyphenol, chlorophenol, trifluoromethylphenol, hydroquinone and catechol.
  • the amount of the phenol compound added is not particularly limited, but is, for example, 1 to 1000 equivalents, preferably 2 to 200 equivalents, per 1 equivalent of the ruthenium compound. By making the addition amount 1 equivalent or more, the reaction promoting effect tends to be more pronounced. Moreover, when the addition amount exceeds 1000 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
  • any acid that meets the definition of Lewis can be used. According to this definition, when a substance A is donated with an electron pair from another substance B, A is defined as an acid, and B is defined as a base, but all that apply to A accepting an electron pair must be used. it can.
  • A is preferably an acid that becomes a proton donor, that is, a Bronsted acid.
  • Bronsted acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, methyl phosphoric acid, alkyl phosphoric acid, phenyl phosphoric acid, diphenyl phosphite, phenylphosphonic acid, 4-methoxyphenylphosphonic acid, 4-methoxyphenylphosphonic acid Diethyl, phenylphosphinic acid, boric acid, phenylboric acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, phenol, tungstic acid, phosphotungstic acid, and alkylcarboxylic acids represented by formic acid, acetic acid, trifluoroacetic acid, propionic acid, butyric acid Aromatic carboxylic acids such as acid, benzoic acid, phthalic acid, and salicylic acid are used
  • the amount of acid added is, for example, 0.1 to 100 equivalents, preferably 1 to 10 equivalents per 1 equivalent of ruthenium compound.
  • the addition amount is, for example, 0.1 to 100 equivalents, preferably 1 to 10 equivalents per 1 equivalent of ruthenium compound.
  • the hydroformylation is preferably performed in a temperature range of 100 ° C. to 200 ° C., more preferably performed in a temperature range of 110 ° C. to 180 ° C., and particularly preferably performed in a temperature range of 120 ° C. to 160 ° C. .
  • the reaction rate is increased and the reaction is facilitated efficiently.
  • the reaction temperature is controlled to 200 ° C. or less, hydrogenation of the unsaturated bond of the tricyclodecene monocarboxylic acid derivative represented by the general formula (IV) can be suppressed.
  • hydroformylation is not achieved, and thus a reaction temperature that is too high is undesirable.
  • the reaction pressure is preferably in the range of 1 MPa to 20 MPa, more preferably in the range of 2 MPa to 15 MPa.
  • the pressure is less than 1 MPa, the reaction tends to be slow, and when it exceeds 20 MPa, even if the pressure is further increased, there is a tendency that a further improvement effect of the reaction promotion cannot be obtained.
  • a solvent can be present if necessary.
  • the solvent that can be used is not particularly limited as long as it can dissolve the tricyclodecene monocarboxylic acid derivative represented by the general formula (IV).
  • Specific examples of solvents that can be suitably used include n-pentane, n-hexane, n-heptane, cyclohexane, benzene, toluene, o-xylene, p-xylene, m-xylene, ethylbenzene, cumene, tetrahydrofuran, and N-methylpyrrolidone.
  • the preferred amount used is in a range where the concentration of the tricyclodecene monocarboxylic acid derivative represented by the general formula (IV) is 10 to 1000% by mass.
  • the method for homopolymerizing the tricyclodecane monomethanol monocarboxylic acid derivative represented by the general formula (II) of the present invention into the alicyclic polyester represented by the general formula (I) is not particularly limited. For example, it can be obtained by removing alcohol generated by heating in the presence or absence of a solvent.
  • the polymerization temperature is preferably 40 to 220 ° C., more preferably 60 to 200 ° C., and particularly preferably 80 to 180 ° C.
  • the polymerization rate tends to be extremely slow, and when it exceeds 220 ° C., the tricyclodecane monomethanol monocarboxylic acid derivative represented by the general formula (II) is represented during the polymerization reaction. Decomposition can occur.
  • the reaction time can be appropriately selected depending on the scale of the batch and the reaction conditions employed.
  • a catalyst can also be used.
  • the catalyst that can be used is not particularly limited, and may be any basic substance such as a metal alkoxide or a basic metal salt. Among them, an alkali (earth) metal alkoxide is preferably used, and lithium, sodium, More preferably, potassium methoxide, ethoxide, or propoxide is used.
  • the amount of the catalyst used is preferably 0.01 to 10.0 mol%, more preferably 0.03 to 7.0 mol% of the tricyclodecane monomethanol monocarboxylic acid derivative as a raw material, It is particularly preferably 0.05 to 5.0 mol%. If the amount of the catalyst used is less than 0.01 mol%, the polymerization rate tends to be extremely slow, and if it exceeds 10.0 mol%, the polymerization proceeds rapidly, and excessive heat generation may occur. is there.
  • the polymerization reaction can be carried out without solvent, but a solvent can be used if necessary.
  • the solvent that can be used is not particularly limited as long as it can dissolve the raw material tricyclodecane monomethanol monocarboxylic acid derivative.
  • Specific examples of solvents that can be suitably used include, for example, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, ester solvents such as ethyl acetate, butyl acetate, and ⁇ -butyrolactone, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and diethylene glycol diethyl ether.
  • Ether solvents such as triethylene glycol diethyl ether, cellosolv solvents such as butyl cellosolve acetate, ethyl cellosolve acetate, methyl cellosolve acetate, fragrances such as toluene, xylene, p-cymene, 1,2,3,4-tetrahydroxynaphthalene, etc.
  • Group solvents tetrahydrofuran, dioxane, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetoa De, dimethylsulfoxide, sulfolane and the like, cost, considering the workability and the like, and more preferably carried out without solvent.
  • the obtained methyl tricyclodecene monocarboxylate was 8-methoxycarbonyl-tricyclo [5.2.1.0 2,6 ] decene. It was found to be a mixture of -3-ene and 9-methoxycarbonyl-tricyclo [5.2.1.0 2,6 ] dec-3-en.
  • the resulting methyl tricyclodecene monocarboxylate was isolated by distillation under reduced pressure. The chemical reaction formula of this synthesis example is shown below.
  • methyl tricyclodecane monomethanol monocarboxylate was 4-hydroxymethyl-8-methoxycarbonyl-tricyclo [5.2.1. 0 2,6 ] decane, 3-hydroxymethyl-8-methoxycarbonyl-tricyclo [5.2.1.0 2,6 ] decane and 3-hydroxymethyl-9-methoxycarbonyl-tricyclo [5.2.1. 0 2,6 ] decane was found to be a mixture.
  • the chemical reaction formula of this synthesis example is shown below.
  • the obtained methyl tricyclodecane monomethanol monocarboxylate was isolated by distillation under reduced pressure, and 1 H-NMR spectrum and IR spectrum were measured.
  • the 1 H-NMR spectrum was measured by dissolving a sample in dimethyl sulfoxide (DMSO-d6) to prepare a solution, putting it in a ⁇ 5 mm sample tube, and using a 400 MHz nuclear magnetic resonance apparatus “AV400M” manufactured by BRUKER.
  • the IR spectrum was measured using a Fourier transform infrared spectrophotometer (JIR-6500, manufactured by JEOL Ltd.).
  • the integral intensity ratio of protons (1) to (10) / hydroxymethyl group and (11) / hydroxymethyl group proton (12) / methoxycarbonyl group proton (13) in the tricyclodecane moiety is 13 .93 / 2.00 / 1.04 / 3.08 (theoretical value: 14/2/1/3), and the obtained methyl tricyclodecane monomethanol monocarboxylate is represented by the above formula (V). It has been confirmed that it has a structure.
  • the IR spectrum is shown in FIG. Near methylene group and peaks 800 ⁇ 1450 cm methine groups -1 tricyclodecane moiety, the peak of the methylene groups resulting from the hydroxymethyl group is in the vicinity of 1465Cm -1, a peak of hydroxyl group due to the hydroxymethyl group with broad 3400cm around -1, a peak of carbonyl group resulting from the methoxycarbonyl group is in the vicinity of 1760 cm -1, the peak of methyl groups attributed to a methoxycarbonyl group was confirmed around 2870Cm -1 and 2960 cm -1.
  • Example 1 [Production of alicyclic polyester] A 10 ml flask equipped with a stirrer, a nitrogen introducing tube and a cooling tube was charged with 5 g of methyl tricyclodecane monomethanol monocarboxylate obtained in Synthesis Example 2 and 0.5 g of titanium tetraisopropoxide and placed in an oil bath at 130 ° C. And a polyester having a tricyclodecane skeleton having a number average molecular weight of 30,000 was obtained.
  • the obtained polyester having a tricyclodecane skeleton was measured for the glass transition temperature (Tg) and the thermal decomposition initiation temperature (5% mass reduction temperature, Td 5 ) under the following conditions.
  • the results are shown in Table 1.
  • Glass transition temperature (Tg) It measured with the differential scanning calorimeter (Rigaku Corporation 8230 type DSC). Temperature increase rate: 5 ° C / min Atmosphere: Air
  • Thermal decomposition start temperature (5% mass reduction temperature, Td 5 ) It was measured with a differential thermal balance (Seiko Electronics Co., Ltd. model 5200 TG-DTA). Temperature increase rate: 5 ° C / min Atmosphere: Air
  • Example 1 shows that in Example 1, both the glass transition temperature and the thermal decomposition temperature are higher than those in Comparative Example 1, and the alicyclic polyester of the present invention has high heat resistance. In addition, Example 1 showed excellent transparency with a light transmittance of 100% at any wavelength. That is, it was confirmed that the alicyclic polyester of the present invention was excellent in both heat resistance and transparency.

Abstract

Provided is an alicyclic polyester with high temperature resistance excellent in heat-resisting property and transparency. The alicyclic polyester has a structural unit represented by general formula (I).

Description

脂環式ポリエステル及びその製造方法Alicyclic polyester and method for producing the same
 本発明は、半導体・液晶に用いられる電子部品、光ファイバー、光学レンズ等に代表される光学材料、さらには、ディスプレイ関連材料、医療用材料に用いられる脂環式ポリエステル及びその製造方法に関する。 The present invention relates to electronic materials used for semiconductors and liquid crystals, optical materials represented by optical fibers, optical lenses, and the like, as well as alicyclic polyesters used for display-related materials and medical materials, and methods for producing the same.
 各種ポリエステル樹脂は、種々の成形方法等によって、フィルム、シート、異形材、繊維、チューブ、容器等に成形できることから、幅広い分野で使用されている。最も多く利用されるポリエステルは、テレフタル酸あるいはイソフタル酸等の芳香族ジカルボン酸を原料としてなる芳香族ポリエステルで、これらは芳香族基を含有するため耐熱性、強靭性等に優れる。 Various polyester resins are used in a wide range of fields because they can be formed into films, sheets, deformed materials, fibers, tubes, containers and the like by various forming methods. The most frequently used polyesters are aromatic polyesters made from aromatic dicarboxylic acids such as terephthalic acid or isophthalic acid, and these have excellent heat resistance and toughness because they contain aromatic groups.
 しかし、近年、半導体レーザー光源の低波長領域化が進み、光信号の光源として青色レーザー、紫外光レーザーなどが使用されるようになったため、光学材料や電子部品等に使用されるポリマー材料の透明化が求められるようになってきているが、前記芳香族ポリエステルでは、耐紫外線性、光線透過率等に劣るため、このような分野への適用は難しい。 In recent years, however, semiconductor laser light sources have been increasingly reduced in wavelength, and blue lasers, ultraviolet lasers, etc. have been used as light sources for optical signals, so that polymer materials used for optical materials and electronic parts have become transparent. However, since the aromatic polyester is inferior in ultraviolet resistance, light transmittance, etc., application to such a field is difficult.
 脂環式構造を有するポリエステルは、耐熱性、透明性、耐水性に優れることから、前記透明性の要求される分野に一部使用され始めている。脂環式ポリエステルの製造方法として、1,4-シクロヘキサンジメタノールのような飽和環状脂肪族1級ジオールを使用する方法が数多く提案されているが(特許文献1参照)、飽和環状脂肪族1級ジオールは水酸基と飽和環状脂肪族基の間にアルキレン基が挿入されているため、得られる脂環式ポリエステル樹脂は脂肪族性を有し、シクロヘキサン環骨格のものでは耐熱性が低く、前記用途としては十分な特性が得られない。 Polyesters having an alicyclic structure are starting to be partially used in fields requiring transparency because of their excellent heat resistance, transparency and water resistance. As a method for producing an alicyclic polyester, many methods using a saturated cycloaliphatic primary diol such as 1,4-cyclohexanedimethanol have been proposed (see Patent Document 1). Since the diol has an alkylene group inserted between a hydroxyl group and a saturated cycloaliphatic group, the resulting alicyclic polyester resin has an aliphatic property, and a cyclohexane ring skeleton has low heat resistance. Does not provide sufficient characteristics.
 さらに、脂環式ポリエステルの耐熱性向上を目的として、4,4’-ビシクロヘキシルジカルボン酸を主成分とするジカルボン酸成分と、脂環式ジオールから成る脂環式ポリエステル(特許文献2参照)、ノルボルナン骨格を持つポリエステル(特許文献3~5参照)、トリシクロデカン骨格を持つポリエステル(特許文献6~8参照)が提案されているが、耐熱性がまだ十分とは言えない。 Furthermore, for the purpose of improving the heat resistance of the alicyclic polyester, an alicyclic polyester comprising a dicarboxylic acid component composed mainly of 4,4′-bicyclohexyldicarboxylic acid and an alicyclic diol (see Patent Document 2), Polyesters having a norbornane skeleton (see Patent Documents 3 to 5) and polyesters having a tricyclodecane skeleton (see Patent Documents 6 to 8) have been proposed, but the heat resistance is still insufficient.
特表2007-517926号公報Special table 2007-517926 特開2006-111794号公報JP 2006-1111794 A 特開2001-64372号公報JP 2001-64372 A 特開2001-64373号公報JP 2001-64373 A 特開2001-64374号公報JP 2001-64374 A 特許第4420513号公報Japanese Patent No. 4420513 特開2001-240661号公報Japanese Patent Laid-Open No. 2001-240661 特開2001-240662号公報Japanese Patent Laid-Open No. 2001-240661
 本発明は、上記従来の問題点に鑑みなされたものであり、その課題は、耐熱性及び透明性の双方ともに優れる高耐熱脂環式ポリエステル及びその製造方法を提供することにある。 The present invention has been made in view of the above-mentioned conventional problems, and its object is to provide a highly heat-resistant alicyclic polyester excellent in both heat resistance and transparency and a method for producing the same.
 前記課題を解決するための手段は以下の通りである。
(1)下記一般式(I)で表される構造単位を有する脂環式ポリエステル。
Figure JPOXMLDOC01-appb-C000003
Means for solving the above-mentioned problems are as follows.
(1) An alicyclic polyester having a structural unit represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000003
(2)下記一般式(II)で表されるトリシクロデカンモノメタノールモノカルボン酸誘導体を単独重合させることを特徴とする、前記(1)に記載の脂環式ポリエステルの製造方法。 (2) The method for producing an alicyclic polyester according to the above (1), wherein a tricyclodecane monomethanol monocarboxylic acid derivative represented by the following general formula (II) is homopolymerized.
Figure JPOXMLDOC01-appb-C000004
(但し、式(II)中、Rは、水素原子、炭素数1~5のアルキル基、ビニル基、又はベンジル基を示す)
Figure JPOXMLDOC01-appb-C000004
(In the formula (II), R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.)
 本発明によれば、耐熱性及び透明性の双方ともに優れる脂環式ポリエステル及びその製造方法を提供することができる。
 本発明の脂環式ポリエステルは、耐熱性および透明性に優れるため、半導体・液晶に用いられる電子部品、光ファイバー、光学レンズ等に代表される光学材料、さらには、ディスプレイ関連材料、医療用材料として使用することができる。
ADVANTAGE OF THE INVENTION According to this invention, the alicyclic polyester which is excellent in both heat resistance and transparency, and its manufacturing method can be provided.
Since the alicyclic polyester of the present invention has excellent heat resistance and transparency, it is an optical material typified by electronic components used in semiconductors and liquid crystals, optical fibers, optical lenses, and the like, as well as display-related materials and medical materials. Can be used.
合成例2で得たトリシクロデカンモノメタノールモノカルボン酸メチルのH-NMRスペクトルである。2 is a 1 H-NMR spectrum of methyl tricyclodecane monomethanol monocarboxylate obtained in Synthesis Example 2. 合成例2で得たトリシクロデカンモノメタノールモノカルボン酸メチルのFT-IRスペクトルである。4 is an FT-IR spectrum of methyl tricyclodecane monomethanol monocarboxylate obtained in Synthesis Example 2.
 以下、本発明についてより詳細に説明する。
<脂環式ポリエステル>
 本発明の脂環式ポリエステルは、下記一般式(I)で表される構造単位を有することを特徴としている。
Hereinafter, the present invention will be described in more detail.
<Alicyclic polyester>
The alicyclic polyester of the present invention is characterized by having a structural unit represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 本発明の脂環式ポリエステルは、全脂環式構造を有することから透明性に優れ、またトリシクロデカン骨格を有することから、芳香族と同等以上の耐熱性を示すことから、半導体・液晶に用いられる電子部品、光ファイバー、光学レンズ等に代表される光学材料、さらには、ディスプレイ関連材料、医療用材料として使用することができる。 Since the alicyclic polyester of the present invention has an all-cycloaliphatic structure, it has excellent transparency, and since it has a tricyclodecane skeleton, it exhibits heat resistance equal to or higher than that of aromatics. It can be used as an electronic material, an optical material typified by an optical fiber, an optical lens, etc., a display-related material, or a medical material.
 本発明の脂環式ポリエステルの数平均分子量(GPC法で測定し、標準ポリスチレンによる検量線を用いて算出)は、2,000~250,000とすることが好ましく、3,000~220,000とすることがより好ましい。数平均分子量が、2,000未満では、耐熱性等が低下する傾向があり、250,000を超えると、成形性が低下する傾向がある。 The number average molecular weight (measured by GPC method and calculated using a standard polystyrene calibration curve) of the alicyclic polyester of the present invention is preferably 2,000 to 250,000, and preferably 3,000 to 220,000. More preferably. When the number average molecular weight is less than 2,000, the heat resistance and the like tend to decrease, and when it exceeds 250,000, the moldability tends to decrease.
<脂環式ポリエステルの製造方法>
 本発明の脂環式ポリエステルの製造方法、すなわち前記一般式(I)で表される脂環式ポリエステルの製造方法は、下記一般式(II)で表されるトリシクロデカンモノメタノールモノカルボン酸誘導体を単独重合させることを特徴としている。
<Method for producing alicyclic polyester>
The production method of the alicyclic polyester of the present invention, that is, the production method of the alicyclic polyester represented by the general formula (I) includes a tricyclodecane monomethanol monocarboxylic acid derivative represented by the following general formula (II): Is characterized by homopolymerization.
Figure JPOXMLDOC01-appb-C000006
(但し、式(II)中、Rは、水素原子、炭素数1~5のアルキル基、ビニル基、又はベンジル基を示す)
Figure JPOXMLDOC01-appb-C000006
(In the formula (II), R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.)
 一般式(II)中、Rが示すアルキル基としては、炭素数1~5のアルキル基、ビニル基、又はベンジル基であれば特に制限は無いが、その中でも、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、アミル基、イソアミル基、が好ましい。 In the general formula (II), the alkyl group represented by R is not particularly limited as long as it is an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group, and among them, a methyl group, an ethyl group, a propyl group , Isopropyl group, butyl group, isobutyl group, amyl group, and isoamyl group are preferable.
 一般式(II)で表されるトリシクロデカンモノメタノールモノカルボン酸誘導体の具体例としては、4-ヒドロキシメチル-8-カルボキシ-トリシクロ〔5.5.2.1.02,6〕デカン、3-ヒドロキシメチル-8-カルボキシ-トリシクロ〔5.2.1.02,6〕デカン、3-ヒドロキシメチル-9-カルボキシ-トリシクロ〔5.2.1.02,6〕デカン、4-ヒドロキシメチル-8-メトキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、3-ヒドロキシメチル-8-メトキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、3-ヒドロキシメチル-9-メトキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、4-ヒドロキシメチル-8-ブトキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、3-ヒドロキシメチル-8-ブトキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、3-ヒドロキシメチル-9-ブトキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、4-ヒドロキシメチル-8-ペントキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、3-ヒドロキシメチル-8-ペントキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、3-ヒドロキシメチル-9-ペントキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、4-ヒドロキシメチル-8-ビニルオキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、3-ヒドロキシメチル-8-ビニルオキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、3-ヒドロキシメチル-9-ビニルオキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、4-ヒドロキシメチル-8-ベンジルオキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、3-ヒドロキシメチル-8-ベンジルオキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、3-ヒドロキシメチル-9-ベンジルオキシカルボニル-トリシクロ〔5.2.1.02,6〕デカンなどが挙げられ、中でも、トリシクロデセンモノカルボン酸誘導体を製造する際のコスト及び反応性の観点から、4-ヒドロキシメチル-8-メトキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、3-ヒドロキシメチル-8-メトキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、3-ヒドロキシメチル-9-メトキシカルボニル-トリシクロ〔5.2.1.02,6〕デカンが好ましい。 Specific examples of the tricyclodecane monomethanol monocarboxylic acid derivative represented by the general formula (II) include 4-hydroxymethyl-8-carboxy-tricyclo [5.5.2.1.0 2,6 ] decane, 3-hydroxymethyl-8-carboxy-tricyclo [5.2.1.0 2,6 ] decane, 3-hydroxymethyl-9-carboxy-tricyclo [5.2.1.0 2,6 ] decane, 4- Hydroxymethyl-8-methoxycarbonyl-tricyclo [5.2.1.0 2,6 ] decane, 3-hydroxymethyl-8-methoxycarbonyl-tricyclo [5.2.1.0 2,6 ] decane, 3- hydroxymethyl-9-methoxycarbonyl - tricyclo [5.2.1.0 2,6] decane, 4-hydroxymethyl-8-butoxycarbonyl - tricyclo [ .2.1.0 2,6] decane, 3-hydroxymethyl-8-butoxycarbonyl - tricyclo [5.2.1.0 2,6] decane, 3-hydroxymethyl-9-butoxycarbonyl - tricyclo [5 .2.1.0 2,6 ] decane, 4-hydroxymethyl-8-pentoxycarbonyl-tricyclo [5.2.1.0 2,6 ] decane, 3-hydroxymethyl-8-pentoxycarbonyl-tricyclo [5.2.1.0 2,6 ] decane, 3-hydroxymethyl-9-pentoxycarbonyl-tricyclo [5.2.1.0 2,6 ] decane, 4-hydroxymethyl-8-vinyloxycarbonyl - tricyclo [5.2.1.0 2,6] decane, 3-hydroxymethyl-8-vinyloxycarbonyl - tricyclo [5.2.1.0 2,6] dec , 3-hydroxymethyl-9-vinyloxycarbonyl - tricyclo [5.2.1.0 2,6] decane, 4-hydroxymethyl-8-benzyloxycarbonyl - tricyclo [5.2.1.0 2,6 ] Decane, 3-hydroxymethyl-8-benzyloxycarbonyl-tricyclo [5.2.1.0 2,6 ] decane, 3-hydroxymethyl-9-benzyloxycarbonyl-tricyclo [5.2.1.0 2 , 6 ] decane and the like, and among them, 4-hydroxymethyl-8-methoxycarbonyl-tricyclo [5.2.1.0] from the viewpoint of cost and reactivity in producing a tricyclodecene monocarboxylic acid derivative. 2,6] decane, 3-hydroxymethyl-8-methoxycarbonyl - tricyclo [5.2.1.0 2,6] decane, 3- Dorokishimechiru 9-methoxy-carbonyl - tricyclo [5.2.1.0 2,6] decane are preferable.
 本発明において使用する一般式(II)で表されるトリシクロデカンモノメタノールモノカルボン酸誘導体(以下、単に「トリシクロデカンモノメタノールモノカルボン酸誘導体」と呼ぶ場合がある。)は、下記式(III)で表されるジシクロペンタジエンの6員環側をヒドロエステル化して得られる、下記一般式(IV)で表される化合物をヒドロホルミル化することにより得ることができる。 The tricyclodecane monomethanol monocarboxylic acid derivative represented by the general formula (II) used in the present invention (hereinafter sometimes simply referred to as “tricyclodecane monomethanol monocarboxylic acid derivative”) has the following formula ( It can be obtained by hydroformylating a compound represented by the following general formula (IV) obtained by hydroesterifying the 6-membered ring side of dicyclopentadiene represented by III).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
(但し、式(IV)中、Rは、水素原子、炭素数1~5のアルキル基、ビニル基、又はベンジル基を示す)
Figure JPOXMLDOC01-appb-C000008
(In the formula (IV), R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.)
 本発明に使用するトリシクロデカンモノメタノールモノカルボン酸誘導体を製造するに際し、まず、ルテニウム化合物と、コバルト化合物と、ハロゲン化物塩とを含む触媒系の存在下で、下記式(III)で表されるジシクロペンタジエンとギ酸化合物(HCOOR)とを反応させて、-C(O)Rを付加してなる下記一般式(IV)で表されるトリシクロデセンモノカルボン酸誘導体を製造する。ここで、前記ギ酸化合物(HCOOR)中のRは、水素原子、炭素数1~5のアルキル基、ビニル基、又はベンジル基を示す。 In producing the tricyclodecane monomethanol monocarboxylic acid derivative used in the present invention, first, it is represented by the following formula (III) in the presence of a catalyst system containing a ruthenium compound, a cobalt compound, and a halide salt. The dicyclopentadiene and formic acid compound (HCOOR) are reacted to produce a tricyclodecene monocarboxylic acid derivative represented by the following general formula (IV) to which —C (O) R is added. Here, R in the formic acid compound (HCOOR) represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 ギ酸化合物(HCOOR)として、Rが水素原子であるギ酸を用いる場合は、ヒドロカルボキシル化反応が起こりジシクロペンタジエンにカルボキシル基を付加させることができ、Rが炭素数1~5のアルキル基、ビニル基又はベンジル基であるギ酸エステルを用いる場合はヒドロエステル化反応が起こりジシクロペンタジエンにエステル基を付加することができる。 When formic acid in which R is a hydrogen atom is used as the formic acid compound (HCOOR), a hydrocarboxylation reaction can occur and a carboxyl group can be added to dicyclopentadiene, where R is an alkyl group having 1 to 5 carbon atoms, vinyl When a formic acid ester which is a benzyl group or a benzyl group is used, a hydroesterification reaction occurs and an ester group can be added to dicyclopentadiene.
 ギ酸化合物は、目的とするトリシクロデカンモノメタノールモノカルボン酸誘導体の-C(O)ORに対応したギ酸化合物(HCOOR)が用いられ、例えば、ギ酸、ギ酸メチル、ギ酸エチル、ギ酸プロピル、ギ酸イソプロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸アミル、ギ酸イソアミル、ギ酸ビニル、ギ酸ベンジル等が挙げられる。これらの中でも、コストおよび反応性の観点から、ギ酸メチルが好適である。 As the formic acid compound, a formic acid compound (HCOOR) corresponding to —C (O) OR of the target tricyclodecane monomethanol monocarboxylic acid derivative is used. For example, formic acid, methyl formate, ethyl formate, propyl formate, isopropyl formate Butyl formate, isobutyl formate, amyl formate, isoamyl formate, vinyl formate, benzyl formate and the like. Among these, methyl formate is preferable from the viewpoint of cost and reactivity.
 前記式(III)で表されるジシクロペンタジエンとギ酸化合物の反応は、上述の通り、ルテニウム化合物と、コバルト化合物と、ハロゲン化物塩とを含む触媒系の存在下に行なわれる。本発明で使用可能なルテニウム化合物は、特に制限はない。好適な化合物の具体例として、[Ru(CO)Cl、[RuCl(CO)(nは不特定の自然数である)、[Ru(CO)Cl、[Ru(CO)11Cl]、[Ru(CO)13Cl]等の、分子内にカルボニル配位子とハロゲン配位子とを合わせ持つルテニウム化合物等が挙げられ、なかでも、反応率向上の観点から、[Ru(CO)Cl、[RuCl(CO)がより好ましい。 As described above, the reaction of the dicyclopentadiene represented by the formula (III) and the formic acid compound is carried out in the presence of a catalyst system containing a ruthenium compound, a cobalt compound, and a halide salt. The ruthenium compound that can be used in the present invention is not particularly limited. Specific examples of suitable compounds include [Ru (CO) 3 Cl 2 ] 2 , [RuCl 2 (CO) 2 ] n (n is an unspecified natural number), [Ru (CO) 3 Cl 3 ] , Examples include ruthenium compounds having both a carbonyl ligand and a halogen ligand in the molecule, such as [Ru 3 (CO) 11 Cl] and [Ru 4 (CO) 13 Cl] . From the viewpoint of improving the reaction rate, [Ru (CO) 3 Cl 2 ] 2 and [RuCl 2 (CO) 2 ] n are more preferable.
 前記配位子を併せ持つルテニウム化合物は、RuCl、Ru(CO)12、RuCl(C12)、Ru(CO)(C)、Ru(CO)(C12)、およびRu(C10)(C12)等を前駆体化合物として使用し、ヒドロカルボキシル化又はヒドロエステル化反応の前又は反応中に、前記ルテニウム化合物を生成して、反応系に導入してもよい。 Ruthenium compounds having the above ligands are RuCl 3 , Ru 3 (CO) 12 , RuCl 2 (C 8 H 12 ), Ru (CO) 3 (C 8 H 8 ), Ru (CO) 3 (C 8 H). 12 ), and Ru (C 8 H 10 ) (C 8 H 12 ) or the like as a precursor compound to produce the ruthenium compound before or during the hydrocarboxylation or hydroesterification reaction. It may be introduced into the system.
 前記ルテニウム化合物の使用量は原料であるジシクロペンタジエン1当量に対して、好ましくは1/10000~1当量、より好ましくは1/1000~1/50当量である。製造コストを考えるとルテニウム化合物の使用量はより少ないほうが好ましいが、1/10000当量未満の場合は反応が極端に遅くなる傾向にある。また、1当量を超えても反応速度が速くなるわけではなく、製造コストのみが大きくなる傾向にある。 The amount of the ruthenium compound used is preferably 1/10000 to 1 equivalent, more preferably 1/1000 to 1/50 equivalent, relative to 1 equivalent of dicyclopentadiene as a raw material. Considering the production cost, it is preferable that the amount of the ruthenium compound used is smaller, but if it is less than 1/10000 equivalent, the reaction tends to become extremely slow. Moreover, even if it exceeds 1 equivalent, the reaction rate does not increase, but only the production cost tends to increase.
 本発明で使用可能なコバルト化合物は、特に制限はない。好適な化合物の具体例として、Co(CO)、Co(CO)、Co(CO)12などカルボニル配位子を持つコバルト化合物、酢酸コバルト、プロピオン酸コバルト、安息香酸コバルト、クエン酸コバルト等のカルボン酸化合物を配位子に持つコバルト化合物、リン酸コバルトなどが挙げられる。なかでも、反応率向上の観点から、Co(CO)、酢酸コバルト、クエン酸コバルトがより好ましい。 The cobalt compound that can be used in the present invention is not particularly limited. Specific examples of suitable compounds include cobalt compounds having a carbonyl ligand such as Co 2 (CO) 8 , Co (CO) 4 , and Co 4 (CO) 12 , cobalt acetate, cobalt propionate, cobalt benzoate, and citric acid. Examples thereof include cobalt compounds having a carboxylic acid compound such as cobalt as a ligand, and cobalt phosphate. Among these, from the viewpoint of improving the reaction rate, Co 2 (CO) 8 , cobalt acetate, and cobalt citrate are more preferable.
 前記コバルト化合物の使用量は、ルテニウム化合物1当量に対して1/100~10当量、好ましくは1/10~5当量である。前記ルテニウム化合物に対する前記コバルト化合物の比率が1/100より低くても、また10より高くても前記一般式(IV)で表されるトリシクロデセンモノカルボン酸誘導体の生成量は著しく低下する傾向にある。 The amount of the cobalt compound used is 1/100 to 10 equivalents, preferably 1/10 to 5 equivalents, relative to 1 equivalent of the ruthenium compound. Even if the ratio of the cobalt compound to the ruthenium compound is lower than 1/100 or higher than 10, the amount of the tricyclodecene monocarboxylic acid derivative represented by the general formula (IV) tends to be remarkably reduced. is there.
 本発明で使用可能なハロゲン化物塩は、塩化物イオン、臭化物イオンおよびヨウ化物イオン等のハロゲンイオンと、カチオンとから構成される化合物であればよく、特に限定されない。前記カチオンは、無機物イオンおよび有機物イオンのいずれであってもよい。また、前記ハロゲン化物塩は、分子内に1以上のハロゲンイオンを含んでもよい。 The halide salt that can be used in the present invention is not particularly limited as long as it is a compound composed of a halide ion such as chloride ion, bromide ion, and iodide ion, and a cation. The cation may be either an inorganic ion or an organic ion. Further, the halide salt may contain one or more halogen ions in the molecule.
 ハロゲン化物塩を構成する無機物イオンは、アルカリ金属およびアルカリ土類金属から選択される1種の金属イオンであってもよい。具体例として、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、カルシウム、ストロンチウムが挙げられる。 The inorganic ions constituting the halide salt may be one metal ion selected from alkali metals and alkaline earth metals. Specific examples include lithium, sodium, potassium, rubidium, cesium, calcium, and strontium.
 また、有機物イオンは、有機化合物から誘導される1価以上の有機基であってよい。一例として、アンモニウム、ホスホニウム、ピロリジニウム、ピリジウム、イミダゾリウム、およびイミニウムが挙げられ、これらイオンの水素原子はアルキルおよびアリール等の炭化水素基によって置換されていてもよい。特に限定するものではないが、好適な有機物イオンの具体例として、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、テトラペンチルアンモニウム、テトラヘキシルアンモニウム、テトラヘプチルアンモニウム、テトラオクチルアンモニウム、トリオクチルメチルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ベンジルトリブチルアンモニウム、テトラメチルホスホニウム、テトラエチルホスホニウム、テトラフェニルホスホニウム、ベンジルトリフェニルホスホニウム、ブチルメチルピロリジニウム、オクチルメチルピロリジニウム、ビス(トリフェニルホスフィン)イミニウムが挙げられる。これらのなかでも、反応率向上の観点から、ブチルメチルピロリジニウム、ビス(トリフェニルホスフィン)イミニウム、トリオクチルメチルアンモニウム等がより好ましい。 Further, the organic ion may be a monovalent or higher-valent organic group derived from an organic compound. Examples include ammonium, phosphonium, pyrrolidinium, pyridium, imidazolium, and iminium, and the hydrogen atom of these ions may be substituted with a hydrocarbon group such as alkyl and aryl. Although not particularly limited, specific examples of suitable organic ions include tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, tetrapentylammonium, tetrahexylammonium, tetraheptylammonium, tetraoctylammonium, and trioctyl. Methylammonium, benzyltrimethylammonium, benzyltriethylammonium, benzyltributylammonium, tetramethylphosphonium, tetraethylphosphonium, tetraphenylphosphonium, benzyltriphenylphosphonium, butylmethylpyrrolidinium, octylmethylpyrrolidinium, bis (triphenylphosphine) iminium Is mentioned. Among these, butylmethylpyrrolidinium, bis (triphenylphosphine) iminium, trioctylmethylammonium and the like are more preferable from the viewpoint of improving the reaction rate.
 本発明で使用するハロゲン化物塩は、固体の塩である必要はなく、室温付近または100℃以下の温度領域で液体となる、ハロゲン化物イオンを含むイオン性液体を用いてもよい。このようなイオン性液体に用いられるカチオンの具体例として、1-エチル-3-メチルイミダゾリウム、1-プロピル-3-メチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1-ペンチル-3-メチルイミダゾリウム、1-ヘキシル-3-メチルイミダゾリウム、1-ヘプチル-3-メチルイミダゾリウム、1-オクチル-3-メチルイミダゾリウム、1-デシル-3-メチルイミダゾリウム、1-ドデシル-3-メチルイミダゾリウム、1-テトラデシル-3-メチルイミダゾリウム、1-ヘキサデシル-3-メチルイミダゾリウム、1-オクタデシル-3-メチルイミダゾリウム、1-エチル-2,3-ジメチルイミダゾリウム、1-ブチル-2,3-ジメチルイミダゾリウム、1-ヘキシル-2,3-ジメチルイミダゾリウム、1-エチルピリジニウム、1-ブチルピジリニウム、1-ヘキシルピリジニウム、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-エチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-プロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-ブチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-ペンチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-ヘキシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-ヘプチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-オクチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機物イオンが挙げられる。本発明では、上述のハロゲン化物塩を単独で用いても、複数組み合わせて用いてもよい。 The halide salt used in the present invention does not need to be a solid salt, and an ionic liquid containing halide ions that becomes liquid near room temperature or in a temperature range of 100 ° C. or less may be used. Specific examples of cations used in such ionic liquids include 1-ethyl-3-methylimidazolium, 1-propyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-pentyl-3. -Methylimidazolium, 1-hexyl-3-methylimidazolium, 1-heptyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, 1-dodecyl-3 -Methylimidazolium, 1-tetradecyl-3-methylimidazolium, 1-hexadecyl-3-methylimidazolium, 1-octadecyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-butyl -2,3-dimethylimidazolium, 1-hexyl-2,3-dimethylimidazole Zorium, 1-ethylpyridinium, 1-butylpyridinium, 1-hexylpyridinium, 8-methyl-1,8-diazabicyclo [5.4.0] -7-undecene, 8-ethyl-1,8-diazabicyclo [ 5.4.0] -7-undecene, 8-propyl-1,8-diazabicyclo [5.4.0] -7-undecene, 8-butyl-1,8-diazabicyclo [5.4.0] -7 -Undecene, 8-pentyl-1,8-diazabicyclo [5.4.0] -7-undecene, 8-hexyl-1,8-diazabicyclo [5.4.0] -7-undecene, 8-heptyl-1 , 8-diazabicyclo [5.4.0] -7-undecene, 8-octyl-1,8-diazabicyclo [5.4.0] -7-undecene and the like. In the present invention, the above halide salts may be used alone or in combination.
 上述のハロゲン化物塩のうち、好適なハロゲン化物塩は、塩化物塩、臭化物塩、ヨウ化物塩であり、カチオンが有機物イオンである。特に限定するものではないが、本発明において好適なハロゲン化物塩の具体例として、ブチルメチルピロリジニウムクロリド、ビス(トリフェニルホスフィン)イミニウムアイオダイト、トリオクチルメチルアンモニウムクロリド等が挙げられる。 Among the halide salts described above, preferred halide salts are chloride salts, bromide salts, and iodide salts, and the cation is an organic ion. Although not particularly limited, specific examples of the halide salt suitable in the present invention include butylmethylpyrrolidinium chloride, bis (triphenylphosphine) iminium iodide, trioctylmethylammonium chloride and the like.
 ハロゲン化物塩の添加量は、例えば、ルテニウム化合物1当量に対して1~1000当量、好ましくは2~50当量である。1当量以上の添加量とすることによって、反応速度を効果的に高めることができる。一方、添加量が1000当量を超えると、添加量をさらに増加したとしても、反応促進のさらなる向上効果は得られない傾向がある。 The added amount of the halide salt is, for example, 1 to 1000 equivalents, preferably 2 to 50 equivalents, per 1 equivalent of the ruthenium compound. By setting the addition amount to 1 equivalent or more, the reaction rate can be effectively increased. On the other hand, when the addition amount exceeds 1000 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
 本発明に使用するトリシクロデカンモノメタノールモノカルボン酸誘導体を得るためのジシクロペンタジエンとギ酸化合物との反応は、ルテニウム化合物と、コバルト化合物と、ハロゲン化物塩とを含む特定の触媒系に、必要に応じて、塩基性化合物、フェノール化合物及び有機ハロゲン化合物から選ばれる少なくとも1種を追加することによって、前記触媒系による反応促進の効果をより高めることが可能である。 The reaction of dicyclopentadiene with a formic acid compound to obtain a tricyclodecane monomethanol monocarboxylic acid derivative for use in the present invention is necessary for a specific catalyst system containing a ruthenium compound, a cobalt compound, and a halide salt. Accordingly, it is possible to further enhance the effect of promoting the reaction by the catalyst system by adding at least one selected from a basic compound, a phenol compound, and an organic halogen compound.
 本発明で使用する塩基性化合物は、無機化合物であっても、有機化合物であってもよい。塩基性の無機化合物の具体例として、アルカリ金属およびアルカリ土類金属の炭酸塩、炭酸水素塩、水酸化物塩、アルコキシド等が挙げられる。塩基性の有機化合物の具体例として、一級アミン化合物、二級アミン化合物、三級アミン化合物、ピリジン化合物、イミダゾール化合物、キノリン化合物が挙げられる。上述の塩基性化合物のなかでも、反応促進効果の観点から、三級アミン化合物が好適である。本発明に使用可能である好適な三級アミン化合物の具体例として、トリアルキルアミン、N-アルキルピロリジン、キヌクリジン、およびトリエチレンジアミン等が挙げられる。 The basic compound used in the present invention may be an inorganic compound or an organic compound. Specific examples of the basic inorganic compound include alkali metal and alkaline earth metal carbonates, hydrogen carbonates, hydroxide salts, alkoxides, and the like. Specific examples of basic organic compounds include primary amine compounds, secondary amine compounds, tertiary amine compounds, pyridine compounds, imidazole compounds, and quinoline compounds. Among the above basic compounds, a tertiary amine compound is preferable from the viewpoint of the reaction promoting effect. Specific examples of suitable tertiary amine compounds that can be used in the present invention include trialkylamine, N-alkylpyrrolidine, quinuclidine, and triethylenediamine.
 塩基性化合物の添加量は、特に限定されるものではないが、例えば、ルテニウム化合物1当量に対して1~1000当量、好ましくは、2~200当量である。添加量を1当量以上とすることによって、促進効果の発現がより顕著になる傾向がある。また、添加量が1000当量を超えると、添加量をさらに増加したとしても、反応促進のさらなる向上効果は得られない傾向がある。 The amount of the basic compound added is not particularly limited, but is, for example, 1 to 1000 equivalents, preferably 2 to 200 equivalents, per 1 equivalent of the ruthenium compound. By making the addition amount 1 equivalent or more, the expression of the promoting effect tends to become more prominent. Moreover, when the addition amount exceeds 1000 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
 本発明で使用するフェノール化合物は、特に限定されない。使用可能なフェノール化合物の具体例として、フェノール、クレゾール、アルキルフェノール、メトキシフェノール、フェノキシフェノール、クロルフェノール、トリフルオロメチルフェノール、ヒドロキノンおよびカテコール等が挙げられる。 The phenol compound used in the present invention is not particularly limited. Specific examples of usable phenol compounds include phenol, cresol, alkylphenol, methoxyphenol, phenoxyphenol, chlorophenol, trifluoromethylphenol, hydroquinone and catechol.
 フェノール化合物の添加量は、特に限定されるものではないが、例えば、ルテニウム化合物1当量に対して1~1000当量、好ましくは、2~200当量である。添加量を1当量以上とすることによって、反応促進効果の発現がより顕著になる傾向がある。また、添加量が1000当量を超えると、添加量をさらに増加したとしても、反応促進のさらなる向上効果は得られない傾向がある。 The amount of the phenol compound added is not particularly limited, but is, for example, 1 to 1000 equivalents, preferably 2 to 200 equivalents, per 1 equivalent of the ruthenium compound. By making the addition amount 1 equivalent or more, the reaction promoting effect tends to be more pronounced. Moreover, when the addition amount exceeds 1000 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
 本発明で使用する有機ハロゲン化合物は、特に限定されるものではない。使用可能な有機ハロゲン化合物の具体例として、モノハロゲン化メタン、ジハロゲン化メタン、ジハロゲン化エタン、トリハロゲン化メタン、テトラハロゲン化メタン、ハロゲン化ベンゼン等が挙げられる。 The organic halogen compound used in the present invention is not particularly limited. Specific examples of usable organic halogen compounds include monohalogenated methane, dihalogenated methane, dihalogenated ethane, trihalogenated methane, tetrahalogenated methane, and halogenated benzene.
 有機ハロゲン化合物の添加量は、特に限定されるものではないが、例えば、ルテニウム化合物1当量に対して1~1000当量、好ましくは、2~200当量である。添加量を1当量以上とすることによって、反応促進効果の発現がより顕著になる傾向がある。また、添加量が1000当量を超えると、添加量をさらに増加したとしても、反応促進のさらなる向上効果は得られない傾向がある。 The amount of the organic halogen compound added is not particularly limited, but is, for example, 1 to 1000 equivalents, preferably 2 to 200 equivalents, per 1 equivalent of the ruthenium compound. By making the addition amount 1 equivalent or more, the reaction promoting effect tends to be more pronounced. Moreover, when the addition amount exceeds 1000 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
 本発明に使用するトリシクロデカンモノメタノールモノカルボン酸誘導体を得るためのジシクロペンタジエンとギ酸化合物との反応では、特に溶媒を用いることなく進行させることができる。しかし、必要に応じて、溶媒を使用してもよい。使用可能な溶媒は、原料として使用する化合物を溶解できればよく、特に限定されない。好適に使用できる溶媒の具体例として、n-ペンタン、n-ヘキサン、n-ヘプタン、シクロヘキサン、ベンゼン、トルエン、o-キシレン、p-キシレン、m-キシレン、エチルベンゼン、クメン、テトラヒドロフラン、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルイミダゾリジノン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル等が挙げられる。 In the reaction of dicyclopentadiene and formic acid compound for obtaining the tricyclodecane monomethanol monocarboxylic acid derivative used in the present invention, the reaction can proceed without using any solvent. However, if necessary, a solvent may be used. The solvent that can be used is not particularly limited as long as the compound used as a raw material can be dissolved. Specific examples of solvents that can be suitably used include n-pentane, n-hexane, n-heptane, cyclohexane, benzene, toluene, o-xylene, p-xylene, m-xylene, ethylbenzene, cumene, tetrahydrofuran, and N-methylpyrrolidone. Dimethylformamide, dimethylacetamide, dimethylimidazolidinone, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and the like.
 本発明に使用するトリシクロデカンモノメタノールモノカルボン酸誘導体を得るためのジシクロペンタジエンとギ酸化合物との反応は、80℃~200℃の温度範囲で実施することが好ましい。前記反応は、100℃~160℃の温度範囲で実施することがより好ましい。80℃以上の温度で反応を実施することによって、反応速度が速まり、反応を効率よく進めやすくなる。その一方で、反応温度を200℃以下に制御することによって、原料として使用するギ酸化合物の分解を抑制することができる。ギ酸化合物が分解すると、ジシクロペンタジエンに対するカルボキシル基又はエステル基の付加が達成されなくなるため、高すぎる反応温度は望ましくない。反応温度が、原料として使用するジシクロペンタジエン又はギ酸化合物のいずれかの沸点を超える場合には、耐圧容器内で反応を行う必要がある。反応の終結は、ガスクロマトグラフ、NMR等周知の分析技術を用いて確認することができる。また、反応は窒素やアルゴンなどの不活性ガス雰囲気下で実施することが好ましい。 The reaction of dicyclopentadiene and formic acid compound for obtaining the tricyclodecane monomethanol monocarboxylic acid derivative used in the present invention is preferably carried out in a temperature range of 80 ° C. to 200 ° C. The reaction is more preferably carried out in the temperature range of 100 ° C to 160 ° C. By carrying out the reaction at a temperature of 80 ° C. or higher, the reaction rate is increased and the reaction is facilitated efficiently. On the other hand, by controlling the reaction temperature to 200 ° C. or lower, decomposition of the formic acid compound used as a raw material can be suppressed. When the formic acid compound decomposes, the addition of a carboxyl group or ester group to dicyclopentadiene is not achieved, so an excessively high reaction temperature is undesirable. When the reaction temperature exceeds the boiling point of either dicyclopentadiene or formic acid compound used as a raw material, it is necessary to carry out the reaction in a pressure resistant vessel. The completion of the reaction can be confirmed using a well-known analytical technique such as gas chromatography or NMR. The reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon.
 前記式(III)で表されるジシクロペンタジエンとギ酸化合物の反応により得られる前記一般式(IV)で表されるトリシクロデセンモノカルボン酸誘導体は、前記式(III)で表されるジシクロペンタジエンに-C(O)ORを付加させたものであり、トリシクロ〔5.2.1.02,6〕デセ-3-エン骨格の8位又は9位に-C(O)ORが付加した構造をしている。 The tricyclodecene monocarboxylic acid derivative represented by the general formula (IV) obtained by the reaction of dicyclopentadiene represented by the formula (III) and a formic acid compound is dicyclopentane represented by the formula (III). -C (O) OR is added to pentadiene, and -C (O) OR is added to the 8-position or 9-position of the tricyclo [5.2.1.0 2,6 ] dec-3-ene skeleton. It has an added structure.
 本発明に使用するトリシクロデカンモノメタノールモノカルボン酸誘導体を得るために、前記方法により得られた下記式(IV)で表されるトリシクロデセンモノカルボン酸誘導体をヒドロホルミル化することにより、下記式(II)で表されるトリシクロデカンモノメタノールモノカルボン酸誘導体を得る。 In order to obtain the tricyclodecane monomethanol monocarboxylic acid derivative used in the present invention, the tricyclodecene monocarboxylic acid derivative represented by the following formula (IV) obtained by the above method is hydroformylated to obtain the following formula: A tricyclodecane monomethanol monocarboxylic acid derivative represented by (II) is obtained.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 前記一般式(IV)で表されるトリシクロデセンモノカルボン酸誘導体のヒドロホルミル化反応は、一般的に公知となっているヒドロホルミル化法、例えば、触媒講座第7巻、触媒学会編、講談社(1985)に記載されているような、コバルト、ルテニウム、ロジウム等の遷移金属錯体触媒を用いて、一酸化炭素と水素とを反応させてアルデヒドを付加した後、さらに水素化する方法、あるいは一酸化炭素と水素とを反応させて直接アルコールを付加する方法を用いることができる。 The hydroformylation reaction of the tricyclodecene monocarboxylic acid derivative represented by the general formula (IV) is a generally known hydroformylation method, for example, Catalyst Course Vol. 7, Catalytic Society, Kodansha (1985). ), Using a transition metal complex catalyst such as cobalt, ruthenium, rhodium, etc., and reacting carbon monoxide with hydrogen to add aldehyde, followed by further hydrogenation, or carbon monoxide A method of directly adding alcohol by reacting hydrogen with hydrogen can be used.
 一方で従来のヒドロホルミル化法は毒性の高い一酸化炭素を用いることから、作業性、安全性、反応性等の観点から好ましくないため、以下に述べる二酸化炭素と水素によるヒドロホルミル化法がより好ましい。その場合、二酸化炭素と水素は混合ガスの形で供給してもよく、また、別々に供給してもよい。混合ガスは、二酸化炭素と水素を主成分とする混合ガス(原料ガス)であり、二酸化炭素の含有量は、好ましくは10~95vol%、より好ましくは50~80vol%、水素の含有量は、好ましくは5~90vol%、より好ましくは20~50vol%である。水素の含有量が90vol%を超えると原料の水素化が起こりやすくなる傾向があり、5%未満では、反応速度が低下する傾向がある。原料ガス中に一酸化炭素が混入している必要は全くないが、混入していたとしても差し支えない。 On the other hand, since the conventional hydroformylation method uses highly toxic carbon monoxide, it is not preferable from the viewpoint of workability, safety, reactivity, and the like. Therefore, the hydroformylation method using carbon dioxide and hydrogen described below is more preferable. In that case, carbon dioxide and hydrogen may be supplied in the form of a mixed gas, or may be supplied separately. The mixed gas is a mixed gas (raw material gas) mainly composed of carbon dioxide and hydrogen. The carbon dioxide content is preferably 10 to 95 vol%, more preferably 50 to 80 vol%, and the hydrogen content is Preferably, it is 5 to 90 vol%, more preferably 20 to 50 vol%. When the hydrogen content exceeds 90 vol%, hydrogenation of the raw material tends to occur, and when it is less than 5%, the reaction rate tends to decrease. There is no need for carbon monoxide to be mixed in the raw material gas, but there is no problem even if it is mixed.
 ヒドロホルミル化反応の触媒系はルテニウム化合物を含むことが好ましく、使用可能なルテニウム化合物は、特に制限はない。好適な化合物の具体例として、[Ru(CO)Cl、[RuCl(CO)、(nは不特定の自然数である)、[Ru(CO)Cl、[Ru(CO)11Cl]、[Ru(CO)13Cl]等の、分子内にカルボニル配位子とハロゲン配位子とを合わせ持つルテニウム化合物等が挙げられ、なかでも、反応率向上の観点から、[Ru(CO)Cl、[RuCl(CO)がより好ましい。 The catalyst system for the hydroformylation reaction preferably contains a ruthenium compound, and the ruthenium compound that can be used is not particularly limited. Specific examples of suitable compounds include [Ru (CO) 3 Cl 2 ] 2 , [RuCl 2 (CO) 2 ] n , (n is an unspecified natural number), [Ru (CO) 3 Cl 3 ] , [Ru 3 (CO) 11 Cl] , [Ru 4 (CO) 13 Cl] −, etc., and ruthenium compounds having both a carbonyl ligand and a halogen ligand in the molecule. From the viewpoint of improving the reaction rate, [Ru (CO) 3 Cl 2 ] 2 and [RuCl 2 (CO) 2 ] n are more preferable.
 前記配位子を併せ持つルテニウム化合物は、RuCl、Ru(CO)12,RuCl(C12)、Ru(CO)(C)、Ru(CO)(C12)、およびRu(C10)(C12)等を前駆体化合物として使用し、ヒドロホルミル化の反応前又は反応中に、前記ルテニウム化合物を調製して、反応系に導入してもよい。 Ruthenium compounds having the above ligands are RuCl 3 , Ru 3 (CO) 12 , RuCl 2 (C 8 H 12 ), Ru (CO) 3 (C 8 H 8 ), Ru (CO) 3 (C 8 H). 12 ), Ru (C 8 H 10 ) (C 8 H 12 ) or the like as a precursor compound, and the ruthenium compound is prepared and introduced into the reaction system before or during the reaction of hydroformylation. Also good.
 前記ルテニウム化合物の使用量は原料である式(IV)表されるトリシクロデセンモノカルボン酸誘導体1当量に対して、好ましくは1/10000~1当量、より好ましくは1/1000~1/50当量である。製造コストを考えるとルテニウム化合物の使用量はより少ないほうが好ましいが、1/10000当量未満の場合は反応が極端に遅くなる傾向にある。また、1当量を超えても反応速度が速くなるわけではなく、製造コストのみが大きくなる傾向にある。 The amount of the ruthenium compound used is preferably 1/10000 to 1 equivalent, more preferably 1/1000 to 1/50 equivalent, relative to 1 equivalent of the tricyclodecene monocarboxylic acid derivative represented by the formula (IV) as the raw material. It is. Considering the production cost, it is preferable that the amount of the ruthenium compound used is smaller, but if it is less than 1/10000 equivalent, the reaction tends to become extremely slow. Moreover, even if it exceeds 1 equivalent, the reaction rate does not increase, but only the production cost tends to increase.
 本発明の式(IV)で表されるトリシクロデセンモノカルボン酸誘導体のヒドロホルミル化では、ルテニウム化合物を含む触媒系に必要に応じて、コバルト化合物、ハロゲン化物塩、フェノール化合物及び酸から選ばれる少なくとも一種を追加することによって、前記触媒系による反応促進の効果をより高めることが可能である。 In the hydroformylation of the tricyclodecene monocarboxylic acid derivative represented by the formula (IV) of the present invention, at least selected from a cobalt compound, a halide salt, a phenol compound and an acid, if necessary, for the catalyst system containing a ruthenium compound. By adding one kind, it is possible to further enhance the effect of promoting the reaction by the catalyst system.
 ヒドロホルミル化反応の触媒として使用可能なコバルト化合物は、特に制限はない。好適な化合物の具体例として、Co(CO)、HCo(CO)、Co(CO)12などカルボニル配位子を持つコバルト化合物、酢酸コバルト、プロピオン酸コバルト、安息香酸コバルト、クエン酸コバルト等のカルボン酸化合物を配位子に持つコバルト化合物、リン酸コバルトなどが挙げられる。なかでも、反応率向上の観点から、Co(CO)、酢酸コバルト、クエン酸コバルトがより好ましい。 The cobalt compound that can be used as a catalyst for the hydroformylation reaction is not particularly limited. Specific examples of suitable compounds include cobalt compounds having a carbonyl ligand such as Co 2 (CO) 8 , HCo (CO) 4 , and Co 4 (CO) 12 , cobalt acetate, cobalt propionate, cobalt benzoate, and citric acid. Examples thereof include cobalt compounds having a carboxylic acid compound such as cobalt as a ligand, and cobalt phosphate. Among these, from the viewpoint of improving the reaction rate, Co 2 (CO) 8 , cobalt acetate, and cobalt citrate are more preferable.
 前記コバルト化合物の使用量はルテニウム化合物1当量に対して1/100~10当量、好ましくは1/10~5当量である。前記ルテニウム化合物に対する前記コバルト化合物の比率が1/100より低くても、また10より高くてもトリシクロデカンモノメタノールモノカルボン酸誘導体の生成量は著しく低下する傾向にある。 The amount of the cobalt compound used is 1/100 to 10 equivalents, preferably 1/10 to 5 equivalents per 1 equivalent of the ruthenium compound. Even if the ratio of the cobalt compound to the ruthenium compound is lower than 1/100 or higher than 10, the production amount of the tricyclodecane monomethanol monocarboxylic acid derivative tends to be remarkably reduced.
 本発明で使用可能なハロゲン化物塩は、塩化物イオン、臭化物イオンおよびヨウ化物イオン等のハロゲンイオンと、カチオンとから構成される化合物であればよく、特に限定されない。前記カチオンは、無機物イオンおよび有機物イオンのいずれであってもよい。また、前記ハロゲン化物塩は、分子内に1以上のハロゲンイオンを含んでもよい。 The halide salt that can be used in the present invention is not particularly limited as long as it is a compound composed of a halide ion such as chloride ion, bromide ion, and iodide ion, and a cation. The cation may be either an inorganic ion or an organic ion. Further, the halide salt may contain one or more halogen ions in the molecule.
 ハロゲン化物塩を構成する無機物イオンは、アルカリ金属およびアルカリ土類金属から選択される1種の金属イオンであってもよい。具体例として、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、カルシウム、ストロンチウムが挙げられる。 The inorganic ions constituting the halide salt may be one metal ion selected from alkali metals and alkaline earth metals. Specific examples include lithium, sodium, potassium, rubidium, cesium, calcium, and strontium.
 また、有機物イオンは、有機化合物から誘導される1価以上の有機基であってよい。一例として、アンモニウム、ホスホニウム、ピロリジニウム、ピリジウム、イミダゾリウム、およびイミニウムが挙げられ、これらイオンの水素原子はアルキルおよびアリール等の炭化水素基によって置換されていてもよい。特に限定するものではないが、好適な有機物イオンの具体例として、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、テトラペンチルアンモニウム、テトラヘキシルアンモニウム、テトラヘプチルアンモニウム、テトラオクチルアンモニウム、トリオクチルメチルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ベンジルトリブチルアンモニウム、ヘキサデシルトリメチルアンモニウム、テトラメチルホスホニウム、テトラエチルホスホニウム、テトラフェニルホスホニウム、ベンジルトリフェニルホスホニウム、ブチルメチルピロリジニウム、オクチルメチルピロリジニウム、ビス(トリフェニルホスフィン)イミニウムが挙げられる。なかでも、反応率向上の観点から、ヘキサデシルトリメチルアンモニウムクロリド、ヘキサデシルトリメチルアンモニウムブロミド等の4級アンモニウム塩がより好ましい。 Further, the organic ion may be a monovalent or higher-valent organic group derived from an organic compound. Examples include ammonium, phosphonium, pyrrolidinium, pyridium, imidazolium, and iminium, and the hydrogen atom of these ions may be substituted with a hydrocarbon group such as alkyl and aryl. Although not particularly limited, specific examples of suitable organic ions include tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, tetrapentylammonium, tetrahexylammonium, tetraheptylammonium, tetraoctylammonium, and trioctyl. Methylammonium, benzyltrimethylammonium, benzyltriethylammonium, benzyltributylammonium, hexadecyltrimethylammonium, tetramethylphosphonium, tetraethylphosphonium, tetraphenylphosphonium, benzyltriphenylphosphonium, butylmethylpyrrolidinium, octylmethylpyrrolidinium, bis ( Triphenylphosphine) iminium . Of these, quaternary ammonium salts such as hexadecyltrimethylammonium chloride and hexadecyltrimethylammonium bromide are more preferable from the viewpoint of improving the reaction rate.
 本発明で使用可能なハロゲン化物塩は、固体の塩である必要はなく、室温付近または100℃以下の温度領域で液体となる、ハロゲン化物イオンを含むイオン性液体を用いてもよい。このようなイオン性液体に用いられるカチオンの具体例として、1-エチル-3-メチルイミダゾリウム、1-プロピル-3-メチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1-ペンチル-3-メチルイミダゾリウム、1-ヘキシル-3-メチルイミダゾリウム、1-ヘプチル-3-メチルイミダゾリウム、1-オクチル-3-メチルイミダゾリウム、1-デシル-3-メチルイミダゾリウム、1-ドデシル-3-メチルイミダゾリウム、1-テトラデシル-3-メチルイミダゾリウム、1-ヘキサデシル-3-メチルイミダゾリウム、1-オクタデシル-3-メチルイミダゾリウム、1-エチル-2,3-ジメチルイミダゾリウム、1-ブチル-2,3-ジメチルイミダゾリウム、1-ヘキシル-2,3-ジメチルイミダゾリウム、1-エチルピリジニウム、1-ブチルピジリニウム、1-ヘキシルピリジニウム、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-エチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-プロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-ブチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-ペンチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-ヘキシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-ヘプチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-オクチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機物イオンが挙げられる。本発明では、上述のハロゲン化物塩を単独で用いても、複数組み合わせて用いてもよい。 The halide salt that can be used in the present invention does not need to be a solid salt, and an ionic liquid containing halide ions that becomes liquid near room temperature or in a temperature range of 100 ° C. or lower may be used. Specific examples of cations used in such ionic liquids include 1-ethyl-3-methylimidazolium, 1-propyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-pentyl-3. -Methylimidazolium, 1-hexyl-3-methylimidazolium, 1-heptyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, 1-dodecyl-3 -Methylimidazolium, 1-tetradecyl-3-methylimidazolium, 1-hexadecyl-3-methylimidazolium, 1-octadecyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-butyl -2,3-dimethylimidazolium, 1-hexyl-2,3-dimethylimidazole Zorium, 1-ethylpyridinium, 1-butylpyridinium, 1-hexylpyridinium, 8-methyl-1,8-diazabicyclo [5.4.0] -7-undecene, 8-ethyl-1,8-diazabicyclo [ 5.4.0] -7-undecene, 8-propyl-1,8-diazabicyclo [5.4.0] -7-undecene, 8-butyl-1,8-diazabicyclo [5.4.0] -7 -Undecene, 8-pentyl-1,8-diazabicyclo [5.4.0] -7-undecene, 8-hexyl-1,8-diazabicyclo [5.4.0] -7-undecene, 8-heptyl-1 , 8-diazabicyclo [5.4.0] -7-undecene, 8-octyl-1,8-diazabicyclo [5.4.0] -7-undecene and the like. In the present invention, the above halide salts may be used alone or in combination.
 上述のハロゲン化物塩のうち、好適なハロゲン化物塩は、塩化物塩、臭化物塩、ヨウ化物塩であり、カチオンが有機物イオンである。特に限定するものではないが、本発明において好適なハロゲン化物塩の具体例として、ヘキサデシルトリメチルアンモニウムクロリド、ヘキサデシルトリメチルアンモニウムブロミド等が挙げられる。 Among the halide salts described above, preferred halide salts are chloride salts, bromide salts, and iodide salts, and the cation is an organic ion. Although not particularly limited, specific examples of the halide salt suitable in the present invention include hexadecyltrimethylammonium chloride, hexadecyltrimethylammonium bromide and the like.
 ハロゲン化物塩の添加量は、例えば、ルテニウム化合物1当量に対して1~1000当量、好ましくは2~50当量である。1当量以上の添加量とすることによって、反応速度を効果的に高めることができる。一方、添加量が1000当量を超えると、添加量をさらに増加したとしても、反応促進のさらなる向上効果は得られない傾向がある。 The added amount of the halide salt is, for example, 1 to 1000 equivalents, preferably 2 to 50 equivalents, per 1 equivalent of the ruthenium compound. By setting the addition amount to 1 equivalent or more, the reaction rate can be effectively increased. On the other hand, when the addition amount exceeds 1000 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
 本発明で使用するフェノール化合物は、特に限定されない。使用可能なフェノール化合物の具体例として、フェノール、クレゾール、アルキルフェノール、メトキシフェノール、フェノキシフェノール、クロルフェノール、トリフルオロメチルフェノール、ヒドロキノンおよびカテコール等が挙げられる。 The phenol compound used in the present invention is not particularly limited. Specific examples of usable phenol compounds include phenol, cresol, alkylphenol, methoxyphenol, phenoxyphenol, chlorophenol, trifluoromethylphenol, hydroquinone and catechol.
 フェノール化合物の添加量は、特に限定されるものではないが、例えば、ルテニウム化合物1当量に対して1~1000当量、好ましくは、2~200当量である。添加量を1当量以上とすることによって、反応促進効果の発現がより顕著になる傾向がある。また、添加量が1000当量を超えると、添加量をさらに増加したとしても、反応促進のさらなる向上効果は得られない傾向がある。 The amount of the phenol compound added is not particularly limited, but is, for example, 1 to 1000 equivalents, preferably 2 to 200 equivalents, per 1 equivalent of the ruthenium compound. By making the addition amount 1 equivalent or more, the reaction promoting effect tends to be more pronounced. Moreover, when the addition amount exceeds 1000 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
 本発明で使用可能な酸は、ルイスの定義に当てはまるあらゆる酸を用いることができる。この定義によれば、ある物質Aが別の物質Bより電子対を供与されるとき、Aを酸、Bを塩基と定義されるが、電子対を受容するAに当てはまるもの全てを用いることができる。 As the acid that can be used in the present invention, any acid that meets the definition of Lewis can be used. According to this definition, when a substance A is donated with an electron pair from another substance B, A is defined as an acid, and B is defined as a base, but all that apply to A accepting an electron pair must be used. it can.
 上述の酸としては、好ましくはAがプロトン供与体となる酸、即ちブレンステッド酸である。ブレンステッド酸としては、例えば、塩酸、硫酸、硝酸、リン酸、メチルリン酸、アルキルリン酸、フェニルリン酸、亜リン酸ジフェニル、フェニルホスホン酸、4-メトキシフェニルホスホン酸、4-メトキシフェニルホスホン酸ジエチル、フェニルホスフィン酸、ホウ酸、フェニルホウ酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、フェノール、タングステン酸、リンタングステン酸、及びギ酸、酢酸、トリフルオロ酢酸、プロピオン酸、酪酸に代表されるアルキルカルボン酸、安息香酸、フタル酸、サリチル酸に代表される芳香族カルボン酸等が用いられ、好ましくはリン酸、アルキルリン酸、フェニルリン酸、亜リン酸ジフェニル、ホスホン酸誘導体等のリンを含む酸である。 As the above-mentioned acid, A is preferably an acid that becomes a proton donor, that is, a Bronsted acid. Examples of Bronsted acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, methyl phosphoric acid, alkyl phosphoric acid, phenyl phosphoric acid, diphenyl phosphite, phenylphosphonic acid, 4-methoxyphenylphosphonic acid, 4-methoxyphenylphosphonic acid Diethyl, phenylphosphinic acid, boric acid, phenylboric acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, phenol, tungstic acid, phosphotungstic acid, and alkylcarboxylic acids represented by formic acid, acetic acid, trifluoroacetic acid, propionic acid, butyric acid Aromatic carboxylic acids such as acid, benzoic acid, phthalic acid, and salicylic acid are used. Preferably, phosphoric acid, alkyl phosphoric acid, phenyl phosphoric acid, diphenyl phosphite, phosphonic acid derivatives and the like are used. is there.
 酸の添加量は、例えば、ルテニウム化合物1当量に対して0.1~100当量、好ましくは1~10当量である。0.1当量以上の添加量とすることによって、反応速度を効果的に高めることができる。一方、添加量が100当量を超えると、添加量をさらに増加したとしても、反応促進のさらなる向上効果は得られない傾向がある。 The amount of acid added is, for example, 0.1 to 100 equivalents, preferably 1 to 10 equivalents per 1 equivalent of ruthenium compound. By setting the addition amount to be equal to or greater than 0.1 equivalent, the reaction rate can be effectively increased. On the other hand, when the addition amount exceeds 100 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of the reaction promotion cannot be obtained.
 ヒドロホルミル化は、100℃~200℃の温度範囲で実施することが好ましく、110℃~180℃の温度範囲で実施することがより好ましく、120℃~160℃の温度範囲で実施することが特に好ましい。100℃以上の温度で反応を実施することによって、反応速度が速まり、反応を効率よく進めやすくなる。その一方で、反応温度を200℃以下に制御することによって、一般式(IV)で表されるトリシクロデセンモノカルボン酸誘導体の不飽和結合の水素化を抑制することができる。一般式(IV)で表されるトリシクロデセンモノカルボン酸誘導体の不飽和結合の水素化が起こると、ヒドロホルミル化が達成されなくなるため、高すぎる反応温度は望ましくない。 The hydroformylation is preferably performed in a temperature range of 100 ° C. to 200 ° C., more preferably performed in a temperature range of 110 ° C. to 180 ° C., and particularly preferably performed in a temperature range of 120 ° C. to 160 ° C. . By carrying out the reaction at a temperature of 100 ° C. or higher, the reaction rate is increased and the reaction is facilitated efficiently. On the other hand, by controlling the reaction temperature to 200 ° C. or less, hydrogenation of the unsaturated bond of the tricyclodecene monocarboxylic acid derivative represented by the general formula (IV) can be suppressed. When hydrogenation of the unsaturated bond of the tricyclodecene monocarboxylic acid derivative represented by the general formula (IV) occurs, hydroformylation is not achieved, and thus a reaction temperature that is too high is undesirable.
 ヒドロホルミル化は、耐圧容器内で行う必要がある。反応の圧力は、1MPa~20MPaの範囲で実施することが好ましく、2MPa~15MPaの範囲で実施することがより好ましい。圧力が1MPa未満の場合は、反応が遅くなる傾向があり、20MPaを超えると、圧力をさらに増加したとしても、反応促進のさらなる向上効果は得られない傾向がある。 Hydroformylation must be performed in a pressure vessel. The reaction pressure is preferably in the range of 1 MPa to 20 MPa, more preferably in the range of 2 MPa to 15 MPa. When the pressure is less than 1 MPa, the reaction tends to be slow, and when it exceeds 20 MPa, even if the pressure is further increased, there is a tendency that a further improvement effect of the reaction promotion cannot be obtained.
 本発明に使用するトリシクロデカンモノメタノールモノカルボン酸誘導体を得るためのヒドロホルミル化反応は、必要に応じて、溶媒を存在させることもできる。使用可能な溶媒は、前記一般式(IV)で表されるトリシクロデセンモノカルボン酸誘導体を溶解できればよく、特に限定されない。好適に使用できる溶媒の具体例として、n-ペンタン、n-ヘキサン、n-ヘプタン、シクロヘキサン、ベンゼン、トルエン、o-キシレン、p-キシレン、m-キシレン、エチルベンゼン、クメン、テトラヒドロフラン、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルイミダゾリジノン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、γ-ブチロラクトン等が挙げられる。溶媒を使用する場合、その好ましい使用量は、前記一般式(IV)で表されるトリシクロデセンモノカルボン酸誘導体の濃度が10~1000質量%となる範囲である。 In the hydroformylation reaction for obtaining the tricyclodecane monomethanol monocarboxylic acid derivative used in the present invention, a solvent can be present if necessary. The solvent that can be used is not particularly limited as long as it can dissolve the tricyclodecene monocarboxylic acid derivative represented by the general formula (IV). Specific examples of solvents that can be suitably used include n-pentane, n-hexane, n-heptane, cyclohexane, benzene, toluene, o-xylene, p-xylene, m-xylene, ethylbenzene, cumene, tetrahydrofuran, and N-methylpyrrolidone. Dimethylformamide, dimethylacetamide, dimethylimidazolidinone, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, γ-butyrolactone, and the like. When a solvent is used, the preferred amount used is in a range where the concentration of the tricyclodecene monocarboxylic acid derivative represented by the general formula (IV) is 10 to 1000% by mass.
 本発明の一般式(II)で表されるトリシクロデカンモノメタノールモノカルボン酸誘導体を単独重合させて一般式(I)で表される脂環式ポリエステルとする方法には、特に制限が無く、例えば、溶媒の存在下あるいは非存在下、加熱して発生するアルコールを系外へ除去することで得ることができる。 The method for homopolymerizing the tricyclodecane monomethanol monocarboxylic acid derivative represented by the general formula (II) of the present invention into the alicyclic polyester represented by the general formula (I) is not particularly limited. For example, it can be obtained by removing alcohol generated by heating in the presence or absence of a solvent.
 重合温度は、40~220℃であることが好ましく、60~200℃であることがより好ましく、80~180℃であることが特に好ましい。重合温度が80℃未満だと、重合速度が極端に遅くなる傾向があり、220℃を超えると、重合反応中に、一般式(II)で表されるトリシクロデカンモノメタノールモノカルボン酸誘導体の分解が起こる可能性がある。反応時間は、バッチの規模、採用される反応条件により、適宜選択できる。 The polymerization temperature is preferably 40 to 220 ° C., more preferably 60 to 200 ° C., and particularly preferably 80 to 180 ° C. When the polymerization temperature is less than 80 ° C., the polymerization rate tends to be extremely slow, and when it exceeds 220 ° C., the tricyclodecane monomethanol monocarboxylic acid derivative represented by the general formula (II) is represented during the polymerization reaction. Decomposition can occur. The reaction time can be appropriately selected depending on the scale of the batch and the reaction conditions employed.
 重合には、触媒を使用することもできる。使用できる触媒としては、特に制限が無く、例えば、金属アルコキシドや塩基性金属塩などの塩基性物質であれば良く、中でも、アルカリ(土類)金属のアルコキシドを用いることが好ましく、リチウム、ナトリウム、カリウムのメトキシド、エトキシド、プロポキシドを用いるのがより好ましい。上記触媒の使用量は、原料であるトリシクロデカンモノメタノールモノカルボン酸誘導体0.01~10.0モル%であることが好ましく、0.03~7.0モル%であることがより好ましく、0.05~5.0モル%であることが特に好ましい。触媒の使用量が、0.01モル%未満だと、重合速度が極端に遅くなる傾向があり、10.0モル%を超えると、急激に重合が進行し、過剰な発熱が起こる可能性がある。 In the polymerization, a catalyst can also be used. The catalyst that can be used is not particularly limited, and may be any basic substance such as a metal alkoxide or a basic metal salt. Among them, an alkali (earth) metal alkoxide is preferably used, and lithium, sodium, More preferably, potassium methoxide, ethoxide, or propoxide is used. The amount of the catalyst used is preferably 0.01 to 10.0 mol%, more preferably 0.03 to 7.0 mol% of the tricyclodecane monomethanol monocarboxylic acid derivative as a raw material, It is particularly preferably 0.05 to 5.0 mol%. If the amount of the catalyst used is less than 0.01 mol%, the polymerization rate tends to be extremely slow, and if it exceeds 10.0 mol%, the polymerization proceeds rapidly, and excessive heat generation may occur. is there.
 重合反応は、無溶媒でも実施可能だが、必要に応じて、溶媒を使用することもできる。
使用可能な溶媒は、原料であるトリシクロデカンモノメタノールモノカルボン酸誘導体を溶解できるものであればよく、特に限定されない。好適に使用できる溶媒の具体例として、例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸ブチル、γ-ブチロラクトン等のエステル系溶媒、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルジエチレングリコールジエチルエーテル、トリエチレングリコールジエチルエーテル等のエーテル系溶媒、ブチルセロソルブアセテート、エチルセロソルブアセテート、メチルセロソルブアセテート等のセロソルブ系溶媒、トルエン、キシレン、p-シメン、1,2,3,4-テトラヒドロキシナフタレン等の芳香族系溶媒、テトラヒドロフラン、ジオキサン、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、スルホランなどが挙げられるが、コスト、作業性等を考慮すれば、無溶媒で行うのがより好ましい。
The polymerization reaction can be carried out without solvent, but a solvent can be used if necessary.
The solvent that can be used is not particularly limited as long as it can dissolve the raw material tricyclodecane monomethanol monocarboxylic acid derivative. Specific examples of solvents that can be suitably used include, for example, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, ester solvents such as ethyl acetate, butyl acetate, and γ-butyrolactone, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and diethylene glycol diethyl ether. , Ether solvents such as triethylene glycol diethyl ether, cellosolv solvents such as butyl cellosolve acetate, ethyl cellosolve acetate, methyl cellosolve acetate, fragrances such as toluene, xylene, p-cymene, 1,2,3,4-tetrahydroxynaphthalene, etc. Group solvents, tetrahydrofuran, dioxane, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetoa De, dimethylsulfoxide, sulfolane and the like, cost, considering the workability and the like, and more preferably carried out without solvent.
 以下、本発明を実施例によって詳細に説明するが、本発明の範囲は以下の実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the scope of the present invention is not limited by the following examples.
(合成例1)〔トリシクロデセンモノカルボン酸メチルの合成〕
 室温下、内容積50mlのステンレス製の加圧反応装置内で、ルテニウム化合物として[Ru(CO)Clを0.025mmol、コバルト化合物としてCo(CO)を0.025mmol、ハロゲン化物塩としてトリオクチルメチルアンモニウムクロリド0.5mmol、塩基性化合物としてトリエチルアミン 2.0mmolを混合した触媒系にジシクロペンタジエンを10.0mmol、ギ酸メチルを5.0ml加えた。次いで、窒素ガス0.5MPaで反応装置内をパージし、120℃で8時間保持した。その後、反応装置内を室温まで冷却し、放圧して、残存有機相の一部を抜き取り、ガスクロマトグラフを用いて分析した。分析結果によれば、上記式(IV)で表されるトリシクロデセンモノカルボン酸メチルが9.23mmol(ジシクロペンタジエン基準で収率92.3%)生成していた。ガスクロマトグラフ-質量分析計(GC-MS)を用いて分析した結果、得られたトリシクロデセンモノカルボン酸メチルは、8-メトキシカルボニル-トリシクロ〔5.2.1.02,6〕デセ-3-エンと9-メトキシカルボニル-トリシクロ〔5.2.1.02,6〕デセ-3-エンの混合物であることが分った。得られたトリシクロデセンモノカルボン酸メチルを減圧蒸留で単離した。本合成例の化学反応式を以下に示す。
(Synthesis Example 1) [Synthesis of methyl tricyclodecene monocarboxylate]
In a pressure reactor made of stainless steel having an internal volume of 50 ml at room temperature, 0.025 mmol of [Ru (CO) 3 Cl 2 ] 2 as a ruthenium compound, 0.025 mmol of Co 2 (CO) 8 as a cobalt compound, halogen 10.0 mmol of dicyclopentadiene and 5.0 ml of methyl formate were added to a catalyst system in which 0.5 mmol of trioctylmethylammonium chloride as a chloride salt and 2.0 mmol of triethylamine as a basic compound were mixed. Next, the inside of the reaction apparatus was purged with nitrogen gas of 0.5 MPa and held at 120 ° C. for 8 hours. Thereafter, the inside of the reaction apparatus was cooled to room temperature, released, a part of the remaining organic phase was extracted, and analyzed using a gas chromatograph. According to the analysis results, 9.23 mmol of methyl tricyclodecene monocarboxylate represented by the above formula (IV) was produced (yield 92.3% based on dicyclopentadiene). As a result of analysis using a gas chromatograph-mass spectrometer (GC-MS), the obtained methyl tricyclodecene monocarboxylate was 8-methoxycarbonyl-tricyclo [5.2.1.0 2,6 ] decene. It was found to be a mixture of -3-ene and 9-methoxycarbonyl-tricyclo [5.2.1.0 2,6 ] dec-3-en. The resulting methyl tricyclodecene monocarboxylate was isolated by distillation under reduced pressure. The chemical reaction formula of this synthesis example is shown below.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(合成例2)〔トリシクロデカンモノメタノールモノカルボン酸メチルの合成〕
 内容積50mlのステンレス製の加圧反応装置に室温でルテニウム化合物としてRu(CO)Clを0.05mmol、コバルト化合物としてCo(CO)を0.05mmol、ハロゲン化物塩としてヘキサデシルトリメチルアンモニウムクロリドを2.5mmol、酸として亜リン酸ジフェニルを0.25mmolを混合した触媒系に、別途合成したトリシクロデセンモノカルボン酸メチルを10.0mmol、溶媒としてトルエンを10.0ml加え、撹拌して溶解させたのち、二酸化炭素を4MPa、水素を4MPa圧入し、140℃で15時間保持した。その後、反応装置内を室温まで冷却し、放圧して残存有機相の一部を抜き取り、ガスクロマトグラフにて分析した。分析結果によれば、上記式(II)で表されるトリシクロデカンモノメタノールモノカルボン酸メチルが7.45mmol(トリシクロデセンモノカルボン酸メチル基準で収率74.5%)生成していた。ガスクロマトグラフ-質量分析計(GC-MS)を用いて分析した結果、得られたトリシクロデカンモノメタノールモノカルボン酸メチルは、4-ヒドロキシメチル-8-メトキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン、3-ヒドロキシメチル-8-メトキシカルボニル-トリシクロ〔5.2.1.02,6〕デカン及び3-ヒドロキシメチル-9-メトキシカルボニル-トリシクロ〔5.2.1.02,6〕デカンの混合物であることが分った。本合成例の化学反応式を以下に示す。
(Synthesis Example 2) [Synthesis of methyl tricyclodecane monomethanol monocarboxylate]
In a pressure reactor made of stainless steel having an internal volume of 50 ml, 0.05 mmol of Ru 2 (CO) 6 Cl 4 as a ruthenium compound, 0.05 mmol of Co 2 (CO) 8 as a cobalt compound, and hexadecyl as a halide salt at room temperature To a catalyst system in which 2.5 mmol of trimethylammonium chloride and 0.25 mmol of diphenyl phosphite as an acid were mixed, 10.0 mmol of methyl tricyclodecene monocarboxylate synthesized separately and 10.0 ml of toluene as a solvent were added and stirred. After being dissolved, 4 MPa of carbon dioxide and 4 MPa of hydrogen were injected and held at 140 ° C. for 15 hours. Thereafter, the inside of the reaction apparatus was cooled to room temperature, released, a part of the remaining organic phase was extracted, and analyzed by a gas chromatograph. According to the analysis results, 7.45 mmol of methyl tricyclodecane monomethanol monocarboxylate represented by the above formula (II) was produced (yield 74.5% based on methyl tricyclodecene monocarboxylate). As a result of analysis using a gas chromatograph-mass spectrometer (GC-MS), the resulting methyl tricyclodecane monomethanol monocarboxylate was 4-hydroxymethyl-8-methoxycarbonyl-tricyclo [5.2.1. 0 2,6 ] decane, 3-hydroxymethyl-8-methoxycarbonyl-tricyclo [5.2.1.0 2,6 ] decane and 3-hydroxymethyl-9-methoxycarbonyl-tricyclo [5.2.1. 0 2,6 ] decane was found to be a mixture. The chemical reaction formula of this synthesis example is shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 得られたトリシクロデカンモノメタノールモノカルボン酸メチルを減圧蒸留によって単離し、H-NMRスペクトルおよびIRスペクトルを測定した。なお、H-NMRスペクトルは、試料をジメチルスルホキシド(DMSO-d6)に溶かして溶液とし、φ5mmの試料管に入れて、BRUKER社製、400MHz核磁気共鳴装置「AV400M」を用いて測定した。また、IRスペクトルは、フーリエ変換赤外分光光度計(日本電子製JIR-6500)を用いて測定した。 The obtained methyl tricyclodecane monomethanol monocarboxylate was isolated by distillation under reduced pressure, and 1 H-NMR spectrum and IR spectrum were measured. The 1 H-NMR spectrum was measured by dissolving a sample in dimethyl sulfoxide (DMSO-d6) to prepare a solution, putting it in a φ5 mm sample tube, and using a 400 MHz nuclear magnetic resonance apparatus “AV400M” manufactured by BRUKER. The IR spectrum was measured using a Fourier transform infrared spectrophotometer (JIR-6500, manufactured by JEOL Ltd.).
 H-NMRスペクトルを図1に示す。それぞれのプロトンが下記に示すように帰属された。解析の便宜上、下記式で表される4-ヒドロキシメチル-8-メトキシカルボニル-トリシクロ〔5.2.1.02,6〕デカンを例として示す。 The 1 H-NMR spectrum is shown in FIG. Each proton was assigned as shown below. For convenience of analysis, 4-hydroxymethyl-8-methoxycarbonyl-tricyclo [5.2.1.0 2,6 ] decane represented by the following formula is shown as an example.
 H-NMR分析の結果(図1)、それぞれのプロトンが下記に示すように帰属された。
Figure JPOXMLDOC01-appb-C000013
プロトン(1):2.1ppm付近のピーク
プロトン(2):2.4ppm付近のピーク
プロトン(3):1.2ppm付近及び1.7ppm付近のピーク
プロトン(4):2.3ppm付近のピーク
プロトン(5):1.2ppm付近及び1.8ppm付近のピーク
プロトン(6):2.6ppm付近のピーク
プロトン(7):2.1ppm付近のピーク
プロトン(8):1.9ppm付近のピーク
プロトン(9):0.9ppm付近及び1.7ppm付近のピーク
プロトン(10):1.4~1.5ppm付近のピーク
プロトン(11):3.2ppm付近のピーク
プロトン(12):4.4ppm付近のピーク
プロトン(13):3.6ppm付近のピーク
As a result of 1 H-NMR analysis (FIG. 1), each proton was assigned as shown below.
Figure JPOXMLDOC01-appb-C000013
Proton (1): peak proton near 2.1 ppm (2): peak proton near 2.4 ppm (3): peak proton near 1.2 ppm and peak proton near 1.7 ppm (4): peak proton near 2.3 ppm (5): Peak protons near 1.2 ppm and 1.8 ppm (6): Peak protons near 2.6 ppm (7): Peak protons near 2.1 ppm (8): Peak protons near 1.9 ppm ( 9): Peak protons near 0.9 ppm and 1.7 ppm (10): Peak protons near 1.4 to 1.5 ppm (11): Peak protons near 3.2 ppm (12): Around 4.4 ppm Peak proton (13): peak near 3.6 ppm
 また、トリシクロデカン部分のプロトン(1)~(10)/ヒドロキシメチル基のプロトン及び(11)/ヒドロキシメチル基のプロトン(12)/メトキシカルボニル基のプロトン(13)の積分強度比は、13.93/2.00/1.04/3.08(理論値:14/2/1/3)であり、得られたトリシクロデカンモノメタノールモノカルボン酸メチルは、上記式(V)で表される構造をしていることが確認できた。 The integral intensity ratio of protons (1) to (10) / hydroxymethyl group and (11) / hydroxymethyl group proton (12) / methoxycarbonyl group proton (13) in the tricyclodecane moiety is 13 .93 / 2.00 / 1.04 / 3.08 (theoretical value: 14/2/1/3), and the obtained methyl tricyclodecane monomethanol monocarboxylate is represented by the above formula (V). It has been confirmed that it has a structure.
 また、IRスペクトルを図2に示す。トリシクロデカン部分のメチレン基及びメチン基のピークが800~1450cm-1付近に、ヒドロキシメチル基に起因するメチレン基のピークが1465cm-1付近に、ヒドロキシメチル基に起因する水酸基のピークがブロードで3400cm-1付近に、メトキシカルボニル基に起因するカルボニル基のピークが1760cm-1付近に、メトキシカルボニル基に起因するメチル基のピークが2870cm-1及び2960cm-1付近に確認できた。 The IR spectrum is shown in FIG. Near methylene group and peaks 800 ~ 1450 cm methine groups -1 tricyclodecane moiety, the peak of the methylene groups resulting from the hydroxymethyl group is in the vicinity of 1465Cm -1, a peak of hydroxyl group due to the hydroxymethyl group with broad 3400cm around -1, a peak of carbonyl group resulting from the methoxycarbonyl group is in the vicinity of 1760 cm -1, the peak of methyl groups attributed to a methoxycarbonyl group was confirmed around 2870Cm -1 and 2960 cm -1.
合成例3〔トリシクロデカンジメタノールの合成〕
 内容積50mlのステンレス製加圧反応装置に室温でルテニウム化合物としてRu(CO)12を0.1mmol、ハロゲン化物塩としてビス(トリフェニルホスフィン)イミニウムクロリドを0.5mmol、酸としてフェニルリン酸を0.5mmol、原料有機化合物としてジシクロペンタジエンを5.0mmol、有機溶媒としてトルエンを10.0mL入れ、撹拌して溶解させたのち、二酸化炭素を4MPa、水素を4MPaを撹拌しつつ圧入し、140℃で10時間保持した。その後反応装置を室温まで冷却し、放圧して残存有機相を抜き取り、ガスクロマトグラフにて分析した。分析結果によれば、トリシクロデカンジメタノールが3.73mmol(ジシクロペンタジエン基準で収率74.6%)生成していた。本合成例の化学反応式を以下に示す。
Synthesis Example 3 [Synthesis of tricyclodecane dimethanol]
In a stainless steel pressure reactor with an internal volume of 50 ml, 0.1 mmol of Ru 3 (CO) 12 as a ruthenium compound, 0.5 mmol of bis (triphenylphosphine) iminium chloride as a halide salt, and phenylphosphoric acid as an acid at room temperature 0.5 mmol, 5.0 mmol of dicyclopentadiene as a raw material organic compound, 10.0 mL of toluene as an organic solvent, stirred and dissolved, and then injected while stirring 4 MPa of carbon dioxide and 4 MPa of hydrogen, Hold at 140 ° C. for 10 hours. Thereafter, the reaction apparatus was cooled to room temperature, released, and the remaining organic phase was extracted and analyzed by a gas chromatograph. According to the analysis result, 3.73 mmol (yield 74.6% based on dicyclopentadiene) of tricyclodecane dimethanol was produced. The chemical reaction formula of this synthesis example is shown below.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(実施例1)〔脂環式ポリエステルの作製〕
 攪拌機、窒素導入管及び冷却管を備えた10mlフラスコに、合成例2で得られたトリシクロデカンモノメタノールモノカルボン酸メチル5g及びチタンテトライソプロポキシド0.5gを仕込み、130℃のオイルバス中で6時間撹拌し、数平均分子量が30,000のトリシクロデカン骨格を持つポリエステルを得た。
(Example 1) [Production of alicyclic polyester]
A 10 ml flask equipped with a stirrer, a nitrogen introducing tube and a cooling tube was charged with 5 g of methyl tricyclodecane monomethanol monocarboxylate obtained in Synthesis Example 2 and 0.5 g of titanium tetraisopropoxide and placed in an oil bath at 130 ° C. And a polyester having a tricyclodecane skeleton having a number average molecular weight of 30,000 was obtained.
 得られたトリシクロデカン骨格を持つポリエステルのガラス転移温度(Tg)及び熱分解開始温度(5%質量減少温度、Td)を下記条件で測定した。
結果を表1に示す。
(1)ガラス転移温度(Tg)
示差走査熱量計((株)リガク製 8230型 DSC)で測定した。
昇温速度 :5℃/min
雰 囲 気:空気
(2)熱分解開始温度(5%質量減少温度、Td
示差熱天秤(セイコー電子(株)製 5200型 TG-DTA)で測定した。
昇温速度 :5℃/min
雰 囲 気:空気
The obtained polyester having a tricyclodecane skeleton was measured for the glass transition temperature (Tg) and the thermal decomposition initiation temperature (5% mass reduction temperature, Td 5 ) under the following conditions.
The results are shown in Table 1.
(1) Glass transition temperature (Tg)
It measured with the differential scanning calorimeter (Rigaku Corporation 8230 type DSC).
Temperature increase rate: 5 ° C / min
Atmosphere: Air (2) Thermal decomposition start temperature (5% mass reduction temperature, Td 5 )
It was measured with a differential thermal balance (Seiko Electronics Co., Ltd. model 5200 TG-DTA).
Temperature increase rate: 5 ° C / min
Atmosphere: Air
 また、得られたトリシクロデカン骨格を持つポリエステルの各波長における光線透過率を、日本分光(株)製 V-570型UV/VISスペクトロフォトメーターで測定した。評価結果をまとめて表1に示す。 Further, the light transmittance at each wavelength of the obtained polyester having a tricyclodecane skeleton was measured with a V-570 type UV / VIS spectrophotometer manufactured by JASCO Corporation. The evaluation results are summarized in Table 1.
(比較例1)〔ポリエステルの作製〕
 攪拌機、窒素導入管及び冷却管を備えた10mlフラスコに、合成例3で得られたトリシクロデカンジメタノール2.94g(0.015モル)、イソフタル酸ジメチル2.91g(0.015モル)及びチタンテトライソプロポキシド0.5gを仕込み、130℃のオイルバス中で6時間撹拌し、数平均分子量が28,000のトリシクロデカン骨格を持つポリエステルを得た。
(Comparative Example 1) [Production of polyester]
In a 10 ml flask equipped with a stirrer, a nitrogen introducing tube and a cooling tube, 2.94 g (0.015 mol) of tricyclodecane dimethanol obtained in Synthesis Example 3, 2.91 g (0.015 mol) of dimethyl isophthalate and 0.5 g of titanium tetraisopropoxide was charged and stirred in an oil bath at 130 ° C. for 6 hours to obtain a polyester having a tricyclodecane skeleton having a number average molecular weight of 28,000.
 得られたトリシクロデカン骨格を持つポリエステルの特性を、実施例1と同様に測定した。結果をまとめて表1に示す。 The properties of the obtained polyester having a tricyclodecane skeleton were measured in the same manner as in Example 1. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表1より、実施例1においては、ガラス転移温度及び熱分解温度の双方とも比較例1よりも高く、本発明の脂環式ポリエステルは耐熱性が高いことが分かる。また、実施例1は光線透過率がいずれの波長においても100%であり優れた透明性を示した。つまり、本発明の脂環式ポリエステルは、耐熱性及び透明性の双方とも優れていることが確認できた。 Table 1 shows that in Example 1, both the glass transition temperature and the thermal decomposition temperature are higher than those in Comparative Example 1, and the alicyclic polyester of the present invention has high heat resistance. In addition, Example 1 showed excellent transparency with a light transmittance of 100% at any wavelength. That is, it was confirmed that the alicyclic polyester of the present invention was excellent in both heat resistance and transparency.

Claims (2)

  1.  下記一般式(I)で表される構造単位を有する脂環式ポリエステル。
    Figure JPOXMLDOC01-appb-C000001
    An alicyclic polyester having a structural unit represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000001
  2.  下記一般式(II)で表されるトリシクロデカンモノメタノールモノカルボン酸誘導体を単独重合させることを特徴とする、請求項1に記載の脂環式ポリエステルの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (但し、式(II)中、Rは、水素原子、炭素数1~5のアルキル基、ビニル基、又はベンジル基を示す)
    The method for producing an alicyclic polyester according to claim 1, wherein a tricyclodecane monomethanol monocarboxylic acid derivative represented by the following general formula (II) is homopolymerized.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (II), R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.)
PCT/JP2011/066209 2010-09-14 2011-07-15 Alicyclic polyester and production method therefor WO2012035875A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012533904A JPWO2012035875A1 (en) 2010-09-14 2011-07-15 Alicyclic polyester and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-205669 2010-09-14
JP2010205669 2010-09-14

Publications (1)

Publication Number Publication Date
WO2012035875A1 true WO2012035875A1 (en) 2012-03-22

Family

ID=45831350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066209 WO2012035875A1 (en) 2010-09-14 2011-07-15 Alicyclic polyester and production method therefor

Country Status (3)

Country Link
JP (1) JPWO2012035875A1 (en)
TW (1) TW201231493A (en)
WO (1) WO2012035875A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016153018A1 (en) * 2015-03-25 2016-09-29 三菱瓦斯化学株式会社 Bifunctional compound having norbornane backbone, and method for producing same
JP2019100927A (en) * 2017-12-05 2019-06-24 キヤノン株式会社 Resin identification device, resin identification system, and resin selection system
WO2019194117A1 (en) * 2018-04-04 2019-10-10 三菱瓦斯化学株式会社 Polyester resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240662A (en) * 2000-02-29 2001-09-04 Daicel Chem Ind Ltd Functional polyester polymer and method for producing the same
JP2001240661A (en) * 2000-02-29 2001-09-04 Daicel Chem Ind Ltd Functional polyester polymer and method for producing the same
JP2001240660A (en) * 2000-02-29 2001-09-04 Daicel Chem Ind Ltd New polyester polymer and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240662A (en) * 2000-02-29 2001-09-04 Daicel Chem Ind Ltd Functional polyester polymer and method for producing the same
JP2001240661A (en) * 2000-02-29 2001-09-04 Daicel Chem Ind Ltd Functional polyester polymer and method for producing the same
JP2001240660A (en) * 2000-02-29 2001-09-04 Daicel Chem Ind Ltd New polyester polymer and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016153018A1 (en) * 2015-03-25 2016-09-29 三菱瓦斯化学株式会社 Bifunctional compound having norbornane backbone, and method for producing same
JP6041180B1 (en) * 2015-03-25 2016-12-07 三菱瓦斯化学株式会社 Bifunctional compound having norbornane skeleton and method for producing the same
KR101820394B1 (en) 2015-03-25 2018-01-19 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Bifunctional compound having norbornane backbone, and method for producing same
US10246404B2 (en) 2015-03-25 2019-04-02 Mitsubishi Gas Chemical Company, Inc. Bifunctional compound having norbornane skeleton and production method therefor
JP2019100927A (en) * 2017-12-05 2019-06-24 キヤノン株式会社 Resin identification device, resin identification system, and resin selection system
WO2019194117A1 (en) * 2018-04-04 2019-10-10 三菱瓦斯化学株式会社 Polyester resin composition

Also Published As

Publication number Publication date
TW201231493A (en) 2012-08-01
JPWO2012035875A1 (en) 2014-02-03

Similar Documents

Publication Publication Date Title
WO2012035874A1 (en) Polyester having norbornane backbone, and method for producing same
JP5586030B2 (en) Method for producing tricyclodecane monomethanol monocarboxylic acid derivative
US20120238781A1 (en) Modified naphthalene formaldehyde resin, tricyclodecane skeleton-containing naphthol compound and ester compound
WO2012035875A1 (en) Alicyclic polyester and production method therefor
JP5536784B2 (en) Tricyclodecane monomethanol monocarboxylic acid and its derivatives
JP5532123B2 (en) Polyamideimide having norbornane skeleton and process for producing the same
JP5811753B2 (en) Method for producing norbornane skeleton-containing polyamide
JP5790386B2 (en) Method for producing norbornane skeleton-containing polyamide
JP5590117B2 (en) Process for producing polyamide having norbornane skeleton and polyamide having norbornane skeleton obtained thereby
JP5556301B2 (en) Polyamide having norbornane skeleton and method for producing the same
WO2012141313A1 (en) Method for producing norbornane dicarboxylic acid ester
JP2012240981A (en) Dihydrodiester of bisnadimide
JP5796416B2 (en) Process for producing polyamideimide containing norbornane skeleton
JP2013079350A (en) Polyamide containing norbornane skeleton having high exo isomer ratio
WO2011121847A1 (en) Production method for polyamideimide having nadimide skeleton
JP2012240980A (en) Dihydrodiester of bisnadimide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824884

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012533904

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11824884

Country of ref document: EP

Kind code of ref document: A1