TW201231493A - Alicyclic polyester and production method therefor - Google Patents

Alicyclic polyester and production method therefor Download PDF

Info

Publication number
TW201231493A
TW201231493A TW100125624A TW100125624A TW201231493A TW 201231493 A TW201231493 A TW 201231493A TW 100125624 A TW100125624 A TW 100125624A TW 100125624 A TW100125624 A TW 100125624A TW 201231493 A TW201231493 A TW 201231493A
Authority
TW
Taiwan
Prior art keywords
compound
reaction
group
acid
polyester
Prior art date
Application number
TW100125624A
Other languages
Chinese (zh)
Inventor
Hiroyuki Kawakami
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of TW201231493A publication Critical patent/TW201231493A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

Provided is an alicyclic polyester with high temperature resistance excellent in heat-resisting property and transparency. The alicyclic polyester has a structural unit represented by general formula (I).

Description

201231493 六、發明說明: 【發明所屬之技術領域】 本發明係關於以半導體•液晶用電子零件、光纖、光 學透鏡等爲代表之光學材料,以及顯示器相關材料、醫療 用材料所用之脂環式聚酯及其製造方法。 【先前技術】 各種聚酯樹脂由於可藉由各種成形方法等而成形爲薄 膜、薄片、異形材、纖維、管體、容器等,故已在廣泛領 域中使用。最常被使用之聚酯爲以對苯二甲酸或間苯二甲 酸等芳香族羧酸作爲原料之芳香族聚酯,該等由於含有芳 香族基故耐熱性、強韌性等優異。 然而’近年來’半導體雷射光源朝低波長區域化進展 ,爲了使用藍光雷射、紫外光雷射等作爲光信號之光源, 而要求光學材料或電子零件等所使用之聚合物材料之透明 化’但前述芳香族聚酯由於耐紫外線性、光線透射率等均 差,故難以使用於該等領域中。 具有脂環式構造之聚酯由於耐熱性、透明性、耐水性 優異’故一部份已開始使用於前述要求透明性之領域中。 脂環式聚酯之製造方法已有多種提案使用如1,4-環己烷二 甲醇之飽和環狀脂肪族一級二醇之方法(參照專利文獻1 )’但飽和環狀脂肪族一級二醇由於係在羥基與飽和環狀 脂肪族基之間插入伸烷基,故所得脂環式聚酯樹脂具有脂 肪族性’於環己烷環架構者之耐熱性低,無法獲得作爲前 -5- 201231493 述用途之充分特性。 又,爲了提高脂環式聚酯之耐熱性,已提案有由以 4,4’·雙環己基二羧酸作爲主成分之二羧酸成分,與脂環式 二醇所成之脂環式聚酯(參照專利文獻2 ),具有降冰片 烷架構之聚酯(參照專利文獻3〜5)、具有三環癸烷架構 之聚酯(參照專利文獻6〜8 ),但耐熱性仍稱不上充分。 〔先前技術文獻〕 〔專利文獻〕 專利文獻1 :特表2007-517926號公報 專利文獻2:特開2006-1 1 1 794號公報 專利文獻3 :特開200 1 -643 72號公報 專利文獻4:特開200 1 -643 73號公報 專利文獻5 :特開2001-643 7 4號公報 專利文獻6:日本專利第44205 1 3號公報 專利文獻7:特開200 1 -240661號公報 專利文獻8 :特開2001-240662號公報 【發明內容】 〔發明欲解決之課題〕 本發明係鑑於以上之過去問題點而完成者,其課題係 提供一種耐熱性及透明性二者均優異之高耐熱脂環式聚酯 及其製造方法。 〔解決課題之手段〕 -6 - 201231493 爲解決前述課題之手段如下。 (ο —種脂環式聚酯,其具有以下述通式(°表示 之構造單位, [化1]201231493 6. EMBODIMENT OF THE INVENTION The present invention relates to an optical material typified by electronic components for semiconductors, liquid crystals, optical fibers, optical lenses, and the like, and alicyclic polymerizations for display-related materials and medical materials. Ester and its method of manufacture. [Prior Art] Various polyester resins have been used in a wide range of fields because they can be formed into a film, a sheet, a profiled material, a fiber, a tube, a container, or the like by various molding methods and the like. The polyester which is most frequently used is an aromatic polyester which is an aromatic carboxylic acid such as terephthalic acid or isophthalic acid, and is excellent in heat resistance, toughness, and the like because it contains an aromatic group. However, in recent years, semiconductor laser light sources have progressed toward low-wavelength regions, and in order to use blue lasers, ultraviolet lasers, and the like as light sources of light signals, transparency of polymer materials used for optical materials or electronic components is required. 'But the aromatic polyester is difficult to use in these fields because of poor UV resistance, light transmittance, and the like. The polyester having an alicyclic structure is excellent in heat resistance, transparency, and water resistance, and has been used in the field of the above-mentioned required transparency. A method for producing an alicyclic polyester has been proposed in various ways using a saturated cyclic aliphatic primary diol such as 1,4-cyclohexanedimethanol (refer to Patent Document 1) 'but a saturated cyclic aliphatic primary diol Since the alkyl group is inserted between the hydroxyl group and the saturated cyclic aliphatic group, the resulting alicyclic polyester resin has an aliphaticity. The heat resistance of the cyclohexane ring structure is low, and it cannot be obtained as the former-5- 201231493 The full characteristics of the use. Further, in order to improve the heat resistance of the alicyclic polyester, an alicyclic polymer formed from a dicarboxylic acid component having 4,4'-dicyclohexyldicarboxylic acid as a main component and an alicyclic diol has been proposed. Ester (see Patent Document 2), a polyester having a norbornane structure (see Patent Documents 3 to 5), and a polyester having a tricyclodecane structure (see Patent Documents 6 to 8), but heat resistance is still not known. full. [Prior Art Document] [Patent Document] Patent Document 1: JP-A-2007-517926 Patent Document 2: JP-A-2006-1 1 794 Patent Document 3: JP-A-200-643 Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. The present invention has been made in view of the above problems, and a problem is to provide a high heat-resistant grease excellent in both heat resistance and transparency. Ring polyester and its method of manufacture. [Means for Solving the Problem] -6 - 201231493 The means to solve the above problems are as follows. (o) an alicyclic polyester having a structural unit represented by the following formula (°, [Chem. 1]

(2) —種如前述(1)所述之脂環式聚酯之製造方法 ,其係使以下述通式(II)表示之三環癸烷單甲醇單竣酸 衍生物均聚合而成, [化2](2) The method for producing an alicyclic polyester according to the above (1), which is obtained by polymerizing a tricyclodecane monomethanol monodecanoic acid derivative represented by the following formula (II). [Chemical 2]

(但,式(II)中,R表示氫原子、碳數1〜5之烷基、乙烯 基、或苄基)。 〔發明之效果〕 依據本發明,可提供一種耐熱性及透明性二者均優異 之脂環式聚酯及其製造方法。 本發明之脂環式聚酯由於耐熱性及透明性優異,故可 使用作爲於半導體·液晶用之以電子零件、光纖、光學透 201231493 器相關材料_ 鏡等爲代表之光學材料,再者,可使用於顯示 、醫療用材料。 【實施方式】 以下針對本發明詳細說明。 〈脂環式聚酯〉 下述通式( 本發明之脂環式聚酯之特徵爲具有含有以 I)表示之構造單位, [化3](However, in the formula (II), R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group). [Effect of the Invention] According to the present invention, an alicyclic polyester excellent in both heat resistance and transparency and a method for producing the same can be provided. Since the alicyclic polyester of the present invention is excellent in heat resistance and transparency, it can be used as an optical material represented by an electronic component, an optical fiber, or an optical transmissive material, such as a mirror, etc., for semiconductors and liquid crystals. Can be used for display, medical materials. [Embodiment] Hereinafter, the present invention will be described in detail. <Cycloaliphatic polyester> The following formula (the alicyclic polyester of the present invention is characterized by having a structural unit represented by I), [Chemical 3]

本發明之脂環式聚酯由於具有全脂環式構 優異,又由於具有三環癸烷架構,且由於顯示 等以上之耐熱性,故可使用作爲以半導體•液 電子零件、光纖、光學透鏡等爲代表之光學材 可使用作爲顯示器相關材料、醫療用材料。 本發明之脂環式聚酯之數平均分子量(以 ,使用由標準聚苯乙烯作成之校正線算出)較 250,000 »更好爲3,000〜220,000。數平均分子j ,會有耐熱性等降低之傾向’超過250,000時 性下降之傾向。 造故透明性 與芳香族相 晶所使用之 料,另外, G P C法測定 好爲2,000〜 |未達2,000 ,會有成形 -8- 201231493 〈脂環式聚酯之製造方法〉 本發明之脂環式聚酯之製造方法,亦即以前述通式( I)表示之脂環式聚酯之製造方法之特徵爲使以下述通式 (II)表示之三環癸烷單甲醇單羧酸衍生物予以均聚合。The alicyclic polyester of the present invention is excellent in a full-alicyclic structure, has a tricyclodecane structure, and can be used as a semiconductor, liquid electronic component, an optical fiber, or an optical lens because of its heat resistance. The optical material represented by the like can be used as a display related material or a medical material. The number average molecular weight of the alicyclic polyester of the present invention (calculated using a calibration line made of standard polystyrene) is more preferably 3,000 to 220,000 as compared with 250,000 ». The number average molecular j has a tendency to lower in heat resistance and the like, and the tendency to decrease when it exceeds 250,000. The material used for the transparency and the aromatic phase crystal is formed, and the GPC method is preferably 2,000 Å to 2,000 Å, and there is a molding -8 - 201231493 <Method for producing alicyclic polyester> The alicyclic ring of the present invention A method for producing a polyester, that is, a method for producing an alicyclic polyester represented by the above formula (I), characterized by a tricyclodecane monomethanol monocarboxylic acid derivative represented by the following formula (II) All are aggregated.

(但,式(II)中’ R表示氫原子、碳數1〜5之烷基、乙烯 基、或苄基)。 通式(II)中’ R表示之烷基只要是碳數id之烷基、 乙烯基、或苄基即無特別限制,其中以甲基、乙基、丙基 、異丙基、丁基、異丁基、戊基、異戊基較佳。 以通式(II)表示之三環癸烷單甲醇單羧酸衍生物之 具體例列舉爲4-羥基甲基-8_羧基-三環〔5·5.2· υ2,6〕癸 烷、3-羥基甲基-8-羧基·三環〔〕癸烷、3_羥基 甲基-9-羧基-三環〔5.2.1,〇2,6〕癸烷、4·羥基甲基-8_甲氧 基羰基-三環〔5.2.1.02’6〕癸烷、3_羥基甲基-8_甲氧基羰 基-三環〔5.2.1.02’6〕癸烷' 3_羥基甲基-9_甲氧基羰基-三 環〔5.2.1.02’6〕癸烷、4-羥基甲基-8-丁氧基羰基-三環〔 5.2.1.02’6〕癸烷、3-羥基甲基-8_丁氧基羰基-三環〔 5.2.1.02’6〕癸烷、3-羥基甲基-9_ 丁氧基羰基-三環〔 -9- 201231493 5.2.1.0,〕癸烷、4-羥基甲基·8_戊氧基羰基-三環〔 5.2.1.02’6〕癸烷、3-羥基甲基戊氧基羰基·三環〔 5.2.1_02’6〕癸烷、3 -羥基甲基_9 -戊氧基羰基-三環〔 5.2.1.02’6〕癸烷、4-羥基甲基-8 -乙烯氧基羰基-三環〔 5.2.1.02’6〕癸烷、3 -羥基甲基-8 -乙烯氧基羰基-三環〔 5.2.1.02’6〕癸烷、3_羥基甲基_9_乙烯氧基羰基三環〔 5·2.1· 02’6〕癸烷、4 -羥基甲基·8_苄氧基羰基-三環〔 5.2.1.02’6〕癸烷、3_羥基甲基-8_苄氧基羰基-三環〔 5.2.1·02’6〕癸烷、3 -羥基甲基_9 -苄氧基羰基-三環〔 5.2.1.02’6〕癸烷等’其中’就製造三環癸烯單羧酸衍生物 時之成本及反應性之觀點而言,較好爲4_羥基甲基-8_甲氧 基羰基-三環〔5.2_1_〇2’6〕癸烷、3-羥基甲基-8-甲氧基羰 基-三環〔5.2.1. 02,6〕癸烷、3-羥基甲基-9-甲氧基羰基-三 環〔5.2.1.02’6〕癸烷。 本發明中使用之以通式(II)表示之三環癸烷單甲醇 單羧酸衍生物(以下有時簡稱爲「三環癸烷單甲醇單羧酸 衍生物」)可藉由使以下述式(III)表示之二環戊二烯之 六員環側經氫酯化而獲得之以下述通式(IV)表示之化合 物經氫甲醯化而獲得。 [化5](However, in the formula (II), 'R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group). The alkyl group represented by 'R in the formula (II) is not particularly limited as long as it is an alkyl group having a carbon number id, a vinyl group, or a benzyl group, and a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, or the like. Isobutyl, pentyl and isopentyl are preferred. Specific examples of the tricyclodecane monomethanol monocarboxylic acid derivative represented by the formula (II) are 4-hydroxymethyl-8-carboxy-tricyclo[5·5.2·υ2,6]decane, 3- Hydroxymethyl-8-carboxy-tricyclo[]decane, 3-hydroxymethyl-9-carboxy-tricyclo[5.2.1, 〇2,6]nonane, 4·hydroxymethyl-8-methoxy Carbonyl-tricyclo[5.2.1.0''6]nonane, 3-hydroxymethyl-8-methoxycarbonyl-tricyclo[5.2.1.0''6]nonane' 3-hydroxymethyl-9-methoxy Carbonyl-tricyclo[5.2.1.0''6]nonane, 4-hydroxymethyl-8-butoxycarbonyl-tricyclo[5.2.1.02'6]nonane, 3-hydroxymethyl-8-butoxy Carbonyl-tricyclo[5.2.1.02'6]decane, 3-hydroxymethyl-9-butoxycarbonyl-tricyclo[-9- 201231493 5.2.1.0,]decane, 4-hydroxymethyl·8_ Pentyloxycarbonyl-tricyclo[5.2.1.02'6]decane, 3-hydroxymethylpentyloxycarbonyltricyclo[5.2.1_02'6]nonane, 3-hydroxymethyl-9-pentyloxy Carbonyl-tricyclo[5.2.1.02'6]decane, 4-hydroxymethyl-8-vinyloxycarbonyl-tricyclo[5.2.1.02'6]nonane, 3-hydroxymethyl-8-vinyloxy Carbonyl-tricyclic [5.2.1.02'6 Decane, 3-hydroxymethyl_9-vinyloxycarbonyltricyclo[5·2.1·02'6]decane, 4-hydroxymethyl·8-benzyloxycarbonyl-tricyclo[5.2.1.02'6 ] decane, 3-hydroxymethyl-8-benzyloxycarbonyl-tricyclo[5.2.1·02'6]nonane, 3-hydroxymethyl-9-benzyloxycarbonyl-tricyclo[5.2.1.02 '6] 癸 等 etc. 'In terms of cost and reactivity in the production of a tricyclic terpene monocarboxylic acid derivative, it is preferably 4-hydroxymethyl-8-methoxycarbonyl-tricyclo[ 5.2_1_〇2'6]decane, 3-hydroxymethyl-8-methoxycarbonyl-tricyclo[5.2.1. 02,6]decane, 3-hydroxymethyl-9-methoxycarbonyl - Tricyclo [5.2.1.0''6] decane. The tricyclodecane monomethanol monocarboxylic acid derivative (hereinafter sometimes abbreviated as "tricyclodecane monomethanol monocarboxylic acid derivative") represented by the formula (II) used in the present invention can be used as follows The compound represented by the following formula (IV) obtained by hydroformylation of the six-membered ring side of dicyclopentadiene represented by the formula (III) is obtained by hydroformylation. [Chemical 5]

-10- 201231493 [化6]-10- 201231493 [Chem. 6]

(IV) (但,式(IV)中,R表示氫原子、碳數1〜5之烷基、乙烯 基、或苄基)。 製造本發明中使用之三環癸烷單甲醇單羧酸衍生物時 ,首先,在含有釕化合物、鈷化合物、與鹵化合物鹽之觸 媒系統存在下,使以下述式(III)表示之二環戊二烯與甲 酸化合物(HCOOR)反應,而製造加成-C(0)R之以下述通 式(IV)表示之三環癸烯單羧酸衍生物。此處,前述甲酸 化合物(HCOOR)中之R表示氫原子、碳數1〜5之烷基、 乙烯基或苄基。 [化7](IV) (However, in the formula (IV), R represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group). When the tricyclodecane monomethanol monocarboxylic acid derivative used in the present invention is produced, first, in the presence of a catalyst system containing a ruthenium compound, a cobalt compound, and a halogen compound salt, the following formula (III) is used. The cyclopentadiene is reacted with a formic acid compound (HCOOR) to produce a tricyclodecene monocarboxylic acid derivative represented by the following formula (IV) of addition-C(0)R. Here, R in the above formic acid compound (HCOOR) represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group or a benzyl group. [Chemistry 7]

至於甲酸化合物(HCOOR),使用R爲氫原子之甲酸 時,可於引起氫羧基化反應之二環戊二烯上加成羧基,使 用R爲碳數1~5之烷基、乙烯基或苄基之甲酸酯時’可於引 起氫酯化反應之二環戊二烯上加成酯基。 甲酸化合物係使用對應於目標之三環癸烷單甲醇單羧 -11 - 201231493 酸衍生物之-C(0)0R之甲酸化合物(HCOOR),列舉爲例 如甲酸、甲酸甲酯、甲酸乙酯、甲酸丙酯、甲酸異丙酯、 甲酸丁酯、甲酸異丁酯、甲酸戊酯、甲酸異戊酯、甲酸乙 烯酯、甲酸苄酯等。該等中,就成本及反應性之觀點而言 ,較好爲甲酸甲酯。 以前述式(III)表示之二環戊二烯與甲酸化合物之反 應係如上述般,在含有釕化合物、鈷化合物、與鹵化物鹽 之觸媒系統存在下進行。本發明中可使用之釕化合物並無 特別限制》較佳化合物之具體例列舉爲〔Ru(CO)3C12〕2、 〔RuC12(CO)2〕n ( η爲不特定之自然數)、〔Ru(CO)3C13 〕.、〔Ru3(CO)hC1〕-、 〔Ru4(CO)13C1〕·等分子內一起 帶有羰基配位子與鹵素配位子之釕化合物等,其中,就提 高反應率之觀點而言,更好爲〔Ru(CO)3C12〕2、〔 RuC12(CO)2〕n。 —起帶有前述配位子之釕化合物亦可使用RuC13、 Ru3(CO)丨2、RuC12(C8H12)、Ru(CO)3(C8H8)、Ru(CO)3(C8H12) 及Ru(C8H1(1)(C8H12)等作爲前驅物化合物,亦可在氫羧基 化或氫酯化之反應前或反應中,生成前述釕化合物,再導 入於反應系統中。 前述釕化合物之使用量相對於原料的二環戊二烯1當 量’較好爲1/10000〜1當量,更好爲1/1000〜1/5〇當量。考 量製造成本時,釕化合物之使用量愈少愈好,但未達 1 /1 0 0 0 0當量時會有反應極端緩慢之傾向。且,超過1當量 時會有反應速度並未加速,僅是增加製造成本之傾向。 -12- 201231493 本發明中可使用之鈷化合物並無特別限制。較佳化合 物之具體例列舉爲Co2(CO)8、c〇(CO)4、Co4(CO)12等帶有 羰基配位子之鈷化合物、乙酸鈷、丙酸鈷、苯甲酸鈷、檸 檬酸鈷等配位子帶有羧酸化合物之鈷化合物,磷酸鈷等。 其中,就提高反應率之觀點而言,更好爲Co2(CO)8、乙酸 鈷、檸檬酸鈷。 前述鈷化合物之使用量相對於釕化合物1當量爲 1/100〜10當量’較好爲1/10〜5當量。前述鈷化合物相對於 前述釕化合物之比率低於1/100,抑或高於10,以前述通 式(IV)表示之三環癸烯單羧酸衍生物之生成量均會有顯 著降低之傾向。 本發明中可使用之鹵化物鹽只要是由氯化物離子、溴 化物離子及碘化物離子等鹵素離子、與陽離子構成之化合 物’則無特別限制。前述陽離子可爲無機物離子及有機物 離子之任一種。又,前述鹵化物鹽亦可於分子內含有一個 以上之鹵素離子。 構成鹵化物鹽之無機物離子可爲由鹼金屬及鹼土類金 屬選出之一種金屬離子。具體而言,列舉爲鋰、鈉、鉀、 铷、絶、鈣、緦。 另外’有機物離子可爲由有機化合物衍生之一價以上 之有機基。其一例列舉爲銨、鱗、吡咯啶鑰、吡啶鐵、咪 唑鑰、及亞胺鑰等。該等離子之氫原子亦可經烷基及芳基 等烴基取代。雖無特別限制,但較佳之有機物離子之具體 例列舉爲四甲基銨、四乙基銨、四丙基銨、四丁基銨、四 -13- 201231493 戊基銨、四己基銨、四庚基銨、四辛基銨、三辛基甲基銨 '苄基三甲基銨、苄基三乙基銨、苄基三丁基銨、四甲基 鱗、四乙基鱗、四苯基鐵、苄基三苯基鱗、丁基甲基吡咯 啶鑰、辛基甲基吡咯啶鑰、雙(三苯基膦)亞胺鑰。其中 ,就提高反應率之觀點言,更好爲丁基甲基吡咯啶鑰、雙 (三苯基膦)亞胺鑰、三辛基甲基銨等。 本發明中使用之鹵化物鹽並無必要爲固體之鹽,亦可 爲在室溫附近或100 °c以下之溫度區域中爲液體之含有鹵 化物離子之離子性液體。該等離子性液體中使用之陽離子 之具體例列舉爲1-乙基-3-甲基咪唑鑰、1-丙基-3-曱基咪 唑鑰' 1-丁基-3-甲基咪唑鑰、1-戊基-3-甲基咪唑鎗、1-己 基-3-甲基咪唑鑰、1·庚基-3-甲基咪唑鑰、1-辛基-3 -甲基 咪唑鑰、1-癸基-3-甲基咪唑鑰、1-十二烷基_3_甲基咪唑 鑰、1-十四烷基-3 -甲基咪唑鑰、1-十六烷基·3_甲基咪唑 鑷、1-十八烷基-3-甲基咪唑鎗、1-乙基-2,3 -二甲基咪唑鎗 、1-丁基_2,3 -二甲基咪唑鑰、1-己基-2,3 -二甲基咪唑鑰、 1 -乙基吡啶鑰、1 - 丁基吡啶鑰、1 -己基吡啶鑰、8 _甲基_ 1,8-—氮雜雙環〔5.4_0〕-7--]--碳嫌、8-乙基-1,8-二氮雜 雙環〔5.4.0〕-7-十一碳烯、8·丙基·丨,8_二氮雜雙環〔 5.4.0〕-7-十一碳烯、8_ 丁基-丨,8•二氮雜雙環〔5.4〇〕-7_ 碳嫌、8·戊基-丨,8 -二氮雜雙環〔5_4.〇〕-7-~1——碳烯 8 -己基-1,8- —氮雜雙環〔5.4.0〕-7 -十一碳稀、8 -庚基_ 1,8-—氮雜雙環〔5·4.〇〕--碳烯、8-辛基-1,8-二氮雜 雙環〔5.4.0〕十一碳烯等之有機物離子。本發明中, -14- 201231493 可單獨使用上述之鹵化物鹽,亦可組合複數種使用。 上述鹵化物鹽中,較佳之鹵化物鹽爲氯化物鹽、溴化 物鹽、碘化物鹽,陽離子爲有機物離子。雖無特別限制, 但本發明中較佳之鹵化物鹽之具體例舉例有氯化丁基甲基 吡咯啶鑰、碘化雙(三苯基膦)亞胺鑰、氯化三辛基甲基 銨等。 鹵化物鹽之添加量爲例如相對於釕化合物1當量爲 1〜10 00當量,較好爲2〜5 0當量。藉由成爲1當量以上之添 加量,可有效提高反應速度。另一方面,添加量超過10 00 當量時,會有即使再增加添加量,亦無法獲得反應促進之 進一步提高效果之傾向。 用以獲得本發明中使用之三環癸烷單甲醇單羧酸衍生 物之二環戊二烯與甲酸化合物之反應係在含有釕化合物、 鈷化合物、及鹵化物鹽之特定觸媒系統中,視需要藉由追 加由鹼性化合物、酚化合物及有機鹵化合物選出之至少一 種,可進一步提高藉由前述觸媒系統促進反應之效果。 本發明中使用之鹼性化合物可爲無機化合物,亦可爲 有機化合物。鹼性無機化合物之具體例列舉爲鹼金屬及鹼 土類金屬之碳酸鹽、碳酸氫鹽、氫氧化物鹽、烷氧化物等 。鹼性有機化合物之具體例列舉爲一級胺化合物、二級胺 化合物、三級胺化合物、吡啶化合物、咪唑化合物、喹啉 化合物。上述鹼性化合物中,就促進反應效果之觀點而言 ,較好爲三級胺化合物。本發明中可使用之較佳三級胺化 合物之具體例列舉爲三烷基胺、N-烷基吡咯啶、喹寧環、 -15- 201231493 及三乙二胺等。 鹼性化合物之添加量並無特別限制,但例如相對於釕 化合物1當量,較好爲1〜1 000當量,更好爲2〜200當量。藉 由使添加量成爲1當量以上,有更顯著展現促進效果之傾 向。又,添加量超過1 000當量時,會有即使進一步增加添 加量,仍無法獲得反應促進效果之傾向。 本發明中使用之酚化合物並無特別限制。可使用之酚 化合物之具體例列舉爲酚、甲酚、烷基酚、甲氧基酚、苯 氧基酚、氯酚、三氟甲基酚、氫醌及兒茶酚等》 酚化合物之添加量並無特別限制,但相對於釕化合物 1當量爲例如1〜1000當量,較好爲2〜200當量。藉由使添加 量成爲1當量以上’有更顯著展現反應促進效果之傾向。 另外’添加量超過1000當量時,會有即使再增加添加量, 亦無法獲得反應促進之進一步提高效果之傾向。 本發明中使用之有機鹵素化合物並無特別限制。可使 用之有機鹵素化合物之具體例列舉爲單鹵化甲烷、二鹵化 甲烷、二鹵化乙烷、三鹵化甲烷 '四鹵化甲烷、鹵化苯等 〇 有機鹵素化合物之添加量並無特別限制,但相對於釘 化合物1當量爲例如1~1 〇〇〇當量,較好爲2〜200當量。藉由 使添加量成爲1當量以上’有更顯著展現反應促進效果之 傾向。另外,添加量超過1〇〇〇當量時,會有即使再增加添 加量,亦無法獲得反應促進之進一步提高效果之傾向。 用以獲得本發明中使用之三環癸烷單甲醇單翔酸衍生 -16- 201231493 物之二環戊二烯與甲酸化合物之反應尤其可在不使用溶劑 下進行。然而,視需要,亦可使用溶劑。可使用之溶劑只 要是可使做爲原料使用之化合物溶解則無特別限制。可適 用之溶劑之具體例列舉爲正戊烷、正己烷、正庚烷、環己 烷、苯、甲苯、鄰-二甲苯、對·二甲苯、間-二甲苯、乙基 苯、異丙基苯、四氫呋喃、N-甲基吡咯烷酮、二甲基甲醯 胺、二甲基乙醯胺、二甲基咪唑啶酮、乙二醇二甲基醚、 二乙二醇二甲基醚、三乙二醇二甲基醚等。 用以獲得本發明中使用之三環癸烷單甲醇單羧酸衍生 物之二環戊二烯與甲酸化合物之反應較好在80°C〜200 °C之 溫度範圍內實施。前述反應更好在10(TC ~ 160 °C之溫度範 圍內實施。藉由在8〇°C以上之溫度實施反應,容易使反應 速度加速’且效率良好地進行反應。另一方面,藉由將反 應溫度控制在200°C以下,可抑制作爲原料使用之甲酸化 合物之分解。甲酸化合物分解時,由於無法達成對於二環 戊二烯之羧基或酯基之加成,故不希望過高的反應溫度。 反應溫度超過作爲原料使用之__環戊二嫌或甲酸化合物任 一種之沸點時’有必要在耐壓容器中進行反應。反應之結 束可使用氣體層析法、NMR等習知之分析技術確認。又, 反應較好在氮氣或氬氣等惰性氣體氛圍下進行。 藉由以則述式(III)表不之二環戊二嫌與甲酸化合物 之反應獲得之以前述通式(IV)表示之三環癸烯單羧酸衍 生物爲將-C(0)0R加成於以前述式(111)表示之二環戊二 烯而成者,成爲於三環〔5.2.1_〇2’6〕癸-3-嫌架構之8位或 -17- 201231493 9位上加成-C(0)0R而成之構造。 爲了獲得本發明中使用之三環癸烷單甲醇單羧酸衍生 物,藉由使以前述方法獲得之以下述式(IV)表示之三環 癸烯單羧酸衍生物氫甲醯基化,可獲得以下述式(11)表 示之三環癸烷單甲醇單羧酸衍生物。 [化8]As for the formic acid compound (HCOOR), when a formic acid having R is a hydrogen atom, a carboxyl group may be added to the dicyclopentadiene which causes the hydrocarboxylation reaction, and an alkyl group having a carbon number of 1 to 5, a vinyl group or a benzyl group may be used. In the case of the formate, the ester group can be added to the dicyclopentadiene which causes the hydrogen esterification reaction. The formic acid compound is a formic acid compound (HCOOR) corresponding to the target tricyclodecane monomethanol monocarboxyl-11 - 201231493 acid derivative -C(0)0R, and is exemplified by for example, formic acid, methyl formate, ethyl formate, Propyl formate, isopropyl formate, butyl formate, isobutyl formate, amyl formate, isoamyl formate, vinyl formate, benzyl formate, and the like. Among these, methyl formate is preferred from the viewpoint of cost and reactivity. The reaction of the dicyclopentadiene and the formic acid compound represented by the above formula (III) is carried out in the presence of a catalyst system containing a ruthenium compound, a cobalt compound, and a halide salt as described above. The hydrazine compound which can be used in the present invention is not particularly limited. Specific examples of the preferred compound are exemplified by [Ru(CO)3C12]2, [RuC12(CO)2]n (η is an unspecified natural number), [Ru (CO)3C13], [Ru3(CO)hC1]-, [Ru4(CO)13C1]·, etc., together with a ruthenium compound having a carbonyl ligand and a halogen ligand, etc., wherein the reaction rate is improved From the viewpoint, it is more preferably [Ru(CO)3C12]2, [RuC12(CO)2]n. - RuC13, Ru3(CO)2, RuC12(C8H12), Ru(CO)3(C8H8), Ru(CO)3(C8H12) and Ru(C8H1() can also be used as the ruthenium compound having the above ligand. 1) (C8H12) or the like as a precursor compound, the ruthenium compound may be formed before or during the reaction of hydrocarboxylation or hydroesterification, and then introduced into a reaction system. The amount of the ruthenium compound used is relative to the raw material. The divalent pentadiene 1 equivalent ' is preferably 1/10000 to 1 equivalent, more preferably 1/1000 to 1/5 equivalent. When the manufacturing cost is considered, the smaller the amount of the ruthenium compound is used, but it is less than 1 When the ratio is /1 0 0 0 0, the reaction tends to be extremely slow. Moreover, when the amount exceeds 1 equivalent, the reaction rate is not accelerated, and the manufacturing cost is increased. -12- 201231493 The cobalt compound which can be used in the present invention There is no particular limitation. Specific examples of preferred compounds are cobalt compounds with a carbonyl ligand such as Co2(CO)8, c〇(CO)4, Co4(CO)12, cobalt acetate, cobalt propionate, and benzene. A cobalt compound such as cobalt formate or cobalt citrate, which has a carboxylic acid compound, cobalt phosphate, etc., among them, from the viewpoint of improving the reaction rate More preferably, Co2(CO)8, cobalt acetate, and cobalt citrate. The amount of the cobalt compound used is 1/100 to 10 equivalents per 1 equivalent of the hydrazine compound, preferably 1/10 to 5 equivalents. When the ratio of the above ruthenium compound is less than 1/100 or higher than 10, the amount of the tricyclic terpene monocarboxylic acid derivative represented by the above formula (IV) tends to be remarkably lowered. The halide salt to be used is not particularly limited as long as it is a compound composed of a halide ion such as a chloride ion, a bromide ion or an iodide ion, and a cation. The cation may be either an inorganic ion or an organic ion. The halide salt may also contain more than one halogen ion in the molecule. The inorganic ion constituting the halide salt may be a metal ion selected from an alkali metal or an alkaline earth metal. Specifically, it is exemplified as lithium, sodium, potassium, and cesium. Further, the organic ion may be an organic group derived from an organic compound or more, and an example thereof is ammonium, squama, pyrrolidine, pyridinium, imidazole, And an imine bond, etc. The hydrogen atom of the plasma may be substituted with a hydrocarbon group such as an alkyl group or an aryl group. Although not particularly limited, specific examples of preferred organic ion are tetramethylammonium, tetraethylammonium, and tetrapropylamine. Ammonium, tetrabutylammonium, tetra-13- 201231493 amyl ammonium, tetrahexylammonium, tetraheptyl ammonium, tetraoctyl ammonium, trioctylmethyl ammonium 'benzyl trimethyl ammonium, benzyl triethyl Ammonium, benzyltributylammonium, tetramethylscale, tetraethylscale, tetraphenyliron, benzyltriphenyl scale, butylmethylpyrrolidine, octylmethylpyrrolidine, bis(triphenyl) The phosphine) imide key is more preferably a butylmethylpyrrolidine key, a bis(triphenylphosphine) imide key, a trioctylmethylammonium or the like in terms of improving the reaction rate. The halide salt used in the present invention is not necessarily a solid salt, and may be a liquid halide ion-containing ionic liquid in a temperature range near room temperature or below 100 °C. Specific examples of the cation used in the plasma liquid are exemplified by 1-ethyl-3-methylimidazole key, 1-propyl-3-mercaptoimidazole key '1-butyl-3-methylimidazole key, 1 -pentyl-3-methylimidazole gun, 1-hexyl-3-methylimidazole key, 1 ·heptyl-3-methylimidazole key, 1-octyl-3-methylimidazole key, 1-mercapto -3-methylimidazolium, 1-dodecyl-3-methylimidazole, 1-tetradecyl-3-methylimidazole, 1-hexadecyl-3-methylimidazolium, 1-octadecyl-3-methylimidazole gun, 1-ethyl-2,3-dimethylimidazole gun, 1-butyl-2,3-dimethylimidazole, 1-hexyl-2, 3-dimethylimidazole, 1-ethylpyridine, 1-butylpyridine, 1-hexylpyridine, 8-methyl-1,8-azabicyclo[5.4_0]-7--] --carbon, 8-ethyl-1,8-diazabicyclo[5.4.0]-7-undecene, 8·propyl·indole, 8-diazabicyclo[5.4.0]- 7-undecene, 8_butyl-hydrazine, 8•diazabicyclo[5.4〇]-7_ carbon,8·pentyl-indole, 8-diazabicyclo[5_4.〇]-7-~ 1 - Carbene 8-hexyl-1,8-azabicyclo[5.4.0]-7-undecene, 8-heptyl_ 1,8- —Azabicyclo[5·4.〇]--organic ion of carbene, 8-octyl-1,8-diazabicyclo[5.4.0]undecene. In the present invention, -14-201231493 may be used alone or in combination of plural kinds. Among the above halide salts, preferred halide salts are chloride salts, bromine salts, and iodide salts, and the cation is an organic ion. Although not particularly limited, specific examples of the preferred halide salt in the present invention include chloromethylpyrrolidium chloride, bis(triphenylphosphine)imide, and trioctylmethylammonium chloride. The amount of the halide salt to be added is, for example, 1 to 100 equivalents, preferably 2 to 50 equivalents per equivalent of the hydrazine compound. By increasing the amount of one equivalent or more, the reaction rate can be effectively increased. On the other hand, when the amount is more than 100 eq, the effect of further improving the reaction cannot be obtained even if the amount of addition is further increased. The reaction of dicyclopentadiene with a formic acid compound for obtaining a tricyclodecane monomethanol monocarboxylic acid derivative used in the present invention is carried out in a specific catalyst system containing a ruthenium compound, a cobalt compound, and a halide salt. The effect of promoting the reaction by the aforementioned catalyst system can be further enhanced by adding at least one selected from the basic compound, the phenol compound and the organic halogen compound as needed. The basic compound used in the present invention may be an inorganic compound or an organic compound. Specific examples of the basic inorganic compound are carbonates, hydrogencarbonates, hydroxide salts, alkoxides, and the like of alkali metals and alkaline earth metals. Specific examples of the basic organic compound are a primary amine compound, a secondary amine compound, a tertiary amine compound, a pyridine compound, an imidazole compound, and a quinoline compound. Among the above basic compounds, a tertiary amine compound is preferred from the viewpoint of promoting the reaction effect. Specific examples of preferred tertiary amine compounds which can be used in the present invention are exemplified by trialkylamine, N-alkylpyrrolidine, quinuclidine ring, -15-201231493 and triethylenediamine. The amount of the basic compound to be added is not particularly limited, but is, for example, 1 to 1,000 equivalents, more preferably 2 to 200 equivalents, per equivalent of the hydrazine compound. By setting the addition amount to 1 equivalent or more, the tendency to promote the effect is more prominently exhibited. Further, when the amount is more than 1,000 equivalents, the reaction-promoting effect is not obtained even if the amount of addition is further increased. The phenol compound used in the present invention is not particularly limited. Specific examples of the phenol compound which can be used are phenol, cresol, alkylphenol, methoxyphenol, phenoxyphenol, chlorophenol, trifluoromethylphenol, hydroquinone, catechol, etc. The amount is not particularly limited, but is, for example, 1 to 1000 equivalents, preferably 2 to 200 equivalents per equivalent of the hydrazine compound. When the amount of addition is 1 equivalent or more, the reaction promoting effect is more prominently exhibited. In addition, when the amount of addition exceeds 1,000 equivalents, there is a tendency that the effect of further improving the reaction cannot be obtained even if the amount of addition is further increased. The organohalogen compound used in the present invention is not particularly limited. Specific examples of the organohalogen compound which can be used are, for example, monohalogenated methane, dihalogenated methane, dihalogenated ethane, trihalogenated methane, tetrahalomated methane, halogenated benzene, etc., and the amount of the organohalogen compound added is not particularly limited, but The nail compound 1 equivalent is, for example, 1 to 1 equivalent, preferably 2 to 200 equivalents. By adding the amount of addition to 1 equivalent or more, there is a tendency to exhibit a reaction promoting effect more remarkably. In addition, when the amount added exceeds 1 〇〇〇 equivalent, there is a tendency that the effect of further improving the reaction cannot be obtained even if the amount of addition is further increased. The reaction of dicyclopentadiene with a formic acid compound which is obtained by using tricyclodecane monomethanol monoacid derivative -16-201231493 used in the present invention can be carried out especially without using a solvent. However, a solvent can also be used as needed. The solvent which can be used is not particularly limited as long as it can dissolve the compound used as a raw material. Specific examples of suitable solvents are n-pentane, n-hexane, n-heptane, cyclohexane, benzene, toluene, o-xylene, p-xylene, m-xylene, ethylbenzene, isopropyl. Benzene, tetrahydrofuran, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, dimethylimidazolidinone, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethyl Glycol dimethyl ether and the like. The reaction of dicyclopentadiene with a formic acid compound for obtaining a tricyclodecane monomethanol monocarboxylic acid derivative used in the present invention is preferably carried out at a temperature ranging from 80 °C to 200 °C. The above reaction is more preferably carried out in a temperature range of 10 (TC to 160 ° C. By carrying out the reaction at a temperature of 8 ° C or higher, the reaction rate is easily accelerated ' and the reaction proceeds efficiently. On the other hand, When the reaction temperature is controlled to 200 ° C or lower, decomposition of the formic acid compound used as a raw material can be suppressed. When the formic acid compound is decomposed, since the addition of a carboxyl group or an ester group to dicyclopentadiene cannot be achieved, it is not desirable to be too high. Reaction temperature. When the reaction temperature exceeds the boiling point of either __cyclopentane or formic acid compound used as a raw material, it is necessary to carry out the reaction in a pressure-resistant container. The end of the reaction can be analyzed by gas chromatography, NMR, or the like. Further, the reaction is preferably carried out under an inert gas atmosphere such as nitrogen or argon. The above formula (IV) is obtained by reacting a dicyclopentadiene which is represented by the formula (III) with a formic acid compound. The tricyclic terpene monocarboxylic acid derivative represented by the addition of -C(0)0R to the dicyclopentadiene represented by the above formula (111) is formed in the tricyclic ring [5.2.1_〇 2'6]癸-3-嫌Architecture 8 or -17- 201231493 Structure in which the addition-C(0)0R is added at the 9-position. In order to obtain the tricyclodecane monomethanol monocarboxylic acid derivative used in the present invention, the following formula is obtained by the above method. The trimethyl decene monocarboxylic acid derivative represented by the above (IV) is hydroformylated, and a tricyclodecane monomethanol monocarboxylic acid derivative represented by the following formula (11) can be obtained.

(IV) (II)(IV) (II)

〇 II〇 II

R-0一C 以前述通式(IV)表示之三環癸烯單羧酸衍生物之氫 甲醯基化反應係使用一般習知之氫甲醯基化法,例如於觸 媒講座第7卷,觸媒協會編輯,講談社(1985)中所述, 可使用鈷、釕、铑等過渡金屬錯合物觸媒,使一氧化碳與 氫反應而加成醛後,再經氫化之方法,或者使用使一氧化 碳與氫反應並直接加成醇之方法。 另一方面,過去之氫甲醯基化法由於使用毒性高之一 氧化碳,故就作業性、安全性、反應性等之觀點而言較不 佳,因此更好爲以下所述之利用二氧化碳與氫之氫甲醯基 化法。此時,二氧化碳與氫可以混合氣體之形式供給,又 ,亦可以分別供給。混合氣體係以二氧化碳與氫作爲主成 分之混合氣體(原料氣體),二氧化碳之含量較好爲 10〜95 vol%,更好爲50~80vol%,氫含量較好爲5〜90vol% ,更好爲20〜50vol%。氫含量超過90vol%時會有容易引起 原料氫化之傾向,未達5%時會有反應速度降低之傾向。於 -18- 201231493 原料氣體中混入一氧化碳氣體雖全然無必要,但即使混入 亦無妨。 氫甲醯基化反應之觸媒系統較好含有釕化合物,可使 用之釕化合物只要是含有釕者即無特別限制。較佳化合物 之具體例列舉爲〔Ru(CO)3C12〕2、〔 RuC12(CO)2〕η ( η爲 不特定之自然數)、〔1111((:0)3(:13〕-、〔11113((:0)11(::1〕· 、〔Ru4(CO)13C1〕-等分子內一起帶有羰基配位子與鹵素 配位子之钌化合物等,其中,就提高反應率之觀點而言, 更好爲〔Ru(CO)3C12〕2、〔 RuC12(CO)2〕η。 —起帶有前述配位子之釕化合物亦可使用RuC13、 Ru3(CO)12、RuC12(C8H12)、Ru(CO)3(C8H8)、Ru(CO)3(C8H12) 及Ru(C8H1q)(C8H12)等作爲前驅物化合物,在氫甲醯基化 之反應前或反應中,調製前述釕化合物,再導入於反應系 統中。 前述釕化合物之使用量相對於原料的通式(IV)表示 之三環癸烯單羧酸衍生物1當量,較好爲1/1 00 〇〇~1當量, 更好爲1 /1 000- 1 /50當量。考量製造成本時,釕化合物之使 用量愈少愈好,但未達1/ 1 0000當量時會有反應極端緩慢 之傾向。且,超過1當量時會有反應速度並未加速,僅是 增加製造成本之傾向。 本發明之以式(IV)表示之三環癸烯單羧酸衍生物之 氫甲醯基化可視需要於含有釕化合物之觸媒系統中追加由 鈷化合物、鹵化物鹽、酚化合物及酸選出之至少一種,而 可更提高由前述觸媒系統產生之促進反應效果。 -19- 201231493 可使用作爲氫甲醯基化反應之觸媒之鈷化合物並無特 別限制。較佳化合物之具體例列舉爲c〇2(co)8、hc〇(co)4 、&lt;:〇4((:0)12等帶有羰基配位子之鈷化合物、乙酸鈷 '丙 酸鈷、苯甲酸鈷、檸檬酸鈷等配位子帶有羧酸化合物之鈷 化合物,磷酸鈷等。其中,就提高反應率之觀點而言,更 好爲C〇2(CO)8、乙酸鈷、檸檬酸鈷。 前述鈷化合物之使用量相對於釕化合物1當量爲 1/100〜10當量,較好爲1/10〜5當量。前述鈷化合物相對於 前述釕化合物之比率低於1/100,抑或高於10,三環癸烷 單甲醇單羧酸衍生物之生成量均會顯著降低。 本發明中可使用之鹵化物鹽只要是由氯化物離子、溴 化物離子及碘化物離子等鹵素離子、與陽離子構成之化合 物,則無特別限制。前述陽離子可爲無機物離子及有機物 離子之任一種。又,前述鹵化物鹽亦可於分子內含有一個 以上之鹵素離子。 構成鹵化物鹽之無機物離子可爲由鹼金屬及鹼土類金 屬選出之一種金屬離子。具體而言,列舉爲鋰、鈉、鉀、 铷、鉋、鈣、緦。 另外,有機物離子可爲由有機化合物衍生之一價以上 之有機基。其一例列舉爲銨、鱗、吡咯啶鐺、吡啶鑰、咪 '及亞胺鑰。該等離子之氫原子亦可經烷基及芳基等 烴基取代。雖無特別限制,但較佳之有機物離子之具體例 列舉爲四甲基銨、四乙基銨、四丙基銨、四丁基銨、四戊 基銨、四己基銨、四庚基銨、四辛基銨、三辛基甲基銨、 -20- 201231493 苄基三甲基銨、苄基三乙基銨、苄基三丁基銨、十六烷基 三甲基銨、四甲基鱗、四乙基鱗、四苯基鍈、苄基三苯基 鐃、丁基甲基吡咯啶鑰、辛基甲基吡咯啶鑰、雙(三苯基 膦)亞胺鑰。其中,就提高反應率之觀點言,更好爲氯化 十六烷基三甲基銨、溴化十六烷基三甲基銨等四級銨鹽。 本發明中可使用之鹵化物鹽並無必要爲固體之鹽,亦 可爲在室溫附近或100 °c以下之溫度區域中爲液體之含有 鹵化物離子之離子性液體。該等離子性液體中使用之陽離 子之具體例列舉爲1-乙基-3-甲基咪唑鑰、1-丙基-3-甲基 咪唑鎗、1-丁基-3-甲基咪唑鑰、1-戊基-3-甲基咪唑鎗、1-己基-3-甲基咪唑鑰、1-庚基-3-甲基咪唑鑷、1-辛基-3-甲 基咪唑錙、1-癸基-3-甲基咪唑鑰、1·十二烷基-3-甲基咪 唑鑰、1-十四烷基-3-甲基咪唑鑰、1-十六烷基-3-甲基咪 唑鑰、1-十八烷基-3 -甲基咪唑鐵、1-乙基-2,3 -二甲基咪唑 鐡、1-丁基-2,3-二甲基咪唑鐘、1-己基-2,3-二甲基咪唑鑰 、1 -乙基吡啶鑰、1 - 丁基吡啶鑰、1 -己基吡啶鑰、8 -甲基-1,8-二氮雜雙環〔5.4.0〕-7-十一碳烯、8-乙基-1,8-二氮雜 雙環〔5.4.0〕-7-十一碳烯、8_丙基-1,8-二氮雜雙環〔 5·4·0〕-7-十一碳烯、8-丁基-1,8-二氮雜雙環〔5.4.0〕-7-十一碳烯、8-戊基-1,8-二氮雜雙環〔5.4.0〕-7-十一碳烯 、8-己基-1,8-二氮雜雙環〔5.4.0〕-7-十一碳烯、8-庚基-1,8-二氮雜雙環〔5.4.0〕-7-十一碳烯、8-辛基-1,8-二氮雜 雙環〔5.4.0〕-7-十一碳烯等之有機物離子。本發明中, 可單獨使用上述之鹵化物鹽,亦可組合複數種使用。 -21 - 201231493 上述鹵化物鹽中,較佳之鹵化物鹽爲氯化物鹽、溴化 物鹽、碘化物鹽,陽離子爲有機物離子。雖無特別限制, 但本發明中較佳之鹵化物鹽之具體例舉例有氯化十六烷基 三甲基銨、溴化十六烷基三甲基銨等。 鹵化物鹽之添加量相對於釕化合物1當量爲例如 1〜1000當量,較好爲2〜50當量。藉由成爲1當量以上之添 加量,可有效提高反應速度。另一方面,添加量超過1〇〇〇 當量時,會有即使再增加添加量,亦無法獲得反應促進之 進一步提高效果之傾向。 本發明中使用之酚化合物並無特別限制。可使用之酚 化合物之具體例列舉爲酚、甲酚、烷基酚、甲氧基酚、苯 氧基酚、氯酚、三氟甲基酚、氫醌及兒茶酚等。 酚化合物之添加量並無特別限制,但相對於釕化合物 1當量爲例如1〜1 000當量,較好爲2〜200當量。藉由使添加 量成爲1當量以上,有更顯著展現反應促進效果之傾向。 另外,添加量超過1000當量時,會有即使再增加添加量’ 亦無法獲得反應促進之進一步提高效果之傾向。 本發明中可使用之酸可使用相當於路易斯之定義之所 有酸。依據該定義,某物質A由另一物質B供給電子對時, 則A定義爲酸,B定義爲鹼,可使用相當於接收電子對之A 的所有者。 至於上述之酸較好爲A成爲質子供給體之酸,亦即布 朗氏酸。至於布朗氏酸係使用例如鹽酸、硫酸、硝酸、磷 酸、甲基磷酸、烷基磷酸、苯基磷酸、亞磷酸二苯酯、苯 -22- 201231493 基膦酸、4-甲氧基苯基膦酸、4-甲氧基苯基膦酸二乙酯、 苯基亞磷酸、硼酸、苯基硼酸、三氟甲烷磺酸、對-甲苯 磺酸、酚、鎢酸、磷鎢酸、及以甲酸、乙酸、三氟乙酸、 丙酸、丁酸爲代表之烷基羧酸、以苯甲酸、苯二甲酸、萘 酸爲代表之芳香族羧酸等,較好爲磷酸、烷基磷酸、苯基 磷酸、亞磷酸二苯酯、膦酸衍生物等含磷之酸。 酸之添加量相對於釕化合物1當量爲例如0.1〜100當量 ,較好爲1~10當量。藉由成爲1當量以上之添加量,可有 效提高反應速度。另一方面,添加量超過100當量時,有 即使再增加添加量,亦無法獲得反應促進之進一步提高效 果之傾向。 氫甲醯基化較好在100°C〜200°c之溫度範圍內實施,更 好在ll〇°C〜180°c之溫度範圍內實施,最好在120〇C~160°C 之溫度範圍內實施。藉由在l〇〇°C以上之溫度進行反應, 使反應加速,易效率良好地進行反應。另一方面,藉由將 反應溫度控制在200°C以下,可抑制以通式(IV )表示之 三環癸烯單羧酸衍生物之不飽和鍵之氫化。若引起以通式 (IV)表示之三環癸烯單羧酸衍生物之不飽和鍵氫化,則 無法達成氫甲醯基化,故並不希望太高之反應溫度。 氫甲醯基化有必要在耐壓容器中進行。反應之壓力較 好在IMPa〜20MPa之範圍下進行,更好在2MPa~15MPa之範 圍內進行。壓力未達IMP a時,會有反應變慢之傾向,超過 2 0 MPa時,有即使再增加壓力,亦無法獲得反應促進進一 步提高效果之傾向。 -23- 201231493 用以獲得本發明中使用之三環癸烷單甲醇單羧酸衍生 物之氫甲醯基化反應亦可視需要存在有溶劑。可使用之溶 劑只要是可使前述以前述通式(IV)表示之三環癸烯單羧 酸衍生物溶解則無特別限制。可適用之溶劑之具體例列舉 爲正戊烷、正己烷、正庚烷、環己烷、苯、甲苯、鄰-二 甲苯、對-二甲苯、間-二甲苯、乙基苯、異丙基苯、四氫 呋喃、N-甲基吡咯烷酮、二甲基甲醯胺、二甲基乙醯胺、 二甲基咪唑啶酮、乙二醇二甲基醚、二乙二醇二甲基醚、 —乙—醇一甲基醚、γ -丁內醋等。使用溶劑時,其較佳之 使用量爲使以前述通式(IV)表示之三環癸烯單羧酸衍生 物之濃度成爲10~1000質量%之範圍。 使本發明之以通式(II)表示之三環癸烷單甲醇單羧 酸衍生物均聚合而成爲以通式(I)表示之脂環式聚酯之 方法並無特別限制,例如可在溶劑存在下或不存在下,將 加熱產生之醇排除至系統外而獲得。 聚合溫度較好爲4〇〜22〇°C,更好爲60〜2〇(TC,最好爲 80〜180 °C。聚合溫度未達80 °C時,有聚合速度極端緩慢之 傾向,超過220 °C時,聚合反應中有引起以通式(π)表示 之三環癸烷單甲醇單羧酸衍生物分解之可能性。反應時間 可依據批次規模、採用之反應條件適宜選擇。 聚合亦可使用觸媒。可使用之觸媒並無特別限制,例 如可使用金屬烷氧化物或鹼性金屬鹽等鹼性物質,其中, 較好使用鹼(土類)金屬之烷氧化物,更好使用鋰、鈉、 鉀之甲氧化物、乙氧化物、丙氧化物。上述觸媒之使用量 -24- 201231493 較好爲原料三環癸烷單甲醇單羧酸衍生物之〇 〇1~1〇 〇莫耳 %,更好爲0.03〜7.0莫耳%,最好爲〇 〇5〜5 〇莫耳%。觸媒 之使用量未達0.01吴耳%時,有聚合速度極緩慢之傾向, 超過10.0莫耳%時’聚合急遽進行,或有引發過度發熱之 可能性。 聚合反應可在無溶劑下進行’亦可視需要使用溶劑。 可使用之溶劑只要是可使原料之三環癸烷單甲醇單羧 酸衍生物溶解者即無特別限制。可適當使用之溶劑之具體 例列舉爲例如甲基乙基酮、甲基異丁基酮、環己酮等酮系 溶劑,乙酸乙酯、乙酸丁酯、γ-丁內酯等酯系溶劑,二乙 二醇二甲基醚、三乙二醇二甲基醚、二乙二醇二乙基醚、 三乙二醇二乙基醚等醚系溶劑,丁基溶纖劑乙酸酯、乙基 溶纖劑乙酸酯、甲基溶纖劑乙酸酯等溶纖劑系溶劑,甲苯 、二甲苯、對-異丙基苯、1,2,3,4-四羥基萘等芳香族系溶 劑,四氫呋喃、二噁院、Ν -甲基-2 -吡咯烷酮、Ν,Ν -二甲 基甲醯胺、Ν,Ν-二甲基乙醯胺、二甲基亞颯、環丁碼等, 但若考量成本 '作業性等,則更好在無溶劑下進行。 實施例 以下,以實施例詳細說明本發明,但本發明之範圍並 不受限於以下之實施例。 (合成例1)〔三環癸烯單羧酸甲酯之合成〕 在室溫下,於內容積50ml之不銹鋼製加壓反應裝置中 -25- 201231493 ,於混合0.025«1111〇1之作爲釕化合物之〔1^((:〇)3(:12〕2、 0.025 mmol之作爲鈷化合物之Co2(CO)8、0.5mmol之作爲 鹵化物鹽之氯化三辛基甲基銨、2.0mmol之作爲鹼性化合 物之三乙胺而成之觸媒系統中添加l〇.〇mmol之二環戊二烯 、5.0mL之甲酸甲酯。接著,以氮氣〇.5MPa吹拂反應裝置 內部,在12(TC維持8小時。隨後使反應裝置冷卻至室溫’ 釋放壓力,抽取殘留有機相之一部分,使用氣體層析儀分 析。依據分析結果,以上述式(IV)表示之三環癸烯單羧 酸甲酯爲9.23mmol (以二環戊二烯爲基準之收率爲92.3% )。使用氣體層析-質量分析(GC-MS)分析之結果,所 得三環癸烯單羧酸甲酯確定爲8 -甲氧基羰基-三環〔 5.2.1.02’6〕癸-3-烯與9-甲氧基羰基-三環〔5.2.1.02’6〕癸-3-烯之混合物。以減壓蒸餾單離所得三環癸烯單羧酸甲酯 。本合成例之化學反應式示於下。 [化9]R-0-C The hydroformylation reaction of the tricyclic terpene monocarboxylic acid derivative represented by the above formula (IV) is carried out by a conventional hydroformylation method, for example, in the catalyst lecture volume 7 According to the editor of the Catalyst Association, as described in the lecturer (1985), a transition metal complex catalyst such as cobalt, ruthenium or osmium may be used to react carbon monoxide with hydrogen to form an aldehyde, then hydrogenation or use. A method in which carbon monoxide is reacted with hydrogen and directly added to an alcohol. On the other hand, in the conventional hydroformylation method, since carbon monoxide is used with high toxicity, it is less preferable from the viewpoints of workability, safety, reactivity, etc., and therefore it is more preferable to use carbon dioxide and hydrogen as described below. Hydroformylation. At this time, carbon dioxide and hydrogen may be supplied as a mixed gas, or may be supplied separately. The mixed gas system is a mixed gas (raw material gas) containing carbon dioxide and hydrogen as main components, and the content of carbon dioxide is preferably 10 to 95 vol%, more preferably 50 to 80 vol%, and the hydrogen content is preferably 5 to 90 vol%, more preferably It is 20~50vol%. When the hydrogen content exceeds 90 vol%, the raw material tends to be hydrogenated. When the amount is less than 5%, the reaction rate tends to decrease. In -18- 201231493, it is not necessary to mix carbon monoxide gas into the raw material gas, but it is not necessary to mix it. The catalyst system of the hydroformylation reaction preferably contains a ruthenium compound, and the ruthenium compound to be used is not particularly limited as long as it contains ruthenium. Specific examples of preferred compounds are [Ru(CO)3C12]2, [RuC12(CO)2]η (η is an unspecified natural number), [1111((:0)3(:13]-, [ 11113 ((:0)11(::1]·, [Ru4(CO)13C1]-), etc., together with a ruthenium compound having a carbonyl ligand and a halogen ligand, among them, the viewpoint of improving the reaction rate More preferably, it is [Ru(CO)3C12]2, [RuC12(CO)2]η. For the ruthenium compound having the above ligand, RuC13, Ru3(CO)12, RuC12(C8H12) can also be used. Ru(CO)3(C8H8), Ru(CO)3(C8H12), and Ru(C8H1q)(C8H12) are used as precursor compounds, and the ruthenium compound is prepared before or during the reaction of hydroformylation. Further, it is introduced into the reaction system. The amount of the ruthenium compound used is 1 equivalent of the tricyclodecene monocarboxylic acid derivative represented by the formula (IV) of the starting material, preferably 1/100 〇〇 to 1 equivalent, more It is preferably 1 / 1 000 - 1 / 50 equivalent. When the manufacturing cost is considered, the use of the ruthenium compound is as small as possible, but when it is less than 1 / 1 0000 equivalent, the reaction tends to be extremely slow, and when it exceeds 1 equivalent There will be no reaction speed It is only a tendency to increase the manufacturing cost. The hydroformylation of the tricyclic terpene monocarboxylic acid derivative represented by the formula (IV) of the present invention may be required to additionally add a cobalt compound to the catalyst system containing the ruthenium compound. At least one of a halide salt, a phenol compound and an acid is selected to further enhance the effect of promoting the reaction by the aforementioned catalyst system. -19- 201231493 A cobalt compound which can be used as a catalyst for hydroformylation reaction is not particularly Specific examples of preferred compounds are c〇2(co)8, hc〇(co)4, &lt;:〇4((:0)12, etc. cobalt compound with carbonyl ligand, cobalt acetate' a cobalt compound such as cobalt propionate, cobalt benzoate or cobalt citrate having a carboxylic acid compound, cobalt phosphate, etc. Among them, C〇2(CO)8 is preferable from the viewpoint of improving the reaction rate. Cobalt acetate and cobalt citrate. The amount of the cobalt compound used is 1/100 to 10 equivalents, preferably 1/10 to 5 equivalents per equivalent of the hydrazine compound. The ratio of the above cobalt compound to the above hydrazine compound is less than 1 /100, or higher than 10, tricyclodecane monomethanol monocarboxylic acid derivative The amount of the halide salt to be used in the present invention is not particularly limited as long as it is a compound composed of a halide ion such as a chloride ion, a bromide ion or an iodide ion, and a cation. The cation may be an inorganic substance. Any one of an ion and an organic ion. The halide salt may further contain one or more halogen ions in the molecule. The inorganic ion constituting the halide salt may be a metal ion selected from an alkali metal or an alkaline earth metal. Specifically, it is exemplified by lithium, sodium, potassium, rubidium, planer, calcium, and barium. Further, the organic ion may be an organic group derived from an organic compound or more. An example of this is ammonium, squama, pyrrolidinium, pyridyl, imi- and imine. The hydrogen atom of the plasma may also be substituted with a hydrocarbon group such as an alkyl group or an aryl group. Although not particularly limited, specific examples of preferred organic ions are tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, tetraamylammonium, tetrahexylammonium, tetraheptylammonium, and tetra. Octyl ammonium, trioctylmethyl ammonium, -20- 201231493 benzyl trimethyl ammonium, benzyl triethyl ammonium, benzyl tributyl ammonium, cetyl trimethyl ammonium, tetramethyl scale, Tetraethyl scale, tetraphenylphosphonium, benzyltriphenylphosphonium, butylmethylpyrrolidine, octylmethylpyrrolidine, bis(triphenylphosphine)imide. Among them, in view of improving the reaction rate, a quaternary ammonium salt such as cetyltrimethylammonium chloride or cetyltrimethylammonium bromide is preferred. The halide salt which can be used in the present invention is not necessarily a solid salt, and may be an ionic liquid containing a halide ion which is liquid in a temperature range near room temperature or below 100 °C. Specific examples of the cation used in the plasma liquid are 1-ethyl-3-methylimidazole, 1-propyl-3-methylimidazole gun, 1-butyl-3-methylimidazole, 1 -pentyl-3-methylimidazole gun, 1-hexyl-3-methylimidazolium, 1-heptyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-decyl -3-methylimidazole key, 1 · dodecyl-3-methylimidazole key, 1-tetradecyl-3-methylimidazole key, 1-hexadecyl-3-methylimidazole key, 1-octadecyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-butyl-2,3-dimethylimidazolium, 1-hexyl-2, 3-dimethylimidazole, 1-ethylpyridine, 1-butylpyridine, 1-hexylpyridine, 8-methyl-1,8-diazabicyclo[5.4.0]-7- Monocarbene, 8-ethyl-1,8-diazabicyclo[5.4.0]-7-undecene, 8-propyl-1,8-diazabicyclo[5·4·0] -7-undecene, 8-butyl-1,8-diazabicyclo[5.4.0]-7-undecene, 8-pentyl-1,8-diazabicyclo[5.4. 0]-7-undecene, 8-hexyl-1,8-diazabicyclo[5.4.0]-7-undecene, 8-heptyl-1,8-diazabicyclo[ 5.4.0] Organic ions of 7-undecene, 8-octyl-1,8-diazabicyclo[5.4.0]-7-undecene. In the present invention, the above-mentioned halide salts may be used singly or in combination of plural kinds. In the above halide salt, a preferred halide salt is a chloride salt, a bromine salt, or an iodide salt, and the cation is an organic ion. Although not particularly limited, specific examples of the preferred halide salt in the present invention are cetyltrimethylammonium chloride, cetyltrimethylammonium bromide and the like. The amount of the halide salt to be added is, for example, 1 to 1000 equivalents, preferably 2 to 50 equivalents per equivalent of the hydrazine compound. By increasing the amount of one equivalent or more, the reaction rate can be effectively increased. On the other hand, when the amount added exceeds 1 当量, the effect of further improving the reaction cannot be obtained even if the amount of addition is further increased. The phenol compound used in the present invention is not particularly limited. Specific examples of the phenol compound which can be used are phenol, cresol, alkylphenol, methoxyphenol, phenoxyphenol, chlorophenol, trifluoromethylphenol, hydroquinone, and catechol. The amount of the phenol compound to be added is not particularly limited, but is, for example, 1 to 1,000 equivalents, preferably 2 to 200 equivalents per equivalent of the hydrazine compound. When the amount of addition is 1 equivalent or more, the reaction promoting effect is more remarkably exhibited. In addition, when the amount added exceeds 1,000 equivalents, there is a tendency that the effect of further improving the reaction cannot be obtained even if the amount of addition is further increased. As the acid which can be used in the present invention, all of the acids corresponding to the definition of Lewis can be used. According to this definition, when a substance A is supplied with an electron pair by another substance B, then A is defined as an acid, B is defined as a base, and the owner corresponding to the A of the receiving electron pair can be used. As the above acid, A is preferably an acid which is a proton donor, that is, a Brandy acid. As for the Brilliant acid system, for example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, methylphosphoric acid, alkylphosphonic acid, phenylphosphoric acid, diphenyl phosphite, benzene-22-201231493-based phosphonic acid, 4-methoxyphenylphosphine Acid, diethyl 4-methoxyphenylphosphonate, phenylphosphite, boric acid, phenylboronic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, phenol, tungstic acid, phosphotungstic acid, and formic acid An alkyl carboxylic acid represented by acetic acid, trifluoroacetic acid, propionic acid or butyric acid, an aromatic carboxylic acid represented by benzoic acid, phthalic acid or naphthoic acid, preferably phosphoric acid, alkylphosphoric acid or phenyl Phosphorous acid such as phosphoric acid, diphenyl phosphite, or phosphonic acid derivative. The amount of the acid to be added is, for example, 0.1 to 100 equivalents, preferably 1 to 10 equivalents per equivalent of the hydrazine compound. By setting the amount to be added in an amount of 1 equivalent or more, the reaction rate can be effectively increased. On the other hand, when the amount added exceeds 100 equivalents, the effect of further promoting the reaction cannot be obtained even if the amount of addition is further increased. Hydroformylation is preferably carried out in a temperature range of from 100 ° C to 200 ° C, more preferably in a temperature range of from ll ° ° C to 180 ° C, preferably at a temperature of from 120 ° C to 160 ° C. Implemented within the scope. By carrying out the reaction at a temperature of 10 ° C or higher, the reaction is accelerated, and the reaction is easily carried out efficiently. On the other hand, by controlling the reaction temperature to 200 ° C or lower, hydrogenation of the unsaturated bond of the tricyclic terpene monocarboxylic acid derivative represented by the general formula (IV) can be suppressed. When hydrogenation of the unsaturated bond of the tricyclic terpene monocarboxylic acid derivative represented by the general formula (IV) is caused, hydroformylation cannot be achieved, so that a reaction temperature which is too high is not desired. Hydroformylation is necessary in a pressure vessel. The pressure of the reaction is preferably in the range of 1 MPa to 20 MPa, more preferably in the range of 2 MPa to 15 MPa. When the pressure is less than IMP a, the reaction tends to be slow. When the pressure exceeds 20 MPa, there is a tendency that the reaction is promoted to further improve the effect even if the pressure is further increased. -23- 201231493 The hydroformylation reaction for obtaining the tricyclodecane monomethanol monocarboxylic acid derivative used in the present invention may optionally be present in a solvent. The solvent to be used is not particularly limited as long as it can dissolve the tricyclodecene monocarboxylic acid derivative represented by the above formula (IV). Specific examples of suitable solvents are n-pentane, n-hexane, n-heptane, cyclohexane, benzene, toluene, o-xylene, p-xylene, m-xylene, ethylbenzene, isopropyl. Benzene, tetrahydrofuran, N-methylpyrrolidone, dimethylformamide, dimethylacetamide, dimethylimidazolidinone, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, -B - alcohol monomethyl ether, γ - butane vinegar, and the like. When a solvent is used, it is preferably used in such a range that the concentration of the tricyclic terpene monocarboxylic acid derivative represented by the above formula (IV) is in the range of 10 to 1000% by mass. The method of uniformly polymerizing a tricyclodecane monomethanol monocarboxylic acid derivative represented by the formula (II) of the present invention to form an alicyclic polyester represented by the general formula (I) is not particularly limited, and for example, Obtained by excluding the alcohol produced by heating out of the system in the presence or absence of a solvent. The polymerization temperature is preferably from 4 to 22 ° C, more preferably from 60 to 2 Torr (TC, preferably from 80 to 180 ° C. When the polymerization temperature is less than 80 ° C, the polymerization rate tends to be extremely slow, exceeding At 220 ° C, the polymerization reaction may cause decomposition of the tricyclodecane monomethanol monocarboxylic acid derivative represented by the general formula (π). The reaction time may be appropriately selected depending on the batch size and the reaction conditions employed. A catalyst may also be used. The catalyst to be used is not particularly limited, and for example, a basic substance such as a metal alkoxide or an alkali metal salt may be used. Among them, an alkali alkoxide of an alkali (earth) metal is preferably used. It is easy to use lithium, sodium, potassium methoxide, ethoxylate, propoxide. The amount of the above catalyst is -24-201231493. It is preferably the raw material tricyclodecane monomethanol monocarboxylic acid derivative 〇〇 1~ 1〇〇% by mole, more preferably 0.03~7.0% by mole, preferably 〇〇5~5 〇mol%. When the amount of catalyst used is less than 0.01 mil%, there is a tendency for the polymerization rate to be extremely slow. When it exceeds 10.0 mol%, the polymerization proceeds rapidly, or there is a possibility of causing excessive heat generation. The solvent can be used in the absence of a solvent. The solvent to be used is not particularly limited as long as it can dissolve the tricyclodecane monomethanol monocarboxylic acid derivative of the starting material. Specific examples of the solvent which can be suitably used Examples thereof include a ketone solvent such as methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, an ester solvent such as ethyl acetate, butyl acetate or γ-butyrolactone, and diethylene glycol dimethyl ether. , an ether solvent such as triethylene glycol dimethyl ether, diethylene glycol diethyl ether or triethylene glycol diethyl ether, butyl cellosolve acetate, ethyl cellosolve acetate, methyl a cellosolve such as cellosolve acetate, a solvent such as toluene, xylene, p-isopropylbenzene or 1,2,3,4-tetrahydroxynaphthalene, tetrahydrofuran, dioxins, hydrazine - Methyl-2-pyrrolidone, hydrazine, hydrazine-dimethylformamide, hydrazine, hydrazine-dimethylacetamide, dimethyl hydrazine, cyclobutyl, etc., but if the cost is 'workability, etc., then More preferably, it is carried out without a solvent. EXAMPLES Hereinafter, the present invention will be described in detail by way of examples, but the scope of the present invention is not limited by the following examples. (Synthesis Example 1) [Synthesis of Tricyclic Terpene Monocarboxylic Acid Methyl Ester] At room temperature, in a 50 ml internal pressure stainless steel pressure reactor, -25-201231493, mixed with 0.025 «1111〇1 [1^((:〇)3(:12]2, 0.025 mmol of Co2(CO)8 as a cobalt compound, 0.5 mmol of trioctylmethylammonium chloride as a halide salt, 2.0 mmol The catalyst system obtained as a basic compound of triethylamine was added with 1 〇 mmol of dicyclopentadiene and 5.0 mL of methyl formate. Then, the inside of the reaction apparatus was blown with nitrogen 〇 5 MPa, at 12 (TC was maintained for 8 hours. The reaction apparatus was then cooled to room temperature.) The pressure was released and a portion of the residual organic phase was taken and analyzed using a gas chromatograph. According to the analysis results, the tricyclodecene monocarboxylic acid methyl ester represented by the above formula (IV) was 9.23 mmol (yield based on dicyclopentadiene was 92.3%). As a result of gas chromatography-mass spectrometry (GC-MS) analysis, the obtained tricyclodecene monocarboxylic acid methyl ester was identified as 8-methoxycarbonyl-tricyclo[5.2.1.02'6]non-3-ene and A mixture of 9-methoxycarbonyl-tricyclo[5.2.1.0''6]non-3-ene. The obtained tricyclodecene monocarboxylic acid methyl ester was isolated by distillation under reduced pressure. The chemical reaction formula of this synthesis example is shown below. [Chemistry 9]

(合成例2)〔三環癸烷單甲醇單羧酸甲酯之合成〕 在室溫下,於內容積50ml之不銹鋼製加壓反應裝置中 ,於混合0.05mmol之作爲釕化合物之Ru2(CO)6C14、 0.05mmol之作爲鈷化合物之Co2(CO)8、2.5mmol之作爲鹵 化物鹽之氯化十六烷基三甲基銨、0.2 5mmol之作爲酸之亞 磷酸二苯酯而成之觸媒系統中添加10. Ommol之另外合成之 三環癸烯單羧酸甲酯、10. Oml之作爲溶劑之甲苯,經攪拌 -26- 201231493 溶解後,壓入4MPa之二氧化碳、4MPa之氫’且在140°C維 持15小時。隨後,將反應裝置冷卻至室溫’釋放壓力且抽 取殘留有機相之一部分,以氣體層析儀分析。依據分析結 果,生成7.45 mmol (以三環癸烯單羧酸甲酯爲基準之收 率爲74.5%)之以上式(II)表示之三環癸烷單甲醇單羧 酸甲酯。使用氣體層析-質量分析計(GC_MS )分析之結 果,所得三環癸烷單甲醇單羧酸甲酯確定爲4-羥基甲基-8-甲氧基羰基-三環〔5.2.1.02’6〕癸烷、3-羥基甲基-8-甲氧 基羰基-三環〔5.2.1 ·02’6〕癸烷及3-羥基甲基-9-甲氧基羰 基-三環〔5.2.1.02’6〕癸烷之混合物。本合成例之化學反 應式示於下。 [化 10](Synthesis Example 2) [Synthesis of tricyclodecane monomethanol monocarboxylic acid methyl ester] In a stainless steel pressure reaction apparatus having an internal volume of 50 ml at room temperature, 0.05 mmol of Ru2 (CO) as a ruthenium compound was mixed. 6C14, 0.05mmol of Co2(CO)8 as a cobalt compound, 2.5mmol of cetyltrimethylammonium chloride as a halide salt, and 0.25mmol of diphenyl phosphite as an acid 10. Ommol of the additionally synthesized tricyclic terpene monocarboxylic acid methyl ester, 10. Oml of toluene as a solvent, dissolved by stirring -26-201231493, and then pressed into 4 MPa of carbon dioxide, 4 MPa of hydrogen' Maintain at 140 ° C for 15 hours. Subsequently, the reaction apparatus was cooled to room temperature to release the pressure and extract a portion of the residual organic phase, which was analyzed by a gas chromatograph. Based on the analysis results, 7.45 mmol (yield 74.5% based on tricyclodecene monocarboxylic acid methyl ester) was produced as the tricyclodecane monomethanol monocarboxylic acid methyl ester represented by the above formula (II). Using a gas chromatography-mass spectrometer (GC_MS) analysis, the obtained tricyclodecane monomethanol monocarboxylic acid methyl ester was identified as 4-hydroxymethyl-8-methoxycarbonyl-tricyclo[5.2.1.02'6 ] decane, 3-hydroxymethyl-8-methoxycarbonyl-tricyclo[5.2.1 ·02'6]nonane and 3-hydroxymethyl-9-methoxycarbonyl-tricyclo[5.2.1.02 '6] a mixture of decane. The chemical reaction formula of this synthesis example is shown below. [化10]

利用減壓蒸餾單離所得三環癸烷單甲醇單羧酸甲酯, 且測定W-NMR光譜及IR光譜。又,W-NMR光譜係將試料 溶解於二甲基亞楓(DMS0-d6 )中而成之溶液,倒入 Φ 5mm之試料管中,使用BRUKER公司製造之400MHz核磁 共振裝置「AV400M」測定。又,IR光譜係使用傅利葉轉 換紅外線分光光度計(日本電子製造之JIR-6 5 00 )測定。 iH-NMR光譜示於圖1。各質子如下述般歸類。解析方 便起見,例示以下述式表示之4 -羥基甲基-8-甲氧基羰基-三環〔5·2.1.02’6〕癸烷。 1H-NMR分析之結果(圖1),各質子係如下述般歸類 -27- 201231493 [化 11]The obtained tricyclodecane monomethanol monocarboxylic acid methyl ester was isolated by distillation under reduced pressure, and W-NMR spectrum and IR spectrum were measured. Further, in the W-NMR spectrum, a solution obtained by dissolving a sample in dimethyl sulfoxide (DMS0-d6) was poured into a sample tube of Φ 5 mm, and measured by a 400 MHz nuclear magnetic resonance device "AV400M" manufactured by BRUKER. Further, the IR spectrum was measured using a Fourier transform infrared spectrophotometer (JIR-6 5 00, manufactured by JEOL Ltd.). The iH-NMR spectrum is shown in Fig. 1. Each proton is classified as follows. For the purpose of analysis, 4-hydroxymethyl-8-methoxycarbonyl-tricyclo[5·2.1.02'6]nonane represented by the following formula is exemplified. The results of 1H-NMR analysis (Fig. 1), each proton is classified as follows -27- 201231493 [Chem. 11]

ch2oh (11) (12) 質子(1) : 2.1ppm附近之峰 質子(2) :2.4ppm附近之峰 質子(3) : 1 .2ppm附近及1 .7ppm附近之峰 質子(4 ) : 2.3ppm附近之峰 質子(5) : 1.2ppm附近及1 _8ppm附近之峰 質子(6 ) : 2.6ppm附近之峰 質子(7 ) : 2. Ippm附近之峰 質子(8 ) : 1.9ppm附近之峰 質子(9) : 0.9ppm附近及1 .7ppm附近之峰 質子(10) : 1.4〜1.5ppm附近之峰 質子(1 1 ) : 3.2ppm附近之峰 質子(12 ) : 4.4ppm附近之峰 質子(1 3 ) : 3.6ppm附近之峰 又’三環癸烷部份之質子(1) ~(1〇) /羥基甲基之 質子及(11) /羥基甲基之質子(12) /甲氧基羰基之質子 (13)之積分強度比爲13.93/2.00/1.04/3.08 (理論値: 14/2/1/3 ) ’可確認所得三環癸烷單甲醇單羧酸甲酯具有 以上述式(V)表示之構造。 又’ IR光譜示於圖2。可確認三環癸烷部份之伸甲基 -28- 201231493 及次甲基之峰在8 00〜1 450CXTT1附近,起因於羥基甲基之伸 甲基之峰在1465 0111^附近,起因於羥基甲基之羥基之峰在 3400CHT1附近,起因於甲氧基羰基之羰基之峰在1 760011^1 附近,起因於甲氧基羰基之甲基之峰在2870CHT1及 2960CHT1附近》 合成例3〔三環癸烷二甲醇之合成〕 在室溫下,於內容積50ml之不銹鋼製加壓反應裝置中 ,倒入O.lmmol之作爲釕化合物之Ru3(CO)12、0.5mmol之 作爲作爲鹵化物鹽之氯化雙(三苯基膦)亞胺銷、 0.5mmol之作爲酸之苯基磷酸、5.0mmol之作爲原料有機化 合物之二環戊二烯、10. OmL之作爲有機溶劑之甲苯,經攪 拌溶解後,邊攪拌邊壓入4MPa之二氧化碳、4MPa之氫, 且在140 °C維持10小時。隨後,將反應裝置冷卻至室溫, 釋放壓力且抽取殘留有機相,以氣體層析儀分析。依據分 析結果,生成3.73 mmol (以環戊二烯爲基準之收率爲 74.6%)之三環癸烷二甲醇。本合成例之化學反應式示於 下。 [化 12]Ch2oh (11) (12) Proton (1): peak proton near 2.1ppm (2): peak proton near 2.4ppm (3): peak proton near 1. 2ppm and around 1.7ppm (4) : 2.3ppm Nearby peak protons (5): peak protons around 1.2ppm and around 1 _8ppm (6): peak protons around 2.6ppm (7): 2. Peak protons around Ippm (8): peak protons around 1.9ppm ( 9) : Peak proton near 0.9ppm and around 1.7ppm (10): Peak proton near 1.4~1.5ppm (1 1 ): Peak proton near 3.2ppm (12): Peak proton near 4.4ppm (1 3 ) : The peak near 3.6ppm and the proton of the tricyclic decane moiety (1) ~ (1〇) / proton of hydroxymethyl group and proton of (11) / hydroxymethyl group (12) / methoxycarbonyl group The integrated intensity ratio of proton (13) is 13.93/2.00/1.04/3.08 (theoretical 値: 14/2/1/3) 'It can be confirmed that the obtained tricyclodecane monomethanol monocarboxylic acid methyl ester has the above formula (V) Indicates the construction. Further, the IR spectrum is shown in Fig. 2. It can be confirmed that the methyl -28-201231493 and the methine peak of the tricyclodecane moiety are in the vicinity of 8 00 to 1 450 CXTT1, and the methyl group peak due to the hydroxymethyl group is in the vicinity of 1465 0111^, resulting from the hydroxyl group. The peak of the hydroxyl group of the methyl group is in the vicinity of 3400 CHT1, and the peak of the carbonyl group due to the methoxycarbonyl group is around 1 760 011 ^1, and the peak of the methyl group resulting from the methoxycarbonyl group is near 2870 CHT1 and 2960 CHT1. Synthesis Example 3 [Tricyclic Synthesis of decane dimethanol] In a stainless steel pressure reactor equipped with an internal volume of 50 ml at room temperature, 0.13 mmol of Ru3(CO)12 and 0.5 mmol as a ruthenium compound were poured as a halide salt. Bis(triphenylphosphine)imide pin, 0.5 mmol of phenylphosphoric acid as acid, 5.0 mmol of dicyclopentadiene as a raw material organic compound, 10. OmL of toluene as an organic solvent, dissolved by stirring Thereafter, 4 MPa of carbon dioxide and 4 MPa of hydrogen were injected while stirring, and maintained at 140 ° C for 10 hours. Subsequently, the reaction apparatus was cooled to room temperature, the pressure was released, and the residual organic phase was taken and analyzed by a gas chromatograph. Based on the analysis results, 3.73 mmol (yield 74.6% based on cyclopentadiene) of tricyclodecane dimethanol was produced. The chemical reaction formula of this synthesis example is shown below. [化 12]

(實施例1 )〔脂環式聚酯之製作〕 於具備攪拌機、氮氣導入管及冷卻管之10ml燒瓶中’ 饋入合成例2中獲得之三環癸烷單甲醇單羧酸甲酯5 g及四 -29- 201231493 異丙氧化鈦〇.5g,在130°C之油浴中攪拌6小時,獲得數平 均分子量爲30,0 00之具有三環癸烷架構之聚酯。 以下述條件測定所得具有三環癸烷架構之聚酯之玻璃 轉移溫度(Tg )及熱分解起始溫度(5%質量減少溫度, Td5)。 結果示於表1。 (1 )玻璃轉移溫度(Tg)(Example 1) [Production of alicyclic polyester] In a 10 ml flask equipped with a stirrer, a nitrogen gas introduction tube, and a cooling tube, a tricyclodecane monomethanol monocarboxylic acid methyl ester 5 g obtained in Synthesis Example 2 was fed. And 4-29-201231493 iodine iodine bismuth. 5 g, stirred in an oil bath at 130 ° C for 6 hours to obtain a polyester having a tricyclodecane structure having a number average molecular weight of 30,00. The glass transition temperature (Tg) and the thermal decomposition onset temperature (5% mass reduction temperature, Td5) of the obtained polyester having a tricyclodecane structure were measured under the following conditions. The results are shown in Table 1. (1) Glass transition temperature (Tg)

以示差掃描熱量計(Rigaku (股)製造 8230型 DSC )測定。 升溫速度:5°C/min 氛圍:空氣 (2 )熱分解起始溫度(5%質量減少溫度,Td5 ) 以示差熱天平(Seiko電子(股)製造 5200型 TG-DTA )測定。 升溫速度:5°C/min 氛圍:空氣 且,以日本分光(股)製造之V-570型UV/VIS光譜儀 測定所得具有三環癸烷架構之聚酯在各波長之光線透射率 。評價結果彙總示於表1。 (比較例1 )〔聚酯之製作〕 於具備攪拌機、氮氣導入管及冷卻管之l〇ml燒瓶中, 饋入合成例3中獲得之三環癸烷二甲醇2.94g ( 0.015莫耳) 、間苯二甲酸二甲酯2.91g(0.015莫耳)及四異丙氧化鈦 -30- 201231493 〇.5g,在130 °C之油浴中攪拌6小時,獲得數平均分子量 28,000之具有三環癸烷架構之聚酯。 與實施例1同樣測定所得具有三環癸烷架構之聚酯之 特性。結果示於表1。 〔表1〕 項目 實施例1 比較例1 聚合物 特性 玻璃轉移溫度(。〇 160 112 熱分解起始溫度rc) 417 390 光線透射 率(%) 400nm 100 22 500nm 100 45 600nm 100 70 由表1可知,實施例1之玻璃轉移溫度及熱分解溫度二 者均高於比較例1,本發明之脂環式聚酯之耐熱性高。又 ,實施例1之光線透射率在任一波長均爲1 00%,顯示優異 之透明性。亦即,可確認本發明之脂環式聚酯之耐熱性及 透明性二者均優異。 【圖式簡單說明】 圖1爲合成例2中獲得之三環癸烷單甲醇單羧酸甲酯之 W-NMR光譜。 圖2爲合成例2中獲得之三環癸烷單甲醇單羧酸甲酯之 FT-IR光譜。 -31 -It was measured by a differential scanning calorimeter (Rigaku Co., Ltd. Model 8230 DSC). Heating rate: 5 ° C / min Atmosphere: Air (2) Thermal decomposition starting temperature (5% mass reduction temperature, Td5) Measured with a differential thermal balance (Seiko Electronics Co., Ltd. Model 5200 TG-DTA). Heating rate: 5 ° C / min. Atmosphere: air, and the light transmittance of the polyester having a tricyclodecane structure at each wavelength was measured by a V-570 type UV/VIS spectrometer manufactured by JASCO Corporation. The evaluation results are summarized in Table 1. (Comparative Example 1) [Production of Polyester] In a 10 ml flask equipped with a stirrer, a nitrogen gas introduction tube and a cooling tube, 2.94 g (0.015 mol) of tricyclodecane dimethanol obtained in Synthesis Example 3 was fed. Dimethyl isophthalate 2.91 g (0.015 mol) and titanium tetraisopropoxide-30-201231493 〇.5g, stirred in an oil bath at 130 ° C for 6 hours to obtain a tricyclic fluorene having a number average molecular weight of 28,000 Alkane-structured polyester. The properties of the obtained polyester having a tricyclodecane structure were measured in the same manner as in Example 1. The results are shown in Table 1. [Table 1] Item Example 1 Comparative Example 1 Polymer property Glass transition temperature (. 〇 160 112 Thermal decomposition onset temperature rc) 417 390 Light transmittance (%) 400 nm 100 22 500 nm 100 45 600 nm 100 70 As shown in Table 1 The glass transition temperature and the thermal decomposition temperature of Example 1 were both higher than that of Comparative Example 1, and the alicyclic polyester of the present invention has high heat resistance. Further, the light transmittance of Example 1 was 100% at any wavelength, showing excellent transparency. That is, it was confirmed that the alicyclic polyester of the present invention is excellent in both heat resistance and transparency. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a W-NMR spectrum of a tricyclodecane monomethanol monocarboxylic acid methyl ester obtained in Synthesis Example 2. Fig. 2 is a FT-IR spectrum of tricyclodecane monomethanol monocarboxylic acid methyl ester obtained in Synthesis Example 2. -31 -

Claims (1)

201231493 七、申請專利範圍: 式(I)表示之 1. 一種脂環式聚酯,其具有以下述通 構造單位, [化1]201231493 VII. Patent application scope: Formula (I) 1. An alicyclic polyester having the following structural unit, [Chem. 1] 2. 一種如申請專利範圍第1項之脂環 法,其係使以下述通式(II)表示之三環 酸衍生物均聚合而成, [化2] 聚酯之製造方 烷單甲醇單羧2. An alicyclic method according to the first aspect of the patent application, which comprises polymerizing a tricyclic acid derivative represented by the following formula (II), and producing a decane monomethanol of the polyester. Carboxylate 5之烷基、乙烯 (但,式(II)中,R表示氫原子、碳數1~ 基、或苄基)。 -32-An alkyl group of 5 or ethylene (however, in the formula (II), R represents a hydrogen atom, a carbon number of 1 to a group, or a benzyl group). -32-
TW100125624A 2010-09-14 2011-07-20 Alicyclic polyester and production method therefor TW201231493A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010205669 2010-09-14

Publications (1)

Publication Number Publication Date
TW201231493A true TW201231493A (en) 2012-08-01

Family

ID=45831350

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100125624A TW201231493A (en) 2010-09-14 2011-07-20 Alicyclic polyester and production method therefor

Country Status (3)

Country Link
JP (1) JPWO2012035875A1 (en)
TW (1) TW201231493A (en)
WO (1) WO2012035875A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2768953T3 (en) 2015-03-25 2020-06-24 Mitsubishi Gas Chemical Co Bifunctional compound having Norbornan backbone and production method for it
JP6869878B2 (en) * 2017-12-05 2021-05-12 キヤノン株式会社 Identification device, identification system, and sorting system
KR20200140845A (en) * 2018-04-04 2020-12-16 미츠비시 가스 가가쿠 가부시키가이샤 Polyester resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240662A (en) * 2000-02-29 2001-09-04 Daicel Chem Ind Ltd Functional polyester polymer and method for producing the same
JP4420513B2 (en) * 2000-02-29 2010-02-24 ダイセル化学工業株式会社 Novel polyester polymer and its production method
JP2001240661A (en) * 2000-02-29 2001-09-04 Daicel Chem Ind Ltd Functional polyester polymer and method for producing the same

Also Published As

Publication number Publication date
JPWO2012035875A1 (en) 2014-02-03
WO2012035875A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
TW201213387A (en) Polyester having norbornane backbone, and method for producing same
JP5586030B2 (en) Method for producing tricyclodecane monomethanol monocarboxylic acid derivative
TW201231493A (en) Alicyclic polyester and production method therefor
JP5536784B2 (en) Tricyclodecane monomethanol monocarboxylic acid and its derivatives
TW201132678A (en) Polyamide-imide having norbornane framework and production method thereof
JP5811753B2 (en) Method for producing norbornane skeleton-containing polyamide
JP5556301B2 (en) Polyamide having norbornane skeleton and method for producing the same
JP5590117B2 (en) Process for producing polyamide having norbornane skeleton and polyamide having norbornane skeleton obtained thereby
US20140031579A1 (en) Method of producing norbornanedicarboxylic acid ester
JP5796416B2 (en) Process for producing polyamideimide containing norbornane skeleton
JP2012240981A (en) Dihydrodiester of bisnadimide
JP2013079350A (en) Polyamide containing norbornane skeleton having high exo isomer ratio
JP2013079351A (en) Method for producing polyamide containing norbornane skeleton
WO2022263619A1 (en) Vinylated keto esters with applicability in signal enhanced magnetic resonance imaging and synthesis thereof
JP2012240980A (en) Dihydrodiester of bisnadimide
JPWO2011121847A1 (en) Method for producing polyamideimide having nadiimide skeleton
TW201141831A (en) Process for production of (meth)acrylic ester