WO2012035874A1 - Polyester having norbornane backbone, and method for producing same - Google Patents

Polyester having norbornane backbone, and method for producing same Download PDF

Info

Publication number
WO2012035874A1
WO2012035874A1 PCT/JP2011/066207 JP2011066207W WO2012035874A1 WO 2012035874 A1 WO2012035874 A1 WO 2012035874A1 JP 2011066207 W JP2011066207 W JP 2011066207W WO 2012035874 A1 WO2012035874 A1 WO 2012035874A1
Authority
WO
WIPO (PCT)
Prior art keywords
norbornane
polyester
general formula
acid
methyl
Prior art date
Application number
PCT/JP2011/066207
Other languages
French (fr)
Japanese (ja)
Inventor
川上 広幸
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to JP2012533903A priority Critical patent/JPWO2012035874A1/en
Publication of WO2012035874A1 publication Critical patent/WO2012035874A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • the present invention relates to an optical material typified by electronic components, optical fibers, optical lenses and the like used for semiconductors and liquid crystals, as well as a polyester having a norbornane skeleton used for display-related materials and medical materials, and a method for producing the same.
  • polyester resins are used in a wide range of fields because they can be formed into films, sheets, deformed materials, fibers, tubes, containers and the like by various forming methods.
  • the most frequently used polyesters are aromatic polyesters made from aromatic dicarboxylic acids such as terephthalic acid or isophthalic acid, and these have excellent heat resistance and toughness because they contain aromatic groups.
  • Polyesters having an alicyclic structure are beginning to be used in some fields where the transparency is required because they are excellent in heat resistance, transparency and water resistance.
  • a saturated cycloaliphatic primary diol such as 1,4-cyclohexanedimethanol have been proposed (see Patent Document 1). Since the diol has an alkylene group inserted between a hydroxyl group and a saturated cycloaliphatic group, the resulting alicyclic polyester resin has aliphaticity, and has a low heat resistance in the case of a cyclohexane ring skeleton. As a result, sufficient characteristics cannot be obtained.
  • polyesters having a norbornane skeleton include those comprising norbornanediol or tricyclodecanediol and dicarboxylic acid (see Patent Documents 3 to 6), norbornanedimethanol, norbornenedimethanol and norbornanedicarboxylic acid (Patent Document 7). To 9), norbornanedimethanol and dicarboxylic acid (see Patent Documents 10 and 11) have been proposed, but none of them is a polymer of a single monomer.
  • the present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a polyester having a norbornane skeleton excellent in heat resistance and transparency and a method for producing the same.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.
  • a norbornane monomethanol monocarboxylic acid derivative represented by the above general formula (II) is obtained by hydroformylating a norbornene monocarboxylic acid derivative represented by the following general formula (III): The manufacturing method of polyester as described in said (2).
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.
  • the present invention it is possible to provide a polyester having a norbornane skeleton excellent in heat resistance and transparency and a method for producing the same. Since the polyester having a norbornane skeleton of the present invention is excellent in heat resistance and transparency, optical materials such as electronic parts, optical fibers and optical lenses used in semiconductors and liquid crystals, display-related materials, and medical materials are also used. Can be used as The polyester having a norbornane skeleton of the present invention can be obtained in a shorter process than the conventional polyester having a norbornane skeleton, and the polyester is controlled so that the structural unit represented by the general formula (I) is repeated. Therefore, it has excellent heat resistance.
  • FIG. 2 is a 1 H-NMR spectrum of methyl norbornanemonomethanol monocarboxylate obtained in Synthesis Example 3.
  • FIG. 4 is an FT-IR spectrum of methyl norbornane monomethanol monocarboxylate obtained in Synthesis Example 3.
  • polyester having a norbornane skeleton of the present invention (hereinafter sometimes referred to as “alicyclic polyester”) is characterized by having a norbornane skeleton having a structural unit represented by the following general formula (I).
  • R 1 represents a hydrogen atom or a methyl group.
  • the number average molecular weight (measured by GPC method and calculated using a standard polystyrene calibration curve) of the alicyclic polyester of the present invention is preferably 2,000 to 250,000, and preferably 3,000 to 220,000. More preferably. When the number average molecular weight is less than 2,000, the heat resistance and the like tend to decrease, and when it exceeds 250,000, the moldability tends to decrease.
  • the alicyclic polyester of the present invention is excellent in transparency because it has a total alicyclic structure, and is heat resistant by controlling the polymer skeleton such that the structural unit represented by the general formula (I) is repeated. Since it is excellent, it can be used as an electronic material used for semiconductors and liquid crystals, an optical material represented by an optical fiber, an optical lens, etc., a display-related material, and a medical material.
  • the polymer skeleton of the alicyclic polyester of the present invention is a skeleton in which the structural unit represented by the general formula (I) is repeated as described above.
  • the polymer skeleton of a polyester having a conventional norbornane skeleton is equivalent to that of the present invention in that the norbornane is linked by an ester bond as shown in Comparative Example 1 described later.
  • the manner of ester bonding is different from the present invention. That is, a conventional polyester having a norbornane skeleton has a structure obtained by polymerizing two monomers of a diol (for example, norbornanediol) and a dicarboxylic acid (for example, norbornanecarboxylic acid), and the alicyclic structure of the present invention.
  • Polyester is a structure obtained by polymerizing a single monomer having an alcohol moiety and an ester moiety, and the manner of ester bonding is different. It is considered that the difference in these structures becomes the difference in crystallinity of the polymer, resulting in a difference in heat resistance.
  • the method for producing a polyester having a norbornane skeleton of the present invention that is, the method for producing an alicyclic polyester represented by the general formula (I) is a norbornane monomethanol monocarboxylic acid derivative represented by the following general formula (II): Is characterized by homopolymerization.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.
  • the alkyl group represented by R 2 is not particularly limited as long as it is an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group, and among them, a methyl group, an ethyl group, a propyl group, and the like.
  • Group, isopropyl group, butyl group, isobutyl group, amyl group, isoamyl group are preferred.
  • norbornane monomethanol monocarboxylic acid derivative represented by the general formula (II) include bicyclo [2.2.1] heptane-2-carboxy-5-hydroxymethyl, bicyclo [2.2.1] heptane. -2-carboxy-6-hydroxymethyl, bicyclo [2.2.1] heptane-2-methoxycarbonyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2-methoxycarbonyl-6-hydroxymethyl, Bicyclo [2.2.1] heptane-2-ethoxycarbonyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2-ethoxycarbonyl-6-hydroxymethyl, bicyclo [2.2.1] heptane- 2-Prooxycarbonyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2-propoxy Carbonyl-6-hydroxymethyl, bicyclo [2.2.1] heptane-2-butoxycarbonyl-5-hydroxymethyl, bicyclo [2.2.1] heptane
  • norbornene monocarboxylic acid derivatives are produced. From the viewpoint of cost and reactivity, bicyclo [2.2.1] heptane-2-methoxycarbonyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2-methoxycarbonyl-6-hydroxymethyl Is preferred.
  • the norbornane monomethanol monocarboxylic acid derivative represented by the general formula (II) can be obtained by hydroformylating the norbornene monocarboxylic acid derivative represented by the following general formula (III).
  • R 2 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.
  • the norbornane monomethanol monocarboxylic acid derivative represented by the general formula (II) is obtained by hydroformylating the norbornene monocarboxylic acid derivative represented by the general formula (III) as shown below.
  • R 2 in formula (III) is the same as R 2 in the general formula (II), and preferred examples thereof are also the same.
  • the hydroformylation reaction of the norbornene monocarboxylic acid derivative represented by the general formula (III) is a generally known hydroformylation method, for example, Catalyst Course Vol. 7, Catalysis Society, Kodansha (1985), Using a transition metal complex catalyst such as cobalt, ruthenium, and rhodium as described in International Publication WO2007 / 1111091, carbon monoxide and hydrogen are reacted to add an aldehyde, followed by further hydrogenation A method or a method of directly adding an alcohol by reacting carbon monoxide with hydrogen can be used.
  • the hydroformylation method using carbon dioxide and hydrogen described below is more preferable.
  • carbon dioxide and hydrogen may be supplied in the form of a mixed gas, or may be supplied separately.
  • the mixed gas is a mixed gas (raw material gas) mainly composed of carbon dioxide and hydrogen.
  • the carbon dioxide content is preferably 10 to 95 vol%, more preferably 50 to 80 vol%, and the hydrogen content is Preferably, it is 5 to 90 vol%, more preferably 20 to 50 vol%.
  • the catalyst system for the hydroformylation reaction preferably contains a ruthenium compound, and the ruthenium compound that can be used is not particularly limited as long as it contains ruthenium.
  • suitable compounds include [Ru (CO) 3 Cl 2 ] 2 , [RuCl 2 (CO) 2 ] n , (n is an unspecified natural number), [Ru (CO) 3 Cl 3 ] ⁇ , [Ru 3 (CO) 11 Cl] ⁇ , [Ru 4 (CO) 13 Cl] ⁇ , etc., and ruthenium compounds having both a carbonyl ligand and a halogen ligand in the molecule. From the viewpoint of improving the reaction rate, [Ru (CO) 3 Cl 2 ] 2 and [RuCl 2 (CO) 2 ] n are more preferable.
  • Ruthenium compounds having the above ligands are RuCl 3 , Ru 3 (CO) 12 , RuCl 2 (C 8 H 12 ), Ru (CO) 3 (C 8 H 8 ), Ru (CO) 3 (C 8 H). 12 ), Ru (C 8 H 10 ) (C 8 H 12 ) or the like as a precursor compound, and the ruthenium compound is prepared and introduced into the reaction system before or during the reaction of hydroformylation. Also good.
  • the amount of the ruthenium compound used is preferably 1 / 10,000 to 1 equivalent, more preferably 1/1000 to 1/50 equivalent to 1 equivalent of the norbornane monocarboxylic acid derivative represented by the general formula (III) as the raw material. is there. Considering the production cost, it is preferable that the amount of the ruthenium compound used is smaller, but if it is less than 1/10000 equivalent, the reaction tends to become extremely slow. Moreover, even if it exceeds 1 equivalent, the reaction rate does not increase, but only the production cost tends to increase.
  • the cobalt compound that can be used as a catalyst for the hydroformylation reaction is not particularly limited as long as it contains cobalt.
  • suitable compounds include cobalt compounds having a carbonyl ligand such as Co 2 (CO) 8 , HCo (CO) 4 , and Co 4 (CO) 12 , cobalt acetate, cobalt propionate, cobalt benzoate, and citric acid.
  • cobalt compounds having a carboxylic acid compound such as cobalt as a ligand, and cobalt phosphate.
  • Co 2 (CO) 8 cobalt acetate, and cobalt citrate are more preferable.
  • the amount of the cobalt compound used is 1/100 to 10 equivalents, preferably 1/10 to 5 equivalents per 1 equivalent of the ruthenium compound. Even if the ratio of the cobalt compound to the ruthenium compound is lower than 1/100 or higher than 10, the amount of norbornane monomethanol monocarboxylic acid derivative tends to be remarkably reduced.
  • the halide salt that can be used in the present invention is not particularly limited as long as it is a compound composed of a halide ion such as chloride ion, bromide ion, and iodide ion, and a cation.
  • the cation may be either an inorganic ion or an organic ion.
  • the halide salt may contain one or more halogen ions in the molecule.
  • the inorganic ions constituting the halide salt may be one metal ion selected from alkali metals and alkaline earth metals. Specific examples include lithium, sodium, potassium, rubidium, cesium, calcium, and strontium.
  • the organic ion may be a monovalent or higher-valent organic group derived from an organic compound.
  • examples include ammonium, phosphonium, pyrrolidinium, pyridium, imidazolium, and iminium, and the hydrogen atom of these ions may be substituted with a hydrocarbon group such as alkyl and aryl.
  • suitable organic ions include tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, tetrapentylammonium, tetrahexylammonium, tetraheptylammonium, tetraoctylammonium, and trioctyl.
  • quaternary ammonium salts such as hexadecyltrimethylammonium chloride and hexadecyltrimethylammonium bromide are more preferable from the viewpoint of improving the reaction rate.
  • the halide salt that can be used in the present invention does not need to be a solid salt, and an ionic liquid containing halide ions that becomes liquid near room temperature or in a temperature range of 100 ° C. or lower may be used.
  • ionic liquids include 1-ethyl-3-methylimidazolium, 1-propyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-pentyl-3.
  • halide salts described above preferred halide salts are chloride salts, bromide salts, and iodide salts, and the cation is an organic ion.
  • specific examples of the halide salt suitable in the present invention include hexadecyltrimethylammonium chloride, hexadecyltrimethylammonium bromide and the like.
  • the added amount of the halide salt is, for example, 1 to 1000 equivalents, preferably 2 to 50 equivalents, per 1 equivalent of the ruthenium compound.
  • the reaction rate can be effectively increased.
  • the addition amount exceeds 1000 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
  • the phenol compound used in the present invention is not particularly limited. Specific examples of usable phenol compounds include phenol, cresol, alkylphenol, methoxyphenol, phenoxyphenol, chlorophenol, trifluoromethylphenol, hydroquinone and catechol.
  • the amount of the phenol compound added is not particularly limited, but is, for example, 1 to 1000 equivalents, preferably 2 to 200 equivalents, per 1 equivalent of the ruthenium compound. By making the addition amount 1 equivalent or more, the reaction promoting effect tends to be more pronounced. Moreover, when the addition amount exceeds 1000 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
  • any acid that meets the definition of Lewis can be used. According to this definition, when a substance A is donated with an electron pair from another substance B, A is defined as an acid, and B is defined as a base, but all that apply to A accepting an electron pair must be used. it can.
  • A is preferably an acid that becomes a proton donor, that is, a Bronsted acid.
  • Bronsted acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, methyl phosphoric acid, alkyl phosphoric acid, phenyl phosphoric acid, diphenyl phosphite, phenylphosphonic acid, 4-methoxyphenylphosphonic acid, 4-methoxyphenylphosphonic acid Diethyl, phenylphosphinic acid, boric acid, phenylboric acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, phenol, tungstic acid, phosphotungstic acid, and alkylcarboxylic acids represented by formic acid, acetic acid, trifluoroacetic acid, propionic acid, butyric acid Aromatic carboxylic acids such as acid, benzoic acid, phthalic acid, and salicylic acid are used
  • the amount of acid added is, for example, 0.1 to 100 equivalents, preferably 1 to 10 equivalents per 1 equivalent of ruthenium compound.
  • the addition amount is, for example, 0.1 to 100 equivalents, preferably 1 to 10 equivalents per 1 equivalent of ruthenium compound.
  • the hydroformylation is preferably performed in a temperature range of 100 ° C. to 200 ° C., more preferably performed in a temperature range of 110 ° C. to 180 ° C., and particularly preferably performed in a temperature range of 120 ° C. to 160 ° C. .
  • the reaction rate is increased and the reaction is facilitated efficiently.
  • the reaction temperature is controlled to 200 ° C. or lower, hydrogenation of the unsaturated bond of the norbornene monocarboxylic acid derivative represented by the general formula (III) can be suppressed.
  • hydroformylation is not achieved, and thus a reaction temperature that is too high is undesirable.
  • the reaction pressure is preferably in the range of 1 MPa to 20 MPa, more preferably in the range of 2 MPa to 15 MPa.
  • the pressure is less than 1 MPa, the reaction tends to be slow, and when it exceeds 20 MPa, even if the pressure is further increased, there is a tendency that a further improvement effect of the reaction promotion cannot be obtained.
  • a solvent may be present as necessary.
  • the solvent that can be used is not particularly limited as long as it can dissolve the norbornene monocarboxylic acid derivative represented by the general formula (III).
  • Specific examples of solvents that can be suitably used include n-pentane, n-hexane, n-heptane, cyclohexane, benzene, toluene, o-xylene, p-xylene, m-xylene, ethylbenzene, cumene, tetrahydrofuran, and N-methylpyrrolidone.
  • the preferred amount used is in a range where the concentration of the norbornene monocarboxylic acid derivative represented by the general formula (III) is 10 to 1000% by mass.
  • the norbornene monocarboxylic acid derivative represented by the general formula (III) used in the present invention is directly synthesized by a usual method, that is, Diels-Alder reaction of dicyclopentadiene or cyclopentadiene with an acrylic ester or methacrylic ester. By dielsylpentadiene or cyclopentadiene and acrylic acid or methacrylic acid to obtain norbornene monocarboxylic acid compound, and then esterified by heating in alcohol in the presence of a catalyst.
  • acrylate ester or methacrylate ester examples include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethyl methacrylate.
  • examples include hexyl.
  • dicyclopentadiene The decomposition of dicyclopentadiene is described in, for example, Org. Syn, 1963, Vol. 4, P238, Org. Syn, 1962, Vol. 42, P50, Organic Synthesis Handbook, 1990, P501 and the like can be used. Specifically, use a method of collecting cyclopentadiene flowing out at 42 to 46 ° C. by introducing dicyclopentadiene into a flask equipped with a sneader or Vigreux fractionating tube and heating to 150 to 170 ° C. Can do.
  • the Diels-Alder reaction method of cyclopentadiene with acrylic acid ester or methacrylic acid ester is not particularly limited, but after adding acrylic acid ester or methacrylic acid ester into the flask, cyclopentadiene is dropped while paying attention to heat generation. The method is preferred.
  • the reaction temperature is preferably 20 to 50 ° C, more preferably 20 to 40 ° C, and particularly preferably 30 to 40 ° C. If the reaction temperature is less than 20 ° C, the reaction time tends to be longer, and if it exceeds 50 ° C, side reactions such as dimerization of cyclopentadiene may occur.
  • the reaction time can be appropriately selected depending on the scale of the batch and the reaction conditions employed.
  • the method for homopolymerizing the norbornane monomethanol monocarboxylic acid derivative represented by the general formula (II) of the present invention into the alicyclic polyester represented by the general formula (I) is not particularly limited. It can be obtained by removing water or alcohol generated by heating in the presence or absence of a solvent to the outside of the system.
  • the polymerization temperature is preferably 40 to 220 ° C., more preferably 60 to 200 ° C., and particularly preferably 80 to 180 ° C.
  • the reaction time can be appropriately selected depending on the scale of the batch and the reaction conditions employed.
  • a catalyst can also be used.
  • the catalyst that can be used is not particularly limited, and examples thereof include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, alkali metal carbonates such as lithium carbonate, sodium carbonate, and potassium carbonate, and lithium methoxide.
  • Alkali metal alkoxides such as sodium methoxide, sodium ethoxide, potassium t-butoxide, alkali metal amides such as lithium amide, sodium amide, potassium amide, tetramethyl orthotitanate, tetraethyl orthotitanate, tetrapropyl orthotitanate, Basic catalysts such as titanium alkoxide such as tetraisopropyl orthotitanate and tetrabutyl orthotitanate, aluminum alkoxide and tin alkoxide, sulfuric acid, paratoluenesulfonic acid, benzenesulfonic acid, methanes Sulfonic acids such as acid, zeolite, Amberlyst, Amberlite, but an acid catalyst such as solid acids such as Nafion available, it is preferable to use a basic catalyst, and more preferable to use a titanium alkoxide.
  • Basic catalysts such as titanium alkoxide such as t
  • the amount of the catalyst used is preferably 0.01 to 10.0 mol%, more preferably 0.03 to 7.0 mol% of the norbornane monomethanol monocarboxylic acid derivative as a raw material, Particularly preferred is 05 to 5.0 mol%. If the amount of the catalyst used is less than 0.01 mol%, the polymerization rate tends to be extremely slow, and if it exceeds 10.0 mol%, the polymerization proceeds rapidly, and excessive heat generation may occur. is there.
  • the polymerization reaction can be carried out without solvent, but a solvent can be used if necessary.
  • the solvent that can be used is not particularly limited as long as it can dissolve the raw material, norbornane monomethanol monocarboxylic acid derivative.
  • Specific examples of solvents that can be suitably used include, for example, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, ester solvents such as ethyl acetate, butyl acetate, and ⁇ -butyrolactone, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and diethylene glycol diethyl ether.
  • Ether solvents such as triethylene glycol diethyl ether, cellosolv solvents such as butyl cellosolve acetate, ethyl cellosolve acetate, methyl cellosolve acetate, fragrances such as toluene, xylene, p-cymene, 1,2,3,4-tetrahydroxynaphthalene, etc.
  • Group solvents tetrahydrofuran, dioxane, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetoa De, dimethylsulfoxide, sulfolane and the like, cost, considering the workability and the like, and more preferably carried out without solvent.
  • Synthesis Example 2 [Synthesis of methyl norbornene monocarboxylate] It was obtained in Synthesis Example 1 while charging 344 g (4.0 mol) of methyl acrylate into a 1 liter flask equipped with a stirrer, thermometer, dropping funnel and condenser, and then cooling and stirring the flask with water. 265 g (4.0 mol) of cyclopentadiene was added dropwise with care so that the temperature in the flask was maintained at 30 to 40 ° C. After completion of the dropwise addition, the mixture was reacted for 6 hours while maintaining the reaction temperature, and analyzed by gas chromatography.
  • Synthesis Example 3 Synthesis of methyl norbornane monomethanol monocarboxylate In a pressure reactor made of stainless steel having an internal volume of 50 ml, 0.05 mmol of Ru 2 (CO) 6 Cl 4 as a ruthenium compound, 0.05 mmol of Co 2 (CO) 8 as a cobalt compound, and hexadecyl as a halide salt at room temperature To a catalyst system in which 2.5 mmol of trimethylammonium chloride and 0.25 mmol of diphenyl phosphite as an acid were mixed, 10.0 mmol of methyl norbornene monocarboxylate isolated above and 10.0 ml of toluene as a solvent were added and stirred.
  • the resulting methyl norbornane monomethanol monocarboxylate was isolated by distillation under reduced pressure, and 1 H-NMR spectrum and IR spectrum were measured.
  • the 1 H-NMR spectrum was measured by dissolving a sample in dimethyl sulfoxide (DMSO-d6) to prepare a solution, putting it in a ⁇ 5 mm sample tube, and using a 400 MHz nuclear magnetic resonance apparatus “AV400M” manufactured by BRUKER.
  • the IR spectrum was measured using a Fourier transform infrared spectrophotometer (JIR-6500, manufactured by JEOL Ltd.).
  • the IR spectrum is shown in FIG. Norbornane methylene group and the peak of the methine group of ring moiety in the vicinity of 800 ⁇ 1450 cm -1, a peak of carbonyl group resulting from the methoxycarbonyl group is in the vicinity of 1760 cm -1, the peak of methyl groups attributed to a methoxycarbonyl group 2870Cm - In the vicinity of 1 and 2960 cm ⁇ 1 , a methylene group peak attributable to the hydroxymethyl group was observed near 1465 cm ⁇ 1 , and a hydroxyl group peak attributable to the hydroxymethyl group was broadly observed near 3400 cm ⁇ 1 .
  • methyl norbornane dicarboxylate produced by the reaction was 94.3 mmol (yield 94.3% based on methyl norbornane carboxylate).
  • the resulting methyl norbornane dicarboxylate was isolated by vacuum distillation.
  • the chemical reaction formula of this synthesis example is shown below.
  • Example 1 [Production of alicyclic polyester] A 10 ml flask equipped with a stirrer, a nitrogen introducing tube and a cooling tube was charged with 5 g of methyl norbornane monomethanol monocarboxylate obtained in Synthesis Example 3 and 0.5 g of titanium tetraisopropoxide, and was placed in an oil bath at 130 ° C. The mixture was stirred for a time to obtain a polyester having a norbornane skeleton having a number average molecular weight of 34,000.
  • the chemical reaction formula of this example is shown below.
  • the polyester having the norbornane skeleton was measured for glass transition temperature (Tg) and thermal decomposition onset temperature (5% mass reduction temperature, Td 5 ) under the following conditions.
  • Tg glass transition temperature
  • Td 5 thermal decomposition onset temperature
  • Table 1 The results are shown in Table 1.
  • Glass transition temperature (Tg) It measured with the differential scanning calorimeter (Rigaku Corporation 8230 type DSC). Temperature increase rate: 5 ° C / min Atmosphere: Air
  • Thermal decomposition start temperature (5% mass reduction temperature, Td 5 ) It was measured with a differential thermal balance (Seiko Electronics Co., Ltd. model 5200 TG-DTA). Temperature increase rate: 5 ° C / min Atmosphere: Air
  • Example 1 is higher in both glass transition temperature and thermal decomposition temperature than Comparative Examples 1 and 2, and the alicyclic polyester of the present invention has high heat resistance.
  • Example 1 showed excellent transparency with a light transmittance of 100% at any wavelength. That is, it was confirmed that the alicyclic polyester of the present invention was excellent in both heat resistance and transparency.

Abstract

Provided is a polyester having a norbornane backbone and exhibiting excellent heat resistance and transparency, and a method for producing the same. The polyester comprises a norbornane backbone having structural units represented by general formula (I): (where R1 represents a hydrogen atom or a methyl group).

Description

ノルボルナン骨格を有するポリエステル及びその製造方法Polyester having norbornane skeleton and method for producing the same
 本発明は、半導体・液晶に用いられる電子部品、光ファイバー、光学レンズ等に代表される光学材料、さらには、ディスプレイ関連材料、医療用材料に用いられる、ノルボルナン骨格を有するポリエステル及びその製造方法に関する。 The present invention relates to an optical material typified by electronic components, optical fibers, optical lenses and the like used for semiconductors and liquid crystals, as well as a polyester having a norbornane skeleton used for display-related materials and medical materials, and a method for producing the same.
 各種ポリエステル樹脂は、種々の成形方法等によって、フィルム、シート、異形材、繊維、チューブ、容器等に成形できることから、幅広い分野で使用されている。最も多く利用されるポリエステルは、テレフタル酸あるいはイソフタル酸等の芳香族ジカルボン酸を原料としてなる芳香族ポリエステルで、これらは芳香族基を含有するため耐熱性、強靭性等に優れる。 Various polyester resins are used in a wide range of fields because they can be formed into films, sheets, deformed materials, fibers, tubes, containers and the like by various forming methods. The most frequently used polyesters are aromatic polyesters made from aromatic dicarboxylic acids such as terephthalic acid or isophthalic acid, and these have excellent heat resistance and toughness because they contain aromatic groups.
 しかし、近年、半導体レーザー光源の低波長領域化が進み、光信号の光源として青色レーザー、紫外光レーザーなどが使用されるようになったため、光学材料や電子部品等に使用されるポリマー材料の透明化が求められるようになってきているが、前記芳香族ポリエステルでは、耐紫外線性、光線透過率等に劣るため、このような分野への適用は難しい。 In recent years, however, semiconductor laser light sources have been increasingly reduced in wavelength, and blue lasers, ultraviolet lasers, etc. have been used as light sources for optical signals, so that polymer materials used for optical materials and electronic parts have become transparent. However, since the aromatic polyester is inferior in ultraviolet resistance, light transmittance, etc., application to such a field is difficult.
 脂環式構造を有するポリエステルは、耐熱性、透明性、耐水性に優れることから、前記透明性が要求される分野に一部使用され始めている。脂環式ポリエステルの製造方法として、1,4-シクロヘキサンジメタノールのような飽和環状脂肪族1級ジオールを使用する方法が数多く提案されている(特許文献1参照)が、飽和環状脂肪族1級ジオールは水酸基と飽和環状脂肪族基の間にアルキレン基が挿入されているため、得られる脂環式ポリエステル樹脂は脂肪族性を有し、シクリヘキサン環骨格のものでは耐熱性が低く、前記用途としては十分な特性が得られない。 Polyesters having an alicyclic structure are beginning to be used in some fields where the transparency is required because they are excellent in heat resistance, transparency and water resistance. As a method for producing an alicyclic polyester, many methods using a saturated cycloaliphatic primary diol such as 1,4-cyclohexanedimethanol have been proposed (see Patent Document 1). Since the diol has an alkylene group inserted between a hydroxyl group and a saturated cycloaliphatic group, the resulting alicyclic polyester resin has aliphaticity, and has a low heat resistance in the case of a cyclohexane ring skeleton. As a result, sufficient characteristics cannot be obtained.
 また、脂環式ポリエステルの耐熱性向上を目的として、4,4’-ビシクロヘキシルジカルボン酸を主成分とするジカルボン酸成分と、脂環式ジオールから成る脂環式ポリエステルが提案されているが(特許文献2参照)、耐熱性がまだ十分とは言えない。 Further, for the purpose of improving the heat resistance of the alicyclic polyester, an alicyclic polyester comprising a dicarboxylic acid component mainly composed of 4,4′-bicyclohexyldicarboxylic acid and an alicyclic diol has been proposed ( Patent Document 2), heat resistance is still not sufficient.
 さらに、ノルボルナン骨格を有するポリエステルとしては、ノルボルナンジオールあるいはトリシクロデカンジオールとジカルボン酸から成るもの(特許文献3~6参照)、ノルボルナンジメタノール、ノルボルネンジメタノールとノルボルナンジカルボン酸から成るもの(特許文献7~9参照)、ノルボルナンジメタノールとジカルボン酸から成るもの(特許文献10,11参照)が提案されているが、いずれも単独のモノマーを重合させるものでは無い。 Further, polyesters having a norbornane skeleton include those comprising norbornanediol or tricyclodecanediol and dicarboxylic acid (see Patent Documents 3 to 6), norbornanedimethanol, norbornenedimethanol and norbornanedicarboxylic acid (Patent Document 7). To 9), norbornanedimethanol and dicarboxylic acid (see Patent Documents 10 and 11) have been proposed, but none of them is a polymer of a single monomer.
特表2007-517926号公報Special table 2007-517926 特開2006-111794号公報JP 2006-1111794 A 国際公開2008/011464号International Publication No. 2008/011464 国際公開2006/049949号International Publication No. 2006/049949 国際公開2006/049715号International Publication No. 2006/049715 国際公開2006/044075号International Publication No. 2006/044405 国際公開2006/107969号International Publication No. 2006/107969 国際公開2006/110400号International Publication No. 2006/110400 特願2001-64373号公報Japanese Patent Application No. 2001-64373 特願2001-64372公報Japanese Patent Application 2001-64372 特願2001-64374号公報Japanese Patent Application No. 2001-64374
 本発明は、以上の従来の問題点に鑑みなされたものであり、耐熱性及び透明性に優れた、ノルボルナン骨格を有するポリエステル及びその製造方法を提供することを課題とする。 The present invention has been made in view of the above conventional problems, and an object of the present invention is to provide a polyester having a norbornane skeleton excellent in heat resistance and transparency and a method for producing the same.
 前記課題を解決するための手段は以下の通りである。
(1)下記一般式(I)で表される構造単位を有するノルボルナン骨格を有するポリエステル。
Means for solving the above-mentioned problems are as follows.
(1) A polyester having a norbornane skeleton having a structural unit represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000004
(但し、一般式(I)中、Rは、水素原子又はメチル基を示す。)
Figure JPOXMLDOC01-appb-C000004
(However, in general formula (I), R 1 represents a hydrogen atom or a methyl group.)
(2)下記一般式(II)で表されるノルボルナンモノメタノールモノカルボン酸誘導体を単独重合させることを特徴とする、前記(1)記載のノルボルナン骨格を有するポリエステルの製造方法。 (2) A process for producing a polyester having a norbornane skeleton as described in (1) above, wherein a norbornane monomethanol monocarboxylic acid derivative represented by the following general formula (II) is homopolymerized.
Figure JPOXMLDOC01-appb-C000005
(但し、一般式(II)中、Rは水素原子又はメチル基、Rは水素原子、炭素数1~5のアルキル基、ビニル基、又はベンジル基を示す。)
Figure JPOXMLDOC01-appb-C000005
(In the general formula (II), R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.)
(3)下記一般式(III)で表されるノルボルネンモノカルボン酸誘導体をヒドロホルミル化することにより、上記一般式(II)で表されるノルボルナンモノメタノールモノカルボン酸誘導体を得ることを特徴とする、前記(2)記載のポリエステルの製造方法。 (3) A norbornane monomethanol monocarboxylic acid derivative represented by the above general formula (II) is obtained by hydroformylating a norbornene monocarboxylic acid derivative represented by the following general formula (III): The manufacturing method of polyester as described in said (2).
Figure JPOXMLDOC01-appb-C000006
(但し、一般式(III)中、Rは、水素原子、炭素数1~5のアルキル基、ビニル基、又はベンジル基を示す。)
Figure JPOXMLDOC01-appb-C000006
(In the general formula (III), R 2 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.)
 本発明によれば、耐熱性及び透明性に優れた、ノルボルナン骨格を有するポリエステル及びその製造方法を提供することができる。
 本発明のノルボルナン骨格を有するポリエステルは、耐熱性および透明性に優れるため、半導体・液晶に用いられる電子部品、光ファイバー、光学レンズ等に代表される光学材料、さらには、ディスプレイ関連材料、医療用材料として使用することができる。
 本発明のノルボルナン骨格を有するポリエステルは、従来のノルボルナン骨格を有するポリエステルより短い工程で得ることができ、また、一般式(I)で表される構造単位が繰り返されるようなポリマー骨格に制御することによって、耐熱性にも優れるものである。
According to the present invention, it is possible to provide a polyester having a norbornane skeleton excellent in heat resistance and transparency and a method for producing the same.
Since the polyester having a norbornane skeleton of the present invention is excellent in heat resistance and transparency, optical materials such as electronic parts, optical fibers and optical lenses used in semiconductors and liquid crystals, display-related materials, and medical materials are also used. Can be used as
The polyester having a norbornane skeleton of the present invention can be obtained in a shorter process than the conventional polyester having a norbornane skeleton, and the polyester is controlled so that the structural unit represented by the general formula (I) is repeated. Therefore, it has excellent heat resistance.
合成例3で得たノルボルナンモノメタノールモノカルボン酸メチルのH-NMRスペクトルである。2 is a 1 H-NMR spectrum of methyl norbornanemonomethanol monocarboxylate obtained in Synthesis Example 3. FIG. 合成例3で得たノルボルナンモノメタノールモノカルボン酸メチルのFT-IRスペクトルである。4 is an FT-IR spectrum of methyl norbornane monomethanol monocarboxylate obtained in Synthesis Example 3.
<ノルボルナン骨格を有するポリエステル>
 本発明のノルボルナン骨格を有するポリエステル(以下、「脂環式ポリエステル」と呼ぶことがある。)は、下記一般式(I)で表される構造単位を有するノルボルナン骨格を有することを特徴としている。
<Polyester having a norbornane skeleton>
The polyester having a norbornane skeleton of the present invention (hereinafter sometimes referred to as “alicyclic polyester”) is characterized by having a norbornane skeleton having a structural unit represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000007
(但し、一般式(I)中、Rは、水素原子又はメチル基を示す。)
Figure JPOXMLDOC01-appb-C000007
(However, in general formula (I), R 1 represents a hydrogen atom or a methyl group.)
 本発明の脂環式ポリエステルの数平均分子量(GPC法で測定し、標準ポリスチレンによる検量線を用いて算出)は、2,000~250,000とすることが好ましく、3,000~220,000とすることがより好ましい。数平均分子量が、2,000未満では、耐熱性等が低下する傾向があり、250,000を超えると、成形性が低下する傾向がある。 The number average molecular weight (measured by GPC method and calculated using a standard polystyrene calibration curve) of the alicyclic polyester of the present invention is preferably 2,000 to 250,000, and preferably 3,000 to 220,000. More preferably. When the number average molecular weight is less than 2,000, the heat resistance and the like tend to decrease, and when it exceeds 250,000, the moldability tends to decrease.
 本発明の脂環式ポリエステルは、全脂環式構造を有することから透明性に優れ、また一般式(I)で表される構造単位が繰り返されるようなポリマー骨格に制御することによって耐熱性に優れるため、半導体・液晶に用いられる電子部品、光ファイバー、光学レンズ等に代表される光学材料、さらには、ディスプレイ関連材料、医療用材料として使用することができる。
 ここで、本発明の脂環式ポリエステルのポリマー骨格は、上述の通り、一般式(I)で表される構造単位が繰り返されるような骨格である。これに対して、従来のノルボルナン骨格を有するポリエステルのポリマー骨格は、後記の比較例1において示すように、ノルボルナン同士がエステル結合で連結しているという点では本発明のものと同等であるが、エステル結合の仕方が本発明とは異なっている。つまり、従来のノルボルナン骨格を有するポリエステルは、ジオール(例えば、ノルボルナンジオール)、及びジカルボン酸(例えば、ノルボルナンカルボン酸)の2つのモノマーを重合させて得られた構造であり、本発明の脂環式ポリエステルは、アルコール部位とエステル部位とを有する単一のモノマーを重合させて得られた構造であり、それぞれエステル結合の仕方が異なっている。これらの構造の差がポリマーの結晶性の差となり、結果的に耐熱性に差が出ると考えられる。
The alicyclic polyester of the present invention is excellent in transparency because it has a total alicyclic structure, and is heat resistant by controlling the polymer skeleton such that the structural unit represented by the general formula (I) is repeated. Since it is excellent, it can be used as an electronic material used for semiconductors and liquid crystals, an optical material represented by an optical fiber, an optical lens, etc., a display-related material, and a medical material.
Here, the polymer skeleton of the alicyclic polyester of the present invention is a skeleton in which the structural unit represented by the general formula (I) is repeated as described above. On the other hand, the polymer skeleton of a polyester having a conventional norbornane skeleton is equivalent to that of the present invention in that the norbornane is linked by an ester bond as shown in Comparative Example 1 described later. The manner of ester bonding is different from the present invention. That is, a conventional polyester having a norbornane skeleton has a structure obtained by polymerizing two monomers of a diol (for example, norbornanediol) and a dicarboxylic acid (for example, norbornanecarboxylic acid), and the alicyclic structure of the present invention. Polyester is a structure obtained by polymerizing a single monomer having an alcohol moiety and an ester moiety, and the manner of ester bonding is different. It is considered that the difference in these structures becomes the difference in crystallinity of the polymer, resulting in a difference in heat resistance.
<ノルボルナン骨格を有するポリエステルの製造方法>
 本発明のノルボルナン骨格を有するポリエステルの製造方法は、すなわち前記一般式(I)で表される脂環式ポリエステルの製造方法は、下記一般式(II)で表されるノルボルナンモノメタノールモノカルボン酸誘導体を単独重合させることを特徴としている。
<Method for producing polyester having norbornane skeleton>
The method for producing a polyester having a norbornane skeleton of the present invention, that is, the method for producing an alicyclic polyester represented by the general formula (I) is a norbornane monomethanol monocarboxylic acid derivative represented by the following general formula (II): Is characterized by homopolymerization.
Figure JPOXMLDOC01-appb-C000008
(但し、一般式(II)中、Rは水素原子又はメチル基、Rは水素原子、炭素数1~5のアルキル基、ビニル基、又はベンジル基を示す。)
Figure JPOXMLDOC01-appb-C000008
(In the general formula (II), R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.)
 一般式(II)中、Rが示すアルキル基としては、炭素数1~5のアルキル基、ビニル基、又はベンジル基であれば特に制限は無いが、その中でも、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、アミル基、イソアミル基、が好ましい。 In general formula (II), the alkyl group represented by R 2 is not particularly limited as long as it is an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group, and among them, a methyl group, an ethyl group, a propyl group, and the like. Group, isopropyl group, butyl group, isobutyl group, amyl group, isoamyl group are preferred.
 一般式(II)で表されるノルボルナンモノメタノールモノカルボン酸誘導体の具体例としては、ビシクロ[2.2.1]ヘプタン-2-カルボキシ-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-カルボキシ-6-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-メトキシカルボニル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-メトキシカルボニル-6-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-エトキシカルボニル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-エトキシカルボニル-6-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-プロロキシカルボニル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-プロポキシカルボニル-6-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-ブトキシカルボニル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-ブトキシカルボニル-6-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-ペントキシシカルボニル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-ペントキシカルボニル-6-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-ビニルオキシシシカルボニル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-ビニルオキシシカルボニル-6-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-ベンジルオキシシカルボニル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-ベンジルオキシカルボニル-6-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-カルボキシ-2-メチル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-カルボキシ-2-メチル-6-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-メトキシカルボニル-2-メチル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-メトキシカルボニル-2-メチル-6-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-エトキシカルボニル-2-メチル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-エトキシカルボニル-2-メチル-6-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-プロポキシカルボニル-2-メチル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-プロポキシカルボニル-2-メチル-6-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-ブトキシカルボニル-2-メチル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-ブトキシカルボニル-2-メチル-6-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-オクトキシカルボニル-2-メチル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-オクトキシカルボニル-2-メチル-6-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-ビニルオキシカルボニル-2-メチル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-ビニルオキシカルボニル-2-メチル-6-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-ベンジルオキシカルボニル-2-メチル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-ベンジルオキシカルボニル-2-メチル-6-ヒドロキシメチルなどが挙げられ、中でも、ノルボルネンモノカルボン酸誘導体を製造する際のコスト及び反応性の観点から、ビシクロ[2.2.1]ヘプタン-2-メトキシカルボニル-5-ヒドロキシメチル、ビシクロ[2.2.1]ヘプタン-2-メトキシカルボニル-6-ヒドロキシメチルが好ましい。 Specific examples of the norbornane monomethanol monocarboxylic acid derivative represented by the general formula (II) include bicyclo [2.2.1] heptane-2-carboxy-5-hydroxymethyl, bicyclo [2.2.1] heptane. -2-carboxy-6-hydroxymethyl, bicyclo [2.2.1] heptane-2-methoxycarbonyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2-methoxycarbonyl-6-hydroxymethyl, Bicyclo [2.2.1] heptane-2-ethoxycarbonyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2-ethoxycarbonyl-6-hydroxymethyl, bicyclo [2.2.1] heptane- 2-Prooxycarbonyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2-propoxy Carbonyl-6-hydroxymethyl, bicyclo [2.2.1] heptane-2-butoxycarbonyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2-butoxycarbonyl-6-hydroxymethyl, bicyclo [2 2.1] heptane-2-pentoxycarbonyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2-pentoxycarbonyl-6-hydroxymethyl, bicyclo [2.2.1] heptane-2 -Vinyloxysicarbonyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2-vinyloxysicarbonyl-6-hydroxymethyl, bicyclo [2.2.1] heptane-2-benzyloxycarbonyl- 5-hydroxymethyl, bicyclo [2.2.1] heptane-2-benzyloxycarbo 6-hydroxymethyl, bicyclo [2.2.1] heptane-2-carboxy-2-methyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2-carboxy-2-methyl-6- Hydroxymethyl, bicyclo [2.2.1] heptane-2-methoxycarbonyl-2-methyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2-methoxycarbonyl-2-methyl-6-hydroxymethyl Bicyclo [2.2.1] heptane-2-ethoxycarbonyl-2-methyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2-ethoxycarbonyl-2-methyl-6-hydroxymethyl, bicyclo [2.2.1] Heptane-2-propoxycarbonyl-2-methyl-5-hydroxymethyl, bicyclo [2.2.1] Butane-2-propoxycarbonyl-2-methyl-6-hydroxymethyl, bicyclo [2.2.1] heptane-2-butoxycarbonyl-2-methyl-5-hydroxymethyl, bicyclo [2.2.1] heptane- 2-butoxycarbonyl-2-methyl-6-hydroxymethyl, bicyclo [2.2.1] heptane-2-octoxycarbonyl-2-methyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2 Octoxycarbonyl-2-methyl-6-hydroxymethyl, bicyclo [2.2.1] heptane-2-vinyloxycarbonyl-2-methyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2 -Vinyloxycarbonyl-2-methyl-6-hydroxymethyl, bicyclo [2.2.1] heptane-2-benzylo Cicarbonyl-2-methyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2-benzyloxycarbonyl-2-methyl-6-hydroxymethyl, and the like. Among them, norbornene monocarboxylic acid derivatives are produced. From the viewpoint of cost and reactivity, bicyclo [2.2.1] heptane-2-methoxycarbonyl-5-hydroxymethyl, bicyclo [2.2.1] heptane-2-methoxycarbonyl-6-hydroxymethyl Is preferred.
 前記一般式(II)で表されるノルボルナンモノメタノールモノカルボン酸誘導体は、下記一般式(III)で表されるノルボルネンモノカルボン酸誘導体をヒドロホルミル化することにより得ることができる。 The norbornane monomethanol monocarboxylic acid derivative represented by the general formula (II) can be obtained by hydroformylating the norbornene monocarboxylic acid derivative represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000009
(但し、一般式(III)中、Rは、水素原子、炭素数1~5のアルキル基、ビニル基、又はベンジル基を示す。)
Figure JPOXMLDOC01-appb-C000009
(In the general formula (III), R 2 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.)
 一般式(II)で表されるノルボルナンモノメタノールモノカルボン酸誘導体は、下記に示すように、一般式(III)で表されるノルボルネンモノカルボン酸誘導体をヒドロホルミル化して得られるものであるから、一般式(III)中のRは一般式(II)中のRと同じであり、好ましい例も同じである。 The norbornane monomethanol monocarboxylic acid derivative represented by the general formula (II) is obtained by hydroformylating the norbornene monocarboxylic acid derivative represented by the general formula (III) as shown below. R 2 in formula (III) is the same as R 2 in the general formula (II), and preferred examples thereof are also the same.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 前記一般式(III)で表されるノルボルネンモノカルボン酸誘導体のヒドロホルミル化反応は、一般的に公知となっているヒドロホルミル化法、例えば、触媒講座第7巻、触媒学会編、講談社(1985)、国際公開WO2007/111091号公報に記載されているような、コバルト、ルテニウム、ロジウム等の遷移金属錯体触媒を用いて、一酸化炭素と水素とを反応させてアルデヒドを付加した後、さらに水素化する方法、あるいは一酸化炭素と水素とを反応させて直接アルコールを付加する方法を用いることができる。 The hydroformylation reaction of the norbornene monocarboxylic acid derivative represented by the general formula (III) is a generally known hydroformylation method, for example, Catalyst Course Vol. 7, Catalysis Society, Kodansha (1985), Using a transition metal complex catalyst such as cobalt, ruthenium, and rhodium as described in International Publication WO2007 / 1111091, carbon monoxide and hydrogen are reacted to add an aldehyde, followed by further hydrogenation A method or a method of directly adding an alcohol by reacting carbon monoxide with hydrogen can be used.
 一方で従来のヒドロホルミル化法は毒性の高い一酸化炭素を用いることから、作業性、安全性、反応性等の観点から好ましくないため、以下に述べる二酸化炭素と水素によるヒドロホルミル化法がより好ましい。その場合、二酸化炭素と水素は混合ガスの形で供給してもよく、また、別々に供給してもよい。混合ガスは、二酸化炭素と水素を主成分とする混合ガス(原料ガス)であり、二酸化炭素の含有量は、好ましくは10~95vol%、より好ましくは50~80vol%、水素の含有量は、好ましくは5~90vol%、より好ましくは20~50vol%である。水素の含有量が90vol%を超えると原料の水素化が起こりやすくなる傾向があり、5%未満では、反応速度が低下する傾向がある。原料ガス中に一酸化炭素が混入している必要は全くないが、混入していたとしても差し支えない。 On the other hand, since the conventional hydroformylation method uses highly toxic carbon monoxide, it is not preferable from the viewpoint of workability, safety, reactivity, and the like. Therefore, the hydroformylation method using carbon dioxide and hydrogen described below is more preferable. In that case, carbon dioxide and hydrogen may be supplied in the form of a mixed gas, or may be supplied separately. The mixed gas is a mixed gas (raw material gas) mainly composed of carbon dioxide and hydrogen. The carbon dioxide content is preferably 10 to 95 vol%, more preferably 50 to 80 vol%, and the hydrogen content is Preferably, it is 5 to 90 vol%, more preferably 20 to 50 vol%. When the hydrogen content exceeds 90 vol%, hydrogenation of the raw material tends to occur, and when it is less than 5%, the reaction rate tends to decrease. There is no need for carbon monoxide to be mixed in the raw material gas, but there is no problem even if it is mixed.
 ヒドロホルミル化反応の触媒系はルテニウム化合物を含むことが好ましく、使用可能なルテニウム化合物は、ルテニウムを含むのであればよく、特に制限はない。好適な化合物の具体例として、[Ru(CO)Cl、[RuCl(CO)、(nは不特定の自然数である)、[Ru(CO)Cl、[Ru(CO)11Cl]、[Ru(CO)13Cl]等の、分子内にカルボニル配位子とハロゲン配位子とを合わせ持つルテニウム化合物等が挙げられ、なかでも、反応率向上の観点から、[Ru(CO)Cl、[RuCl(CO)がより好ましい。 The catalyst system for the hydroformylation reaction preferably contains a ruthenium compound, and the ruthenium compound that can be used is not particularly limited as long as it contains ruthenium. Specific examples of suitable compounds include [Ru (CO) 3 Cl 2 ] 2 , [RuCl 2 (CO) 2 ] n , (n is an unspecified natural number), [Ru (CO) 3 Cl 3 ] , [Ru 3 (CO) 11 Cl] , [Ru 4 (CO) 13 Cl] −, etc., and ruthenium compounds having both a carbonyl ligand and a halogen ligand in the molecule. From the viewpoint of improving the reaction rate, [Ru (CO) 3 Cl 2 ] 2 and [RuCl 2 (CO) 2 ] n are more preferable.
 前記配位子を併せ持つルテニウム化合物は、RuCl、Ru(CO)12,RuCl(C12)、Ru(CO)(C)、Ru(CO)(C12)、およびRu(C10)(C12)等を前駆体化合物として使用し、ヒドロホルミル化の反応前又は反応中に、前記ルテニウム化合物を調製して、反応系に導入してもよい。 Ruthenium compounds having the above ligands are RuCl 3 , Ru 3 (CO) 12 , RuCl 2 (C 8 H 12 ), Ru (CO) 3 (C 8 H 8 ), Ru (CO) 3 (C 8 H). 12 ), Ru (C 8 H 10 ) (C 8 H 12 ) or the like as a precursor compound, and the ruthenium compound is prepared and introduced into the reaction system before or during the reaction of hydroformylation. Also good.
 前記ルテニウム化合物の使用量は原料である一般式(III)表されるノルボルナンモノカルボン酸誘導体1当量に対して、好ましくは1/10000~1当量、より好ましくは1/1000~1/50当量である。製造コストを考えるとルテニウム化合物の使用量はより少ないほうが好ましいが、1/10000当量未満の場合は反応が極端に遅くなる傾向にある。また、1当量を超えても反応速度が速くなるわけではなく、製造コストのみが大きくなる傾向にある。 The amount of the ruthenium compound used is preferably 1 / 10,000 to 1 equivalent, more preferably 1/1000 to 1/50 equivalent to 1 equivalent of the norbornane monocarboxylic acid derivative represented by the general formula (III) as the raw material. is there. Considering the production cost, it is preferable that the amount of the ruthenium compound used is smaller, but if it is less than 1/10000 equivalent, the reaction tends to become extremely slow. Moreover, even if it exceeds 1 equivalent, the reaction rate does not increase, but only the production cost tends to increase.
 本発明の一般式(III)で表されるノルボルナンモノモノカルボン酸誘導体のヒドロホルミル化では、ルテニウム化合物を含む触媒系に必要に応じて、コバルト化合物、ハロゲン化物塩、フェノール化合物及び酸から選ばれる少なくとも一種を追加することによって、前記触媒系による反応促進の効果をより高めることが可能である。 In the hydroformylation of the norbornane monomonocarboxylic acid derivative represented by the general formula (III) of the present invention, at least one selected from a cobalt compound, a halide salt, a phenol compound, and an acid as necessary for the catalyst system containing a ruthenium compound. It is possible to further enhance the effect of promoting the reaction by the catalyst system.
 ヒドロホルミル化反応の触媒として使用可能なコバルト化合物は、コバルトを含むのであればよく、特に制限はない。好適な化合物の具体例として、Co(CO)、HCo(CO)、Co(CO)12などカルボニル配位子を持つコバルト化合物、酢酸コバルト、プロピオン酸コバルト、安息香酸コバルト、クエン酸コバルト等のカルボン酸化合物を配位子に持つコバルト化合物、リン酸コバルトなどが挙げられる。なかでも、反応率向上の観点から、Co(CO)、酢酸コバルト、クエン酸コバルトがより好ましい。 The cobalt compound that can be used as a catalyst for the hydroformylation reaction is not particularly limited as long as it contains cobalt. Specific examples of suitable compounds include cobalt compounds having a carbonyl ligand such as Co 2 (CO) 8 , HCo (CO) 4 , and Co 4 (CO) 12 , cobalt acetate, cobalt propionate, cobalt benzoate, and citric acid. Examples thereof include cobalt compounds having a carboxylic acid compound such as cobalt as a ligand, and cobalt phosphate. Among these, from the viewpoint of improving the reaction rate, Co 2 (CO) 8 , cobalt acetate, and cobalt citrate are more preferable.
 前記コバルト化合物の使用量はルテニウム化合物1当量に対して1/100~10当量、好ましくは1/10~5当量である。前記ルテニウム化合物に対する前記コバルト化合物の比率が1/100より低くても、また10より高くてもノルボルナンモノメタノールモノカルボン酸誘導体の生成量は著しく低下する傾向にある。 The amount of the cobalt compound used is 1/100 to 10 equivalents, preferably 1/10 to 5 equivalents per 1 equivalent of the ruthenium compound. Even if the ratio of the cobalt compound to the ruthenium compound is lower than 1/100 or higher than 10, the amount of norbornane monomethanol monocarboxylic acid derivative tends to be remarkably reduced.
 本発明で使用可能なハロゲン化物塩は、塩化物イオン、臭化物イオンおよびヨウ化物イオン等のハロゲンイオンと、カチオンとから構成される化合物であればよく、特に限定されない。前記カチオンは、無機物イオンおよび有機物イオンのいずれであってもよい。また、前記ハロゲン化物塩は、分子内に1以上のハロゲンイオンを含んでもよい。 The halide salt that can be used in the present invention is not particularly limited as long as it is a compound composed of a halide ion such as chloride ion, bromide ion, and iodide ion, and a cation. The cation may be either an inorganic ion or an organic ion. Further, the halide salt may contain one or more halogen ions in the molecule.
 ハロゲン化物塩を構成する無機物イオンは、アルカリ金属およびアルカリ土類金属から選択される1種の金属イオンであってもよい。具体例として、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、カルシウム、ストロンチウムが挙げられる。 The inorganic ions constituting the halide salt may be one metal ion selected from alkali metals and alkaline earth metals. Specific examples include lithium, sodium, potassium, rubidium, cesium, calcium, and strontium.
 また、有機物イオンは、有機化合物から誘導される1価以上の有機基であってよい。一例として、アンモニウム、ホスホニウム、ピロリジニウム、ピリジウム、イミダゾリウム、およびイミニウムが挙げられ、これらイオンの水素原子はアルキルおよびアリール等の炭化水素基によって置換されていてもよい。特に限定するものではないが、好適な有機物イオンの具体例として、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、テトラペンチルアンモニウム、テトラヘキシルアンモニウム、テトラヘプチルアンモニウム、テトラオクチルアンモニウム、トリオクチルメチルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ベンジルトリブチルアンモニウム、ヘキサデシルトリメチルアンモニウム、テトラメチルホスホニウム、テトラエチルホスホニウム、テトラフェニルホスホニウム、ベンジルトリフェニルホスホニウム、ブチルメチルピロリジニウム、オクチルメチルピロリジニウム、ビス(トリフェニルホスフィン)イミニウムが挙げられる。なかでも、反応率向上の観点から、ヘキサデシルトリメチルアンモニウムクロリド、ヘキサデシルトリメチルアンモニウムブロミド等の4級アンモニウム塩がより好ましい。 Further, the organic ion may be a monovalent or higher-valent organic group derived from an organic compound. Examples include ammonium, phosphonium, pyrrolidinium, pyridium, imidazolium, and iminium, and the hydrogen atom of these ions may be substituted with a hydrocarbon group such as alkyl and aryl. Although not particularly limited, specific examples of suitable organic ions include tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium, tetrapentylammonium, tetrahexylammonium, tetraheptylammonium, tetraoctylammonium, and trioctyl. Methylammonium, benzyltrimethylammonium, benzyltriethylammonium, benzyltributylammonium, hexadecyltrimethylammonium, tetramethylphosphonium, tetraethylphosphonium, tetraphenylphosphonium, benzyltriphenylphosphonium, butylmethylpyrrolidinium, octylmethylpyrrolidinium, bis ( Triphenylphosphine) iminium . Of these, quaternary ammonium salts such as hexadecyltrimethylammonium chloride and hexadecyltrimethylammonium bromide are more preferable from the viewpoint of improving the reaction rate.
 本発明で使用可能なハロゲン化物塩は、固体の塩である必要はなく、室温付近または100℃以下の温度領域で液体となる、ハロゲン化物イオンを含むイオン性液体を用いてもよい。このようなイオン性液体に用いられるカチオンの具体例として、1-エチル-3-メチルイミダゾリウム、1-プロピル-3-メチルイミダゾリウム、1-ブチル-3-メチルイミダゾリウム、1-ペンチル-3-メチルイミダゾリウム、1-ヘキシル-3-メチルイミダゾリウム、1-ヘプチル-3-メチルイミダゾリウム、1-オクチル-3-メチルイミダゾリウム、1-デシル-3-メチルイミダゾリウム、1-ドデシル-3-メチルイミダゾリウム、1-テトラデシル-3-メチルイミダゾリウム、1-ヘキサデシル-3-メチルイミダゾリウム、1-オクタデシル-3-メチルイミダゾリウム、1-エチル-2,3-ジメチルイミダゾリウム、1-ブチル-2,3-ジメチルイミダゾリウム、1-ヘキシル-2,3-ジメチルイミダゾリウム、1-エチルピリジニウム、1-ブチルピジリニウム、1-ヘキシルピリジニウム、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-エチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-プロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-ブチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-ペンチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-ヘキシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-ヘプチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、8-オクチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセン等の有機物イオンが挙げられる。本発明では、上述のハロゲン化物塩を単独で用いても、複数組み合わせて用いてもよい。 The halide salt that can be used in the present invention does not need to be a solid salt, and an ionic liquid containing halide ions that becomes liquid near room temperature or in a temperature range of 100 ° C. or lower may be used. Specific examples of cations used in such ionic liquids include 1-ethyl-3-methylimidazolium, 1-propyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-pentyl-3. -Methylimidazolium, 1-hexyl-3-methylimidazolium, 1-heptyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, 1-dodecyl-3 -Methylimidazolium, 1-tetradecyl-3-methylimidazolium, 1-hexadecyl-3-methylimidazolium, 1-octadecyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-butyl -2,3-dimethylimidazolium, 1-hexyl-2,3-dimethylimidazole Zorium, 1-ethylpyridinium, 1-butylpyridinium, 1-hexylpyridinium, 8-methyl-1,8-diazabicyclo [5.4.0] -7-undecene, 8-ethyl-1,8-diazabicyclo [ 5.4.0] -7-undecene, 8-propyl-1,8-diazabicyclo [5.4.0] -7-undecene, 8-butyl-1,8-diazabicyclo [5.4.0] -7 -Undecene, 8-pentyl-1,8-diazabicyclo [5.4.0] -7-undecene, 8-hexyl-1,8-diazabicyclo [5.4.0] -7-undecene, 8-heptyl-1 , 8-diazabicyclo [5.4.0] -7-undecene, 8-octyl-1,8-diazabicyclo [5.4.0] -7-undecene and the like. In the present invention, the above halide salts may be used alone or in combination.
 上述のハロゲン化物塩のうち、好適なハロゲン化物塩は、塩化物塩、臭化物塩、ヨウ化物塩であり、カチオンが有機物イオンである。特に限定するものではないが、本発明において好適なハロゲン化物塩の具体例として、ヘキサデシルトリメチルアンモニウムクロリド、ヘキサデシルトリメチルアンモニウムブロミド等が挙げられる。 Among the halide salts described above, preferred halide salts are chloride salts, bromide salts, and iodide salts, and the cation is an organic ion. Although not particularly limited, specific examples of the halide salt suitable in the present invention include hexadecyltrimethylammonium chloride, hexadecyltrimethylammonium bromide and the like.
 ハロゲン化物塩の添加量は、例えば、ルテニウム化合物1当量に対して1~1000当量、好ましくは2~50当量である。1当量以上の添加量とすることによって、反応速度を効果的に高めることができる。一方、添加量が1000当量を超えると、添加量をさらに増加したとしても、反応促進のさらなる向上効果は得られない傾向がある。 The added amount of the halide salt is, for example, 1 to 1000 equivalents, preferably 2 to 50 equivalents, per 1 equivalent of the ruthenium compound. By setting the addition amount to 1 equivalent or more, the reaction rate can be effectively increased. On the other hand, when the addition amount exceeds 1000 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
 本発明で使用するフェノール化合物は、特に限定されない。使用可能なフェノール化合物の具体例として、フェノール、クレゾール、アルキルフェノール、メトキシフェノール、フェノキシフェノール、クロルフェノール、トリフルオロメチルフェノール、ヒドロキノンおよびカテコール等が挙げられる。 The phenol compound used in the present invention is not particularly limited. Specific examples of usable phenol compounds include phenol, cresol, alkylphenol, methoxyphenol, phenoxyphenol, chlorophenol, trifluoromethylphenol, hydroquinone and catechol.
 フェノール化合物の添加量は、特に限定されるものではないが、例えば、ルテニウム化合物1当量に対して1~1000当量、好ましくは、2~200当量である。添加量を1当量以上とすることによって、反応促進効果の発現がより顕著になる傾向がある。また、添加量が1000当量を超えると、添加量をさらに増加したとしても、反応促進のさらなる向上効果は得られない傾向がある。 The amount of the phenol compound added is not particularly limited, but is, for example, 1 to 1000 equivalents, preferably 2 to 200 equivalents, per 1 equivalent of the ruthenium compound. By making the addition amount 1 equivalent or more, the reaction promoting effect tends to be more pronounced. Moreover, when the addition amount exceeds 1000 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of reaction promotion cannot be obtained.
 本発明で使用可能な酸は、ルイスの定義に当てはまるあらゆる酸を用いることができる。この定義によれば、ある物質Aが別の物質Bより電子対を供与されるとき、Aを酸、Bを塩基と定義されるが、電子対を受容するAに当てはまるもの全てを用いることができる。 As the acid that can be used in the present invention, any acid that meets the definition of Lewis can be used. According to this definition, when a substance A is donated with an electron pair from another substance B, A is defined as an acid, and B is defined as a base, but all that apply to A accepting an electron pair must be used. it can.
 上述の酸としては、好ましくはAがプロトン供与体となる酸、即ちブレンステッド酸である。ブレンステッド酸としては、例えば、塩酸、硫酸、硝酸、リン酸、メチルリン酸、アルキルリン酸、フェニルリン酸、亜リン酸ジフェニル、フェニルホスホン酸、4-メトキシフェニルホスホン酸、4-メトキシフェニルホスホン酸ジエチル、フェニルホスフィン酸、ホウ酸、フェニルホウ酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、フェノール、タングステン酸、リンタングステン酸、及びギ酸、酢酸、トリフルオロ酢酸、プロピオン酸、酪酸に代表されるアルキルカルボン酸、安息香酸、フタル酸、サリチル酸に代表される芳香族カルボン酸等が用いられ、好ましくはリン酸、アルキルリン酸、フェニルリン酸、亜リン酸ジフェニル、ホスホン酸誘導体等のリンを含む酸である。 As the above-mentioned acid, A is preferably an acid that becomes a proton donor, that is, a Bronsted acid. Examples of Bronsted acid include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, methyl phosphoric acid, alkyl phosphoric acid, phenyl phosphoric acid, diphenyl phosphite, phenylphosphonic acid, 4-methoxyphenylphosphonic acid, 4-methoxyphenylphosphonic acid Diethyl, phenylphosphinic acid, boric acid, phenylboric acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, phenol, tungstic acid, phosphotungstic acid, and alkylcarboxylic acids represented by formic acid, acetic acid, trifluoroacetic acid, propionic acid, butyric acid Aromatic carboxylic acids such as acid, benzoic acid, phthalic acid, and salicylic acid are used. Preferably, phosphoric acid, alkyl phosphoric acid, phenyl phosphoric acid, diphenyl phosphite, phosphonic acid derivatives and the like are used. is there.
 酸の添加量は、例えば、ルテニウム化合物1当量に対して0.1~100当量、好ましくは1~10当量である。0.1当量以上の添加量とすることによって、反応速度を効果的に高めることができる。一方、添加量が100当量を超えると、添加量をさらに増加したとしても、反応促進のさらなる向上効果は得られない傾向がある。 The amount of acid added is, for example, 0.1 to 100 equivalents, preferably 1 to 10 equivalents per 1 equivalent of ruthenium compound. By setting the addition amount to be equal to or greater than 0.1 equivalent, the reaction rate can be effectively increased. On the other hand, when the addition amount exceeds 100 equivalents, even if the addition amount is further increased, there is a tendency that a further improvement effect of the reaction promotion cannot be obtained.
 ヒドロホルミル化は、100℃~200℃の温度範囲で実施することが好ましく、110℃~180℃の温度範囲で実施することがより好ましく、120℃~160℃の温度範囲で実施することが特に好ましい。100℃以上の温度で反応を実施することによって、反応速度が速まり、反応を効率よく進めやすくなる。その一方で、反応温度を200℃以下に制御することによって、一般式(III)で表されるノルボルネンモノカルボン酸誘導体の不飽和結合の水素化を抑制することができる。一般式(III)で表されるノルボルネンモノカルボン酸誘導体の不飽和結合の水素化が起こると、ヒドロホルミル化が達成されなくなるため、高すぎる反応温度は望ましくない。 The hydroformylation is preferably performed in a temperature range of 100 ° C. to 200 ° C., more preferably performed in a temperature range of 110 ° C. to 180 ° C., and particularly preferably performed in a temperature range of 120 ° C. to 160 ° C. . By carrying out the reaction at a temperature of 100 ° C. or higher, the reaction rate is increased and the reaction is facilitated efficiently. On the other hand, by controlling the reaction temperature to 200 ° C. or lower, hydrogenation of the unsaturated bond of the norbornene monocarboxylic acid derivative represented by the general formula (III) can be suppressed. When hydrogenation of the unsaturated bond of the norbornene monocarboxylic acid derivative represented by the general formula (III) occurs, hydroformylation is not achieved, and thus a reaction temperature that is too high is undesirable.
 ヒドロホルミル化は、耐圧容器内で行う必要がある。反応の圧力は、1MPa~20MPaの範囲で実施することが好ましく、2MPa~15MPaの範囲で実施することがより好ましい。圧力が1MPa未満の場合は、反応が遅くなる傾向があり、20MPaを超えると、圧力をさらに増加したとしても、反応促進のさらなる向上効果は得られない傾向がある。 Hydroformylation must be performed in a pressure vessel. The reaction pressure is preferably in the range of 1 MPa to 20 MPa, more preferably in the range of 2 MPa to 15 MPa. When the pressure is less than 1 MPa, the reaction tends to be slow, and when it exceeds 20 MPa, even if the pressure is further increased, there is a tendency that a further improvement effect of the reaction promotion cannot be obtained.
 本発明のノルボルナンモノメタノールモノカルボン酸誘導体を得るためのヒドロホルミル化反応は、必要に応じて、溶媒を存在させることもできる。使用可能な溶媒は、前記一般式(III)で表されるノルボルネンモノカルボン酸誘導体を溶解できればよく、特に限定されない。好適に使用できる溶媒の具体例として、n-ペンタン、n-ヘキサン、n-ヘプタン、シクロヘキサン、ベンゼン、トルエン、o-キシレン、p-キシレン、m-キシレン、エチルベンゼン、クメン、テトラヒドロフラン、N-メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルイミダゾリジノン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、γ-ブチロラクトン等が挙げられる。溶媒を使用する場合、その好ましい使用量は、前記一般式(III)で表されるノルボルネンモノカルボン酸誘導体の濃度が10~1000質量%となる範囲である。 In the hydroformylation reaction for obtaining the norbornane monomethanol monocarboxylic acid derivative of the present invention, a solvent may be present as necessary. The solvent that can be used is not particularly limited as long as it can dissolve the norbornene monocarboxylic acid derivative represented by the general formula (III). Specific examples of solvents that can be suitably used include n-pentane, n-hexane, n-heptane, cyclohexane, benzene, toluene, o-xylene, p-xylene, m-xylene, ethylbenzene, cumene, tetrahydrofuran, and N-methylpyrrolidone. Dimethylformamide, dimethylacetamide, dimethylimidazolidinone, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, γ-butyrolactone, and the like. When a solvent is used, the preferred amount used is in a range where the concentration of the norbornene monocarboxylic acid derivative represented by the general formula (III) is 10 to 1000% by mass.
 本発明で使用する一般式(III)で表されるノルボルネンモノカルボン酸誘導体は、通常の方法、即ち、ジシクロペンタジエンあるいはシクロペンタジエンとアクリル酸エステルあるいはメタクリル酸エステルとのディールス・アルダー反応で直接合成する方法、ジシクロペンタジエンあるいはシクロペンタジエンとアクリル酸あるいはメタクリル酸とをディールス・アルダー反応させてノルボルネンモノカルボン酸化合物を得た後、触媒存在下、アルコール中で加熱することなどによってエステル化する方法により得ることができるが、製造装置の簡略化、コスト等を考慮すると、ジシクロペンタジエンをシクロペンタジエンに分解した後、アクリル酸エステルあるいはメタクリル酸エステルとディールス・アルダー反応させる方法が好ましい。 The norbornene monocarboxylic acid derivative represented by the general formula (III) used in the present invention is directly synthesized by a usual method, that is, Diels-Alder reaction of dicyclopentadiene or cyclopentadiene with an acrylic ester or methacrylic ester. By dielsylpentadiene or cyclopentadiene and acrylic acid or methacrylic acid to obtain norbornene monocarboxylic acid compound, and then esterified by heating in alcohol in the presence of a catalyst. In consideration of simplification of production equipment, cost, etc., there is a method in which dicyclopentadiene is decomposed into cyclopentadiene and then reacted with acrylic ester or methacrylic ester with Diels-Alder reaction. Masui.
 アクリル酸エステルあるいはメタクリル酸エステルの具体例としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルへキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2-エチルへキシルなどが挙げられる。 Specific examples of the acrylate ester or methacrylate ester include methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethyl methacrylate. Examples include hexyl.
 ジシクロペンタジエンの分解は、例えば、Org.Syn,1963,Vol.4,P238、Org.Syn,1962,Vol.42,P50、有機合成ハンドブック,1990,P501などに記載されている方法を使用することができる。具体的には、スニーダーあるいはビグリュー分溜管を取り付けたフラスコにジシクロペンタジエンを投入し、150~170℃に加熱することによって、42~46℃で流出するシクロペンタジエンを回収する方法を使用することができる。 The decomposition of dicyclopentadiene is described in, for example, Org. Syn, 1963, Vol. 4, P238, Org. Syn, 1962, Vol. 42, P50, Organic Synthesis Handbook, 1990, P501 and the like can be used. Specifically, use a method of collecting cyclopentadiene flowing out at 42 to 46 ° C. by introducing dicyclopentadiene into a flask equipped with a sneader or Vigreux fractionating tube and heating to 150 to 170 ° C. Can do.
 シクロペンタジエンとアクリル酸エステルあるいはメタクリル酸エステルとのディールス・アルダー反応方法は、特に制限は無いが、フラスコ内にアクリル酸エステルあるいはメタクリル酸エステルを仕込んだ後、発熱に注意しながらシクロペンタジエンを滴下する方法が好ましい。 The Diels-Alder reaction method of cyclopentadiene with acrylic acid ester or methacrylic acid ester is not particularly limited, but after adding acrylic acid ester or methacrylic acid ester into the flask, cyclopentadiene is dropped while paying attention to heat generation. The method is preferred.
 反応温度は、20~50℃が好ましく、20~40℃がより好ましく、30~40℃が特に好ましい。反応温度が20℃未満だと、反応時間が長くなる傾向があり、50℃を超えると、シクロペンタジエンの2量化等の副反応が起こる可能性がる。反応時間は、バッチの規模、採用される反応条件により適宜選択することができる。 The reaction temperature is preferably 20 to 50 ° C, more preferably 20 to 40 ° C, and particularly preferably 30 to 40 ° C. If the reaction temperature is less than 20 ° C, the reaction time tends to be longer, and if it exceeds 50 ° C, side reactions such as dimerization of cyclopentadiene may occur. The reaction time can be appropriately selected depending on the scale of the batch and the reaction conditions employed.
 本発明の一般式(II)で表されるノルボルナンモノメタノールモノカルボン酸誘導体を単独重合させて一般式(I)で表される脂環式ポリエステルとする方法には、特に制限が無く、例えば、溶媒の存在下あるいは非存在下、加熱して発生する水、あるいはアルコールを系外へ除去することで得ることができる。 The method for homopolymerizing the norbornane monomethanol monocarboxylic acid derivative represented by the general formula (II) of the present invention into the alicyclic polyester represented by the general formula (I) is not particularly limited. It can be obtained by removing water or alcohol generated by heating in the presence or absence of a solvent to the outside of the system.
 重合温度は、40~220℃であることが好ましく、60~200℃であることがより好ましく、80~180℃であることが特に好ましい。重合温度が80℃未満だと、重合速度が極端に遅くなる傾向があり、220℃を超えると、重合反応中に、一般式(II)で表されるノルボルナンモノメタノールモノカルボン酸誘導体の分解が起こる可能性がある。反応時間は、バッチの規模、採用される反応条件により、適宜選択できる。 The polymerization temperature is preferably 40 to 220 ° C., more preferably 60 to 200 ° C., and particularly preferably 80 to 180 ° C. When the polymerization temperature is less than 80 ° C., the polymerization rate tends to be extremely slow, and when it exceeds 220 ° C., the norbornane monomethanol monocarboxylic acid derivative represented by the general formula (II) is decomposed during the polymerization reaction. Can happen. The reaction time can be appropriately selected depending on the scale of the batch and the reaction conditions employed.
 本発明の重合には、触媒を使用することもできる。使用できる触媒としては、特に制限が無く、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸化物、リチウムメトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムt-ブチキシド等のアルカリ金属アルコキシド、リチウムアミド、ナトリウムアミド、カリウムアミド等のアルカリ金属アミド、オルトチタン酸テトラメチル、オルトチタン酸テトラエチル、オルトチタン酸テトラプロピル、オルトチタン酸テトライソプロピル、オルトチタン酸テトラブチル等のチタンアルコキシド、アルミニウムアルコキシド、スズアルコキシドなどの塩基性触媒、硫酸、パラトルエンスルホン酸、ベンゼンスルホン酸、メタンスルホン酸等のスルホン酸、ゼオライト、アンバーリスト、アンバーライト、ナフィオン等の固体酸などの酸触媒を使用できるが、塩基性触媒を用いることが好ましく、チタンアルコキシドを用いるのがより好ましい。上記触媒の使用量は、原料であるノルボルナンモノメタノールモノカルボン酸誘導体0.01~10.0モル%であることが好ましく、0.03~7.0モル%であることがより好ましく、0.05~5.0モル%であることが特に好ましい。触媒の使用量が、0.01モル%未満だと、重合速度が極端に遅くなる傾向があり、10.0モル%を超えると、急激に重合が進行し、過剰な発熱が起こる可能性がある。 In the polymerization of the present invention, a catalyst can also be used. The catalyst that can be used is not particularly limited, and examples thereof include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, alkali metal carbonates such as lithium carbonate, sodium carbonate, and potassium carbonate, and lithium methoxide. Alkali metal alkoxides such as sodium methoxide, sodium ethoxide, potassium t-butoxide, alkali metal amides such as lithium amide, sodium amide, potassium amide, tetramethyl orthotitanate, tetraethyl orthotitanate, tetrapropyl orthotitanate, Basic catalysts such as titanium alkoxide such as tetraisopropyl orthotitanate and tetrabutyl orthotitanate, aluminum alkoxide and tin alkoxide, sulfuric acid, paratoluenesulfonic acid, benzenesulfonic acid, methanes Sulfonic acids such as acid, zeolite, Amberlyst, Amberlite, but an acid catalyst such as solid acids such as Nafion available, it is preferable to use a basic catalyst, and more preferable to use a titanium alkoxide. The amount of the catalyst used is preferably 0.01 to 10.0 mol%, more preferably 0.03 to 7.0 mol% of the norbornane monomethanol monocarboxylic acid derivative as a raw material, Particularly preferred is 05 to 5.0 mol%. If the amount of the catalyst used is less than 0.01 mol%, the polymerization rate tends to be extremely slow, and if it exceeds 10.0 mol%, the polymerization proceeds rapidly, and excessive heat generation may occur. is there.
 重合反応は、無溶媒でも実施可能だが、必要に応じて、溶媒を使用することもできる。
使用可能な溶媒は、原料であるノルボルナンモノメタノールモノカルボン酸誘導体を溶解できるものであればよく、特に限定されない。好適に使用できる溶媒の具体例として、例えば、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸ブチル、γ-ブチロラクトン等のエステル系溶媒、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルジエチレングリコールジエチルエーテル、トリエチレングリコールジエチルエーテル等のエーテル系溶媒、ブチルセロソルブアセテート、エチルセロソルブアセテート、メチルセロソルブアセテート等のセロソルブ系溶媒、トルエン、キシレン、p-シメン、1,2,3,4-テトラヒドロキシナフタレン等の芳香族系溶媒、テトラヒドロフラン、ジオキサン、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、スルホランなどが挙げられるが、コスト、作業性等を考慮すれば、無溶媒で行うのがより好ましい。
The polymerization reaction can be carried out without solvent, but a solvent can be used if necessary.
The solvent that can be used is not particularly limited as long as it can dissolve the raw material, norbornane monomethanol monocarboxylic acid derivative. Specific examples of solvents that can be suitably used include, for example, ketone solvents such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, ester solvents such as ethyl acetate, butyl acetate, and γ-butyrolactone, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and diethylene glycol diethyl ether. , Ether solvents such as triethylene glycol diethyl ether, cellosolv solvents such as butyl cellosolve acetate, ethyl cellosolve acetate, methyl cellosolve acetate, fragrances such as toluene, xylene, p-cymene, 1,2,3,4-tetrahydroxynaphthalene, etc. Group solvents, tetrahydrofuran, dioxane, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetoa De, dimethylsulfoxide, sulfolane and the like, cost, considering the workability and the like, and more preferably carried out without solvent.
 以下、本発明を実施例によって詳細に説明するが、本発明の範囲は以下の実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail by way of examples, but the scope of the present invention is not limited by the following examples.
(合成例1)〔シクロペンタジエンの生成〕
 撹拌機、温度計及び塔頂に分溜塔、温度計及び冷却管を備えたスニーダー型分溜管(7段)を備えた1リットルフラスコに、ジシクロペンタジエンを700g仕込み、オイルバスで加熱した。フラスコ内の温度が158℃に達したところで、分溜塔頂からシクロペンタジエンが留出してきたので、受器を氷冷しながら約6時間かけて回収した。この際の留出温度は41~48℃で、回収量は609gだった(回収率:87%)。得られたシクロペンタジエンをガスクロマトグラフィーで分析したところ、純度は100%であった。本合成例の化学反応式を以下に示す。
(Synthesis Example 1) [Formation of cyclopentadiene]
700 g of dicyclopentadiene was charged in a 1 liter flask equipped with a stirrer, a thermometer and a distillation column at the top of the tower, a thermometer and a condenser tube (7 stages), and heated in an oil bath. . When the temperature in the flask reached 158 ° C., cyclopentadiene was distilled from the top of the distillation column, and the receiver was recovered over about 6 hours while cooling with ice. At this time, the distillation temperature was 41 to 48 ° C., and the recovered amount was 609 g (recovery rate: 87%). When the obtained cyclopentadiene was analyzed by gas chromatography, the purity was 100%. The chemical reaction formula of this synthesis example is shown below.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(合成例2)〔ノルボルネンモノカルボン酸メチルの合成〕
 撹拌機、温度計、滴下ロート及び冷却管を備えた1リットルフラスコに、アクリル酸メチル344g(4.0モル)を仕込んだ後、フラスコを水冷して撹拌しながら、合成例1で得られたシクロペンタジエン265g(4.0モル)を、フラスコ内の温度が30~40℃に保持されるように注意しながら滴下した。滴下終了後、反応温度を維持しながら6時間反応させ、ガスクロマトグラフィーで分析したところ、原料であるアクリル酸メチルとシクロペンタジエンは完全に消失し、ノルボルネンカルボン酸メチルの選択率が99.6%の反応液を得た(ジシクロペンタジエンが0.4%生成)。また、このノルボルネンカルボン酸メチルの異性体比率は、エキソ体/エンド体=25/75であった。本合成例の化学反応式を以下に示す。
(Synthesis Example 2) [Synthesis of methyl norbornene monocarboxylate]
It was obtained in Synthesis Example 1 while charging 344 g (4.0 mol) of methyl acrylate into a 1 liter flask equipped with a stirrer, thermometer, dropping funnel and condenser, and then cooling and stirring the flask with water. 265 g (4.0 mol) of cyclopentadiene was added dropwise with care so that the temperature in the flask was maintained at 30 to 40 ° C. After completion of the dropwise addition, the mixture was reacted for 6 hours while maintaining the reaction temperature, and analyzed by gas chromatography. As a result, methyl acrylate and cyclopentadiene as raw materials disappeared completely, and the selectivity for methyl norbornenecarboxylate was 99.6%. To obtain 0.4% of dicyclopentadiene. In addition, the isomer ratio of this methyl norbornenecarboxylate was exo / endo = 25/75. The chemical reaction formula of this synthesis example is shown below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(合成例3)〔ノルボルナンモノメタノールモノカルボン酸メチルの合成〕
 内容積50mlのステンレス製の加圧反応装置に室温でルテニウム化合物としてRu(CO)Clを0.05mmol、コバルト化合物としてCo(CO)を0.05mmol、ハロゲン化物塩としてヘキサデシルトリメチルアンモニウムクロリドを2.5mmol、酸として亜リン酸ジフェニルを0.25mmolを混合した触媒系に、上記で単離したノルボルネンモノカルボン酸メチルを10.0mmol、溶媒としてトルエンを10.0ml加え、撹拌して溶解させたのち、二酸化炭素を4MPa、水素を4MPa圧入し、140℃で15時間保持した。その後、反応装置内を室温まで冷却し、放圧して残存有機相の一部を抜き取り、ガスクロマトグラフにて分析した。分析結果によれば、上記一般式(II)で表されるノルボルナンモノメタノールモノカルボン酸メチルが9.15mmol(ノルボルネンモノカルボン酸メチル基準で収率91.5%)生成していた。ガスクロマトグラフ-質量分析計(GC-MS)を用いて分析した結果、得られたノルボルナンモノメタノールモノカルボン酸メチルは、ビシクロ[2.2.1]ヘプタン-2-メトキシカルボニル-5-ヒドロキシメチルとビシクロ[2.2.1]ヘプタン-2-メトキシカルボニル-6-ヒドロキシメチルの混合物であることが分かった。本合成例の化学反応式を以下に示す。
Synthesis Example 3 Synthesis of methyl norbornane monomethanol monocarboxylate
In a pressure reactor made of stainless steel having an internal volume of 50 ml, 0.05 mmol of Ru 2 (CO) 6 Cl 4 as a ruthenium compound, 0.05 mmol of Co 2 (CO) 8 as a cobalt compound, and hexadecyl as a halide salt at room temperature To a catalyst system in which 2.5 mmol of trimethylammonium chloride and 0.25 mmol of diphenyl phosphite as an acid were mixed, 10.0 mmol of methyl norbornene monocarboxylate isolated above and 10.0 ml of toluene as a solvent were added and stirred. After being dissolved, 4 MPa of carbon dioxide and 4 MPa of hydrogen were injected and held at 140 ° C. for 15 hours. Thereafter, the inside of the reaction apparatus was cooled to room temperature, released, a part of the remaining organic phase was extracted, and analyzed by a gas chromatograph. According to the analysis results, 9.15 mmol of methyl norbornane monomethanol monocarboxylate represented by the above general formula (II) was produced (yield 91.5% based on methyl norbornene monocarboxylate). As a result of analysis using a gas chromatograph-mass spectrometer (GC-MS), the resulting methyl norbornane monomethanol monocarboxylate was obtained from bicyclo [2.2.1] heptane-2-methoxycarbonyl-5-hydroxymethyl. It was found to be a mixture of bicyclo [2.2.1] heptane-2-methoxycarbonyl-6-hydroxymethyl. The chemical reaction formula of this synthesis example is shown below.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 得られたノルボルナンモノメタノールモノカルボン酸メチルを減圧蒸留によって単離し、H-NMRスペクトルおよびIRスペクトルを測定した。なお、H-NMRスペクトルは、試料をジメチルスルホキシド(DMSO-d6)に溶かして溶液とし、φ5mmの試料管に入れて、BRUKER社製、400MHz核磁気共鳴装置「AV400M」を用いて測定した。また、IRスペクトルは、フーリエ変換赤外分光光度計(日本電子製JIR-6500)を用いて測定した。 The resulting methyl norbornane monomethanol monocarboxylate was isolated by distillation under reduced pressure, and 1 H-NMR spectrum and IR spectrum were measured. The 1 H-NMR spectrum was measured by dissolving a sample in dimethyl sulfoxide (DMSO-d6) to prepare a solution, putting it in a φ5 mm sample tube, and using a 400 MHz nuclear magnetic resonance apparatus “AV400M” manufactured by BRUKER. The IR spectrum was measured using a Fourier transform infrared spectrophotometer (JIR-6500, manufactured by JEOL Ltd.).
 H-NMRスペクトルを図1に示す。それぞれのプロトンが下記に示すように帰属された。解析の便宜上、下記式で表されるビシクロ[2.2.1]ヘプタン-2-メトキシカルボニル-5-ヒドロキシメチルを例として示す。 The 1 H-NMR spectrum is shown in FIG. Each proton was assigned as shown below. For convenience of analysis, bicyclo [2.2.1] heptane-2-methoxycarbonyl-5-hydroxymethyl represented by the following formula is shown as an example.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 ノルボルナン環部分のプロトン(1)~(7)が0.9~2.9ppm付近、メトキシカルボニル基のプロトン(8)が3.6ppm付近、ヒドロキシメチル基のメチレンプロトンが3.1ppm付近、水酸基プロトン(10)が4.4ppm付近に観測され、それぞれの積分強度比は、の積分強度比は、ノルボルナン環/メトキシカルボニル基/ヒドロキシメチル基のメチレン/水酸基=10.25/3.00/1.87/0.94(理論値:10/3/2/1)であり、得られたノルボルナンモノメタノールモノカルボン酸メチルは、上記一般式(II)で表される構造をしていることが確認できた。 Protons (1) to (7) of the norbornane ring part are around 0.9 to 2.9 ppm, protons (8) of the methoxycarbonyl group are around 3.6 ppm, methylene protons of the hydroxymethyl group are around 3.1 ppm, hydroxyl protons (10) is observed in the vicinity of 4.4 ppm, and the integrated intensity ratio of each is as follows: the norbornane ring / methoxycarbonyl group / hydroxymethyl group methylene / hydroxyl group = 10.25 / 3.00 / 1. It was 87 / 0.94 (theoretical value: 10/3/2/1), and it was confirmed that the obtained methyl norbornane monomethanol monocarboxylate had a structure represented by the above general formula (II) did it.
 また、IRスペクトルを図2に示す。ノルボルナン環部分のメチレン基及びメチン基のピークが800~1450cm-1付近に、メトキシカルボニル基に起因するカルボニル基のピークが1760cm-1付近に、メトキシカルボニル基に起因するメチル基のピークが2870cm-1及び2960cm-1付近に、ヒドロキシメチル基に起因するメチレン基のピークが1465cm-1付近に、ヒドロキシメチル基に起因する水酸基のピークがブロードで3400cm-1付近に、確認できた。 The IR spectrum is shown in FIG. Norbornane methylene group and the peak of the methine group of ring moiety in the vicinity of 800 ~ 1450 cm -1, a peak of carbonyl group resulting from the methoxycarbonyl group is in the vicinity of 1760 cm -1, the peak of methyl groups attributed to a methoxycarbonyl group 2870Cm - In the vicinity of 1 and 2960 cm −1 , a methylene group peak attributable to the hydroxymethyl group was observed near 1465 cm −1 , and a hydroxyl group peak attributable to the hydroxymethyl group was broadly observed near 3400 cm −1 .
(合成例4)〔ノルボルナンジカルボン酸メチルの合成〕
 室温下、内容積500mlのステンレス製加圧反応装置内で、ルテニウム化合物として[Ru(CO)Clを0.25mmol、コバルト化合物としてCo(CO)を0.25mmol、ハロゲン化物塩としてトリオクチルメチルアンモニウムクロリド 5mmol、塩基性化合物としてトリエチルアミン 20mmolを混合した触媒系に合成例2で得られたノルボルナンカルボン酸メチルを100mmol,ギ酸メチルを50mL加えたのち、窒素ガス0.5MPaで反応容器をパージし、120℃で8時間保持した。その後反応装置を室温まで冷却し、放圧し、残存有機相の一部を抜き取り、ガスクロマトグラフを用いて分析した。分析結果によれば、反応によって生成したノルボルナンジカルボン酸メチルは94.3mmol(ノルボルナンカルボン酸メチル基準で収率94.3%)であった。得られたノルボルナンジカルボン酸メチルを減圧蒸留で単離した。本合成例の化学反応式を以下に示す。
(Synthesis Example 4) [Synthesis of methyl norbornane dicarboxylate]
In a stainless steel pressure reactor having an internal volume of 500 ml at room temperature, [Ru (CO) 3 Cl 2 ] 2 is 0.25 mmol as a ruthenium compound, Co 2 (CO) 8 is 0.25 mmol as a cobalt compound, halide After adding 100 mmol of methyl norbornanecarboxylate obtained in Synthesis Example 2 and 50 mL of methyl formate to a catalyst system in which 5 mmol of trioctylmethylammonium chloride as a salt and 20 mmol of triethylamine as a basic compound were mixed, the reaction was carried out with 0.5 MPa of nitrogen gas. The vessel was purged and held at 120 ° C. for 8 hours. Thereafter, the reaction apparatus was cooled to room temperature and released, and a part of the remaining organic phase was extracted and analyzed using a gas chromatograph. According to the analysis result, methyl norbornane dicarboxylate produced by the reaction was 94.3 mmol (yield 94.3% based on methyl norbornane carboxylate). The resulting methyl norbornane dicarboxylate was isolated by vacuum distillation. The chemical reaction formula of this synthesis example is shown below.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(合成例5)〔ノルボルナンジメタノールの合成〕
 内容積50mlのステンレス製の加圧反応装置に室温でルテニウム化合物としてRu(CO)Clを0.05mmol、コバルト化合物としてCo(CO)を0.05mmol、ハロゲン化物塩としてヘキサデシルトリメチルアンモニウムクロリドを2.5mmol、酸として亜リン酸ジフェニルを0.25mmolを混合した触媒系に、ノルボルナジエンを10.0mmol、溶媒としてトルエンを10.0ml加え、撹拌して溶解させたのち、二酸化炭素を4MPa、水素を4MPa圧入し、140℃で15時間保持した。その後、反応装置内を室温まで冷却し、放圧して残存有機相の一部を抜き取り、ガスクロマトグラフにて分析した。分析結果によれば、上記式で表されるノルボルナンジメタノールが8.95mmol(ノルボルナジエン基準で収率89.5%)生成していた。ガスクロマトグラフ-質量分析計(GC-MS)を用いて分析した結果、得られたノルボルナンジメタノールは、ビシクロ[2.2.1]ヘプタン-2,5-ジヒドロキシメチルとビシクロ[2.2.1]ヘプタン-2,6-ジヒドロキシメチルの混合物であることが分かった。本合成例の化学反応式を以下に示す。
(Synthesis Example 5) [Synthesis of norbornane dimethanol]
In a pressure reactor made of stainless steel having an internal volume of 50 ml, 0.05 mmol of Ru 2 (CO) 6 Cl 4 as a ruthenium compound, 0.05 mmol of Co 2 (CO) 8 as a cobalt compound, and hexadecyl as a halide salt at room temperature To a catalyst system in which 2.5 mmol of trimethylammonium chloride and 0.25 mmol of diphenyl phosphite as an acid are mixed, 10.0 mmol of norbornadiene and 10.0 ml of toluene as a solvent are added and dissolved by stirring. 4 MPa and hydrogen 4 MPa, and held at 140 ° C. for 15 hours. Thereafter, the inside of the reaction apparatus was cooled to room temperature, released, a part of the remaining organic phase was extracted, and analyzed by a gas chromatograph. According to the analysis results, 8.95 mmol of norbornane dimethanol represented by the above formula was produced (yield 89.5% based on norbornadiene). As a result of analysis using a gas chromatograph-mass spectrometer (GC-MS), the obtained norbornanedimethanol was obtained by using bicyclo [2.2.1] heptane-2,5-dihydroxymethyl and bicyclo [2.2.1]. It was found to be a mixture of heptane-2,6-dihydroxymethyl. The chemical reaction formula of this synthesis example is shown below.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(実施例1)〔脂環式ポリエステルの作製〕
 攪拌機、窒素導入管及び冷却管を備えた10mlフラスコに、合成例3で得られたノルボルナンモノメタノールモノカルボン酸メチル5g及びチタンテトライソプロポキシド0.5gを仕込み、130℃のオイルバス中で6時間撹拌し、数平均分子量が34,000のノルボルナン骨格を有するポリエステルを得た。本実施例の化学反応式を以下に示す。
(Example 1) [Production of alicyclic polyester]
A 10 ml flask equipped with a stirrer, a nitrogen introducing tube and a cooling tube was charged with 5 g of methyl norbornane monomethanol monocarboxylate obtained in Synthesis Example 3 and 0.5 g of titanium tetraisopropoxide, and was placed in an oil bath at 130 ° C. The mixture was stirred for a time to obtain a polyester having a norbornane skeleton having a number average molecular weight of 34,000. The chemical reaction formula of this example is shown below.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 得られたノルボルナン骨格を有するポリエステルのガラス転移温度(Tg)及び熱分解開始温度(5%質量減少温度、Td)を下記条件で測定した。
結果を表1に示す。
(1)ガラス転移温度(Tg)
示差走査熱量計((株)リガク製 8230型 DSC)で測定した。
昇温速度 :5℃/min
雰 囲 気:空気
(2)熱分解開始温度(5%質量減少温度、Td
示差熱天秤(セイコー電子(株)製 5200型 TG-DTA)で測定した。
昇温速度 :5℃/min
雰 囲 気:空気
The polyester having the norbornane skeleton was measured for glass transition temperature (Tg) and thermal decomposition onset temperature (5% mass reduction temperature, Td 5 ) under the following conditions.
The results are shown in Table 1.
(1) Glass transition temperature (Tg)
It measured with the differential scanning calorimeter (Rigaku Corporation 8230 type DSC).
Temperature increase rate: 5 ° C / min
Atmosphere: Air (2) Thermal decomposition start temperature (5% mass reduction temperature, Td 5 )
It was measured with a differential thermal balance (Seiko Electronics Co., Ltd. model 5200 TG-DTA).
Temperature increase rate: 5 ° C / min
Atmosphere: Air
 また、得られたノルボルナン骨格を有するポリエステルの各波長における光線透過率を、日本分光(株)製 V-570型UV/VISスペクトロフォトメーターで測定した。評価結果をまとめて表1に示す。 Further, the light transmittance at each wavelength of the obtained polyester having a norbornane skeleton was measured with a V-570 type UV / VIS spectrophotometer manufactured by JASCO Corporation. The evaluation results are summarized in Table 1.
(比較例1)〔脂環式ポリエステルの作製〕
 攪拌機、窒素導入管及び冷却管を備えた10mlフラスコに、合成例4で得られたノルボルナンジカルボン酸メチル2.184g(0.014モル)、合成例5で得られたノルボルナンジメタノール2.968g(0.014モル)及びチタンテトライソプロポキシド0.5gを仕込み、130℃のオイルバス中で6時間撹拌し、数平均分子量が30,000のノルボルナン骨格を有するポリエステルを得た。本比較例の化学反応式を以下に示す。
(Comparative example 1) [Production of alicyclic polyester]
In a 10 ml flask equipped with a stirrer, a nitrogen introducing tube and a cooling tube, 2.184 g (0.014 mol) of methyl norbornane dicarboxylate obtained in Synthesis Example 4 and 2.968 g of norbornane dimethanol obtained in Synthesis Example 5 ( 0.014 mol) and 0.5 g of titanium tetraisopropoxide were charged and stirred in an oil bath at 130 ° C. for 6 hours to obtain a polyester having a norbornane skeleton having a number average molecular weight of 30,000. The chemical reaction formula of this comparative example is shown below.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 得られたノルボルナン骨格を有するポリエステルの特性を、実施例1と同様に測定した。結果をまとめて表1に示す。 The properties of the obtained polyester having a norbornane skeleton were measured in the same manner as in Example 1. The results are summarized in Table 1.
(比較例2)〔ポリエステルの作製〕
 攪拌機、窒素導入管及び冷却管を備えた10mlフラスコに、ソフタル酸ジメチル2.910g(0.015モル)、合成例5で得られたノルボルナンジメタノール2.340g(0.015モル)及びチタンテトライソプロポキシド0.5gを仕込み、130℃のオイルバス中で6時間撹拌し、数平均分子量が29,000のノルボルナン骨格を有するポリエステルを得た。
(Comparative Example 2) [Production of polyester]
In a 10 ml flask equipped with a stirrer, a nitrogen introducing tube and a cooling tube, dimethyl sophthalate 2.910 g (0.015 mol), norbornanedimethanol 2.340 g (0.015 mol) obtained in Synthesis Example 5 and titanium tetra 0.5 g of isopropoxide was charged and stirred in an oil bath at 130 ° C. for 6 hours to obtain a polyester having a norbornane skeleton having a number average molecular weight of 29,000.
 得られたノルボルナン骨格を有するポリエステルの特性を、実施例1と同様に測定した。結果をまとめて表1に示す。 The properties of the obtained polyester having a norbornane skeleton were measured in the same manner as in Example 1. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表1より、実施例1は、ガラス転移温度及び熱分解温度の双方とも比較例1及び2よりも高く、本発明の脂環式ポリエステルは耐熱性が高いことが分かる。また、実施例1は光線透過率がいずれの波長においても100%であり優れた透明性を示した。つまり、本発明の脂環式ポリエステルは、耐熱性及び透明性の双方とも優れていることが確認できた。 Table 1 shows that Example 1 is higher in both glass transition temperature and thermal decomposition temperature than Comparative Examples 1 and 2, and the alicyclic polyester of the present invention has high heat resistance. In addition, Example 1 showed excellent transparency with a light transmittance of 100% at any wavelength. That is, it was confirmed that the alicyclic polyester of the present invention was excellent in both heat resistance and transparency.

Claims (3)

  1.  下記一般式(I)で表される構造単位を有するノルボルナン骨格を有するポリエステル。
    Figure JPOXMLDOC01-appb-C000001
    (但し、一般式(I)中、Rは、水素原子又はメチル基を示す。)
    A polyester having a norbornane skeleton having a structural unit represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000001
    (However, in general formula (I), R 1 represents a hydrogen atom or a methyl group.)
  2.  下記一般式(II)で表されるノルボルナンモノメタノールモノカルボン酸誘導体を単独重合させることを特徴とする、請求項1記載のノルボルナン骨格を有するポリエステルの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (但し、一般式(II)中、Rは水素原子又はメチル基、Rは水素原子、炭素数1~5のアルキル基、ビニル基、又はベンジル基を示す。)
    The method for producing a polyester having a norbornane skeleton according to claim 1, wherein a norbornane monomethanol monocarboxylic acid derivative represented by the following general formula (II) is homopolymerized.
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (II), R 1 represents a hydrogen atom or a methyl group, R 2 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.)
  3.  下記一般式(III)で表されるノルボルネンモノカルボン酸誘導体をヒドロホルミル化することにより、上記一般式(II)で表されるノルボルナンモノメタノールモノカルボン酸誘導体を得ることを特徴とする、請求項2記載のノルボルナン骨格を有するポリエステルの製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (但し、一般式(III)中、Rは、水素原子、炭素数1~5のアルキル基、ビニル基、又はベンジル基を示す。)
    The norbornane monomethanol monocarboxylic acid derivative represented by the above general formula (II) is obtained by hydroformylating a norbornene monocarboxylic acid derivative represented by the following general formula (III): A process for producing a polyester having the described norbornane skeleton.
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (III), R 2 represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a vinyl group, or a benzyl group.)
PCT/JP2011/066207 2010-09-14 2011-07-15 Polyester having norbornane backbone, and method for producing same WO2012035874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012533903A JPWO2012035874A1 (en) 2010-09-14 2011-07-15 Polyester having norbornane skeleton and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010205675 2010-09-14
JP2010-205675 2010-09-14

Publications (1)

Publication Number Publication Date
WO2012035874A1 true WO2012035874A1 (en) 2012-03-22

Family

ID=45831349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066207 WO2012035874A1 (en) 2010-09-14 2011-07-15 Polyester having norbornane backbone, and method for producing same

Country Status (3)

Country Link
JP (1) JPWO2012035874A1 (en)
TW (1) TW201213387A (en)
WO (1) WO2012035874A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016153018A1 (en) * 2015-03-25 2016-09-29 三菱瓦斯化学株式会社 Bifunctional compound having norbornane backbone, and method for producing same
WO2016190317A1 (en) * 2015-05-27 2016-12-01 三菱瓦斯化学株式会社 Polyester resin and method for producing same
WO2018062325A1 (en) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 Copolyester resin
WO2018062326A1 (en) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 Optical film, phase difference film, and polarizing plate
WO2018062328A1 (en) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 Optical polyester film and transparent electroconductive film
WO2018062327A1 (en) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 Optical lens
WO2019194117A1 (en) * 2018-04-04 2019-10-10 三菱瓦斯化学株式会社 Polyester resin composition
US11236198B2 (en) * 2018-01-23 2022-02-01 Mitsubishi Gas Chemical Company, Inc. Molded article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160038096A (en) * 2014-09-27 2016-04-07 주식회사 효성 Optical anisotropic film of norbornene, and manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152551A (en) * 1996-11-26 1998-06-09 Sumitomo Bakelite Co Ltd Norbornane cyclic carbonate composition
JP2001064374A (en) * 1999-06-23 2001-03-13 Daicel Chem Ind Ltd Novel polyester polymer and its production
JP2009544062A (en) * 2006-07-18 2009-12-10 スリーエム イノベイティブ プロパティズ カンパニー Calendar processing process for making optical films

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152551A (en) * 1996-11-26 1998-06-09 Sumitomo Bakelite Co Ltd Norbornane cyclic carbonate composition
JP2001064374A (en) * 1999-06-23 2001-03-13 Daicel Chem Ind Ltd Novel polyester polymer and its production
JP2009544062A (en) * 2006-07-18 2009-12-10 スリーエム イノベイティブ プロパティズ カンパニー Calendar processing process for making optical films

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10246404B2 (en) 2015-03-25 2019-04-02 Mitsubishi Gas Chemical Company, Inc. Bifunctional compound having norbornane skeleton and production method therefor
JP6041180B1 (en) * 2015-03-25 2016-12-07 三菱瓦斯化学株式会社 Bifunctional compound having norbornane skeleton and method for producing the same
CN107074733A (en) * 2015-03-25 2017-08-18 三菱瓦斯化学株式会社 Difunctionality compound and its manufacture method with norbornane skeleton
CN107074733B (en) * 2015-03-25 2020-07-28 三菱瓦斯化学株式会社 Bifunctional compound having norbornane skeleton, and process for producing same
WO2016153018A1 (en) * 2015-03-25 2016-09-29 三菱瓦斯化学株式会社 Bifunctional compound having norbornane backbone, and method for producing same
WO2016190317A1 (en) * 2015-05-27 2016-12-01 三菱瓦斯化学株式会社 Polyester resin and method for producing same
JPWO2016190317A1 (en) * 2015-05-27 2018-03-15 三菱瓦斯化学株式会社 Polyester resin and method for producing the same
US10287391B2 (en) 2015-05-27 2019-05-14 Mitsubishi Gas Chemical Company, Inc. Polyester resin and production method therefor
JPWO2018062328A1 (en) * 2016-09-28 2019-08-29 三菱瓦斯化学株式会社 Optical polyester film and transparent conductive film
WO2018062325A1 (en) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 Copolyester resin
WO2018062328A1 (en) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 Optical polyester film and transparent electroconductive film
CN109791245A (en) * 2016-09-28 2019-05-21 三菱瓦斯化学株式会社 Optical film, phase difference film, polarizer
KR20190058557A (en) * 2016-09-28 2019-05-29 미츠비시 가스 가가쿠 가부시키가이샤 Optical film, retardation film and polarizer
JPWO2018062326A1 (en) * 2016-09-28 2019-07-11 三菱瓦斯化学株式会社 Optical film, retardation film, polarizing plate
JPWO2018062327A1 (en) * 2016-09-28 2019-07-11 三菱瓦斯化学株式会社 Optical lens
EP3521867A4 (en) * 2016-09-28 2019-08-07 Mitsubishi Gas Chemical Company, Inc. Optical lens
WO2018062326A1 (en) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 Optical film, phase difference film, and polarizing plate
EP3521334A4 (en) * 2016-09-28 2019-09-11 Mitsubishi Gas Chemical Company, Inc. Copolyester resin
EP3521876A4 (en) * 2016-09-28 2019-09-25 Mitsubishi Gas Chemical Company, Inc. Optical film, phase difference film, and polarizing plate
KR102439915B1 (en) * 2016-09-28 2022-09-02 미츠비시 가스 가가쿠 가부시키가이샤 Optical film, retardation film and polarizing plate
EP3521869A4 (en) * 2016-09-28 2019-10-23 Mitsubishi Gas Chemical Company, Inc. Optical polyester film and transparent electroconductive film
WO2018062327A1 (en) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 Optical lens
TWI732948B (en) * 2016-09-28 2021-07-11 日商三菱瓦斯化學股份有限公司 Optical film, retardation film, and polarizing plate
US10894859B2 (en) 2016-09-28 2021-01-19 Mitsubishi Gas Chemical Company, Inc. Copolymerized polyester resin
CN109791245B (en) * 2016-09-28 2021-06-15 三菱瓦斯化学株式会社 Optical film, retardation film, and polarizing plate
US10947342B2 (en) 2016-09-28 2021-03-16 Mitsubishi Gas Chemical Company, Inc. Optical lens
US11016232B2 (en) 2016-09-28 2021-05-25 Mitsubishi Gas Chemical Company, Inc. Optical film, retardation film, and polarizing plate
US10981366B2 (en) 2016-09-28 2021-04-20 Mitsubishi Gas Chemical Company, Inc. Optical polyester film and transparent conductive film
US11236198B2 (en) * 2018-01-23 2022-02-01 Mitsubishi Gas Chemical Company, Inc. Molded article
JPWO2019194117A1 (en) * 2018-04-04 2021-04-08 三菱瓦斯化学株式会社 Polyester resin composition
EP3778772A4 (en) * 2018-04-04 2021-02-17 Mitsubishi Gas Chemical Company, Inc. Polyester resin composition
CN111936577A (en) * 2018-04-04 2020-11-13 三菱瓦斯化学株式会社 Polyester resin composition
WO2019194117A1 (en) * 2018-04-04 2019-10-10 三菱瓦斯化学株式会社 Polyester resin composition
JP7307405B2 (en) 2018-04-04 2023-07-12 三菱瓦斯化学株式会社 polyester resin composition

Also Published As

Publication number Publication date
TW201213387A (en) 2012-04-01
JPWO2012035874A1 (en) 2014-02-03

Similar Documents

Publication Publication Date Title
WO2012035874A1 (en) Polyester having norbornane backbone, and method for producing same
JP5586030B2 (en) Method for producing tricyclodecane monomethanol monocarboxylic acid derivative
JP2009155638A (en) Modified dimethylnaphthalene formaldehyde resin
WO2012035875A1 (en) Alicyclic polyester and production method therefor
JP5536784B2 (en) Tricyclodecane monomethanol monocarboxylic acid and its derivatives
JP5532123B2 (en) Polyamideimide having norbornane skeleton and process for producing the same
JP5811753B2 (en) Method for producing norbornane skeleton-containing polyamide
JP5590117B2 (en) Process for producing polyamide having norbornane skeleton and polyamide having norbornane skeleton obtained thereby
JP5556301B2 (en) Polyamide having norbornane skeleton and method for producing the same
JP5790386B2 (en) Method for producing norbornane skeleton-containing polyamide
WO2012141313A1 (en) Method for producing norbornane dicarboxylic acid ester
JP5796416B2 (en) Process for producing polyamideimide containing norbornane skeleton
JP2012240981A (en) Dihydrodiester of bisnadimide
JP2013079350A (en) Polyamide containing norbornane skeleton having high exo isomer ratio
JP2012240980A (en) Dihydrodiester of bisnadimide
WO2011121847A1 (en) Production method for polyamideimide having nadimide skeleton
JP2005145856A (en) Deuterated caffeine, tricyclene and isoborneol / borneol composition and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824883

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012533903

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11824883

Country of ref document: EP

Kind code of ref document: A1