WO2012034971A1 - Procédé et système de contrôle d'un filtre - Google Patents

Procédé et système de contrôle d'un filtre Download PDF

Info

Publication number
WO2012034971A1
WO2012034971A1 PCT/EP2011/065747 EP2011065747W WO2012034971A1 WO 2012034971 A1 WO2012034971 A1 WO 2012034971A1 EP 2011065747 W EP2011065747 W EP 2011065747W WO 2012034971 A1 WO2012034971 A1 WO 2012034971A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
test
controlling
measuring
salt
Prior art date
Application number
PCT/EP2011/065747
Other languages
English (en)
Inventor
Philippe Claudon
Original Assignee
Ge Energy Products France Snc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ge Energy Products France Snc filed Critical Ge Energy Products France Snc
Priority to GB1304339.3A priority Critical patent/GB2497039B/en
Priority to CN201180054487.6A priority patent/CN103209748B/zh
Priority to DE112011103057T priority patent/DE112011103057T5/de
Priority to US13/823,020 priority patent/US9383305B2/en
Publication of WO2012034971A1 publication Critical patent/WO2012034971A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/442Auxiliary equipment or operation thereof controlling filtration by measuring the concentration of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/444Auxiliary equipment or operation thereof controlling filtration by flow measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/446Auxiliary equipment or operation thereof controlling filtration by pressure measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/80Diagnostics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/084Testing filters

Definitions

  • the invention relates to filters for an air intake duct in a turbine, in particular a gas turbine.
  • the invention relates to filters used in installations located in an environment rich in salt water.
  • the air contains fine dust particles, the majority of which are of the order of a few microns. Inasmuch as it sucks up a considerable amount of air, a turbine is very sensitive to the negative effects of these dust particles.
  • the atmospheric air may contain dust, mist, rainwater, salt water, carbon particles, etc. Therefore, the air sucked by the turbine is likely to cause corrosion and pollution inside the turbine duct and especially inside the air compressor that is first in the pipe. The performance of the compressor is reduced, thus generating a reduction in the efficiency of the turbine power generator.
  • a filter is generally placed at the inlet of the air inlet duct of the turbine, so as to avoid the deposition of dust particles contained in the air in the compressor of the turbine .
  • the retention corresponds to the ratio between the weight of the dust particles retained and the total weight of the dust exposed to the filter.
  • the trace of dust corresponding to the relative characteristics of visual fouling due to the dust that has passed through the filter can also be considered.
  • the object of the invention is therefore to provide a method and a system for controlling the performance of filters for an air intake duct of a turbine.
  • the invention relates to a method of controlling a filter for an air intake duct of a turbine in which the filter is subjected to an incident stream of sprayed salt water, and measuring flux parameters on either side of the filter representative of the salt retention efficiency of the filter.
  • the filter to be controlled is used in an environment other than the marine environment.
  • the measurement steps are performed in a sequence of at least one test.
  • measuring elements are moved in a test pipe in which the filter is placed.
  • test sequences are performed.
  • the filter can optionally be dried between the sequences.
  • the filter is inclined by ten degrees with respect to the horizontal axis.
  • each test includes measurement of salt concentration, saltwater droplet distribution, and amount of water and salt.
  • the dry filter can be loaded with dust and at least one test sequence can be performed on the dust-laden dry filter.
  • the invention relates to a control system of a filter for an air intake pipe in a turbine comprising means for injecting a stream of salt water sprayed to the filter.
  • the control system further comprises flow parameter measuring members on either side of the filter representative of the salt retention efficiency of the filter.
  • the measuring members comprise at least one member selected from a flowmeter, a conductivity meter, a photometer, a white light spectrometer, a humidity sensor, a pressure sensor and a particle measuring device.
  • control system 1 comprises a test pipe 2 in which a test filter 3 is mounted and in which test steps are performed to determine the salt retention capacity of the filters. 3.
  • the test pipe 2 is thus provided with a suitable support for the filter 3 (not shown) to position it transversely in the pipe in the path of an incident air flow illustrated by arrows F.
  • a high performance filter 4 called a "HEPA" filter, is mounted at the inlet of the test pipe 2 so as to provide quality air in the pipe, in particular in different measuring zones A, B, C and D.
  • the measuring zone A is located between the HEPA filter 4 and the filter to be tested 3 up to the zone B which is situated directly upstream of the filter 3.
  • the zone C is situated directly downstream of the filter 3 and the Zone D is located downstream of zone C.
  • Test pipe 2 comprises means 5 for injecting a stream of salt water towards filter 3 and an air transmission device (not shown) located upstream. of the test pipe 2.
  • the control system 1 comprises flow parameter measuring members disposed on either side of the filter 3. These measuring devices are connected to a computer 6 which makes it possible to record the measurements made.
  • the measuring elements comprise, for example, a flow meter 7, a humidity sensor 8, a static pressure sensor 8a, a white-light spectrometer 9, a graduated means 9a, a photometer 10, a conductivity meter 11 and a measuring means. measure 12 of the number of particles.
  • a flow meter 7 a humidity sensor 8, a static pressure sensor 8a, a white-light spectrometer 9, a graduated means 9a, a photometer 10, a conductivity meter 11 and a measuring means. measure 12 of the number of particles.
  • the flowmeter 7 is located upstream of the HEPA filter 4 and makes it possible to determine the flow rate of the incoming air.
  • a humidity sensor 8 and a static pressure sensor 8a are located in each of the zones A and D.
  • the white-light spectrometer 9 and makes it possible to determine the quantity of water in the zone A injected by the injection means 5 and the amount of water in the zone D.
  • the graduated means 9a is located in the zones B and C and makes it possible to determine the quantity of water present in these zones.
  • the photometer 10 is located in zone A and makes it possible to determine the salt concentration.
  • the conductivity meter 11 and the particle number measuring means 12 are located in the zones B and C on either side of the filter 3.
  • the conductivity meter 11 determines the salt concentration and the measuring means 12 makes it possible to determine the partial efficiency of the filter 3.
  • the partial efficiency corresponds to the number of particles located downstream of the filter 3 compared to the number of particles of the same size located upstream of the filter 3.
  • the pipe 2 as shown has, by way of non-limiting example, a height-adjusted shape so as to obtain a better distribution of the injection of the salt water on the filter 3.
  • a first drop 13 forms an angle ⁇ with the horizontal axis
  • a second vertical drop 14 forms an angle ⁇ with the horizontal axis.
  • the angle ⁇ may be less than 7 ° and the angle ⁇ may be greater than 20 °.
  • a straight line or with different angles ⁇ and ⁇ can also be considered to carry out the control of the filter 3.
  • the filter 3 to be tested is inclined at an angle to the horizontal axis of the pipe 2. The angle may be 10 °.
  • the filter 3 is mounted in the pipe 2 by sealed fastening means (not shown) in order to direct the flow of salt water only through the filter 3.
  • the salt concentration injected by the injection means 5 may be, for example, 35 g / l.
  • a first control step consists of tar setting the white light spectrometer 9 as well as the measuring means 12 of the number of particles.
  • the filter to be tested 3 is not positioned in line 2.
  • a flow of air is directed by the air transmission device through the HEPA filter 4 so as to obtain a good quality of air.
  • air in the measurement zones A, B, C and D, then the salt water is injected by the injection means 5. The air flow makes it possible to obtain an incident flow of salt water sprayed towards the filter 3.
  • the computer 6 reads the values of the white light spectrometer 9, the conductivity meter 11 and the means 12 for measuring the number of particles upstream and downstream of the HEPA filter 4, that is to say the values of the quantity of d water, salt concentration and number of particles.
  • a second step is to insert and lock the filter 3 in the pipe 2, then the air flow is transmitted by air transmission device and the filter 3 is subjected to the incident flow of salt water sprayed by the injection means 5 for a predetermined period, for example three hours.
  • a third step is to perform three tests for one hour.
  • Each test includes measuring the amount of water by the white light spectrometer 9, measuring the salt concentration by the photometer 10 and measuring the number of particles by the measuring means 12 to determine the partial efficiency filter 3.
  • each test lasts about fifteen minutes. An interval of about twenty minutes exists between each start of testing.
  • the white light spectrometer 9 and the photometer 10 are moved in line 2 along the horizontal axis. During the tests, the measuring members 9 and 10 can be positioned in zone B, then in zone A, and in zone D.
  • the three tests are repeated for about two hours, in order to obtain three measurements of each measuring device 9, 10 and 12 and to deduce an average thereof.
  • test sequences Steps one through four are referred to later as "test sequences”.
  • the fifth step is to dry the filter 3, for example by increasing the flow of air.
  • the filter is dried for about twelve hours and its moisture content is checked.
  • the test sequence is repeated at least once.
  • the test sequence can be repeated up to four times.
  • the 3 sec filter is loaded with dust at 450 Pa, for example of the ASHRAE type, and the test sequence is repeated at least two times, and then the filter is loaded again.
  • the pressure drop should be checked regularly during the test.
  • the invention which has just been described makes it possible to control a filter and to determine its efficiency of retention of salt and dust in a maritime environment, as a function of the amount of salt water upstream and downstream of the filter 4 , the amount of salt recovered upstream of the filter 4.
  • the amount of saline water recovered upstream of the filter must be greater than the amount of saline water recovered downstream of the filter, the value of the salt water droplet efficiency and the amount of salt deposit must be greater than or equal to reference values. It can be noted, that there usually has a quantity of water, for example 25% of the initial quantity of water, which does not reach the filter 3.
  • the invention is not limited to the control of filters used in a maritime environment, but makes it possible to control any filter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Treating Waste Gases (AREA)

Abstract

Selon ce procédé de contrôle d'un filtre (3) pour conduite d'admission d'air d'une turbine, -on soumet le filtre (3) à un flux incident d'eau salée pulvérisée, -on mesure des paramètres du flux de part et d'autre du filtre représentatifs de l'efficacité de rétention en sel du filtre.

Description

Procédé et système de contrôle d'un filtre
L'invention concerne les filtres pour conduite d'admission d'air dans une turbine, en particulier une turbine à gaz.
Plus particulièrement l'invention concerne les filtres utilisés dans des installations situées dans un environnement riche en eau salée.
Comme on le sait, l'air contient de fines particules de poussière, dont la majorité sont de l'ordre de quelques microns. Dans la mesure où elle aspire une quantité considérable d'air, une turbine est très sensible aux effets négatifs de ces particules de poussière.
L'air atmosphérique peut contenir de la poussière, de la brume, de l'eau de pluie, de l'eau salée, des particules de carbone.... Par conséquent, l'air aspiré par la turbine est susceptible de provoquer une corrosion et une pollution à l'intérieur de la conduite de la turbine et notamment à l'intérieur du compresseur d'air qui se trouve en premier dans la conduite. La performance du compresseur est réduite, générant ainsi une réduction du rendement du générateur de puissance de la turbine.
Afin de réduire ces risques, un filtre est en général placé à l'entrée de la conduite d'admission d'air de la turbine, de façon à éviter le dépôt de particules de poussières contenues dans l'air dans le compresseur de la turbine.
Pour cela, il est important de bien contrôler les filtres utilisés afin qu'ils permettent de filtrer un maximum de résidus présents dans l'atmosphère et notamment le sel présent dans l'eau de mer.
L'amélioration des performances des filtres permet de réduire les arrêts des turbines, de prolonger leur durée de vie et d'augmenter leur rendement.
Il existe différents tests principaux d'efficacité de filtration. Un paramètre qui permet de contrôler l'efficacité de filtration est la rétention du filtre. La rétention correspond au rapport entre le poids des particules de poussières retenues et le poids total des poussières exposées au filtre. La trace de poussière correspondant aux caractéristiques relatives d'encrassement visuel dû aux poussières qui ont traversé le filtre peut également être considérée.
L'objectif de l'invention est donc de fournir un procédé et un système de contrôle des performances de filtres pour conduite d'admission d'air d'une turbine.
Dans un mode de réalisation, l'invention concerne un procédé de contrôle d'un filtre pour une conduite d'admission d'air d'une turbine dans lequel on soumet le filtre à un flux incident d'eau salée pulvérisée, et on mesure des paramètres du flux de part et d'autre du filtre représentatifs de l'efficacité de rétention en sel du filtre. Ainsi on peut déterminer les performances d'un filtre présent dans un milieu maritime.
Cependant on ne sort pas du cadre de l'invention lorsque le filtre à contrôler est utilisé dans un environnement autre que le milieu maritime.
Avantageusement, les étapes de mesure sont réalisées en une séquence d'au moins un test.
Par exemple, à chaque test, on déplace des organes de mesure dans une conduite de test dans laquelle est placée le filtre.
On peut effectuer trois tests de quinze minutes, espacés chacun de vingt minutes.
En outre, on effectue quatre séquences de test.
On peut éventuellement sécher le filtre entre les séquences. Avantageusement, le filtre est incliné de dix degrés par rapport à l'axe horizontal.
Par exemple, chaque test comprend la mesure de la concentration en sel, de la distribution en goutteles d'eau salée et de la quantité d'eau et de sel.
On peut charger le filtre sec avec de la poussière et effectuer au moins une séquence de test sur le filtre sec chargé de poussière.
Par exemple, on mesure l'efficacité de rétention en sel du filtre. Selon au second aspect, l'invention concerne un système de contrôle d'un filtre pour conduite d'admission d'air dans une turbine comportant un moyen d'injection d'un flux d'eau salée pulvérisée vers le filtre.
Le système de contrôle comprend en outre des organes de mesures de paramètres du flux de part et d'autre du filtre représentatifs de l'efficacité de rétention en sel du filtre.
Par exemple, les organes de mesure comprennent au moins un organe choisi parmi un débitmètre, un conductimètre, un photomètre, un spectromètre à lumière blanche, un capteur d'humidité, un capteur de pression et un dispositif de mesure de particules.
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence au dessin annexé qui illustre un système de contrôle d'un filtre dans une conduite de test selon l'invention.
Tel qu'illustré à la figure annexée, le système de contrôle 1 comprend une conduite de test 2 dans laquelle vient se monter un filtre à tester 3 et dans laquelle sont réalisés des étapes de test permettant de déterminer la capacité de rétention en sel des filtres 3. La conduite de test 2 est ainsi pourvue d'un support approprié pour le filtre 3 (non représenté) afin de le positionner transversalement dans la conduite sur le trajet d'un flux d'air incident illustré par des flèches F.
Un filtre à haute performance 4, appelé filtre « HEPA » est monté à l'entrée de la conduite de test 2 de manière à fournir de l'air de qualité dans la conduite, en particulier dans différentes zones de mesures A, B, C et D. La zone de mesure A est située entre le filtre HEPA 4 et le filtre à tester 3 jusqu'à la zone B qui est située directement en amont du filtre 3. La zone C est située directement en aval du filtre 3 et la zone D est située en aval de la zone C. La conduite de test 2 comprend un moyen d'injection 5 d'un flux d'eau salée vers le filtre 3 et un dispositif de transmission d'air (non représenté) situé en amont de la conduite de test 2. Le système de contrôle 1 comprend des organes de mesure de paramètres du flux disposés de part et d'autre du filtre 3. Ces organes de mesure sont reliés à un calculateur 6 qui permet d'enregistrer les mesures effectuées. Les organes de mesure comprennent, par exemple, un débitmètre 7, un capteur d'humidité 8, un capteur de pression statique 8a, un spectromètre à lumière blanche 9, un moyen gradué 9a, un photomètre 10, un conductimètre 11 et un moyen de mesure 12 du nombre de particules. Bien entendu, un ou plusieurs de ces organes peuvent être utilisés selon les types de test à réaliser. D'autres types d'organes de mesure peuvent également être utilisés.
Le débitmètre 7 est situé en amont de filtre HEPA 4 et permet de déterminer le débit de l'air entrant. Un capteur d'humidité 8 et un capteur de pression statique 8a sont situés dans chacune des zones A et D. Le spectromètre à lumière blanche 9 et permet de déterminer la quantité d'eau dans la zone A injectée par le moyen d'injection 5 et la quantité d'eau dans la zone D. Le moyen gradué 9a est situé dans les zones B et C et permet de déterminer la quantité d'eau présente dans ces zones. Le photomètre 10 est situé dans la zone A et permet de déterminer la concentration en sel. Le conductimètre 11 et le moyen de mesure 12 du nombre de particules sont situés dans les zones B et C de part et d'autre du filtre 3. Le conductimètre 11 détermine la concentration en sel et le moyen de mesure 12 permet de déterminer l'efficacité partielle du filtre 3. L'efficacité partielle correspond au nombre de particules situées en aval du filtre 3 comparé au nombre de particules de même taille situées en amont du filtre 3.
La conduite 2 telle que représentée présente, à titre d'exemple non limitatif, une forme dénivelée de façon à obtenir une meilleure répartition de l'injection de l'eau salée sur le filtre 3. Un premier dénivelé 13 forme un angle β avec l'axe horizontal, puis un second dénivelé 14 forme un angle γ avec l'axe horizontal. L'angle β peut être inférieur à 7° et l'angle γ peut être supérieur à 20°. Une conduite droite ou avec différents angles γ et β peut également être envisagée pour effectuer le contrôle du filtre 3. Le filtre 3 à tester est incliné d'un angle a par rapport à l'axe horizontal de la conduite 2. L'angle a peut être de 10°. Le filtre 3 est monté dans la conduite 2 par des moyens de fixation étanches (non représentés) afin de diriger le flux d'eau salée uniquement à travers le filtre 3.
La concentration en sel injectée par le moyen d'injection 5 peut être, par exemple, de 35g/L.
Une première étape de contrôle consiste à tarer le spectromètre à lumière blanche 9 ainsi que les moyens de mesure 12 du nombre de particules. Lors de cette première étape, le filtre à tester 3 n'est pas positionné dans la conduite 2. Un flux d'air est dirigé par le dispositif de transmission d'air à travers le filtre HEPA 4 de manière à obtenir une bonne qualité d'air dans les zones de mesures A, B, C et D, puis l'eau salée est injectée par le moyen d'injection 5. Le flux d'air permet d'obtenir un flux incident d'eau salée pulvérisée vers le filtre 3.
Le calculateur 6 relève les valeurs du spectromètre à lumière blanche 9, du conductimètre 11 et des moyens de mesure 12 du nombre de particules en amont et en aval du filtre HEPA 4, c'est-à-dire respectivement les valeurs de la quantité d'eau, de la concentration en sel et du nombre de particules.
Une deuxième étape consiste à insérer et à verrouiller le filtre 3 dans la conduite 2, puis le flux d'air est transmis par dispositif de transmission d'air et l'on soumet le filtre 3 au flux incident d'eau salée pulvérisée par le moyen d'injection 5 pendant une durée déterminée, par exemple de trois heures.
Une troisième étape consiste à réaliser trois tests pendant une heure. Chaque test comprend la mesure de la quantité d'eau par le spectromètre à lumière blanche 9, la mesure de la concentration en sel par le photomètre 10 et la mesure du nombre de particules par le moyen de mesure 12 afin de déterminer l'efficacité partielle du filtre 3.
Chaque test dure environ quinze minutes. Un intervalle d'environ vingt minutes existe entre chaque début de tests. Après chaque test, le spectromètre à lumière blanche 9 et le photomètre 10 sont déplacées dans la conduite 2 suivant l ' axe horizontal . Lors des tests, les organes de mesure 9 et 10 peuvent être positionnés dans la zone B, puis dans la zone A, pui s dans la zone D .
Lors d' une quatrième étape, les troi s tests sont répétés pendant environ deux heures, afin d' obtenir troi s mesures de chaque organes de mesure 9, 10 et 12 et d' en déduire une moyenne.
Les étapes une à quatre sont appelées ultérieurement « séquences de test » .
La cinquième étape consi ste à sécher le filtre 3 , par exemple en augmentant le débit de l ' air. Le filtre est séché pendant environ douze heures pui s son taux d' humidité est vérifié. Lorsque le filtre 3 est sec, la séquence de test est répétée au moins une fois. La séquence de test peut être répétées j usqu' à quatre foi s .
Lorsque la cinquième étape est terminée, on charge le filtre 3 sec avec de la poussière à 450 Pa, par exemple de type ASHRAE, et on répète à nouveau la séquence de tests au moins deux foi s, pui s on charge à nouveau le filtre 3 avec de la poussière à 700 Pa, par exemple de type ASHRAE, et on répète la séquence de tests au moins deux foi s.
Enfin, on mesure l ' efficacité de rétention de poussière du filtre
3 par le test i ssu de la norme EN 779.
La perte de charge doit être contrôlée régulièrement durant le test.
On notera que l ' invention qui vient d' être décrite permet de contrôler un filtre et déterminer son efficacité de rétention de sel et de poussière dans un environnement maritime, en fonction de la quantité d' eau salée en amont et en aval du filtre 4, de la quantité de sel récupérée en amont du filtre 4.
Ainsi pour qu' un filtre soit performant, la quantité d' eau salée récupérée en amont du filtre doit être supérieure à la quantité d' eau salée récupérée en aval du filtre, la valeur de l ' efficacité de gouttelettes d' eau salée et la quantité de dépôt de sel doivent être supérieures ou égales à des valeurs de référence. On peut noter, qu' il y a généralement une quantité d'eau, par exemple 25% de la quantité d'eau initiale, qui ne parvient pas jusqu'au filtre 3.
Si deux des trois paramètres ci-dessous sont corrects, la performance du filtre est discutable et il convient de refaire le test. Cependant, si un seul des trois paramètres est correct, le filtre est considéré comme défaillant.
On notera également que l'invention ne se limite pas au contrôle de filtres utilisés dans un environnement maritime mais permet de contrôler n'importe quel filtre.

Claims

REVENDICATIONS
1. Procédé de contrôle d'un filtre (3) pour conduite d'admission d'air d'une turbine, caractérisé en ce que :
- on soumet le filtre (3) à un flux incident d'eau salée pulvérisée,
- on mesure des paramètres du flux de part et d'autre du filtre représentatifs de l'efficacité de rétention en sel du filtre.
2. Procédé de contrôle d'un filtre selon la revendication 1, dans lequel les étapes de mesure sont réalisées en une séquence d'au moins un test de contrôle.
3. Procédé de contrôle d'un filtre selon la revendication 2, dans lequel à chaque test, on déplace des organes de mesure (9, 10) dans une conduite de test (2) dans laquelle est placée le filtre (3).
4. Procédé de contrôle d'un filtre selon l'une des revendications 2 ou 3, dans lequel on effectue trois tests de quinze minutes, espacés chacun de vingt minutes.
5. Procédé de contrôle d'un filtre selon l'une des revendications 2 à 4, dans lequel on effectue quatre séquences de test.
6. Procédé de contrôle d'un filtre selon la revendication 5, dans lequel on sèche le filtre (3) entre les séquences.
7. Procédé selon l'une des revendications précédentes, selon lequel le filtre (3) est incliné de dix degrés par rapport à l'axe horizontal.
8. Procédé selon l'une des revendications 2 à 7, selon lequel chaque test comprend la mesure de la concentration en sel, du nombre de la distribution de goutteles d'eau salée et de la quantité d'eau.
9. Procédé selon l'une des revendications 6 à 8, caractérisé en ce que l'on charge le filtre sec avec de la poussière.
10. Procédé selon la revendication 9, caractérisé en ce que l'on effectue au moins une séquence de test sur le filtre (3) sec chargé de poussière.
11. Procédé selon la revendication 10, caractérisé en ce que l'on mesure l'efficacité de rétention en sel du filtre (3).
12. Système de contrôle d'un filtre (3) pour conduite d'admission d'air dans une turbine comportant un moyen d'injection (5) d'un flux d'eau salée pulvérisée vers le filtre (3), caractérisé en ce qu'il comprend des organes de mesures (9, 10, 12) de paramètres du flux de part et d'autre du filtre représentatifs de l'efficacité de rétention en sel du filtre (2).
13. Système de contrôle selon la revendication 12, selon lequel les organes de mesure comprennent au moins un organe de mesure choisi parmi un débitmètre (7), un conductimètre (11), un photomètre (10), un spectromètre à lumière blanche (9), un capteur d'humidité (8), un capteur de pression et un dispositif de mesure de particules (12).
PCT/EP2011/065747 2010-09-13 2011-09-12 Procédé et système de contrôle d'un filtre WO2012034971A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB1304339.3A GB2497039B (en) 2010-09-13 2011-09-12 Method and system for monitoring a filter
CN201180054487.6A CN103209748B (zh) 2010-09-13 2011-09-12 用于控制过滤器的方法和系统
DE112011103057T DE112011103057T5 (de) 2010-09-13 2011-09-12 Verfahren und System zur Kontrolle eines Filters
US13/823,020 US9383305B2 (en) 2010-09-13 2011-09-12 Method and system for controlling a filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1057254 2010-09-13
FR1057254A FR2964574B1 (fr) 2010-09-13 2010-09-13 Procede et systeme de controle d'un filtre

Publications (1)

Publication Number Publication Date
WO2012034971A1 true WO2012034971A1 (fr) 2012-03-22

Family

ID=43770491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/065747 WO2012034971A1 (fr) 2010-09-13 2011-09-12 Procédé et système de contrôle d'un filtre

Country Status (6)

Country Link
US (1) US9383305B2 (fr)
CN (1) CN103209748B (fr)
DE (1) DE112011103057T5 (fr)
FR (1) FR2964574B1 (fr)
GB (1) GB2497039B (fr)
WO (1) WO2012034971A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435260B2 (en) 2013-12-06 2016-09-06 Bha Altair, Llc Method and system for testing filter element performance
US9474994B2 (en) 2013-06-17 2016-10-25 Donaldson Company, Inc. Filter media and elements
US10357730B2 (en) 2013-03-15 2019-07-23 Donaldson Company, Inc. Filter media and elements

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3011190B1 (fr) 2013-09-30 2015-10-23 Ge Energy Products France Snc Dispositif et procede de caracterisation du fonctionnement d'un appareil de retention d'eau
US20170001137A1 (en) * 2013-12-19 2017-01-05 CAMFlL AB Air filtering device with salt load determination and method for monitoring filtration
US9909415B2 (en) * 2015-11-20 2018-03-06 Cameron International Corporation Method and apparatus for analyzing mixing of a fluid in a conduit
US10612412B2 (en) 2016-04-22 2020-04-07 General Electric Company System and method for condition based monitoring of a gas turbine filter house
WO2018075008A1 (fr) * 2016-10-18 2018-04-26 Hewlett-Packard Development Company, L.P. Mesures de filtre
CN110325258B (zh) * 2017-02-21 2022-07-22 通用电气公司 用于减小包括燃气涡轮机的发电厂中的启动排放的系统
US20180306112A1 (en) * 2017-04-20 2018-10-25 General Electric Company System and Method for Regulating Flow in Turbomachines
CN113090394B (zh) * 2021-03-19 2022-02-15 清华大学 一种燃气轮机进气过滤效率异常监测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29507061U1 (de) * 1995-05-05 1995-07-27 Hoechst Ag, 65929 Frankfurt Automatisierte Vorrichtung zur Prüfung von Filtermedien
DE29907077U1 (de) * 1999-04-21 2000-07-06 Palas GmbH Partikel- und Lasermeßtechnik, 76229 Karlsruhe Vorrichtung zum Prüfen von Filtern

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312645A (en) * 1980-03-10 1982-01-26 Parmatic Filter Corporation Separator assembly
US4494403A (en) * 1982-07-14 1985-01-22 Flanders Filters, Inc. Filter testing apparatus and method
US20040055900A1 (en) * 2002-09-23 2004-03-25 Siemens Westinghouse Power Corporation Apparatus and methods for sampling and analyzing inlet air associated with combustion turbine
SI1674144T1 (sl) * 2004-12-23 2008-04-30 Gore W L & Ass Gmbh Filter dovodnega zraka turbine
US7604687B2 (en) * 2005-06-03 2009-10-20 Daramic Llc Gas filtration media
US8673040B2 (en) * 2008-06-13 2014-03-18 Donaldson Company, Inc. Filter construction for use with air in-take for gas turbine and methods
US8512432B2 (en) * 2008-08-01 2013-08-20 David Charles Jones Composite filter media

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29507061U1 (de) * 1995-05-05 1995-07-27 Hoechst Ag, 65929 Frankfurt Automatisierte Vorrichtung zur Prüfung von Filtermedien
DE29907077U1 (de) * 1999-04-21 2000-07-06 Palas GmbH Partikel- und Lasermeßtechnik, 76229 Karlsruhe Vorrichtung zum Prüfen von Filtern

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PHDENGINEER: "Filters for Industry", 1 January 2003 (2003-01-01), pages 1 - 42, XP007918177, Retrieved from the Internet <URL:http://www.pdhengineer.com/courses/hv/M-4009.pdf> *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10357730B2 (en) 2013-03-15 2019-07-23 Donaldson Company, Inc. Filter media and elements
EP3903904A1 (fr) 2013-03-15 2021-11-03 Donaldson Company, Inc. Milieu filtrant et éléments
US11253802B2 (en) 2013-03-15 2022-02-22 Donaldson Company, Inc. Filter media and elements
US12023613B2 (en) 2013-03-15 2024-07-02 Donaldson Company, Inc. Filter media and elements
US9474994B2 (en) 2013-06-17 2016-10-25 Donaldson Company, Inc. Filter media and elements
US9435260B2 (en) 2013-12-06 2016-09-06 Bha Altair, Llc Method and system for testing filter element performance

Also Published As

Publication number Publication date
FR2964574A1 (fr) 2012-03-16
CN103209748B (zh) 2016-09-28
FR2964574B1 (fr) 2015-01-02
CN103209748A (zh) 2013-07-17
DE112011103057T5 (de) 2013-07-04
GB2497039B (en) 2017-11-08
US20130276514A1 (en) 2013-10-24
GB201304339D0 (en) 2013-04-24
GB2497039A8 (en) 2013-07-17
GB2497039A (en) 2013-05-29
US9383305B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
WO2012034971A1 (fr) Procédé et système de contrôle d&#39;un filtre
CA2738893C (fr) Procede et systeme de surveillance d&#39;un turboreacteur
FR2890172A1 (fr) Procede de gestion d&#39;un detecteur de particules dans un flux de gaz et dispositif pour la mise en oeuvre du procede.
EP1864007B1 (fr) Procede et dispositif de surveillance d un filtre a particules equipant la ligne d echappement d un moteur a combustion interne
FR2929650A1 (fr) Procede et dispositif d&#39;adaptation d&#39;un modele dynamique d&#39;une sonde de gaz d&#39;echappement.
FR3073562A1 (fr) Procede et dispositif de diagnostic d&#39;un capteur de pression differentielle d&#39;un filtre a particules
FR3021354A1 (fr) Procede et dispositif pour detecter une charge de suie et de cendres dans un filtre a particules
CA2815014C (fr) Procede de commande d&#39;une turbomachine
FR2928691A1 (fr) Procede et dispositif pour surveiller un systeme d&#39;alimentation en air d&#39;un moteur a combustion interne
FR2978211A1 (fr) Procede de surveillance d’un clapet de surpression d’un circuit d’injection de carburant pour turbomachine
FR2955894A1 (fr) Procede et dispositif pour determiner la temperature des gaz d&#39;echappement dans le conduit des gaz d&#39;echappement d&#39;un moteur thermique
FR3098902A1 (fr) Procede iteratif de determination en temps reel du debit d&#39;air preleve sur un moteur d&#39;aeronef
FR3076574A1 (fr) Procédé et dispositif de diagnostic d’un capteur de différence de pression d’un filtre à particules d’un moteur à combustion interne
FR2871849A1 (fr) Procede et dispositif pour gerer le fonctionnement d&#39;un piege a oxydes d&#39;azote, et diagnostiquer son etat de vieillissement
CA2078170C (fr) Systeme de protection contre l&#39;extinction d&#39;une turbomachine en cas d&#39;ingestion d&#39;eau massive ou de greles
FR3061931A1 (fr) Procede et dispositif de diagnostic de la charge d&#39;un filtre a particules
EP1591638B1 (fr) Procédé de détermination de la charge d&#39;un filtre à particule
Melis et al. Testing laser-based sensors for continuous in situ monitoring of suspended sediment in the Colorado River, Arizona
FR2887293A1 (fr) Systeme d&#39;aide a la regeneration de moyens de depollution integres dans une ligne d&#39;echappement d&#39;un moteur de vehicule automobile
FR2966928A1 (fr) Procede et dispositif de surveillance d&#39;une chaine de mesure redondee
FR2898682A1 (fr) Procede et dispositif de correction du signal fourni par une sonde lambda
FR3033832A1 (fr) Procede de purge ou de charge d’oxygene d’un catalyseur installe dans le flux d’un moteur
FR3105297A1 (fr) Dispositif et procédé de mesure pour l’évaluation de l’intégrité d’un filtre à particules
FR3080452A1 (fr) Procede de surveillance d&#39;un reducteur de vitesse
FR2992359A1 (fr) Detection de defaillances de combustion d&#39;un moteur

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11754430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 1304339

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110912

WWE Wipo information: entry into national phase

Ref document number: 1304339.3

Country of ref document: GB

WWE Wipo information: entry into national phase

Ref document number: 1120111030576

Country of ref document: DE

Ref document number: 112011103057

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13823020

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11754430

Country of ref document: EP

Kind code of ref document: A1